Appendix B

Surfaces Survey Design Revision 1

	ORIGINAL					
FirstEnergy SNEC CALCULATION COVER SHEET						
	CALCUI	LATION DESCR				
Calculation Number		Revision Number	Effective Date	F	Page Number	
E900-05-015		1	5/19/05	-	1 of	13
Subject	,,,,,,, _		<i>i_js</i>	I	·	
OL1 Paved and Miscellane	ous concrete surfa	ices MA8, PF1, DB	5, DB1, SS12, SS24	- Survey	/ Design	
Question 1 - Is this calculation of Question 2 - Is this calculation of NOTES: If a "Yes" answer is obtain Assurance Plan. If a "Yes" answ	defined as a "Design C ed for Question 1, the cal ver is obtained for Ques	alculation"? Refer to i Iculation must meet the r	definitions 3.2 and 3.3. equirements of the SNEC	Yes 🛛 Facility De	commissioning	Quality iew the
calculation as the Technical Review						
	DESCR	RIPTION OF REV	ISION		<u> </u>	
the survey units and la						
	APPR	OVAL SIGNATU	IRES			
Calculation Originator	W. J. Cooper	CHP/	en	Date	5/19/0	és-
Technical Reviewer	T. Tritch/	Ristan Im.	Pieta	Date	5/19/0	05
Additional Review	A. Paynter/	http:		Date	19 May	2005
Additional Review) 	Date		
			<u> </u>			

FratEnergy		
Calculation Number	Revision Number	Page Number
E900-05-015	· ····· 1	Page 2 of 13
Subject		

1.0 PURPOSE

- 1.1 The purpose of this calculation is to develop a survey design for the residual concrete surfaces in the Saxton Nuclear Experimental Corporation SNEC and SSGS site areas. The total area (OL1) including the soil and solid surface portions is approximately <u>11600 square meters</u>. Portions of the solid surface (concrete, macadam, brick) are Class1, Class 2, and Class 3 survey areas. Because the survey area exceeds the size limitations in the SNEC LTP (Reference 3.5) Table 5-5 for maximum Class 1 survey unit area and it includes survey units of all three classifications, this survey area is subdivided into multiple survey units: OL1-7 is an existing excavation in the SNEC site area, that will be backfilled after survey. OL1-8 through OL1-13 are subdivisions of the large open land area and comprise the majority of the total surface area. These open land areas and the excavation are covered by other design calculations. Several additional areas comprise the residual exposed concrete and macadam surfaces:
 - 1.1.1 PF1 is a pre-existing Class 1 survey unit for the Personnel Access Facility (PAF) floor and includes the north edge of the PF1 portion of the slab with approximately 37 m²
 - 1.1.2 DB1 is a pre-existing Class 1 survey area for the Decommissioning Support Building (DSB) floor pad and door ramp. This area is further divided into two survey units due to LTP survey unit area limitations. DB1-1(85 m²) and DB1-2 (109 m²) with **194 m²** total. DB1-1 includes the full width of the north edge of the DSB portion of the pad.
 - 1.1.3 DB5 is a pre-existing Class 1 survey unit for the DSB carport floor of approximately 54 m²
 - 1.1.4 SS12 is a pre-existing survey area for the SSGS boiler pad. This concrete, although it is in a Class 1 soil area, is classified as Class 3 in the LTP Table 5-2. Some minor details of residual concrete hidden by soil may be present. This will not affect the survey since it is class 3 and only 10% scan is needed. Since SS12 is Class3, the entire pad is a single survey unit of approximately 658 m².
 - 1.1.5 SS24-1 is a Class 3 survey unit defined for the miscellaneous SSGS pads north of the turbine hall. There is likely to be a buried portion of this slab west of this area which is separately defined as SS24-2. Since SS24 is Class 3, the entire exposed pad is a single survey unit. Design scan area is 105 m². The west edge of the exposed concrete is uneven and the area is approximately 249 m².
 - 1.1.6 SS24-2 is a Class 3 survey unit defined for the miscellaneous SSGS pads north of the turbine hall. This is a buried portion of this slab west of the area defined as SS24-1. This area must first be surveyed as open land per E900-05-014, then cleared of soil and the residual concrete surveyed per this design. Since SS24 is Class 3, the entire buried portion of the pad is a single survey unit. Design scan area is 118 m². The area is approximately 321 m².
 - 1.1.7 MA8-6 through 13, 16, and 17: Ten survey units of the old parking lot and driveway macadam. Because of the 100 m² survey unit limitation for Class 1 surfaces, the surface was subdivided into ten approximately 100 m² (or less) survey units. The pavement occupies all of, or a large portion of, grids AT131, AU127, AU128, AU129, AU130, AU131, AV130, AV131, AW131, AX131, AY131. These are all class 1 survey units due to verbal reports of minor remediation and due to their proximity to

FratEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-015	····· · · · · · · · · · · · · 1	Page 3 of 13
Subject		

the C&A building, the barrel bunker, and containment. Total area is about 772 m^2 . General arrangement of these units is shown in the drawing Attachment 6-17.

- 1.1.8 MA8-16 and MA8-17 have about 4 to 6 inches of soil on top of the pavement. This soil is to be surveyed per E900-05-014 and then removed and placed in a PRI pile to allow the pavement survey per this design.
- 1.1.9 MA8-14 the Line Shack concrete including garage door ramps and sidewalks. This area is not specifically classified in the SNEC LTP (Reference 3.5) but is selected to be class 2 consistent with the class 3 classification of the line shack exterior and the class 1 assigned to the surrounding soil. This is a Class 2 survey unit with about 33 m² total area.
- 1.1.10 MA8-15 is additional concrete surfaces around the CV. There is some SSGS concrete and additional small monoliths in OL1-9 NW of the CV. This small concrete area is not specifically addressed in the SNEC LTP but is assumed to be Class 1. due to proximity to the CV and is about **37** m².
- 1.1.11 A summary list of survey unit areas is included as Attachment 5-1.
- 1.2 This survey design applies only to the residual concrete, macadam, and other paved surfaces in the survey area. The design for the open land areas, fences, the east yard excavation, and the portion of OL1 covering the SSGS will be provided in separate calculations. The general layout of this survey unit is shown on **Attachment 1-1**.
- **1.3** If additional areas of concrete not identified here are found under soil, this design may to be revised to include the additional area.

2.0 SUMMARY OF RESULTS

The following information should be used to develop a survey request for this survey unit. The effective DCGLw value is listed below. This value is derived from previously approved derived values for "CV Yard Soil and Boulders", Attachment 2 in SNEC calculation E900-04-005 (Reference 3.15). The US NRC has reviewed and concurred with the methodology used to derive these values. See Attachment 2-1 and Reference 3.9.

Table 1, DCGLw Values		
Gross	Activity DCGLw (dpm/100 cm ²)	
	26445 (19834 A.L.)	

NOTE: A.L. is the site Administrative Limit (75% of effective DCGLw)

- 2.1 Survey Design
 - 2.1.1 Scanning of concrete and macadam surfaces shall be performed using a L2350 with 43-68B gas flow proportional counter or a 43-37 'extra large' probe calibrated to Cs-137 (see typical calibration information on Attachments 3-1 and 3-2). Generic approval for use of the 43-37 is included in Reference 3.10.
 - 2.1.2 The instrument conversion factor/efficiency (Et) shall not be less than that assumed on Attachment 4-1 as <u>23.9% – Cs-137</u> for the 43-68B nor less than <u>20.0%-Cs137</u> for the 43-37 in its lowest efficiency region as assumed on Attachment 4-3.

FirstEnergy	SNEC CALCULATION SHEET	SNEC CALCULATION SHEET				
Calculation Number	Revision Number	Page Number				
E900-05-015	· · ··· 1	Page 4 of 13				
Subject						

- 2.1.3 Other instruments of the types specified in Section 2.1.1 above may be used during the final status survey (FSS), but must demonstrate detection efficiencies at or above the values listed in Section 2.1.2 above.
- 2.1.4 An efficiency correction factor (ECF) is applied to compensate for efficiency loss when surveying rough surfaces based on **Reference 3.1** and **Attachment 2-2**.
- 2.1.5 The fraction of detectable beta emitting activity affects the efficiency and is determined by the nuclide mix. The mix detectable beta fraction is determined to be 60% based on **Reference 3.15**. Because the adjusted DCGLw used is based only on the modified Cs-137 DCGLw, the mix percentage is not applied to the adjusted surrogate DCGLw. The gross activity DCGLw, which would include all the low energy activity and would require mix percentage adjustment is considerable higher, at 44434 dpm 100cm². The Cs-137 adjusted surrogate activity already accounts for the detectable beta yield of the mix.
- 2.1.6 The ECF is derived from Attachment 2-2 and Reference 3.1 based on a surface irregularity of 3 inches or less FOR THE 43-68B DETECTOR. This is conservative, as actual observed irregularity is typically less than one inch. Also, the loss of efficiency is based on moving the detector away from a 150 cm² source. If the area of the residual activity is larger, than the efficiency loss would be smaller due to the increase in 'field-of-view' of the detector.
- 2.1.7 The ECFs developed for the 43-68B probe per reference 3.1 are assumed to apply to the 43-37. The ECF for the 43-37 are based on the ASSUMPTION that the detector face will not be more than about 1 inch farther from the surface than from the source in the test jig (0.5 inches apart) and that the surface will be fairly smooth, typical of poured concrete or macadam.
- 2.1.8 Because the alarm point and MDCscan are based on the highly conservative surface irregularity assumptions (intended to bound all cases to simplify design and performance of the survey), where surfaces are much smoother (e.g. 1 inch irregularity or less per probe area for the 43-68B) than the assumed 3 inch variability, short (e.g. ½ to 1 inch) standoff support pegs may be attached to the 43-68B in order to reduce the possibility of mylar damage. These standoffs must only be used when the surface smoothness is well within the assumed 3 inch variability. Because the high surface irregularity is assumed and used for the efficiency of the instrument for the entire design, this standoff will not affect the assumed efficiency if limited as discussed above.

Detector	Material Type	Ei	Es	Et(as %)	ECF	Adjusted efficiency
43-68B	Concrete or asphalt	.478	.5	23.9	.2	4.8%
43-37	Concrete or asphalt	.4	.5	20.0	.5	10.0%

FirstEnergy	SNEC CALCU	LATION SHEET		
Calculation Number	***	Revision Number	Page Number	
E900-05-015	· · · · · · · · · · · · · · · · · · ·	1 1	Page 5 of 13	

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

Table 3, Surface Scanning Parameters for Solid Misc. Concrete & Pavement Sections

Detector	MDCscan (dpm/100cm²)*	Scan Speed (cm/sec)	Maximum Distance from Surface	DCGLw Action Level	% Coverage
43-68B	4634	10	3" (gap between detector face & surface or 3 inch irregularity)	> 1450 cpm	Up to 100%
43-37	7311	30.5	1.5" (gap between detector face & surface)	>2900 cpm	Up to 100%

See Attachment 2-1, 2-2, 4-1, and 4-3 for calculations*

- 2.1.9 The 43-68B MDCscan (shown in Attachment 4-1) is based on a 300 cpm background. Typical backgrounds are similar to this value assumed, as shown in the variability data shown as "CW" (closed window or shielded detector) in Attachment 8-2. Unaffected material backgrounds were determined at the Williamsburg station, which resulted in a mean background value of 306 cpm +/- 34.5. On 3/7/05, measurements were collected on three different surfaces in OL1: the DSB pad, the old parking lot, and the SSGS boiler pad.
- 2.1.10 The 43-37 MDCscan (shown in Attachment 4-2) is based on a 1020 cpm background. On 5/12/05, measurements were collected on three different surfaces in OL1: the DSB pad, the asphalt, and the SSGS boiler pad. These are shown in Attachment 8-7 and Attachment 8-8.
- 2.1.11 The 43-37 detector is to be used as a screening process.
 - 2.1.11.1 Since the efficiency is determined with the same source as used for the 43-68B, the effective area of the detector is assumed to be 100 cm² for determining the MDCscan. This will underestimate the response of the detector to larger sources but produce similar efficiencies and MDCs as for the 43-68B.
 - 2.1.11.2 Scanning using the 43-37 will be done only on flat surfaces with surface irregularities typical of poured concrete or rolled macadam pavement. Uneven surfaces, edges, etc. will be scanned with the 43-68B.
 - 2.1.11.3 Because the 43-37 has a much larger effective surface area than the 43-68B, and the MDC and action level are based only on a 100 cm² elevated spot, the 43-37 may provide action level count rates on larger diffuse source areas that actually are less than the DCGL. Therefore, the 43-37 will be used to screen surfaces and will be considered to be the 'official' results only if no action levels are observed.
 - 2.1.11.4 Any action levels observed with the 43-37 will be rescanned with the 43-68B. If no AP is observed with the 43-68B, there is no AP. APs observed in follow-up rescans with the 43-68B will be handled and documented in the SR per section 2.1.16 below.
 - 2.1.11.5 Fraction scanned with the 43-37 and results should be separately reported in the SR for each survey unit / grid/ etc. in a similar manner as used for the

FirstEnergy	SNEC CALCULATION SHEET			
Calculation Number	Revision Number	Page Number		
E900-05-015	· · · · · · 1	Page 6 of 13		
Subject				

43-68B. E.G. '90% scanned with 43-37, one alarm rescanned with 43-68B no --- 43-68B AP'.

- 2.1.12 The 3/7/05 survey data shown as "OW" (open window or unshielded) is used for the variability assessment for the COMPASS determination of sample requirements and is shown in Attachment 8-2.
- 2.1.13 A background of 1300 cpm for the 43-68B would still result in MDCscan less than about 50% of the DCGLw (Attachment 4-2). Since the Action level cited in Table 3, above, is total counts per minute including background, if local backgrounds significantly exceed the background count rate assumed for the MDCscan (about 300cpm for the 43-68B see Attachment 4-1 or 1020 cpm for the 43-37 see Attachment 4-3) <u>contact the cognizant SR coordinator</u> to determine need for additional background count rate adjustments.
- 2.1.14 The scan DCGLw Action Level for the 43-68B listed in Table 3 includes 1200 cpm DCGL equivalent count rate from Attachment 4-1 and an estimated 260 cpm background. The DCGLw action level is based on fixed measurement and does not include 'human performance factors' or 'index of sensitivity' factors (see Reference 3.12).
- 2.1.15 The scan DCGLw Action Level for the 43-37 listed in Table 3 includes 1950 cpm DCGL equivalent count rate from Attachment 4-3 and an estimated 950 cpm background. Although the 43-37 is assumed to be geometrically and functionally equivalent to the 43-68B for MDC and action level determination (a conservative assumption), the ECFs and probe areas are different and therefore result in a higher net count rate for the action level for the 43-37. The DCGLw action level is based on fixed measurement and does not include 'human performance factors' or 'index of sensitivity' factors (see Reference 3.12).
- 2.1.16 If a total count rate greater than the "DCGLw action level" of Table 3 is encountered during the scanning process with a 43-68B, the surveyor should stop and locate the boundary of the elevated area, and then perform a "second phase" fixed point count of at least 30 seconds duration. If the second phase result equals or exceeds the "DCGLw action" level noted in table 3, the surveyor should then mark the elevated area with appropriate marking methods and document the count rate observed and an estimate of the affected area. Subsequent investigation may take the actual surface irregularity into account for the efficiency.
 - 2.1.16.1 <u>Class 1</u> concrete should be scanned to include 100% surface coverage at a scan rate of about 10 cm per second for the 43-68B or 30.5 cm per second for the 43-37. All accessible surfaces are required to be scanned. Areas that cannot be accessed should be clearly noted along with the reason for not completing the scan in that area.
 - 2.1.16.2 <u>Class 2</u> concrete would normally be scanned to include 10% to 100% surface coverage. Only the concrete around the line shack is class 2. Due to the small size of the unit and the distribution of small areas, the unit (MA8-14) will be 100% scanned at a scan rate of about 10 cm per second for the 43-68B or 30.5 cm per second for the 43-37. Areas that cannot be accessed

SNEC CALCULATION SHEET			
Calculation Number	Revision Number	Page Number	
E900-05-015	····· 1	Page 7 of 13	
Subject			

should be clearly noted along with the reason for not completing the scan in that area.

- 2.1.16.3 <u>Class 3</u> concrete would normally be scanned to include up to 10% surface coverage. The concrete and pavement in and around the SSGS is class 3 and will be approximately 10% scanned at a scan rate of about 10 cm per second for the 43-68B or 30.5 cm per second for the 43-37. Three 25 square meter scan areas are shown on Attachment 6-34 for SS12, two regions totaling 105 square meters are shown on Attachment 6-36 for SS24-1, and two regions totaling 118 square meters are shown on Attachment 6-36 for SS24-2. Areas that cannot be accessed should be clearly noted along with the reason for not completing the scan in that area.
- 2.1.16.4 See Attachment 1-1 for grid layout for the survey units.
- 2.1.16.5 The surfaces of the concrete or other pavement materials should be clear of debris to ensure detection parameters are not affected.
- 2.1.17 The minimum number of fixed measurement sampling points indicated by the COMPASS computer program (Reference 3.3) is <u>11</u> for each survey unit (see COMPASS output on Attachment 7-1 to 7-5). Fixed point measurements should be done only with the 43-68B IAW Section 2.2. The MDCscan (concrete) is below the effective administrative DCGLw_{Cs-137} (4634 DPM/100cm² MDCscan @300cpm bkg < 19834 DPM/100cm² AL for the 43-68B and 7311 DPM/100cm² MDCscan @1020cpm bkg < 19834 DPM/100cm² AL for the 43-68B and 7311 DPM/100cm² MDCscan @1020cpm bkg < 19834 DPM/100cm² AL for the 43-68B and 7311 DPM/100cm² MDCscan @1020cpm bkg < 19834 DPM/100cm² AL for the 43-71.
- 2.1.18 The minimum number of fixed point samples is increased to 13 (18% increase) for survey unit DB1-2 due to the slightly oversized (109 m², 9% over LTP guideline) area of the unit. This oversize is due to the selection of a grid line as the separation point between DB1-1 and DB1-2. Survey Unit DB1-1 is only 85 m². Since both units are class 1, the DSB pad will be 100% scanned regardless of the survey unit separation. Relocation of the arbitrary separation line could make these both equal and <100m² but is not considered to be useful since: separation on a grid line simplifies survey layout, the two units combined are <200 m², and the two units combined have more than the required number of fixed points (26 total vs. 22 required per MARSSIM).
- 2.1.19 One Biased direct measurement point is placed in DB1-1 on the face of the exposed slab. This point should be taken centered vertically on the vertical face at the 128 grid line.
- 2.1.20 The minimum number of sample points for SS24-2 is increased to 18 to account for the unknown extent of the concrete below the soil layer to provide sufficient samples if some areas are not concrete.
- 2.1.21 VSP (Reference 3.4) is used to plot all sampling points on the included diagrams. The actual number of random start systematically spaced measurement points may be greater than that required by the COMPASS computer code because of any or all of the following:

SNEC CALCULATION SHEET			
Calculation Number	Revision Number	Page Number	
E900-05-015	·- 1	Page 8 of 13	
Subject	······		

- placement of the initial random starting point (edge_effects),
- odd shaped diagrams, and/or
- coverage concerns

(see Attachment 6-1 to 6-39 for VSP sampling point locations)

- 2.1.22 Because this design is a conglomerate of multiple slab surfaces into multiple survey units, the sample point locations are not derived from a single starting point. Measurement location details for the sample points are provided in the diagrams in **Attachment 6**.
- 2.1.23 Some sampling points may need to be adjusted to accommodate obstructions within the survey area. Contact the SR coordinator to report any difficulties encountered when laying out systematic grid sampling points.
- 2.1.24 Because of the unusual arrangement of this survey area, with multiple disjointed slabs that do not correspond directly to single grids, the drawings in Attachment 6 are intended to be as close as practicable to as-left conditions. However, if actual layout is different from that shown, review with the cognizant SR coordinator, finish the survey if practicable, and mark up the drawings to indicate actual layout.
- 2.1.25 When an obstruction is encountered that will not allow collection of a sample, contact the cognizant SR coordinator for permission to delete the sampling point.

NOTE

If remediation actions are taken as a result of this survey, this survey design must be revised or re-written entirely.

- 2.2 Measure concrete fixed point and elevated areas(s) IAW SNEC procedure E900-IMP-4520.04 sec 4.3.3 (Reference 3.2) and the following.
 - 2.2.1 Use only the 43-68B to confirm and 'finalize' elevated area measurements or to collect fixed point measurements.
 - 2.2.2 Clearly mark, identify and document all sample locations.
 - 2.3.1 Second phase scan any location that is above the action level cited in Table 3.
 - 2.3.2 Investigation of APs may require surface and sub-surface samples per the LTP section 5.5.3.4.5 (Reference 3.5).

3.0 REFERENCES

- 3.1 SNEC Calculation number 6900-02-028, "GFPC Instrument Efficiency Loss Study"
- 3.2 SNEC Procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".
- 3.3 COMPASS Computer Program, Version 1.0.0, Oak Ridge Institute for Science and Education.
- 3.4 Visual Sample Plan, Version 3.0, Copyright 2004, Battelle Memorial Institute.
- 3.5 SNEC Facility License Termination Plan.

FirstEnergy	SNEC CALCULATION SHEET

Calculation Number E900-05-015 **Revision Number**

1

Page Number

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

- 3.6 SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA"___
- 3.7 SNEC survey 43-68B GFPC measurements in OL1 dated 3/7/05
- 3.8 GPU Nuclear, SNEC Facility, "Site Area Grid Map", SNECRM-020, Sheet 1, Rev 4, 1/18/05.
- 3.9 SNEC Calculation No. E900-03-012, Effective DCGL Worksheet Verification.
- 3.10 SNEC calculation E900–05-031 "Use of the 43-37 Detector and Ludium 239 Floor Monitor for FSS Surveys"
- 3.11 SNEC Procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design".
- 3.12 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.
- 3.13 Microsoft Excel 97, Microsoft Corporation Inc., SR-1 and SR-2, 1985-1997.
- 3.14 Left intentionally blank
- 3.15 SNEC Calculation E900-04-005 "CV Yard Survey Design North West Side of CV"
- 3.16 SNEC survey 43-37 GFPC measurements in OL1 dated 5/12/05

4.0 ASSUMPTIONS AND BASIC DATA

- 4.1 The COMPASS computer program is used to calculate the required number of random start systematic samples to be taken in the survey unit (Reference 3.3).
- 4.2 Reference background data from offsite at the Williamsburg station were used as the initial estimate of variability. These results are shown on **Attachment 8-1** and in **Reference 3.15**. Additional variance data that is used to assess sampling requirements is derived from the survey, **Reference 3.7**. Background data for the 43-37 is not used for variability assessment, since the fixed point data is only collected with the 43-68B
- 4.3 The MARSSIM Sign Test (**Reference 3.12**) will be applicable for this survey design. No background subtraction will be performed under this criteria during the DQA phase.
- 4.4 The required points chosen by COMPASS are located on the survey map for the survey unit by the Visual Sample Plan (VSP) computer code (**Reference 3.4**).
- 4.5 **Reference 3.5** and **3.6** were used as guidance during the survey design development phase.
- 4.6 Background for the 43-68B detector has been measured in the area, and ranges from about 250 to 300 cpm with averages of slightly less than 300 cpm (Reference 3.7). These recent survey result averages are used as the basis for the MDCscan. Background for the 43-37 detector has been measured in the area, and ranges from about 875 to 1100 cpm with averages of about 950 cpm to 1020 cpm (Reference 3.16 and Attachment 8-7). These recent survey result averages are used as the basis for the MDCscan.
- 4.7 The determination of the physical extent of this area is based on the drawing **Reference 3.8** and a thorough walkdown / measurement of the survey unit.
- 4.8 Remediation History:

FistEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-015	1	Page 10 of 13

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

- 4.8.1 OL1 is an open land area. Portions_contained_the_original SNEC site facility and the Saxton Steam Generating Station. Extensive remediation has occurred in the survey area. The SNEC Radwaste building (RWDF), Control and Auxiliary (C&A) building, Containment Vessel (CV), the SSGS, various buried pipe tunnels and underground tanks were all removed to grade or below. The residual portions of the buildings have been previously surveyed and the release surveys have been accepted.
- 4.8.2 The SSGS was backfilled when it was permanently shut down. Subsequently, residual licensed activity was found using core bores. The SSGS backfill was removed and surveyed through an automated conveyor system. Additional concrete surfaces in the SSGS basement were remediated and then the scanned backfill was replaced following survey.
- The underground tank excavation was backfilled after the tanks were removed early in the 4.8.3 project. This backfill was removed and scanned using a automated conveyor scanning system and is currently stored for re-use.
- 4.8.4 The barrel bunker was removed as part of the remediation process.
- 4.8.5 Underground drainage, sewerage systems and surface soils have been removed.
- 4.8.6 Some pavement was remediated during the building removal phase.
- 4.9 This survey design uses Cs-137 as a surrogate for all SNEC facility related radionuclides in the survey unit. The effective DCGLw is the Cs-137 DCGLw from the SNEC LTP (28000 dpm/100cm²) adjusted (lowered) to compensate for the presence (or potential presence) of other SNEC related radionuclides (Reference 3.9). In addition, an administrative limit (75%) has been set that further lowers the permissible Cs-137 concentration to an effective surrogate DCGLw for this survey area.

The sample database used to determine the effective radionuclide mix for the OL1 area has been drawn from samples that were assayed at off-site laboratories. This nuclide mix is copied from Reference 3.15.

The GFPC detector scan MDC calculation is determined based on a 10 cm/sec scan rate, a 1.38 index of sensitivity (95% correct detection probability and 60% false positive) and a detector sensitivity (Et) of 23.9% cpm/dpm for Cs-137 for the 43-68B and 20% for the 43-37. The expected range of background values varies from about 250 cpm to about 300 cpm for the 43-68B detector and about 875 cpm to about 1100 for the 43-37.

- 4.10 The survey unit described in this survey design was inspected after remediation efforts were shown effective. A copy of the specific portion of the SNEC facility post-remediation inspection report (Reference 3.11) applicable to this design is included as Attachment 9-1.
- 4.11 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in this survey area.
- 4.12 The decision error for this survey design is 0.05 for the α value and 0.1 for the β value.
- 4.13 "Special measurements" (as described in the SNEC LTP, Reference 3.5) are included in this survey design. Section 5.5.3.4.5 discusses pavement surveys. This survey design is consistent with the LTP. Use of the 43-37 detector as a screening device may be considered a 'special measurement'. Use is explained and authorized in a SNEC calculation (Reference 3.10).

BastEnergy	SNEC CALCULATION SHEET		
Calculation Number	Revision Number	Page Number	

Revision Number

1

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

- 4.14 No additional sampling will be performed IAW this survey design beyond that described herein.
- 4.15 SNEC site radionuclides and their individual DCGLw values are listed on Exhibit 1 of this calculation based on Table 5-1 in Reference 3.5.
- 4.16 The survey design checklist is listed in Exhibit 2.
- 4.17 Area factors are shown as part of COMPASS output (see Attachment 7-1) and are based on the Cs-137 area factors from the SNEC LTP.

5.0 CALCULATIONS

5.1 All calculations are performed internal to applicable computer codes or within an Excel (Reference 3.13) spreadsheet.

6.0 APPENDICES

- 6.1 Attachment 1-1 is the general layout diagram of the survey units.
- 6.2 Attachment 2-1 and 2-2 are the DCGLw calculation logic for the survey unit from **Reference 3.15** and the estimate of effect on efficiency of the irregular surface.
- 6.3 Attachment 3-1, is a copy of the calibration data from typical 43-68B GFPC radiation detection instrumentation that will be used in this survey area. Attachment 3-2, is a copy of the calibration data for a typical 43-37 GFPC radiation detection instrumentation that will be used in this survey area.
- Attachment 4-1, is the 43-68B MDCscan calculation sheet for concrete (and macadam) 6.4 surfaces in dpm/100cm². Attachment 4-2 shows the effect of elevated background on the 43-68B MDCscan. Attachment 4-3 is the 43-37 MDCscan calculation sheet for concrete (and macadam) surfaces in dpm/100cm².
- 6.5 Attachment 5-1, is a summary list of survey units included in this design, with the estimated area of each.
- 6.6 Attachment 6-1 through 6-39, show the randomly picked scan locations (from VSP) and reference coordinates for the survey unit areas.
- 6.7 Attachment 7-1 through 7-5, are COMPASS output for the survey unit showing the number of sampling points in the survey unit, area factors, and prospective power.
- 6.8 Attachment 8-1, is the surface variability results for concrete surface measurements from the Williamsburg station (Reference 3.15). Attachment 8-2 is the summary of 43-68B backgrounds and surface measurements taken in the survey unit. Attachments 8-3 through 8-6 are copies of the survey used for variability. Attachment 8-7 is the summary of 43-37 backgrounds and surface measurements taken in the survey unit which are shown in Attachment 8-8.
- Attachment 9-1, is the results of the inspection report for the residual surface portion of the 6.9 OL1 area. Attachments 9-2 through 9-5 are the surface test measurement data.

FirstEnergy	SNEC CALCU	SNEC CALCULATION SHEET			
Calculation Number		Revision Number	Page Number		

Page 12 of 13

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

Exhibit 1

SNEC Facility Individual Radionuclide DCGL Values ^(a)

Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm ²)	25 mrem/y Limit (Ail Pathways) Open Land Areas (Surface & Subsurface) (pCi/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	1.9E+04
Pu-238	3.0E+01	1.8	0.41
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	0.61

NOTES:

(a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

(b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

EcstEnergy

SNEC CALCULATION SHEET

Calculation Number E900-05-015 **Revision Number**

1

Page 13 of 13

Page Number

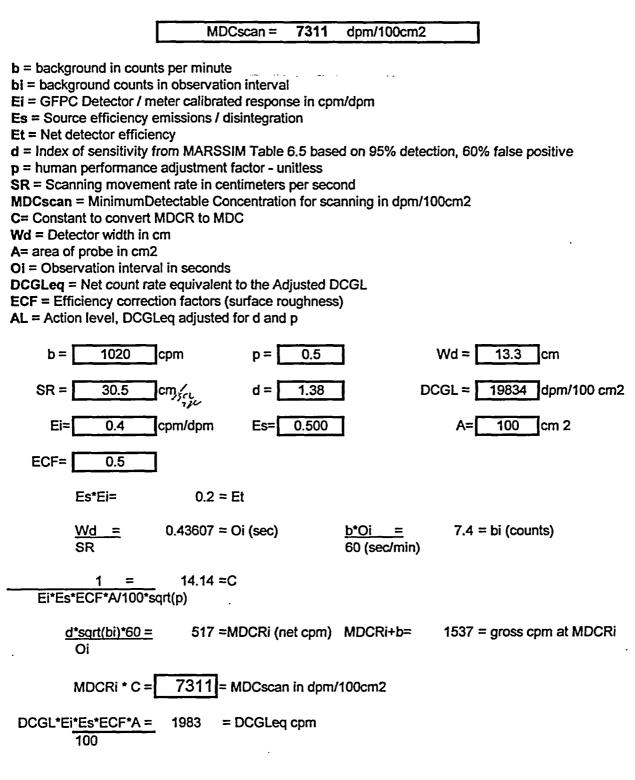
Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

Exhibit 2 Survey Design Checklist

Calcul	ation No. E900-05-015 rev 1	Location Codes SNEC plant areas : OL1 Pav concrete surfaces MA8, PF1, DB5, DB1, SS12		aneous	
ITEM	REVIEV	V FOCUS	Status (Circle One)	Reviewer Initials & Date	
1		en assigned and is a survey design summary n provided?	Yes, N/A		
2		ubject area (drawings should have compass Jings)?	Yes, N/A		
3	Are boundaries properly identified and is th	e survey area classification clearly indicated?	Yes, N/A		
4	Has the survey area(s) been property of	livided into survey units IAW EXHIBIT 10	Yes, N/A		
5	Are physical characteristics of the a	area/location or system documented?	Yes, N/A		
6	Is a remediation effective	eness discussion included?	Yes, N/A		
7		pling results been converted to units that are licable DCGL values?	Yes, N/A		
8	Is survey and/or sampling data that was used	for determining survey unit variance included?	Yes, N/A		
9	Is a description of the background referenc sampling results included along w	e areas (or materials) and their survey and/or ith a justification for their selection?	Yes, N/A		
10	Are applicable survey and/or sampling data t	hat was used to determine variability included?	Yes, N/A		
11	Will the condition of the survey area have probable impact been of	an impact on the survey design, and has the considered in the design?	Yes, N/A		
12	Has any special area characteristic includ previously noted during characterization) b de:	Yes, N/A			
13	Are all necessary supporting calculations a	Yes, N/A			
14	Has an effective DCGLw been	Identified for the survey unit(s)?	Yes, N/A		
15	Was the appropriate DCGLEMC inclu	ided in the survey design calculation?	Yes, N/A		
16	Has the statistical tests that will be us	ed to evaluate the data been identified?	Yes, N/A		
17	Has an elevated measurement comp	arison been performed (Class 1 Area)?	Yes, N/A		
18	Has the decision error levels been identified	and are the necessary justifications provided?	Yes, N/A		
19	Has scan instrumentation been identified alo	ong with the assigned scanning methodology?	Yes, N/A		
20	Has the scan rate been identified, and is th	e MDCscan adequate for the survey design?	Yes, N/A		
21		na-ray spectroscopy required under this design, and evaluation methods described?	Yes, N/A		
22	Is survey instrumentation calibration data inc	luded and are detection sensitivities adequate?	Yes, N/A		
23		ent locations been clearly identified on a diagram ea(s) along with their coordinates?	Yes, N/A		
24		mits adequate, and are any associated actions ndicated?	Yes, N/A		
25	For sample analysis, have the requ	uired MDA values been determined.?	Yes, N/A		
26	Has any special sampling methodology been i	identified other than provided in Reference 6.3?	Yes, N/A		

NOTE: a copy of this completed form or equivalent, shall be included within the survey design calculation.


	Performed By:	Thomas Madden	Date:	4/29/04	7
	Instrument S/N:	95348	Probe S/N:	92501 (A)	1
	Instrument Vendor Cal. Date:	5/3/06	Cal. Due Date:	5/3/06	
Source No.	ISO 7503-1 Values "Es"	Reference Date	A₀ in μCl (± 6%)	2π β or α Emission Rate (sec-1) (± 3%)	ז
Am-241 (GO 535) S-023	0.25	4/8/99 12:00 GMT	4.24E-01	7.43E+03	Am-24
Cs-137 (GO 536) S-024	0.50	4/8/99 12:00 GMT	3.11E-01	6.89E+03	Cs-137
······································			••••••••••••••••••••••••••••••••••••••		
	F	Source Radionuclide	Decay Date 5/16/05		
	Decay Factor⇒	8.687E-01	Elapsed Time (days)	2230	ר
		0.0072-01	Activity (μCi)⇒	2,700E-01	-
			Source dpm⇒	5.994E+05	-
		Source d	pm/in Probe Area (cm^2)⇒	5.035E+05	-1
			2π Emission Rate (sec-1)⇒	5.986E+03	
Probe Area (cm^2)			2π Emission Rate (min-1)	3.591E+05	- I
126	2π Emission Rate in Probe Area (min-1) $3.017E+05$				
		27 2003300110			, Ľ
Record	of 1 Minute Source & Back	ground Counting Re	esults	Check if using ISO 7503-1 Value	1
No.	OW Source Gross CPM	OW Background CPM	OW Source Net CPM	RESULTS	ן ו
1	1.32E+05	972	1.309E+05	Counts/Emission (Ei)	
2	1.32E+05	938	1.309E+05	43.4%	1
3	1.32E+05	947	1.309E+05	2π Emission/Disintigration (Es)	
4	1.31E+05	964	1.305E+05	50.0%	1 :
5	1.33E+05	951	1.318E+05	Counts/Disintigration (Et)	
6	1.32E+05	975	1.308E+05	21.7%	1
7	1.32E+05	997	1.308E+05		-
8	1.32E+05	946	1.309E+05		
9	1.32E+05	942	1.309E+05	Approved: 2. Ligath Chit	<u> </u>
10	1.33E+05	1005	1.318E+05		
	Mean⇒	963.7	1.310E+05	Date: 5/17/05	
					··
	on Sheet Verification Date⇒	December-02			

.

ORGINAL

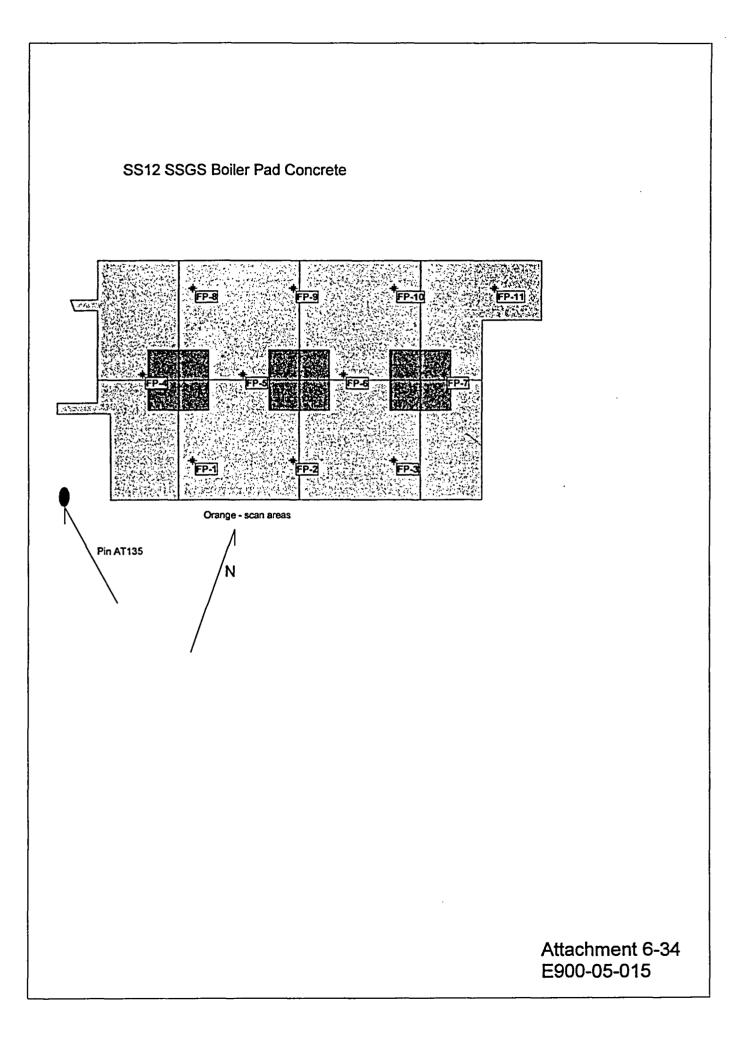
B. Brosev/P. Donnachie⇒I	December-02	

43-37 GFPC Scan MDC Calculation

Attachment 4-3 E900-05-015

OL1 Concrete and Pavement Surfaces Survey Units

.

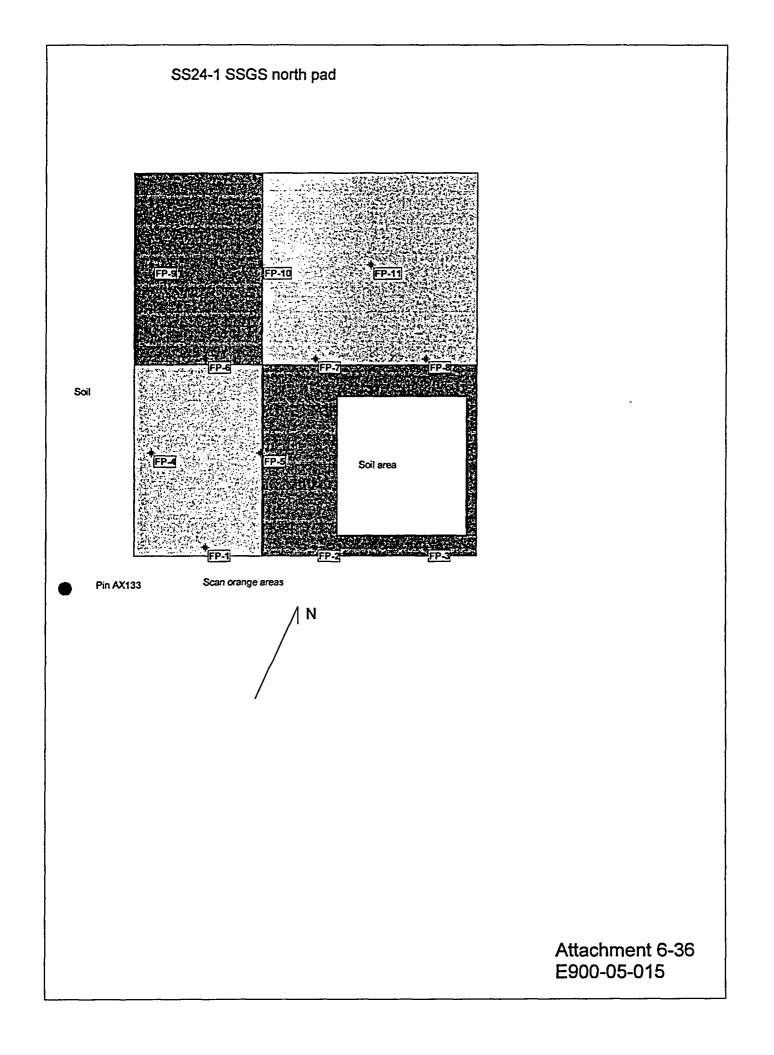

.

.

Unit	Area m ²	Description
MA8-6	76	Macadam - old SNEC parking lot, grid AU127
MA8-7	76	Macadam - old SNEC parking lot, grid AU128
MA8-8	76	Macadam - old SNEC parking lot, grid AU129
MA8-9	76	Macadam - old SNEC parking lot, grid AU130
MA8-10	102	Macadam - old SNEC parking lot, primarily grid AT131
MA8-11	42	Macadam - old SNEC parking lot, primarily grid AU131
MA8-12	73	Macadam - old SNEC parking lot, V shaped on N and E sides of AV131
MA8-13	100	Macadam - old SNEC parking lot, primarily grid AV131
MA8-14	33	Pavements around line shack
MA8-15	37	Concrete slabs and blocks NW of CV
MA8-16	93	Macadam - old SSGS driveway, grid AX131
MA8-17	58	Macadam - old SSGS driveway, grid AY131
PF1	37	Concrete - PAF floor slab
DB5	54	Concrete - DSB Carport slab
DB1-1	85	Concrete - DSB floor slab, west portion
DB1-2	109	Concrete - DSB floor slab, east portion
SS12	658	Concrete - SSGS Boiler Pad
SS24-1	249	Concrete - SSGS on grade concrete North of the turbine hall
SS24-2	321	Concrete - SSGS on grade concrete North of the turbine hall-under soil

.

Attachment 5-1 E900-05-015


SS12 SSGS Boiler Pad Floor Slab Measurements in FEET

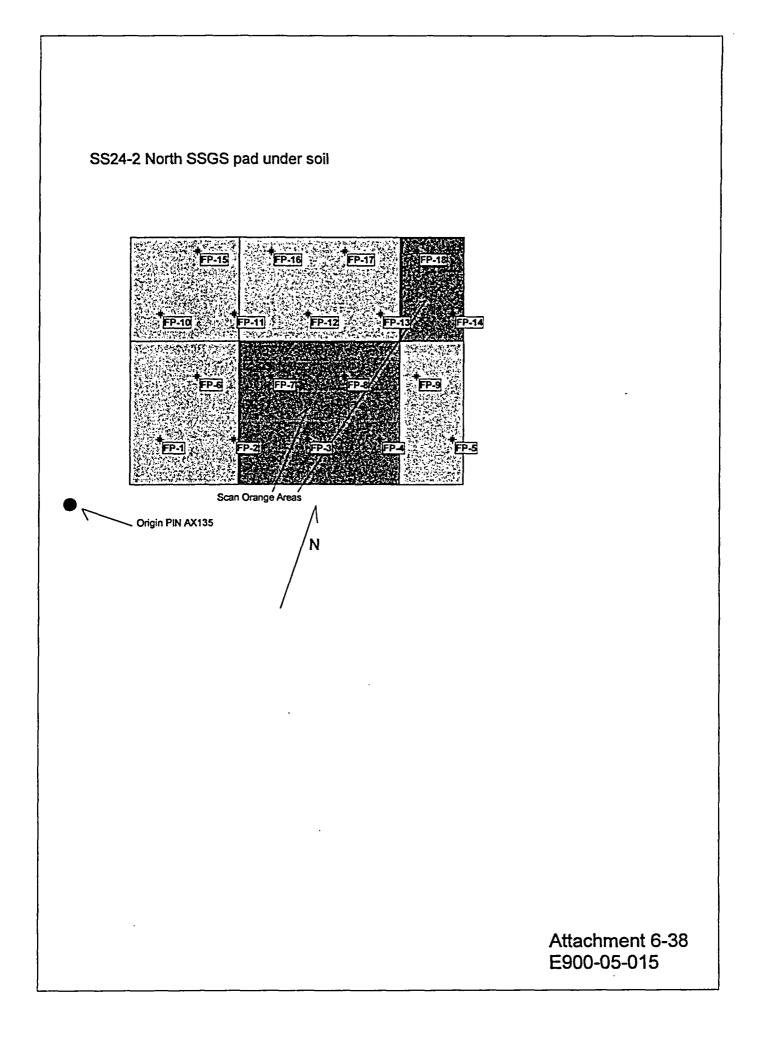
658 sq meters

X Coord	Y Coord	Label	Value	Туре
36.7	10.7	FP-1		0 Systematic
64.0	10.7	FP-2		0 Systematic
91.2	10.7	FP-3		0 Systematic
23.1	34.3	FP-4		0 Systematic
50.3	34.3	FP-5		0 Systematic
77.6	34.3	FP-6		0 Systematic
104.9	34.3	FP-7		0 Systematic
36.7	57.9	FP-8		0 Systematic
64.0	57.9	FP-9		0 Systematic
91.2	57.9	FP-10		0 Systematic
118.5	57.9	FP-11		0 Systematic

measured from pin AT135

Attachment 6-35 E900-05-015

SS24-1 SSGS North Pad Measurements in FEET


249 sq meters

2-10 09			
X Coord	Y Coord	Label	Туре
24.2	4.6	FP-1	Systematic
41.0	4.6	FP-2	Systematic
57.7	4.6	FP-3	Systematic
15.8	19.1	FP-4	Systematic
32.6	19.1	FP-5	Systematic
24.2	33.7	FP-6	Systematic
41.0	33.7	FP-7	Systematic
57.7	33.7	FP-8	Systematic
15.8	48.2	FP-9	Systematic
32.6	48.2	FP-10	Systematic
49.4	48.2	FP-11	Systematic

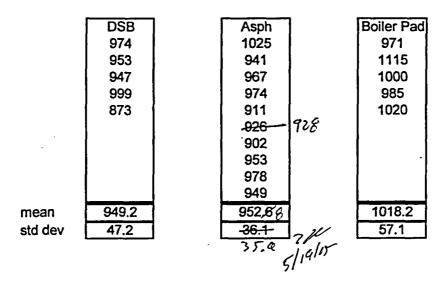
measured from pin AX133

.

Attachment 6-37 E900-05-015

SS24- SSGS North Pad under soil Measurements in FEET

231 sq meters


X Coord	Y Coord	Label	Туре
16.9	12.6	FP-1	Systematic
31.8	12.6	FP-2	Systematic
46.7	12.6	FP-3	Systematic
61.6	12.6	FP-4	Systematic
76.5	12.6	FP-5	Systematic
24.4	25.5	FP-6	Systematic
39.3	25.5	FP-7	Systematic
54.2	25.5	FP-8	Systematic
69.1	25.5	FP-9	Systematic
16.9	38.4	FP-10	Systematic
31.8	38.4	FP-11	Systematic
46.7	38.4	FP-12	Systematic
61.6	38.4	FP-13	Systematic
76.5	38.4	FP-14	Systematic
24.4	51.3	FP-15	Systematic
39.3	51.3	FP-16	Systematic
54.2	51.3	FP-17	Systematic
69.1	51.3	FP-18	Systematic

Measured from pin AX135

Attachment 6-39 E900-05-015

.

OL1 43-37 Backgrounds

Attachment 8-7 E900-05-015 •

						L1 ^M	
	Ī	aternatio	n Cnly	,			
37122N21	95348				9		l
0	DSBBKG1	5/12/05	14:09	5	974		SCL
1	DS8BKG2	5/12/05	14:11	5	953		SCL
2	DSBBKG3	5/12/05	14:12	5	947		SCL
. 3	DS8BKG4	5/12/05	14:14	5	999		SCL
4	DSBBKG5	5/12/05	14:15	5	873	60	SCL
5	ASPH8KG1	5/12/05	14:18	5	1025	60	SCL
6	ASPHBKG2	5/12/05	14:20	5	941	60	SCL
7	ASPHBKG3	5/12/05	14:21	5	967	60	SCL
8	ASPHBKG4	5/12/05	14:23	5	974	60	SCL
9	ASPHBKG5	5/12/05	14:25	5	911	60	SCL
	BPADBKG1	5/12/05	14:30	5	971	60	SCL
	BPADBKG2	5/12/05	14:32	5	1115	60	SCL
	BPADBKG3	5/12/05	14:34	5	1000	60	SCL
	BPADBKG4	5/12/05	14:36	5	985	60	SCL
	BPADBKG5	5/12/05	14.38	5	1020	60	SCL
	ASP2BKG1	5/12/05	14:41	5	928	60	SCL
	ASP2BKG2	5/12/05	14:42	5	902	60	SCL
	ASP2BKG3	5/12/05	14:44	5	953	60	SCL
	ASP2BKG4	5/12/05	14:45	5	978		SCL
	ASP2BKG5	5/12/05	14:47	5	949		SCL
	DATA DUMP CO						

43-37 CONCRETE + osphalt bockgrounds

Attachment 8-8 E900-05-015

.

.

Appendix C

Surfaces Survey Design Revision 2

.

.

	ORIGINAL							
SNEC CALCULATION COVER SHEET								
	CALCULATION DES	CRIPTION						
Calculation Number	ation Number Effective Date Effective Date							
E900-05-015	2	6/16/0	5	1 of	14			
Subject								
OL1 Paved and Miscellaned	OL1 Paved and Miscellaneous concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design							
Question 1 - Is this calculation de	fined as "In QA Scope"? Refer to defi	nition 3.5. Yes 🕅 No						
Question 2 - Is this calculation de	fined as a "Design Calculation"? Refe	r to definitions 3.2 and 3.3	Yes⊠	No 🗖				
NOTES: If a "Yes" answer is obtaine Assurance Plan. If a "Yes" answer calculation as the Technical Reviewe	d for Question 1, the calculation must meet r is obtained for Question 2, the Calcula r.	the requirements of the SNE ation Originator's immediate	C Facility Dec supervisor s	commissioning should not re	g Quality view the			
	DESCRIPTION OF I	REVISION						
				*				
-	nd sub-slab soil samples to the revision is provided here, but or	•	•					
· <u> ·</u> <u>_</u>	APPROVAL SIGN	TURES						
Calculation Originator	W. J. Cooper CHP/	E-	Date	6/16/	65			
Technical Reviewer	B. Brosey/ B. Bro	met.	Date	6/14/	105			
Additional Review	A. Paynter/ MLL (<u>H</u>	Date	16 Jun	و2002			
Additional Review		\bigcirc	Date					
				,				

FirstEnergy	SNEC CALCULATION SHEET	SNEC CALCULATION SHEET				
Calculation Number	Revision Number	Page Number				
E900-05-015	2	Page 2 of 14				
Subject						

1.0 PURPOSE

- 1.1 The purpose of this calculation is to develop a survey design for the residual concrete surfaces in the Saxton Nuclear Experimental Corporation SNEC and SSGS site areas. The total area (OL1) including the soil and solid surface portions is approximately <u>11600 square meters</u>. Portions of the solid surface (concrete, macadam, brick) are Class1, Class 2, and Class 3 survey areas. Because the survey area exceeds the size limitations in the SNEC LTP (Reference 3.5) Table 5-5 for maximum Class 1 survey unit area and it includes survey units of all three classifications, this survey area is subdivided into multiple survey units: OL1-7 is an existing excavation in the SNEC site area, that will be backfilled after survey. OL1-8 through OL1-13 are subdivisions of the large open land area and comprise the majority of the total surface area. These open land areas and the excavation are covered by other design calculations. Several additional areas comprise the residual exposed concrete and macadam surfaces:
 - 1.1.1 PF1 is a pre-existing Class 1 survey unit for the Personnel Access Facility (PAF) floor and includes the north edge of the PF1 portion of the slab with approximately 37 m²
 - 1.1.2 DB1 is a pre-existing Class 1 survey area for the Decommissioning Support Building (DSB) floor pad and door ramp. This area is further divided into two survey units due to LTP survey unit area limitations. DB1-1(85 m²) and DB1-2 (109 m²) with **194 m²** total. DB1-1 includes the full width of the north edge of the DSB portion of the pad.
 - 1.1.3 DB5 is a pre-existing Class 1 survey unit for the DSB carport floor of approximately 54 m²
 - 1.1.4 SS12 is a pre-existing survey area for the SSGS boiler pad. This concrete, although it is in a Class 1 soil area, is classified as Class 3 in the LTP Table 5-2. Some minor details of residual concrete hidden by soil may be present. This will not affect the survey since it is class 3 and only 10% scan is needed. Since SS12 is Class3, the entire pad is a single survey unit of approximately **658** m².
 - 1.1.5 SS24-1 is a Class 3 survey unit defined for the miscellaneous SSGS pads north of the turbine hall. There is likely to be a buried portion of this slab west of this area which is separately defined as SS24-2. Since SS24 is Class 3, the entire exposed pad is a single survey unit. Design scan area is 105 m². The west edge of the exposed concrete is uneven and the area is approximately **249 m²**.
 - 1.1.6 SS24-2 is a Class 3 survey unit defined for the miscellaneous SSGS pads north of the turbine hall. This is a buried portion of this slab west of the area defined as SS24-1. This area must first be surveyed as open land per E900-05-014, then cleared of soil and the residual concrete surveyed per this design. Since SS24 is Class 3, the entire buried portion of the pad is a single survey unit. Design scan area is 118 m². The area is approximately 321 m².
 - 1.1.7 MA8-6 through 13, 16, and 17: Ten survey units of the old parking lot and driveway macadam. Because of the 100 m² survey unit limitation for Class 1 surfaces, the surface was subdivided into ten approximately 100 m² (or less) survey units. The pavement occupies all of, or a large portion of, grids AT131, AU127, AU128, AU129, AU130, AU131, AV130, AV131, AW131, AX131, AY131. These are all class 1 survey units due to verbal reports of minor remediation and due to their proximity to

FirstEnergy	SNEC CALCULATION SHEET	ULATION SHEET			
Calculation Number	Revision Number	Page Number			
E900-05-015	2	Page 3 of 14			

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

the C&A building, the barrel bunker, and containment. Total area is about 772 m^2 . General arrangement of these units is shown in the drawing Attachment 6-17.

- 1.1.8 MA8-16 and MA8-17 have about 4 to 6 inches of soil on top of the pavement. This soil is to be surveyed per E900-05-014 and then removed and placed in a PRI pile to allow the pavement survey per this design.
- 1.1.9 MA8-14 the Line Shack concrete including garage door ramps and sidewalks. This area is not specifically classified in the SNEC LTP (Reference 3.5) but is selected to be class 2 consistent with the class 3 classification of the line shack exterior and the class 1 assigned to the surrounding soil. This is a Class 2 survey unit with about 33 m² total area.
- 1.1.10 MA8-15 is additional concrete surfaces around the CV. There is some SSGS concrete and additional small monoliths in OL1-9 NW of the CV. This small concrete area is not specifically addressed in the SNEC LTP but is assumed to be Class 1 due to proximity to the CV and is about **37 m²**.
- 1.1.11 A summary list of survey unit areas is included as Attachment 5-1.
- 1.1.12 Eleven biased (but arbitrarily located) soil samples are defined in and around the DSB/PAF/Carport slabs. Although arbitrarily located (pseudo-random), eleven samples are selected to represent a typical MARSSIM fixed point sample number.
- 1.2 This survey design applies only to the residual concrete, macadam, and other paved surfaces in the survey area. The design for the open land areas, fences, the east yard excavation, and the portion of OL1 covering the SSGS will be provided in separate calculations. The general layout of this survey unit is shown on Attachment 1-1.
- 1.3 If additional areas of concrete not identified here are found under soil, this design may to be revised to include the additional area.

2.0 SUMMARY OF RESULTS

The following information should be used to develop a survey request for this survey unit. The effective DCGLw value is listed below. This value is derived from previously approved derived values for "CV Yard Soil and Boulders", Attachment 2 in SNEC calculation E900-04-005 (Reference 3.15). The US NRC has reviewed and concurred with the methodology used to derive these values. See Attachment 2-1 and Reference 3.9.

Table 1, DCGLw Values

Gross Activity DCGLw (dpm/100 cm ²)
26445 (19834 A.L.)

NOTE: A.L. is the site Administrative Limit (75% of effective DCGLw)

- 2.1 Survey Design
 - 2.1.1 Scanning of concrete and macadam surfaces shall be performed using a L2350 with 43-68B gas flow proportional counter or a 43-37 'extra large' probe calibrated to Cs-137 (see typical calibration information on Attachments 3-1 and 3-2). Generic approval for use of the 43-37 is included in Reference 3.10.

FirstEnergy		
Calculation Number	Revision Number	Page Number
E900-05-015	2	Page 4 of 14

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

- 2.1.2 The instrument conversion factor/efficiency (Et) shall not be less than that assumed on Attachment 4-1 as <u>23.9% – Cs-137</u> for the 43-68B nor less than <u>20.0%-Cs137</u> for the 43-37 in its lowest efficiency region as assumed on Attachment 4-3.
- 2.1.3 Other instruments of the types specified in Section 2.1.1 above may be used during the final status survey (FSS), but must demonstrate detection efficiencies at or above the values listed in Section 2.1.2 above.
- 2.1.4 An efficiency correction factor (ECF) is applied to compensate for efficiency loss when surveying rough surfaces based on **Reference 3.1** and **Attachment 2-2**.
- 2.1.5 The fraction of detectable beta emitting activity affects the efficiency and is determined by the nuclide mix. The mix detectable beta fraction is determined to be 60% based on **Reference 3.15**. Because the adjusted DCGLw used is based only on the modified Cs-137 DCGLw, the mix percentage is not applied to the adjusted surrogate DCGLw. The gross activity DCGLw, which would include all the low energy activity and would require mix percentage adjustment is considerable higher, at 44434 dpm 100cm². The Cs-137 adjusted surrogate activity already accounts for the detectable beta yield of the mix.
- 2.1.6 The ECF is derived from Attachment 2-2 and Reference 3.1 based on a surface irregularity of 3 inches or less FOR THE 43-68B DETECTOR. This is conservative, as actual observed irregularity is typically less than one inch. Also, the loss of efficiency is based on moving the detector away from a 150 cm² source. If the area of the residual activity is larger, than the efficiency loss would be smaller due to the increase in 'field-of-view' of the detector.
- 2.1.7 The ECFs developed for the 43-68B probe per reference 3.1 are assumed to apply to the 43-37. The ECF for the 43-37 are based on the ASSUMPTION that the detector face will not be more than about 1 inch farther from the surface than from the source in the test jig (0.5 inches apart) and that the surface will be fairly smooth, typical of poured concrete or macadam.
- 2.1.8 Because the alarm point and MDCscan are based on the highly conservative surface irregularity assumptions (intended to bound all cases to simplify design and performance of the survey), where surfaces are much smoother (e.g. 1 inch irregularity or less per probe area for the 43-68B) than the assumed 3 inch variability, short (e.g. ½ to 1 inch) standoff support pegs may be attached to the 43-68B in order to reduce the possibility of mylar damage. These standoffs must only be used when the surface smoothness is well within the assumed 3 inch variability. Because the high surface irregularity is assumed and used for the efficiency of the instrument for the entire design, this standoff will not affect the assumed efficiency if limited as discussed above.

HistEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number

2

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

Table 2, GFPC Detection Efficiency Results Used for Planning

Detector	Material Type	Ei	Es	Et(as %)	ECF	Adjusted efficiency
43-68B	Concrete or asphalt	.478	.5	23.9	.2	4.8%
43-37	Concrete or asphalt	.4	.5	20.0	.5	10.0%

Table 3, Surface Scanning Parameters for Solid Misc. Concrete & Pavement Sections

Detector	MDCscan (dpm/100cm ²)*	Scan Speed (cm/sec)	Maximum Distance from Surface	DCGLw Action Level	% Coverage
43-68B	4634	10	3" (gap between detector face & surface or 3 inch irregularity)	> 1450 cpm	Up to 100%
43-37	7311	30.5	1.5" (gap between detector face & surface)	>2900 cpm	Up to 100%

See Attachment 2-1, 2-2, 4-1, and 4-3 for calculations*

- 2.1.9 The 43-68B MDCscan (shown in Attachment 4-1) is based on a 300 cpm background. Typical backgrounds are similar to this value assumed, as shown in the variability data shown as "CW" (closed window or shielded detector) in Attachment 8-2. Unaffected material backgrounds were determined at the Williamsburg station, which resulted in a mean background value of 306 cpm +/- 34.5. On 3/7/05, measurements were collected on three different surfaces in OL1: the DSB pad, the old parking lot, and the SSGS boiler pad.
- 2.1.10 The 43-37 MDCscan (shown in Attachment 4-2) is based on a 1020 cpm background. On 5/12/05, measurements were collected on three different surfaces in OL1: the DSB pad, the asphalt, and the SSGS boiler pad. These are shown in Attachment 8-7 and Attachment 8-8.
- 2.1.11 The 43-37 detector is to be used as a screening process.
 - 2.1.11.1 Since the efficiency is determined with the same source as used for the 43-68B, the effective area of the detector is assumed to be 100 cm² for determining the MDCscan. This will underestimate the response of the detector to larger sources but produce similar efficiencies and MDCs as for the 43-68B.
 - 2.1.11.2 Scanning using the 43-37 will be done only on flat surfaces with surface irregularities typical of poured concrete or rolled macadam pavement. Uneven surfaces, edges, etc. will be scanned with the 43-68B.
 - 2.1.11.3 Because the 43-37 has a much larger effective surface area than the 43-68B, and the MDC and action level are based only on a 100 cm² elevated spot, the 43-37 may provide action level count rates on larger diffuse source areas that actually are less than the DCGL. Therefore, the 43-37 will be used

ErstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-015	2	Page 6 of 14

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

to screen surfaces and will be considered to be the 'official' results only if no action levels are observed.

- 2.1.11.4 Any action levels observed with the 43-37 will be rescanned with the 43-68B. If no AP is observed with the 43-68B, there is no AP. APs observed in follow-up rescans with the 43-68B will be handled and documented in the SR per section 2.1.16 below.
- 2.1.11.5 Fraction scanned with the 43-37 and results should be separately reported in the SR for each survey unit / grid/ etc. in a similar manner as used for the 43-68B. E.G. '90% scanned with 43-37, one alarm rescanned with 43-68B no 43-68B AP'.
- 2.1.12 The 3/7/05 survey data shown as "OW" (open window or unshielded) is used for the variability assessment for the COMPASS determination of sample requirements and is shown in Attachment 8-2.
- 2.1.13 A background of 1300 cpm for the 43-68B would still result in MDCscan less than about 50% of the DCGLw (Attachment 4-2). Since the Action level cited in Table 3, above, is total counts per minute including background, if local backgrounds significantly exceed the background count rate assumed for the MDCscan (about 300cpm for the 43-68B see Attachment 4-1 or 1020 cpm for the 43-37 see Attachment 4-3) <u>contact the cognizant SR coordinator</u> to determine need for additional background count rate adjustments.
- 2.1.14 The scan DCGLw Action Level for the 43-68B listed in Table 3 includes 1200 cpm DCGL equivalent count rate from Attachment 4-1 and an estimated 260 cpm background. The DCGLw action level is based on fixed measurement and does not include 'human performance factors' or 'index of sensitivity' factors (see Reference 3.12).
- 2.1.15 The scan DCGLw Action Level for the 43-37 listed in Table 3 includes 1950 cpm DCGL equivalent count rate from Attachment 4-3 and an estimated 950 cpm background. Although the 43-37 is assumed to be geometrically and functionally equivalent to the 43-68B for MDC and action level determination (a conservative assumption), the ECFs and probe areas are different and therefore result in a higher net count rate for the action level for the 43-37. The DCGLw action level is based on fixed measurement and does not include 'human performance factors' or 'index of sensitivity' factors (see Reference 3.12).
- 2.1.16 If a total count rate greater than the "DCGLw action level" of Table 3 is encountered during the scanning process with a 43-68B, the surveyor should stop and locate the boundary of the elevated area, and then perform a "second phase" fixed point count of at least 30 seconds duration. If the second phase result equals or exceeds the "DCGLw action" level noted in table 3, the surveyor should then mark the elevated area with appropriate marking methods and document the count rate observed and an estimate of the affected area. Subsequent investigation may take the actual surface irregularity into account for the efficiency.
 - 2.1.16.1 <u>Class 1</u> concrete should be scanned to include 100% surface coverage at a scan rate of about 10 cm per second for the 43-68B or 30.5 cm per second for the 43-37. All accessible surfaces are required to be scanned. Areas that

FastEnergy	SNEC CAL	CULATION SHEET	
Calculation Number		Revision Number	Page Number
E900-05-015		2	Page 7 of 14
Subject			

cannot be accessed should be clearly noted along with the reason for not completing the scan in that area.

- 2.1.16.2 <u>Class 2</u> concrete would normally be scanned to include 10% to 100% surface coverage. Only the concrete around the line shack is class 2. Due to the small size of the unit and the distribution of small areas, the unit (MA8-14) will be 100% scanned at a scan rate of about 10 cm per second for the 43-68B or 30.5 cm per second for the 43-37. Areas that cannot be accessed should be clearly noted along with the reason for not completing the scan in that area.
- 2.1.16.3 <u>Class 3</u> concrete would normally be scanned to include up to 10% surface coverage. The concrete and pavement in and around the SSGS is class 3 and will be approximately 10% scanned at a scan rate of about 10 cm per second for the 43-68B or 30.5 cm per second for the 43-37. Three 25 square meter scan areas are shown on Attachment 6-34 for SS12, two regions totaling 105 square meters are shown on Attachment 6-36 for SS24-1, and two regions totaling 118 square meters are shown on Attachment 6-38 for SS24-2. Areas that cannot be accessed should be clearly noted along with the reason for not completing the scan in that area.
- 2.1.16.4 See Attachment 1-1 for grid layout for the survey units.
- 2.1.16.5 The surfaces of the concrete or other pavement materials should be clear of debris to ensure detection parameters are not affected.
- 2.1.17 The minimum number of fixed measurement sampling points indicated by the COMPASS computer program (Reference 3.3) is <u>11</u> for each survey unit (see COMPASS output on Attachment 7-1 to 7-5). Fixed point measurements should be done only with the 43-68B IAW Section 2.2. The MDCscan (concrete) is below the effective administrative DCGLw_{Cs-137} (4634 DPM/100cm² MDCscan @300cpm bkg < 19834 DPM/100cm² AL for the 43-68B and 7311 DPM/100cm² MDCscan @1020cpm bkg < 19834 DPM/100cm² AL for the 43-68B and 7311 DPM/100cm² MDCscan @1020cpm bkg < 19834 DPM/100cm² AL for the 43-68B and 7311 DPM/100cm² MDCscan @1020cpm bkg < 19834 DPM/100cm² AL for the 43-68B and 7311 DPM/100cm² MDCscan @1020cpm bkg < 19834 DPM/100cm² AL for the 43-68B and 7311 DPM/100cm² MDCscan @1020cpm bkg < 19834 DPM/100cm² AL for the 43-68B and 7311 DPM/100cm² MDCscan @1020cpm bkg < 19834 DPM/100cm² AL for the 43-68B and 7311 DPM/100cm² MDCscan @1020cpm bkg < 19834 DPM/100cm² AL for the 43-37).
- 2.1.18 The minimum number of fixed point samples is increased to 13 (18% increase) for survey unit DB1-2 due to the slightly oversized (109 m², 9% over LTP guideline) area of the unit. This oversize is due to the selection of a grid line as the separation point between DB1-1 and DB1-2. Survey Unit DB1-1 is only 85 m². Since both units are class 1, the DSB pad will be 100% scanned regardless of the survey unit separation. Relocation of the arbitrary separation line could make these both equal and <100m² but is not considered to be useful since: separation on a grid line simplifies survey layout, the two units combined are <200 m², and the two units combined have more than the required number of fixed points (26 total vs. 22 required per MARSSIM).
- 2.1.19 One Biased direct measurement point is placed in DB1-1 on the face of the exposed slab. This point should be taken centered vertically on the vertical face at the 128 grid line.

FirstEnergy	SNEC CALCULATION SHEE	ΞΤ .
Calculation Number	Revision Number	Page Number
E900-05-015	2	Page 8 of 14

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

- 2.1.20 The minimum number of sample points for SS24-2 is increased to 18 to account for the unknown extent of the concrete below the soil layer to provide sufficient samples if some areas are not concrete.
- 2.1.21 VSP (Reference 3.4) is used to plot all sampling points on the included diagrams. The actual number of random start systematically spaced measurement points may be greater than that required by the COMPASS computer code because of any or all of the following:
 - placement of the initial random starting point (edge effects),
 - odd shaped diagrams, and/or
 - coverage concerns

(see Attachment 6-1 to 6-39 for VSP sampling point locations)

- 2.1.22 Because this design is a conglomerate of multiple slab surfaces into multiple survey units, the sample point locations are not derived from a single starting point. Measurement location details for the sample points are provided in the diagrams in **Attachment 6**.
- 2.1.23 Some sampling points may need to be adjusted to accommodate obstructions within the survey area. Contact the SR coordinator to report any difficulties encountered when laying out systematic grid sampling points.
- 2.1.24 Because of the unusual arrangement of this survey area, with multiple disjointed slabs that do not correspond directly to single grids, the drawings in Attachment 6 are intended to be as close as practicable to as-left conditions. However, if actual layout is different from that shown, review with the cognizant SR coordinator, finish the survey if practicable, and mark up the drawings to indicate actual layout.
- 2.1.25 When an obstruction is encountered that will not allow collection of a sample, contact the cognizant SR coordinator for permission to delete the sampling point.
- 2.1.26 DSB slab area soil samples are to be 1 meter thick surface samples. Edge samples shall be as close as practicable to the slab. Sub-slab samples will be 1 meter thick after removal of the concrete. Any engineered fill will be included in the sample. Use OL1 soil (E900-05-014) DCGLs (Reference 3.17).

NOTE

If remediation actions are taken as a result of this survey, this survey design must be revised or re-written entirely.

- 2.2 Measure concrete fixed point and elevated areas(s) IAW SNEC procedure E900-IMP-4520.04 sec 4.3.3 (Reference 3.2) and the following.
 - 2.2.1 Use only the 43-68B to confirm and 'finalize' elevated area measurements or to collect fixed point measurements.
 - 2.2.2 Clearly mark, identify and document all sample locations.
 - 2.3.1 Second phase scan any location that is above the action level cited in Table 3.

FirstEnergy	SNEC CALCULATION SHEET	
		-

Calculation Number E900-05-015

Page Number

Subject

OL1 Paved and Misc. concrete surfaces MA8. PF1, DB5, DB1, SS12, SS24 - Survey Design

2.3.2 Investigation of APs may require surface and sub-surface samples per the LTP section 5.5.3.4.5 (Reference 3.5).

3.0 REFERENCES

- 3.1 SNEC Calculation number 6900-02-028, "GFPC Instrument Efficiency Loss Study"
- 3.2 SNEC Procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".
- 3.3 COMPASS Computer Program, Version 1.0.0, Oak Ridge Institute for Science and Education.
- 3.4 Visual Sample Plan, Version 3.0, Copyright 2004, Battelle Memorial Institute.
- 3.5 SNEC Facility License Termination Plan.
- 3.6 SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA".
- 3.7 SNEC survey 43-68B GFPC measurements in OL1 dated 3/7/05
- 3.8 GPU Nuclear, SNEC Facility, "Site Area Grid Map", SNECRM-020, Sheet 1, Rev 4, 1/18/05.
- 3.9 SNEC Calculation No. E900-03-012, Effective DCGL Worksheet Verification.
- 3.10 SNEC calculation E900-05-031 "Use of the 43-37 Detector and Ludlum 239 Floor Monitor for FSS Surveys"
- SNEC Procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design". 3.11
- 3.12 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.
- 3.13 Microsoft Excel 97, Microsoft Corporation Inc., SR-1 and SR-2, 1985-1997.
- 3.14 Left intentionally blank
- 3.15 SNEC Calculation E900-04-005 "CV Yard Survey Design North West Side of CV"
- 3.16 SNEC survey 43-37 GFPC measurements in OL1 dated 5/12/05
- 3.17 SNEC Calculation No. E900-05-014 "SNEC Plant Area Open Land OL1 Survey Design

4.0 ASSUMPTIONS AND BASIC DATA

- 4.1 The COMPASS computer program is used to calculate the required number of random start systematic samples to be taken in the survey unit (Reference 3.3).
- 4.2 Reference background data from offsite at the Williamsburg station were used as the initial estimate of variability. These results are shown on Attachment 8-1 and in Reference 3.15. Additional variance data that is used to assess sampling requirements is derived from the survey, Reference 3.7. Background data for the 43-37 is not used for variability assessment, since the fixed point data is only collected with the 43-68B
- 4.3 The MARSSIM Sign Test (Reference 3.12) will be applicable for this survey design. No background subtraction will be performed under this criteria during the DQA phase.

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number

2

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

- 4.4 The required points chosen by COMPASS are located on the survey map for the survey unit by the Visual Sample Plan (VSP) computer code (Reference 3.4).
- 4.5 **Reference 3.5** and **3.6** were used as guidance during the survey design development phase.
- 4.6 Background for the 43-68B detector has been measured in the area, and ranges from about 250 to 300 cpm with averages of slightly less than 300 cpm (Reference 3.7). These recent survey result averages are used as the basis for the MDCscan. Background for the 43-37 detector has been measured in the area, and ranges from about 875 to 1100 cpm with averages of about 950 cpm to 1020 cpm (Reference 3.16 and Attachment 8-7). These recent survey result averages are used as the basis for the MDCscan.
- 4.7 The determination of the physical extent of this area is based on the drawing **Reference 3.8** and a thorough walkdown / measurement of the survey unit.
- 4.8 Remediation History:
- 4.8.1 OL1 is an open land area. Portions contained the original SNEC site facility and the Saxton Steam Generating Station. Extensive remediation has occurred in the survey area. The SNEC Radwaste building (RWDF), Control and Auxiliary (C&A) building, Containment Vessel (CV), the SSGS, various buried pipe tunnels and underground tanks were all removed to grade or below. The residual portions of the buildings have been previously surveyed and the release surveys have been accepted.
- 4.8.2 The SSGS was backfilled when it was permanently shut down. Subsequently, residual licensed activity was found using core bores. The SSGS backfill was removed and surveyed through an automated conveyor system. Additional concrete surfaces in the SSGS basement were remediated and then the scanned backfill was replaced following survey.
- 4.8.3 The underground tank excavation was backfilled after the tanks were removed early in the project. This backfill was removed and scanned using a automated conveyor scanning system and is currently stored for re-use.
- 4.8.4 The barrel bunker was removed as part of the remediation process.
- 4.8.5 Underground drainage, sewerage systems and surface soils have been removed.
- 4.8.6 Some pavement was remediated during the building removal phase.
- 4.9 This survey design uses Cs-137 as a surrogate for all SNEC facility related radionuclides in the survey unit. The effective DCGLw is the Cs-137 DCGLw from the SNEC LTP (28000 dpm/100cm²) adjusted (lowered) to compensate for the presence (or potential presence) of other SNEC related radionuclides (Reference 3.9). In addition, an administrative limit (75%) has been set that further lowers the permissible Cs-137 concentration to an effective surrogate DCGLw for this survey area.

The sample database used to determine the effective radionuclide mix for the OL1 area has been drawn from samples that were assayed at off-site laboratories. This nuclide mix is copied from **Reference 3.15**.

The GFPC detector scan MDC calculation is determined based on a 10 cm/sec scan rate, a 1.38 index of sensitivity (95% correct detection probability and 60% false positive) and a

FirstEnersy	SNEC CALCULATION SHEET		
Calculation Number	Revision Number		Page Number
E900-05-015		2	Page 11 of 14

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

detector sensitivity (Et) of 23.9% cpm/dpm for Cs-137 for the 43-68B and 20% for the 43-37. The expected range of background values varies from about 250 cpm to about 300 cpm for the 43-68B detector and about 875 cpm to about 1100 for the 43-37.

- 4.10 The survey unit described in this survey design was inspected after remediation efforts were shown effective. A copy of the specific portion of the SNEC facility post-remediation inspection report (Reference 3.11) applicable to this design is included as Attachment 9-1.
- 4.11 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in this survey area.
- 4.12 The decision error for this survey design is 0.05 for the α value and 0.1 for the β value.
- 4.13 "Special measurements" (as described in the SNEC LTP, **Reference 3.5**) are included in this survey design. Section 5.5.3.4.5 discusses pavement surveys. This survey design is consistent with the LTP. Use of the 43-37 detector as a screening device may be considered a 'special measurement'. Use is explained and authorized in a SNEC calculation (**Reference 3.10**).
- 4.14 Special measurements and sampling processes have been specified for revision 2 sub-slab sampling of the DSB pad area. The sample design is a limited biased sample regime to provide updated information on the sub-slab radiological status (SNEC LTP section 5.5.3.4.7). The soils at the edge of the slab are assumed to represent the sub-slab soils, and several samples are collected through core-bore holes in the slab.
- 4.15 No additional sampling will be performed IAW this survey design beyond that described herein.
- 4.16 SNEC site radionuclides and their individual DCGLw values are listed on Exhibit 1 of this calculation based on Table 5-1 in Reference 3.5.
- 4.17 The survey design checklist is listed in Exhibit 2.
- 4.18 Area factors are shown as part of COMPASS output (see Attachment 7-1) and are based on the Cs-137 area factors from the SNEC LTP.

5.0 CALCULATIONS

5.1 All calculations are performed internal to applicable computer codes or within an Excel (Reference 3.13) spreadsheet.

6.0 APPENDICES

- 6.1 Attachment 1-1 is the general layout diagram of the survey units.
- 6.2 Attachment 2-1 and 2-2 are the DCGLw calculation logic for the survey unit from Reference 3.15 and the estimate of effect on efficiency of the irregular surface.
- 6.3 Attachment 3-1, is a copy of the calibration data from typical 43-68B GFPC radiation detection instrumentation that will be used in this survey area. Attachment 3-2, is a copy of the calibration data for a typical 43-37 GFPC radiation detection instrumentation that will be used in this survey area.
- 6.4 Attachment 4-1, is the 43-68B MDCscan calculation sheet for concrete (and macadam) surfaces in dpm/100cm². Attachment 4-2 shows the effect of elevated background on the 43-68B MDCscan. Attachment 4-3 is the 43-37 MDCscan calculation sheet for concrete (and macadam) surfaces in dpm/100cm².

FirstEnergy	SNEC CALCULATION SHEET		
Calculation Number	Revision Number	Page Number	
E900-05-015	2	Page 12 of 14	
Subject		I	

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

- 6.5 Attachment 5-1, is a summary list of survey units included in this design, with the estimated area of each.
- 6.6 Attachment 6-1 through 6-39, show the randomly picked scan locations (from VSP) and reference coordinates for the survey unit areas. Attachments 6-40 and 6-41 show the biased sub-slab soil sample points for the DSB pad area.
- 6.7 Attachment 7-1 through 7-5, are COMPASS output for the survey unit showing the number of sampling points in the survey unit, area factors, and prospective power.
- 6.8 Attachment 8-1, is the surface variability results for concrete surface measurements from the Williamsburg station (Reference 3.15). Attachment 8-2 is the summary of 43-68B backgrounds and surface measurements taken in the survey unit. Attachments 8-3 through 8-6 are copies of the survey used for variability. Attachment 8-7 is the summary of 43-37 backgrounds and surface measurements taken in the survey unit which are shown in Attachment 8-8.
- 6.9 Attachment 9-1, is the results of the inspection report for the residual surface portion of the OL1 area. Attachments 9-2 through 9-5 are the surface test measurement data.

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-015	2	Page 13 of 14
Subject		

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

1

Exhibit 1

SNEC Facility Individual Radionuclide DCGL Values ^(a)

Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm ²)	25 mrem/y Limit (All Pathways) Open Land Areas (Surface & Subsurface) (pCi/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	1.9E+04
Pu-238	3.0E+01	1.8	0.41
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	0.61

NOTES:

(a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

(b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

FirstEnergy

SNEC CALCULATION SHEET

Calculation Number E900-05-015 Revision Number 2

Page Number

Subject

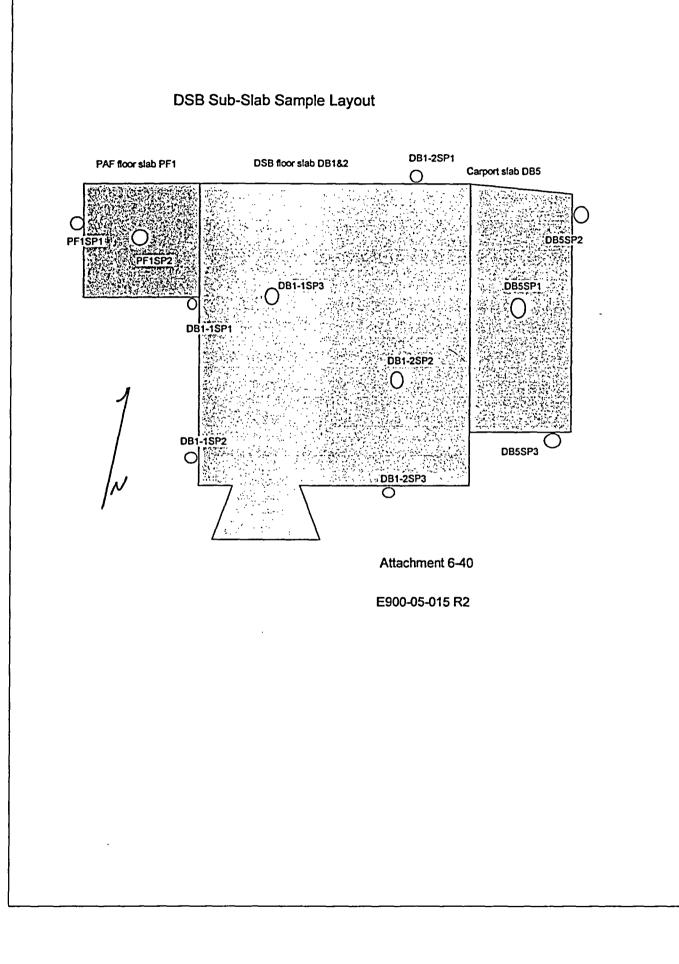

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1, SS12, SS24 - Survey Design

Exhibit 2

Survey Design Checklist

Calcula	ation No. Location Codes SNEC plant areas : OL1 Pav E900-05-015 rev 1 concrete surfaces MA8, PF1, DB5, DB1, SS12	ed and Miscell 2, SS24	aneous
ITEM	REVIEW FOCUS	Status (Circle One)	Reviewer Initials & Date
1	Has a survey design calculation number been assigned and is a survey design summary description provided?	Yes, NA	19NB 105
2	Are drawings/diagrams adequate for the subject area (drawings should have compass headings)?	Yes, N/A	BIUS 116/05
3	Are boundaries properly identified and is the survey area classification clearly indicated?	Yes NA	BIL 05
4	Has the survey area(s) been properly divided into survey units IAW EXHIBIT 10	Yes, NA	BND, 116/05
5	Are physical characteristics of the area/location or system documented?	Yes, NA	BIND 6/16/05
6	Is a remediation effectiveness discussion included?	Yes NA	BN3 6110/05
7	Have characterization survey and/or sampling results been converted to units that are comparable to applicable DCGL values?	Yes, NA	8:18/05
8	Is survey and/or sampling data that was used for determining survey unit variance included?	Yes, NA	BID 16/05
9	Is a description of the background reference areas (or materials) and their survey and/or sampling results included along with a justification for their selection?	Yes, NA	0;B16105
10	Are applicable survey and/or sampling data that was used to determine variability included?	Yes NA	01/16/05
11	Will the condition of the survey area have an impact on the survey design, and has the probable impact been considered in the design?	Yes, NA	DilB 6/16/05
12	Has any special area characteristic including any additional residual radioactivity (not previously noted during characterization) been identified along with its impact on survey design?	Yes, N/A	BUB 6/16/05
13	Are all necessary supporting calculations and/or site procedures referenced or included?	Yes NA	BHB 16/05
14	Has an effective DCGLw been identified for the survey unit(s)?	(Yes, NA	Bug 91992
15	Was the appropriate DCGL _{EMC} included in the survey design calculation?	Yes, NA	9110/05
16	Has the statistical tests that will be used to evaluate the data been identified?	Yes, NA	91916/05
17	Has an elevated measurement comparison been performed (Class 1 Area)?	Yes, NA	BIB/16/05
18	Has the decision error levels been identified and are the necessary justifications provided?	Yes NA	91B1405
19	Has scan instrumentation been identified along with the assigned scanning methodology?	(Yes) N/A	918/16/05
20	Has the scan rate been identified, and is the MDCscan adequate for the survey design?	Yes NA	0119/05
21	Are special measurements e.g., in-situ gamma-ray spectroscopy required under this design, and is the survey methodology, and evaluation methods described?	Yes, N/A	Bithos
22	Is survey instrumentation calibration data included and are detection sensitivities adequate?	Yes N/A	9HB (16/05
23	Have the assigned sample and/or measurement locations been clearly identified on a diagram or CAD drawing of the survey area(s) along with their coordinates?	Yes, NA	B12 6/16/05
24	Are investigation levels and administrative limits adequate, and are any associated actions clearly indicated?	Yes, NA	BW3 6116/05
25	For sample analysis, have the required MDA values been determined.?	Yes NA	315/16/05
26	Has any special sampling methodology been identified other than provided in Reference 6.3?	Yes, N/A	3450/16/05
		$ \rightarrow $	

NOTE: a copy of this completed form or equivalent, shall be included within the survey design calculation.

DSB Pad Sub-Surface soil sample layout

•

Sample PF1SP1	Location West edge of PAF slab, 13 feet N of SW corner of PAF slab
	Center of PAF slab, 11.5 feet N and 8.5 feet E of SW corner of PAF
DB1-1SP1	PAF/DSB pad inside corner
DB1-1SP2	West edge of DSB pad, 5 feet N of SW corner of DSB pad
DB1-1SP3	DSB Pad 22 feet N and 10 feet E of SW corner of DSB
	North edge DSB pad, 50 feet E of NW corner of PAF pad
	DSB pad 12 feet north and 32 feet E of SW corner of DSB
	South edge DSB pad, 30 feet E of SW corner of DSB
	Carport slab 20 feet N and 45 feet E of Sw corner of DSB pad
	East edge carport slab, 30 feet north of SE corner of carport
DB5SP3	South edge carport slab, 2 feet W of SE corner of carport slab

Samples at outside edges to be in contact with slab edge

Attachment 6-41 E900-05-015 RL

.

Appendix D

Soil Survey Design

.

•

.

.

.

OR	IGI	VAL

	SNEC CALC					
	CALCU			· · ·		
Calculation Number		Revision Number	Effective Date		Page Nur	
E900-05-014		0	5/10/0	5	1	of 11
Subject SNEC Plant Area Open La	nd – OL1 - Survey I	Design				
Question 1 - Is this calculation Question 2 - Is this calculation NOTES: If a "Yes" answer is obtain Assurance Plan. If a "Yes" answ calculation as the Technical Review	defined as a [•] Design C ned for Question 1, the ca wer is obtained for Que	Calculation"? Refer to	definitions 3.2 and 3 requirements of the SN	.3. Yes 🛛	ecommiss	- ioning Quali
			/ISION	· · ·	l.	
		·				
		·				
	ADDD					
	APPR W. J. Cooper	OVAL SIGNATU	JRES	Date	4/2	1/05
Calculation Originator Technical Reviewer			JRES		717	-1/05 0/05
Calculation Originator	W. J. Cooper		JRES	Date	5/10	21/05 0/05 Nay 200

•

•

ŧ

FirstEnergy	SNEC CALCULATION SHEET		
Calculation Number	Revision Number	Page Number	
E900-05-014	0	Page 2 of 11	
Subject			

SNEC plant area open land – OL1 - Survey Design

1.0 PURPOSE

- 1.1 The purpose of this calculation is to develop a survey design for the Saxton Nuclear Experimental Corporation "OL1 SNEC and SSGS open land" areas that are located in the original SNEC facility site and the site of the Saxton Steam Generating Station (SSGS). The area (OL1) is approximately <u>11600 square meters</u>, including the 1018 square meters in the existing east yard tank excavation. The area is a Class 1 survey area. Because the survey area exceeds the 2000 square meter limitation in Table 5-5 of the SNEC LTP (Reference 3.5) for maximum class 1 open land survey unit area, this survey area is subdivided into multiple survey units.
- 1.2 Multiple survey units of exposed concrete or macadam: MA8, DB1, PF1, and DB5 will be covered in a separate survey design (E900-05-015). This includes small concrete pads and monoliths, macadam driveways and parking areas, and the remaining pad footprint from the DSF building.
- 1.3 The OL1-8 area, which consists of the northern portion of the SSGS area is also not included in this design and will be covered by design E900-05-025. About one-third of OL1-8 is covered with a 'PRI pile'. This area is expected to contain both soil/rubble backfill and some residual concrete surfaces. Since layout of this area cannot be completed until the PRI pile is removed, a separate design will be used for the SSGS portion of OL1.
- 1.4 The Yard Storage Tank Excavation OL1-7 is covered in a separate design (E900-05-012).
- 1.5 This survey design includes five survey units:
 - 1.5.1 OL1-9, consisting of the 1290 square meter area around and including the CV footprint between the SSGS footprint and the east yard excavation (Attachment 1-3).
 - 1.5.1.1 This area has some exposed concrete NW of the CV.
 - 1.5.1.2 A driveway/parking area west of the CV (145 m²) has a thin (about 4 to 6 inches) soil cover. The soil will be surveyed under this design, then removed to expose the pavement, which will then be separately surveyed under design E900-05-015.
 - 1.5.1.3 A portion of OL1 in this vicinity is inside the switchyard (e.g. grid AZ131 and portions of others) and will be surveyed with the switchyard under another design.
 - 1.5.1.4 There is a large 'PRI pile' in the CV area that must be removed prior to survey, so that the as-left soil surface at the CV area can be surveyed as part of OL1-9.
 - 1.5.2 OL1-10 which consists of about 1200 square meters of the SNEC yard (RWST, RWDF, east yard excavation). This area must be surveyed after the east yard excavation is backfilled (Attachment 1-4) so that the as-left soil surface is surveyed.
 - 1.5.3 OL1-11 the barrel bunker area about 1200 square meters (Attachment 1-5).
 - 1.5.4 OL1-12, the line shack surrounding area of about 1575 square meters (Attachment 1-6) not including the line shack itself, which was previously surveyed.
 - 1.5.4.1 Portions of this survey unit are gravel road.

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number

E900-05-014

Page 3 of 11

Subject

SNEC plant area open land – OL1 - Survey Design

- 1.5.4.2 There are a number of small concrete or macadam ramps and sidewalks around the line shack. These paved surfaces will be separately surveyed under design E900-05-015.
- 1.5.5 OL1-13, an odd shaped perimeter of soil of approximately 1480 square meters around the barrel bunker area and the DSB slab and pavement (Attachment 1-7).
- 1.6 The general layout of these survey units is shown in **Attachment 1-1**.
- 1.7 Fences in and/or bordering the area will be surveyed using a separate design E900-05-023.

2.0 SUMMARY OF RESULTS

The following information should be used to develop a survey request for this survey unit. The effective DCGLw value is listed below. The US NRC has reviewed and concurred with the methodology used to derive these values. See Attachment 2-1 to 2-4. These are copied from **Reference 3.10** which was previously approved.

Table 1, DCGLw Values

Volumetric DCGLw (pCl/g – Cs-137) 5.73 (4.3 A.L.)

NOTE: A.L. is the site Administrative Limit (75% of effective DCGLw)

- 2.1 Survey Design
 - 2.1.1 Scanning of soil (and fill materials) shall be performed using a <u>2" D by 2" L Nal</u> <u>detector</u> with a Cs-137 window setting (Reference 3.1). The window will straddle the Cs-137 662 keV full energy peak width (see typical calibration information on Attachment 3-1).
 - 2.1.2 The instrument conversion factor/efficiency shall not be less than that assumed on Attachment 4-1 as <u>205.6 cpm/uR/h Cs-137</u>.
 - 2.1.3 Other instruments of the type specified in Section 2.1.1 above may be used during the final status survey (FSS), but must demonstrate detection efficiencies at or above the value listed in Section 2.1.2 above.

MDCscan (pCi/g) – Cs-137*	Scan Speed (cm/sec)	Maximum Distance from Surface	Action Level	% Coverage
6.2	25	4" (gap between detector face & soil surface)	> 175 ncpm	100%

 Table 2, Soil Scanning Parameters

See Attachment 4-1 *

- 2.1.4 The action level specified is based on the MDCscan at a 300 cpm background. This is adequate since the MDCscan is expected to be less than the DCGLw times the area factor. Typical observed backgrounds are about 100 to 200 cpm (Attachment 8-3).
- 2.1.5 If a net count rate greater than the action level of Table 2 is encountered during the scanning process, the surveyor should stop and locate the boundary of the elevated

FirstEnergy	SNEC CALCULATION SHEET			
Calculation Number	Revision Number	Page Number		
E900-05-014	Ó	Page 4 of 11		

Subject

SNEC plant area open land – OL1 - Survey Design

area. The surveyor should then mark the elevated area with stakes or other appropriate marking methods. Continue the scan survey. <u>Sample the elevated</u> <u>areas(s)</u> IAW SNEC procedure E900-IMP-4520.04 (Reference 3.2), and Section 2.2 of this document following evaluation and investigation survey planning.

- 2.1.5.1 <u>Class 1</u> soil should be scanned using a serpentine pattern that is ~0.5 meters wide.
- 2.1.5.2 This is a class 1 survey area. All accessible surfaces are required to be 100% scanned.
- 2.1.5.3 There is a large pile of 'PRI' soil in the south-central portion of OL1-9 on the CV cap. This pile should be removed prior to completion of the survey, so that the soils under the pile are subjected to the survey requirements of this design. No residual concrete surfaces are expected to be exposed by removal of this PRI pile.
- 2.1.5.4 The CV soil pile is an established PRI area, and was previously 100% scan surveyed and sampled during an automated conveyor measurement campaign in the summer of 2003 as SR186 and 190 (References 3.15 and 3.16). The results of this survey indicate that the soil pile meets LTP residual activity release requirements and the thoroughness of the survey is adequate to meet FSS measurement needs. One hundred and fifty-seven composite samples were collected of the scanned soil, all of which are less than 25 percent of the AL in this design. Additionally, the automated scanning (see Reference 3.17 for data on a previous scanning campaign) typically achieved an alarm setpoint less than 70% of the AL and detection limits substantially below the alarm setpoints. This soil pile is expected to be used as backfill elsewhere around the plant.
- 2.1.5.5 Areas that cannot be accessed should be clearly noted along with the reason for not completing the scan in that area.
- 2.1.6 The minimum number of soil sampling points indicated by the COMPASS computer program (Reference 3.3) is <u>11</u> for each of the survey units (see COMPASS output on Attachment 7-4 to 7-8). However, the number of samples is increased to 16 in OL1-13 to provide a more widely distributed layout of sample points in the unusual shape.
 - 2.1.6.1 Sampling depth should be IAW Section 2.2.
 - 2.1.6.2 The MDCscan (soil) exceeds the effective administrative DCGLw for Cs137 (6.2 pCi/g MDCscan @300cpm bkg > 4.3 pCi/g AL) but given the area factor for the assumed 1 meter squared elevated area (AF 28.7) and for the effective sample area (AF > 3), the scan MDC meets MARSSIM requirements.
- 2.1.7 VSP (Reference 3.4) is used to plot all sampling points on the included diagrams. The actual number of random start systematically spaced measurement points may

SNEC CALCULATION SHEET							
Calculation Number	Revision Number	Page Number					
E900-05-014	0	Page 5 of 11					

Subject

SNEC plant area open land - OL1 - Survey Design

be greater than that required by the Compass computer code because of any or all of the following:

- placement of the initial random starting point (edge effects),
- odd shaped diagrams, and/or
- coverage concerns

(see Attachment 6-3 to 6-12 for VSP sampling point locations)

- 2.1.8 The starting points for physically locating sample sites in the survey unit are based on measurements from site grid pins or other evident markers (see diagrams on Attachment 6-3, 6-5, 6-7, 6-9, and 6-11). Soil sampling points are positioned using coordinates developed from these markers and listed on Attachments 6-4, 6-6, 6-8, 6-10, and 6-12.
- 2.1.9 Because of the proximity to the RWDF and drum bunker, a biased sample location (BP-01) is placed in OL1-12 west of the line shack between the line shack wall and the fence.
- 2.1.10 Because of the potential for residual activity transfer through vehicle movement and post-shutdown topfill on the gravel, two biased samples locations (BP-02 and BP-03) are defined in the gravel areas north and south of the line shack in OL1-12. See note below for sampling process for gravel areas.
- 2.1.11 A portion of the area of OL1-9 has a layer of old pavement underneath of a thin (4-6 inch) layer of soils. This area is indicated by the darker color on Attachment 6-3. The soil sample in this area should only be collected from the soils on top of the pavement. Cutting down through the pavement to obtain a deeper sample is not required. The soil will be removed after FSS of the soil so that the pavement can be separately surveyed under design E900-05-015.
- 2.1.12 Some sampling points may need to be adjusted to accommodate obstructions within the survey area. Contact the SR coordinator to report any difficulties encountered when laying out systematic grid sampling points.
- 2.1.13 When an obstruction is encountered that will not allow collection of a sample, contact the cognizant SR coordinator for permission to delete the sampling point.

NOTE

If remediation actions are taken as a result of this survey, this survey design must be revised or re-written entirely.

2.2 Sample the biased and random fixed points and any elevated areas(s) IAW SNEC procedure E900-IMP-4520.04 (Reference 3.2) and the following.

FirstEnergy

Calculation Number

SNEC CALCULATION SHEET

Revision Number

0

Page Number

E900-05-014

Page 6 of 11

Subject

SNEC plant area open land – OL1 - Survey Design

NOTE

Since the site surface dose model is 1 meter in depth, samples representative of the entire one meter thick dose model layer must be collected to satisfy the sampling requirements of Section 2.1.5 (of this document). This should be done by obtaining a well mixed sample of an entire 1 meter deep core. Section 4.2.3, 4.2.6 or 4.2.7 of site procedure E900-IMP-4520.04 are applicable when satisfying Section 2.1.5. Sampling due to an instrument alarm condition should also be of the entire 1 meter of soil/material.

The gravel samples in OL1-12 (including the two biased samples BP-02 and BP-03) should be sampled by collecting two well mixed samples of the layers, one of the gravel overburden layer, and a second of the underlying soil down to a total of 1 meter in depth. This same process should be used whenever a random point lies on a gravel road or gravel parking area.

For the fixed point soil sample in OL1-9 over the pavement (FP-11), only the soil layer on top of the pavement is to be sampled under this design.

- 2.2.1 Clearly mark, identify and document all sample locations.
- 2.2.2 Sample any location that is above the action level cited is Table 2 based on specific investigation plan.
- 2.2.3 Maintain chain-of custody requirements on all design fixed point and action level samples (Reference 3.14).

3.0 REFERENCES

- 3.1 SNEC Calculation No. E900-03-018, "Optimize Window and Threshold Settings for the Detection of Cs-137 Using the Ludlum 2350-1 and a 44/10 Nal Detector", 8/7/03.
- 3.2 SNEC Procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".
- 3.3 COMPASS Computer Program, Version 1.0.0, Oak Ridge Institute for Science and Education.
- 3.4 Visual Sample Plan, Version 3.0, Copyright 2004, Battelle Memorial Institute.
- 3.5 SNEC Facility License Termination Plan.
- 3.6 SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA".
- 3.7 SNEC survey Nal measurements in OL1 & OL2 3/8/05
- 3.8 GPU Nuclear, SNEC Facility, "Site Area Grid Map", SNECRM-020, Sheet 1, Rev 4, 1/18/05.
- 3.9 SNEC Calculation No. E900-03-012, Effective DCGL Worksheet Verification.
- 3.10 SNEC Calculation No. E900-04-005 "CV Yard Survey Design North West Side of CV"
- 3.11 SNEC Procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design".
- 3.12 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.
- 3.13 Microsoft Excel 97, Microsoft Corporation Inc., SR-1 and SR-2, 1985-1997.

SNEC CALCULATION SHEET

FirstEnergy Calculation Number

E900-05-014

0

Page Number

Subject

SNEC plant area open land – OL1 - Survey Design

3.14 SNEC Procedure E900-ADM-4500.39 "Chain of Custody for Samples"

:

- 3.15 SNEC survey SR0186
- 3.16 SNEC survey SR0190
- 3.17 "Final Report for Survey of Debris Pile", Revision 3 1/4/05 Shonka Research Associates

4.0 ASSUMPTIONS AND BASIC DATA

- 4.1 The COMPASS computer program is used to calculate the required number of random start systematic samples to be taken in the survey unit (Reference 3.3).
- 4.2 Scoping and post-remediation soil samples from this area are used as the initial estimate of variability. These results are shown on Attachment 8-1 and 8-2. The grid locations where these samples were taken are shown on Attachment 1-1.
- 4.3 The MARSSIM Sign Test (Reference 3.12) will be applicable for this survey design. No background subtraction will be performed under this criteria during the DQA phase. Normal environmental background of Cs137 will (conservatively) not be subtracted.
- 4.4 The required number of fixed survey points as determined by COMPASS are then located on the survey map for the survey unit by the Visual Sample Plan (VSP) computer code (Reference 3.4).
- 4.5 Reference 3.5 and 3.6 were used as guidance during the survey design development phase.
- Background has been measured in the area, and ranges from about 100 cpm to about 200 4.6 cpm (Reference 3.7). See Attachment 8-3.
- 4.7 The determination of the physical extent of this area is based on the drawing **Reference 3.8** and numerous walkdowns and measurements.
- 4.8 Remediation History: OL1 is an open land area. Portions contained the original SNEC site facility and the Saxton Steam Generating Station. Extensive remediation has occurred in the survey area.
 - 4.8.1 The SNEC Radwaste building (RWDF), Control and Auxiliary (C&A) building, Containment Vessel (CV), the SSGS, various buried pipe tunnels and underground tanks were all extensively remediated by removal, various decon methods and extensive concrete removal. The buildings were then demolished to grade or below. The residual building portions have been previously surveyed and the release surveys have been accepted.
 - 4.8.2 Extensive soil remediation (removal) was performed.
 - 4.8.3 The SSGS was backfilled when it was permanently shut down. Subsequently, activity was found using core bores. The SSGS backfill was removed and surveyed through an automated conveyor system. Additional concrete surfaces in the SSGS basement were remediated and then the scanned backfill was replaced.
 - 4.8.4 The underground tank excavation was backfilled after the tanks were removed early in the project. This backfill was removed. Portions were disposed of as radioactive

FirstEnergy	SNEC CALCULATION SHEET							
Calculation Number	Revision Number	Page Number						
E900-05-014	0	Page 8 of 11						
Subject								

SNEC plant area open land – OL1 - Survey Design

waste, while the remainder was scanned using a automated conveyor scanning system and is currently stored for re-use.

- 4.8.5 The barrel bunker was removed to below grade.
- 4.8.6 Underground drainage and sewerage systems have been removed.
- 4.9 This survey design uses Cs-137 as a surrogate for all SNEC facility related radionuclides in the survey unit. The effective DCGLw is the Cs-137 DCGLw from the SNEC LTP (6.6 pCi/g) adjusted (lowered) to compensate for the presence (or potential presence) of other SNEC related radionuclides. In addition, an administrative limit (75%) has been set that further lowers the permissible Cs-137 concentration to an effective surrogate DCGLw for this survey area.
- 4.10 The sample database used to determine the effective radionuclide mix for the OL1 area has been drawn from samples that were assayed at off-site laboratories. This list is shown on Attachment 2-1 through 2-3, and includes twenty-one analysis results. Review of the data shows several radionuclides were not positively identified at any significant concentration. These radionuclides have been removed from the data set and are not considered further as any minor contribution is accounted for by the administrative reduction of the surrogate DCGLw to 75% of the surrogate DCGLw based on the identified nuclide ratios. Radionuclides remaining include H-3, Co-60, Sr-90, and Cs-137. Additionally, the data shows Cs-137 to be the predominant radioactive contaminant (based on activity) found in the area.
- 4.11 The decayed set of sample results were input to the spreadsheet titled "Effective DCGL Calculator for Cs-137" (Reference 3.9) to determine the effective volumetric DCGLw values for the OL1 area. The output of this spreadsheet is shown on Attachment 2-4. This data is copied from Reference 3.10.
- 4.12 The Nal detector scan MDC calculation is determined based on a 25 cm/sec scan rate, a 1.38 index of sensitivity (95% correct detection probability and 60% false positive) and a detector sensitivity of 205.6 cpm/uR/h for Cs-137. Additionally, the detection system incorporates a Cs-137 window that lowers sensitivity to background in the survey unit. The resulting range of background values varies from about 100 to 200 cpm (Attachment 8-3).
- 4.13 The survey unit described in this survey design was inspected after remediation efforts were shown effective. A copy of the OL1 specific portion of the SNEC facility post-remediation inspection report (Reference 3.11) is included as Attachment 9-1.
- 4.14 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in this survey area.
- 4.15 The decision error for this survey design is 0.05 for the α value and 0.1 for the β value.
- 4.16 "Special measurements" (as described in the SNEC LTP sec 5.5.3.4) are included in this survey design. Section 5.5.3.4.4 discusses re-fill materials. Portions of this survey will include areas that consist of crushed structural materials and backfill. These will be treated as soil for scanning and sampling.
- 4.17 No additional sampling will be performed IAW this survey design beyond that described herein.

SNEC CALCULATION SHEET								
Calculation Number	Revision Number		Page Number					
E900-05-014	0		Page 9 of 11					

Subject

SNEC plant area open land – OL1 - Survey Design

- 4.18 SNEC site radionuclides and their individual DCGLw values are listed on Exhibit 1 of this calculation based on Table 5-1 of Reference 3.5.
- 4.19 The survey design checklist is listed in Exhibit 2.
- 4.20 Area factors are shown as part of COMPASS output (see **Attachment 7-1**) and are based on the Cs-137 area factors from the SNEC LTP.

5.0 CALCULATIONS

5.1 All calculations are performed internal to applicable computer codes or within an Excel (Reference 3.13) spreadsheet.

6.0 <u>APPENDICES</u>

- 6.1 Attachment 1-1, is a diagram of survey unit OL1. Attachment 1-3 through 1-7 are the grid layouts for the five OL1 open land survey units included in this design.
- 6.2 Attachment 2-1 to 2-4 is the DCGLw calculation logic and sample results from the OL1 and OL2 areas in addition to the DCGL calculation sheets (decayed to January 15, 2004).
- 6.3 Attachment 3-1, is a copy of the calibration data from typical Nal radiation detection instrumentation that will be used in this survey area.
- 6.4 Attachment 4-1, is the MDCscan calculation sheet for volumetric materials in pCi/g.
- 6.5 Attachment 5-1, is the MicroShield dose rate calculation results for 6" thick soil used to determine the exposure rate from a 1 pCi/cm³ Cs-137 source term in a end-cylinder geometry.
- 6.6 Attachment 6-3 to 6-12, show the randomly picked scan locations (from VSP) and reference coordinates for the five OL1 open land survey units included in this design.
- 6.7 Attachment 7-1 is a COMPASS output showing the area factors used. Attachment 7-2 shows the variability used for all five survey units. Attachments 7-4 through 7-8, are the COMPASS output for the five OL1 open land survey units included in this design, showing the number of sampling points in the survey unit, area factors, and prospective power.
- 6.8 Attachment 8-1 and 8-2, is the soil variability results from selected recent soil samples from the OL1 area. Attachment 8-3 is the general area Nal detector backgrounds measured on 3/8/05.
- 6.9 Attachment 9-1, is the results of the inspection report for the OL1 area.

NOTE Attachments 1-2, 6-1, 6-2, and 7-3 are left intentionally blank due to transfer of OL1-8 to a separate design

FistE	nergy
•	

SNEC CALCULATION SHEET

Revision Number

0

Calculation Number

E900-05-014

Page 10 of 11

Subject

SNEC plant area open land - OL1 - Survey Design

Exhibit 1

SNEC Facility Individual Radionuclide DCGL Values ^(a)

Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm²)	25 mrem/y Limit (All Pathways) Open Land Areas (Surface & Subsurface) (pCi/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	1.9E+04
Pu-238	3.0E+01	1.8	0.41
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	0.61

NOTES:

(a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

(b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

FirstEnergy

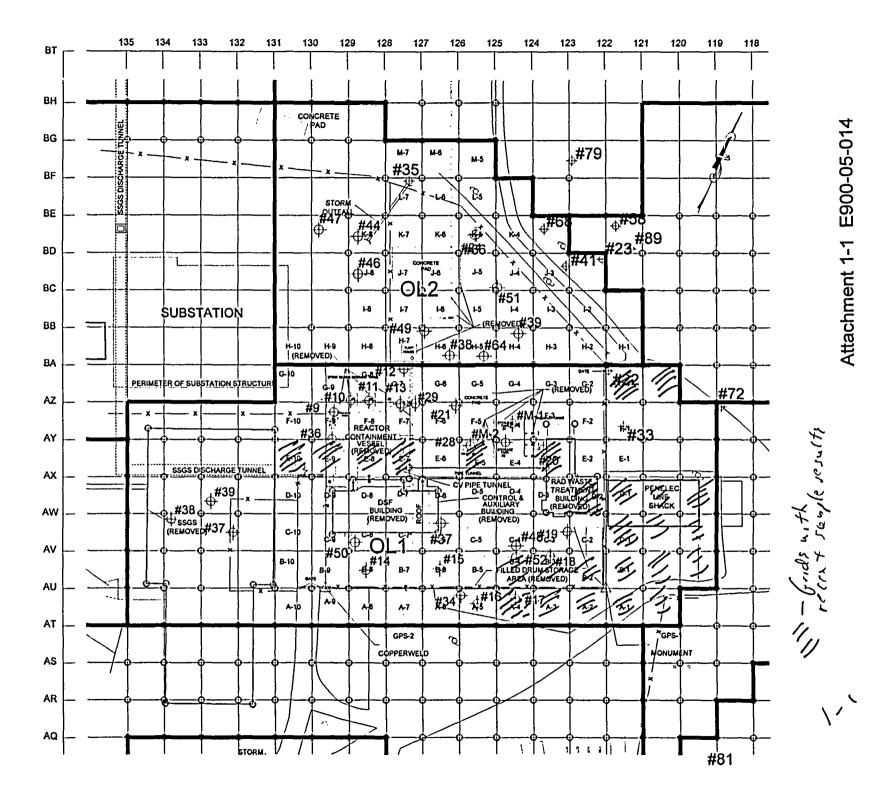
SNEC CALCULATION SHEET

Calculation Number E900-05-014 Revision Number

0

Page 11 of 11

Page Number


Subject

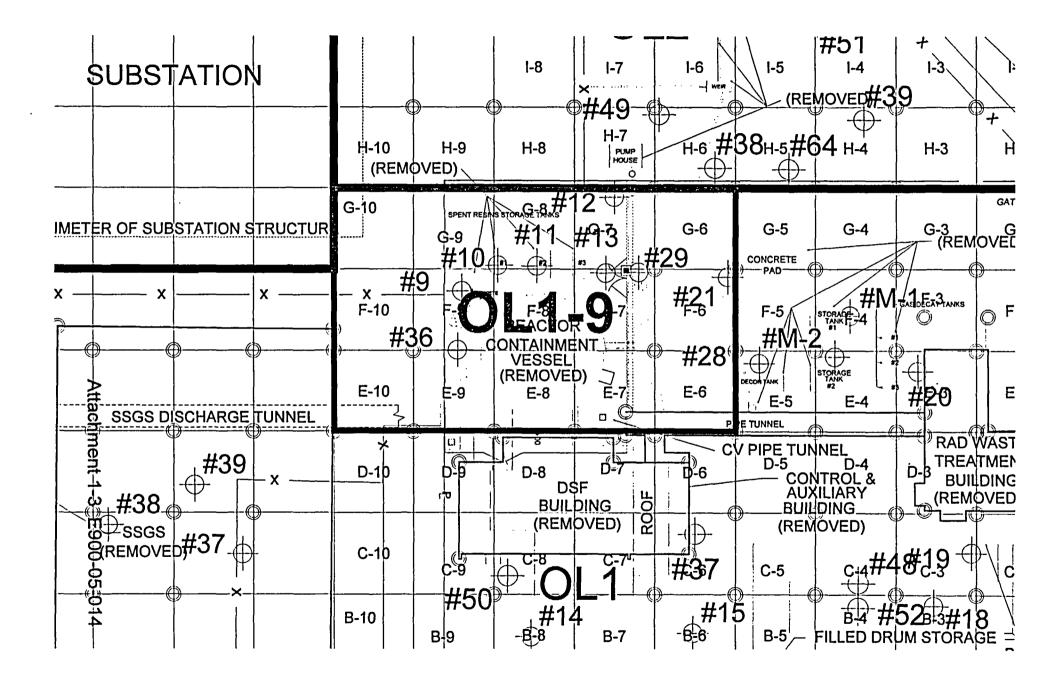
SNEC plant area open land – OL1 - Survey Design

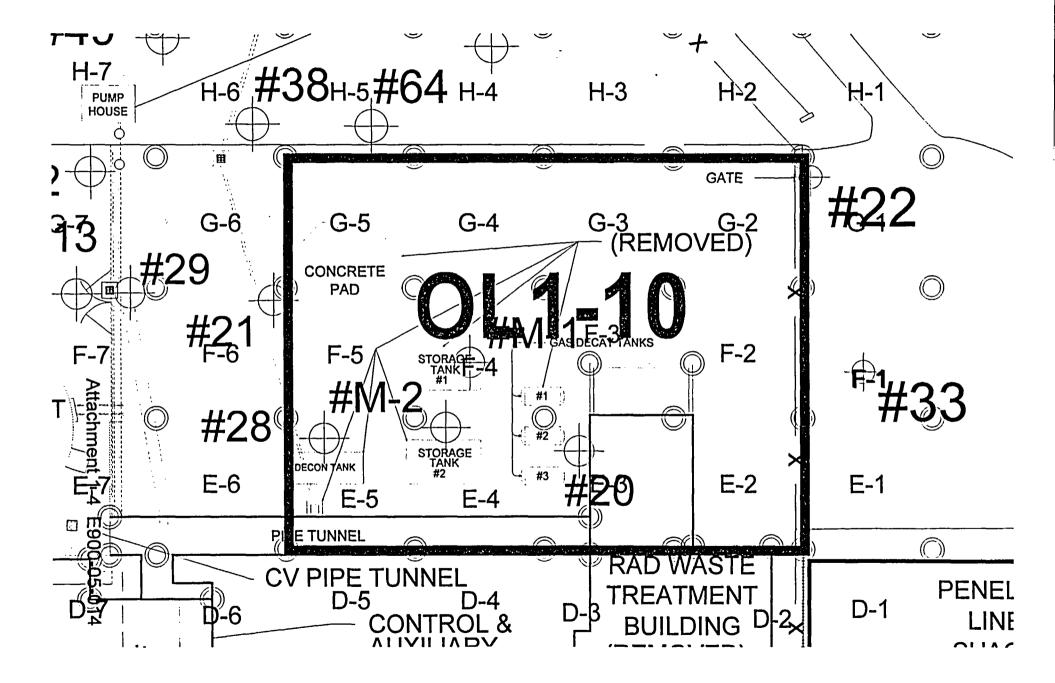
Exhibit 2 Survey Design Checklist

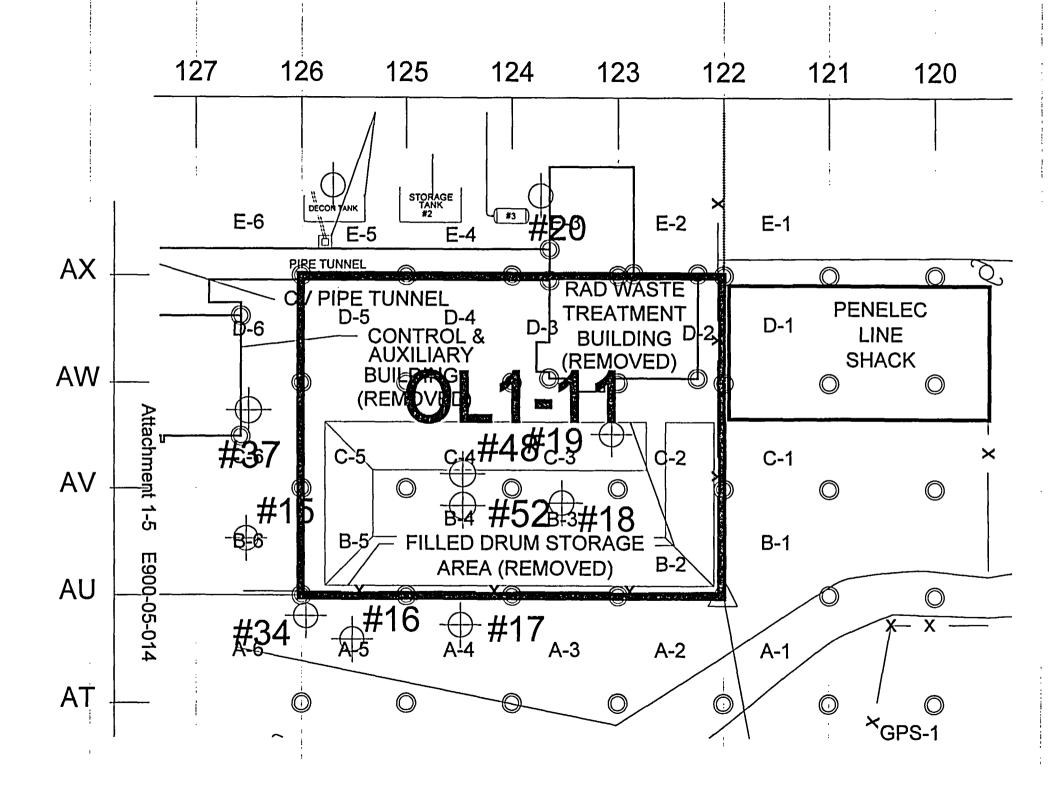
	ation No. Location Codes E900-05-014 SNEC plant area open land – OL1 - Survey D	Design
ITEM	REVIEW FOCUS	Status Reviewer (Circle One) Initials & Date
1	Has a survey design calculation number been assigned and is a survey design summary description provided?	Yes NA ANA 5/0/05
2	Are drawings/diagrams adequate for the subject area (drawings should have compass headings)?	Tes NA THINGS
3	Are boundaries properly identified and is the survey area classification clearly indicated?	(Tes) NA Del Findos
4	Has the survey area(s) been property divided into survey units IAW EXHIBIT 10	(Pes) NA ANA FINOS
5	Are physical characteristics of the area/location or system documented?	Yes NA AS Sidos
6	Is a remediation effectiveness discussion included?	Tes NA ANT 5/10/05
7	Have characterization survey and/or sampling results been converted to units that are comparable to applicable DCGL values?	(Yes) NA 04 5/1905
8	Is survey and/or sampling data that was used for determining survey unit variance included?	Yes NA AN TIGOS
9	Is a description of the background reference areas (or materials) and their survey and/or	Yes, NA At 5/10/05
10	Are applicable survey and/or sampling data that was used to determine variability included?	Ves NA ANA Talos
11	Will the condition of the survey area have an impact on the survey design, and has the probable impact been considered in the design?	Yes, NA 04 5/10/05
12	Has any special area characteristic including any additional residual radioactivity (not previously noted during characterization) been identified along with its impact on survey design?	Yes NA ALL TIDOS
13	Are all necessary supporting calculations and/or site procedures referenced or included?	(Yes) NA AVA 5/10/05
14	Has an effective DCGLw been identified for the survey unit(s)?	Yes NA Que 5/10/05
15	Was the appropriate DCGL _{EMC} included in the survey design calculation?	Yes, NA 204 5/19/05
16	Has the statistical tests that will be used to evaluate the data been identified?	(Yes, N/A AX JINGS
17	Has an elevated measurement comparison been performed (Class 1 Area)?	Yes, NA AN SIdo
18	Has the decision error levels been identified and are the necessary justifications provided?	(es, NA APJ 5/10/05
19	Has scan instrumentation been identified along with the assigned scanning methodology?	Yes, NA AV 5710/05
20	Has the scan rate been identified, and is the MDCscan adequate for the survey design?	Yes NA AL 5/10/05
21	Are special measurements e.g., in-situ gamma-ray spectroscopy required under this design, and is the survey methodology, and evaluation methods described?	Yes, NA AM Sholos
22	Is survey instrumentation calibration data included and are detection sensitivities adequate?	Ver NA AVA 570/05
23	Have the assigned sample and/or measurement locations been clearty identified on a diagram or CAD drawing of the survey area(s) along with their coordinates?	Yes NA 0215/0/03
24	Are investigation levels and administrative limits adequate, and are any associated actions clearly indicated?	Yes NA 454 576/05
25	For sample analysis, have the required MDA values been determined.?	Yes, NA Dry 5/10/00
26	Has any special sampling methodology been identified other than provided in Reference 6.3?	Yes, NA ASYA 5/10/05

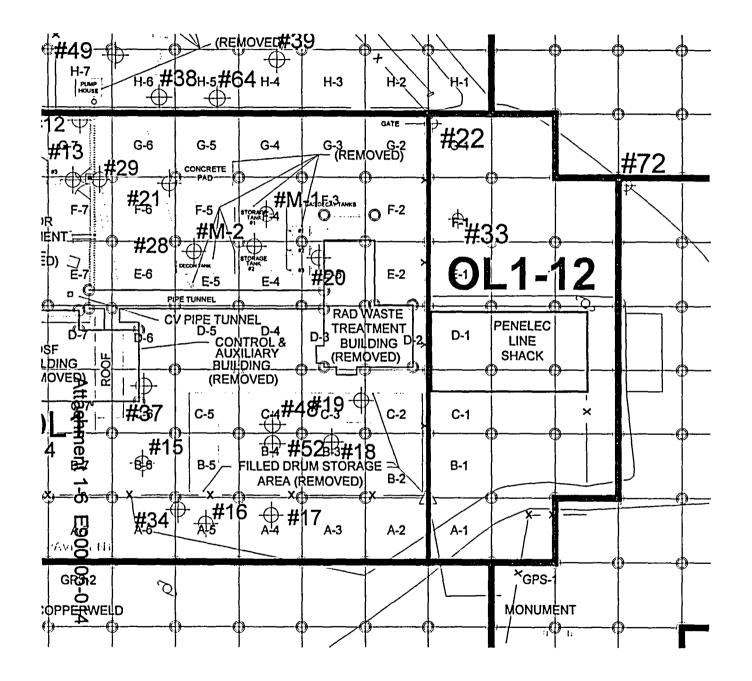
NOTE: a copy of this completed form or equivalent, shall be included within the survey design calculation.

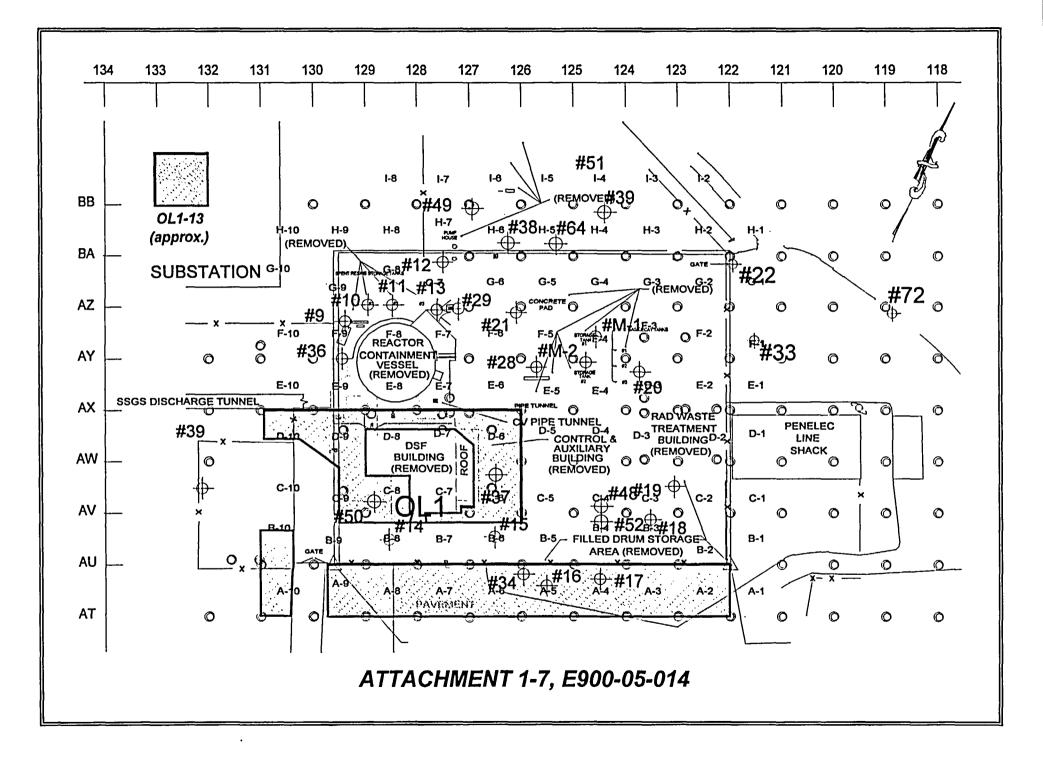
LEFT INTENTIONALLY BLANK


.


.


•




Attachment 1-2 E900-05-014

DCGL Calculation Logic-CV Yard Soil & Boulders

- I. Survey Unit: SNEC Containment Vessel (CV) Yard Soil and Boulders
- **II. Description:** The purpose of this calculation is to determine a representative isotopic mix for the CV Yard Soil and associated Boulders from available sample analyses. The effective volumetric DCGL_ws are then determined from the mean percent of applicable samples.
- III. Data Selection Logic Tables: The radionuclide selection logic and subsequent DCGL calculations are provided in six (6) tables. These tables were developed using Microsoft Excel. Table explanation is as follows.

Table 1: Data Listing – This table, which has been extracted from a larger database, provides a list of the most representative sample analyses. Results are from scoping, characterization, and pre/post remediation surveys. The samples consist of soil media that was taken in support of the aforementioned surveys. As applicable, a sample number, sample location/description, radionuclide concentration, analysis date are provided for each sample. Positive nuclide concentrations are noted with yellow/shaded background fields while MDA values are noted in the gray shaded fields.

Table 2: Decayed Listing – This table decays the data from Table 1. Half-life values (days) are listed above each respective nuclide column. Samples are decayed from the respective analysis date to January 15, 2004. Positive results are denoted in a yellow background field while MDA values are noted in the gray shaded fields.

Table 3: Decayed Listing of Positive Nuclides & MDAs Removed – This table provides the best overall representation of the data. Non-positive nuclide columns have been removed as well as all the MDA values. Therefore, 11 nuclides have been reduced to four (4).

Table 4: Ratio to Cs-137 for Positive Nuclides – This table provides the calculation methodology for determining the surrogate ratio to Cs-137 for each radionuclide. From this information the mean, sigma, and mean % of total are calculated. The mean % of total values is used to calculate the volumetric DCGL_w per MARSSIM equation I-14. See Table 5. Note that the mean percent values were averaged using only the positive sample results in each column. In some cases only a single nuclide value (e.g. Sr-90) had a positive result. This value is listed as the value in the mean result field. This results in higher "mean percent of total" values in the mix, which are conservative.

Note: From Table 4 only the "mean % of total" values are used as input to the "Effective DCGL Calculation Spreadsheet" as illustrated in Table 5.

Table 5: Effective DCGL Calculator for Cs-137 (in pCi/g) – This table provides the surrogate volumetric modified Cs-137 DCGL_w calculation results from data derived from Table 4.

IV. Summary – Since the CV Yard and Boulders are volumes of soil or rock material, existing in place or in a pile, the release limit is primarily based on the volumetric DCGL_w. Using the above data selection logic tables the calculated Cs-137 volumetric DCGL_w is 5.73 pCi/g. This value will be reduced by 25% as part of SNEC's requirement to apply an administrative limit as discussed in the License Termination Plan (LTP).

Attachment 2-1 E900-05-014

				TABLE	1 - Data Listing	g (pCi/g)									
	SHEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137			1 2 22			-	_		
1	CV Tunnel	CV Tunnel Sediment Composite. 0L1	9.40E+00	9.67E+00	1.26E+00	1.25E+03	Am-241 1.80E-01	Pu-238 5.50E-01	Pu-239	Pu-241	C-14	Ni-63	Eu-152	-	
2	SX9SL99219	Subsuface Sample #29 (0-5'), AY-128, OL1	9.40E+00	9.0/2+00	7.00E-02	5.90E-01	1.805-01	5.50E-01	2.20E-01	4.47E+01	9.34E+00	4.02E+00	1.30E-01		
3	SXSL1063	North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	4.58E+00	5.31E-02			0.045.00	1.005.00	0.075.00	0 775 00		1 1 1 1 1 1 1			
4	SXSL1089	North CV Yard Soli 6A-127, 812 El, Sample # 5, 0L2	3.03E+00	6.95E-02	1.92E-02	8.86E-01	9.61E-02	4.68E-02	3.27E-02	3.77E+00		1.09E+01	5.25E-02		
5	SXSL1105	North CV Yard Soll AY-127, 610 El, Sample # 3, 0L1	4.88E+00	5.36E-02	3.32E-02	1.29E+00	9.93E-02	1.28E-01	5.00E-02	4.97E+00		7.54E+00	8.28E-02		
6	SXSL1115		4.08E+00 3.44E+00		2.43E-02	1.80E+00	2.40E-01	1.38E-01	4.07E-02	4.21E+00		7.60E+00	5.71E-02		
7	SXSL1122 SXSL1130	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	4.99E+00	5.29E-02	2.79E-02	4.77E+00	1.83E-01	8.94E-02	4.00E-02	3.68E+00		8.75E+00	8.62E-02		
8	SXSL1130 SXSL1132	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	2.98E+00	6.48E-02	2.98E-02	2.26E+01	1.49E-01	8.56E-02	1.21E-02	3.55E+00		1.34E+01	9.89E-02		
9	SXSL1132 SXSL1270	North CV Yard Soil AZ-130, Sample # 5, OL1		7.15E-02	3.50E-02	2.59E+00	1.64E-01	7.46E-02	6.46E-02	5.27E+00		1.26E+01	7.34E-02		
-		AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El., OL1	1.13E+01	2.00E-02	1.00E-02	2.31E+01	3.70E-02	7.00E-03	7.00E-03	2.10E+00	3.93E+00	8.68E+00	7.00E-02		
10	SXSL1281	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1	1.15E+01	3.00E-02	1.00E-02	4.38E+00	3.10E-02	1.60E-02	7.00E-03	1.91E+00	4.00E+00	7.78E+00	4.00E-02		
11	SXSL2649	Anulus Well, A-2, 5 to 10' Depth, OL1	2.00E+00	3.14E-02	1.00E-01	6.00E-01	9.78E-03	1.33E-02	1.10E-02	1.87E+00	1.83E-01	1.75E+00			
13	SXSL2871	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1		3.00E-02	7.00E-02	5.60E-01									
14	SXSL2872	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1		3.00E-02	6.00E-02	1.00E-01				Contraction of the local distance of the loc			1		
15	SXSL3140	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1	1.89E+00	1.20E-02	1.40E-02	8.25E-01	7.00E-03	5.00E-03	5.00E-03	3.69E-01	8.60E-02	3.41E+00	3.00E-02		
16	SXSL3142	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1		2.95E-02	7.00E-02	6.00E-01									
17	SXSL3145	East CV Yard, Soll Pile @ 3' on East Side (6" Depth), OL1	1.90E+00	1.70E-02	1.30E-02	1.26E+00	4.00E-03	5.00E-03	5.00E-03	3.76E-01	8.30E-02	3.69E+00	3.80E-02		
18	SXSL3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1		2.97E-02	8.00E-02	3.00E-01								1	
19	SX SL 3153	East CV Yard, Soil Pile @ Top (6" Depth), OL1	1.94E+00	4.30E-02	2.30E-02	3.00E-01	3.00E-03	5.00E-03	5.00E-03	3.43E-01	8.70E-02	4.18E+00	5.10E-02		
21	SXSL4142	CV Yard Soil - West Side, AP1-7, OL1	2.22E+00	3.25E-02	5.00E-02	9.00E-01	1.76E-02	6.71E-02	2.02E-02					1	
22	SXSL4143	CV Yard Soil - West Side, AP1-7, OL1	2.23E+00	3.16E-02	5.00E-02	5.00E-01	2.21E-02	6.31E-02	3.64E-02						
23	SXSL4149	CV Yard Soil - West Side, AP1-7, OL1	2.24E+00	2.77E-02	7.00E-02	3.90E+00	2.77E-02	4.30E-02	3.04E-02						
					TABLE 2 - Dec	ayed Listing	(pCi/g)						l		
															J
			T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	Decay Date]
			4485.27	T 1/2 10446.15	T 1/2 1925.23275	T 1/2 11019.5925	T 1/2 157861.05	32050.6875	8813847.75	5259.6	2092882.5	36561.525	4967.4	January 15, 2004	I
	SNEC Sample No	Location/Description	4485.27 H-3	T 1/2 10446.15 Sr-90	T 1/2 1925.23275 Co-60	T 1/2 11019.5925 Cs-137	T 1/2 157861.05 Am-241	32050.6875 Pu-238	8813847.75 Pu-239	5259.6 Pu-241	2092882.5 C-14	36561.525 Ni-63	4967.4 Eu-152	January 15, 2004 Analysis Date	
	CV Tunnel	CV Tunnel Sediment Composite, OL1	4485.27	T 1/2 10446.15	T 1/2 1925.23275 Co-60 8.59E-01	T 1/2 11019.5925 Cs-137 1.17E+03	T 1/2 157861.05	32050.6875	8813847.75	5259.6	2092882.5	36561.525	4967.4	January 15, 2004 Analysis Date February 14, 2001	
2	CV Tunnel SX9SL99219	CV Tunnel Sediment Composite, OL1 Subsuface Sample #28 (0-5'), AY-128, OL1	4485.27 н-з 7.97E+00	T 1/2 10446.15 Sr-90 9.01E+00	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01	T 1/2 157861.05 Am-241 1.79E-01	32050.6875 Pu-238 5.37E-01	8813847.75 Pu-239 2.20E-01	5259.6 Pu-241 3.88E+01	2092882.5 C-14 9.34E+00	36561.525 Ni-63 3.94E+00	4967.4 Eu-152 1.12E-01	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999	
2 3	CV Tunnel SX9SL99219 SXSL1063	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soll BA-127, 812' El, Sample # 5, OL2	4485.27 н-з 7.97E+00 4.20E+00	T 1/2 10446.15 5r-90 9.01E+00 5.11E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02	32050.6875 Pu-238 5.37E-01 4.62E-02	8813847.75 Pu-239 2.20E-01 3.27E-02	5259.6 Pu-241 3.88E+01 3.50E+00	2092882.5 C-14 9.34E+00 2.10E-01	36561.525 Ni-63 3.94E+00 1.08E+01	4967.4 Eu-152 1.12E-01 4.85E-02	January 15, 2004 Analysis Date February 14, 2001	
2 3 4	CV Tunnel SX9SL99219 SXSL1063 SXSL1089	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soil BA-127, 812' EI, Sample # 5, OL2 North CV Yard Soil AY-127, 810' EI, Sample # 3, OL1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00	T 1/2 10446.15 \$r-90 9.01E+00 5.11E-02 6.69E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01 1.24E+00	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01	8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01	36561.525 Ni-63 3.94E+00 1.08E+01 7.46E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002	
2 3 4 5	CV Tunnel SX95L99219 SX5L1063 SX5L1089 SX5L1115	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0.5'), AY-128, OL1 North CV Yard Soll BA-127, 812' El, Sample # 5, OL2 North CV Yard Soll AY-127, 810' El, Sample # 3, OL1 North CV Yard Soll AY-128, 804' El, Sample # 2, OL1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00	T 1/2 10446.15 5r-90 9.01E+00 5.11E.02 6.69E.02 5.16E.02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 1.98E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01 1.24E+00 1.74E+00	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01	36561.525 Ni-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 29, 2002	
2 3 4 5 6	CV Tunnel SX9SL99219 SXSL1063 SXSL1089 SXSL1115 SXSL1112	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soil AA-127, 812' El, Sample # 5, OL2 North CV Yard Soil AY-128, 804' El, Sample # 3, OL1 North CV Yard Soil AY-128, 788' El, Sample # 2, OL1 North CV Yard Soil AY-128, 788' El, Sample # 2, OL1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00	T 1/2 10446.15 5r-90 9.01E+00 5.11E.02 6.69E.02 5.16E.02 5.10E.02	T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02 2.71E-02 1.98E-02 2.28E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01 1.24E+00 1.74E+00 4.60E+00	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.42E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01	36561.525 Ni-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00	4967.4 EU-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002	
2 3 4 5 6 7	CV Tunnel SX95L99219 SX5L1063 SX5L1089 SX5L1115 SX5L1112 SX5L1120	CV Tunnel Sediment Composite, OL1 Subsuface Sample #28 (0-5'), AY-128, OL1 North CV Yard Soil 8A-127, 812' El, Sample # 5, OL2 North CV Yard Soil AY-127, 810' El, Sample # 3, OL1 North CV Yard Soil AY-128, 804' El, Sample # 2, OL1 North CV Yard Soil AY-128, 789' El, Sample # 2, OL1 North CV Yard Soil AY-128, 803' El, Sample # 4, OL1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.10E-02 5.10E-02 6.24E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 1.98E-02 2.28E-02 2.28E-02 2.44E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01 1.24E+00 1.74E+00 4.60E+00 2.18E+01	T 1/2 157861.05 Am-241 1.79E-01 9.91E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.42E+00 3.30E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.31E-01	36561.525 NI-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 29, 2002	
2 3 4 5 6 7 8	CV Tunnel SX95L99219 SX5L1063 SX5L1089 SX5L1115 SX5L1112 SX5L1130 SX5L1132	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soil 8A-127, 812' EI, Sample # 5, OL2 North CV Yard Soil AY-127, 810' EI, Sample # 3, OL1 North CV Yard Soil AY-128, 804' EI, Sample # 2, OL1 North CV Yard Soil AY-129, 803' EI, Sample # 2, OL1 North CV Yard Soil AX-129, 803' EI, Sample # 2, OL1 North CV Yard Soil AX-129, 803' EI, Sample # 2, OL1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00	T 1/2 10446.15 5r-90 9.01E+00 5.11E.02 6.69E.02 5.16E.02 5.16E.02 6.24E.02 6.24E.02 6.89E.02	T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.71E-02 2.24E-02 2.44E-02 2.86E-02	T1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01 1.24E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 1.64E-01	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.00E-02 1.21E-02 6.46E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.42E+00 3.30E+00 4.89E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.31E-01 2.15E-01	36561.525 Ni-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 1.25E+01	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 29, 2002 June 29, 2002 July 3, 2002 July 3, 2002	
2 3 4 5 6 7 8 9	CV Tunnel SX9SL99219 SXSL1063 SXSL1089 SXSL115 SXSL115 SXSL1122 SXSL1130 SXSL1132 SXSL1270	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soil BA-127, 812' EI, Sample # 5, OL2 North CV Yard Soil AY-127, 810' EI, Sample # 5, OL1 North CV Yard Soil AY-128, 804' EI, Sample # 2, OL1 North CV Yard Soil AY-128, 804' EI, Sample # 2, OL1 North CV Yard Soil AX-129, 800' EI, Sample # 2, OL1 North CV Yard Soil AX-129, 800' EI, Sample # 4, OL1 North CV Yard Soil AX-129, Sample # 5, OL1 AX-129, 9-3, Soil, CV SE Side 5' From CV, 800' EI, OL1	4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.16E-02 5.16E-02 6.24E-02 6.29E-02 1.88E-02	T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.71E-02 2.28E-02 2.28E-02 2.86E-02 2.86E-02 7.22E-03	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 1.24E+00 1.74E+00 4.60E+00 2.18E+01 2.50E+00 2.18E+01	T 1/2 157861.05 Am-241 1.79E-01 9.91E-02 2.39E-01 1.83E-01 1.64E-01 3.69E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.42E+00 3.30E+00 4.89E+00 1.87E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.31E-01 2.31E-01 3.93E+00	36561.525 NI-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.56E+00 1.33E+01 1.25E+01 8.53E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.17E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 3, 2002	
1 2 3 4 5 6 6 7 8 9 9	CV Tunnel SX95L99218 SX5L1063 SX5L1089 SX5L1115 SX5L1122 SX5L1130 SX5L1132 SX5L1270 SX5L1281	CV Tunnel Sediment Composite, OL1 Subsuface Sample #28 (0-57), AY-128, OL1 North CV Yard Soil 8A-127, 812" El, Sample # 5, OL2 North CV Yard Soil AY-128, 804" El, Sample # 5, OL1 North CV Yard Soil AY-128, 788" El, Sample # 2, OL1 North CV Yard Soil AY-129, 788" El, Sample # 2, OL1 North CV Yard Soil AX-228, 803" El, Sample # 4, OL1 North CV Yard Soil AZ-130, Sample # 5, OL1 AX-129, 3-3, Soil, CV S Elde 5" From CV, 800" El, OL1 AX-128, 3-1, Soil, CV Tunnel East 5" From CV, 800" El, OL1	4485.27 H-3 7.97E+00 4.20E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00 1.00E+01	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.10E-02 5.10E-02 6.24E-02 6.89E-02 1.88E-02 2.83E-02	T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.28E-02 2.28E-02 2.28E-02 2.86E-02 7.22E-03	T 1/2 11019.5925 Ce-137 1.17E-03 5.36E.01 8.55E.01 1.24E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 4.14E+00	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 3.69E-02 3.09E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03 7.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.30E+00 4.89E+00 1.87E+00 1.69E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.15E-01 3.93E+00 4.00E+00	36561.525 NI-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 8.53E+01 7.65E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 29, 2002 June 29, 2002 July 3, 2002 July 3, 2002	
2 3 4 5 6 7 8 9 10	CV Tunnel SX95L99219 SX5L1063 SX5L1089 SX5L1115 SX5L1115 SX5L1122 SX5L1130 SX5L1132 SX5L1320 SX5L1270 SX5L1281 SX5L2849	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soil 8A-127, 812' El, Sample # 5, OL2 North CV Yard Soil AY-127, 810' El, Sample # 5, OL1 North CV Yard Soil AY-128, 904' El, Sample # 2, OL1 North CV Yard Soil AY-129, 789' El, Sample # 2, OL1 North CV Yard Soil AX-129, 809' El, Sample # 2, OL1 North CV Yard Soil AX-129, 809' El, Sample # 2, OL1 North CV Yard Soil AX-129, 809' El, Sample # 2, OL1 North CV Yard Soil AX-120, Sample # 5, OL1 AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1 Anulus Weil, A-2, 5 to 10' Oepth, OL1	4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 5.16E-02 5.16E-02 5.16E-02 6.24E-02 6.29E-02 1.88E-02 2.83E-02 3.00E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.71E-02 2.28E-02 2.44E-02 2.86E-02 7.22E-03 7.22E-03 7.77E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E.01 8.55E.01 1.24E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 2.18E+01 4.14E+00 5.74E.01	T 1/2 157861.05 Am-241 1.79E-01 9.91E-02 2.39E-01 1.83E-01 1.64E-01 3.69E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.42E+00 3.30E+00 4.89E+00 1.87E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.31E-01 2.31E-01 3.93E+00	36561.525 NI-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.56E+00 1.33E+01 1.25E+01 8.53E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.17E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 3, 2002	
2 3 4 5 6 7 8 9 10 11 13	CV Tunnel \$X95L99219 \$X5L1063 \$X5L1089 \$X5L1115 \$X5L1122 \$X5L1130 \$X5L1132 \$X5L1132 \$X5L1321 \$X5L1281 \$X5L12849 \$X5L2849 \$X5L2871	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soil 8A-127, 812' EI, Sample # 5, OL2 North CV Yard Soil AY-127, 810' EI, Sample # 5, OL1 North CV Yard Soil AY-128, 804' EI, Sample # 2, OL1 North CV Yard Soil AY-129, 803' EI, Sample # 2, OL1 North CV Yard Soil AX-129, 803' EI, Sample # 2, OL1 North CV Yard Soil AX-129, 803' EI, Sample # 2, OL1 North CV Yard Soil AX-129, 803' EI, Sample # 2, OL1 North CV Yard Soil AX-120, Sample # 5, OL1 AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV EI, 5' Soil 5' From CV, 800' EI, 0' EI AX-128, 3-1, Soil, CV Fill A-1, 5' Soil 5' From CV, 800' EI AV From Fill A-1, 5' Soil 5' From CV, 800' EI AV Fill A-1, 5' Soil 5' From CV, 800' EI AV Fill A-1, 5' Soil 5' From CV, 800' EI AV Fill A-1, 5' Soil 5' From CV, 800' EI AV Fill A-1, 5' Soil 5' From CV, 800' EI AV Fill A-1, 5' Soil 5' Fill 5' Soil 5' From CV, 800' EI AV Fill 5' Soil 5' Soi	4485.27 H-3 7.97E+00 4.20E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00 1.00E+01	T 1/2 10446.15 5r-80 9.01E+00 5.11E.02 6.69E.02 5.16E.02 5.16E.02 5.16E.02 6.24E.02 6.24E.02 6.89E.02 1.88E.02 2.83E.02 2.83E.02 2.87E.02	T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.71E-02 2.24E-02 2.24E-02 2.26E-02 7.22E-03 7.72E-03 7.77E-02 5.48E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E.01 1.24E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 2.18E+01 4.14E+00 5.74E.01 5.37E.01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 3.69E-02 3.09E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03 7.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.30E+00 4.89E+00 1.87E+00 1.69E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.15E-01 3.93E+00 4.00E+00	36561.525 NI-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 8.53E+01 7.65E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.17E-02	January 15, 2004 Analysis Date February 14, 2001 Ilovember 17, 1999 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 28, 2001	
2 3 4 5 6 7 7 8 8 9 9 10 11 13 14	CV Tunnel SX95L99219 SX5L1063 SX5L1089 SX5L1115 SX5L1122 SX5L1120 SX5L1120 SX5L1270 SX5L1270 SX5L1281 SX5L2871 SX5L2872	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soll BA-127, 812' El, Sample # 5, OL2 North CV Yard Soll AY-127, 812' El, Sample # 5, OL1 North CV Yard Soll AY-128, 804' El, Sample # 2, OL1 North CV Yard Soll AY-128, 804' El, Sample # 2, OL1 North CV Yard Soll AX-129, 803' El, Sample # 2, OL1 North CV Yard Soll AZ-130, Sample # 2, OL1 North CV Yard Soll AZ-130, Sample # 5, OL1 AX-129, 3-3, Soll, CV SE Side 5' From CV, 800' El, OL1 AX-128, 3-1, Soll, CV Tunnel East 5' From CV, 800' El, OL1 Anulus Well, A-2, 5 to 10' Depth, OL1 CV Area - East Yard Dirt Pile - Middle, 12 Way Up, OL1 CV Area - East Yard Dirt Pile - Sottom (also top center), OL1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 9.84E+00 1.00E+01 1.79E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.16E-02 5.16E-02 6.24E-02 6.29E-02 1.88E-02 2.83E-02 2.87E-02 2.87E-02	T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.71E-02 2.28E-02 2.28E-02 2.44E-02 2.86E-02 7.22E-03 7.22E-03 7.72E-03 7.72E-03 7.77E-02 5.48E-02 4.70E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 1.24E+00 1.74E+00 4.60E+00 2.18E+01 2.50E+00 2.18E+01 4.14E+00 5.74E-01 5.37E-01 9.58E-02	T 1/2 157861.05 Am-241 1.79E-01 9.91E-02 2.39E-01 1.83E-01 1.64E-01 3.69E-02 3.09E-02 9.75E-03	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 7.37E-02 6.86E-03 1.57E-02 1.31E-02	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 1.21E-02 1.21E-02 7.00E-03 1.10E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.30E+00 4.89E+00 1.87E+00 1.69E+00 1.71E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.0E-01 2.31E-01 2.31E-01 3.93E+00 4.00E+00 1.83E-01	36561.525 11.63 3.94E+00 1.08E+01 7.46E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 7.65E+00 1.73E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.79E-02 6.17E-02 3.53E-02	January 15, 2004 Analysis Date February 14, 2001 Hovember 17, 1999 June 27, 2002 June 28, 2002 June 29, 2002 July 3, 2002 July 3, 2002 July 26, 2001 July 28, 2001 February 13, 2002	
2 3 4 5 6 6 7 7 8 8 9 9 10 11 13 14 15	CV Tunnel SX95L99219 SX5L1063 SX5L1089 SX5L1115 SX5L1122 SX5L1122 SX5L1122 SX5L1270 SX5L1270 SX5L1271 SX5L2872 SX5L2872 SX5L3140	CV Tunnel Sediment Composite, OL1 Subsuface Sample #28 (0-57), AY-128, OL1 North CV Yard Soil BA-127, 812" El, Sample # 5, OL2 North CV Yard Soil AY-128, 804" El, Sample # 5, OL1 North CV Yard Soil AY-128, 804" El, Sample # 2, OL1 North CV Yard Soil AY-128, 804" El, Sample # 2, OL1 North CV Yard Soil AY-128, 788" El, Sample # 2, OL1 North CV Yard Soil AY-128, 788" El, Sample # 2, OL1 North CV Yard Soil AY-128, 789" El, Sample # 2, OL1 North CV Yard Soil AY-128, 789" El, Sample # 2, OL1 North CV Yard Soil AY-128, 789" El, Sample # 2, OL1 North CV Yard Soil AY-128, 789" El, Sample # 2, OL1 North CV Yard Soil AY-128, 789" El, Sample # 2, OL1 North CV Yard Soil AY-128, 789" El, Sample # 2, OL1 AX-128, 3-1, Soil, CV SE Side 5" From CV, 800" El, OL1 AX-128, 3-1, Soil, CV Tunnel East 5" From CV, 800" El, OL1 AX-128, 3-1, Soil, CV Tunnel East 5" From CV, 800" El, OL1 CV Area - East Yard Dirt Pile - Middle, 12 Way Up, OL1 CV Area - East Yard Dirt Pile - Bottom (siso top center), OL1 East CV Yard, Soil Pile @ 5" on West Side (6" Depth), OL1	4485.27 H-3 7.97E+00 4.20E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00 1.00E+01	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.16E-02 5.10E-02 6.24E-02 6.89E-02 1.88E-02 2.83E-02 2.83E-02 2.87E-02 1.16E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.28E-02 2.28E-02 2.28E-02 2.44E-02 2.86E-02 7.22E-03 7.77E-02 5.48E-02 4.70E-02 1.17E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E.01 8.55E.01 1.24E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 5.74E.01 5.37E.01 9.58E.02 7.99E.01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 3.69E-02 3.09E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03 7.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.30E+00 4.89E+00 1.87E+00 1.69E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.15E-01 3.93E+00 4.00E+00	36561.525 NI-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 8.53E+01 7.65E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.17E-02	January 15, 2004 Analysis Date February 14, 2001 Ilovember 17, 1999 June 28, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 26, 2001 February 13, 2002 March 6, 2002	
2 3 4 5 6 7 8 9 10 1 3 4 5 6 8 9 10 1 3 4 5 6 8 8 9 10 11 5 6 8 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	CV Tunnel \$X95L99219 \$X5L1063 \$X5L1089 \$X5L1115 \$X5L1122 \$X5L1132 \$X5L1132 \$X5L132 \$X5L132 \$X5L132 \$X5L132 \$X5L132 \$X5L132 \$X5L2649 \$X5L2649 \$X5L2649 \$X5L2649 \$X5L272 \$X5L3140 \$X5L3142	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soil BA-127, 812' El, Sample # 5, OL2 North CV Yard Soil AY-127, 812' El, Sample # 5, OL1 North CV Yard Soil AY-128, 804' El, Sample # 2, OL1 North CV Yard Soil AY-128, 804' El, Sample # 2, OL1 North CV Yard Soil AY-129, 809' El, Sample # 2, OL1 North CV Yard Soil AY-129, 809' El, Sample # 2, OL1 North CV Yard Soil AY-129, 809' El, Sample # 2, OL1 North CV Yard Soil AY-129, 809' El, Sample # 2, OL1 AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1 AX-128, 3-4, Soil, CV Tunnel East 5' From CV, 800' El, OL1 CV Area - East Yard Dirt Pile - Middle, 12 Way Up, OL1 CV Area - East Yard Dirt Pile - Middle, 12 Way Up, OL1 East CV Yard, Soil Pile @ 8' on West Side (6' Depth), OL1 Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00 1.00E+01 1.79E+00 1.75E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 5.16E-02 5.16E-02 5.16E-02 6.24E-02 6.89E-02 1.88E-02 2.83E-02 2.87E-02 2.87E-02 2.87E-02 2.87E-02 2.85E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.271E-02 2.28E-02 2.28E-02 2.28E-02 2.286E-02 7.22E-03 7.22E-03 7.22E-03 7.22E-03 7.77E-02 5.48E-02 4.70E-02 5.81E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E.01 8.55E.01 1.24E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 2.18E+01 5.74E.01 5.37E.01 5.37E.01 5.37E.01 5.36E.02	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 1.64E-01 3.69E-02 9.75E-03 6.98E-03	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02 1.31E-02 4.95E-03	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 1.21E-02 6.46E-02 7.00E-03 1.10E-02 5.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.31E+00 3.34E+00 3.34E+00 1.87E+00 1.87E+00 1.71E+00 3.45E-01	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.06E-01 2.31E-01 2.31E-01 2.35E-00 4.00E+00 1.83E-01 8.60E-02	36561.525 11.63 3.94E+00 1.08E+01 7.46E+00 7.46E+00 1.32E+01 1.25E+01 1.25E+01 1.25E+01 1.73E+00 1.73E+00 3.37E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.79E-02 6.17E-02 3.53E-02	January 15, 2004 Analysis Date February 14, 2001 Hovember 17, 1999 June 28, 2002 June 28, 2002 Jung 28, 2002 July 3, 2002 July 3, 2002 July 26, 2001 July 26, 2001 July 26, 2001 February 13, 2002 March 6, 2002	
2 3 4 5 6 6 7 7 8 9 9 10 11 13 14 15 16 17	CV Tunnel \$X95L99219 \$X5L1063 \$X5L1089 \$X5L1115 \$X5L1122 \$X5L1130 \$X5L1132 \$X5L132 \$X5L132 \$X5L132 \$X5L132 \$X5L132 \$X5L132 \$X5L132 \$X5L281 \$X5L382 \$	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soil 8A-127, 812' EI, Sample # 5, OL2 North CV Yard Soil AY-127, 810' EI, Sample # 5, OL1 North CV Yard Soil AY-128, 804' EI, Sample # 2, OL1 North CV Yard Soil AY-128, 804' EI, Sample # 2, OL1 North CV Yard Soil AY-129, 803' EI, Sample # 2, OL1 North CV Yard Soil AX-129, 803' EI, Sample # 2, OL1 North CV Yard Soil AX-129, 803' EI, Sample # 2, OL1 North CV Yard Soil AX-129, 803' EI, Sample # 2, OL1 North CV Yard Soil AX-130, Sample # 5, OL1 AX-128, 3-3, Soil, CV SE Side 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 CV Area - East Yard Dirt Pile - Middle, 12 Way Up, OL1 CV Area - East Yard Dirt Pile - Middle, 12 Way Up, OL1 CV Area - East Yard Dirt Pile - Sottom (also top center), OL1 East CV Yard, Soil Pile @ 5' on West Side (5' Depth), OL1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 9.84E+00 1.00E+01 1.79E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E.02 6.69E.02 5.16E.02 5.16E.02 6.24E.02 6.24E.02 6.24E.02 6.29E.02 1.88E.02 2.87E.02 2.87E.02 2.87E.02 2.87E.02 2.87E.02 1.66E.02 1.64E.02	T 1/2 1925.23275 Co-80 8.59E.01 4.05E.02 1.57E.02 2.71E.02 2.28E.02 2.28E.02 2.28E.02 2.28E.02 2.44E.02 2.86E.02 7.22E.03 7.77E.02 5.48E.02 4.70E.02 1.17E.02 5.81E.02 1.08E.02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E.01 1.24E+00 1.74E+00 4.60E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 2.18E+01 4.14E+00 5.77E.01 9.58E.02 7.99E.01 5.81E.01 1.22E+00	T 1/2 157861.05 Am-241 1.79E-01 9.91E-02 2.39E-01 1.83E-01 1.64E-01 3.69E-02 3.09E-02 9.75E-03	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 7.37E-02 6.86E-03 1.57E-02 1.31E-02	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 1.21E-02 1.21E-02 7.00E-03 1.10E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.30E+00 4.89E+00 1.87E+00 1.69E+00 1.71E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.0E-01 2.31E-01 2.31E-01 3.93E+00 4.00E+00 1.83E-01	36561.525 11.63 3.94E+00 1.08E+01 7.46E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 7.65E+00 1.73E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.79E-02 6.17E-02 3.53E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 28, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 28, 2001 July 26, 2001 February 13, 2002 March 6, 2002 August 30, 2002	
2 3 4 5 6 7 7 8 9 9 10 11 13 14 15 16 17 18	CV Tunnel SX95L99219 SX5L1063 SX5L1089 SX5L1115 SX5L1122 SX5L1122 SX5L1120 SX5L1120 SX5L1270 SX5L1270 SX5L1270 SX5L1281 SX5L2812 SX5L2812 SX5L2812 SX5L2140 SX5L3149	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soil BA-127, 812' El, Sample # 5, OL2 North CV Yard Soil AY-127, 812' El, Sample # 5, OL1 North CV Yard Soil AY-128, 804' El, Sample # 2, OL1 North CV Yard Soil AY-128, 804' El, Sample # 2, OL1 North CV Yard Soil AY-128, 809' El, Sample # 2, OL1 North CV Yard Soil AZ-130, Sample # 2, OL1 North CV Yard Soil AZ-130, Sample # 5, OL1 AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1 AX-128, 3-1, Soil, CV Tunnel Fast 5' From CV, 800' El, OL1 CV Area - East Yard Dirt Pile - Niddle, 12 Way Up, OL1 CV Area - East Yard Dirt Pile - Niddle, 12 Way Up, OL1 CV Area - East Yard Dirt Pile - Niddle, 12 Way Up, OL1 Soil Pile, CV Yard, Soil Pile @ 3' on East Side (6' Depth), OL1 Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 9.84E+00 1.00E+01 1.79E+00 1.75E+00 1.76E+00	T 1/2 10446.15 Sr-80 9.01E+00 5.11E-02 6.68E-02 5.10E-02 5.10E-02 6.24E-02 6.24E-02 1.88E-02 2.83E-02 2.83E-02 2.87E-02 2.87E-02 2.85E-02 1.64E-02 2.87E-02	T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.286E-02 2.286E-02 2.286E-02 7.22E-03 7.72E-03 7.77E-02 5.48E-02 1.17E-02 5.81E-02 1.08E-02 1.08E-02 6.63E-02	T 1/2 11019.5925 Ce-137 1.17E-03 5.36E.01 8.55E.01 1.24E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 2.18E+01 4.14E+00 5.74E.01 5.37E.01 5.37E.01 5.37E.01 5.38E.02 7.99E.01 5.38E.01 2.30E.01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 1.64E-01 1.64E-01 3.69E-02 9.75E-03 6.98E-03 3.99E-03	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 7.37E-02 6.86E-03 1.57E-02 1.31E-02 4.95E-03 4.95E-03	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 1.21E-02 6.46E-02 7.00E-03 7.00E-03 1.10E-02 5.00E-03 5.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.391E+00 3.30E+00 4.89E+00 1.69E+00 1.71E+00 3.45E-01 3.52E-01	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.06E-01 2.31E-01 2.31E-01 2.35E-00 4.00E+00 1.83E-01 8.60E-02 8.30E-02	36561.525 10.63 3.94E+00 1.08E+01 1.08E+01 1.25E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 3.37E+00 3.65E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 9.15E-02 6.79E-02 6.79E-02 3.53E-02 2.80E-02 3.54E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1998 June 27, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 26, 2001 July 26, 2001 February 13, 2002 March 6, 2002 August 03, 2002 August 13, 2002	
2 3 4 5 6 6 7 7 8 8 9 9 10 11 13 14 15 16 17 18 19 9	CV Tunnel \$V95L99219 \$X5L1063 \$X5L1089 \$X5L1115 \$X5L1122 \$X5L1130 \$X5L1132 \$X5L1270 \$X5L1270 \$X5L1221 \$X5L2849 \$X5L2849 \$X5L2849 \$X5L2849 \$X5L2849 \$X5L2840 \$X5L2840 \$X5L2140 \$X5L3142 \$X5L3145 \$X5L3149 \$X5L3145	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soil 8A-127, 812' El, Sample # 5, OL2 North CV Yard Soil AY-127, 812' El, Sample # 5, OL1 North CV Yard Soil AY-128, 804' El, Sample # 2, OL1 North CV Yard Soil AY-128, 804' El, Sample # 2, OL1 North CV Yard Soil AY-128, 789' El, Sample # 2, OL1 North CV Yard Soil AY-129, 789' El, Sample # 2, OL1 North CV Yard Soil AY-129, 789' El, Sample # 2, OL1 North CV Yard Soil AY-129, 789' El, Sample # 2, OL1 North CV Yard Soil AY-129, 780' El, Sample # 2, OL1 AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1 CV Area - East Yard Dirt Pile - Niiddle, 12 Way Up, OL1 CV Area - East Yard Dirt Pile - Bottom (also top center), OL1 East CV Yard, Soil Pile @ 1' on East Side (5' Depth), OL1 Soil Pile, CV Yard, Street on East Side, SR-37, OL1 East CV Yard, Soil Pile @ 1' on East Side, SR-37, OL1 East CV Yard, Soil Pile @ 1' on East Side, SR-37, OL1 East CV Yard, Soil Pile @ 1' on East Side, SR-37, OL1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 9.84E+00 1.00E+01 1.79E+00 1.76E+00 1.76E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.10E-02 5.10E-02 6.24E-02 6.24E-02 1.88E-02 2.87E-02 2.87E-02 2.87E-02 1.16E-02 2.85E-02 1.64E-02 2.87E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.28E-02 2.28E-02 2.28E-02 2.44E-02 2.86E-02 7.22E-03 7.77E-02 5.48E-02 4.70E-02 5.81E-02 1.08E-02 1.08E-02 1.92E-02	T 1/2 11019.5925 Cs-137 1.17E-03 5.36E.01 1.24E+00 1.74E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 5.74E.01 5.37E.01 5.87E.01 1.22E+00 2.90E.01 2.91E.01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.49E-01 1.49E-01 1.64E-01 3.09E-02 9.75E-03 9.75E-03 3.99E-03 2.99E-03	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 1.37E-02 1.37E-02 1.31E-02 4.95E-03 4.95E-03	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 4.07E-02 1.21E-02 6.46E-02 7.00E-03 1.10E-02 5.00E-03 5.00E-03 5.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.31E+00 3.34E+00 3.34E+00 1.87E+00 1.87E+00 1.71E+00 3.45E-01	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.06E-01 2.31E-01 2.31E-01 2.35E-00 4.00E+00 1.83E-01 8.60E-02	36561.525 11.63 3.94E+00 1.08E+01 7.46E+00 7.46E+00 1.32E+01 1.25E+01 1.25E+01 1.25E+01 1.73E+00 1.73E+00 3.37E+00	4967.4 Eu-152 1.12E-01 4.85E-02 5.28E-02 5.28E-02 9.15E-02 6.79E-02 6.17E-02 3.53E-02 2.80E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 26, 2001 July 26, 2001 July 26, 2001 July 26, 2001 February 13, 2002 March 6, 2002 August 30, 2002 August 30, 2002	
2 3 4 5 6 7 7 8 9 9 10 11 13 14 15 16 17 18 19 21	CV Tunnel \$X95L99219 \$X5L1063 \$X5L1089 \$X5L1115 \$X5L1122 \$X5L1132 \$X5L1132 \$X5L132 \$X5L132 \$X5L132 \$X5L1281 \$X5L2849 \$X5L2849 \$X5L2849 \$X5L2849 \$X5L2849 \$X5L2449 \$X5L3145 \$X5L3145 \$X5L3145 \$X5L3145 \$X5L3145	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soil 8A-127, 812' EI, Sample #5, OL2 North CV Yard Soil AY-127, 812' EI, Sample #5, OL1 North CV Yard Soil AY-128, 804' EI, Sample #2, OL1 North CV Yard Soil AY-128, 804' EI, Sample #2, OL1 North CV Yard Soil AY-129, 802' EI, Sample #2, OL1 North CV Yard Soil AY-129, 802' EI, Sample #2, OL1 North CV Yard Soil AY-129, 802' EI, Sample #2, OL1 North CV Yard Soil AY-129, 802' EI, Sample #2, OL1 AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1 CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1 CV Area - East Yard Dirt Pile - 80tm (also top center), OL1 East CV Yard, Soil Pile @ 5' on West Side (8'' Depth), OL1 Soil Pile, CV Yard, Soil Pile @ 5' on East Side, SR-37, OL1 East CV Yard, Soil Pile @ 5' on East Side, SR-37, OL1 East CV Yard, Soil Pile @ 5' on (9'' Depth), OL1 Soil Pile, CV Yard, Soil Pile @ Ton (9'' Depth), OL1 Soil Pile, CV Yard, Soil Pile @ Ton (9'' Depth), OL1 CV Yard Soil Pile @ 5' on (9'' Depth), OL1 East CV Yard, Soil Pile @ Ton (9'' Depth), OL1 East CV Yard, Soil Pile @ Ton (9'' Depth), OL1 East CV Yard, Soil Pile @ Ton (9'' Depth), OL1 East CV Yard, Soil Pile @ Ton (9'' Depth), OL1	4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00 1.00E+01 1.79E+00 1.75E+00 1.75E+00 1.79E+00 2.18E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E.02 5.16E.02 5.16E.02 5.16E.02 6.24E.02 6.89E.02 1.88E.02 2.83E.02 2.87E.02 2.87E.02 2.87E.02 2.87E.02 2.87E.02 1.64E.02 2.87E.02 2.87E.02 3.30E.02	T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.24E-02 2.44E-02 2.86E-02 7.22E-03 7.22E-03 7.22E-03 7.22E-03 7.77E-02 5.48E-02 1.17E-02 5.81E-02 1.08E-02 1.08E-02 1.92E-02 4.81E-02	T 1/2 11019.5925 Ce-137 1.17E+03 5.36E.01 1.24E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 2.18E+01 5.37E.01 5.37E.01 5.37E.01 5.38E.02 7.99E.01 5.38E.01 1.22E+00 2.90E.01 8.94E.01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.49E-01 1.49E-01 1.64E-01 3.69E-02 3.09E-02 9.75E-03 6.98E-03 3.99E-03 2.99E-03 1.76E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02 1.31E-02 1.31E-02 4.95E-03 4.95E-03 4.95E-03 6.69E-02	8813847.75 Fu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 1.21E-02 1.21E-02 1.21E-02 1.21E-02 1.21E-02 1.00E-03 1.10E-02 5.00E-03 5.00E-03 5.00E-03 2.22E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.391E+00 3.30E+00 4.89E+00 1.69E+00 1.71E+00 3.45E-01 3.52E-01	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.06E-01 2.31E-01 2.31E-01 2.35E-00 4.00E+00 1.83E-01 8.60E-02 8.30E-02	36561.525 10.63 3.94E+00 1.08E+01 1.08E+01 1.25E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 3.37E+00 3.65E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 9.15E-02 6.79E-02 6.79E-02 3.53E-02 2.80E-02 3.54E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 28, 2002 June 28, 2002 Juny 28, 2002 July 3, 2002 July 3, 2002 July 26, 2001 July 26, 2001 July 26, 2001 February 13, 2002 March 6, 2002 August 30, 2002 August 30, 2002 August 30, 2002	
2 3 4 5 6 7 7 8 9 10 11 3 4 4 5 6 6 7 8 9 10 11 3 4 4 5 6 7 8 9 9 10 11 3 4 9 9 10 7 8 9 9 10 7 8 9 9 10 7 8 9 9 10 7 8 9 9 10 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	CV Tunnel \$V95L99219 \$X5L1063 \$X5L1089 \$X5L1115 \$X5L1122 \$X5L1130 \$X5L1132 \$X5L1270 \$X5L1270 \$X5L1221 \$X5L2849 \$X5L2849 \$X5L2849 \$X5L2849 \$X5L2849 \$X5L2840 \$X5L2840 \$X5L2140 \$X5L3142 \$X5L3145 \$X5L3149 \$X5L3145	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soil 8A-127, 812' El, Sample # 5, OL2 North CV Yard Soil AY-127, 812' El, Sample # 5, OL1 North CV Yard Soil AY-128, 804' El, Sample # 2, OL1 North CV Yard Soil AY-128, 804' El, Sample # 2, OL1 North CV Yard Soil AY-128, 789' El, Sample # 2, OL1 North CV Yard Soil AY-129, 789' El, Sample # 2, OL1 North CV Yard Soil AY-129, 789' El, Sample # 2, OL1 North CV Yard Soil AY-129, 789' El, Sample # 2, OL1 North CV Yard Soil AY-129, 780' El, Sample # 2, OL1 AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El, OL1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1 CV Area - East Yard Dirt Pile - Niiddle, 12 Way Up, OL1 CV Area - East Yard Dirt Pile - Bottom (also top center), OL1 East CV Yard, Soil Pile @ 1' on East Side (5' Depth), OL1 Soil Pile, CV Yard, Street on East Side, SR-37, OL1 East CV Yard, Soil Pile @ 1' on East Side, SR-37, OL1 East CV Yard, Soil Pile @ 1' on East Side, SR-37, OL1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 9.84E+00 1.00E+01 1.79E+00 1.76E+00 1.76E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.10E-02 5.10E-02 6.24E-02 6.24E-02 1.88E-02 2.87E-02 2.87E-02 2.87E-02 1.16E-02 2.85E-02 1.64E-02 2.87E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.28E-02 2.28E-02 2.28E-02 2.44E-02 2.86E-02 7.22E-03 7.77E-02 5.48E-02 4.70E-02 5.81E-02 1.08E-02 1.08E-02 1.92E-02	T 1/2 11019.5925 Cs-137 1.17E-03 5.36E.01 1.24E+00 1.74E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 5.74E.01 5.37E.01 5.87E.01 1.22E+00 2.90E.01 2.91E.01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.49E-01 1.49E-01 1.64E-01 3.09E-02 9.75E-03 9.75E-03 3.99E-03 2.99E-03	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 1.37E-02 1.37E-02 1.31E-02 4.95E-03 4.95E-03	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 4.07E-02 1.21E-02 6.46E-02 7.00E-03 1.10E-02 5.00E-03 5.00E-03 5.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.391E+00 3.30E+00 4.89E+00 1.69E+00 1.71E+00 3.45E-01 3.52E-01	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.06E-01 2.31E-01 2.31E-01 2.35E-00 4.00E+00 1.83E-01 8.60E-02 8.30E-02	36561.525 10.63 3.94E+00 1.08E+01 1.08E+01 1.25E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 3.37E+00 3.65E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 9.15E-02 6.79E-02 6.79E-02 3.53E-02 2.80E-02 3.54E-02	January 15, 2004 Analysis Date February 14, 2001 Hovember 17, 1999 June 28, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 26, 2001 July 26, 2001 February 13, 2002 March 6, 2002 August 30, 2002 August 30, 2002 August 30, 2002	

KEY		
	Yellow Shaded Background = Positive Result	٦
	Gray Shaded Background = MDA	Γ
		_

		TABLE 3 - Decayed Listing of Pos	itive Nuclides	& MDAs Rem	ioved (pCi/g)		
-	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	Total pCi
1	CV Tunnel	CV Tunnel Sediment Composite, OL1		9.01E+00	8.59E-01	1.17E+03	1178.89
2	SX9SL99219	Subsuface Sample #29 (0-5'), AY-128, OL1				5.36E-01	0.54
3	SXSL1063	North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	4.20E+00			8.55E-01	5.05
4	SXSL1089	North CV Yard Soil AY-127, 810' El, Sample # 3, OL1	2.78E+00			1.24E+00	4.02
5	SXSL1115	North CV Yard Soil AY-128, 804' El, Sample # 2, OL1	4.47E+00			1.74E+00	6.21
6	SXSL1122	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	3.15E+00			4.60E+00	7.76
7	SXSL1130	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	4.58E+00		2.44E-02	2.18E+01	26.42
8	SXSL1132	North CV Yard Soil AZ-130, Sample # 5, OL1	2.73E+00			2.50E+00	5.23
9	SXSL1270	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El., OL1				2.18E+01	21.82
10	SXSL1281	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1				4.14E+00	4.14
11	SX SL2649	Anulus Well, A-2, 5 to 10' Depth, OL1				5.74E-01	0.57
13	SXSL2871	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1				5.37E-01	0.54
14	SXSL2872	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1				9.58E-02	0.10
15	SXSL3140	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1				7.99E-01	0.80
16	SXSL3142	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1				5.81E-01	0.58
17	SXSL3145	East CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1				1.22E+00	1.22
18	SXSL3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1				2.90E-01	0.29
19	SXSL3153	East CV Yard, Soil Pile @ Top (6" Depth), OL1				2.91E-01	0.29
21	SXSL4142	CV Yard Soil - West Side, AP1-7, OL1				8.94E-01	0.89
22	SXSL4143	CV Yard Soil - West Side, AP1-7, OL1				4.97E-01	0.50
23	SXSL4149	CV Yard Soil - West Side, AP1-7, OL1			6.74E-02	3.87E+00	3.94

		TABLE 4 - Ratio To Cs	-137 for Pos	itive Nuclides			
	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	Tota
1	CV Tunnel	CV Tunnel Sediment Composite, OL1		7.71E-03	7.35E-04	1.00E+00	1.01
2	SX95L99219	Subsuface Sample #29 (0-5'), AY-128, OL1				1.00E+00	1.00
3	SXSL1063	North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	4.91E+00			1.00E+00	5.91
4	SXSL1089	North CV Yard Soil AY-127, 810' El, Sample # 3, OL1	2.23E+00			1.00E+00	3.23
5	SXSL1115	North CV Yard Soil AY-128, 804' El, Sample # 2, OL1	2.57E+00			1.00E+00	3.57
6	SXSL1122	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	6.85E-01			1.00E+00	1.68
7	SXSL1130	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	2.10E-01		1.12E-03	1.00E+00	1.21
8	SXSL1132	North CV Yard Soil AZ-130, Sample # 5, OL1	1.09E+00			1.00E+00	2.09
9	SXSL1270	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' EL, OL1				1.00E+00	1.00
10	SXSL1281	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1				1.00E+00	1.00
11	SXSL2649	Anulus Well, A-2, 5 to 10' Depth, OL1				1.00E+00	1.00
13	SXSL2871	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1				1.00E+00	1.00
14	SXSL2872	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1				1.00E+00	1.00
15	SXSL3140	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1				1.00E+00	1.00
16	SXSL3142	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1				1.00E+00	1.00
17	SXSL3145	East CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1				1.00E+00	1.00
18	SXSL3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1				1.00E+00	1.00
19	SXSL3153	East CV Yard, Soil Pile @ Top (6" Depth), OL1				1.00E+00	1.00
21	SXSL4142	CV Yard Soil - West Side, AP1-7, OL1				1.00E+00	1.00
22	SXSL4143	CV Yard Soil - West Side, AP1-7, OL1				1.00E+00	1.00
23	SXSL4149	CV Yard Soil - West Side, AP1-7, OL1			1.74E-02	1.00E+00	1.02
		Mean⇒	1.95E+00	7.71E-03	6.42E-03	1	2.96
		Sigma⇒	1.708		0.010	0.000	
		Mean % of Total⇒	65.79%	0.26%	0.22%	33.74%	100.00

τ	a	b	le	5

ł					SHEC AL.	75%	Total Activity Limit I	0001.00	Adminia	trative Limit	1
Effectiv	e DCGL Calcı	ilator for C	s.137 /in nCi	a)	. JILC AL.	13.0	16.98	pCl/g		pCi/g	·
			3-107 (m þói	91		î,	10.50	<u>II/Cirg</u>	12.14	peng	1
142	APLE NUMBER(s)⇒	CV YARD SOIL		1 F S		T					
			0.0000000000000000000000000000000000000		<u></u>	1	7		C#-137 Adm	Iništrálive Limit	1
17.45%	25.0	mrem/y TEDE	1 imit		•	i .	5.73	pCi/g	4.30	pCi/g	
	1.12.10	An entry ILDL	Lutua		P Check for 25 mem/y	i		Ipeng.	<u> 4.30 </u>	Ipc.ig	1
7.79%	4.0	mrem _' y Drink	ing Water (DW) Lin		P Check for 25 milenty		····	1		r	т
	Sample Input]			1
Isotope	(pC) g. uCl. *: of Total, etc.)	": Of Total	25 mrem·y TECE Limits (pCi·g)	4 mremiy DW Limits (pClig)	A - Allowed pCFg for 25 mrem-y TEDE	for 4 mremiy DW	Value Checked from Column A or B	Į	This Sample mremy TEDE	This Sample mremly DW	
1 Am-241		0 000%		2,3	0 00	0.00,	0.00	1	0.00	0.00	Am-241
2 C-14		0 000%		5.4 67.0	0.00	0.00	0 00	}	0.00	0.00	C-14
3 Co.60	0.0064	0 216%	3.5		0.04		0.04	. I	0.05	0 00	Co.60
4 Cs-137	1.0000	33 738%	6.6	397	5 73	12,83	5.73	í	3 79	0.01	Cs.137
5 Eu-152		0 000%	10.1	1440	0 00	÷÷0.00	0 00		0 00		Eu-152
6 H-3	1.9499	65 786%	132	31.1	11 17	25.02	11 17		0 37	0.25	H-3
7 111-63		0 000%	747	19000	0.00	0 00	0 0 0		0.00	0.00	111-63
8 Pu-238		0 000%	1.8	0.41	0 00	0.00	0 00		0 00	0.00	Pu-238
9 Pu-239		0 000%	1.6	0.37 🔆 🦿	0 00	0.00	0 00		0.00	0.00	Pu-239
10 Pu-241		0 000%	86	19.8	0 00	0.00	0 0 0		0.00	0.00	Pu-241
11 Sr 90	0.0077	0 260%	1.2	0.61	0.04	0.10	0.04		0 16	0.05	Sr.90
F	2.96E+00	100.000%			16.98	38.03	16.98	. . '	4,364	0.312	
L					Maximum Permissible	t.faximum			To Use Thi	s information.	
ł					pCi/g	Permissible pCl/g				Units Must Be In	1
{					(25 mrem/y)	(4 mremiy)			pCl/g not	% of Total.	

2350 INSTRUMENT AND PROBE EFFICIENCY CHART 7/01/04 (Typical 2" by 2" Nal (Cs-137 W) Conversion Factors)

Inst.#	Cal Due	AP #		Probe #	Cal Due	cpm/mR/h
98625	5/18/05	R & Y		211680 Pk	5/18/05	214.882
98647	5/18/05	G & Y	 	211667 Pk	5/18/05	218,807
120122	5110/02	F) 9.32	<u> </u>		20005	212 520
129423	5/18/05	P&Y.	[211687 PK	5/18/05	213.539
117573	5/18/05	() & Y	<u> </u>	211674 Pk	5/18/05	.212.173
			<u></u>	21107-11		· · · · · · · /
117566	4/9/05	G&R		185852 Pk	4/13/05	209.862
126183	11/19/04	B&R		206280 Pk	12/12/04	190,907
			<u> </u>			
129429	11/3/04	Y&W		206283 Pk	10/31/04	177185
126198	11/03/04	17 11 1	<u> </u>			
120190	11/05/04	R&W		196021Pk	5/25/05	209.194
126172	6/07/05	G&W		196022	6/07/05	208.302
· · ·					0/0///05	208.302
129440	4/09/05	()&W		210938 Pk	4/14/05	205.603
120588	6/08/05	B&W		185844 Pk	6/09/05	216.654
95361	6.25/05	P&W				
1 7.201	0.20.05	PQW	-	025686	6/28/05	211.799

-- --1,

..

Attachment 3-1 E900-05-014

Nal Scan MDC Calculation

MDCscan = 6.2 pCi/g

b = background in counts per minute

bi = background counts in observation interval

Conv = Nal Detector / meter calibrated response in cpm/uR/hr

d = Index of sensitivity from MARSSIM Table 6.5 based on 95% detection, 60% false positive

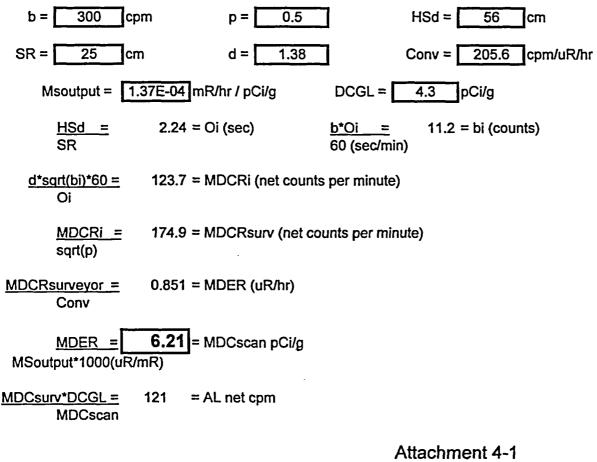
HSd = Elevated measurement spot diameter in centimeters

MDCscan = MinimumDetectable Concentration for scanning in pCi/g

MDCRi = Minimum Detectable Count Rate in net counts per minute

MDCRsurv = MDCRi adjusted for the human performance factor p - in net counts per minute

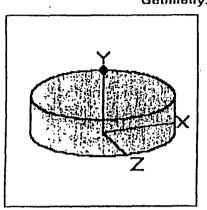
MDER = Minimum Detectable Exposure Rate in uR / hr


MSoutput = MicroShield derived exposure rate for 1 pCi/g contaminant in mR/hr

Oi = Observation interval in seconds

p = human performance adjustment factor - unitless

SR = Scanning movement rate in centimeters per second


DCGLeq = Net count rate equivalent to the Adjusted DCGL

E900-05-014

MicroShield v5.05 (5.05-00121) GPU Nuclear

Page : 1		File Ref:
DOS File ; MODEL.MS5		Date:
Run Date : September 23, 2003		By:
Run Time : 2:43:26 PM		Checked:
Duration : 00.00.02		· · ·
	Case Tille: Cs-137 Soil	
	Description: Model for Scanning	
	Genmetry: 8 - Cylinder Volume - End Shields	

_	Source	Dimension	5		
Heig	ht 15	15.24 cm			
Radi	13 2	28.0 cm			
	Do	se Points			
A	X	Y	Z	Z	
#1	0 cm	25.4 cm	0 cm	1	
	0.0 in	10.0 in	<u> </u>		
	S	hields		-	
Shield Name	Dimension	Materi	al De	ensily	
rce	3.75e+04	cm ² Concre	te 1.6		

Air

0.00122

Source Input Grouping Method : Actual Photon Energies

Source

Air Gap

Nuclide	cuies	becquerels	μCi/cm ³	Bq/cm ²
Ba-137m	5.6815e-008	2.1022c+003	1.5136e-006	5 6003e-002
Cs-137	6.0058e-008	2.2221e+003	1.6000e-006	5.9200e-002

Buildup The material reference is : Source

Integration Parameters

Radial	50
Circumferential	50
Y Direction (axial)	50

Results

			1 1001110		
Energy MeV	Activity photons/sec	Fluence Rate MeV/cm ² /sec No Buildup	Fluence Rate MeV/cmf/sec With Buildup	Exposure Rate mR/Ivr No Buildup	Exposure Rate mR/hr With Buildup
0.0318	4.3520+01	7.617e-06	9.220e-06	6.345e 08	7.680e-08
0.0322	8 030+01	1.465e-05	1.784e-05	1.179e-07	1.436e-07
0.0364	2.922e+01	8.118e-06	1.060e-05	4.613e-08	6.024e-08
0.6616	1.892e+03	7.060æ02	1.260e-01	1.369 e -04	2.443e-04
TOTALS:	2.045e+03	7.063e-02	1.261e-01	1.371e-04	2.446e-04

Attachment 5-1 E900-05-014

,

LEFT INTENTIONALLY BLANK

:

.

Attachment 6-1 E900-05-014

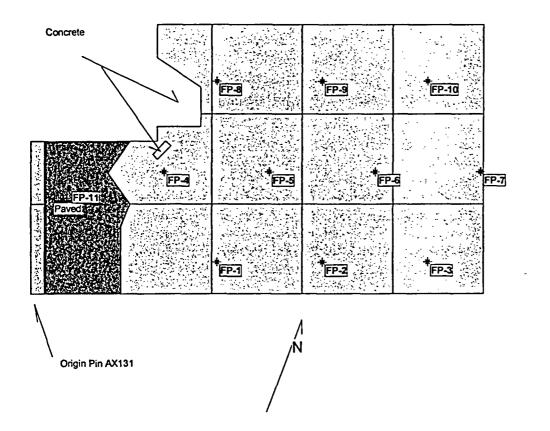
.

•

LEFT INTENTIONALLY BLANK

.

•


.

.

Attachment 6-2 E900-05-014

.

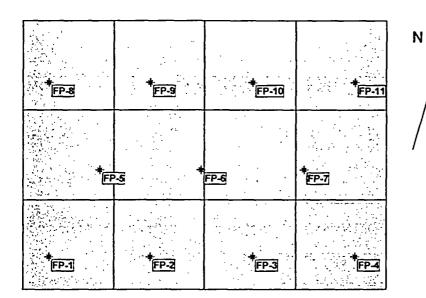
Attachment 6-3 E900-05-014

OL1-9 Fixed point Dimensions in METERS

X Coord	Y Coord	Label	Grid	Туре	East	North
20.63	3.52	FP-1	AX129	Systematic	0.6	3.5
32.27	3.52	FP-2	AX128	Systematic	2.3	3.5
43.91	3.52	FP-3	AX127	Systematic	3.9	3.5
14.81	13.60	FP-4	AY130	Systematic	· 4.8	3.6
26.45	13.60	FP-5	AY129	Systematic	6.5	3.6
38.09	13.60	FP-6	AY128	Systematic	8.1	3.6
49.73	13.60	FP-7	AY127	Systematic	9.7	3.6
20.63	23.68	FP-8	AZ129	Systematic	0.6	3.7
32.27	23.68	FP-9	AZ128	Systematic	2.3	3.7
43.91	23.68	FP-10	AZ127	Systematic	3.9	3.7
4.27	11.72	FP-11	AY131	Systematic	4.3	1.7

OL1-9 Fixed point Dimensions in FEET

X Coord	Y Coord	Label	Grid	Туре	East	North
67.67	11.55	FP-1	AX129	Systematic	2.1	11.5
105.85	11.55	FP-2	AX128	Systematic	7.5	11.5
144.03	11.55	FP-3	AX127	Systematic	12.8	11.5
48.59	44.61	FP-4	AY130	Systematic	15.8	11.8
86.76	44.61	FP-5	AY129	Systematic	21.2	11.8
124.94	44.61	FP-6	AY128	Systematic	26.5	11.8
163.11	44.61	FP-7	AY127	Systematic	31.9	11.8
67.67	77.67	FP-8	AZ129	Systematic	2.1	12.1
105.85	77.67	FP-9	AZ128	Systematic	7.5	12.1
144.03	77.67	FP-10	AZ127	Systematic	12.8	12.1
14.00	38.44	FP-11	AY131	Systematic	14.0	5.6


Xcoord and Ycoord values are from the origin pin AX131 East and North are from each grid ID pin

.

Attachment 6-4 E900-05-014 .

· · · · · · ·

Origin Pin AX126

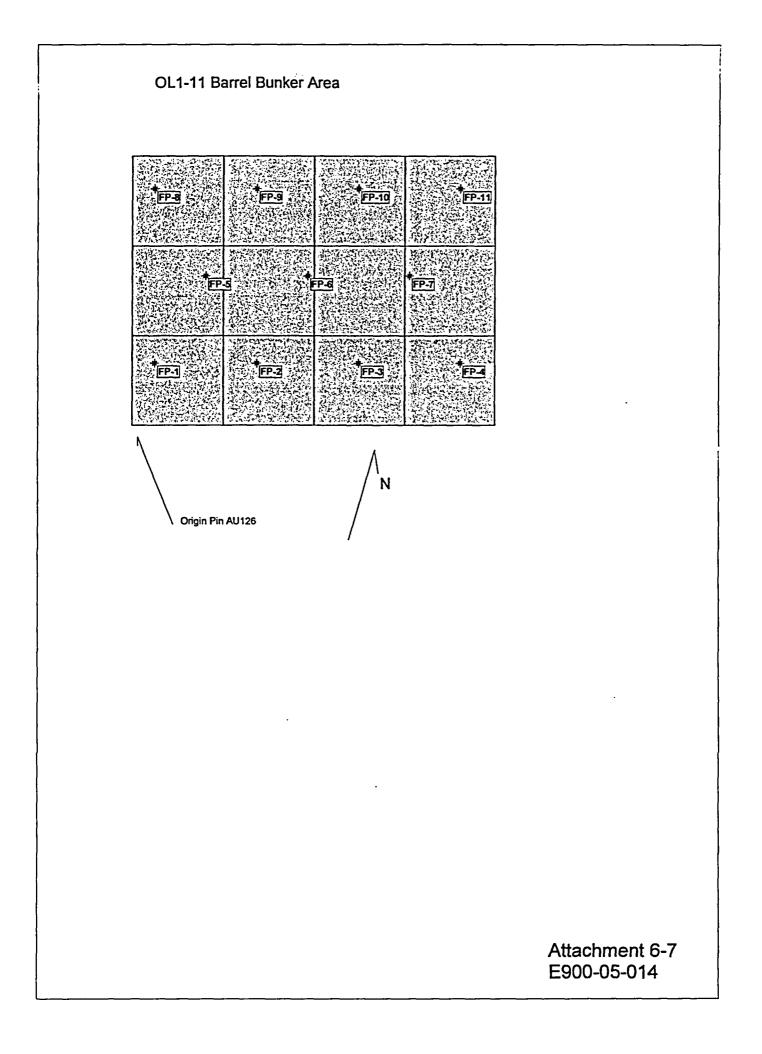
Attachment 6-5 E900-05-014

OL1-10 Fixed point Dimensions in METERS

	•					
X Coord	Y Coord	Label	GRID	Туре	East	North
2.87	3.64	FP-1	AX126	Systematic	2.87	3.64
14.09	3.64	FP-2	Ax125	Systematic	4.09	3.64
25.32	3.64	FP-3	Ax124	Systematic	5.32	3.64
36.54	3.64	FP-4	Ax123	Systematic	6.54	3.64
8.48	13.36	FP-5	AY126	Systematic	8.48	3.36
19.70	13.36	FP-6	AY125	Systematic	9.70	3.36
30.93	13.36	FP-7	AY123	Systematic	0.93	3.36
2.87	23.08	FP-8	AZ126	Systematic	2.87	3.08
14.09	23.08	FP-9	AZ125	Systematic	4.09	3.08
25.32	23.08	FP-10	AZ124	Systematic	5.32	3.08
36.54	23.08	FP-11	AZ123	Systematic	6.54	3.08

OI 1-10) Fixed p	oint Dim	ensior	ns in FEET	г	
X Coord	Y Coord	Label	GRID	Туре	East	North
9.41	11.95	FP-01	AX126	Systematic	9.4	12.0
46.22	11.95	FP-02	Ax125	Systematic	13.4	12.0
83.04	11.95	FP-03	Ax124	Systematic	17.4	12.0
119.85	11.95	FP-04	Ax123	Systematic	21.4	12.0
27.82	43.83	FP-05	AY126	Systematic	27.8	11.0
64.63	43.83	FP-06	AY125	Systematic	31.8	11.0
101.44	43.83	FP-07	AY123	Systematic	3.0	11.0
9.41	75.71	FP-08	AZ126	Systematic	9.4	10.1
46.22	75.71	FP-09	AZ125	Systematic	13.4	10.1
83.04	75.71	FP-10	AZ124	Systematic	17.4	10.1
119.85	75.71	FP-11	AZ123	Systematic	21.4	10.1

.


Xcoord and Ycoord values are from the origin pin AX126 East and North are from each grid ID pin

.

Attachment 6-6 E900-05-014

-

-

OL1-11 sample dimensions in METERS

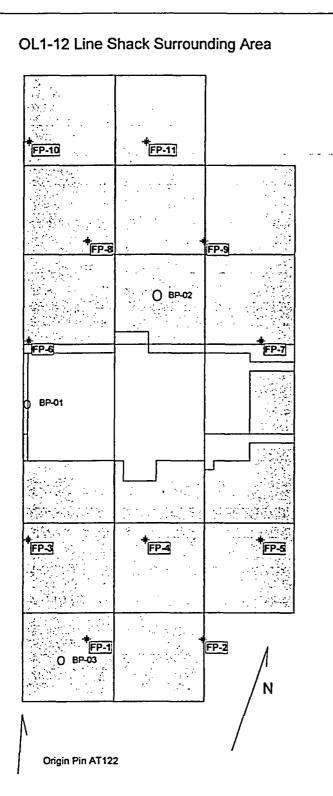
X Coord	Y Coord	Label	Grid	Туре	East	North	
2.50	6.95	FP-1	AU126	Systematic	2.5	7.0	
13.72	6.95	FP-2	AU125	Systematic	3.7	7.0	
24.95	6.95	FP-3	AU124	Systematic	4.9	7.0	
36.17	6.95	FP-4	AU123	Systematic	6.2	7.0	
8.11	16.67	FP-5	AV126	Systematic	8.1	6.7	
19.33	16.67	FP-6	AV125	Systematic	9.3	6.7	
30.56	16.67	FP-7	AV123	Systematic	0.6	6.7	
2.50	26.39	FP-8	AW126	Systematic	2.5	6.4	
13.72	26.39	FP-9	AW125	Systematic	3.7	6.4	
24.95	26.39	FP-10	AW124	Systematic	4.9	6.4	
36.17	26.39	FP-11	AW123	Systematic	6.2	6.4	

OL1-11 Fixed point Dimensions in FEET

X Coord	Y Coord	Label	Grid	Туре	East	North
8.20	22.80	FP-1	AU126	Systematic	8.2	22.8
45.01	22.80	FP-2	AU125	Systematic	12.2	22.8
81.82	22.80	FP-3	AU124	Systematic	16.2	22.8
118.64	22.80	FP-4	AU123	Systematic	20.2	22.8
26.60	54.68	FP-5	AV126	Systematic	26.6	21.9
63.42	54.68	FP-6	AV125	Systematic	30.6	21.9
100.23	54.68	FP-7	AV123	Systematic	1.8	21.9
8.20	86.56	FP-8	AW126	Systematic	8.2	21.0
45.01	86.56	FP-9	AW125	Systematic	12.2	21.0
81.82	86.56	FP-10	AW124	Systematic	16.2	21.0
118.64	86.56	FP-11	AW123	Systematic	20.2	21.0

Xcoord and Ycoord values are from the origin pin AU126 East and North are from each grid ID pin

•


Attachment 6-8 E900-05-014

•

....

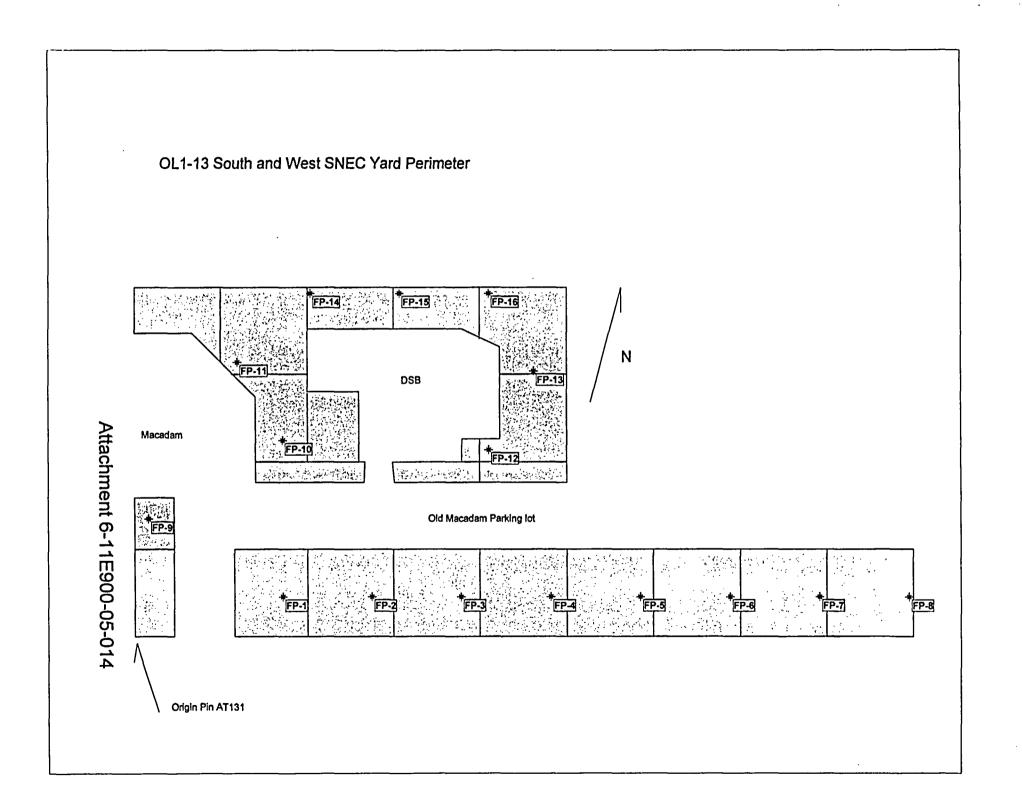
.

Attachment 6-9 E900-05-014

OL1-12 Fixed p	point Dimensions	in METERS
----------------	------------------	-----------

	i ince pe		011010110			
X Coord	Y Coord	Label	Grid	Туре	East	North
7.03	7.00	FP-1	AT122	Systematic	7.0	7.0
19.87	7.00	FP-2	AT121	Systematic	9.9	7.0
0.60	18.12	FP-3	AU122	Systematic	0.6	8.1
13.45	18.12	FP-4	AU121	Systematic	3.4	8.1
26.29	18.12	FP-5	AU120	Systematic	6.3	8.1
0.60	40.37	FP-6	AX122	Systematic	0.6	0.4
26.29	40.37	FP-7	AX120	Systematic	6.3	0.4
7.03	51.50	FP-8	AY122	Systematic	7.0	1.5
19.87	51.50	FP-9	AY121	Systematic	9.9	1.5
0.60	62.62	FP-10	AZ122	Systematic	0.6	2.6
13.45	62.62	FP-11	AZ121	Systematic	3.4	2.6
0.40	34.00	BP-01	AW122	Biased	0.4	4
15.00	45.00	BP-02	AX121	Biased	5	5
5.00	5.00	BP-03	AT122	Biased	5	5

OL1-12 Fixed point Dimensions in FEET


X Coord	Y Coord	Label	Grid	Туре	East	North
23.05	22.96	FP-1	AT122	Systematic	23.0	23.0
65.18	22.96	FP-2	AT121	Systematic	32.4	23.0
1.98	59.45	FP-3	AU122	Systematic	2.0	26.6
44.11	59.45	FP-4	AU121	Systematic	11.3	26.6
86.25	59.45	FP-5	AU120	Systematic	20.6	26.6
1.98	132.42	FP-6	AX122	Systematic	2.0	1.2
86.25	132.42	FP-7	AX120	Systematic	20.6	1.2
23.05	168.91	FP-8	AY122	Systematic	23.0	4.9
65.18	168.91	FP-9	AY121	Systematic	32.4	4.9
1.98	205.40	FP-10	AZ122	Systematic	2.0	8.6
44.11	205.40	FP-11	AZ121	Systematic	11.3	8.6
1.31	111.52	BP-01	AW122	Biased	1.3	13.1
49.20	147.60	BP-02	AX121	Biased	16.4	16.4
16.40	16.40	BP-03	AT122	Biased	16.4	16.4

Xcoord and Ycoord values are from the origin pin AT122 East and North are from each grid ID pin

.

Attachment 6-10 E900-05-014 ----

- - - -

OL1-13 Fi	ixed point Di	mensions in	METERS
-----------	---------------	-------------	--------

:

X Coord	Y Coord	Label	Grid	Туре	East	North
17.10	4.53	FP-1	AT130	Systematic	7.1	4.5
27.44	4.53	FP-2	AT129	Systematic	7.4	4.5
37.78	4.53	FP-3	AT128	Systematic	7.8	4.5
48.12	4.53	FP-4	AT127	Systematic	8.1	4.5
58.46	4.53	FP-5	AT126	Systematic	8.5	4.5
68.80	4.53	FP-6	AT125	Systematic	8.8	4.5
79.14	4.53	FP-7	AT124	Systematic	9.1	4.5
89.48	4.53	FP-8	AT123	Systematic	9.5	4.5
1.59	13.48	FP-9	AU131	Systematic	1.6	3.5
17.10	22.43	FP-10	AV130	Systematic	7.1	2.4
11.93	31.39	FP-11	AW130	Systematic	1.9	1.4
41.04	21.37	FP-12	AV127	Systematic	1.0	1.4
46.21	30.32	FP-13	AW127	Systematic	6.2	0.3
20.36	39.28	FP-14	AW129	Systematic	0.4	9.3
30.70	39.28	FP-15	AW128	Systematic	0.7	9.3
41.04	39.28	FP-16	AW127	Systematic	1.0	9.3

OL1-13 Fixed point Dimensions in FEET

X Coord	Y Coord	Label	Grid	Туре	East	North
56.09	14.84	FP-1	AT130	Systematic	23.3	14.8
90.00	14.84	FP-2	AT129	Systematic	24.4	14.8
123.92	14.84	FP-3	AT128	Systematic	25.5	14.8
157.83	14.84	FP-4	AT127	Systematic	26.6	14.8
191.75	14.84	FP-5	AT126	Systematic	27.7	14.8 .
225.66	14.84	FP-6	AT125	Systematic	28.9	14.8
259.58	14.84	FP-7	AT124	Systematic	30.0	14.8
293.49	14.84	FP-8	AT123	Systematic	31.1	14.8
5.21	44.22	FP-9	AU131	Systematic	5.2	11.4
56.09	73.59	FP-10	AV130	Systematic	23.3	8.0
39.13	102.96	FP-11	AW130	Systematic	6.3	4.6
134.60	70.09	FP-12	AV127	Systematic	3.4	4.5
151.56	99.46	FP-13	AW127	Systematic	20.4	1.1
66.77	128.83	FP-14	AW129	Systematic	1.2	30.4
100.68	128.83	FP-15	AW128	Systematic	2.3	30.4
134.60	128.83	FP-16	AW127	Systematic	3.4	30.4

Xcoord and Ycoord values are from the origin pin AT131 East and North are from each grid ID pin

.

Attachment 6-12 E900-05-014

·

Site Summary

Site Name: SSGS and SNEC Open land

Planner(s): WJCooper

Contaminant Summary

NOTE: Surface soil DCGLw units are pCi/g. Building surface DCGLw units are dpm/100 cm².

Contaminant	Туре	DCGLw	Screening Value Used?	Area (m²)	Area Factor
Cs-137	Surface Soil	4.30	No	400	3
				100	3.6
				25	4.7
				1	28.7

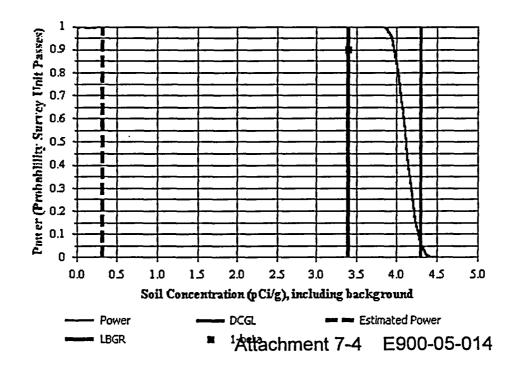
Contaminant Summary SSGS and SNEC Open Land OL1

Contaminant	DCGLw (pCl/g)	Inferred Contaminant	Ratio	Modified DCGLw (pCl/g)	Scan MDC (pCl/g)
Cs-137	4.30	N/A	N/A	N/A	6.2
Contaminant		Survey Unit Estimate (Mean ± 1-Sigma) (pCl/g)		Reference Area Esti (Mean ± 1-Sigma (pCl/g)	
Cs-137		0.32 ± 0.3	-	N/A	

LEFT INTENTIONALLY BLANK

.

Attachment 7-3 E900-05-014



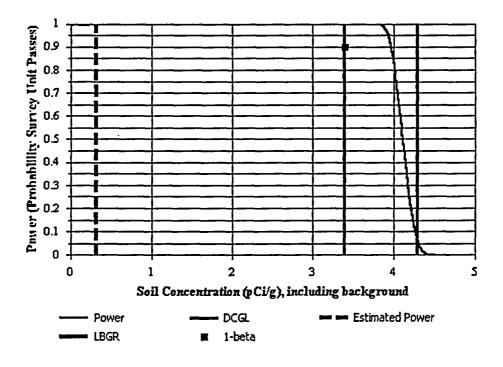
.

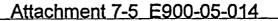
Survey Plan Summary

Site:	SSGS and SNEC Open land		
Planner(s):	WJCooper		
Survey Unit Name:	Open Land ARea CV OL1-9		
Comments:			
Area (m²):	-1,500 1290 Sign 247,3/05-	Classification:	1
Selected Test:	Sign 47,3/05	Estimated Sigma (pCi/g):	0.3
DCGL (pCi/g):	4.30	Sample Size (N):	11
LBGR (pCi/g):	3.4	Estimated Conc. (pCi/g):	0.3
Alpha:	0.050	Estimated Power:	1
Beta:	0.100	EMC Sample Size (N):	11
Scanning Instrumenta	tion: Nal		

Prospective Power Curve

-- -


·• ·•

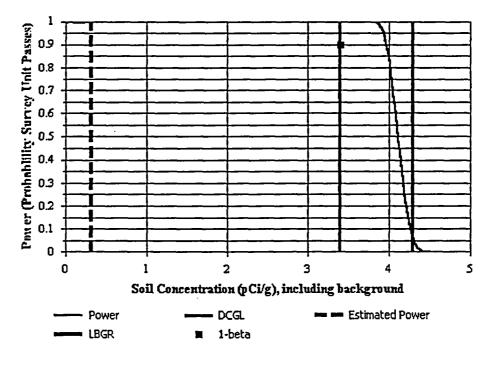

- --

Survey Plan Summary

Site:	SSGS and SN	IEC Open land		
Planner(s):	WJCooper			
Survey Unit Name:	SNEC Yard E	xcavation After I	Backfill OL1-10	
Comments:				
Area (m²):	1,200		Classification:	1
Selected Test:	Sign		Estimated Sigma (pCi/g):	0.3
DCGL (pCi/g):	4.30		Sample Size (N):	11
LBGR (pCi/g):	3.4		Estimated Conc. (pCi/g):	0.3
Alpha:	0.050		Estimated Power:	1
Beta:	0.100		EMC Sample Size (N):	11
Scanning Instrumenta	tion:	Nal		

Prospective Power Curve

. --- -



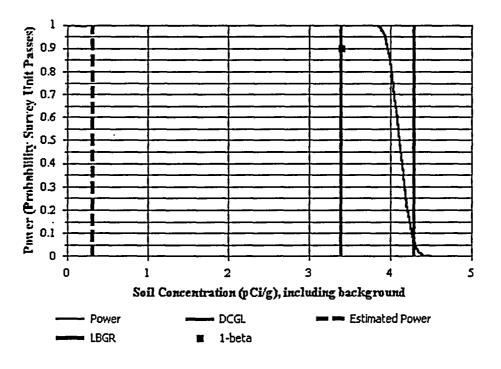
Survey Plan Summary

Site:	SSGS and SNEC Open land	1	
Planner(s):	WJCooper		
Survey Unit Name:	Barrrel Bunker Area OL1-11		
Comments:			
Area (m²):	4,500 1200 22 4/11/05	Classification:	1
Selected Test:	Sign	Estimated Sigma (pCi/g):	0.3
DCGL (pCi/g):	4.30	Sample Size (N):	11
LBGR (pCi/g):	3.4	Estimated Conc. (pCi/g):	0.3
Alpha:	0.050	Estimated Power:	1
Beta:	0.100	EMC Sample Size (N):	11
Scanning Instrumenta	tion: Nal		

Prospective Power Curve

٠.

Attachment 7-6 E900-05-014


~ - - -

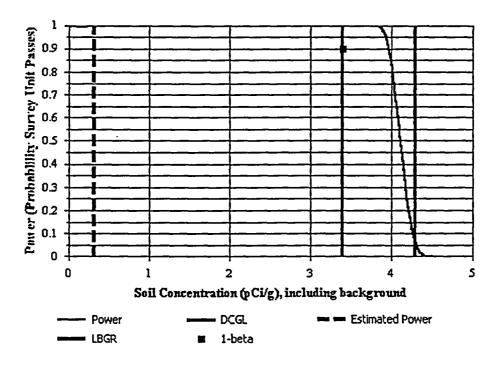
Survey Plan Summary

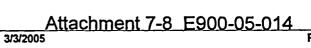
Site:	SSGS and SNEC Open land		
Planner(s):	WJCooper		
Survey Unit Name:	Line Shack Surrounding Area	OL1-12	
Comments:	Not including line shack and ra	amp	
Area (m²):	4,550 1575 DR 4/11/05	Classification:	1
Selected Test:	Sign	Estimated Sigma (pCi/g):	0.3
DCGL (pCi/g):	4.30	Sample Size (N):	11
LBGR (pCi/g):	3.4	Estimated Conc. (pCi/g):	0.3
Alpha:	0.050	Estimated Power:	1
Beta:	0.100	EMC Sample Size (N):	11
Scanning Instrumenta	tion: Nal		

Prospective Power Curve

.

Attachment 7-7 E900-05-014


Survey Plan Summary


Site:	SSGS and SNEC Open land		
Planner(s):	WJCooper		
Survey Unit Name:	South and West SNEC Yard F	Perimeter OL1-13	
Comments:			
Area (m²):	1,300 1400 7 × y (4/05	Classification:	1
Selected Test:	Sign	Estimated Sigma (pCi/g):	0.3
DCGL (pCi/g):	4.30	Sample Size (N):	11
LBGR (pCi/g):	3.4	Estimated Conc. (pCi/g):	0.3
Alpha:	0.050	Estimated Power:	1
Beta:	0.100	EMC Sample Size (N):	11
Scanning Instrumenta	tion: Nal		

Prospective Power Curve

•

•,

Grid Cs137p(://m Date					
Mean	0.32	22414/05			
Std Dev	0.30	51910			
AT125	0.00	1 2/14/2004			
AT125	0.10	12/14/2004			
AT120	0.3	12/13/2004			
AT124	0.42	12/13/2004			
AT123	0.82	12/13/2004			
AT123	0.8	12/13/2004			
AT122	0.07	12/14/2004			
AT122	0.1	12/14/2004			
AU125	0.13	12/14/2004			
AU125	0.14	12/14/2004			
AU124	0.4	12/14/2004			
AU124	0.4	12/14/2004			
AU123	0.3	12/14/2004			
AU123	0.5	12/14/2004			
AU122	0.34	12/14/2004			
AU122	0.84	12/14/2004			
' AV122	0.55	12/13/2004			
AV122	0.16	12/13/2004			
AW123	0.13	12/14/2004			
AW123	0.16	12/14/2004			
AW123	0.13	12/14/2004			
AW122	0.9	12/13/2004			
AW120	0.33	1/26/2005			
AX131	0.15	9/21/2004			
AX131	0.13 0.3	9/21/2004			
AX130 AX130	0.3	4/22/2004 4/22/2004			
AX130 AX130	0.13	4/22/2004			
AX130	0.15	4/22/2004			
AX130	0.0	4/22/2004			
AX129	0.4	4/22/2004			
AX129	0.08	4/27/2004			
AX129	0.1	4/27/2004			
AX129	0.35	4/27/2004			
AX128	0.08	4/26/2004			
AX128	0.2	4/26/2004			
AX128	0.08	4/26/2004			
AX128	0.17	4/26/2004			
Ax126	0.56	1/5/2005			
Ax126	0.09	1/5/2005			
AX124	0.06	1/4/2005			
AX124	0.06	1/4/2005			
AZ122	0.22	10/20/2004			
AZ122	0.2	10/20/2004			
AZ122	0.36	1/12/2005			
	-				

• • •

Attachment 8-1 E900-05-014

	. 1376		
buil	ple/gen	Dete	WEIHINT
AZ122	0.24	1/12/2005	Recent OL1 soil results (con't)
AZ122	0.13	1/12/2005	· · ·
AZ122	0.34	1/12/2005	
AZ122	0.2	1/12/2005	
AZ121	0.5	10/20/2004	
AZ121	0.15	10/20/2004	
AZ121	0.28	1/12/2005	
AZ121	0.1	1/12/2005	
AZ121	0.08	1/12/2005	
AZ121	0.08	1/12/2005	
AZ121	0.09	1/12/2005	
AU121	0.15	1/26/2005	
AU121	0.6	1/26/2005	
AT121	0.24	1/26/2005	
AT121	0.15	1/26/2005	
AU120	0.4	1/26/2005	
AU120	0.23	1/26/2005	
AV121	0.66	1/26/2005	
AV121	1.8	1/26/2005	
AV120	0.66	1/26/2005	
AV120	0.3	1/26/2005	
AW121	1	1/26/2005	
AW121	0.9	1/26/2005	
AW120	0.14	1/26/2005	Attachment 8-2

.

•

.

Attachment 8-2 E900-05-014

.

.

-

Location	Date t.u		countrine ?	514/05
7 EYENORTH	3/8/05 14:31 3/8/05 14:33	4 176	60 SCL	
9 EYESOUTH	3/8/05 14:35	4 179	60 SCL 60 SCL	
10 EYEEAST 11 FENCEEAST	3/8/05 14:37 3/8/05 14:38	4 144	60 SCL	
12 FENCENORTH 13 LSHAKSOUTH	3/8/05 14:41 3/8/05 14:41	4 100	60 SCL 60 SCL	
14 LSHAKEAST	3/8/05 14:02	4 90	60 SCL	
15 LSHAKNORTH 18 LSHAKBEER WES	- 0.00.05 44.55	4 435	60 SCL	
18 SSGSWEST	3/8/05	4 154 4 207		
19 SSGSSOUTH 20 SSGSEAST	3/8/05 15:00 3/8/05 15:10	4 137 174	60 SCL 60 SCL	
	• • • • • • • •	•		

.

:

Attachment 8-3 E900-05-014

				Exhibit 1 Survey Unit Inspection Check Si	GRIGI	NAL	•	
		SE	ECTION 1	- SURVEY UNIT INSPECTIO				
Survey	Unit #	OL-1 (La	ind)	Survey Unit Location	CV & SSGS Footpri	nts / CV	Yard	
Date	4-18-05	Time	1500	Inspection Team Members	R. Sh	epherd		
	fil of the		SECTIO	ON 2 - SURVEY UNIT INSPEC	TION SCOPE			
	Inspe	ction Requ	uirements	(Check the appropriate Yes/N	lo answer.)	Yes	No	N/A
1. Hav	e sufficient surv	reys (i.e., po	st remediati	on, characterization, etc.) been obtain	ed for the survey unit?	X		
2. Dot	he surveys (fro	m Question	1) demonstr	ate that the survey unit will most likely	pass the FSS?	X		
3. Is th	e physical work	(i.e., remed	liation & hou	usekeeping) in or around the survey u	nit complete?		X	
4. Hav	e all tools, non-	permanent e	quipment, a	and material not needed to perform the	e FSS been removed?		X	
5. Are	the survey surfa	ces relative	ly free of loc	ose debris (i.e., dirt, concrete dust, me	tal filings, etc.)?			x
6. Are	the survey surfa	aces relative	ly free of liq	uids (i.e., water, moisture, oil, etc.)?		X		
7. Are	the survey surfa	aces free of a	all paint, wh	ich has the potential to shield radiation	1?			X
8. Hav	e the Surface N	leasurement	Test Areas	(SMTA) been established? (Refer to	Exhibit 2 for instructions.)			X
9. Haw	e the Surface N	leasurement	Test Areas	(SMTA) data been collected? (Refer	to Exhibit 2 for instructions.)			X
10. Are 1	he survey surfa	eces easily a	ccessible?	(No scaffolding, high reach, etc. is nee	eded to perform the FSS)	X		
11. Is lig	hting adequate	to perform t	he FSS?					X
12. lsth	e area Industria	illy safe to pe	erform the F	SS? (Evaluate potential fall & trip haz	ards, confined spaces, etc.)	X		
13. Haw	e photographs t	been taken s	howing the	overall condition of the area?		x		
14. Hav	e all unsatisfact	ory condition	ns been res	olved?			X	
responsib	a "No" answer le site departm necessary.	is obtained ent, as appli	above, the cable. Doc	inspector should immediately correct ument actions taken and/or justification	t the problem or initiate con ons in the "Comments" sectio	ective action helow. A	ons throu utach ad	ugh the ditional
are mat	3 and 4 - S	and equi	pment st	rt piles cover the majority of the ored within the survey unit so fied.				
ltem # 1 hazard.	12 - Several	grids and	grid port	ions are located inside the swi	itchyard fence presenti	ng poten	tial <u>e</u> le	ctrical
ltem # 1	3 - Photogra	aphs of the	e survey i	unit were taken to show prese	nt existing conditions.			
Attachment 9-1 E900-05-014								
Survey	Unit Inspect	or (print/si	gn) R. 9	Shepherd Rockerstu		Date	4/19)/05
·	Designer (p		W. Coo			Date	4/201	105-
			1				<u> </u>	• •

• •.

• -

- -

•

•

•