Appendix A

:

Survey Design

.

-

ORIGINAL

	···· <u>-</u>	· · · · · · · · · · · · · · · · · · ·				
SNEC CALCULATION COVER SHEET						
CALCULATION DESCRIPTION						
Calculation Number		Revision Number	Effective Date	P	age Numbe	<u>بر الم</u>
E900-05-015		0	5/10/05	-	1 of	F 11
Subject		• <u>•</u> · <u>•</u> · <u>•</u> · · · · · · · · · · · · · · · · · · ·				
OL1 Paved and Miscellaneo	us concrete surf	aces MA8, PF1, DB5,	DB1 - Survey Des	ign		
Question 1 - Is this calculation de	fined as "In QA Sco	pe"? Refer to definition 3	3.5. Yes 🛛 No	I.		
Question 2 - Is this calculation de	fined as a "Design (Calculation"? Refer to de	finitions 3.2 and 3.3.	Yes 🛛	No 🗖	
NOTES: If a "Yes" answer is obtained Assurance Plan. If a "Yes" answer calculation as the Technical Reviewer	is obtained for Que	alculation must meet the req estion 2, the Calculation O	uirements of the SNEC F riginator's immediate su	Facility Dec Ipervisor s	commission hould not	ing Quality review the
· · · · · · · · · · · · · · · · · · ·	DESCI	RIPTION OF REVI	SION			
	APPF	ROVAL SIGNATUR	RES			
Calculation Originator	W. J. Cooper	CHPL		Date	4/27	2/05
Technical Reviewer	R. Holmes/	Ryban	>	Date	5/4	105
Additional Review	A. Paynter/	WHICE		Date	4 Ma	2005 y
Additional Review				Date		

· · · ·

• • • • • •

FirstEnergy	SNEC CALCULATION SHEET			
Calculation Number	Revision Number	Page Number		
E900-05-015	0	Page 2 of 11		
Subject	<u> </u>			

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1 - Survey Design

1.0 PURPOSE

- 1.1 The purpose of this calculation is to develop a survey design for the residual concrete surfaces in the Saxton Nuclear Experimental Corporation SNEC and SSGS site areas. The total area (OL1) including the soil and solid surface portions is approximately <u>11600 square meters</u>. Portions of the solid surface (concrete, macadam, brick) are Class1 and Class 2 survey areas. Because the survey area exceeds the size limitations in the SNEC LTP (Reference 3.5) Table 5-5 for maximum class 1 survey unit area, this survey area is subdivided into multiple survey units: OL1-7 is an existing excavation in the SNEC site area, that will be backfilled after survey. OL1-8 through OL1-13 are subdivisions of the large open land area and comprise the majority of the total surface area. These open land areas and the excavation are covered by other design calculations. Several additional areas comprise the residual exposed concrete and macadam surfaces:
 - 1.1.1 PF1 is a pre-existing Class 1 survey unit for the PAF floor and includes the north edge of the PF1 portion of the slab- 37 m^2
 - 1.1.2 DB1 is a pre-existing Class 1 survey area for the DSB floorpad and door ramp. This area is further divided into two survey units due to LTP survey unit area limitations. DB1-1(85 m²) and DB1-2 (109 m²) **194 m²** total. DB1-1 includes the full width of the north edge of the DSB portion of the pad.
 - 1.1.3 DB5 is a pre-existing Class 1 survey unit for the DSB carport floor 54 m²
 - 1.1.4 SS12 is a pre-existing survey area for the SSGS boiler pad. This concrete, although it is in a Class 1 soil area, is classified as Class 3 in the LTP Table 5-2. This area is not included in this design, but will be covered in a separate design due to the current presence of a large 'PRI pile' in the survey unit.
 - 1.1.5 MA8-6 through 13, 16, and 17: Ten survey units of the old parking lot and driveway macadam. Because of the 100 m² survey unit limitation for class 1 surfaces, the surface was subdivided into ten approximately 100 m² (or less) survey units. The pavement occupies all of, or a large portion of, grids AT131, AU127, AU128, AU129, AU130, AU131, AV130, AV131, AW131, AX131, AY131. These are all class 1 survey units due to verbal reports of minor remediation and due to their proximity to the C&A building, the barrel bunker, and containment. Total area is about 772 m². General arrangement of these units is shown in the drawing Attachment 6-17.
 - 1.1.6 MA8-16 and MA8-17 have about 4 to 6 inches of soil on top of the pavement. This soil is to be surveyed per E900-05-014 and then removed and placed in a PRI pile to allow the pavement survey per this design.
 - 1.1.7 MA8-14 the Line Shack concrete including garage door ramps and sidewalks. This area is not specifically classified in the SNEC LTP (**Reference 3.5**) but is selected to be class 2 consistent with the class 3 classification of the line shack exterior and the class 1 assigned to the surrounding soil. This is a Class 2 survey unit with about 33 m² total area.
 - 1.1.8 MA8-15 is additional concrete surfaces around the CV. There is some SSGS concrete and additional small monoliths in OL1-9 NW of the CV. This small concrete area is not specifically addressed in the SNEC LTP but is assumed to be Class 1 due to proximity to the CV and is about **37** m².
 - 1.1.9 A summary list of survey unit areas is included as Attachment 5-1.

FirstEnergy	SNEC CALCULATION SHEET				
Calculation Number	Revision Number	Page Number			
E900-05-015	0	Page 3 of 11			
Subject		<u></u>			

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1 - Survey Design

1.2 This survey design applies only to the residual concrete, macadam, and other paved surfaces in the survey area. The design for the open land areas, fences, the east yard excavation, and the portion of OL1 covering the SSGS will be provided in separate calculations. The general layout of this survey unit is shown on **Attachment 1-1**.

2.0 SUMMARY OF RESULTS

The following information should be used to develop a survey request for this survey unit. The effective DCGLw value is listed below. This value is derived from previously approved derived values for "CV Yard Soil and Boulders", Attachment 2 in SNEC calculation E900-04-005 (Reference 3.15). The US NRC has reviewed and concurred with the methodology used to derive these values. See Attachment 2-1 and Reference 3.9.

Table 1, DCGLw Values

Gross Activity DCGLw (dpm/100 cm²) 26445 (19834 A.L.)

NOTE: A.L. is the site Administrative Limit (75% of effective DCGLw)

- 2.1 Survey Design
 - 2.1.1 Scanning of concrete and macadam surfaces shall be performed using a <u>L2350</u> <u>with 43-68B large area gas flow proportional counter</u> calibrated to Cs-137 (see typical calibration information on Attachment 3-1).
 - 2.1.2 The instrument conversion factor/efficiency (Et) shall not be less than that assumed on Attachment 3-1 as <u>23.9% Cs-137</u>.
 - 2.1.3 Other instruments of the type specified in Section 2.1.1 above may be used during the final status survey (FSS), but must demonstrate detection efficiencies at or above the value listed in Section 2.1.2 above.
 - 2.1.4 An efficiency correction factor (ECF) is applied to compensate for efficiency loss when surveying rough surfaces based on **Reference 3.1** and **Attachment 2-2**.
 - 2.1.5 The fraction of detectable beta emitting activity affects the efficiency and is determined by the nuclide mix. The mix detectable beta fraction is determined to be 60% based on **Reference 3.15**. Because the adjusted DCGLw used is based only on the modified Cs-137 DCGLw, the mix percentage is not applied to the adjusted surrogate DCGLw. The gross activity DCGLw, which would include all the low energy activity and would require mix percentage adjustment is considerable higher, at 44434 dpm 100cm2. The Cs-137 adjusted surrogate activity already accounts for the detectable beta yield of the mix.
 - 2.1.6 The ECF is derived from Attachment 2-2 and Reference 3.10 based on a surface irregularity of 3 inches or less. This is conservative, as actual observed irregularity is typically less than one inch. Also, the loss of efficiency is based on moving the detector away from a 150 cm² source. If the area of the residual activity is larger, than the efficiency loss would be smaller due to the increase in 'field-of-view' of the detector.

FratEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-015	0	Page 4 of 11
Subject		l
OL1 Paved and Misc. con	crete surfaces MA8, PF1, DB5, DB1 - Survey	Design

2.1.7 Because the alarm point and MDCscan are based on the highly conservative surface irregularity of 3 inches (intended to bound all cases to simplify design and performance of the survey), where surfaces are much smoother (e.g. 1 inch irregularity or less per probe area) than this 3 inch variability, short (e.g. ½ to 1 inch) standoff support pegs may be attached to the 43-68 in order to reduce the possibility of mylar damage. These standoffs must only be used when the surface smoothness is well within the assumed 3 inch variability. Because the high surface irregularity is assumed and used for the efficiency of the instrument for the entire design, this standoff will not affect the assumed efficiency if limited as discussed above.

Table 2, GFPC Detection Efficiency Results Used for Planning

Material Type	Ei	Es	Et(as %)	ECF	Adjusted efficiency
Concrete	.478	.5	23.9	.2	4.8%

Table 3, Surface Scanning Parameters for Solid Misc. Concrete Sections

MDCscan (dpm/100cm ²)*	Scan Speed (cm/sec)	Maximum Distance from Surface	DCGLw Action Level	% Coverage
4634	10	1" (gap between detector face & surface)	> 1450 cpm	100%

See Attachment 2-1, 2-2, and 4-1 for calculations*

- 2.1.8 This MDCscan (shown in Attachment 4-1) is based on a 300 cpm background. Typical backgrounds are similar to this value assumed, as shown in the variability data shown as "CW" (closed window or shielded detector) in Attachment 8-2. Unaffected material backgrounds were determined at the Williamsburg station, which resulted in a mean background value of 306 cpm +/- 34.5. On 3/7/05, measurements were collected on three different surfaces in OL1: the DSB pad, the old parking lot, and the SSGS boiler pad.
- 2.1.9 The 3/7/05 survey data shown as "OW" (open window or unshielded) is used for the variability assessment for the COMPASS determination of sample requirements and is shown in **Attachment 8-2**.
- 2.1.10 A background of 1300 cpm would still result in MDCscan less than about 50% of the DCGLw (Attachment 4-2). Since the Action level cited in Table 3, above, is total counts per minute including background, if local backgrounds significantly exceed the background count rate assumed for the MDCscan (about 300cpm see Attachment 4-1) <u>contact the cognizant SR coordinator</u> to determine need for additional background count rate adjustments.
- 2.1.11 The scan DCGLw Action Level listed in Table 3 includes 1200 cpm DCGL equivalent count rate from Attachment 4-1 and an estimated 250 cpm background . The DCGLw action level is based on fixed measurement and does not include 'human performance factors' or 'index of sensitivity' factors (see Reference 3.12).

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-015	0	Page 5 of 11
Subject		, · E
OL1 Paved and Misc. con	crete surfaces MA8, PF1, DB5, DB1 - Survey	Design

- 2.1.12 If a total count rate greater than the "DCGLw action level" of Table 3 is encountered during the scanning process, the surveyor should stop and locate the boundary of the elevated area, and then perform a "second phase" fixed point count of at least 30 seconds duration. If the second phase result equals or exceeds the "DCGLw action" level noted in table 3, the surveyor should then mark the elevated area with appropriate marking methods and document the count rate observed and an estimate of the affected area. Subsequent investigation may take the actual surface irregularity into account for the efficiency.
 - 2.1.12.1 <u>Class 1</u> concrete should be scanned to include 100% surface coverage at a scan rate of about 10 cm per second. All accessible surfaces are required to be scanned. See **Attachment 1-1** for grid layout for the survey unit. Areas that cannot be accessed should be clearly noted along with the reason for not completing the scan in that area.
 - 2.1.12.2 <u>Class 2</u> concrete would normally be scanned to include 10% to 50% surface coverage. Only the concrete around the line shack is class 2. Due to the small size of the unit and the distribution of small areas, the unit (MA8-14) will be 100% scanned at a scan rate of about 10 cm per second. Areas that cannot be accessed should be clearly noted along with the reason for not completing the scan in that area.
 - 2.1.12.3 See Attachment 1-1 for grid layout for the survey unit.
 - 2.1.12.4 The surfaces of the concrete or other pavement materials should be clear of debris to ensure detection parameters are not affected.
- 2.1.13 The minimum number of fixed measurement sampling points indicated by the COMPASS computer program (Reference 3.3) is <u>11</u> for each survey unit (see COMPASS output on Attachment 7-1 to 7-5). Fixed point measurements should be IAW Section 2.2. The MDCscan (concrete) is below the effective administrative DCGLw_{Cs-137} (4634 DPM/100cm2 MDCscan @300cpm bkg < 19834 DPM/100cm2 AL).
- 2.1.14 The minimum number of fixed point samples is increased to 13 (18% increase) for survey unit DB1-2 due to the slightly oversized (109 m², 9% over LTP guideline) area of the unit. This oversize is due to the selection of a grid line as the separation point between DB1-1 and DB1-2. Survey Unit DB1-1 is only 85 m². Since both units are class 1, the DSB pad will be 100% scanned regardless of the survey unit separation. Relocation of the arbitrary separation line could make these both equal and <100m² but is not considered to be useful since: separation on a grid line simplifies survey layout, the two units combined are <200 m², and the two units combined have more than the required number of fixed points (26 total vs. 22 required per MARSSIM).
- 2.1.15 One Biased direct measurement point is placed in DB1-1 on the face of the exposed slab. This point should be taken centered vertically on the vertical face at the 128 grid line.

SNEC CALCU	LATION SHEET	
Calculation Number	Revision Number	Page Number

E900-05-015

0

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1 - Survey Design

- 2.1.16 VSP (Reference 3.4) is used to plot all sampling points on the included diagrams. The actual number of random start systematically spaced measurement points may be greater than that required by the COMPASS computer code because of any or all of the following:
 - placement of the initial random starting point (edge effects),
 - odd shaped diagrams, and/or
 - coverage concerns

(see Attachment 6-1 to 6-33 for VSP sampling point locations)

- 2.1.17 Because this design is a conglomerate of multiple slab surfaces into multiple survey units, the sample point locations are not derived from a single starting point. Measurement location details for the sample points are provided in the diagrams in Attachment 6.
- 2.1.18 Some sampling points may need to be adjusted to accommodate obstructions within the survey area. Contact the SR coordinator to report any difficulties encountered when laying out systematic grid sampling points.
- 2.1.19 Because of the unusual arrangement of this survey area, with multiple disjointed slabs that do not correspond directly to single grids, the drawings in Attachment 6 are intended to be as close as practicable to as-left conditions. However, if actual layout is different from that shown, review with the cognizant SR coordinator, finish the survey if practicable, and mark up the drawings to indicate actual layout.
- 2.1.20 When an obstruction is encountered that will not allow collection of a sample, contact the cognizant SR coordinator for permission to delete the sampling point.

NOTE

If remediation actions are taken as a result of this survey, this survey design must be revised or re-written entirely.

- 2.2 Measure concrete fixed point and elevated areas(s) IAW SNEC procedure E900-IMP-4520.04 sec 4.3.3 (Reference 3.2) and the following.
 - 2.2.1 Clearly mark, identify and document all sample locations.
 - 2.3.1 Second phase scan any location that is above the action level cited in Table 3.
 - 2.3.2 Investigation of APs may require surface and sub-surface samples per the LTP section 5.5.3.4.5 (Reference 3.5).

3.0 REFERENCES

- 3.1 SNEC Calculation number 6900-02-028, "GFPC Instrument Efficiency Loss Study"
- 3.2 SNEC Procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".
- 3.3 COMPASS Computer Program, Version 1.0.0, Oak Ridge Institute for Science and Education.
- 3.4 Visual Sample Plan, Version 3.0, Copyright 2004, Battelle Memorial Institute.

FirstEnergy	SNEC CALCUL	ATION SHEET	
Calculation Number		Revision Number	Page Number
E900-05-015		0	Page 7 of 11

Subject

• • • • • • • • •

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1 - Survey Design

- 3.5 SNEC Facility License Termination Plan.
- 3.6 SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA".
- 3.7 SNEC survey GFPC measurements in OL1 dated 3/7/05
- 3.8 GPU Nuclear, SNEC Facility, "Site Area Grid Map", SNECRM-020, Sheet 1, Rev 4, 1/18/05.
- 3.9 SNEC Calculation No. E900-03-012, Effective DCGL Worksheet Verification.
- 3.10 SNEC calculation 6900-02-028 "GFPC Instrument Efficiency Loss Study"
- 3.11 SNEC Procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design".
- 3.12 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.
- 3.13 Microsoft Excel 97, Microsoft Corporation Inc., SR-1 and SR-2, 1985-1997.
- 3.14 (left intentionally blank)
- 3.15 SNEC Calculation E900-04-005 "CV Yard Survey Design North West Side of CV"

4.0 ASSUMPTIONS AND BASIC DATA

- 4.1 The COMPASS computer program is used to calculate the required number of random start systematic samples to be taken in the survey unit (**Reference 3.3**).
- 4.2 Reference background data from offsite at the Williamsburg station were used as the initial estimate of variability. These results are shown on Attachment 8-1 and in Reference 3.15. Additional variance data that is used to assess sampling requirements is derived from the survey, Reference 3.7.
- 4.3 The MARSSIM Sign Test (Reference 3.12) will be applicable for this survey design. No background subtraction will be performed under this criteria during the DQA phase.
- 4.4 The required points chosen by COMPASS are located on the survey map for the survey unit by the Visual Sample Plan (VSP) computer code (**Reference 3.4**).
- 4.5 **Reference 3.5** and **3.6** were used as guidance during the survey design development phase.
- 4.6 Background for the 43-68B detector has been measured in the area, and ranges from about 250 to 300 cpm with averages of slightly less than 300 cpm (Reference 3.7). These recent survey result averages are used as the basis for the MDCscan.
- 4.7 The determination of the physical extent of this area is based on the drawing **Reference 3.8** and a thorough walkdown / measurement of the survey unit.
- 4.8 Remediation History:
- 4.8.1 OL1 is an open land area. Portions contained the original SNEC site facility and the Saxton Steam Generating Station. Extensive remediation has occurred in the survey area. The SNEC Radwaste building (RWDF), Control and Auxiliary (C&A) building, Containment Vessel (CV), the SSGS, various buried pipe tunnels and underground tanks were all removed to grade or below. The residual portions of the buildings have been previously surveyed and the release surveys have been accepted.

FratEnergy	SNEC CALCUL	ATION SHEET	
Calculation Number	F	Revision Number	Page Number
E900-05-015		0	Page 8 of 11

Subject	
---------	--

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1 - Survey Design

- 4.8.2 The SSGS was backfilled when it was permanently shut down. Subsequently, residual licensed activity was found using core bores. The SSGS backfill was removed and surveyed through an automated conveyor system. Additional concrete surfaces in the SSGS basement were remediated and then the scanned backfill was replaced following survey.
- 4.8.3 The underground tank excavation was backfilled after the tanks were removed early in the project. This backfill was removed and scanned using a automated conveyor scanning system and is currently stored for re-use.
- 4.8.4 The barrel bunker was removed as part of the remediation process.
- 4.8.5 Underground drainage, sewerage systems and surface soils have been removed.
- 4.8.6 Some pavement was remediated during the building removal phase.
- 4.9 This survey design uses Cs-137 as a surrogate for all SNEC facility related radionuclides in the survey unit. The effective DCGLw is the Cs-137 DCGLw from the SNEC LTP (28000 dpm/100cm²) adjusted (lowered) to compensate for the presence (or potential presence) of other SNEC related radionuclides (Reference 3.9). In addition, an administrative limit (75%) has been set that further lowers the permissible Cs-137 concentration to an effective surrogate DCGLw for this survey area.

The sample database used to determine the effective radionuclide mix for the OL1 area has been drawn from samples that were assayed at off-site laboratories. This nuclide mix is copied from **Reference 3.15**.

The GFPC detector scan MDC calculation is determined based on a 10 cm/sec scan rate, a 1.38 index of sensitivity (95% correct detection probability and 60% false positive) and a detector sensitivity (Et) of 23.9% cpm/dpm for Cs-137. The expected range of background values varies from about 250 cpm to about 300 cpm.

- 4.10 The survey unit described in this survey design was inspected after remediation efforts were shown effective. A copy of the specific portion of the SNEC facility post-remediation inspection report (Reference 3.11) applicable to this design is included as Attachment 9-1.
- 4.11 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in this survey area.
- 4.12 The decision error for this survey design is 0.05 for the α value and 0.1 for the β value.
- 4.13 "Special measurements" (as described in the SNEC LTP, **Reference 3.5**) are included in this survey design. Section 5.5.3.4.5 discusses pavement surveys. This survey design is consistent with the LTP.
- 4.14 No additional sampling will be performed IAW this survey design beyond that described herein.
- 4.15 SNEC site radionuclides and their individual DCGLw values are listed on Exhibit 1 of this calculation based on Table 5-1 in Reference 3.5.
- 4.16 The survey design checklist is listed in Exhibit 2.
- 4.17 Area factors are shown as part of COMPASS output (see Attachment 7-1) and are based on the Cs-137 area factors from the SNEC LTP.

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-015	0	Page 9 of 11

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1 - Survey Design

5.0 CALCULATIONS

5.1 All calculations are performed internal to applicable computer codes or within an Excel (Reference 3.13) spreadsheet.

6.0 APPENDICES

- 6.1 Attachment 1-1 is the general layout diagram of the survey units.
- 6.2 Attachment 2-1 and 2-2 are the DCGLw calculation logic for the survey unit from Reference 3.15 and the estimate of effect on efficiency of the irregular surface.
- 6.3 **Attachment 3-1**, is a copy of the calibration data from typical GFPC radiation detection instrumentation that will be used in this survey area.
- 6.4 Attachment 4-1, is the MDCscan calculation sheet for concrete (and macadam) surfaces in dpm/100cm². Attachment 4-2 shows the effect of elevated background on MDCscan.
- 6.5 Attachment 5-1, is a summary list of survey units included in this design, with the estimated area of each.
- 6.6 Attachment 6-1 through 6-33, show the randomly picked scan locations (from VSP) and reference coordinates for the survey unit areas.
- 6.7 Attachment 7-1 through 7-5, are COMPASS output for the survey unit showing the number of sampling points in the survey unit, area factors, and prospective power.
- 6.8 Attachment 8-1, is the surface variability results for concrete surface measurements from the Williamsburg station (Reference 3.15). Attachment 8-2 is the summary of backgrounds and surface measurements taken in the survey unit. Attachments 8-3 through 8-6 are copies of the survey used for variability.
- 6.9 Attachment 9-1, is the results of the inspection report for the residual surface portion of the OL1 area. Attechnolity 9-2 through 9-45 show the Surface Measurement test Area duto.

FistEnergy	SNEC CALCULATION SHEET	-
Calculation Number	Revision Number	Page Number

E900-05-015

. .

Subject

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1 - Survey Design

Exhibit 1

SNEC Facility Individual Radionuclide DCGL Values (a)

Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm ²)	25 mrem/y Limit (All Pathways) Open Land Areas (Surface & Subsurface) (pCi/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	1.9E+04
Pu-238	3.0E+01	1.8	0.41 .
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	0.61

NOTES:

(a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

(b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

FirstEnergy

SNEC CALCULATION SHEET

Revision Number

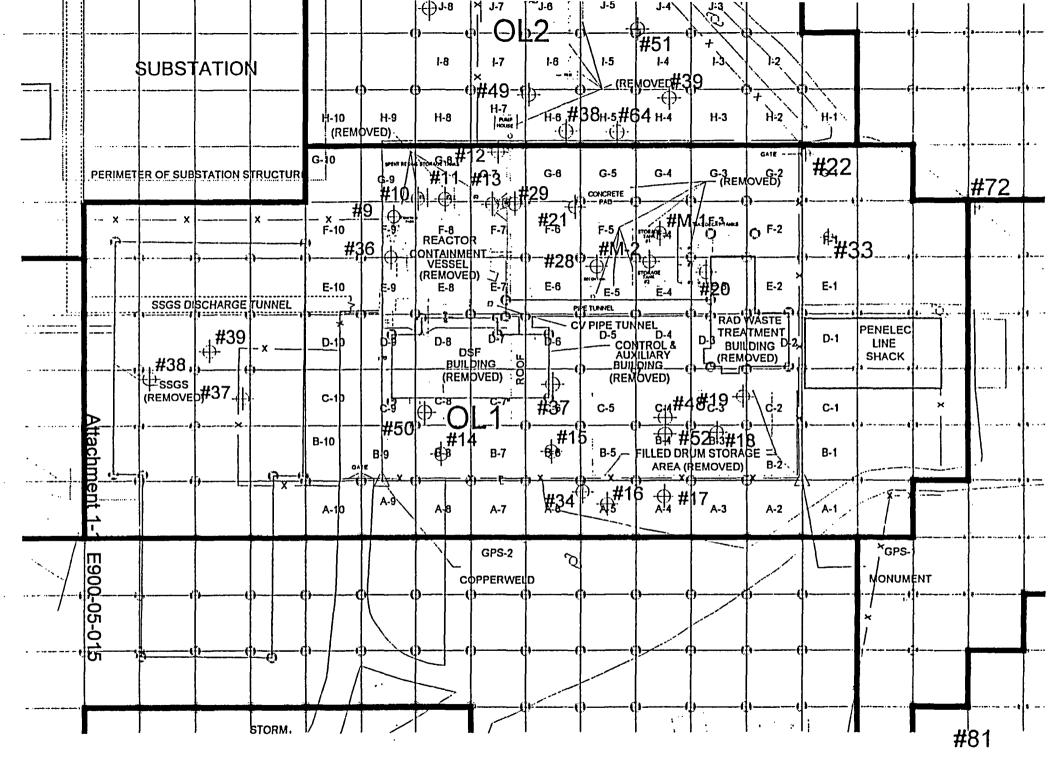
Calculation Number E900-05-015

0

Page 11 of 11

Page Number

Subject


. •

OL1 Paved and Misc. concrete surfaces MA8, PF1, DB5, DB1 - Survey Design

Exhibit 2 Survey Design Checklist

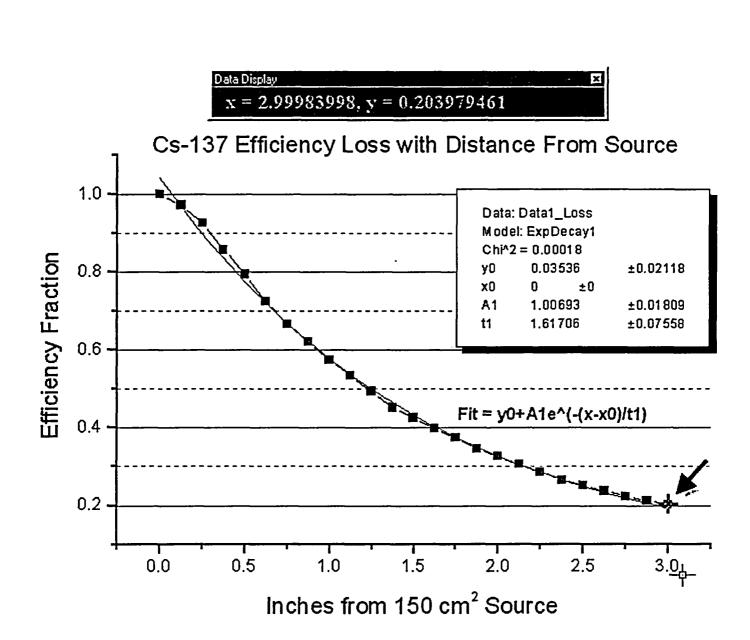
Calcula		Location Codes SNEC plant areas : OL1 Paved and Miscellaneous concrete surfaces MA8, PF1, DB5, DB1				
ITEM	REVIEW FOCUS		Status (Circle One)	Reviewer Initials & Date		
1	Has a survey design calculation number been assigned and description provided?	is a survey design summary	Yes, N/A	ANA Fullos		
2	Are drawings/diagrams adequate for the subject area (drav headings)?	vings should have compass	Yes N/A	AV1 5/4/0		
3	Are boundaries properly identified and is the survey area cla	assification clearly indicated?	Yes, N/A	ANA 5/4/00		
4	Has the survey area(s) been properly divided into surve	y units IAW EXHIBIT 10	VA NVA	84) 94/x		
5	Are physical characteristics of the area/location or s	ystem documented?	Yes NA	ax15/4/0		
6	Is a remediation effectiveness discussion	included?	Yes NA .	A 5/4/0		
7	Have characterization survey and/or sampling results been comparable to applicable DCGL val		Yes, N/A	AS1 5/4/05		
8	Is survey and/or sampling data that was used for determining	survey unit variance included?	Yes NA	AL 574/0		
9	Is a description of the background reference areas (or mater sampling results included along with a justification		Yes	105		
10	Are applicable survey and/or sampling data that was used to		Yes, N/A	AVA 5/4/00		
11	Will the condition of the survey area have an impact on the probable impact been considered in the		Yes, NA	AN 5/4/0		
12	Has any special area characteristic including any additiona previously noted during characterization) been identified alc design?		Yes	ASA 5/4/05		
13	Are all necessary supporting calculations and/or site proced	ures referenced or included?	Yes, N/A	8×1-574/0		
14	Has an effective DCGLw been identified for the	survey unit(s)?	Yes, N/A	AXA 574/0		
15	Was the appropriate DCGLENC included in the survey	y design calculation?	Yes, NA	ax 574/a		
16	Has the statistical tests that will be used to evaluate th	e data been identified?	Yes, NA	AX 5/4/0		
17	Has an elevated measurement comparison been perfe	ormed (Class 1 Area)?	Yes, NA	A 574/0		
18	Has the decision error levels been identified and are the nece	essary justifications provided?	(@, N/A	QYA 574/c		
19	Has scan instrumentation been identified along with the assignment	gned scanning methodology?	Ves NA	ays H/o		
20	Has the scan rate been identified, and is the MDCscan ade	quate for the survey design?	Yes, N/A	0014 5/4/2		
21	Are special measurements e.g., in-situ gamma-ray spectrosco and is the survey methodology, and evaluation me		Yes, NA	000 5/4/0		
22	Is survey instrumentation calibration data included and are de	tection sensitivities adequate?	Yes, N/A	Port 574/0		
23	Have the assigned sample and/or measurement locations beer or CAD drawing of the survey area(s) along with		Yes, N/A	094574/0		
24	Are investigation levels and administrative limits adequate, an clearty indicated?	nd are any associated actions	Yes NA	ert 574/0		
25	For sample analysis, have the required MDA values	been determined.?	Yes, NA	Dex 15/4/0		
26	Has any special sampling methodology been identified other the	an provided in Reference 6.3?	Yes, (NA)	001A 5/4/0		

NOTE: a copy of this completed form or equivalent, shall be included within the survey design calculation.

	Effective D	CGL Calculator	for Cs-137	(dpm/100 cm	1 [^] 2) [Gross Acti	vity DCGLw	Gross Activity	Administrative Limit
						44434	dpm/100 cm^2	33325	dpm/100 cm^2
ſ	25	.0 mrem/y TEDE Limit		·					
1					Γ	Cs-137	7 Limit	Cs-137 Adm	Inistrative Limit
SAMPLE NO(s)⇒ CV YARD SOIL & BOULDER SAMPLES						26445	dpm/100 cm^2	19834	dpm/100 cm^2
					Ι	SNEC AL	75%		
	lsotope	Sample Input (pCl/g, uCl, etc.)	% of Total	Individual Limits (dpm/100 cm^2)	Allowed dpm/100 cm^2	mrem/y TEDE	Beta dpm/100 cm^2	Alpha dpm/100 cm^2]
1	Am-241		0.000%	27	0.00	0.00	N/A	0.00	Am-241
	C-14		0.000%	3,700,000	0.00	0.00	0.00	N/A	C-14
	Co-60	6.25E-03	0.443% 59.515%	7,100 28,000	196.87 26444.68	0.69	196.87 26444.7	N/A	Co-60
	C8-137	8.40E-01	0.000%			0.00	0.00	N/A	Cs-137
	Eu-152 H-3	5.57E-01	39.500%	13,000 120,000,000	0.00 17551.45	0.00	Not Detectable	N/A	Eu-152 H-3
- 6	Ni-63	5.5712-01	0.000%	1,800,000	0.00	0.00	Not Detectable	N/A	NI-63
	Pu-238		0.000%	30	0.00	0.00	N/A	0.00	Pu-238
	Pu-239		0.000%	28	0.00	0.00	N/A	0.00	Pu-239
0	Pu-241		0.000%	880	0.00	0.00	Not Detectable	N/A	Pu-241
1	Sr-90	7.64E-03	0.542%	8,700	240.75	0.69	240.75	N/A	Sr-90
-			100.000%		44434	25.0	26882	0.	
					Maximum Permissible dpm/100 cm^2				-

.

.


.

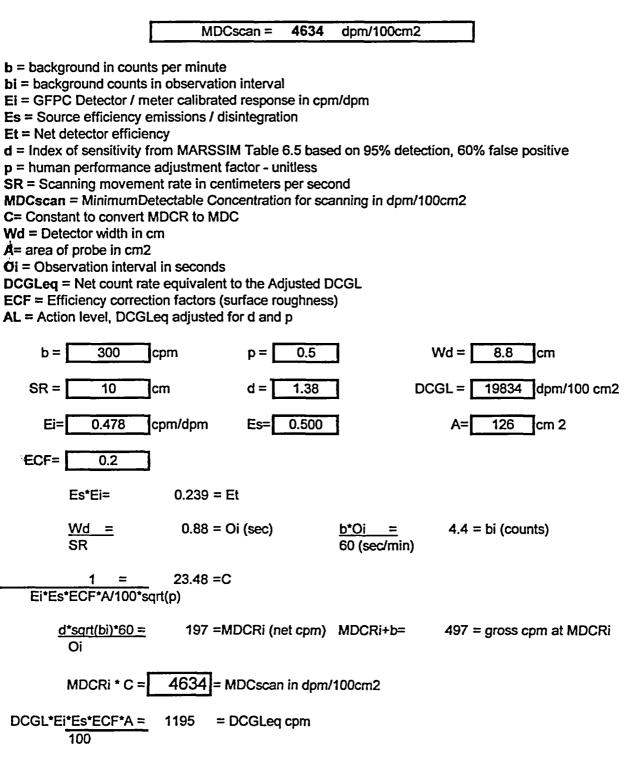
;

.

⁷Attachment 2-1 E900-05-015

1

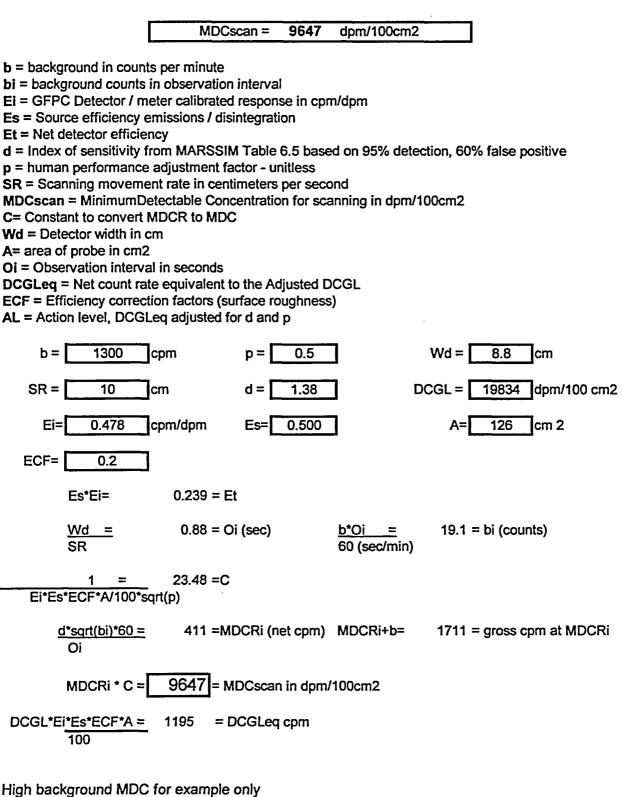
Attachment 2-2 E900-05-015


2350 INSTRUMENT AND PROBE EFFICIENCY CHART 7/01/04 (Typical 43-68 Beta Efficiency Factors)

Different Instrument/Probe Cal. Due | Cesturi sails instruments (1966) (e 1987)

INST 43-68 PROBE 44-10 PROBE ALPHA BETA PROBE СЛ INST # СЛ PROBE C/D EFF EFF # # • 79037 04/05/05 122014 04/23/05 N/A 25.27 2 126188 1/27/05 099186 1/27/05 28.2% N/A 126218 01/08/05 095080 01/09/05 27.9% N/A

> Attachment 3-1 E900-05-015

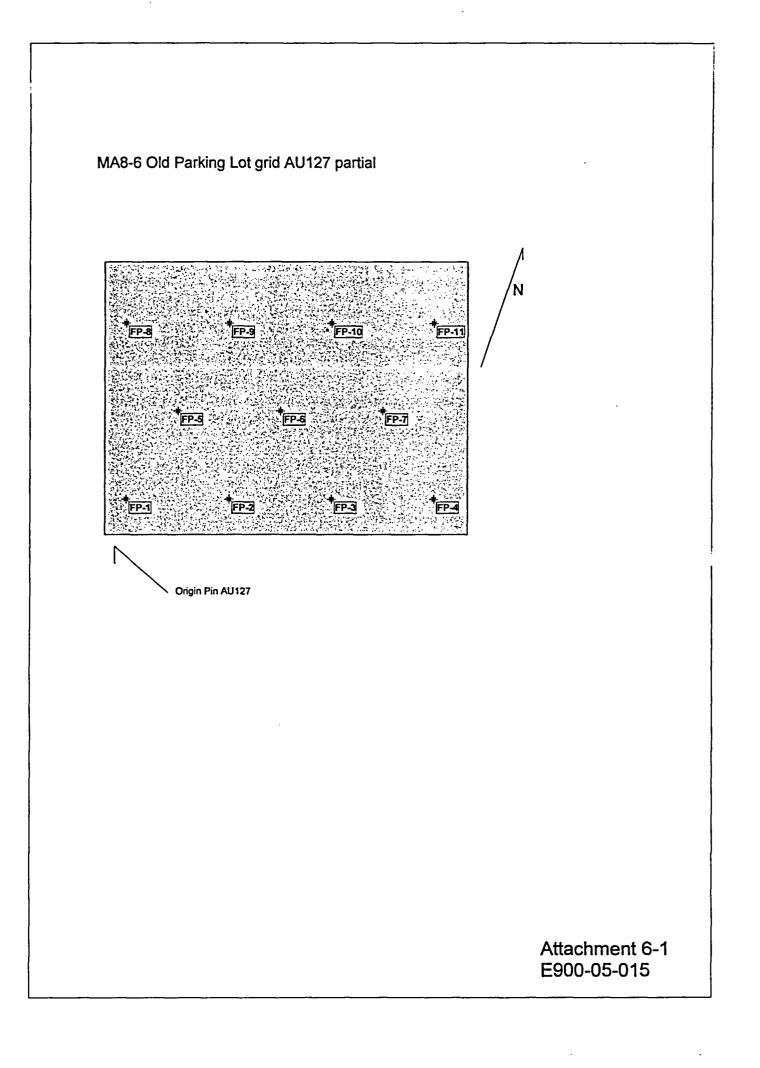

GFPC Scan MDC Calculation

Attachment 4-1 E900-05-015

GFPC Scan MDC Calculation

۰.

Attachment 4-2 E900-05-015


OL1 Concrete and Pavement Surfaces Survey Units

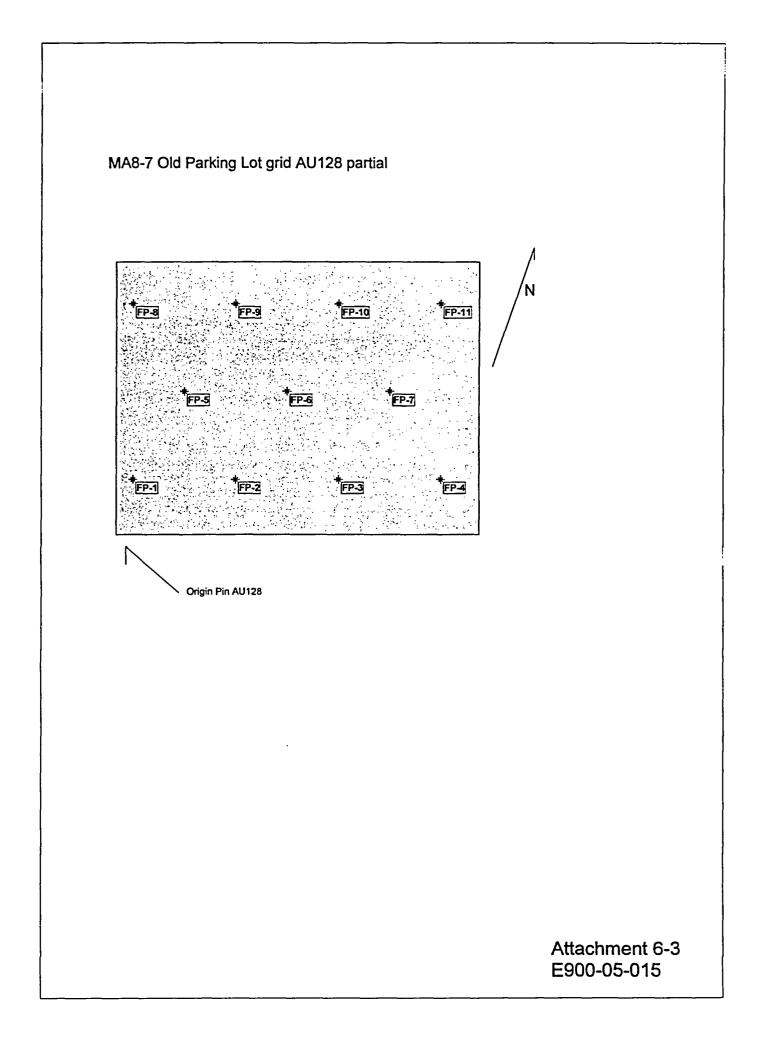
 \wedge

Unit	Area m2	Description
MA8-6	76	Macadam - old SNEC parking lot, grid AU127
MA8-7	76	Macadam - old SNEC parking lot, grid AU128
MA8-8	76	Macadam - old SNEC parking lot, grid AU129
MA8-9	76	Macadam - old SNEC parking lot, grid AU130
MA8-10	102	Macadam - old SNEC parking lot, primarily grid AT131
MA8-11	42	Macadam - old SNEC parking lot, primarily grid AU131
MA8-12	73	Macadam - old SNEC parking lot, V shaped on N and E sides of AV131
MA8-13	100	Macadam - old SNEC parking lot, primarily grid AV131
MA8-14	33 .	Pavements around line shack
MA8-15	37	Concrete slabs and blocks NW of CV
MA8-16	93	Macadam - old SSGS driveway, grid AX131
MA8-17	58	Macadam - old SSGS driveway, grid AY131
PF1	37	Concrete - PAF floor slab
DB5	54	Concrete - DSB Carport slab
DB1-1	85	Concrete - DSB floor slab, west portion

DB1-2 109 Concrete - DSB floor slab, east portion

Attachment 5-1 E900-05-015

MA8-6 Old Parking Lot Grid AU127


76 square meters

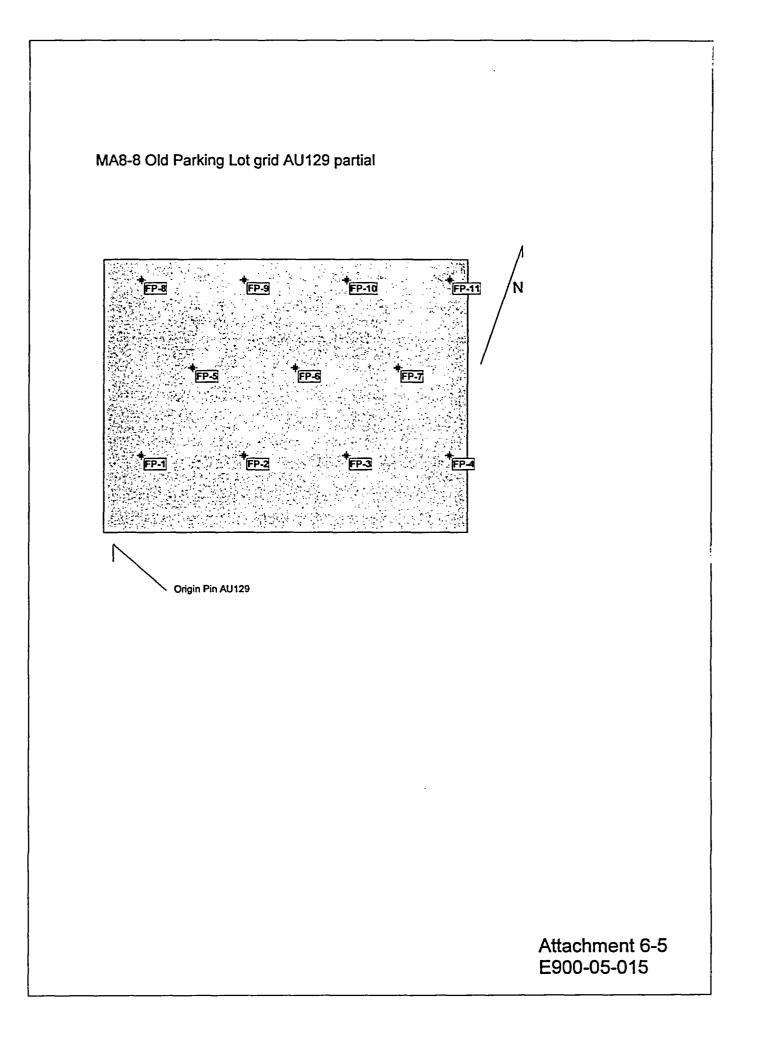
Measurements in FEET

X Coord	Y Coord	Label	Value	Туре
1.98	3.29	FP-1	0	Systematic
11.24	3.29	FP-2	0	Systematic
20.51	3.29	FP-3	0	Systematic
29.77	3.29	FP-4	0	Systematic
6.61	11.31	FP-5	0	Systematic
15.87	11.31	FP-6	0	Systematic
25.14	11.31	FP-7	0	Systematic
1.98	19.34	FP-8	0	Systematic
11.24	19.34	FP-9	0	Systematic
20.51	19.34	FP-10	0	Systematic
29.77	19.34	FP-11	0	Systematic

Attachment 6-2 E900-05-015

.

MA8-7 Old Parking Lot Grid AU128 partial


76 square meters

.

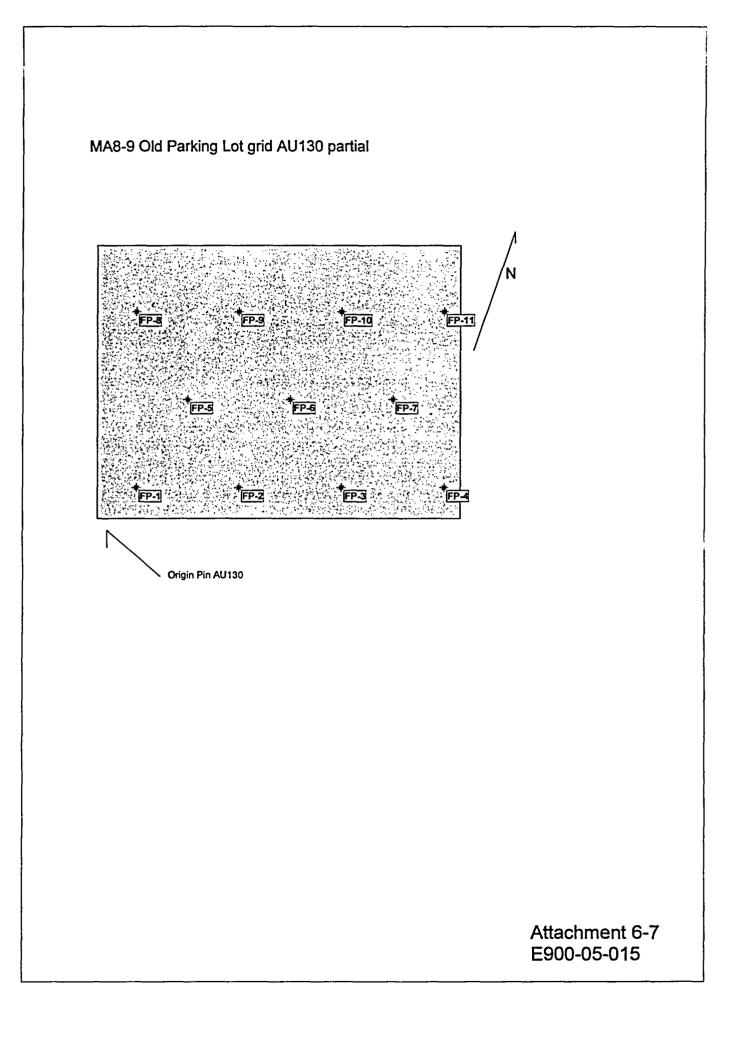
Measurements in FEET

X Coord	Y Coord	Label	Value	Туре
1.55	5.08	FP-1	0	Systematic
10.82	5.08	FP-2	0	Systematic
20.08	5.08	FP-3	0	Systematic
29.35	5.08	FP-4	0	Systematic
6.19	13.10	FP-5	0	Systematic
15.45	13.10	FP-6	0	Systematic
24.71	13.10	FP-7	0	Systematic
1.55	21.12	FP-8	0	Systematic
10.82	21.12	FP-9	0	Systematic
20.08	21.12	FP-10	0	Systematic
29.35	21.12	FP-11	0	Systematic

Attachment 6-4 E900-05-015

MA8-8 Old Parking Lot Grid AU129

76 square meters


Measurements in FEET

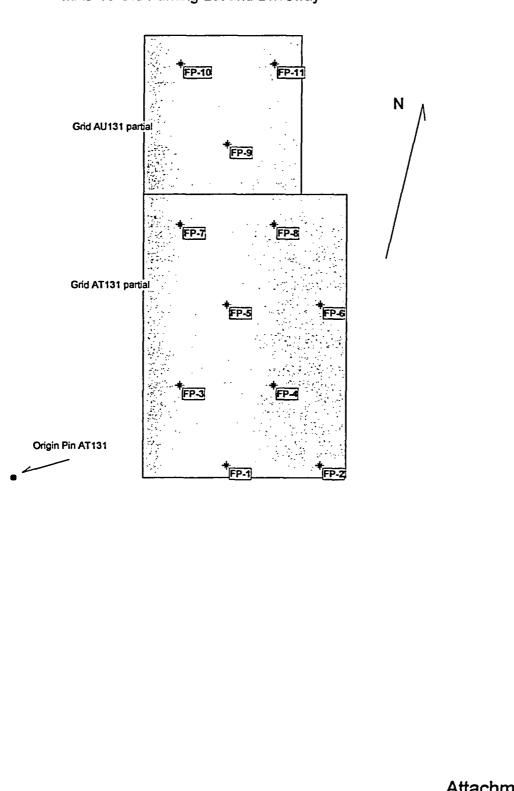
X Coord	Y Coord	Label	Value	Туре
3.39	7.00	FP-1	0	Systematic
12.65	7.00	FP-2	0	Systematic
21.92	7.00	FP-3	0	Systematic
31.18	7.00	FP-4	0	Systematic
8.02	15.03	FP-5	0	Systematic
17.29	15.03	FP-6	0	Systematic
26.55	15.03	FP-7	0	Systematic
3.39	23.05	FP-8	0	Systematic
12.65	23.05	FP-9	0	Systematic
21.92	23.05	FP-10	0	Systematic
31.18	23.05	FP-11	0	Systematic

.

.

Attachment 6-6 E900-05-015

MA8-9 Old Parking Lot Grid AU130


76 square meters

.

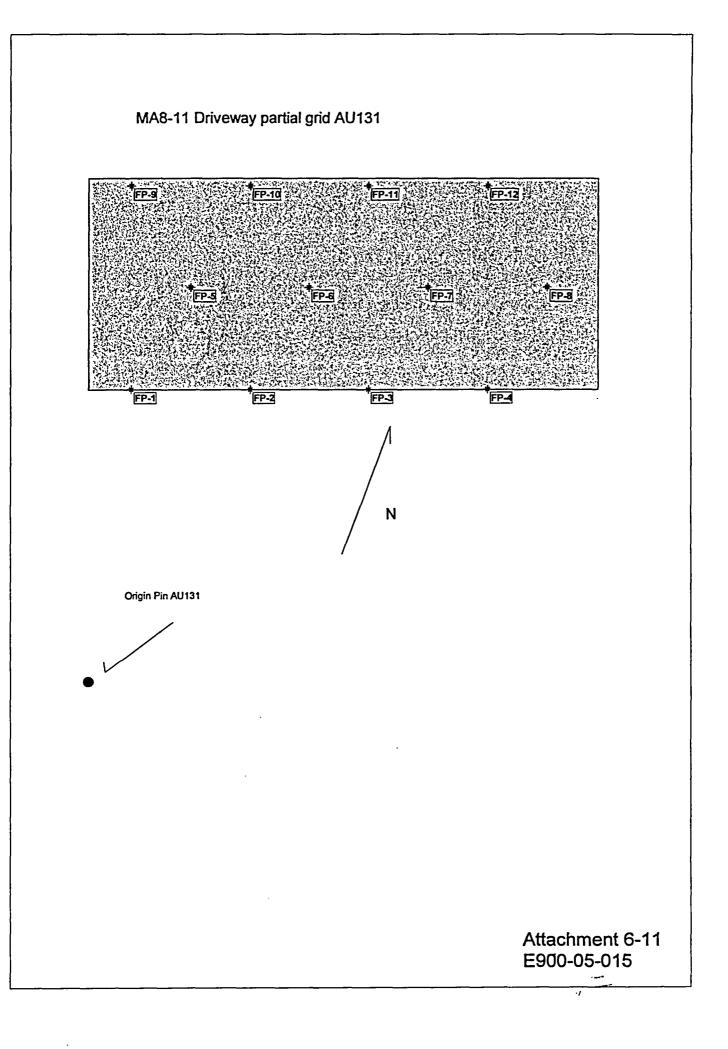
Measurements in FEET

X Coord	Y Coord	Label	Value	Туре
3.53	2.83	FP-1	0	Systematic
12.80	2.83	FP-2	0	Systematic
22.06	2.83	FP-3	0	Systematic
31.33	2.83	FP-4	0	Systematic
8.17	10.86	FP-5	0	Systematic
17.43	10.86	FP-6	0	Systematic
26.70	10.86	FP-7	0	Systematic
3.53	18.88	FP-8	0	Systematic
12.80	18.88	FP-9	0	Systematic
22.06	18.88	FP-10	0	Systematic
31.33	18.88	FP-11	0	Systematic

Attachment 6-8 E900-05-015

MA8-10 Old Parking Lot and Driveway

Attachment 6-9 E900-05-015


MA8-10 Old Parking Lot and Driveway Grids AT131 and AU131 - 102 sq meters Measurements in FEET

X Coord	Y Coord	Label	Value	Туре
24.30	1.45	FP-1	0	Systematic
35.03	1.45	FP-2	0	Systematic
18.94	10.74	FP-3	0	Systematic
29.66	10.74	FP-4	0	Systematic
24.30	20.02	FP-5	0	Systematic
35.03	20.02	FP-6	0	Systematic
18.94	29.31	FP-7	0	Systematic
29.66	29.31	FP-8	0	Systematic
24.30	38.60	FP-9	0	Systematic
18.94	47.89	FP-10	0	Systematic
29.66	47.89	FP-11	0	Systematic

•

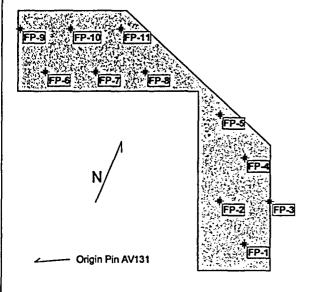
.

Attachment 6-10 E900-05-015

MA8-11 Driveway

· •

Partial grid AU131 - 42 sq meters

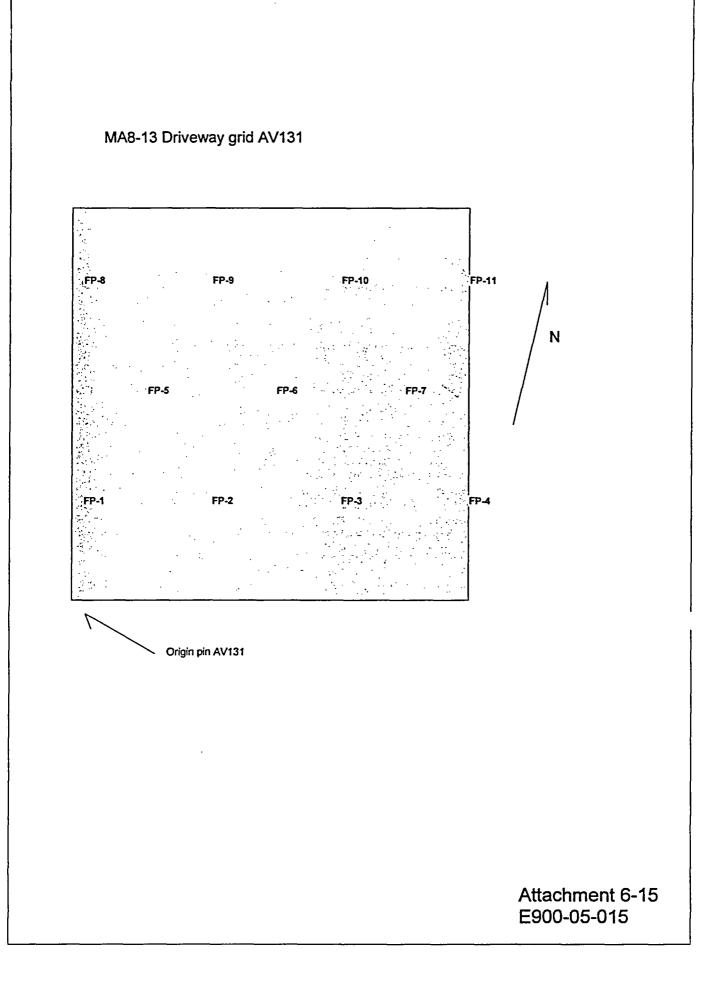

Measurements in FEET

X Coord	Y Coord	Label	Value	Туре
2.74	19.05	FP-1	0	Systematic
10.39	19.05	FP-2	Ō	Systematic
18.04	19.05	FP-3	Ō	Systematic
25.70	19.05	FP-4	Õ	Systematic
6.56	25.68	FP-5	Ō	Systematic
14.22	25.68	FP-6	0	Systematic
21.87	25.68	FP-7	0	Systematic
29.52	25.68	FP-8	0	Systematic
2.74	32.31	FP-9	0	Systematic
10.39	32.31	FP-10	0	Systematic
18.04	32.31	FP-11	0	Systematic
25.70	32.31	FP-12	0	Systematic
				•

Attachment 6-12 E900-05-015

Partial Grids AW131 and AV130

Attachment 6-13 E900-05-015


.

MA8-12 Driveway Partial grids AW131and AV130 - 73 sq meters Measurements in FEET

model						
X Coord	Y Coord	Label	Value	Туре	East	North
41.29	4.95	FP-1	0	Systematic	8.5	4.9
36.75	12.81	FP-2	0	Systematic	3.9	12.8
45.83	12.81	FP-3	0	Systematic	13.0	12.8
41.29	20.67	FP-4	0	Systematic	8.5	20.7
36.75	28.54	FP-5	0	Systematic	3.9	28.5
4.97	36.40	FP-6	0	Systematic	5.0	3.6
14.05	36.40	FP-7	0	Systematic	14.0	3.6
23.13	36.40	FP-8	0	Systematic	23.1	3.6
0.43	44.26	FP-9	0	Systematic	0.4	11.5
9.51	44.26	FP-10	0	Systematic	9.5	11.5
18.59	44.26	FP-11	0	Systematic	18.6	11.5

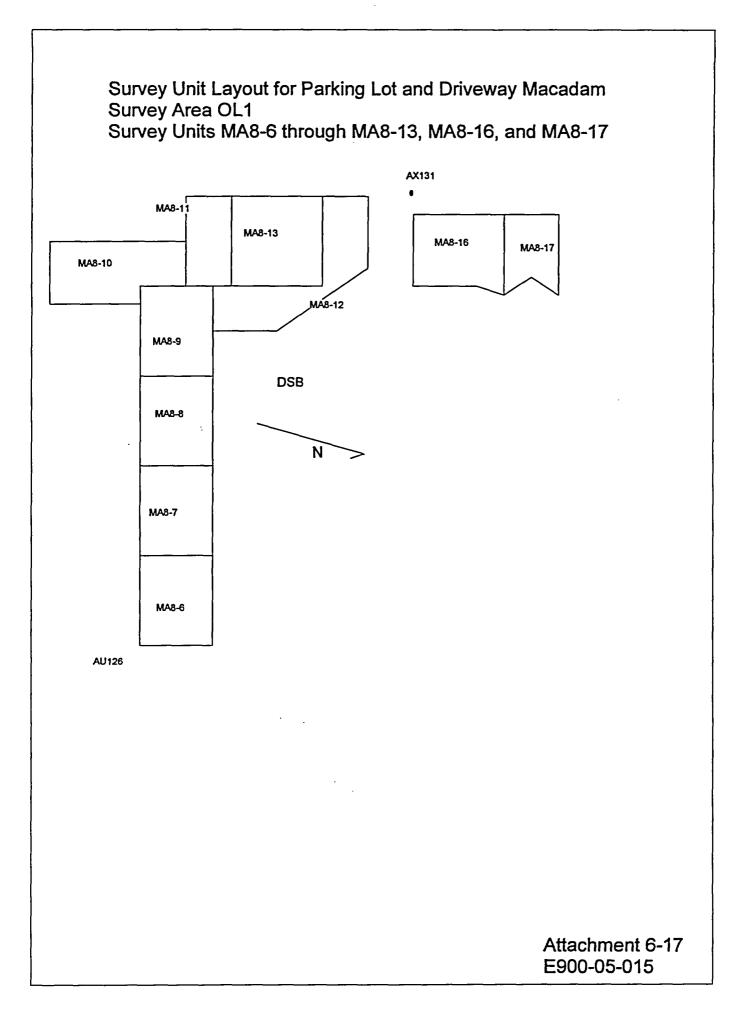
X Coord and Y coord are measured from pin AV131 East and North are from the actual grid pin

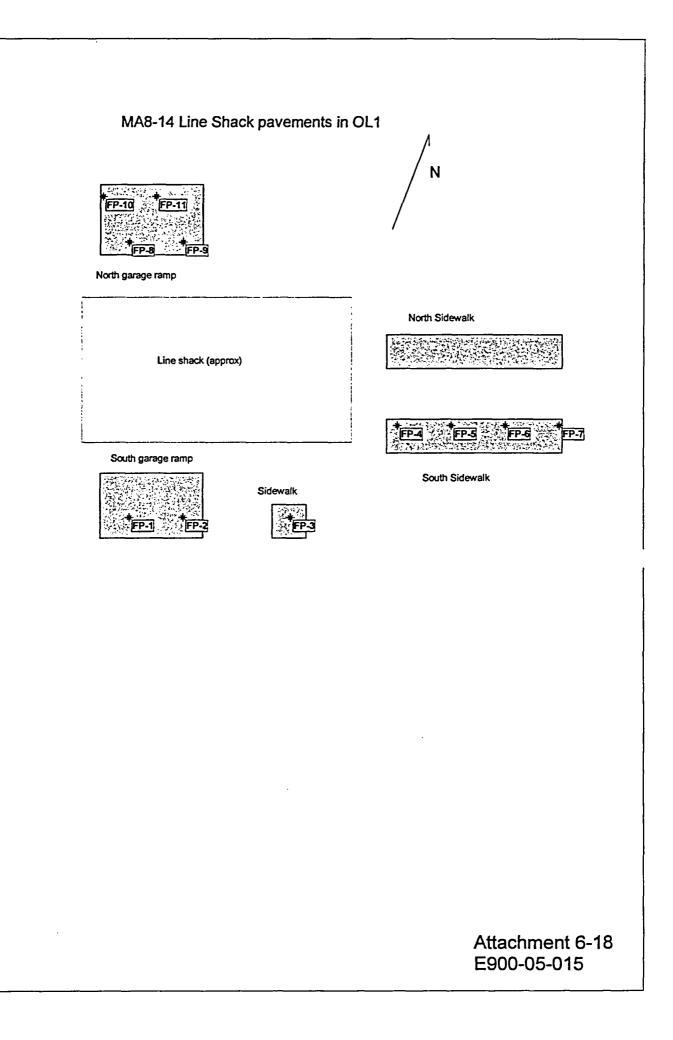
> Attachment 6-14 E900-05-015

ŧ

MA8-13 Driveway

Grid AV131


.


Measurements in FEET				
X Coord	Y Coord	Label	Value	Туре
0.69	9.05	FP-1	0	Systematic
11.32	9.05	FP-2	0	Systematic
21.95	9.05	FP-3	0	Systematic
32.57	9.05	FP-4	0	Systematic
6.00	18.25	FP-5	0	Systematic
16.63	18.25	FP-6	0	Systematic
27.26	18.25	FP-7	0	Systematic
0.69	27.46	FP-8	0	Systematic
11.32	27.46	FP-9	0	Systematic
21.95	27.46	FP-10	0	Systematic
32.57	27.46	FP-11	0	Systematic

Attachment 6-16 E900-05-015

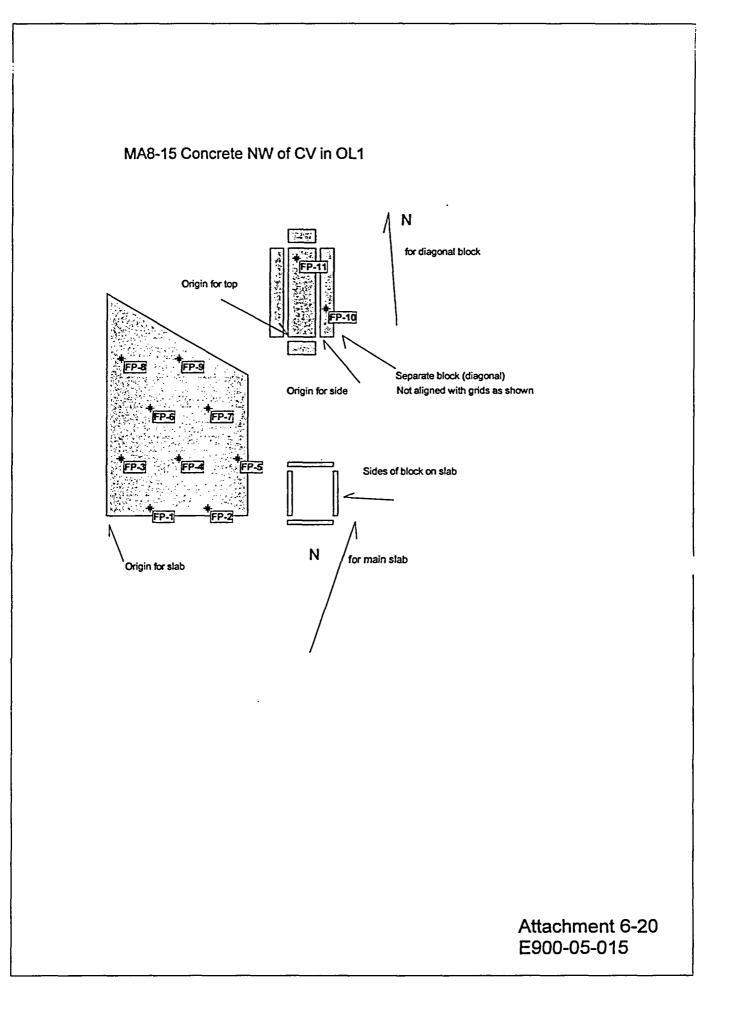
· .

.

MA8-14 Line Shack external pavement

Measurements in FEET

33 sq meters


from SW corner of each slab

X Coord	Y Coord	Label	Value	Туре
3.28	2.62	FP-1	0	Systematic
9.38	2.62	FP-2	0	Systematic
2.30	2.62	FP-3	0	Systematic
0.98	3.28	FP-4	0	Systematic
7.22	3.28	FP-5	0	Systematic
13.45	3.28	FP-6	0	Systematic
19.68	3.28	FP-7	0	Systematic
3.28	1.64	FP-8	0	Systematic
9.51	1.64	FP-9	0	Systematic
3.28	6.56	FP-10	0	Systematic
6.56	6.56	FP-11	0	Systematic

•

Attachment 6-19 E900-05-015

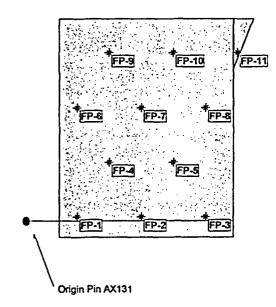
.....

• •

MA8-15 Concrete NW of CV on OL1

Measurements in FEET

37 sq meters


from SW corner of each slab or face

X Coord	Y Coord	Label	Value	Туре	Surface
4.84	0.87	FP-1	0	Systematic	Slab
11.27	0.87	FP-2	0	Systematic	Slab
1.62	6.44	FP-3	0	Systematic	Slab
8.05	6.44	FP-4	0	Systematic	Slab
14.49	6.44	FP-5	0	Systematic	Slab
4.84	12.01	FP-6	0	Systematic	Slab
11.27	12.01	FP-7	0	Systematic	Slab
1.62	17.58	FP-8	0	Systematic	Slab
8.05	17.58	FP-9	0	Systematic	Slab
1.14	3.15	FP-10	0	Systematic	Top of separate block
				-	from far west corner
0.92	8.73	FP-11	0	Systematic	East long side of separate block
					from top, south end

Attachment 6-21 E900-05-015

.

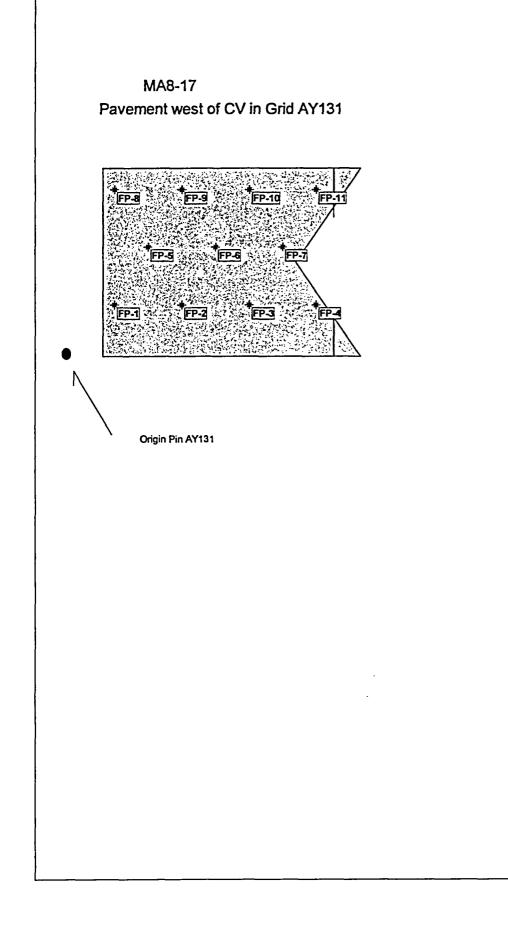
MA8-16 Pavement in/around Grid AX131

Attachment 6-22 E900-05-015

MA8-16 Pavement West of CV in OL1

Measurements in FEET

93 sq meters


from SW corner of each slab or face

X Coord	Y Coord	Label	Value	Туре	East	North
7.82	0.67	FP-1	0	Systematic	7.82	0.67
18.08	0.67	FP-2	0	Systematic	18.08	0.67
28.34	0.67	FP-3	1	Systematic	28.34	0.67
12.95	9.55	FP-4	2	Systematic	12.95	9.55
23.21	9.55	FP-5	3	Systematic	23.21	9.55
7.82	18.44	FP-6	4	Systematic	7.82	18.44
18.08	18.44	FP-7	5	Systematic	18.08	18.44
28.34	18.44	FP-8	6	Systematic	28.34	18.44
12.95	27.32	FP-9	7	Systematic	12.95	27.32
23.21	27.32	FP-10	8	Systematic	23.21	27.32
0.67	27.32	FP-11	9	Systematic	0.67	27.32

Xcoord and Ycoord are measured from the reference pin AX131 East or North are measured from the grid reference pin

East and North for FP1 through 10 are measured from the AX131 pin FP11 is measured from the AX130 pin

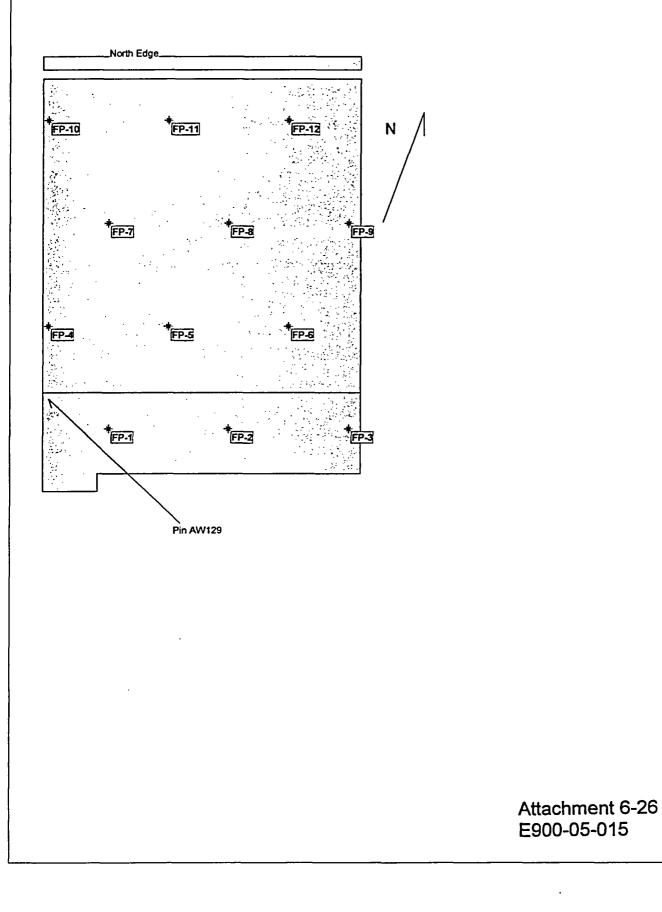
Attachment 6-23 E900-05-015

Attachment 6-24 E900-05-015

MA8-17 Pavement West of CV in OL1 Grid AY131

Measurements in FEET

58 sq meters


from SW corner of each slab or face

X Coord	Y Coord	Label	Value	Туре	East	North
6.38	6.28	FP-1	0	Systematic	6.4	6.3
14.48	6.28	FP-2	0	Systematic	14.5	6.3
22.59	6.28	FP-3	0	Systematic	22.6	6.3
30.70	6.28	FP-4	0	Systematic	30.7	6.3
^{~1} 0.43	13.30	FP-5	0	Systematic	10.4	13.3
18.54	13.30	FP-6	0	Systematic	18.5	13.3
26.65	13.30	FP-7	0	Systematic	26.6	13.3
6.38	20.33	FP-8	0	Systematic	6.4	20.3
14.48	20.33	FP-9	0	Systematic	14.5	20.3
22.59	20.33	FP-10	0	Systematic	22.6	20.3
30.70	20.33	FP-11	0	Systematic	30.7	20.3

Xcoord and Ycoord are measured from the reference pin AY131 East or North are measured from the grid reference pin

> Attachment 6-25 E900-05-015

PF1 PAF Floor Slab

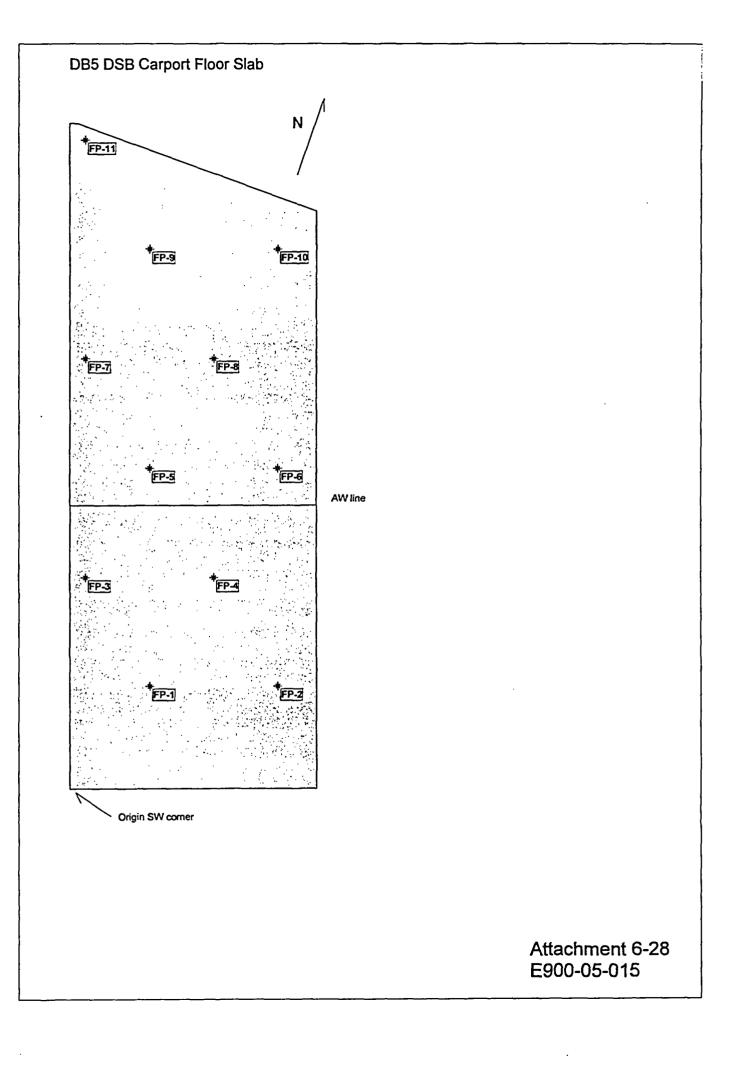
PF1 PAF Floor Slab

Measurements in FEET

37 sq meters

Includes north edge / face of slab in PF1 only

:


molaco	norar cag					
X Coord	Y Coord	Label	Value	Туре	East	South
3.62	3.49	FP-1	0	Systematic	3.6	2.0
10.24	3.49	FP-2	0	Systematic	10.2	2.0
16.85	3.49	FP-3	0	Systematic	16.9	2.0
					East	North
0.32	9.22	FP-4	0	Systematic	0.3	3.7
6.93	9.22	FP-5	0	Systematic	6.9	3.7
13.54	9.22	FP-6	0	Systematic	13.5	3.7
3.62	14.95	FP-7	0	Systematic	3.6	9.4
10.24	14.95	FP-8	0	Systematic	10.2	9.4
16.85	14.95	FP-9	0	Systematic	16.9	9.4
0.32	20.68	FP-10	0	Systematic	0.3	15.2
6.93	20.68	FP-11	0	Systematic	6.9	15.2
13.54	20.68	FP-12	0	Systematic	13.5	15.2

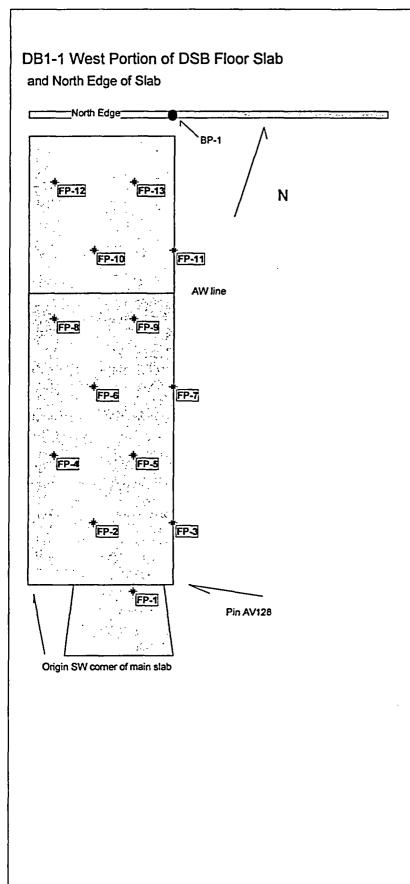
Xcoord and Ycoord are measured from the SW corner East, South, and North are measured from AW129

Points FP1, 2, and 3 are SOUTH of the AW line

Attachment 6-27 E900-05-015

· •

DB5 DSB Carport Floor Slab Measurements in FEET 54 sq meters


X Coord	Y Coord	Label	Value	Туре
4.9	6.3	FP-1	0	Systematic
12.6	6.3	FP-2	0	Systematic
1.0	13.1	FP-3	0	Systematic
8.7	13.1	FP-4	0	Systematic
4.9	19.8	FP-5	0	Systematic
12.6	19.8	FP-6	0	Systematic
1.0	26.5	FP-7	0	Systematic
8.7	26.5	FP-8	0	Systematic
4.9	33.3	FP-9	0	Systematic
12.6	33.3	FP-10	0	Systematic
1.0	40.0	FP-11	0	Systematic

Xcoord and Ycoord are measured from the SW corner

.

Attachment 6-29 E900-05-015

.

Attachment 6-30 E900-05-015

DB1-1 DSB Floor Slab West portion

Measurements in FEET

85 sq meters

Includes all north face / edge of slab in DB1(but not PF1 portion) Value X Coord Y Coord Label Type -0.75 FP-1 11.59 0 Systematic 7.20 6.85 FP-2 0 Systematic 15.98 6.85 FP-3 0 Systematic 2.82 14.45 FP-4 **0** Systematic 11.59 14.45 FP-5 **0** Systematic 7.20 22.05 FP-6 0 Systematic 22.05 FP-7 15.98 **0** Systematic 2.82 29.65 FP-8 **0** Systematic 11.59 29.65 FP-9 **0** Systematic 7.20 37.25 FP-10 **0** Systematic 15.98 37.25 FP-11 **0** Systematic 2.82 44.85 FP-12 0 Systematic 11.59 44.85 FP-13 **0** Systematic See Below * BP-1 Biased

Xcoord and Ycoord are measured from the SW corner FP1 is .75 feet south of main slab on ramp

* BP1 is on the vertical north edge of slab at the 128 grid line

Attachment 6-31 E900-05-015

DB1-2 DSB Floor Slab East Portion Ν FP-11 FP-12 FP-13 FP-9 FP-10 AW line • • • • • FP-6 FP-8 FP-7 FP-S FP-4 FP-1 FP-2 FP-3 1 Origin Pin Av128

Attachment 6-32 E900-05-015

...

DB1-2 DSB Floor Slab East portion

Measurements in FEET

109 sq meters

.

100 09 1				
Area: Area	1			
X Coord	Y Coord	Label	Value	Туре
0.44	7.76	FP-1		0 Systematic
11.57	7.76	FP-2		0 Systematic
22.70	7.76	FP-3		0 Systematic
6.00	17.41	FP-4		0 Systematic
17.14	17.41	FP-5		0 Systematic
0.44	27.05	FP-6		0 Systematic
11.57	27.05	FP-7		0 Systematic
22.70	27.05	FP-8		0 Systematic
6.00	36.69	FP-9		0 Systematic
17.14	36.69	FP-10		0 Systematic
0.44	46.33	FP-11		0 Systematic
11.57	46.33	FP-12		0 Systematic
22.70	46.33	FP-13		0 Systematic

Xcoord and Ycoord are measured from the SW corner Pin AV128 Number of fixed point incresed by 20% due to slight over size in unit

> Attachment 6-33 E900-05-015

Site Summary

Site Name: SSGS and SNEC paved surfaces

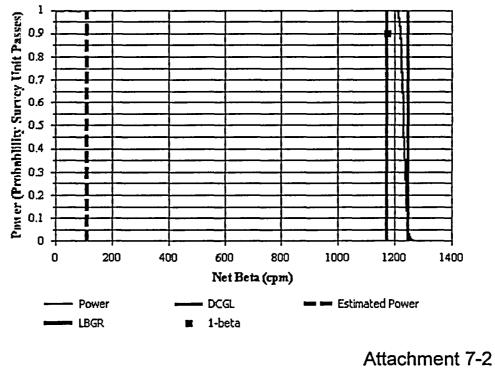
Planner(s): WJCooper

Contaminant Summary

NOTE: Surface soil DCGLw units are pCi/g. Building surface DCGLw units are dpm/100 cm².

m²) Area Factor
1.2

		Attachment 7-1 E900-05-015
COMPASS v1.0.0	3/4/2005	Page 1


. .

Survey Plan Summary

Site:	SSGS and SNEC paved surfa	ces	
Planner(s):	WJCooper		
Survey Unit Name:	MAcadam surfaces in OL1 - P	arking lot, driveways	
Comments:	multiple units max 100 m2	···	
Area (m²):	100	Classification:	1
Selected Test:	Sign	Estimated Sigma (cpm):	25.4
DCGL (cpm):	1,250	Sample Size (N):	11
LBGR (cpm):	1,175	Estimated Conc. (cpm):	112
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100	EMC Sample Size (N):	11

Prospective Power Curve

E900-05-015

Contaminant Summary

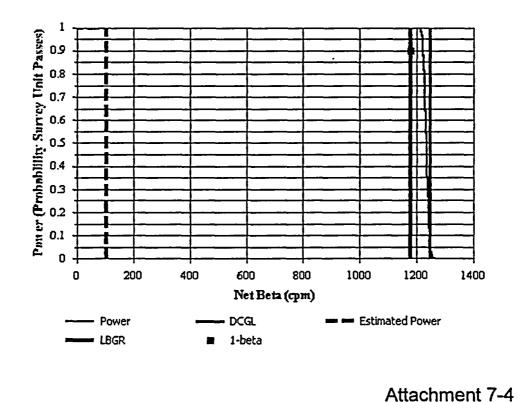
Contaminant	DCGLw (dpm/100 cm²)
Cs-137	19,834

Beta Instrumentation Summary

Total E	Beta DCGLw (dpm/100 cn ifficiency:	n²):	19,834 0.05			
Gross	Beta DCGLw (cpm):		1,250			
ID	Туре			Mode	·	Area (cm²)
2	43-68			Beta		126
Conta	minant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Cs-13	7	187.87	1.0000	0.24	0.20	0.0478
	ige beta energy (keV) [N/A ty fraction	indicates alpha er	nission]			
	Survey Unit Mean (cpm): Time (min): 1	383 ± 24 (1-sigma)			
Matari	al		Number of	Average	Standard Deviation (com)	MDC

Material	Number of	Average	Standard	MDC
	BKG Counts	(cpm)	Deviation (cpm)	(dpm/100 cm ²)
macadam	6	271	7.2	1,263

Attachment 7-3 E900-05-015


• . •

Survey Plan Summary

SSGS and SNEC paved surfaces						
WJCooper						
Concrete surfaces in OL1 DSB	,PAF etc.					
Max unit area 109 m2, most 10	00 m2 or less					
109	Classification:	1				
Sign	Estimated Sigma (cpm):	23.8				
1,250	Sample Size (N):	11				
1,180	Estimated Conc. (cpm):	103				
0.050	Estimated Power:	1.00				
0.100	EMC Sample Size (N):	11				
	WJCooper Concrete surfaces in OL1 DSE Max unit area 109 m2, most 10 109 Sign 1,250 1,180 0.050	WJCooperConcrete surfaces in OL1 DSB, Fetc.Max unit area 109 m2, most 10 m2 or less109Classification:SignEstimated Sigma (cpm):1,250Sample Size (N):1,180Estimated Conc. (cpm):0.050Estimated Power:				

Prospective Power Curve

COMPASS v1.0.0

E900-05-015

Contaminant Summary

	DCGLw
Contaminant	(dpm/100 cm²)
Cs-137	19,834

Beta Instrumentation Summary

Gross Beta DCGLw (dpm/100 cr Total Efficiency:	n²):	19,834 0.05			
Gross Beta DCGLw (cpm):		1,250			
D Туре			Mode		Area (cm²)
2 43-68			Beta		126
Contaminant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Cs-137	187.87	1.0000	0.24	0.20	0.0478
Average beta energy (keV) [N/A Activity fraction	indicates alpha ei	mission]			
Gross Survey Unit Mean (cpm): Count Time (min): 1	366 ± 17 (1-sigma	a)			
Material		Number of BKG Counts	Average (cpm)	Standard Deviation (cpm)	MDC (dpm/100 cm ²)
DSB pads		6	262.8	16.3	1,244

Attachment 7-5 E900-05-015

. •

BHE	FSS-001				Designator	Mode	te Backgroun Count Time (sec)	Counts		Time Det		Instrument 95348	37122N21
	F33-001		R		Inital Background	SCL	1800	7.26E+03	1		1/4/2002	BKGND	0
			B		Source	SCL	60	1.79E+05			1/4/2002	Source Check	1
0	te CF(com) >	Concer	ά	und	Inital Background	SCL	1800	4.40E+01	-	10:05	1/4/2002	BKGND	2
Unshiel	Shielded	001010	α		Source	SCL	60	1.51E+05		10:39	1/4/2002	Source Check	14
	2.78E+02		<u></u>		Shielded	SCL	60	2.78E+02		13:00	1/4/2002	CON A1S	15
3.88E4			ß		Unshielded	SCL	60	3.88E+02	1	13:02	1/4/2002	CON A1U	16
1100 A.V.	2.39E+02		ß		Shielded	SCL	60	2.39E+02	1	13:20	1/4/2002	CON A2S	17
2.22E+			8		Unshielded	SCL	60	2.22E+02	1	13:21	1/4/2002	CON A2U	18
2 : : : •	2.39E+02		β		Shielded	SCL	60	2.39E+02	1	13:28	1/4/2002	CON A3S	19
2.62E+	· · · · · · · · ·		8		Unshielded	SCL	60	2.62E+02	1	13:30	1/4/2002	CON A3U	20
Sec. 2. 2	2.45E+02	-	B		Shielded	SCL	60	2.45E+02	1	13:36	1/4/2002	CON A4S	21
2.71E+			B		Unshielded	SCL	60	2.71E+02	1	13:38	1/4/2002	CON A4U	22
	2.00E+02		B		Shielded	SCL	60	2.00E+02	1	13:58	1/4/2002	CON A5S	23
2.82E+			ß	1 F	Unshielded	SCL	60	2.82E+02	1	14:00	1/4/2002	CON A5U	24
G (8.80. 1)	1.84E+02		ß		Shielded	SCL	60	1.84E+02	1	14:03	1/4/2002	CON ABS	25
3.10E+	er a setting at the		β	ιſ	Unshielded	SCL	60	3.10E+02	1	14:05	1/4/2002	CON ABU	26
يە. <u>بەر يىنىدى</u> ب	1.98E+02		ß		Shielded	SCL	60	1.98E+02	1	14.09	1/4/2002	CON A7S	27
3.15E4	et ef stêner wite		β	<u> </u>	Unshielded	SCL	60	3.15E+02	1	14:10	1/4/2002	CON A7U	28
Section 1	2.34E+02	İ	B		Shielded	SCL	60	2.34E+02	1		1/4/2002	CON A8S	29
2000 - KN	2.31E+02		ß		Shielded	SCL	60	2.31E+02	1	• • • • •		CON A8S	30
2.88E+	1. 1. 1. 1. 1. 1. <u>1. 1</u> . 1. <u>1.</u>		β		Unshielded	SCL	60	2.88E+02	1		1/4/2002	CON A8U	31
970. TV 19	2.65E+02		β		Shielded	SCL	60	2.65E+02			1/4/2002	CON A9S	32
2.89E+	::::::::::::::::::::::::::::::::::::::		β		Unshielded	SCL	60	2.89E+02	1		1/4/2002	CON A9U	33
ni.Ciniir (i	2.46E+02		ß		Shielded	SCL	60	2.46E+02				CON A10S	34
3.16E+	12.12.86 (M. 2.4)		ß		Unshielded	SCL	60	3.16E+02	1			CON A10U	35
<u> </u>	1.95E+02		β		Shielded	SCL	60	1.95E+02				CON A11S	36
2.94E+			β		Unshielded	SCL	60	2.94E+02		_		CON A11U	37
10.000	2.21E+02		ß		Shielded	SCL	60	2.21E+02			1/4/2002	CON A12S	38
2.84E+	COME STAND	I	ß		Unshielded	SCL	60	2.84E+02			1/4/2002	CON A12U	39
270	1.74E+02		B		Shielded	SCL	60	1.74E+02	1			CON A13S	40
2.94E+	<u>ionistane</u>		B		Unshielded	SCL	60	2.94E+02	1		1/4/2002	CON A13U	41
	1.96E+02	1	ß		Shielded	SCL	60	1.96E+02	1		1/4/2002	CON A14S	42
3.33E+	0.0000r.200		ß		Unshielded	SCL	60	3.33E+02	1		1/4/2002	CON A14U	43
1.2 · 2·2	2.16E+02		B		Shielded	SCL	60	2.16E+02	1		1/4/2002	CON A158	44
_3.45E+			B		Unshielded	SCL	60	3.45E+02	1		1/4/2002	CON A15U	45
	1.83E+02		B		Shielded	SCL	60	1.83E+02	1			CON A16S	46
3.13E+	·····		B	_	Unshielded	SCL	60	3.13E+02	1		1/4/2002	CON A16U	47
	1.82E+02		B		Shielded	SCL	60	1.82E+02	1		1/4/2002	CON A17S	48 49
3.22E+		I	ß		Unshielded	SCL	<u> </u>	3.22E+02	1		1/4/2002	CON A17U CON A18S	50
<u>()</u> @?????? :	1.84E+02		ß		Shielded	SCL SCL	80 80	1.84E+02 3.24E+02	1		1/4/2002	CON A18U	51
3.24E+	8.:34/7X/7X		肖	_	Unshielded	SCL	<u></u> 60	1.91E+02	1		1/4/2002	CON A195	52
100 XIN	1.91E+02		ß		Shielded Unablaided	SCL	60	3.07E+02	1		1/4/2002	CON A19U	53
3.07E+	1.045+02		<u>P</u>	_	Unshielded Shielded	SCL	60	1.94E+02	1		1/4/2002	CON A20S	54
3 225	1.94E+02		읽		Unshielded	SCL	60	3.33E+02	i			CON A20U	55
3.33E+	2.225.02		<u>p</u>			SCL	60	2.23E+02			1/4/2002	CON A21S	56
2 02 54	2.23E+02		읽		Shielded Unebiolded	SCL	60	2.92E+02	1		1/4/2002	CON A21U	57
2.92E+	1.72E+02		뭐		Unshielded Shielded	SCL	60	1.72E+02	1		1/4/2002	CON A22S	58
			용		Unshielded	SCL	60	2.80E+02	1		-	CON A22U	59
	1.94E+02		_		Shielded	SCL	60	1.94E+02	_		1/4/2002	CON AZ3S	60
	1.948+02		믥		Unshielded	SCL	60	3.29E+02			1/4/2002	CON A23U	61
3.29E+	1.87E+02		B	_	Shielded	SCL	60	1.87E+02	1		1/4/2002	CON A24S	62
3.48E+	1.07 E+U2		B		Unshielded	SCL	80	3.48E+02	1		1/4/2002	CON A24U	63
3.4057	and the second se		ß		Shielded	SCL	<u> </u>	2.07E+02			1/4/2002	CON A25S	64
3.72E+	2.076+02		B		Unshielded	SCL	80	3.72E+02			1/4/2002	CON A25U	65
	2.09E+02		БÌ.	_	Shielded	SCL	60	2.09E+02			1/4/2002	CON A26S	66
3.26E+	2.032+02		Ħ		Unshielded	SCL	60	3.26E+02	1		1/4/2002	CON A26U	67
3.20E*	2.07E+02		ß	_	Shielded	SCL		2.07E+02	_		1/4/2002	CON A27S	68
3.30E+	Concepter of		ß		Unshielded	SCL	60	3.30E+02			1/4/2002	CON A27U	69
3.302*	2.30E+02		ß		Shleided	SCL	80	2.30E+02	_		1/4/2002	CON A285	70
3.06E+	2.30C+02	1	ß		Unshielded	SCL	õ	3.06E+02			1/4/2002	CON A28U	71
	2.13E+02		B		Shielded	SCL	60	2.13E+02	_		1/4/2002	CON A29S	72
2.58E+	2.132+02		B		Unshielded	SCL	60	2.58E+02	i		1/4/2002	CON A29U	73
2.365*	2.33E+02		B		Shielded	SCL		2.33E+02	_		1/4/2002	CON A30S	74
2.89E+	2.00L+VZ		6		Unshielded	SCL	60	2.89E+02	1		1/4/2002	CON A30U	75
4.0364	1.84E+02		B		Shielded	SCL	60	1.84E+02			1/4/2002	CON A31S	76
2.63E+			÷1		Unshielded	SCL	60	2.63E+02	1		1/4/2002	CON A31U	77
			B	_		SCL	60	1.70E+05	1		1/4/2002	Source Check	

.

Minimum ⇒ 1.72E+02 2.22E+02 Maximum ⇒ 2.78E+02 3.88E+02 Mean ⇒ 2.11E+02 3.06E+02 Slame ⇒ 2.69E+01 3.45E+01

Attachment 8-1 E900-05-015

ATTACHMENT 6.1

OL1 surfaces variability measurements 3/7/05

Parki	ng Lot	_	DSB	Pad
	CW		WO	CW
411	271		368	247
384	267	1	350	267
406	274		355	249
344	259		386	258
371	276		388	292
383	279		350	264
383.2	271.0	Average	366.2	262.8
24.4	7.2	Std Dev	17.4	16.3

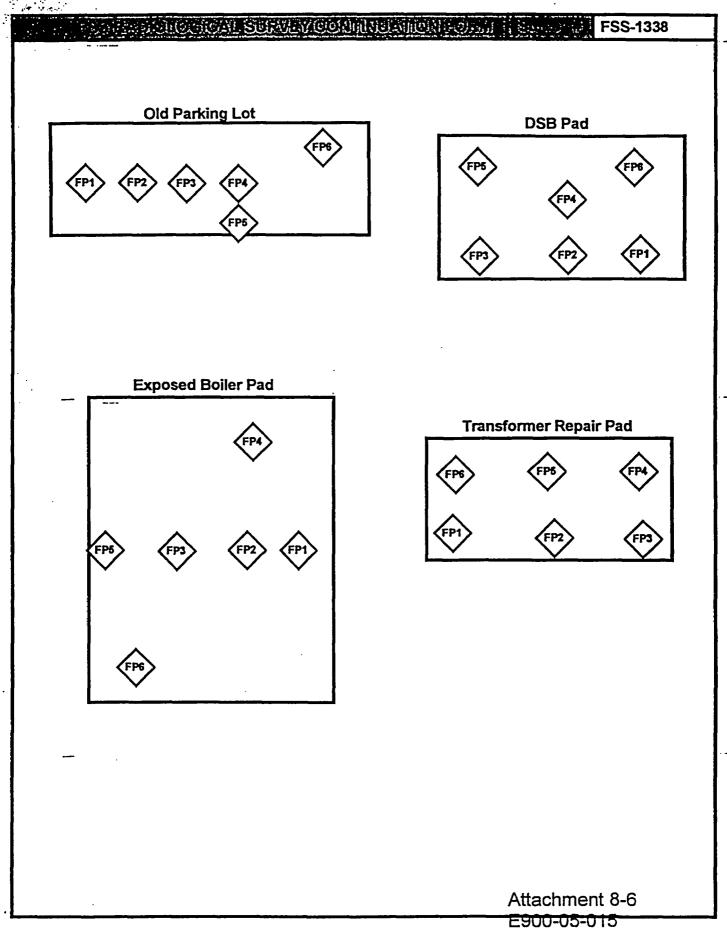
SSGS B	oiler pad	_
WO	CW	
368	266	l
444	289	
335	289	
338	293	
331	265	
374	295	}
365.0	282.8	Average
42.7	13.6	Std Dev

OW - Open (unshielded) window CW - Closed (shielded) window

Attachment 8-2 E900-05-015

and the second
			17 (MA 1487) 17			•	م. م			
7:57			····	۸D		N 8				
	Constant Production	aut +	A Context to a		IGIN	10/001200	OL-1	Gertania FS	5-1338	
	3.27			Class 1 A	man in erein der seberbebine	eviously surv		real and provide FS		· -,
(4)(4)			N/A			ano estar		A2302	181	
	2 Jan 197		c readings ne	eded for variability s	study		3/07/05		0923	
		D. Hout	·	ita	Î, Î, Î	N/A				:
		R.Sh	ephera 0/	ntenter				3/15/05	· HURALLEY	
111			£20	S A REACTED						
		2350) / 44-68	Dene Dece Dijer		N/A		an a	N/A	
. Here		126188	/ 099186	£5-9420200			Et. H. Stands		1	
		2/08/06	3 / 2/08/06	Canua Dine)			6 things			
		2	7.5	Eurelisy(C)			Garagesyse			
í.			1/A				ALEX(C))	- 3.54	ļ	·
	•		₩A 	URAKCCJU M			r utansi ili. Ngana da			
2.60		Sat. 🛛	Unsat.	ferrer Mitter	Sat. 🗌	Unsat.	en de soer regeleer. Bernen en de soeren br>Bernen de soeren de s		Unsat.	
										·
				as 50 degrees Fahre	nheit		K <u>anto i nami atanini di k</u> ina tere	n a Shiney ndi balat ka lata		
ま 記	Static point readin	gs on concret	te structures fo	or variability study.						
1										
Ę.										
12.11										
1	P									
100			a statested		GER SPECTRA					•
	See attached map	•				•				
4.3										
	en al anticipation de la companya de La companya de la comp									
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1										
1.1		· .								
							•			
								chment 8 0-05-015	-3	
UF:							E9 (0-00-010		
。也是这句明的是正是是这些是这些是是是是是是是是是是是是是是是是是是是是是是										
1	Not es :	<u> </u>								

CRIGINAL


Maria Maria							
	e pres reason	lio;cii:	i str				FSS-1338
		······································		D. Ho	utz		
			4 				
				. England f			
20EPRK-F	P1S 3/7/05		1	271	60 \$	SCL	- S
3 OLPRK F			1	411	60 \$	SCL	
# 4 OLPRK F	the second se		1	384	60 8	SCL	· · · ·
SSIS OLPRK FI	2S 3/7/05	9:29	1	267	60	SCL	
Se OLPRK FI		9:31	1	274	60	SCL	
7 OLPRK FI	-3U 3/7/05	9:33	1	406	60	SCL	. *
3 8 OLPRK FI	P4S 3/7/05	9:35	1	259	60	SCL	
9 OLPRK F	P4U 3/7/05	9:37	1	344	60 \$	SCL	
10 OLPRK F	P5S 3/7/05	9:39	1	276	60	SCL	
11 OLPRK FI		9:41	1	371	60 9	SCL	
12 OLPRK F	26S 3/7/05	9:43	1	279	60 \$	SCL	
- 14 OLPRK FI	26U 3/7/05	9:48	1	383	60 5	SCL	
15 DSBP FP1	IS 3/7/05	9:53	1	247	60 5	SCL	
16 DSBP FP1	IU 3/7/05	9:56	1	368	60 8	SCL	
17 DSBP FP2	2S 3/7/05	10:13	1	267	60 5	SCL	
18 DSBP FP2		10:15	1	350	60	SCL	
19 DSBP FP3	S 3/7/05	10:17	1	249	60 5		
20 DSBP FP3	3U 3/7/05	10:18	1	355	· 60	SCL	
- 21 DSBP FP4	IS 3/7/05	10:21	1	258	60	SCL	
22 DSBP FP4	the second s	10:22	1	386	60 5	SCL	
23 DSBP. FP5	S 3/7/05	10:24	1	292	60 5	SCL	
24 DSBP FP5	5U 3/7/05	10:25	1	388	60 5	SCL	
25 DSBP FP6	S 3/7/05	10:28	1	264	60	SCL	
26 DSBP FP6	SU 3/7/05	10:29	1	350	60 5		
27 EBP FP1S	3/7/05	10:53	1	266	60		
28 EBP FP1U	3/7/05	10:55	1	368	60	SCL	
29 EBP FP2S		10:58	1	289	60 5		
330 EBP FP2U		11:00	1	444	60 5	SCL	
31 EBP FP3S		11:03	1	289	60 5	SCL	
32 EBP FP3U			1	335	60 5		
33 EBP FP4S		******	1	293	60 5		
			1	338	60 5		
35 EBP FP5S			1	265	60 5		
36 EBP FP5U			1	331	60 5		
37 EBP FP6S			1	295	60 5		
38 EBP FP6U	3/7/05	11:17	1	374	60		
	Lot DSBP = DSB Pa		xposed B				·······

ORIGINAL

معرفی فیدر و معرف مواد در این در ۲۰۰۰ میلاد. مرابع از میلود مرابع			- 54					F8S-1338
	i en esta	eta j		D. He	xutz ·			
					951			
39 TRP FP1S	3/7/05	13:13	1	378	60	SCL	and the second	
-40 TRP FP1U	3/7/05	13:15	1	487	60	SCL		
41 TRP EP2S	3/7/05	13:17	1	353	60	SCL		
42 TRP FP2U	3/7/05	13:19	1	490	60	SCL		
43 TRP FP3S	3/7/05	13:21	1	327	60	SCL		
44 TRP FP3U	3/7/05	13:22	1	516	60	SCL		
245 TRP FP4S	3/7/05	13:24	1	342	60	SCL		•.: ·
46 TRP FP4U	3/7/05	13:25	1	503	60	SCL		•••
47 TRP FP5S	3/7/05	13:27	1	306	60	SCL		· · · · · · · · · · · · · · · · · · ·
48 TRP FP5U	3/7/05	13:29	1	415	60	SCL		· ·
49 TRP FP6S	3/7/05	13:31	1	314	60	SCL		• • • • • •
50 TRP FP6U	3/7/05	13:32	1	419	60	SCL		•

Attachment 8-5 E900-05-015

UKIGINAL

Page 4 of 4

			ł	Exhibit 1 Survey Unit Inspection C	heck Si	heet ORIGIN/	۱L		
		SI	ECTION 1	- SURVEY UNIT INSP	ECTIO	N DESCRIPTION			
Survey Unit # OL1 Survey Unit Location CV / SSGS Concrete									
Date	4/26/05	Time	0930	Inspection Team Mer	nbers	R. Shep	oherd		
			SECTIO	N 2 - SURVEY UNIT IN	ISPEC	TION SCOPE			
	Inspe	ction Req	uirements	(Check the appropriate	Yes/N	lo answer.)	Yes	No	N/A
1. Hav	e sufficient sur	/eys (i.e., po	st remediation	on, characterization, etc.) bee	n obtain	ed for the survey unit?	X		1
2. Do t	he surveys (fro	m Question	1) demonstra	ate that the survey unit will m	ost likely	pass the FSS?	X		
3. Is th	e physical work	(i.e., remed	liation & hou	sekeeping) in or around the s	urvey ur	nit complete?		X	
4. Have	e all tools, non-	permanent e	equipment, a	nd material not needed to pe	rform the	e FSS been removed?		X	
5. Are	the survey surf	aces relative	ly free of loo	se debris (i.e., dirt, concrete	dust, me	tal filings, etc.)?		X	
6. Are	the survey surf	aces relative	ly free of liqu	uids (i.e., water, moisture, oil,	etc.)?		X		
7. Are	the survey surfa	aces free of	all paint, whi	ch has the potential to shield	radiation	י?		X	
8. Have the Surface Measurement Test Areas (SMTA) been established? (Refer to Exhibit 2 for instructions.)							X		
9. Have the Surface Measurement Test Areas (SMTA) data been collected? (Refer to Exhibit 2 for instructions.)							X		
10. Are the survey surfaces easily accessible? (No scaffolding, high reach, etc. is needed to perform the FSS)							X		
11. Is lighting adequate to perform the FSS?									X
12. Is th	e area industria	illy safe to p	erform the F	SS? (Evaluate potential fall &	trip haza	ards, confined spaces, etc.)	X		
13. Have	e photographs l	been taken s	showing the	overall condition of the area?			X		
14. Have	e all unsatisfact	ory condition	ns been reso	lved?				X	
responsib sheets as	le site departm necessary.					t the problem or initiate corrections in the "Comments" section			
	se to Questi Tools and e	equipment		d on concrete surfaces tructions are removed.	, dirt a	nd debris covers majori	ty of th	ese sur	faces
Respon	se to Questi Cannot be c		d in prese	nt state with obstruction	s prese	ent.			
L. 5	hamenek	e Not.	fied o	fitems 3,415	17.				
Survey	Unit Inspect	or (print/si	gn) R. S	Shepherd / Alker	sh	$\boldsymbol{\mathcal{L}}$	Date	4/26	5/05
Survey	Designer (p	rint/sign)	W. Cool		5		Date	4/26	7/05
			<u> </u>			Attochment 2900-05-0	9- 15	1	

-	

Saxton Nuclear Experimental Corporation Facility Policy and Procedure Manual SAXTON NUCLEAR

Ĵ.

Ċ

Number

E900-IMP-4520.06

0

Revision No.

Survey	<u>/ Unit Ins</u>	pection	in	Support	ofF	SS	Design	1

	XHIBIT 3 Test Area (SMTA) Data Sheet
SECTION	1-DESCRIPTION
SMTA Number SMTA - SS /- I	Survey Unit Number OL-1 DSB Conc. West
SMTA Location DSB PAD WEST	C INterceition of Floor & RAMIJ
Survey Unit Inspector Shephend	Date 4-21-05 Time 0945
SECTION 2 - CALIPER INFOR	RMATION & PERSONNEL INVOLVED
Caliper Manufacturer MITU to YO	Caliper Model Number CD-6" CS
Caliper Serial Number 0763893	Calibration Due Date (as applicable)
Rad Con Technician Brownsherger	Date 4-21-05 Time 0925
Survey Unit Inspector Approval	shish Date 4-21-03
SECTION 3 - ME	ASUREMENT RESULTS
SMTA Grid Map & Measurement Results in Units of (Insert Results in White Blocks Below)	mm Comments
·1 9.8 5.5 6.7 10.9 5.2	
2 8 14 20 26 32 26 9.3 10.4 12.2 16.9 13.9	
3 19 15 121 27 33 22.L 7.7 10.8 11.9 11.1 14.3	
10 16 22 28 34 3.5 11 9.2 10.2 14.8 15.1	21 X = 9'6"- AW127
[6] [6] [3] [1] [3] [2] [2] [2] [35] [35] [35] [35] [35] [35] [35] [35	
2.8 6.5 11.4 .10.2 16.9 5.1	Survey Aret Sur Faces Wit
6 12 18 24 30 36	
1.6 10.6 5.6 21.8 12.8 14.1	FSS Surveys.
Average Measurement/0.7 C mm	
Additional Mea	asurements Required
	···· _
	9 Eq00-05-015

SAXTON	NUCLEAR
Title	

(

ï

L.

Saxton Nuclear Experimental Corporation Facility Policy and Procedure Manual

Number

E900-IMP-4520.06

Revision No.

<u>_</u>S

Survey Unit Inspection in Support of FSS Design 0												
	EXHIBIT 3 Surface Measurement Test Area (SMTA) Data Sheet											
*************									a Sneet	1.+ \$`\$\\$\\$\\$\\$\$\$	AND A KA	THE REAL PROPERTY OF THE PROPE
							SCRIPTIO			Dee		
SMTA Number SMTA - 55-1-2 Survey Unit Number OL-1 DSB Non Th Concrete												
SMTALOCATION DSB PAD NORTH Edge TOP SUNFACE AND VERT. FACE												
Survey Unit Inspector Shephend Date 4-21-05 Time 0900 SECTION 2 - CALIPER INFORMATION & PERSONNEL INVOLVED												
					NFORM	AT						
Caliper Manu			11tuto	YO						C D-6"	' <i>cs</i>	
Caliper Seria	I Numl	per (0763	893		_ C	alibration D	ue Da	te (as a	pplicable)	N	A
Rad Con Tec	hnicia	<u>ו (</u>	3 Row.	NS be	rben			Date	4-	21-05-	Time	0800
Survey Unit I	-	•••		(There is a	M	1	inhl	_		Date	4-21	-05
			SE	CTION 3	- MEAS	UR	EMENT RE	SULT	S	· · · · · · · · · · · ·		新加盟
SMTA Grid N (Ins				sults in Ui cks Below		m _			Co	mments		
	71576	,13	19	25	31			_	•			
1.75	7.7	1.0	1.1	1.4	1.6							
2.	\ 8	12	20	26	32,	1						
.95	1.0	2745	1.1	1.5	1.6			X-	25	1 SMTA 	z	
113 57	9	15 A	21	27	33							_
1.5	•5	1.8	• 8	2.1	1.7				1141			
副相關	10	16 👔	22	28	.34				/ 1 1			
1.8	1.7	2.1	1.1	1.1	1.5							
6 15 1 K	811 <u>6</u> 8	17	23	29	35	1		ł				
2.6	3.5	8-2	6.7	15.5	12.6		50	unv	y Sui	chrus a	wille	quine
	12	18	24	30	36	1	cu	erni	y pr	con to	FSS	
29212140.2 AND	7.5	6.2	7.9	8.8	15.3		5	inv	45.			
Average	e Mea	surement	3.		mm	1						
				Addition	al Measi	iren	nents Requ	ired				
										·····		

Saxton Nuclear Experimental Corporation Facility Policy and Procedure Manual SAXTON NUCLEAR Title .

Number

E900-IMP-4520.06

0

Revision No.

Survey Unit Inspection in Support of FSS Design	Survey	Unit In:	spection	in Suppo	ort of FSS	Design
---	--------	----------	----------	----------	------------	--------

1

١.

SECTION 1 - DESCRIPTIONSMTA NumberSUTON 1 - DESCRIPTIONSMTA Location $M.W. Galver, SSGS PADSurvey Unit NumberOL-1SSGS Concerte.SMTA LocationM.W. Galver, SSGS PADSurvey Unit InspectorSLep AradDateU+U_1-0.5Time1000SECTION 2 - CALIPER INFORMATION & PERSONNEL: INVOLVEDCaliper Model NumberC.0-C'-C.SCaliper Model NumberC.0-C'-C.SCaliper Model NumberOL-G'-C.SCaliper Model NumberOL-G'-C.SSurvey Unit Inspector ApprovalSurvey Unit Inspector ApprovalSurvey Unit Inspector ApprovalSurvey Survey Survey Survey Unit Inspector ApprovalSurvey Unit Inspector ApprovalSurvey Survey Su$		Su	Irface Measure	EXHIBI ment Test /	T 3 Area (SMTA) Data Sheet
SMTA Location $M. W. Conven SSGS PAD$ Survey Unit Inspector $SAephend$ Date $U/-L/-05$ Time1000Caliper Manufacturer $M_1+u_1+v_10$ Caliper Model Number $C.0-6^{11}-C.S$ Caliper Serial Number $O - 6.3 893$ Calibration Due Date (as applicable) N/A Rad Con Technician $R_{AOWNS hear Cere}$ Date $U-2I-05$ Time $O 745$ Survey Unit Inspector Approval $VIIII Inspector Approval$ $VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$		投票的成本 的	SEC	TION 1 - DE	SCRIPTION
SMTA Location M W . Conven 5565 PADSurvey Unit Inspector $5 \downarrow e p \uparrow_{end}$ Date $4/2 \downarrow - 0.5$ Time 1000 Caliper Manufacturer $M (+ \downarrow_{t} \downarrow_{t} \lor_{t} \circ_{t}				Surv	ey Unit Number OL-1 SSGS Concrete
Survey Unit Inspector $\int k \rho h + n d$ Date $\mu + 2 \mu - 0 5$ Time1000SECTION 2 - CALIPER INFORMATION & PERSONNEL INVOLVEDCaliper Manufacturer $M + \frac{1}{4} + \frac{1}{$	SMTA Location				
SECTION 2 - CALIPER INFORMATION & PERSONNEL INVOLVEDCaliper Manufacturer $M (+u+t_{0}Y_{0})$ Caliper Model Number $C \ 0 - C^{1+} - CS$ Caliper Serial Number $0 \neg 6 \ 3 \ 8 \ 7 \ 5$ Calibration Due Date (as applicable) M/A Rad Con Technician $B/Uwn S hea Cea$ Date $U - 2l \cdot oS$ Time $O \eta u_{5}$ Survey Unit Inspector Approval $V.Max$ $Date$ $U - 2l \cdot oS$ Time $O \eta u_{5}$ SMTA Grid Map & Measurement Results in Units of mm (insert Results in White Blocks Below)CommentsCommentsSMTA Grid Map & Measurement Results in Units of mm (insert Results in White Blocks Below)CommentsSMTA Grid Map & Measurement Results in Units of mm (insert Results in White Blocks Below)CommentsSMTA Grid Map & Measurement Results in Units of mm (insert Results in White Blocks Below)CommentsSMTA Grid Map & Measurement Results in Units of mm (insert Results in White Blocks Below)CommentsSuperior $13 \cdot 19$ $25 \cdot 31$ $31 \cdot C$ $.6$ $2 \cdot 7$ $1 \cdot 2$ $21 \cdot 27 \cdot 33$ 32 32 $1 \cdot 2$ $7 \cdot 3$ $5 \cdot 2$ $5 \cdot 3 \cdot 3$ $3 \cdot C$ $1 \cdot 2$ $7 \cdot 3$ $5 \cdot 2$ $5 \cdot 3 \cdot 3$ $3 \cdot C$ $1 \cdot 2$ $23 \cdot 29$ 35 $4 \cdot 13 \cdot 2$ $1 \cdot 4$ $10 \cdot 3$ $24 \cdot 30$ 36 $36 \cdot 31 \cdot 2$ $36 \cdot 31 \cdot 2$ $1 \cdot 4$ $10 \cdot 2$ $24 \cdot 30 \cdot 36$ $36 \cdot 31 \cdot 2$ $36 \cdot 31 \cdot 2$ $36 \cdot 31 \cdot 2$ $1 \cdot 4$ $10 \cdot 2 \cdot 5 \cdot 12 \cdot 5 \cdot 3 \cdot 3$ $10 \cdot 2 \cdot 5 \cdot 3 \cdot 2$ <td>Survey Unit Inspe</td> <td></td> <td></td> <td></td> <td>Date 4-21-05 Time 1000</td>	Survey Unit Inspe				Date 4-21-05 Time 1000
Interview of the second seco	的自己的社会社会			NFORMATI	ON & PERSONNEL INVOLVED
Caliper Serial Number 0763893 Calibration Due Date (as applicable) N/A Rad Con Technician $B_{Abuse S beca G < A}$ Date $4-2l-o5$ Time 0945 Survey Unit Inspector Approval $LMistance Date 4-2l-o5 Time 0945 SMTA Grid Map & Measurement Results in Units of mm (Insert Results in White Blocks Below) OT G 3 31 Date 4-2l-o5 SMTA Grid Map & Measurement Results in Units of mm (Insert Results in White Blocks Below) Comments Comments 112 2.5 5.1 4.3 1.4 20 26 32 1.2 7.2 1.3 19 25 31 31 31 1.2 7.2 1.3 7.7 8 31 31 1.2 7.7 1.2 3.7 8 34 $	Caliper Manufact	urer Mi	tutoyo		Caliper Model Number CD-6'-CS
Intervent der	Caliper Serial Nui			С	alibration Due Date (as applicable) N/A -
Survey Unit Inspector Approval Within Dutant Date $4-21-05$ SECTION 3 - MEASUREMENT RESULTS SECTION 3 - MEASUREMENT RESULTS Image: Comments SMTA Grid Map & Measurement Results in Units of mm (Insert Results in White Blocks Below) Comments Image: Comments Image: Commen	Rad Con Technic	ian Brow	insben ber		Date 4-21-05 Time 0945
SECTION 3 - MEASUREMENT RESULTS SMTA Grid Map & Measurement Results in Units of mm (Insert Results in White Blocks Below) Comments 13 19 25 31 $2.L$ 2.5 5.1 $4'.3$ $1.C$ $.6$ $2.L$ 2.5 5.1 $4'.3$ $1.C$ $.6$ $2.L$ 2.5 5.1 $4'.3$ $1.C$ $.6$ $3.L$ 2.5 5.1 $4'.3$ $1.C$ $.6$ 1.2 2.2 11.3 $.7$ $.8$ 1.2 $.7$ 7.3 5.2 $.5$ 3.3 1.2 $.7$ 7.3 5.2 $.5$ 3.3 1.2 $.7$ 7.3 5.2 $.5$ 3.3 1.2 $.7$ 7.3 5.2 $.5$ 3.3 1.2 $.7$ 7.3 5.2 $.5$ 3.4 $.3.2$ 2.9 35 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 <	Survey Unit Inspe			: pit	enhal Date 4-21-05
Comments Comments Comments 13 19 25 31 2.6 2.5 3.1 $.6$ 2.2 81 14 20 26 32 $.7$ 1.2 2.2 11.3 $.7$ $.6$ 12 7 1.2 21.2 27.3 33.3 1.2 $.7$ 7.3 5.2 $.5$ 3.3 1.2 $.7$ 7.3 5.2 $.5$ 3.3 1.2 $.7$ 7.3 5.2 $.5$ 3.3 43 100 16 222 28 34 $.3$ 1.2 3.7 $.6$ 3.4 $.7$ $.7$ 17 23 29 35 $.7$ <td></td> <td></td> <td></td> <td></td> <td></td>					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Comments
$\cdot 7$ 1.2 2.2 11.3 $.7$ $.8$ $\cdot 7$ 1.2 2.2 11.3 $.7$ $.8$ 1.2 $.7$ 7.3 5.2 $.5$ 3.3 1.2 $.7$ 7.3 5.2 $.5$ 3.3 1.2 $.7$ 7.3 5.2 $.5$ 3.3 1.2 $.7$ 7.3 5.2 $.5$ 3.3 $i.2$ $.7$ 7.3 5.2 $.5$ 3.3 $i.2$ 3.9 5.3 $.3$ $.6$ $i.44$ 10.7 2.3 2.9 35 A_{VI} A_{VI} 3.2 $i.44$ 10.8 2.3 6.7 1.1 $.7$ 2.3 2.9 35 $i.44$ 10.8 2.3 6.7 1.1 $.7$ 2.3 2.6 3.6 A_{VI} 3.6 A_{VI} 3.6 A_{VI} 3.6 A_{VI} 3.6 A_{VI} A_{VI} A_{VI} A_{VI} A_{VI} <				•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			20 26 1	32	
1.2 $.7$ 7.3 5.2 $.5$ 3.3 $i3$ 1.2 3.9 5.3 $.3$ $.6$ $i3$ 1.2 3.9 5.3 $.3$ $.6$ $i5$ 111 17 23 28 35 $i.4$ 10.8 2.3 6.7 1.1 $.2$ $i.4$ 10.8 2.3 6.7 1.1 $.2$ $i.4$ 10.8 2.3 6.7 1.1 $.2$ 35 $i.4$ 10.8 24 30 36 36 2.94 30 36 3.6 4.6 2.5 12.5 3 $.6$ 36 55 $5aavets$ $5s$ $5aavets$ Average Measurement 2.944 mm am am am am			11.3 .7	· 8	
1.2 $.7$ 7.3 5.2 $.5$ 3.3 10 16 22 28 34 $.7$ $.5-1-3$ 13 1.2 3.9 5.3 $.3$ $.6$ $AY132$ 1.4 10.8 2.3 6.7 1.1 $.2$ 35 $AY132$ 1.4 10.8 2.3 6.7 1.1 $.2$ 35 $AY132$ 1.4 10.8 2.4 30 36 36 844132 1.4 10.8 24 30 36 844132 844132 1.4 10.8 24 30 36 844132 844132 1.4 10.8 24 30 36 844132 844132 844132 1.4 10.8 24 30 36 844108 844108 84608 84608 84608 1.4 10.8 24 30 36 855 84008 84008 84008 855 84008	SPANE REPORT	7	21 . 27 .	33	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.3 5	5.2 .5		· ·
$\cdot 3$ $1 \cdot 2$ $3 \cdot 9$ $5 \cdot 3$ $\cdot 3$ $\cdot 6$ $\cdot 5$ $11 \cdot 1$ 17 23 29 35 $1 \cdot 4$ $10 \cdot 8$ $2 \cdot 3$ $6 \cdot 7$ $1 \cdot 1$ $\cdot 2$ $1 \cdot 4$ $10 \cdot 8$ $2 \cdot 3$ $6 \cdot 7$ $1 \cdot 1$ $\cdot 2$ $Suavey$ $Axea$ $Suaefaces$ $with$ $1 \cdot 4$ $10 \cdot 8$ 24 30 36 $Suavey$ $Axea$ $Suaefaces$ $with$ $3 \cdot 6$ $4 \cdot 6$ $2 \cdot 5$ $12 \cdot 5$ $3 \cdot 6$ $6 \cdot 7$ $6 \cdot 7$ $1 \cdot 1$ $2 \cdot 7$ $3 \cdot 6$ $Suavey$ $Axea$ $Suaefaces$ $with$ $A verage$ Measurement $2 \cdot 9 \cdot 4$ mm mm mm $a \cdot 7 \cdot 5 \cdot 5$	4 11 10	16	22 28	34	575 TH 55-1-3
3.6 4.6 2.5 13.5 · 3 · 6 P 55 Surveys. Average Measurement 2.94 mm		3.9 5	5.3 .3	.6	1 × - + + = 1
3.6 4.6 2.5 13.5 · 3 · 6 P 55 Surveys. Average Measurement 2.94 mm	6 4110	17	23 29	35	A4132
3.6 4.6 2.5 13.5 · 3 · 6 P 55 Surveys. Average Measurement 2.94 mm			5.7 1.1	.2	SURVEY AREA SURFACES Will
3.6 4.6 2.5 13.5 · 3 · 6 P 55 Surveys. Average Measurement 2.94 mm	8 12	18	24 30	36	Require Clerning PRIOR TO
,,,	3.6 4.6	2.5 1	2.5 .3	.6	PSS SUNVEYS.
Additional Measurements Required	Average Me	easurement	2.94	mm	ŗ
			Additiona	al Measuren	nents Required
$\Delta + t_{a-1} + \alpha - 4$			المتعادي والمتعادية والمتعادية والمتعادية والمتعادية المتعادية		Attal = + (r-
9 Attochusert 4-4 5900-05-015				9	SQM -NS-AIT

1				Number			
SAXTON NUCLEARSaxton Nuclear Experimental Corporation Facility Policy and Procedure ManualE900-IMP-4520.06							
Title Revision No.							
Survey Unit Inspection in Su	pport of FSS Des	ign		0	,		
	EXHIBI	ТЗ		GRIGI			
Surface	e Measurement Test /		Sheet	Unitin			
	SECTION 1 - DE	SCRIPTION					
SMTA Number SMTA - 55 /- 4	Surv	ey Unit Number	04-11	BoiLen Pr	4D Conc.		
SMTA Location 5565	DoiLenPAD	ARen					
Survey Unit Inspector Sheep	•	Date	4-21-	ט 5 Time	1030 -		
SECTION 2 - C	CALIPER INFORMATI	ON & PERSONNE		D			
Caliper Manufacturer Mitu-		Caliper Model Nu		<u>D-6"- CS</u>			
	3893 0	alibration Due Date	e (as applica	able) N/A	L · ·		
Rad Con Technician BRown Sh	······································	Date	4-21-		1000		
	Elizanan Mar	he		Date 4-21	1-05		
De élimbertass for a na la la la	ECTION 3 - MEASUR		i				
SMTA Grid Map & Measurement Re (Insert Results in White Bld			Comme	ents			
· 13 · 19	25 31						
5.4 3.3 17.1 8.8	7.9 4.6				、		
8 14 20	26 32						
2.7 3.4 3.3 1.7	6.0 4.5	Y,	SM 551				
9 15 21			100				
3.7 7.6 4.1 10.7	16.3 3.3		Fr				
414 10 16 22	28 ,34				·		
3.1 3.4 2.4 1.3	17.2 15.7	<u>x-</u>	(8FT.	→	· [
· · · · · · · · · · · · · · · · · · ·	29 35 4.5 4.2	ATI	32		-		
		AREAS Rem Will Need	esenter	hythis	Smith I before		
記録 (12): 18 ··· 24 み・13 ア・1 1・1 4・0	30 36 J.Y 5.Y	Will weed Surveys	Sustace. Are done	-			
	.44 mm		-				
	Additional Measuren	nents Required					
					74		
				ASTOC	24 Luscht 9-6 -05-015		
	9			<i>c (UV</i>			

7

ء •

(: ·

•

1. Purpose

This procedure details the requirements for performing a position calibration of a PSPC detector array.

2. Scope and Limitations

This procedure applies to version 2.0 or later of the Surface Contamination Monitor process software.

3. Definitions and Acronyms

ITEM	DESCRIPTION
SCM	The Surface Contamination Monitor is a mobile platform containing detectors, support electronics, and data logger used for conducting radiological surveys.
SIMS	Survey Information Management System – SIMS is flexible and comprehensive interfacing software for the SRA SCM. SIMS processes the SCM instrument data with a sophisticated data parser, integrated spreadsheet, and powerful special functions such as spatial data filters. SIMS provides the most flexible reporting system available for printing survey records or complete stand-alone survey reports. SIMS contains all the tools needed to meaningfully communicate between the SCM and the data analysis team.
PSPC	Position Sensitive Proportional Counter – This is a radiation detector that is capable of establishing where along the detector a pulse is sensed (the system is described in NUREG/CR-6450). The detectors are similar in efficiency to other counters, but have backgrounds associated with small area detectors (5cm x 5cm). This results in improved sensitivity, due to low background, and specific identification of the location of the radioactivity. The manufacturer of PSPCs makes them in any length.
Peak Edge	The channel that is halfway between the maximum and minimum of the peak on the side of the peak facing the nearest MHV connector.

Table 1. Definitions and Acronyms.

4. General Information

The design of the SCM acquisition system allows several detector configurations. To this end, the acquisition engine and software provides for adjustments to allow for the differences between the attributes of the different detector configurations. The most important of these adjustments is the position calibration.