APPENDIX A

SNEC Calculation E900-05-024 Open Land FSS Design – OL3

.

.

.

FirstEnvigy SNEC CALCULATION COVER SHEET							
	CALCU	LATION DESCRIP	PTION				
Calculation Number		Revision Number	Effective Date	F	Page Nu	mber	
E900-05-024		0	27 May 200	5	1	of	9
Subject				1			
Open Land FSS Design – OL	3	<u></u>					
Question 1 - Is this calculation def	ined as "In QA Sco	pe"? Refer to definition 3	3.5. Yes 🛛 No 🗌				
Question 2 - Is this calculation def	ined as a "Design C	alculation"? Refer to de	finitions 3.2 and 3.3. Y	es 🛛	No		
NOTES: If a "Yes" answer is obtained Assurance Plan. If a "Yes" answer calculation as the Technical Reviewer.	for Question 1, the ca is obtained for Que	lculation must meet the req stion 2, the Calculation O	uirements of the SNEC Fac riginator's immediate super	ility De rvisor s	commis should i	sioning C not revie	Quality w the
	DESCR	RIPTION OF REVIS	SION				
							Í
	APPR	OVAL SIGNATUR	ES	•			
Calculation Originator	Tristan M. Tri	tch/ flisten 4	n. Rith	Date	s	26/0	5
Technical Reviewer	W. J. Cooper/	MALPE	- for c	Date	271	Mayzi	200
Additional Review	A. Paynter/	WH CK		Date	271	Nayza	Zex
Additional Review				Date			
					-		

.

Brattinengy	NEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-024	0	Page 2 of 9
Subject		
Open Land ESS Design - OL 3		

7

1.0 PURPOSE

- The purpose of this calculation is to develop a final status survey design for open land area 1.1 OL3 (soil only) at the Saxton Nuclear Experimental Corporation (SNEC) facility. The nonsoil portions of OL3 will be surveyed under Open Land FSS Design - OL3 Paved Surfaces The OL3 fence surveys will be performed under and Concrete, E900-05-032. Miscellaneous Chain Link Fences - Survey Design, E900-05-023.
- 1.2 Survey Area OL3 is an Impacted Class 1 area which encompasses the old on-site driveway, the current parking area, and the soil processing facility (SPF, also known as dirt world) on the SNEC facility decommissioning project. It covers approximately 9,400 square meters (94 10m x 10m grids). Of that surface area, slightly more than 8180 square meters is soil, 991 square meters is concrete, and 225 square meters is asphalt. Table 5-5 of the SNEC License Termination Plan (LTP) limits the physical size of Class 1 survey areas to 2000 square meters. Due to this area constraint, OL3 will be subdivided into six smaller survey units, namely OL3-1 through OL3-6, containing 2000, 1800, 1800, 1300, 2000, and 500 square meters, respectively. The corresponding soil areas are 2000, 654, 1800, 1294, 1972, and 464 square meters.
- 1.3 Originally, OL3 contained five units; however, five grids from survey unit OL9-2 were transformed into OL3-6 because activity greater than the DCGL (requiring remediation) was detected. OL9-2 is an impacted Class 2 area.
- 1.4 All post-remediation soil samples have indicated that no detectable activity greater than the Administrative Limit (AL) exists in this entire survey area.
- 1.5 The general layout of the six survey units is shown on Attachment 1-1.

2.0 SUMMARY OF RESULTS

Below is information that should be used to develop a Survey Request (SR) for each of the six survey units.

The US NRC has reviewed and concurred with the methodology used to derive the effective DCGLw value listed below. See also Attachments 2-1 through 2-4 from Reference 3.13.

Volumetric DCGLw (pCi/g – Cs-137)
5.73 (4.3 A.L.)

Table 1. DCGLw Values

NOTE: A.L. is the site Administrative Limit (75% of the effective DCGLw)

Of the 94 grids in OL3, 247 soil samples were taken from 67 of those grids. No sample exhibited activity greater than the DCGL. The on-site sampling data was used to generate a sigma value (standard deviation) for determining the number of static measurements and soil samples to be taken during FSS. In addition, 21 samples from survey areas OL1 and OL2 were sent off site for "SNEC 11" analyses. OL1 and OL2 data were used in this design because only one sample from OL7 was sent off-site for analysis. The expectation is that, by the very quantity of samples taken, the OL1/OL2 data would more accurately represent the ratios of radionuclides present in the soil.

SNEC CALCU	ILATION SHEET	·····
Calculation Number	Revision Number	Page Number
E900-05-024	0	Page 3 of 9
Subject		

2.1 Survey Design

7

Open Land FSS Design – OL3

- 2.1.1 Scanning of open lands shall be performed using a <u>2" dia. by 2" long Nal detector</u> with a Cs-137 window setting (Reference 3.1). The window will straddle the Cs-137 662 keV full energy peak width (see typical calibration information on Attachment 3-1).
- 2.1.2 The instrument conversion factor/efficiency shall not be less than that assumed on Attachment 4-1: <u>205.6 cpm/uR/h Cs-137</u>.
- 2.1.3 Other instruments, of the type specified in Section 2.1.1 above, may be used during the final status survey (FSS), but they must demonstrate detection efficiencies at or above the value listed in Section 2.1.2.

Table 2, Soil Scanning Parameters

MDCscan (pCl/g) – Cs-137*	Scan Speed (cm/sec)	Maximum Distance from Surface	Action Level	% Coverage
5.67	25	4" (gap between detector face & soil surface)	> 160 ncpm	100%

See Attachment 4-1 *

- 2.1.4 If a count rate greater than the action level in Table 2 is encountered during the scanning process, then the surveyor shall stop and locate the boundary of the elevated area. The surveyor should then mark the elevated area with stakes or other appropriate marking methods. <u>Sample the elevated areas(s)</u> IAW SNEC procedure E900-IMP-4520.04 (Reference 3.2), Section 2.2 of this document, and the investigation design.
 - 2.1.4.1 <u>Class 1</u> soils should be scanned using a serpentine pattern that is ~0.5 meters wide.
 - 2.1.4.2 As this is a Class 1 survey area, 100% of all accessible surfaces are required to be scanned. See **Attachment 1-1** for grid layouts for the six survey units.
 - 2.1.4.3 Portions of survey units which cannot be accessed should be clearly noted along with the reason for not completing the survey.
- 2.1.5 The minimum number of soil sampling points indicated by the COMPASS computer program (Reference 3.3) is <u>11</u> for all six units (see COMPASS output on Attachments 7-1 to 7-13). Sampling depth should be IAW Section 2.2. The MDCscan (soil) is less than the effective administrative DCGLw _{Cs-137} (5.67 pCi/g MDCscan @ 250 cpm background < 5.73 pCi/g DCGLw), therefore the scan MDC meets MARSSIM requirements.</p>
- 2.1.6 VSP (Reference 3.4) is used to plot all sampling points on the included diagrams. The actual number of random start systematically spaced measurement points may be greater than that required by the Compass computer code because of any or all of the following:
 - placement of the initial random starting point (edge effects),

SNEC CALCULATION SHEET				
Calculation Number	Revision Number	Page Number		
E900-05-024	0	Page 4 of 9		
Subject	· · · · · · · · · · · · · · · · · · ·			
Open Land FSS Design – OL3				

• • • •

- odd shaped diagrams, and/or
- coverage concerns

(see Attachments 6-1 through 6-12 for VSP sampling point locations)

- 2.1.7 The starting points for physically locating sample sites in the survey unit are based on measurements from site grid pins (see diagram on Attachments 6-1, 6-3, 6-5, 6-7, 6-9, and 6-11). Remaining soil sampling points are positioned using coordinates developed from these markers and listed on Attachments 6-2, 6-4, 6-6, 6-8, 6-10, and 6-12.
- 2.1.8 Some sampling points may need to be adjusted to accommodate obstructions within the survey area. Contact the SR coordinator to report any difficulties encountered when laying out systematic grid sampling points.
- 2.1.9 When an obstruction is encountered that will not allow collection of a sample, <u>contact the cognizant SR coordinator</u> for permission to delete the sampling point.

NOTE

If remediation actions are taken as a result of this survey, this survey design must be revised or re-written entirely.

2.2 Sample fixed point and elevated areas(s) IAW SNEC procedure E900-IMP-4520.04 (Reference 3.2) and the following.

NOTE

Since the site surface dose model is 1 meter in depth, samples representative of the entire one meter thick dose model layer must be collected to satisfy the sampling requirements of Section 2.1.5 (of this document). This should be done by obtaining a well mixed sample of an entire one meter deep core. Sections 4.2.3, 4.2.6, or 4.2.7 of site procedure E900-IMP-4520.04 are applicable when satisfying Section 2.1.5 of this document. Sampling due to an instrument alarm condition should also be of the entire one meter of soil/material.

- 2.2.1 Clearly mark, identify and document all sample locations.
- 2.3.1 Sample any location that is above the action level cited in Table 2.
- 2.3.2 Maintain chain-of-custody requirements on all design fixed point and action level samples (Reference 3.12).

3.0 REFERENCES

- 3.1 SNEC Calculation No. E900-03-018, "Optimize Window and Threshold Settings for the Detection of Cs-137 Using the Ludlum 2350-1 and a 44/10 Nal Detector", 8/7/03.
- 3.2 SNEC Procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".
- 3.3 COMPASS Computer Program, Version 1.0.0, Oak Ridge Institute for Science and Education.
- 3.4 Visual Sample Plan, Version 3.0, Copyright 2004, Battelle Memorial Institute.

Fisterer	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-024	0	Page 5 of 9
Subject		

Open Land FSS Design – OL3

- 3.5 SNEC Facility License Termination Plan.
- 3.6 SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA".
- 3.7 GPU Nuclear, SNEC Facility, "Site Area Grid Map", SNECRM-020, Sheet 1, Rev 4, 1/18/05.
- 3.8 SNEC Calculation No. E900-03-012, Effective DCGL Worksheet Verification.
- 3.9 SNEC Procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design".
- 3.10 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.
- 3.11 Microsoft Office Excel, Version 11.0.5612, Microsoft Corporation Inc., 1985-2003.
- 3.12 SNEC Procedure E900-ADM-4500.39 "Chain of Custody for Samples"
- 3.13 DCGL Calculation Logic CV Yard Soil & Boulders, E900-04-006.
- 3.14 Personal conversation between Tristan Tritch and with Rob Marquette, 3/24/05.
- 3.15 1994 Saxton Soil Remediation Project Report, May 11, 1995.

4.0 ASSUMPTIONS AND BASIC DATA

- 4.1 The COMPASS computer program is used to calculate the required number of random start systematic samples to be taken in the survey unit (Reference 3.3).
- 4.2 Characterization soil samples from this area are used as the initial estimate of variability. These results are shown on **Attachments 8-1** through **8-5**.
- 4.3 The MARSSIM Sign Test will be applicable for this survey design. No background subtraction will be performed under this criterion during the DQA phase.
- 4.4 The Visual Sample Plan (VSP) computer code (Reference 3.4) locates the required number of fixed survey points, determined by COMPASS, on the survey map for each survey unit.
- 4.5 **References 3.5** and **3.6** were used as guidance during the survey design development phase.
- 4.6 Background has been measured in the area and is approximately <u>250 cpm (Reference</u> 3.14).
- 4.7 The determination of the physical extent of this area is based on the drawing **Reference** 3.7.
- 4.8 OL3 has been subjected to extensive remediation.
 - 4.8.1 OL3-3 was previously designated as residing in OL-1. Grids AQ127, AQ128, and AR127 had Cs-137 up to 5 pCi/g. Subsequently, the soil was removed, the area was rescanned, and additional samples were taken. Post-remediation samples showed Cs-137 at levels no greater than 1.7 pCi/g.
 - 4.8.2 Contamination was detected in the "burn area" in OL3-4 and southern portion of OL3-5. Soil was removed, the area was rescanned and additional soil samples were taken.

SNEC	CALCULATION SHEET	त्र स्टब्स् स्ट स
Calculation Number	Revision Number	Page Number
E900-05-024	0	Page 6 of 9
Subject		
Open Land FSS Design – OL3		

. . .

- 4.8.3 Soil from the northernmost portion of OL3-5 was removed. See Figures 1 and 3 of the 1994 Saxton Soil Remediation Project Report (Reference 3.15). Soil activity as high as 38 pCi/g was removed from this area. Grids were not designated the way they are in 2005, but one can get an idea of the area remediated when referencing to the location of the Penelec Line Shack.
- 4.8.4 One grid adjacent to the former SSGS cooling water intake, in OL3-6, was subject to recent remediation when activity was found during an FSS survey of OL9-2. The highest activity found was 14.4 pCi/g. Sampling, following removal of approximately 18 inches of soil, produced no activity greater than the DCGL.
- 4.9 This survey design uses Cs-137 as a surrogate for all SNEC facility related radionuclides in the survey unit. The effective DCGLw is the Cs-137 DCGLw from the SNEC LTP (6.6 pCi/g) adjusted (lowered) to compensate for the presence (or potential presence) of other SNEC-related radionuclides. In addition, an administrative limit (75%) has been set that further lowers the permissible Cs-137 concentration to an effective surrogate DCGLw for this survey area.
- 4.10 The sample database contained only one sample, which was assayed both on site and off site, with which to determine the effective radionuclide mix for Area OL3. In order to obtain a more representative mix of expected radionuclides, data from OL1 and OL2 were used instead. This list is shown on Attachments 2-1 through 2-3 and includes 21 analyses.

The decayed set of sample results were input to the spreadsheet titled "Effective DCGL Calculator for Cs-137" (Reference 3.8) to determine the effective volumetric DCGLw values for the three survey units. The output of this spreadsheet is shown on Attachment 2-4 which is copied from Reference 3.13. The spreadsheet was previously reviewed.

The Nal detector scan MDC calculation is determined based on a 25 cm/sec scan rate, a 1.38 index of sensitivity (95% correct detection probability and 60% false positive) and a detector sensitivity of 205.6 cpm/uR/h for Cs-137. Additionally, the detection system incorporates a Cs-137 window that lowers sensitivity to background in the survey unit. The resulting background is approximately <u>250 cpm</u> (Reference 3.14) for most locations in OL3.

- 4.11 The survey units described in this survey design were inspected. A copy of the OL3 specific portion of the SNEC facility post-remediation inspection report (Reference 3.9) is included as Attachment 9-1.
- 4.12 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in this survey area.
- 4.13 The decision error for this survey design is 0.05 for the α value and 0.1 for the β value.
- 4.14 "Special measurements", as described in the SNEC LTP sec 5.5.3.4, are not included in this survey design.
- 4.15 No additional sampling will be performed IAW this survey design beyond that described herein.
- 4.16 SNEC site radionuclides and their individual DCGLw values are listed on **Exhibit 1** of this calculation.
- 4.17 The survey design checklist is listed in Exhibit 2.

SNEC CALCU	JLATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-024	0	Page 7 of 9
Subject		

Open Land FSS Design – OL3

4.18 Area factors are shown as part of COMPASS output (see Attachment 7-1) and are based on the Cs-137 area factors from the SNEC LTP.

5.0 CALCULATIONS

5.1 All calculations are performed internal to applicable computer codes or within an Excel spreadsheet.

6.0 APPENDICES

- 6.1 Attachment 1-1 is a diagram of survey units OL3-1 through OL3-6.
- 6.2 Attachments 2-1 through 2-4 show the DCGL Calculation Logic CV Yard Soil & Boulders (Reference 3.13).
- 6.3 **Attachment 3-1** is a copy of the calibration data from typical Nal radiation detection instrumentation that will be used in this survey area.
- 6.4 Attachment 4-1 is the MDCscan calculation sheet for volumetric materials in pCi/g.
- 6.5 Attachment 5-1 is the MicroShield dose rate calculation results for 6" thick soil used to determine the exposure rate from a 1 pCi/cm³ Cs-137 source term in an end-cylinder geometry.
- 6.6 Attachments 6-1 through 6-12 show both the random soil sampling points and the biased scan locations and reference coordinates for Survey Units OL3-1 through OL3-6.
- 6.7 Attachments 7-1 through 7-13 are COMPASS outputs for Survey Units OL3-1 through OL3-6 showing area factors, the number of sampling points in each survey unit, and prospective power.
- 6.8 Attachments 8-1 through 8-5 show the soil variability results for samples from OL3 based on all available data taken from the area.
- 6.9 Attachment 9-1 is a copy of the inspection report for OL3.

Histenergy	SNEC CALCULATION SHEET	(WELLEY VERY STREET, S
Calculation Number	Revision Number	Page Number
E900-05-024	0	Page 8 of 9
Subject		
Open Land FSS Design – OL3		

Exhibit 1

7

SNEC Facility Individual Radionuclide DCGL Values (a)

Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm ²)	25 mrem/y Limit (All Pathways) Open Land Areas (Surface & Subsurface) (pCi/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	1.9E+04
Pu-238	3.0E+01	1.8	0.41
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	0.61

NOTES:

(a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

(b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

A REAL PROPERTY AND A REAL PROPERTY A REAL PRO Fishing a SNEC CALCULATION SHEET **Calculation Number Revision Number** Page Number 0

E900-05-024

Page 9 of 9

Subject

Open Land FSS Design – OL3

7

Exhibit 2 **Survey Design Checklist**

Calcul	ation No.	Location Codes	··-	
	E900-05-024	OL3	- <u> </u>	
ITEM	REVIE	V FOCUS	Status (Circle One)	Reviewer Initials & Date
1	Has a survey design calculation number been assigned and is a survey design summary description provided?		Yés N/A	225/31/0
2	Are drawings/diagrams adequate for the s hear	ubject area (drawings should have compass tings)?	Yes, N/A	en 5/31/0
3	Are boundaries properly identified and is the	e survey area classification clearly indicated?	(Yes) N/A	012 5 BIL
	Has the survey area(s) been properly	livided into survey units IAW EXHIBIT 10	Yes, N/A	22 57311
5	Are physical characteristics of the	area/location or system documented?	(Yes) N/A -	21 5/31
6	Is a remediation effective	eness discussion included?	Yes N/A	22 5/3/6
7	Have characterization survey and/or sam comparable to app	bling results been converted to units that are licable DCGL values?	Yes N/A	27 51310
8	Is survey and/or sampling data that was used	for determining survey unit variance included?	Yes N/A	25/31/0
9	Is a description of the background reference sampling results included along v	e areas (or materials) and their survey and/or rith a justification for their selection?	Yes, N/A	[
10	Are applicable survey and/or sampling data t	hat was used to determine variability included?	Yes, N/A	2 57310
11	Will the condition of the survey area have probable impact been	an impact on the survey design, and has the considered in the design?	Yes, N/A	02-57716
12	Has any special area characteristic includ previously noted during characterization) b de	ling any additional residual radioactivity (not een identified along with its impact on survey sign?	Yes N/A	
13	Are all necessary supporting calculations a	nd/or site procedures referenced or included?	(Yes,) N/A	25B1/01
14	Has an effective DCGLw been	identified for the survey unit(s)?	Yes, N/A	2 5 13,10
15	Was the appropriate DCGL _{EMC} inclu	ded in the survey design calculation?	Yes N/A	25/31/2
16	Has the statistical tests that will be us	ed to evaluate the data been identified?	Yes, N/A	25/3/10
17	Has an elevated measurement comp	arison been performed (Class 1 Area)?	Yes NHA	225 1310
18	Has the decision error levels been identified	and are the necessary justifications provided?	Yes N/A	251310
19	Has scan instrumentation been identified al	ong with the assigned scanning methodology?	(Yes) N/A	225/31/0
20	Has the scan rate been identified, and is th	e MDCscan adequate for the survey design?	Yes, N/A	0251310
21	Are special measurements e.g., in-situ gamm and is the survey methodology, a	a-ray spectroscopy required under this design, nd evaluation methods described?	Yes, NA	
22	Is survey instrumentation calibration data inc	uded and are detection sensitivities adequate?	Yes, N/A	2= 5B10
23	Have the assigned sample and/or measureme or CAD drawing of the survey an	nt locations been clearly identified on a diagram ea(s) along with their coordinates?	Yes N/A	2 5/3/10
24	Are investigation levels and administrative lin clearly in	nits adequate, and are any associated actions ndicated?	Yes? N/A	205131/0
25	For sample analysis, have the requ	ired MDA values been determined.?	(Yes) N/A	De 5/314
26	Has any special sampling methodology been i	dentified other than provided in Reference 6.3?	Yes, N/A	

NOTE: a copy of this completed form or equivalent, shall be included within the survey design calculation.

ATTACHMENT 1-1

•

DCGL Calculation Logic-CV Yard Soil & Boulders

- I. Survey Unit: SNEC Containment Vessel (CV) Yard Soil and Boulders
- II. Description: The purpose of this calculation is to determine a representative isotopic mix for the CV Yard Soil and associated Boulders from available sample analyses. The effective volumetric DCGL_ws are then determined from the mean percent of applicable samples.
- III. Data Selection Logic Tables: The radionuclide selection logic and subsequent DCGL calculations are provided in six (6) tables. These tables were developed using Microsoft Excel. Table explanation is as follows.

Table 1: Data Listing – This table, which has been extracted from a larger database, provides a list of the most representative sample analyses. Results are from scoping, characterization, and pre/post remediation surveys. The samples consist of soil media that was taken in support of the aforementioned surveys. As applicable, a sample number, sample location/description, radionuclide concentration, analysis date are provided for each sample. Positive nuclide concentrations are noted with yellow/shaded background fields while MDA values are noted in the gray shaded fields.

Table 2: Decayed Listing – This table decays the data from Table 1. Half-life values (days) are listed above each respective nuclide column. Samples are decayed from the respective analysis date to January 15, 2004. Positive results are denoted in a yellow background field while MDA values are noted in the gray shaded fields.

Table 3: Decayed Listing of Positive Nuclides & MDAs Removed – This table provides the best overall representation of the data. Non-positive nuclide columns have been removed as well as all the MDA values. Therefore, 11 nuclides have been reduced to four (4).

Table 4: Ratio to Cs-137 for Positive Nuclides – This table provides the calculation methodology for determining the surrogate ratio to Cs-137 for each radionuclide. From this information the mean, sigma, and mean % of total are calculated. The mean % of total values is used to calculate the volumetric DCGL_w per MARSSIM equation I-14. See Table 5. Note that the mean percent values were averaged using only the positive sample results in each column. In some cases only a single nuclide value (e.g. Sr-90) had a positive result. This value is listed as the value in the mean result field. This results in higher "mean percent of total" values in the mix, which are conservative.

Note: From Table 4 only the "mean % of total" values are used as input to the "Effective DCGL Calculation Spreadsheet" as illustrated in Table 5.

Table 5: Effective DCGL Calculator for Cs-137 (in pCi/g) – This table provides thesurrogate volumetric modified Cs-137 DCGLw calculation results from data derived fromTable 4.

IV. Summary – Since the CV Yard and Boulders are volumes of soil or rock material, existing in place or in a pile, the release limit is primarily based on the volumetric DCGL_w. Using the above data selection logic tables the calculated Cs-137 volumetric DCGL_w is 5.73 pCi/g. This value will be reduced by 25% as part of SNEC's requirement to apply an administrative limit as discussed in the License Termination Plan (LTP).

Attachment 2-1

				TABLE	1 - Data Listing	(pCi/g)	······						1	
-	SHEC Sample No.	Location/Description	8.3	Sr-90	Co-60	Cs-137	Am-241	Pu-238	Pu-239	Pu-241	C-14	NI-63	Eu-152	
1	CV Tunnel	CV Tunnel Sediment Composite, 0L1	9.40F+00	9.67E+00	1.26E+00	1.25E+03	1.80E-01	5.50E-01	2.20E-01	4.47E+01	9.34E+00	4.02E+00	1.30E-01	
2	52951 99219	Subsuface Sample #29 (0.5') AY-128 OL1	0.402.00	01012-00	7.00F-02	5.90E.01		0.002 0.						
3	SX SI 1083	Horth CV Yard Soil 86-127 812 El Sample #5 OI 2	4 58E+00	5 31E-02	1 92E-02	8 86E-01	9.61E.02	4.68F-02	3.27F.02	3.77E+00	2.10E-01	1.09E+01	5.25E-02	
4	SYSE 1080	North CV Vard Soil 6X 127, 812 El, Sample # 3, 0L1	3.03E+00	6 95E 02	3 32E 02	1 29E+00	9.935.02	1 28E-01	5.00F-02	4 97E+00	2.10F-01	7.54E+00	8.28E-02	
5	SX SL 1005	North CV Yard Soil AV 128, 804' El Sample # 2, 01 1	4 88E+00	5 36E 02	2 43E-02	1 80E+00	2 40F-01	1 38E-01	4.07E-02	4.21E+00	2.10E-01	7.60E+00	5.71E-02	
8	SV501110	North CV Yard Soil AV 120, 704 El, Sample # 2, 0E1	3.44E+00	5 20E 02	2.79E.02	4 77E+00	1.83E.01	8 94E 02	4 00E-02	3.68E+00	2.06F-01	8.75E+00	8.62E-02	
7	SASL1122	North CV Yard Soll AV 420 2021 EL Sample # 4. OL 4	4 995+00	6 ARE 02	2.095.02	2 265+01	1 495 01	8 56E 02	1 215 02	3 55E+00	2 31E.01	1 34E+01	9.89E.02	
0	SX3L1130	North CV Yard Soll 47, 420, Sample # 4, OC1	2.995+00	7 15E 02	3.50E.02	2.200+01	1.43E-01	7 46F 02	6 46E.02	5.27E+00	2 15E-01	1.26E+01	7 34F.02	
0	5X5L1132	AV 420 2 2 Sell CV SE Side SI Seen CV 2001 SI OLA	1.125+01	2.005.02	1.005.02	2.336+00	3 705 02	7 00E 03	7 00E 03	2 10E+00	3 93E+00	8 68E+00	7 00F-02	
8	SASL1270	AX-129, 3-3, Soll, CV SE Side & From CV, 600 EL, OC1	1.132+01	2.000-02	1.000-02	4 295.00	3.105.02	1.605.02	7.000.03	1.915+00	4.00E+00	7 78E+00	4 00E 02	
10	5X5L1281	AX-128, 3-1, Soll, CV Tunnel East 5 From CV, 800 El, OL1	1.152+01	3.00E-02	1.000-02	4.302+00	0.705.02	1.002-02	1 105 02	1.975+00	1 925 01	1.755+00	4.000.02	· · · · · · · · · · · · · · · · · · ·
11	SXSL2649	Anulus Well, A-2, 5 to 10' Depth, OL1	2.00E+00	3.14E-02	1.00E-01	6.00E-01	9.102-03	1.335-02	1.102-02	1.012400	1.032-01	1.132+00		
13	SXSL2871	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1	in the second	3.00E-02	7.00E-02	5.60E-01								
14	SX5L2872	CV Area - Last Yard Dirt Pile - Bottom (also top center), OL1	4 005 .00	3.00E-02	0.00E-02	1.002-01	7 005 00	5 005 02	5 00E 02	2 605 04	9 COE 02	3 415+00	3 00E 02	
15	SXSL3140	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1	1.89E+00	1.20E-02	1.40E-02	8.252-01	7.00E-03	5.00E-03	3.00E-03	3.092-01	0.00E-02	J.41E+00	J.00E-02	
16	SXSL3142	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1	1 005 00	2.95E-02	7.00E-02	6.00E-01	1005 05	E 005 00	E 00E 00	2 765 64	0 205 02	2 605 .00	2 005 02	a she be day in the second of the
17	SXSL3145	East CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1	1.90E+00	1.70E-02	1.30E-02	1.26E+00	4.00E-03	5.002-03	5.00E-03	3.702-01	0.30E-02	3.09E+00	3.000-02	
18	SXSL3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1		2.97E-02	8.00E-02	3.00E-01		F 005 00	F 0.05 00	0.05.04	0 705 00	1 405 .00	5 405 00	ana in alla nicita alla di nicore i
19	SXSL3153	East CV Yard, Soil Pile @ Top (6" Depth), OL1	1.94E+00	4.30E-02	2.30E-02	3.00E-01	3.00E-03	5.00E-03	5.00E-03	3.43E-01	8.70E-02	4.18E+00	3.10E-02	
21	SXSL4142	CV Yard Soil - West Side, AP1-7, OL1	2.22E+00	3.25E-02	5.00E-02	9.00E-01	1.76E-02	6.71E-02	2.02E-02					
22	SXSL4143	CV Yard Soil - West Side, AP1-7, OL1	2.23E+00	3.16E-02	5.00E-02	5.00E-01	2.21E-02	6.31E-02	3.64E-02					
	SXSI 4149	CV Yard Soil - West Side, AP1-7, OL1	2.24E+00	2.77E-02	7.00E-02	3.90E+00	2.77E-02	4.30E-02	3.04E-02					
3					TABLE 2 - Dec	ayed Listing	(pCi/g)							
3,					TABLE 2 - Dec	ayed Listing	(pCi/g)				1			
13 			T 1/2	T 1/2	TABLE 2 - Dec	ayed Listing	(pCi/g)	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	Decay Date
			T 1/2 4485.27	T 1/2 10446.15	TABLE 2 - Dec T 1/2 1925.23275	T 1/2 11019.5925	(pCi/g) T 1/2 157861.05	T 1/2 32050.6875	T 1/2 8813847.75	T 1/2 5259.6	T 1/2 2092882.5	T 1/2 36561.525	T 1/2 4967.4	Decay Date January 15, 2004
13	SNEC Sámple No	Location/Description	Т 1/2 4485.27 H-3	T 1/2 10446.15 SF-90	TABLE 2 - Dec T 1/2 1925.23275 Co-80	T 1/2 11019.5925 Cs-137	pCi/g) T 1/2 157861.05 Am-241	T 1/2 32050.6875 Pu-238	T 1/2 8813847.75 Pu-239	T 1/2 5259.6 Pu-241	T 1/2 2092882.5 C-14	T 1/2 36561.525 Ni-63	T 1/2 4967.4 Eu-152	Decay Date January 15, 2004 Analysis Date
1	SliEC Sample No CV Tunnel	Location/Description CV Tunnel Sediment Composite, 0L1	T 1/2 4485.27 H-3 7.97E+00	T 1/2 10446.15 Sr-90 9.01E+00	TABLE 2 - Dec T 1/2 1925.23275 Co-50 8.59E-01	T 1/2 11019.5925 Cs-137 1.17E+03	pCi/g) T 1/2 157861.05 Am-241 1.79E-01	T 1/2 32050.6875 Pu-238 5.37E-01	T 1/2 8813847.75 Pu-239 2.20E-01	T 1/2 5259.6 Pu-241 3.88E+01	T 1/2 2092882.5 C-14 9.34E+00	T 1/2 36561.525 Ni-63 3.94E+00	T 1/2 4967.4 Eu-152 1.12E-01	Decay Date January 15, 2004 Analysis Date February 14, 2001
1	SIIEC Sámple No CV Tunnel SX95U99219	Location/Descriptión CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-5'), AY-128, 0L1	T 1/2 4485.27 H-3 7.97E+00	T 1/2 10446.15 Sr-90 9.01E+00	TABLE 2 - Dec T 1/2 1925.23275 Co-80 8.59E.01 4.05E.02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01	(pCi/g) T 1/2 157861.05 Am-241 1.79E-01	T 1/2 32050.6875 Pu-238 5.37E-01	T 1/2 8813847.75 Pu-239 2.20E-01	T 1/2 5259.6 Pu-241 3.88E+01	T 1/2 2092882.5 C-14 9.34E+00	T 1/2 36561.525 Ni-63 3.94E+00	T 1/2 4967.4 Eu-152 1.12E-01	Decay Date January 15, 2004 Analysis Date February 14, 2001 November 17, 199
1 23 1 2 3	SI/EC Sámple No CV Tunnel SX95L99219 SX5L1063	Location/Description CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AV-128, OL1 North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	T 1/2 4485.27 H-3 7.97E+00 4.20E+00	T 1/2 10446.15 Sr-90 9.01E+00 5.11E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01	pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02	T 1/2 32050.6875 Pu-238 5.37E-01 4.62E-02	T 1/2 8813847.75 Pu-239 2.20E-01 3.27E-02	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00	T 1/2 2092882.5 C-14 9.34E+00 2.10E-01	T 1/2 36561.525 Ni-63 3.94E+00	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02	Decay Date January 15, 2004 Analysis Date February 14, 2001 November 17, 199 June 27, 2002
1 23 1 2 3 4	SIIEC Sample No CV Tunnel SX95L99219 SXSL1063 SXSL1089	Location/Description CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-5'), AY-128, 0L1 North CV Yard Soil BA-127, 812 El, Sample # 5, 0L2 North CV Yard Soil AY-127, 810' El, Sample # 3, 0L1	T 1/2 4485.27 H-3 7.97E+00 4.20E+00 2.78E+00	T 1/2 10446.15 Sr-90 9.01E+00 5.11E-02 6.69E-02	TABLE 2 - Dec 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01 1.24E+00	(pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02	T 1/2 32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01	T 1/2 8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00	T 1/2 2092802.5 C-14 9.34E+00 2.10E-01 2.10E-01	T 1/2 36561.525 N:63 3.94E+00 1.08E+01 7.46E+00	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02	Decay Date January 15, 2004 Analysis Date February 14, 2007 November 17, 198 June 27, 2002 June 28, 2002
1 22 3 4 5	SIIEC Sámple IIo CV Tunnel SX85L99219 SX5L1063 SX5L1089 SX5L1115	Location/Descriptión CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soli BA-127, 812° El, Sample ≢ 5, OL2 North CV Yard Soli AY-128, 804° El, Sample ≢ 3, OL1 North CV Yard Soli AY-128, 804° El, Sample ≢ 2, OL1	T 1/2 4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00	T 1/2 10446.15 Sr-90 9.01E+00 5.11E-02 6.69E-02 5.16E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.77E-02 1.98E-02	T 1/2 11019.5925 Cs-137 1.17E-03 5.36E-01 8.55E-01 1.24E+00 1.74E+00	pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01	T 1/2 32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01	T 1/2 8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.07E-02	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00	T 1/2 2092882.5 C-14 9.34E+00 2.10E.01 2.10E.01 2.10E.01	T 1/2 36561.525 Ni-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 5.28E-02	Decay Date January 15, 2004 Analysis Date February 14, 2000 November 17, 199 June 27, 2002 June 28, 2002 June 28, 2002
1 23 1 2 3 4 5 6	SIIEC Sámple IIo CV Turnel SX95L99219 SX5L1083 SX5L1080 SX5L1115 SX5L1122	Location/Descriptión CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0.5'), AY-128, OL1 North CV Yard Soli BA-127, 812' El, Sample # 5, OL2 North CV Yard Soli AY-129, 810' El, Sample # 3, OL1 North CV Yard Soli AY-128, 948' El, Sample # 2, OL1 North CV Yard Soli AY-129, 798' El, Sample # 2, OL1	T 1/2 4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00	T 1/2 10446.15 5r-90 9.01E+00 5.11E-02 6.69E-02 5.10E-02 5.10E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 1.57E-02 1.98E-02 2.28E-02	T 1/2 11019.5925 Cs-137 1.17E-03 5.36E-01 8.55E-01 1.24E+00 1.74E+00 4.60E+00	(pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01	T 1/2 32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02	T 1/2 8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.42E+00	T 1/2 2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.06E-01	T 1/2 36561.525 Ni-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02	Decay Date January 16, 2004 Analysis Date February 14, 200 November 17, 195 June 27, 2002 June 28, 2002 June 29, 2002 June 29, 2002
1 23 1 2 3 4 5 6 7	SIIEC Sample IIo CV Tunnel SX95L08219 SXSL1089 SXSL1089 SXSL115 SXSL112 SXSL112	Location/Description CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AV-128, OL1 North CV Yard Soil BA-127, 812' EI, Sample # 5, OL2 North CV Yard Soil AY-127, 810' EI, Sample # 3, OL1 North CV Yard Soil AY-128, 904' EI, Sample # 2, OL1 North CV Yard Soil AY-129, 980' EI, Sample # 2, OL1 North CV Yard Soil AX-129, 803' EI, Sample # 4, OL1	T 1/2 4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00	T 1/2 10446.15 5r-90 9.01E+00 5.11E-02 6.69E-02 5.10E-02 6.24E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.28E-02 2.44E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E.01 8.55E.01 1.24E+00 1.74E+00 4.60E+00 2.18E+01	(pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01	T 1/2 32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02	T 1/2 8813847.75 Fu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 1.21E-02	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.91E+00 3.42E+00 3.30E+00	T 1/2 2092882.5 C-14 9.34E+00 2.10E.01 2.10E.01 2.10E.01 2.06E.01 2.31E.01	T 1/2 36561.525 NI-63 3.94E+00 1.08E+01 7.66E+00 7.52E+00 8.66E+00 1.33E+01	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 9.15E-02	Decay Date January 15, 2004 Analysis Date February 14, 2001 November 17, 188 June 27, 2002 June 28, 2002 June 28, 2002 June 29, 2002 July 3, 2002
1 23 4 5 6 7 8	SIIEC Sample No CV Tunnei SX95(99219 SX5(1063 SX5(1089 SX5(1115 SX5(1122	Location/Description CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soil BA-127, 812 EI, Sample # 5, OL2 North CV Yard Soil AY-128, 804* EI, Sample # 3, OL1 North CV Yard Soil AY-129, 798* EI, Sample # 2, OL1 North CV Yard Soil AY-129, 798* EI, Sample # 2, OL1 North CV Yard Soil AX-129, 803* EI, Sample # 2, OL1 North CV Yard Soil AZ-130, Sample # 5, OL1	T 1/2 4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 4.58E+00 2.73E+00	T 1/2 10446.15 5:90 9.01E+00 5.11E-02 5.16E-02 5.16E-02 5.16E-02 6.24E-02 6.89E-02	TABLE 2 - Dec T 1/2 1925.23275 C0-60 8.59E-01 4.05E-02 1.57E-02 2.74E-02 2.28E-02 2.86E-02	T 1/2 11019.5925 C=-137 1.17E+03 5.36E-01 1.24E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00	pCi/g) T 1/2 157861.05 Am.241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.43E-01 1.64E-01	T 1/2 32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02	T 1/2 8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 1.27E-02 6.46E-02	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.30E+00 4.89E+00	T 1/2 2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.00E-01 2.31E-01 2.31E-01 2.31E-01	T 1/2 36561.525 NI-63 3.94E+00 1.08E+01 7.46E+00 7.46E+00 8.66E+00 1.33E+01 1.25E+01	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 9.15E-02 9.15E-02 6.79E-02	Decay Date January 15, 2004 Analysis Date February 14, 2001 November 17, 199 June 27, 2002 June 29, 2002 June 29, 2002 July 3, 2002 July 3, 2002
1 23 4 5 6 7 8 9	SIIEC Sámple IIo CV Tunnel SX95L99219 SX5L1089 SX5L1089 SX5L115 SX5L112 SX5L112 SX5L112 SX5L112	Location/Descriptión CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-5'), AY-128, 0L1 North CV Yard Soli AA-127, 812' El, Sample # 5, 0L2 North CV Yard Soli AY-127, 810' El, Sample # 3, 0L1 North CV Yard Soli AY-128, 908' El, Sample # 3, 0L1 North CV Yard Soli AY-128, 908' El, Sample # 2, 0L1 North CV Yard Soli AX-129, 803' El, Sample # 4, 0L1 North CV Yard Soli AZ-130, Sample # 3, 0L1 AX-129, 3-3, Soli, CV SE Side & From CV, 800' El, 0L1	T 112 4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00 2.73E+00 9.84E+00 9.84E+00	T 1/2 10446.15 Sr-80 9.01E+00 5.11E-02 6.69E-02 5.10E-02 6.24E-02 6.28E-02 1.88E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 1.57E-02 2.27E-02 2.28E-02 2.44E-02 2.86E-02 7.22E-03	T 1/2 11019.5925 Cs-137 1.77E-03 5.36E-01 8.55E-01 1.24E+00 1.74E+00 2.18E+01 2.50E-00 2.18E+01	(pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 1.64E-01 3.69E-02	T 1/2 32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03	T 1/2 8013847.75 Pu-238 2.00E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.91E+00 3.30E+00 4.89E+00 1.87E+00 1.87E+00	T 1/2 2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.31E-01 2.15E-01 3.93E+00	T 1/2 36561.525 Ni-83 3.94E+00 7.46E+00 7.52E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.79E-02 6.77E-02	Decay Date January 15, 2004 Analysis Date February 14, 200 November 17, 198 June 28, 2002 June 29, 2002 June 29, 2002 July 3, 2002 July 3, 2002 July 3, 2002
1 23 4 5 6 7 8 9 9	SIIEC Sample IIo CV Tunnel SX95L99219 SX5L1083 SX5L1089 SX5L115 SX5L112 SX5L112 SX5L1120 SX5L120 SX5L121	Location/Description CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-5'), AY-128, 0L1 North CV Yard Soil AY-127, 810' El, Sample # 5, 0L2 North CV Yard Soil AY-128, 800' El, Sample # 3, 0L1 North CV Yard Soil AY-128, 800' El, Sample # 2, 0L1 North CV Yard Soil AY-128, 800' El, Sample # 2, 0L1 North CV Yard Soil AY-129, 803' El, Sample # 4, 0L1 North CV Yard Soil AY-129, 803' El, Sample # 4, 0L1 North CV Yard Soil AY-129, 803' El, Sample # 4, 0L1 North CV Yard Soil AY-129, 803' El, Sample # 4, 0L1 North CV Yard Soil AY-129, 803' El, Sample # 4, 0L1 North CV Yard Soil AY-129, 803' El, Sample # 4, 0L1 North CV Yard Soil AY-129, 803' El, Sonther S, 0L1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, 0L1	T 112 4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.45E+00 2.73E+00 9.84E+00 1.00E+01	T 1/2 10446.15 5r-90 9.01E+00 5.11E-02 6.69E-02 5.10E-02 5.10E-02 6.24E-02 6.89E-02 1.88E-02 2.83E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-60 8.595-01 4.05E-02 1.57E-02 2.71E-02 1.98E-02 2.88E-02 2.88E-02 2.86E-02 7.22E-03 7.22E-03	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01 1.24E+00 4.60E+00 2.18E+01 2.18E+01 4.14E+00	pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 3.69E-02 3.09E-02	T 1/2 32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02	T 1/2 8813847.75 Pu-338 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03 7.00E-03	T 1/2 5259.6 Pu-241 3.85E+01 3.50E+00 3.45E+00 3.34E+00 3.34E+00 3.34E+00 3.34E+00 1.87E+00 1.87E+00 1.68E+00	T 1/2 2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.31E-01 3.93E+00 4.00E+00	T 1/2 36561.525 Mi-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 7.65E+00	T 1/2 4967.4 Eu-1520 1.125.01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.79E-02 3.53E-02	Decay Date January 15, 2004 Analysis Date February 14, 200 November 17, 195 June 27, 2002 June 28, 2002 June 29, 2002 June 29, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 3, 2001
1 23 4 5 6 7 8 9 10	SIIEC Sample IIo CV Tunnel SX95(J08219 SXS1(1089 SXS1(1089 SXS1(112) SXS1(112) SXS1(112) SXS1(112) SXS1(112) SXS1(121) SXS1(121) SXS1(121)	Location/Description CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), XY-128, OL1 North CV Yard Soli BA-127, 812' EI, Sample # 5, OL2 North CV Yard Soli BA-127, 810' EI, Sample # 3, OL1 North CV Yard Soli AY-128, 804' EI, Sample # 2, OL1 North CV Yard Soli AY-129, 804' EI, Sample # 2, OL1 North CV Yard Soli AY-129, 804' EI, Sample # 2, OL1 North CV Yard Soli AX-129, 803' EI, Sample # 4, OL1 North CV Yard Soli AX-129, 803' EI, Sample # 4, OL1 AX-129, 3-3, Soli, CV SE Side 5' From CV, 800' EI, OL1 AX-128, 3-1, Soli, CV Sunel East 6' From CV, 800' EI, OL1 Anuluş Well, A-2, 5 to 10' Depth, OL1	T 1/2 4485.27 H-3 7.97E+00 2.78E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00 1.00E+01 1.79E+00	T 1/2 10446.15 5r-90 9.01E+00 5.11E-02 6.69E-02 5.10E-02 6.24E-02 6.28E-02 1.88E-02 2.83E-02 3.00E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.74E-02 2.88E-02 2.88E-02 7.22E-03 7.77E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01 1.24E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 4.14E+00 5.74E-01	(pCi/g) T 1/2 157861.05 Am.241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 1.64E-01 3.69E-02 9.75E-03	T 1/2 32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 1.36E-01 8.84E-02 7.37E-02 6.66E-03 1.57E-02 1.31E-02	T 1/2 8813847.75 Pu-239 2.20E-01 3.27E-02 4.00E-02 4.07E-02 6.46E-02 7.00E-03 1.10E-02	T 112 5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.34E+00 3.34E+00 1.87E+00 1.87E+00 1.87E+00 1.71E+00	T 1/2 2092802.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.31E-01 2.31E-01 2.35E-01 3.93E+00 4.00E+00 1.83E-01	T 1/2 36561.525 NI-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 1.25E+01 1.25E+01 7.65E+00 1.73E+00	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.17E-02 3.53E-02	Decay Date January 15, 2004 Analysis Date February 14, 2001 November 17, 1892 June 28, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 3, 2001 February 13, 2002
1 23 1 2 3 4 5 6 6 7 7 8 9 9 10	SIIEC Sámple IIo CV Tunnei SX95(99219 SX5(1065 SX5(1089 SX5(1120 SX5(1120 SX5(1120 SX5(1120 SX5(1120 SX5(1270 SX5(12849 SX5(2849 SX5(2871	Location/Descriptión CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soli AA-127, 812° El, Sample ≢ 5, OL2 North CV Yard Soli AY-128, 780° El, Sample ≢ 2, OL1 North CV Yard Soli AY-129, 780° El, Sample ≢ 2, OL1 North CV Yard Soli AY-129, 780° El, Sample ≢ 2, OL1 North CV Yard Soli AY-129, 803° El, Sample ≢ 2, OL1 North CV Yard Soli AZ-130, Sample ≢ 3, OL1 North CV Yard Soli AZ-130, Sample ≢ 5, OL1 AX-129, 3-3, Soli, CV SE Side 5' From CV, 800° El, OL1 AX-128, 3-1, Soli, CV Tunnel East 5' From CV, 800° El, OL1 AX-128, 3-1, Soli, CV Tunnel Cast 5' From CV, 800° El, OL1 AX-128, 3-1, Soli, CV Tunnel Cast 5' From CV, 800° El, OL1 AX-128, 3-1, Soli, CV Tunnel Cast 5' From CV, 800° El, OL1 CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1	T 1/2 4485.27 H-3 7.97E+00 2.78E+00 4.42E+00 3.15E+00 4.47E+00 3.15E+00 2.73E+00 9.84E+00 1.00E+01 1.79E+00	T 1/2 10446.15 Sir-80 9.01E+00 5.11E-02 5.10E-02 5.10E-02 5.10E-02 6.24E-02 6.24E-02 6.88E-02 1.88E-02 1.88E-02 2.83E-02 2.87E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.77E-02 2.28E-02 2.44E-02 2.86E-02 7.22E-03 7.22E-03 7.77E-02 5.48E-02	T 1/2 11019.5925 Cs-137 1.17E-03 5.36E-01 8.55E-01 1.24E-00 1.74E+00 1.74E+00 2.18E+01 2.18E+01 2.18E+01 4.14E+00 5.74E-01 5.37E-01	pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.49E-01 1.49E-01 1.64E-01 3.69E-02 3.09E-02 9.75E-03	T 1/2 32050.6875 Pu-238 5.37E-01 1.26E-01 1.36E-01 8.46E-02 7.37E-02 6.86E-03 1.57E-02 1.31E-02	T 1/2 8813847.75 Pu-238 2.20E-01 3.27E-02 4.00E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03 7.00E-03 1.10E-02	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00 4.51E+00 3.34E+00 3.34E+00 1.33E+00 1.87E+00 1.67E+00 1.71E+00	T 1/2 2092682.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.31E-01 2.31E-01 3.93E+00 4.00E+00 1.83E-01	T 1/2 36561.525 Ni-63 3.94E+00 7.46E+00 7.52E+00 8.66E+00 7.52E+01 8.53E+01 7.65E+00 1.73E+00 1.73E+00	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.79E-02 6.77E-02 3.53E-02	Decay Date January 15, 2004 Analysis Date February 14, 2001 November 17, 199 June 28, 2002 June 28, 2002 June 29, 2002 July 3, 2002 March 6, 2002
1 23 4 5 6 7 7 8 9 9 10 11 13 14	SIIEC Sámple II.o CV Turnel SX35(J9219 SX5(108) SX5(108) SX5(112 SX5(112 SX5(112 SX5(112 SX5(112 SX5(127) SX5(128) SX5(284) SX5(284) SX5(287)	Location/Descriptión CV Tunnel Sedimient Composite, 0L1 Subsuface Sample #29 (0-5'), AY-128, 0L1 North CV Yard Soli BA-127, 810° El, Sample # 5, 0L2 North CV Yard Soli AY-129, 90° El, Sample # 3, 0L1 North CV Yard Soli AY-129, 90° El, Sample # 3, 0L1 North CV Yard Soli AY-129, 90° El, Sample # 2, 0L1 North CV Yard Soli AY-129, 90° El, Sample # 2, 0L1 North CV Yard Soli AX-129, 80° El, Sample # 4, 0L1 North CV Yard Soli AX-129, 80° El, Sample # 4, 0L1 North CV Yard Soli AZ-130, Sample # 5, 0L1 AX-128, 3-3, Soli, CV ES Side 5° From CV, 80° El, 0L1 AX-128, 3-1, Soli, CV Tunnel East 5° From CV, 80° El, 0L1 AX-128, 3-1, Soli, CV Tunnel East 5° From CV, 80° El, 0L1 CV Area - East Yard Dirt Pile - Middler, 12 Way Up, 0L1 CV Area - East Yard Dirt Pile - Bottom (also top center), 0L1	T 1/2 4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00 1.00E+01 1.79E+00	T 1/2 10446.15 Sr-90 9.01E+00 5.11E-02 5.10E-02 5.10E-02 5.10E-02 6.28E-02 1.88E-02 2.83E-02 3.00E-02 3.00E-02 2.87E-02 2.87E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-80 8.596.01 4.05E-02 1.57E-02 2.71E-02 1.98E-02 2.28E-02 2.88E-02 7.22E-03 7.72E-03 7.77E-02 5.48E-02 4.70E-02	T 1/2 11019.5925 Cs-137 1.77E-03 5.36E-01 8.55E-01 1.24E+00 4.60E+00 2.18E+01 4.50E+00 2.18E+01 4.14E+00 5.74E-01 5.37E-01 9.58E-02	(pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.59E-02 9.59E-02 2.39E-01 1.83E-01 1.43E-01 1.64E-01 3.69E-02 3.09E-02 9.75E-03	T 1/2 32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02 1.31E-02	T 1/2 8813847.75 Pu-238 2.20E-01 3.27E-02 5.07E-02 4.07E-02 4.00E-02 1.21E-02 1.21E-02 7.00E-03 7.00E-03 1.10E-02	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00 3.30E+00 3.39E+00 3.39E+00 3.42E+00 3.42E+00 1.87E+00 1.87E+00 1.87E+00 1.71E+00	T 1/2 2092882.5 C-14 9.34E+00 2.10E.01 2.10E.01 2.10E.01 2.10E.01 2.15E.01 3.93E+00 4.00E+00 1.83E.01	T 1/2 36561.525 Ni-83 3.94E+00 7.46E+00 7.52E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 1.73E+00	T 1/2 4967.4 Eu-152 1.12E-01 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.17E-02 3.53E-02	Decay Date January 15, 2004 Analysis Date February 14, 2001 November 17, 199 June 27, 2002 June 29, 2002 June 29, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 28, 2001 Jebruary 13, 2002 March 6, 2002
1 23 4 5 6 7 8 9 9 10 11 13 14	SIIEC Sample IIo CV Tunnel SX35L9219 SX5L1083 SX5L1089 SX5L115 SX5L112 SX5L112 SX5L112 SX5L120 SX5L127 SX5L2849 SX5L2849 SX5L287 SX5L287 SX5L287	LocationiDescription CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-5'), AY-128, 0L1 North CV Yard Soli AY-127, 812' El, Sample # 5, 0L2 North CV Yard Soli AY-127, 810' El, Sample # 3, 0L1 North CV Yard Soli AY-128, 804' El, Sample # 2, 0L1 North CV Yard Soli AY-128, 804' El, Sample # 2, 0L1 North CV Yard Soli AY-128, 804' El, Sample # 2, 0L1 North CV Yard Soli AY-129, 803' El, Sample # 4, 0L1 North CV Yard Soli AY-129, 803' El, Sample # 4, 0L1 North CV Yard Soli AY-129, 803' El, Sample # 4, 0L1 North CV Yard Soli AY-129, 500' El, Sample # 4, 0L1 North CV Yard Soli AY-129, 500' El, 0L1 AX-128, 3-1, Soli, CV Tunnel East 5' From CV, 800' El, 0L1 AX-128, 3-1, Soli, CV Tunnel East 5' From CV, 800' El, 0L1 CV Area - East Yard Dirt Pile - Middle, 1'2 Way Up, 0L1 CV Area - East Yard Dirt Pile - Bottom (also top center), 0L1 East CV Yard, Soli Pile @ 6' on West Side (6' Depth), 0L1	T 1/2 4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.45E+00 9.84E+00 1.00E+01 1.79E+00 1.75E+00	T 1/2 10446.15 5r-90 9.01E+00 5.11E-02 6.69E-02 5.10E-02 6.24E-02 6.89E-02 1.88E-02 2.83E-02 2.83E-02 2.87E-02 2.87E-02 1.16E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-60 8.596-01 4.05E-02 1.57E-02 2.71E-02 2.86E-02 2.86E-02 7.22E-03 7.72E-03 7.77E-02 5.48E-02 4.470E-02 1.17E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01 1.24E+00 4.60E+00 2.18E+01 4.14E+00 5.37E-01	(pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 3.69E-02 3.09E-02 9.75E-03 6.98E-03	T 1/2 32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02 1.31E-02 4.95E-03	T 1/2 8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 1.21E-02 6.46E-02 7.00E-03 7.00E-03 1.10E-02 5.00E-03	T 1/2 5259.6 Pu-241 3.858+01 3.50E+00 3.42E+00 3.31E+00 3.342E+00 3.342E+00 1.87E+00 1.69E+00 1.71E+00 3.45E-01	T 1/2 2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.31E-01 3.93E+00 4.00E+00 1.83E-01 8.60E-02	T 1/2 36561.525 Mi-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 7.65E+00 1.73E+00	T 1/2 4967.4 Eu-1521 1.12E-01 1.12E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.79E-02 3.53E-02 3.53E-02 2.80E-02	Decay Date January 15, 2004 Analysis Date February 14, 2001 November 17, 189 June 27, 2002 June 28, 2002 June 29, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 3, 2002 March 6, 2002 August 30, 2002
1 22 3 4 5 6 7 7 8 9 9 10 11 13 14 15 16	SIIEC Sample No CV Tunnel SX95L99219 SX5L1089 SX5L1089 SX5L115 SX5L115 SX5L1120 SX5L1120 SX5L1210 SX5L1211 SX5L2819 SX5L115 SX5L1281 SX5L1281 SX5L1281 SX5L2819	Location/Descriptión CV Tunnel Sediment Composite, OL1 Subsuface Sample #28 (0-5'), AV-128, OL1 North CV Yard Soli BA-127, 812 EI, Sample ≢ 5, OL2 North CV Yard Soli AY-128, 804' EI, Sample ≢ 5, OL2 North CV Yard Soli AY-128, 804' EI, Sample ≢ 2, OL1 North CV Yard Soli AY-128, 804' EI, Sample ≢ 2, OL1 North CV Yard Soli AY-128, 804' EI, Sample ≢ 2, OL1 North CV Yard Soli AY-128, 804' EI, Sample ≢ 2, OL1 North CV Yard Soli AZ-130, Sample ≢ 3, OL1 North CV Yard Soli AZ-130, Sample ≢ 5, OL1 AX-128, 3-3, Soll, CV SE Side 5' From CV, 800' EI, OL1 AX-128, 3-3, Soll, CV Tunnel East 5' From CV, 800' EI, OL1 AX-128, 3-4, Soll, CV Tunnel East 5' From CV, 800' EI, OL1 CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1 CV Area - East Yard Dirt Pile - Botom (also top center), OL1 East CV Yard, Soll Pile @ 5' on West Side (6'' Depth), OL1 Soll Pile, CV Yard, Three Feet on East Side, SR-37, OL1	T 1/2 4485.27 H-3 7.97E+00 2.78E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00 9.84E+00 9.84E+00 1.00E+01 1.79E+00	T 1/2 10446.15 5/-80 9.0TE-00 5.11E-02 5.16E-02 5.16E-02 5.16E-02 5.16E-02 6.24E-02 6.24E-02 6.24E-02 2.83E-02 2.87E-02 2.87E-02 2.87E-02 2.87E-02 2.85E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02 2.74E-02 2.86E-02 7.22E-03 7.77E-02 5.48E-02 4.70E-02 5.81E-02	T 1/2 11013.5925 C 6-137 1.77E-03 5.36E-01 1.24E+00 1.74E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 3.37E-01 5.37E-01 5.37E-01 5.37E-01 5.31E-01	pCi/g) T 1/2 157861.05 Am:241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.43E-01 1.43E-01 1.64E-01 3.69E-02 3.09E-02 9.75E-03 6.98E-03	T 1/2 32050.6875 Pu-28 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.846E-02 7.37E-02 6.86E-03 1.57E-02 1.31E-02 4.95E-03	T 1/2 8813847.75 Pu-239 2.20E-01 3.27E-02 4.07E-02 4.07E-02 4.07E-02 4.00E-02 7.00E-03 7.00E-03 1.10E-02 5.00E-03	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.92E+00 1.87E+00 1.69E+00 1.71E+00 3.45E-01	T 1/2 2092682.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.31E-01 2.31E-01 3.93E+00 4.00E+00 1.83E-01 8.60E-02	T 1/2 36561.525 Ni-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 8.53E+00 1.73E+00 3.37E+00	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.79E-02 6.79E-02 6.75E-02 2.80E-02 2.80E-02	Decay Date January 15, 2004 Analysis Date February 14, 2007 November 17, 198 June 27, 2002 June 28, 2002 June 29, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 3, 2002 March 6, 2002 August 30, 2002 August 13, 2002
1 22 3 4 5 6 7 7 8 9 9 10 11 13 14 15 16 17	SIIEC Sámple II:0 CV Tunnel SX95U9219 SX5U089 SX5U089 SX5U1089 SX5U115 SX5U112 SX5U112 SX5U112 SX5U1270 SX5U1270 SX5U271 SX5U2849 SX5U2872 SX5U2872 SX5U2872 SX5U2872 SX5U2142 SX5U2142	Location/Descriptión CV Tunnel Sedimient Composite, 0L1 Subsuface Sample #29 (0-5'), AY-128, 0L1 North CV Yard Soli AA-127, 812' El, Sample # 3, 0L1 North CV Yard Soli AY-128, 804' El, Sample # 3, 0L1 North CV Yard Soli AY-128, 804' El, Sample # 3, 0L1 North CV Yard Soli AY-128, 803' El, Sample # 2, 0L1 North CV Yard Soli AY-128, 803' El, Sample # 2, 0L1 North CV Yard Soli AZ-130, Sample # 3, 0L1 AX-120, 3-3, Soli, CV SE Side 5' From CV, 800' El, 0L1 AX-128, 3-1, Soli, CV Tunnel East 6' From CV, 800' El, 0L1 AX-128, 3-1, Soli, CV Tunnel East 6' From CV, 800' El, 0L1 CV Area - East Yard Dirt Pile - Middle, 12' Way Up, 0L1 CV Area - East Yard Dirt Pile - Middle, 12' Way Up, 0L1 CV Area - East Yard Dirt Pile - Middle, 12' Way Up, 0L1 East CV Yard, Soli Pile @ 6' on West Side (6' Depth), 0L1 East CV Yard, Soli Pile @ 5' on East Side, (6' Depth), 0L1	T 112 4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00 1.00E+01 1.79E+00 1.75E+00 1.75E+00	T 1/2 10446.15 Sr-80 9.01E+00 5.11E-02 6.69E-02 5.10E-02 6.24E-02 6.28E-02 1.88E-02 2.83E-02 2.87E-02 2.87E-02 2.87E-02 1.66E-02 1.64E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 1.57E-02 2.26E-02 2.44E-02 2.86E-02 7.22E-03 7.22E-03 7.77E-02 5.44E-02 4.70E-02 1.77E-02 5.44E-02 1.77E-02 1.78E-02 1.78E-02	T 1/2 11019.5925 Cs-137 1.77E+03 5.36E-01 8.55E-01 1.24E+00 1.74E+00 1.74E+00 2.18E+01 2.18E+01 2.18E+01 2.18E+01 5.74E-01 5.74E-01 5.37E-01 9.58E-02 7.99E-01 7.58E-01 1.22E+00	(pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.43E-01 3.69E-02 3.09E-02 9.75E-03 6.98E-03 3.99E-03	T 1/2 32050.6875 Pu-238 5.37E.01 4.62E.02 1.26E.01 1.36E.01 8.83E.02 8.46E.02 7.37E.02 6.86E.03 1.57E.02 1.31E.02 4.95E.03	T 1/2 8013847.75 Pu-238 2.00E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03 1.10E-02 5.00E-03 5.00E-03	T 1/2 5259.6 Pu-241 3.88E+01 3.88E+01 3.30E+00 3.30E+00 3.30E+00 3.30E+00 1.87E+00 1.87E+00 1.87E+00 1.71E+00 3.45E-01 3.45E-01	T 1/2 2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.15E-01 3.93E+00 4.00E+00 1.83E-01 8.60E-02 8.30E-02	T 1/2 36561.525 Ni-63 3.94E+00 7.46E+01 7.46E+00 1.32E+01 8.56E+00 1.33E+01 1.25E+01 8.53E+00 1.73E+00 3.37E+00 3.65E+00	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02 7.97E-02 9.15E-02 6.17E-02 6.17E-02 3.53E-02 2.80E-02 3.54E-02	Decay Date January 15, 2004 Analysis Date February 14, 2001 November 17, 199 June 28, 2002 June 28, 2002 June 29, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 28, 2001 July 28, 2001 July 28, 2001 Ghiarch 6, 2002 August 30, 2002 August 30, 2002
1 23 3 4 5 6 7 8 9 9 10 11 13 14 15 16 17 18	SIIEC Sample IIo CV Tunnel SXSL09219 SXSL1003 SXSL1009 SXSL1009 SXSL1009 SXSL1105 SXSL1115 SXSL1115 SXSL1122 SXSL1271 SXSL2814 SXSL2814 SXSL2814 SXSL2142 SXSL3145 SXSL3145	Location/Description CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0.5'), XY-128, 0L1 North CV Yard Soli BA-127, 812' El, Sample # 5, 0L2 North CV Yard Soli AY-129, 810' El, Sample # 3, 0L1 North CV Yard Soli AY-128, 940' El, Sample # 3, 0L1 North CV Yard Soli AY-128, 940' El, Sample # 2, 0L1 North CV Yard Soli AY-129, 796' El, Sample # 2, 0L1 North CV Yard Soli AY-129, 905' El, Sample # 2, 0L1 North CV Yard Soli AX-129, 903' El, Sample # 2, 0L1 North CV Yard Soli AZ-130, Sample # 2, 0L1 AX-128, 3-5, Soli, CV SE Side 5' From CV, 800' El, 0L1 AX-128, 3-5, Soli, CV SE Side 5' From CV, 800' El, 0L1 AX-128, 3-5, Soli, CV Tunnel East 5' From CV, 800' El, 0L1 CV Area - East Yard Dirt Pile - Middle, 112 Way Up, 0L1 CV Area - East Yard Dirt Pile - Middle, 12 Way Up, 0L1 CV Area - East Yard Dirt Pile - Sottom (also top center), 0L1 East CV Yard, Soli Pile @ 5' on West Side (6'' Depth), 0L1 Soli Pile, CV Yard, Six Feet on East Side, SR-37, 0L1	T 1/2 4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 9.84E+00 1.00E+01 1.79E+00 1.75E+00 1.76E+00	T 1/2 10446.15 5r-90 9.01E+00 5.11E-02 6.69E-02 5.10E-02 6.24E-02 6.89E-02 1.88E-02 2.83E-02 2.83E-02 2.87E-02 2.87E-02 2.87E-02 1.68E-02 2.87E-02 2.87E-02 2.87E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.78E-02 2.86E-02 2.86E-02 7.22E-03 7.72E-03 7.77E-02 5.48E-02 4.70E-02 1.17E-02 1.17E-02 5.81E-02 1.08E-02 6.63E-02	T 1/2 11019.5925 Cs-137 1.17E-03 5.36E-01 8.55E-01 1.24E+00 4.60E+00 2.18E+01 4.60E+00 2.18E-01 4.14E+00 5.37E-01 5.37E-01 5.37E-01 5.37E-01 5.37E-01 5.37E-01 2.50E-00 2.90E-01	(pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 3.69E-02 3.09E-02 9.75E-03 6.98E-03 3.99E-03	T 1/2 32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02 1.31E-02 4.95E-03 4.95E-03	T 1/2 8813847.75 Pu-338 2.20E-01 3.27E-02 4.07E-02 4.07E-02 4.07E-02 1.21E-02 7.00E-03 7.00E-03 1.10E-02 5.00E-03 5.00E-03	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00 3.42E+00 3.34E+00 3.34E+00 1.34E+00 1.69E+00 1.77E+00 1.77E+00 3.45E-01 3.52E-01	T 1/2 2092882.5 C-14 9.34E-00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.31E-01 3.93E+00 4.00E+00 1.83E-01 8.60E-02 8.30E-02	T 1/2 36561.525 Ni-63 3.94E+00 7.46E+00 7.52E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 1.73E+00 3.37E+00 3.65E+00	T 1/2 4967.4 EU-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.17E-02 3.53E-02 2.80E-02 3.54E-02	Decay Date January 15, 2004 Analysis Date February 14, 2001 November 17, 198 June 28, 2002 June 28, 2002 June 28, 2002 July 3, 2002 Jul
1 23 4 5 6 7 8 9 0 1 3 4 5 6 7 8 9 0 1 3 4 5 6 7 8 9 0 1 3 4 5 6 7 8 9	SHEC Sample IIo CV Tunnel SX95L09219 SX5L1003 SX5L1003 SX5L1005 SX5L115 SX5L112 SX5L112 SX5L112 SX5L1270 SX5L1270 SX5L1271 SX5L2849 SX5L2849 SX5L2814 SX5L28142 SX5L3142 SX5L3142 SX5L3142 SX5L3149 SX5L3149 SX5L3149	Location/Description CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-57), AV-128, OL1 North CV Yard Soll BA-127, 812' El, Sample # 5, OL2 North CV Yard Soll AY-128, 804' El, Sample # 5, OL2 North CV Yard Soll AY-128, 804' El, Sample # 2, OL1 North CV Yard Soll AY-128, 804' El, Sample # 2, OL1 North CV Yard Soll AY-128, 804' El, Sample # 2, OL1 North CV Yard Soll AY-128, 803' El, Sample # 2, OL1 North CV Yard Soll AZ-130, Sample # 5, OL1 AX-128, 3-3, Soll, CV SE Side 5' From CV, 800' El, OL1 AX-128, 3-3, Soll, CV Tunnel East 5' From CV, 800' El, OL1 AX-128, 3-4, Soll, CV Tunnel East 5' From CV, 800' El, OL1 CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1 CV Area - East Yard Dirt Pile - Bottom (also top center), OL1 East CV Yard, Soll Pile @ 5' on West Side (6'' Depth), OL1 Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1 East CV Yard, Soil Pile @ 3' on East Side, SR-37, OL1 East CV Yard, Soil Pile @ 3' on (#cs East Side, SR-37, OL1	T 1/2 4485.27 H-3 7.97E+00 2.78E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00 2.73E+00 9.84E+00 1.00E+01 1.79E+00 1.75E+00 1.75E+00 1.79E+00	T 1/2 10446.15 5:*0 9.0[E+00 5.11E-02 5.16E-02 5.16E-02 5.16E-02 5.16E-02 6.24E-02 6.24E-02 6.24E-02 2.83E-02 2.83E-02 2.87E-02 2.87E-02 2.85E-02 1.64E-02 2.87E-02 2.87E-02	TABLE 2 - Dec T 1/2 1925.23275 C0-60 8.59E-01 4.05E-02 1.57E-02 2.74E-02 2.86E-02 7.22E-03 7.72E-03 7.77E-02 5.40E-02 4.70E-02 5.81E-02 1.08E-02 1.08E-02 1.17E-02 5.81E-02 1.082-02 1.92E-02	T 1/2 11019.5925 Ce-137 1.17E+03 5.36E-01 1.74E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 4.14E+00 5.74E.01 5.37E-01 9.58E-02 5.81E-01 2.50E-00 2.99E-01 2.99E-01	pCi/g) T 1/2 157861.05 Am.241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.43E-01 1.43E-01 1.64E-01 3.69E-02 9.75E-03 6.98E-03 3.99E-03 2.99E-03	T 1/2 32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 1.36E-01 8.846E-02 7.37E-02 6.86E-03 1.57E-02 1.31E-02 4.95E-03 4.95E-03	T 1/2 8813847.75 Pv-238 2.20E-01 3.27E-02 4.07E-02 4.07E-02 4.07E-02 4.07E-02 4.07E-02 1.27E-02 6.46E-02 7.00E-03 1.10E-02 5.00E-03 5.00E-03	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.91E+00 1.37E+00 1.87E+00 1.87E+00 1.71E+00 3.45E-01 3.52E-01 3.52E-01	T 1/2 2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.31E-01 2.31E-01 3.93E+00 4.00E+00 1.83E-01 8.60E-02 8.30E-02 8.70E-02	T 1/2 36561.525 NI-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 1.25E+01 1.25E+01 1.73E+00 1.73E+00 3.37E+00 3.65E+00 4.14E+00	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.79E-02 6.79E-02 3.53E-02 3.54E-02 4.75E-02	Decay Date January 15, 2004 Analysis Date February 14, 2007 November 17, 198 June 27, 2002 June 28, 2002 June 29, 2002 July 3, 2002 March 6, 2002 August 30, 2002 August 30, 2002 August 30, 2002
1 23 4 5 6 6 7 8 9 9 10 11 13 14 15 16 17 18 19 21	SIIEC Sámple II:0 CV Tunnel SX05L09219 SX5L1009 SX5L1009 SX5L1102 SX5L1122 SX5L1122 SX5L1122 SX5L1270 SX5L1270 SX5L1271 SX5L2849 SX5L2874 SX5L2874 SX5L2874 SX5L2874 SX5L2142 SX5L2142 SX5L2145 SX5L2145 SX5L2163 SX5L2163	Location/Descriptión CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1 North CV Yard Soli AA-127, 812° El, Sample # 5, OL2 North CV Yard Soli AY-128, 804° El, Sample # 5, OL1 North CV Yard Soli AY-128, 804° El, Sample # 2, OL1 North CV Yard Soli AY-129, 803° El, Sample # 2, OL1 North CV Yard Soli AY-129, 803° El, Sample # 2, OL1 North CV Yard Soli AY-129, 803° El, Sample # 2, OL1 North CV Yard Soli AY-129, 803° El, Sample # 2, OL1 North CV Yard Soli AZ-130, Sample # 3, OL1 AX-128, 3-1, Soli, CV Tunnel East 5' From CV, 800° El, OL1 AX-128, 3-1, Soli, CV Tunnel East 5' From CV, 800° El, OL1 CV Area - East Yard Dirt Pile - Middle, 12' Way Up, OL1 CV Area - East Yard Dirt Pile - Bottom (also top center), OL1 East CV Yard, Soli Pile @ 5' on West Side, (6'' Depth), OL1 East CV Yard, Soli Pile @ 5' on East Side, 88-37, OL1 East CV Yard, Soli Pile @ 5' on Gast Side, SP-37, OL1 East CV Yard, Soli Pile @ Top (6'' Depth), OL1 CV Yard Soli Pile @ Top (6'' Depth), OL1	T 1/2 4485.27 H-3 7.97E+00 2.78E+00 3.15E+00 3.15E+00 9.84E+00 2.73E+00 9.84E+00 1.00E+01 1.79E+00 1.75E+00 1.75E+00 1.79E+00 2.18E+00	T 1/2 10446.15 Sr-80 9.01E+00 5.11E-02 5.10E-02 5.10E-02 5.10E-02 6.24E-02 6.24E-02 6.28E-02 1.88E-02 2.87E-02	TABLE 2 - Dec T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 1.57E-02 2.28E-02 2.28E-02 2.28E-02 2.28E-02 7.22E-03 7.22E-03 7.22E-03 7.77E-02 5.48E-02 4.70E-02 1.17E-02 5.81E-02 1.08E-02 1.98E-02 4.81E-02	T 1/2 11019.5925 C6-137 1.17E-03 5.36E-01 8.55E-01 1.24E-00 1.74E+00 1.74E+00 2.18E+01 2.18E+01 2.18E+01 2.50E-00 2.18E+01 5.37E-01 5.37E-01 5.37E-01 5.38E-01 1.22E+00 2.99E-01 5.38E-01 8.94E-01 8.94E-01	(pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.43E-01 1.43E-01 3.69E-02 3.09E-02 9.75E-03 6.98E-03 3.99E-03 1.76E-02	T 1/2 32050.6875 Pw.238 5.37E.01 4.62E.02 1.26E.01 1.36E.01 8.846E.02 7.37E.02 6.88E.03 1.57E.02 1.31E.02 4.95E.03 4.95E.03 4.95E.03 6.69E.02	T 1/2 8813847.75 Pu-238 2.20E-01 3.27E-02 4.00E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03 7.00E-03 1.10E-02 5.00E-03 5.00E-03 2.02E-02	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00 3.34E+00 3.34E+00 1.32E+00 1.87E+00 1.67E+00 1.77E+00 3.45E-01 3.45E-01 3.52E-01 3.21E-01	T 1/2 2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.31E-01 2.31E-01 3.93E+00 4.00E+00 1.83E-01 8.60E-02 8.30E-02 8.70E-02	T 1/2 36561.525 NI-63 3.94E+00 7.46E+00 7.52E+00 8.66E+00 7.52E+01 8.53E+01 1.25E+01 8.53E+00 7.65E+00 1.73E+00 3.37E+00 3.65E+00 4.14E+00	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 3.53E-02 2.80E-02 3.54E-02 4.75E-02	Decay Date January 15, 2004 Analysis Date February 14, 2001 November 17, 199 June 28, 2002 June 28, 2002 June 29, 2002 July 3, 2002 Jul
1 22 3 4 5 6 6 7 8 9 9 10 11 3 4 5 6 6 7 8 9 9 10 11 3 14 15 16 17 18 9 9 21	SIIEC Sámple II:0 CV Turnel SX95(99219 SX5(108) SX5(108) SX5(112) SX5(112) SX5(112) SX5(112) SX5(112) SX5(112) SX5(127)	Location/Descriptión CV Tunnel Sedimient Composite, 0L1 Subsuface Sample #29 (0-5'), AY-128, 0L1 North CV Yard Soli BA-127, 812' El, Sample # 5, 0L2 North CV Yard Soli AY-129, 804' El, Sample # 3, 0L1 North CV Yard Soli AY-128, 804' El, Sample # 3, 0L1 North CV Yard Soli AY-128, 803' El, Sample # 2, 0L1 North CV Yard Soli AY-128, 803' El, Sample # 2, 0L1 North CV Yard Soli AY-128, 803' El, Sample # 2, 0L1 North CV Yard Soli AY-128, 803' El, Sample # 4, 0L1 North CV Yard Soli AZ-130, Sample # 5, 0L1 AX-128, 3-3, Soli, CV SE Side 5' From CV, 800' El, 0L1 AX-128, 3-1, Soli, CV Tunnel East 5' From CV, 800' El, 0L1 AX-128, 3-1, Soli, CV Tunnel East 5' From CV, 800' El, 0L1 CV Area - East Yard Dirt Pile - Midde, 12' May Up, 0L1 CV Area - East Yard Dirt Pile - Midde, 12' May Up, 0L1 CV Area - East Yard Dirt Pile - Midde, 12' May Up, 0L1 CV Area, Soli Pile @ 5' on East Side (6' Depth), 0L1 Soli Pile, CV Yard, Soli Pile @ 5' on East Side, SR-37, 0L1 East CV Yard, Soli Pile @ 5' on East Side, SR-37, 0L1 East CV Yard, Soli Pile @ 5' on East Side, AP1-7, 0L1 CV Yard Soli - West Side, AP1-7, 0L1 CV Yard Soli - West Side, AP1-7, 0L1	T 1/2 4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.47E+00 3.15E+00 1.00E+01 1.79E+00 1.75E+00 1.76E+00 1.79E+00 2.18E+00 2.19E+00	T 1/2 10446.15 Sr-90 9.01E+00 5.11E.02 6.69E.02 5.10E.02 6.28E.02 6.28E.02 1.88E.02 2.83E.02 2.83E.02 2.87E.02 2.87E.02 1.68E.02 2.87E.02 1.68E.02 2.87E.02 1.68E.02 2.87E.02 1.64E.02 2.87E.02 3.23E.02 3.34E.02	TABLE 2 - Dec T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.78E-02 2.28E-02 2.88E-02 2.88E-02 7.22E-03 7.72E-03 7.72E-03 7.72E-03 7.72E-03 7.72E-03 7.72E-03 7.84E-02 4.40E-02 1.08E-02 6.63E-02 1.08E-02 4.63E-02 4.81E-02 4.81E-02	T 1/2 11019.5925 Cs-137 1.77E-03 5.36E-01 8.55E-01 1.24E+00 1.74E+00 4.60E+00 2.18E+01 4.74E+00 2.18E+01 4.14E+00 5.77E-01 9.58E-02 7.99E-01 2.90E-01 2.90E-01 2.90E-01 2.97E-01	(pCi/g) T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.59E-02 9.59E-02 9.59E-02 9.59E-02 9.59E-02 3.09E-02 3.09E-02 9.75E-03 6.98E-03 3.99E-03 1.76E-02 2.21E-02	T 1/2 32050.6875 Pu-238 5.37E.01 4.62E.02 1.26E.01 1.36E.01 8.83E.02 8.46E.02 7.37E.02 6.86E.03 1.57E.02 1.31E.02 4.95E.03 4.95E.03 4.95E.03 6.69E.02 6.30E.02	T 1/2 8813847.75 Pu-238 2.20E-01 3.27E-02 4.07E-02 4.07E-02 1.21E-02 1.21E-02 7.00E-03 7.00E-03 1.10E-02 5.00E-03 5.00E-03 5.00E-03 2.02E-02 3.64E-02	T 1/2 5259.6 Pu-241 3.88E+01 3.50E+00 3.45E+00 3.391E+00 3.42E+00 1.87E+00 1.87E+00 1.87E+00 1.87E+00 1.71E+00 3.45E-01 3.45E-01 3.52E-01 3.21E-01	T 1/2 2092882.5 C-14 9.34E+00 9.34E+00 2.10E.01 2.10E.01 2.10E.01 2.10E.01 2.15E.01 3.93E+00 4.00E+00 1.83E-01 8.60E-02 8.30E-02 8.30E-02	T 1/2 36561.525 11.63 3.94E+00 7.46E+00 7.52E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 7.65E+00 1.73E+00 3.37E+00 3.65E+00 4.14E+00	T 1/2 4967.4 Eu-152 1.12E-01 4.85E-02 7.97E-02 5.28E-02 7.97E-02 9.15E-02 6.17E-02 3.53E-02 2.80E-02 3.54E-02 4.75E-02	Decay Date January 15, 2004 Analysis Date February 14, 2001 November 17, 199 June 28, 2002 June 29, 2002 June 29, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 28, 2001 July 28, 2001 July 28, 2001 July 28, 2001 July 28, 2001 July 3, 2002 March 6, 2002 March 6, 2002 August 30, 2002 August 32, 2002 October 2, 2003 October 2, 2003

	KEY	
		Yellow Shaded Background = Positive Result
H ardenia	1500	Gray Shaded Background = MDA

		TABLE O Boodyou Listing of Fos	invo inaciacis	a more item	iorea (poing)	<u> </u>	1
	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	Total p
1	CV Tunnel	CV Tunnel Sediment Composite, OL1		9.01E+00	8.59E-01	1.17E+03	1178.8
2	SX9SL99219	Subsuface Sample #29 (0-5'), AY-128, OL1				5.36E-01	0.54
3	SXSL1063	North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	4.20E+00	4		8.55E-01	5.05
4	SXSL1089	North CV Yard Soil AY-127, 810' El, Sample # 3, OL1	2.78E+00			1.24E+00	4.02
5	SXSL1115	North CV Yard Soil AY-128, 804' El, Sample # 2, OL1	4.47E+00			1.74E+00	6.21
6	SXSL1122	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	3.15E+00			4.60E+00	7.76
7	SXSL1130	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	4.58E+00		2.44E-02	2.18E+01	26.42
8	SXSL1132	North CV Yard Soil AZ-130, Sample # 5, OL1	2.73E+00			2.50E+00	5.23
9	SXSL1270	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El., OL1				2.18E+01	21.82
10	SXSL1281	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1				4.14E+00	4.14
11	SX SL2649	Anulus Well, A-2, 5 to 10' Depth, OL1				5.74E-01	0.57
13	SXSL2871	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1				5.37E-01	0.54
14	SXSL2872	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1	T III			9.58E-02	0.10
15	SXSL3140	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1				7.99E-01	0.80
16	SXSL3142	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1				5.81E-01	0.58
17	SX SL3145	East CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1				1.22E+00	1.22
18	SXSL3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1				2.90E-01	0.29
19	SXSL3153	East CV Yard, Soil Pile @ Top (6" Depth), OL1				2.91E-01	0.29
21	SXSL4142	CV Yard Soil - West Side, AP1-7, OL1				8.94E-01	0.89
22	SXSL4143	CV Yard Soil - West Side, AP1-7, OL1				4.97E-01	0.50
23	SXSL4149	CV Yard Soil - West Side, AP1-7, OL1			6.74E-02	3.87E+00	3.94

_	IADLE 4 - Ratio To CS-13/ Tor Positive INUCIDES							
	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	То	
1	CV Tunnel	CV Tunnel Sediment Composite, OL1		7.71E-03	7.35E-04	1.00E+00	1.	
2	SX9SL99219	Subsuface Sample #29 (0-5'), AY-128, OL1				1.00E+00	1.	
3	SXSL1063	North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	4.91E+00			1.00E+00	5.	
4	SXSL1089	North CV Yard Soil AY-127, 810' El, Sample # 3, OL1	2.23E+00			1.00E+00	3.	
5	SXSL1115	North CV Yard Soil AY-128, 804' El, Sample # 2, OL1	2.57E+00			1.00E+00	3.	
6	SXSL1122	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	6.85E-01			1.00E+00	1.0	
7	SXSL1130	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	2.10E-01		1.12E-03	1.00E+00	1.3	
8	SXSL1132	North CV Yard Soil AZ-130, Sample # 5, OL1	1.09E+00	i (1.00E+00	2.	
9	SXSL1270	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El., OL1				1.00E+00	1.	
10	SXSL1281	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1				1.00E+00	1.	
11	SXSL2649	Anulus Well, A-2, 5 to 10' Depth, OL1	le contra de la contra de la Contra de la contra de la co	1		1.00E+00	1.0	
13	SXSL2871	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1				1.00E+00	1.	
14	SXSL2872	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1		the second	1	1.00E+00	1.0	
15	SXSL3140	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1				1.00E+00	1.0	
16	SXSL3142	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1				1.00E+00	1.	
17	SXSL3145	East CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1				1.00E+00	1.0	
18	SXSL3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1				1.00E+00	1.0	
19	SXSL3153	East CV Yard, Soil Pile @ Top (6" Depth), OL1				1.00E+00	1.0	
21	SXSL4142	CV Yard Soll - West Side, AP1-7, OL1				1.00E+00	1.0	
22	SXSL4143	CV Yard Soil - West Side, AP1-7, OL1				1.00E+00	1.	
23	SXSL4149	CV Yard Soil - West Side, AP1-7, OL1			1.74E-02	1.00E+00	1.0	
		Mean⇒	1.95E+00	7.71E-03	6.42E-03	1	2.	
		Sigma⇒	1.708		0.010	0.000		
		Mean % of Total⇒	65.79%	0.26%	0.22%	33.74%	100.	

COZ

Ta	ble	• 5
----	-----	-----

Γ			}						1	1		
						SNEC: AL COST	75%	Total Activity Limit D	CGLW	Siz Administ	inative Limit 📰	
	Effective D	CGL Calcu	lator for C	s-137 (in pCi/	(g)	1		16.98	pCI/g	12.74	pCi/g	
		1	1	1					1	i	1	1
	SAMPL		CV YARD SOIL	& BOULDER SAMP	PLES			· · · · · · · · · · · · · · · · · · ·		•		
• • •		 	1	1		;		Ca-137 Limit	S.A.K	SCs-137 Adm	inistrative Limit:	Ì
ľ	17.45%	25.0	mrem/y TEDE	Limit			· · · · · · · · · · · ·	5.73	pCl/q	4.30	pCI/q	
	7.79%	C	mrem/y Drinki	ng Water (DW) Lir	nit	Check for 25 mrem/y	······					
1		Sample Input							ľ			
		(pCi/g, uCi, %	[25 mrem/y TEDE	- Chillen h, Duts	A - Allowed pCI/g for	BEAMOVIERDEN	Value Checked from	ſ	This Sample	Unisistantelo.	
l	Isotope	of Total, etc.)	% of Total	Limits (pCi/g)	AL Inital (pello)	25 mrem/y TEDE	Jon Intemy Dwe	Column A or B		mrem/y TEDE	Emremly DW/	
1	Am-241		0.000%	9.9	23	0.00	10100 average	0.00		0.00	MEDIO10015-34	Am-241
2	C-14		0.000%	2.0		0.00	000	0.00	ļ	0.00	000	C-14
3	Co.60	0.0064	0.216%	3.5	457 660 57	0.04	000	0.04		0.05	0000	Co-60
4	Cs-137	1.0000	33.738%	6.6	SI - SI	5.73	2085	MERSIS 5.73 84 200		3.79	-001	Cs-137
5	Eu-152		0.000%	10.1	sk:0' '	0.00	01002	0 00		0.00	= 0.00	Eu-152
6	H-3	1.9499	65.786%	132	3111.5	11.17	2502	11.17	}	0.37	0.25	H-3
7	111-63		0.000%	747	19000	0.00	2	0.00		0.00	000-	NI-63
8	Pu-238		0.000%	1.8	0,41	0.00	0.00	0.00		0.00	000	Pu-238
9	Pu-239		0.000%	1.6	037	0.00	000	0.00	ļ	0.00	52-5000	Pu-239
10	Pu-241		0.000%	86	198	0.00	000	0.00		0.00	0.00	Pu-241
11	Sr-90	0.0077	0.260%	1.2	061	0.04	0.10	0.04		0.16	0.051	Sr-90
		2.96E+00	100.000%		!	16.98	38.03	16.98		4.364	0.312	
						Maximum Permissible	Maximum		:	To Use Thi	is information,	
	1					pul/g (25 mrembil	A mremit			sample input	Units Must Be in	
L	!	1	<u>. </u>	I	i	1(<u>*** mremvy</u>)	(4 mremy)	l	:	pung no	7% OF 10131.	

Attachment 2-4

.

2350 INSTRUMENT AND PROBE EFFICIENCY CHART 7/01/04 (Typical 2" by 2" Nal (Cs-137 W) Conversion Factors)

Inst.#	Cal Due	AP#	Probe #	Cal Due	cpm/mR/h
98625	5/18/05	R & Y	211680 Pk	5/18/05	214,882
98647	5/18/05	G & Y	211667 Pk	5/18/05	218,807
129423	5/18/05	P&Y	211687 Pk	5/18/05	213,539
117573	5/18/05	0 & Y	 211674 Pk	5/18/05	212,173
117566	4/9/05	G&R	 185852 Pk	4/13/05	209,862
126183	11/19/04	B&R	206280 Pk	12/12/04	190,907
129429	11/3/04	Y&W	206283 Pk	10/31/04	177185
126198	11/03/04	R&W	196021Pk	5/25/05	209,194
126172	6/07/05	G&W	196022	6/07/05	208,302
129440	4/09/05	O&W	210938 Pk	4/14/05	205,603
120588	6/08/05	B&W	185844 Pk	6/09/05	216,654
95361	6/25/05	P&W	 025686	6/28/05	211,799

2350 INSTRUMENT AND PROBE EFFICIENCY CHART 7/01/04 (Typical 43-68 Beta Efficiency Factors)

Different Instrument/Probe Cal. Due Cesium only instruments (10mV to 100)

INST #	INST C/D	43-68 PROBE #	PROBE C/D	44-10 PROBE #	PROBE C/D	BETA EFF	ALPHA EFF
79037	04/05/05.	122014	04/23/05			25.72	N/A
						<i>z</i> / i	
126188	1/27/05	099186	1/27/05			28.2%	N/A
126218	01/08/05	095080	01/09/05			27.9%	N/A

Attachment 3-1

Nal Scan MDC Calculation

MDCscan 5.6740 pCi/g for Open Land Area OL3

b = background (cpm) bi = background counts in the observation interval (counts) Conv = Nal detector/meter calibrated response (cpm per uR/hr) d = index of sensitivity from MARSSIM table 6.5 based on 95% detection and 60% false positive HSd = elevated measurement spot diameter (centimeters) MDCscan = Minimum Detectable Concentration for scanning (pCi/g) MDCRi = Minimum Detectable Count Rate in (ncpm) MDCRsurv = MDCRi adjusted for the human performance factor p (ncpm) MDER = Minimum Detectable Exposure Rate (uR/hr) MSoutput = MicroShield derived exposure rate for 1 pCi/g of contaminant (mR/hr) Oi = Observation interval (seconds) p = human performance adjustment factor (unitless) SR = Scanning movement rate (cm/sec) DCDLeg = net count rate equivalent to the adjusted DCGL (ncpm) b = 250 cpm p = 0.5 HSd = 56 cm SR = 25 cm d = 1.38 Conv = 205.6 cpm/uR/hr MSoutput = 1.369E-04 mR/hr per pCi/g DCGL = 4.3 pCi/g

<u>HSd</u> =	2.2400 = Oi (sec)
ŞR	

1

<u>b*Oi</u> =	9.3333 = bi (counts)
60 sec/min	
•	
4	

<u>d*sqrt(bi)*60</u> = 112.9278 = MDCRi (ncpm) Oi

<u>MDCRi</u> = 159.7040 = MDCRsurv (ncpm) sqrt(p)

MDCRsury = 0.7768 = MDER (uR/hr) Conv

<u>MDER</u> = 5.6740 = MDCscan (pCi/g) MSoutput*1000 uR/mR

<u>MDCsurv*DCGL</u> = 121.0306 = DCGLeq (ncpm) MDCscan

ATTACHMENT 4-1

• :

MicroShield v5.05 (5.05-00121) GPU Nuclear

Page : 1 DRS File : MODEL_MS5 Run Date : September 23, 2003 Run Time : 2.43.26 PM Dutation : 00.00.02

File Ref:	
Date:	
By:	
Checked:	

Case Title: Cs-137 Soil Description: Model for Scanning Geometry: 8 - Cylinder Volume - End Shields

	20nice D	Imensions	
Height	15.24	cm	6.0 in
Radius	28.0	<u>cm</u>	11.0 in
	Dose	Points	
A	X	Y	Z
#1	0 cm	25.4 cm	0 cm
	0.0 in	<u>10.0 in</u>	0.0 in
	Shi	elds	
Shield Name	Dimension	Material	Density

Source	3.75e+04 cm²	Concrete	1.6
Air Gap		Air	0.00122

Source Input Grouping Method : Actual Photon Energies

Huclide	curies	becquerels	µCi/cm ³	Ba/cm ²
Ba-137m	5.6815e-008	2.1022c+003	1,5136e-006	5 6003e 002
Cs·137	6.0058e-008	2.2221e+003	1.6000e-006	5.9200e-002

Buildup			
The material reference	İs	:	Source

Integration Parameters

Radial	50
Circumferential	50
Y Direction (axial)	50

Results

Energy NeV	Activity photons/sec	Fluence Rate MeV/cn7/sec No Buikkip	Fluence Rate MeV/cm²/sec With Buildup	Exposure Rate mR/hr No Buildup	Exposure Rate mR/hr With Buildup			
0 0318	4.352e+01	7.617e-06	9.220e-06	6.345e 08	7.680e-08			
0 0322	8 030e+01	1.465e-05	1.784e-05	1.179e-07	1.436e-07			
0 0364	2.922e+01	8.118e-06	1.060e-05	4.613e-08	6 024e 08			
0 6616	1.892c+03	7.060 c -02	1.260e-01	1.369e-04	2.443e-04			
TOTALS:	2.045e+03	7.063e-02	1.261e-01	1.371e-04	2.446e-04			

ATTACHMENT 5-1

· _

ATTACHMENT 6-1

Sample Locations and Scan Survey Grids for Survey Unit OL3-1 (soil)

VSP provides survey points using a scale relative to the southwestern corner of the survey unit. This is cumbersome as field personnel must measure over large distances (sometimes hundreds of meters) from the single reference point. To remedy this situation, this spreadsheet provides the VSP survey points based on the actual location within each grid.

All grids must be surveyed 100% as this is a Class 1 survey unit.

To identify soil sample locations, start at the grid identifier below left. Go east the number of meters under the "E" column and then move north the number of meters in the "N" column. For simplicity, all measurements have been rounded to the nearest tenth of a meter.

				Х	Y
	Grid	E	N	coordinate	coordinate
_Location	ID	(meters)	(meters)	(meters)	(meters)
1	AP140	3.4	8.6	3.4233	8.5697
2	AP139	7.9	8.6	17.9136	8.5697
3	AP137	2.4	8.6	32.4038	8.5697
4	AP136	6.9	8.6	46.894	8.5697
5	AR139	0.7	1.1	10.6684	21.1186
6	AR138	5.2	1.1	25.1587	21.1186
7	AR137	9.6	1.1	39.6489	21.1186
8	AS140	3.4	3.7	3.4233	33.6675
9	AS139	7.9	3.7	17.9136	33.6675
10	AS137	2.4	3.7	32.4038	33.6675
11	AS136	6.9	3.7	46.894	33.6675

.

ATTACHMENT 6-2

Sample Locations and Scan Survey Grids for Survey Unit OL3-2 (soil)

VSP provides survey points using a scale relative to the southwestern corner of the survey unit. This is cumbersome as field personnel must measure over large distances (sometimes hundreds of meters) from the single reference point. To remedy this situation, this spreadsheet provides the VSP survey points based on the actual location within each grid.

All grids must be surveyed 100% as this is a Class 1 survey unit.

To identify soil sample locations, start at the grid identifier below left. Go east the number of meters under the "E" column and then move north the number of meters in the "N" column. For simplicity, all measurements have been rounded to the nearest tenth of a meter.

				Х	Y
	Grid	E	Ν	coordinate	coordinate
Location	ID	(meters)	(meters)	(meters)	(meters)
1	AQ134	3.6	3.6	13.5892	3.5561
2	AQ132	8.4	3.6	38.4206	3.5561
3	AQ130	4.9	3.6	54.9749	3.5561
4	AR135	1.2	0.7	1.1734	10.7243
5	AR131	2.6	0.7	42.5592	10.7243
6	AR130	9.1	0.7	59.1135	10.7243
7	AR132	8.4	7.9	38.4206	17.8925
8	AR130	4.9	7.9	54.9749	17.8925
9	AS135	1.2	5.1	1.1734	25.0608
10	AS131	2.6	5.1	42.5592	25.0608
11	AS130	9.1	5.1	59.1135	25.0608

.

ATTACHMENT 6-5

Sample Locations and Scan Survey Grids for Survey Unit OL3-3 (soil)

VSP provides survey points using a scale relative to the southwestern corner of the survey unit. This is cumbersome as field personnel must measure over large distances (sometimes hundreds of meters) from the single reference point. To remedy this situation, this spreadsheet provides the VSP survey points based on the actual location within each grid.

All grids must be surveyed 100% as this is a Class 1 survey unit.

To identify soil sample locations, start at the grid identifier below left. Go east the number of meters under the "E" column and then move north the number of meters in the "N" column. For simplicity, all measurements have been rounded to the nearest tenth of a meter.

				х	Y
	Grid	E	Ν	coordinate	coordinate
Location	ID	(meters)	(meters)	(meters)	(meters)
1	AO128	2.6	2	12.5927	1.9993
2	AO127	6.3	2	26.3057	1.9993
3	AP128	9.4	3.9	19.4492	13.8751
4	AP126	3.2	3.9	33.1623	13.8751
5	AQ128	2.6	5.8	12.5927	25.751
6	AQ127	6.3	5.8	26.3057	25.751
7	AR129	5.7	7.6	5.7361	37.6269
8	AR128	9.4	7.6	19.4492	37.6269
9	AR126	3.2	7.6	33.1623	37.6269
10	AS128	2.6	9.5	12.5927	49.5027
11	AS127	6.3	9.5	26.3057	49.5027

ATTACHMENT 6-7

Sample Locations and Scan Survey Grids for Survey Unit OL3-4 (soil)

VSP provides survey points using *a* scale relative to the southwestern corner of the survey unit. This is cumbersome as field personnel must measure over large distances (sometimes hundreds of meters) from the single reference point. To remedy this situation, this spreadsheet provides the VSP survey points based on the actual location within each grid.

All grids must be surveyed 100% as this is a Class 1 survey unit.

To identify soil sample locations, start at the grid identifier below left. Go east the number of meters under the "E" column and then move north the number of meters in the "N" column. For simplicity, all measurements have been rounded to the nearest tenth of a meter.

				Х	Y
	Grid	E	Ν	coordinate	coordinate
Location	ID	(meters)	(meters)	(meters)	(meters)
1	AL124	4.0	3.5	44.0037	3.5275
2	AL123	5.7	3.5	55.6674	3.5275
3	AL122	7.3	3.5	67.3311	3.5275
4	AM124	9.8	3.6	49.8356	13.6286
5	AM122	1.5	3.6	61.4993	13.6286
۴6	AN128	9.0	3.7	9.0126	23.7296
7	AN126	0.7	3.7	20.6763	23.7296
8	AN125	2.3	3.7	32.34	23.7296
9	AN124	4.0	3.7	44.0037	23.7296
10	AN123	5.7	3.7	55.6674	23.7296
11	AN122	7.3	3.7	67.3311	23.7296

ATTACHMENT 6-8

.

ATTACHMENT 6-9

Sample Locations and Scan Survey Grids for Survey Unit OL3-5 (soil)

VSP provides survey points using *a* scale relative to the southwestern corner of the survey unit. This is cumbersome as field personnel must measure over large distances (sometimes hundreds of meters) from the single reference point. To remedy this situation, this spreadsheet provides the VSP survey points based on the actual location within each grid.

All grids must be surveyed 100% as this is a Class 1 survey unit.

To identify soil sample locations, start at the grid identifier below left. Go east the number of meters under the "E" column and then move north the number of meters in the "N" column. For simplicity, all measurements have been rounded to the nearest tenth of a meter.

				Х	Y
	Grid	E	N	coordinate	coordinate
Location	ID	(meters)	(meters)	(meters)	(meters)
1	AO124	3.6	0.9	13.5768	0.944
2	AO123	7.4	0.9	27.3564	0.944
3	AP125	6.7	2.9	6.687	12.8775
4	AP123	0.5	2.9	20.4666	12.8775
5	AP122	4.2	2.9	34.2462	12.8775
6	AQ124	3.6	4.8	13.5768	24.8109
7	AQ123	7.4	4.8	27.3564	24.8109
8	AR125	6.7	6.7	6.687	36.7444
9	AR123	0.5	6.7	20.4666	36.7444
10	AR122	4.2	6.7	34.2462	36.7444
11	AS124	3.6	8.7	13.5768	48.6778
12	AS123	7.4	8.7	27.3564	48.6778

Survey Unit OL3-6 (soil and concrete)

ATTACHMENT 6-11

Sample Locations and Scan Survey Grids for Survey Unit OL3-6 (soil)

VSP provides survey points using *a* scale relative to the southwestern corner of the survey unit. This is cumbersome as field personnel must measure over large distances (sometimes hundreds of meters) from the single reference point. To remedy this situation, this spreadsheet provides the VSP survey points based on the actual location within each grid.

All grids must be surveyed 100% as this is a Class 1 survey unit.

To identify soil sample locations, start at the grid identifier below left. Go east the number of meters under the "E" column and then move north the number of meters in the "N" column. For simplicity, all measurements have been rounded to the nearest tenth of a meter.

				X	Y
•	Grid	E	N	coordinate	coordinate
Location	ID	(meters)	(meters)	(meters)	(meters)
1	AT140	0.2	0.9	0.185	0.8589
2	AT140	9.2	0.9	9.2374	0.8589
3	AT139	8.3	0.9	18.2898	0.8589
4	AT138	7.3	0.9	27.3421	0.8589
5	AT137	6.4	0.9	36.3945	0.8589
6	AT136	5.4	0.9	45.4469	0.8589
7	AT140	4.7	8.7	4.7112	8.6985
8	AT139	3.8	8.7	13.7636	8.6985
9	AT138	2.8	8.7	22.8159	8.6985
10	AT137	1.9	8.7	31.8683	8.6985
11	AT136	0.9	8.7	40.9207	8.6985

ATTACHMENT 6-12

Site Summary

Site Name: OL3

Planner(s): Tristan M. Tritch

Contaminant Summary

NOTE: Surface soil DCGLw units are pCi/g. Building surface DCGLw units are dpm/100 cm².

	Screening						
Contaminant	Туре	DCGLw	Value Used?	Area (m²)	Area Factor		
Cs-137	Surface Soil	4.30	No	10,000 2,500 400 100	1 2.3 3 3.6		
				25 1	4.7 28.7		

Survey Plan Summary

Site:	OL3					
Planner(s):	Tristan M. Tritch					
Survey Unit Name:	OL3-1, rev 1					
Comments:	2000 sq m of soil					
Area (m²):	2,000		Classification:		1	
Selected Test:	Sign		Estimated Sigma (pCi/g):		0.0667	
DCGL (pCi/g):	4.30		Sample Size (N):		11	
LBGR (pCi/g):	4.1		Estimated Conc. (pCi/g):		0.2	
Alpha:	0.050		Estimated Power:		1	
Beta:	0.100		EMC Sample Size (N):		11	
Scanning Instrumentat	ion:	2" x 2" Sodium	lodide			

Prospective Power Curve

Page 1

ATTACHMENT 7-2

Contaminant Summary

Contaminant	DCGLw (pCi/g)	Inferred Contaminant	Ratio	Modified DCGLw (pCl/g)	Scan MDC (pCl/g)	
Cs-137	4.30	N/A	N/A	N/A	5.674	
Contaminant	:	Survey Unit Estimate (Mean ± 1-Sigma) (pCi/g)		Reference Area Estimate (Mean ± 1-Sigma) (pCl/g)		
Cs-137		0.1635 ± 0.0667		0.28 ± 0.39		

ATTACHMENT 7-3

Survey Plan Summary

Site:	OL3						
Planner(s):	Tristan M. Tritch						
Survey Unit Name:	OL3-2	OL3-2					
Comments:	654 sq m soil,	654 sq m soil, remainder concrete and asphalt					
Area (m²):	1,800		Classification:		1		
Selected Test:	Sign		Estimated Sigma (pCi/g):		0.1329		
DCGL (pCi/g):	4.30		Sample Size (N):		11		
LBGR (pCi/g):	3.91		Estimated Conc. (pCi/g):		0.3		
Alpha:	0.050		Estimated Power:		1		
Beta:	0.100		EMC Sample Size (N):		11		
Scanning Instrumentation:		2" x 2" Sodium Iodide					

Prospective Power Curve

Page 1

ATTACHMENT 7-4

Contaminant Summary

Contaminant	DCGLw (pCi/g)	Inferred Contaminant	Ratio	Modified DCGLw (pCi/g)	Scan MDC (pCi/g)
Cs-137	4.30	N/A	N/A	N/A	5.674
Contaminant	:	Survey Unit EstimateReference Area Estima(Mean ± 1-Sigma)(Mean ± 1-Sigma)(pCi/g)(pCi/g)		mate a)	
Cs-137		0.27 ± 0.1329		0.28 ± 0.39	

ATTACHMENT 7-5

Survey Plan Summary

Site:	OL3					
Planner(s):	Tristan M. Tritch					
Survey Unit Name:	OL3-3y					
Comments:	1800 sq m soil					
Area (m²):	1,800		Classification:		1	
Selected Test:	Sign		Estimated Sigma (pCi/g):	().3431	
DCGL (pCi/g):	4.30		Sample Size (N):		11	
LBGR (pCi/g):	3.3		Estimated Conc. (pCi/g):	C).3	
Alpha:	0.050		Estimated Power:	1	t	
Beta:	0.100		EMC Sample Size (N):	1	11	
Scanning Instrumentation:		2" x 2" Sodium Iodide				

Prospective Power Curve

Page 1

ATTACHMENT 7-6

Contaminant Summary

Contaminant	DCGL w (pCi/g)	Inferred Contaminant	Ratio	Modified DCGLw (pCi/g)	Scan MDC (pCi/g)	
Cs-137	4.30	4.30 N/A N/A		N/A 5.574		
Contaminant		Survey Unit Estimate (Mean ± 1-Sigma) (pCl/g)		Reference Area Esti (Mean ± 1-Sigma (pCl/g)	mate a)	
Cs-137		0.3445 ± 0.3431		0.28 ± 0.39		

•

Survey Plan Summary

• •

Site:	OL3				
Planner(s):	Tristan M. Tritc	h			
Survey Unit Name:	OL3-4				
Comments:	1294 sq m soil,	, remainder conc	rete		
Area (m²):	1,300		Classification:		1
Selected Test:	Sign		Estimated Sigma (pCi/g):		0.6485
DCGL (pCi/g):	4.30		Sample Size (N):		11
LBGR (pCi/g):	2.4		Estimated Conc. (pCi/g):		0.7
Alpha:	0.050		Estimated Power:		1
Beta:	0.100		EMC Sample Size (N):		11
Scanning Instrumentation: 2" x 2" Sodium Iodide					

Prospective Power Curve

Page 1

Contaminant Summary

Contaminant	DCGLw (pCl/g)	Inferred Contaminant	Ratio	Modified DCGLw (pCi/g)	Scan MDC (pCi/g)
Cs-137	4.30	N/A	N/A	N/A	5.674
Contaminant	:	Survey Unit Estimate (Mean ± 1-Sigma) (pCl/g)		Reference Area Esti (Mean ± 1-Sigma (pCl/g)	mate 1)
Cs-137	<u> </u>	0.7087 ± 0.6485		0.28 ± 0.39	

.

Survey Plan Summary,

Site:	OL3	•	.	
Planner(s):	Tristan M. Tritc	h		
Survey Unit Name:	OL3-5x			
Comments:	1972 sq m soil,	remainder con	crete	
Area (m²):	2,000		Classification:	1
Selected Test:	Sign		Estimated Sigma (pCi/g):	0.2349
DCGL (pCi/g):	4.30		Sample Size (N):	11
LBGR (pCi/g):	3.6		Estimated Conc. (pCi/g):	0.4
Alpha:	0.050		Estimated Power:	1
Beta:	0.100		EMC Sample Size (N):	11
Scanning Instrumental	ion:	2" x 2" Sodium	lodide	

Prospective Power Curve

Contaminant Summary

Contaminant	DCGLw (pCi/g)	Inferred Contaminant	Ratio	Modified DCGLw (pCl/g)	Scan MDC (pCi/g)
Cs-137	4.30	N/A	N/A	N/A	5.674
Contaminant		Survey Unit Estimate (Mean ± 1-Sigma) (pCi/g)		Reference Area Estim (Mean ± 1-Sigma) (pCl/g)	ate
Cs-137		0.3902 ± 0.2349		0.28 ± 0.39	

COMPASS v1.0.0

Survey Plan Summary,

Site:	OL3	• •	-		
Planner(s):	Tristan M. Trito	ch			
Survey Unit Name:	OL3-6				
Comments:	464 sq m soil,	remainder concr	ete		
Area (m²):	500		Classification:		1
Selected Test:	Sign		Estimated Sigma (pCi/g):		0.5065
DCGL (pCi/g):	4.30		Sample Size (N):		11
LBGR (pCi/g):	2.8		Estimated Conc. (pCi/g):		0.4
Alpha:	0.050		Estimated Power:		1
Beta:	0.100		EMC Sample Size (N):		11
Scanning Instrumentati	ion:	2" x 2" Sodium Iodide			

Prospective Power Curve

Page 1

Contaminant Summary

Contaminant	DCGLw (pCi/g)	Inferred Contaminant	Ratio	Modified DCGLw (pCl/g)	Scan MDC (pCi/g)		
Cs-137	4.30	N/A	N/A	N/A	5.674		
Survey Unit Est (Mean ± 1-Sig Contaminant (pCVo)		Survey Unit Estimate (Mean ± 1-Sigma) (pCl/g)	Unit Estimate Reference Area Estimate 1 ± 1-Sigma) (Mean ± 1-Sigma) (pCl/g) (pCl/g)				
Cs-137		0.4236 ± 0.5065		0.28 ± 0.39			

ł	OL3-1		1	OL3-2	1
1		Cs-137			Cs-137
SR	GRID	pCi/g	SR	GRID	pCi/g
166	AP137SP1	0.09	181	AQ130SD7	0.26
	AP137SP2	0.16	1	AQ130SD7B	0.33
	AP138SP1	0.2	7	AQ130SD8	0.4
	AP138SP2	0.19	1	AQ130SD8B	0.09
	AR136SP1	0.16			
	AR136SP2	0.15			
	AR137SP1	0.3			
	AR137SP2	0.08			
	AR138SP1	0.1			
	AR138SP2	0.15			
180	AP139SP1	0.12			
	AP139SP2	0.12			
	AP140SP1	0.26			
	AP140SP2	0.1			
	AQ139SP2	0.14			
	AQ140SP1	0.29			
	AQ140SP2	0.17			
					1
ļ					
]		· ·
ľ			1		
			1		
			1		
		<u> </u>			
		1			
TOTAL	·	2.78	TOTAL	<u>.</u> .	1.08
MAX		0.3	MAX		0.4
MIN		0.08	MIN		0.09
MEDIAN		0.1500	MEDIAN		0 2950
AVG		0 1635	AVG		0 2700
		0.0667		/	0 1320
		0.0001			0.1029

<mda - -

-----<MDA-----

.

ATTACHMENT 8-1

-

•

[OL3-3		OL3-3 continued		
1		Cs-137	1		Cs-137
SR	GRID	pCi/g	SR	GRID	_pCi/g_
167	AO126AP1	0.67			
]	AO126SP2	0.36			
171	AO127SP1	0.77			
	AO127SP2	0.9	17		
180	AQ126SP1	0.1			
	AQ126SP2	0.08	AQ	127SP1PR	0.6
	AQ127AP1		AQ	127SP2PR	0.62
	AQ127SP1	0.09	AQ12	7SP2PR1	1.7
	AQ127SP2	0.17	AQ12	7SP2PR3	0.1
	AQ128AP1		AQ	128SP1PR	0.28
	AQ128SP1	0.08	AQ	128SP2PR	0.8
	AQ128SP2	0.15	AQ12	8SP2PR2	0.07
	AR126SP1	0.07	A012	8SP2PR3	0.1
	AR126SP2	0.08			
	AR127AP1	0.00		127SP1PR	0.5
	AR127SP2	0.6	AR	127SP2PR	1.2
	AR128SP1	0.06	AR12	7SP2PR1	0.15
	AR128SP2	0.08	AR127	SP2PR1.5'	0.76
	AS127SP1	02	AR12	7SP2PR3'	0.16
	AS127SP2	0.4	AR	127SP3PR	0.10
	AS128SP1	01	<u>/</u>		
	AS128SP2	0.07			
181	AR129SD5	0.26			
	AR129SD5B	0.05			
	AR129SD6	0.06			-
	AR129SD6B	0.09	<u> </u>		
	AS129SD3	0.12	1		
	AS129SD3B	01			
	AS129SD4	0.12			
	AS129SD4B	0.12			
187	A0126SP1	0.55	·		
	AO126SP2	0.3			
ł	AO126SP3	0.6	1		
	AO126SP4	0.24			
	AO126SP5	0.64			
·····	AP126SP1	0.36			
	AP126SP2	0.25			
	AP126SP3	0.24			
	AP126SP4	0.4		••••	
	AP126SP5	0.1			
<u> </u>			TOTAL	········	17.57
			MAX		1.7
			MIN		0.05
			MEDIAN		0.2000
			AVG		0.3445
			STD DEV		0.3431
					0.0401

<MDA

I		OL.3-4		OL3-4 continued			OL3-4 continued		
ł			Cs-137			Cs-137			Cs-137
I	SR	GRID	pCi/g	SR	GRID	pCi/g	SR	GRID	pCi/g
Γ	74	AN122SP1	0.87	187	AL122SP1	0.65	187	AN122SP1	0.7
ļ		AN124SP2	0.22		AL122SP2	0.72	cont.	AN122SP2	1
	167	AM122SP1	0.66	7	AL122SP3	0.13		AN122SP3	0.6
ł		AM122SP2	2.9		AL122SP4	0.1		AN122SP4	0.62
				·	AL122SP5	0.07	<u> </u>	AN122SP5	0.6
ſ	_				AL123SP1	1.1			
ł				ĺ	AL123SP2	0.17			
					AL123SP3	0.13			
l					AL123SP5	0.14	{	AN123SP1	0.7
L		AM124SP2	0.54		AL124SP1	1.4	ļ	AN123SP2	0.4
I	171	AL122SP1	0.13		AL124SP2	1	1	AN123SP3	0.6
ł		AL122SP2	3.8		AL124SP3	0.1		AN123SP4	0.6
					AL124SP4	0.12	1	AN123SP5	0.87
		AL123SP2	1.8		AL124SP5	0.1	F	N123SP6PR	0.5
Ļ		AL124SP1	0.76		AM122SP1	0.6	<i>F</i>	N123SP7PR	2.25
		AL124SP2	0.17		AM122SP2	0.7	A A	N123SP8PR	0.7
l		AN122SP1	0.66		AM122SP3	1.1	A A	N123SP9PR	0.14
l		AN122SP2	0.68		AM122SP4	0.8		AN124SP1	0.16
ł					AM123SP1	0.7		AN124SP2	0.76
L		AN123SP1	0.36		AM123SP2	1.2	ļ	AN124SP3	0.5
		AN124SP1	0.28		AM123SP3	1		AN124SP4	0.5
ł		AN124SP2	0.19		AM123SP4	0.6		AN124SP5	0.63
		AN125SP1	2.8		AM123SP5	1.3		AN125SP1	0.36
l		AN125SP2	0.48		AM124SP1	0.54		AN125SP2	0.07
┝		AN126SP1	0.61		AM124SP2	0.55	ļ	AN125SP3	1.1
l		AN126SP2	1		AM124SP3	0.5	ļ	AN125SP4	0.6
		AN126SP3	0.41		AM124SP4	0.37		AN125SP5	0.6
		AN1265P4	0.44		AM124SP5	0.44	. I	140500700	
ĺ								N125SP7PR	0.29
┝							<u> </u>	N125SP8PR	0.52
ł							م ۱	N1255P9PR	1.4
l									
┡		•·			·		 -		
				•					
┝							TOTAL	<u> </u>	53.86
					•		MAY		3.8
							MIN		0.07
							MEDIAN		0.00
									0 7087
			ļ					,	0.6485
									0.0400

-

•

.

<MDA

ATTACHMENT 8-3

•

1	OL3-5		OL3-5 continued			OL3-5 continued		
		Cs-137			Cs-137			Cs-137
SR	GRID	pCi/g	SR	GRID	pCi/g	SR	GRID	pCi/g
167	A0122AP1	0.55	187	AO122AP1	0.38	187	AP123SP1	0.2
	AO122AP2	0.6		AO122SP1	0.7	cont.	AP123SP2	0.4
	AO122AP3	0.74	7	AO122SP2	0.14	1	AP123SP3	0.7
	AO122AP4	0.38	1	AO122SP3	0.36	ļ	AP123SP4	0.5
	AO122AP5	0.47		AO122SP4	0.3		AP123SP5	0.33
	AO123AP1			AO122SP5	0.6		AP124SP1	0.75
	AO123SP2	0.24		A0123SP1	0.5		AP124SP2	0.2
	AO124AP1	0.43	1	AO123SP2	0.4		AP124SP3	0.22
	AO124AP2	0.35		AO123SP3	1.1		AP124SP4	0.1
	AO124AP3	0.34		AO123SP4	0.7		AP124SP5	0.28
[A0125SP1	0.58		AO123SP5	0.5		AP125SP1	0.46
	AO125SP2	0.44		AO123AP1	0.53		AP125SP2	0.4
	AP122AP1	1.6		AO124SP1	0.23		AP125SP3	0.4
	AP122AP2	0.28		AO124SP2	0.3		AP125SP4	0.17
	AP122AP3	0.26		A0124SP3	0.75		AP125SP5	0.3
	AP122AP4	0.27		AO124SP4	0.25			
	AP123AP1	0.19		AO124SP5	0.4			
	AP123SP1	0.48		AO124AP1	0.47			
[AP124SP1	0.26		AO125SP1	0.55			
		0.15		A0125SP2	0.3			
	AQ122AP1	0.39		AO125SP3	0.7			
1	AQ122AP2	0.42		AO125SP4	0.34			
	AQ123SP1	0.37		AO125SP5	0.5]		
	AQ123SP2	0.27		AP122AP1		ł		
180	AQ125SP1	0.09	- <u> </u>	AP122SP1	0.2			
	AQ125SP2	0.2		AP122SP2	0.18			
	AR123SP1	0.48		AP122SP3	0.17			
	AR123SP2	0.41		AP122SP4	0.26			
	AR124SP1	0.24		AP122SP5	0.38			
		0.09	/	AP122SP6PR	0.44			
	AR125SP1	0.16	4	AP122SP7PR	0.3			
	AR1255P2	0.09		AP122SP8PR	0.15			
1	AS1225P1	0.26		AP1225P9PR	0.2			
	AS1235P1	0.5						
	AS1235P2	0.27						
ł	AS1245P1	0.77						
1	A01240FZ	0.00						1
1								
						TOTAL		32.39
						MAX		1.6
						MIN		0.08
						MEDIAN		0.3600
						AVG		0.3902
ł					•	STD DEV		0.2349

•

•

1	OL3-6		1
		Cs-137	ł
SR	GRID	pCi/g]
2	AT139-3	0.25	Ĩ
	AT139-6	0.3	ł
	AT139-9	0.3	17
	AT139-12	0.29	
	<u>AT139-30</u>	0.04	1
	AT139-36	0.1	
164	AT140SP1	0.22	
	AT140SP2	0.16	
205	AT137SP18	0.16	ł
ļ	AT138SP1	0.1	1
	AT138SP2	0.17	
	AT138SP3	0.18	
	AT139SP17	0.1	
188	AT138AP1	0.05	
	AT138AP2	0.67	
	AT138SP4	0.2	Sub-surface
	AT138SP1	0.4	Sub-surface
	AT138SP2	0.74	Sub-surface
	AT138SP3	2]
ļ	AT138SP4	1.3	
	AT138SP5	1.7	
	AT138SP6	0.28	
	AT138SP7	0.36	
	AT138SP8	0.28	
	AT139SP9	0.24	
ļ			
J			
TOTAL		10.50	
MAY		2	
		0 04	
		0.04	
		0.4226	
		0.4230	
PIDDEV		0.0000	

.

.

. .

.

		E	chibit 1		
Survey	Unit	Ins	pection	Check	Shee

Exhibit 1 CR	GIN	AL	<u>.</u>		
SECTION 1 - SURVEY UNIT INSPECTION DESCRIPTION					
Survey Unit # OL3 Survey Unit Location Penelec South Class	I Open 1	Land	•••• <u>•</u>		
Date 5/19/05 Time 1000 Inspection Team Members R. She	pherd				
SECTION 2 - SURVEY UNIT INSPECTION SCOPE					
Inspection Requirements (Check the appropriate Yes/No answer.)	Yes	No	N/A		
1. Have sufficient surveys (i.e., post remediation, characterization, etc.) been obtained for the survey unit?		x			
2. Do the surveys (from Question 1) demonstrate that the survey unit will most likely pass the FSS?		X			
3. Is the physical work (i.e., remediation & housekeeping) in or around the survey unit complete?		x			
4. Have all tools, non-permanent equipment, and material not needed to perform the FSS been removed?		X			
5. Are the survey surfaces relatively free of loose debris (i.e., dirt, concrete dust, metal filings, etc.)?		x			
6. Are the survey surfaces relatively free of liquids (i.e., water, moisture, oil, etc.)?	X				
7. Are the survey surfaces free of all paint, which has the potential to shield radiation?	X				
8. Have the Surface Measurement Test Areas (SMTA) been established? (Refer to Exhibit 2 for instructions.)	X				
9. Have the Surface Measurement Test Areas (SMTA) data been collected? (Refer to Exhibit 2 for instructions.)	X				
10. Are the survey surfaces easily accessible? (No scaffolding, high reach, etc. is needed to perform the FSS)	X				
11. Is lighting adequate to perform the FSS?	X				
12. Is the area industrially safe to perform the FSS? (Evaluate potential fall & trip hazards, confined spaces, etc.)	X				
13. Have photographs been taken showing the overall condition of the area?	X				
14. Have all unsatisfactory conditions been resolved?		x			
NOTE: If a "No" answer is obtained above, the inspector should immediately correct the problem or initiate corrective actions through the responsible site department, as applicable. Document actions taken and/or justifications in the "Comments" section below. Attach additionals sheets as necessary.					
Comments:					
Response to Questions 1 & 2: Remediation and post remediation surveys not complete in OL3-6. J. Graham notified	l.				
Response to Questions 3 & 4: Tools, equipment and sample storage vans containing radioactive material stored on survey unit. L. Shamenek notified.					
Response to Question 5: Dirt covers much of concrete, asphalt area. Surfaces and grid markers need to be reestablished in high traffic areas. L. Shamenek notified.					
Survey Unit Inspector (print/sign) Ray Shepherd/ R Shepherd	Date	5/19/	05		
Survey Designer (print/sign) Tristan M. Tritch (Tist. In 61/34)	Date	5/19	05		

et a tagent y

APPENDIX B

. . •

First Energy Site Report EMC Calculator for OL3-1

1

SNEC FACILITY RADCON

	SURVEY REQUEST CC	ONTINUATION SHEET	
SKINUMBERE 246	AREA/LOCATION	OL3-1 grid AR138	
	SPECIFIC SAMPLING & SURVEYIN	IG INSTRUCTIONS / COMMENTS	
An AP was identified i diameter.	n Grid AR138 in OL3-1. This AP is	in the area. It has been bounded to i	be about 6 fe
Collect a 1 meter thick	surface sample at the position of t	the AP.	
Collect three 1 meter location at the discret	thick surface samples 3 feet from ion of the collector.	i the AP in a triangular pattern arou	nd the AP, e
IP2			
IP1	0		
	-		
ଞ _{IP3}			
·			

		SURVEY REQU	UEST CONTINUATION SHEET
SR NUMBER	246	AREA/LOCATION	OL3-1, grid AR138
<u> </u>		SPECIFIC SAMPLING	& SURVEYING INSTRUCTIONS / COMMENTS
An AP was id pCi/g Co-60. order to boun	lentified in g In addition d the area.	grid AR138 where it , three soil samples All three bounding s	was subsequently determined to contain 89 pCi/g Cs-137 and 0.3 s were taken in close proximity (roughly three feet) to the AP in samples were 0.1 pCi/g Cs-137 with Co-60 <mda.< th=""></mda.<>
This continua	tion sheet is	s for the following:	
1. analyz	ze, by gamm	a spectroscopy, the	e remainder of the 89 pCi/g sample
2. scan t detect	the hole and table radioa	I the immediate region the state in the stat	on around the sample point to determine if there is any remaining vicinity.
			· ·
			O_{1}
	<u></u>		- 1 into M: 1 itos 45/05

.

.

.

07-3-1	C(\mathcal{O}
8212121 1-9F138	89.24	BE.O
SRI SRZ SRZ	0.109 0.098 0.093	
Disappl. Z	2,985	

	Ş	SURVEY REQUES	T CONTINUATION SHEET	
SRNUMBER	246	AREA/LOCATION	OL3-1, Grid AR138	· · · ·
		SPECIFIC SAMPLING & SUI	RVEYING INSTRUCTIONS / COMMENTS	
Background:				
Continuation	Sheet 1			
An AP was id pCi/g Co-60. order to boun	lentified in gl In addition, d the area. #	id AR138 where it was s three soil samples were all three bounding sampl	subsequently determined to contain 89 p e taken in close proximity (roughly three es were 0.1 pCi/g Cs-137 with Co-60 <md< td=""><td>Ci/g Cs-137 and 0.3 e feet) to the AP in A.</td></md<>	Ci/g Cs-137 and 0.3 e feet) to the AP in A.
Continuation	Sheet 2			
The remainde around the ho	er of the 89 ble was scani	pCi/g sample was analy ned and no readings grea	zed. It revealed 23 pCi/g Cs-137 with n ater than background were detected.	o Co-60. The area
This is Contin	uation Sheet	is Continuation Sheet 3	for Grid AR138	
1. Go ba	ck to the orig	inal location of the AP a	nd collect a one meter thick surface samp	ole.
2. Witho and do	ut collapsing ocument read	or allowing surface soil lings approximately even	l to fall back into the hole, lower a Nal de ry quarter meter of depth (0m, 0.25, 0.5m,	tector into the hole 0.75m, and 1m).
3. Leave	the sample d the hole to	hole open until samples warn personnel of the oj	s and data have been analyzed. Place c pening.	ones or equivalent
			All S Ristan M. T.	Pay 21 Jun 2000 2000 726 4/20/05

• •

ORIGINAL

,

			ORI	GINAL	•	
					OL3-1	F8S-1945
			OL3-1	1		
	- AR-1:	38		••••••••••••••••••••••••••••••••••••••	1	248
	FSS - Blased Site S with St	urface Dose Model Sa atic Readings	imple		6/21/05	.1429
	J. Shimek / Curry	Idente		NA		
	Rf udo 18	i lo		12 48 0 1 60 0011 - 10 0011 - 1 00		6/23/05
	2350 / 44-10		ħ	IJA		N/A
	98642 / 211667 Pk	et tanta tari af				
	9/28/05 / 11/02/05	COLUMN STATE				
	213,180					
	N/A	Constant (
	N/A	CERNARCHON				
	N/A	SEE AASSA		, 		¥
	Sat. 🛛 Unsat. 🗌	Straight Co	Sat. 🗍	Unsat. 🗌		Sat. [] Unsat. []
Semple was dug with Static readings were	AP-1	lepth. eter of depth, see pag	e 2 for resul	its.	Grid # Location AP-1	AR-138 SX-SL-# 10841
	<u>ک</u> در و					

Č.

à

ORIGINAL

:

						sur ster et		teres and the		
							J. 51	IM9K		
									· · ·	a a construction de la construcción de la construcción de la construcción de la construcción de la construcción A construcción de la construcción de
2	AR	138°at	0 m · ·	6/21/05	14:52	4	188	60	SCL	the second strategy and the
1×24	AR	138'at	0.25 m	6/21/05	14:54	4	212	60	SCL	
\$3:2:	AR	138-at	0.5 m	6/21/05	14:55	4	218	60	SCL	•
2:20	AR	138 at	0.75 m	6/21/05	14:57	4	246	60	SCL	
152	AR	138 at	1 m	6/21/05	14:58	4	367	60	SCL	

GAMMA SPECTRUM ANALYSIS N ********************************** port Generated On : 6/23/2005 9:27:44 AM rigina .lename: C:\PCNT2K\CAMFILES\SOIL\SOL15356.CNF ample Title : Soil imple Description : SX-SL-10841 SR-246 AR-138 AP-1 imple Identification : 5-24587 ample Type : SOL imple Geometry : HD 1L Marinelli 60 Co 10.065 eak Locate Threshold 3.00 : eak Locate Range (in channels) : 80 -4095 eak Area Range (in channels) : 80 -4095 dentification Energy Tolerance : 2.000 keV ample Size 1.265E+003 GRAMS ample Taken On : 6/21/2005 2:35:00 PM : 6/23/2005 cquisition Started 9:11:01 AM ive Time 1000.0 seconds eal Time 1000.4 seconds : ead Time 0.04 % : Energy Calibration Used Done On : 6/21/2005 Efficiency Calibration Used Done On : 1/4/2005 Efficiency ID : HD 1L Marinelli

いたいろうためをたいない

0(213 JS

ZO(5.5)

9:27:44 AM Corrected Activity Report 6/23/2005 Page __ 5 REPORT INTERFERENCE CORRECTED ***** ***** Wt mean Nuclide Wt mean ····-Nuclide Id Activity Activity Name Confidence (pCi/GRAM) Uncertainty K-40 1.000 6.969050E+000 1.004238E+000 CS-137 1.000 1.119180E+000 1.363665E-001 0.768 9.242758E-001 PB-212 9.918791E-002 6.455103E-001 BI-214 0.374 1.113001E-001 9.271356E-002 PB-214 0.894 7.232691E-001 AC-228 0.422 7.243816E-001 1.229841E-001 ? = nuclide is part of an undetermined solution X = nuclide rejected by the interference analysis @ = nuclide contains energy lines not used in Weighted Mean Activ -- Errors quoted at 2.000 sigma UNIDENTIFIED PEAKS Peak Locate Performed on: 6/23/2005 9:27:43 AM Peak Locate From Channel: 80 Peak Locate To Channel: 4095 Peak Energy Peak Size in Peak CPS No. (keV) Counts per Second % Uncertainty 510.69 ANY 9 6.8450E-002 44.44 583.23 TL-ZOF 1.8632E-001 17.32 10 727.18-BJ-ZIZ 2.7951E-002 65.63 13 M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000 sigma

APPENDIX C

COMPASS DQA Surface Soil Report OL3-1

.

Assessment Summary

Site:	OL3		
Planner(s):	Tristan M. Tritch		
Survey Unit Name:	OL3-1, rev 1		
Report Number:	1		
Survey Unit Samples:	11		
Reference Area Samples:	0		
Test Performed:	Sign	Test Result:	Not Performed
Judgmental Samples:	0	EMC Result:	Not Performed
Assessment Conclusion:	Reject Null Hypothesis (S	Survey Unit PASSE	s)

Retrospective Power Curve

Survey Unit Data

NOTE: Type = "S" indicates survey unit sample. Type = "R" indicates reference area sample.

Sample Number	Туре	Cs-137 (pCi/g)	
AP140SP1	S	0.23	
AP139SP2	S	0.09	
AP137SP3	S	0.1	
AP136SP4	S	0.12	
AR139SP5	S	0.08	
AR138SP6	S	0.1	
AR137SP7	S	0.09	
AS140SP8	S	0.17	
AS139SP9	S	0.05	
AS137SP10	S	0.1	
AS136SP11	S	0.06	

Basic Statistical Quantities Summary

Statistic	Survey Unit	Background	DQO Results
Sample Number	11	N/A	N=11
Mean (pCi/g)	0.11	N/A	0.16
Median (pCi/g)	0.10	N/A	N/A
Std Dev (pCi/g)	0.05	N/A	0.0667
High Value (pCi/g)	0.23	N/A	N/A
Low Value (pCi/g)	0.05	N/A	N/A

.

· · .. ·

APPENDIX D

.

COMPASS DQA Surface Soil Report OL3-2

Assessment Summary

Site:	OL3		
Planner(s):	Tristan M. Tritch		
Survey Unit Name:	OL3-2		
Report Number:	1		
Survey Unit Samples:	11		
Reference Area Samples:	0		
Test Performed:	Sign	Test Result:	Not Performed
Judgmental Samples:	0	EMC Result:	Not Performed
Assessment Conclusion:	Reject Null Hypothesis (Survey Unit PASSE	S)

Retrospective Power Curve

.

-

Survey Unit Data

NOTE: Type = "S" indicates survey unit sample. Type = "R" indicates reference area sample.

Sample Number	Туре	Cs-137 (pCi/g)	
AQ135SP1	S	0.05	
AQ132SP2	S	0.14	
AQ130SP3	S	0.14	
AR135SP4	S	0.06	
AR131SP5	S	0.31	
AR130SP6	S	0.07	
AR132SP7	S	0.15	
AR130SP8	S	0.08	
AS135SP9	S	0.08	
AS131SP10	S	0.17	
AS130SP11	S	0.07	

Basic Statistical Quantities Summary

Statistic	Survey Unit	Background	DQO Results
Sample Number	· 11	N/A	N=11
Mean (pCi/g)	0.12	N/A	0.27
Median (pCi/g)	0.08	N/A	N/A
Std Dev (pCi/g)	0.08	N/A	0.1329
High Value (pCi/g)	0.31	N/A	N/A
Low Value (pCi/g)	0.05	N/A	N/A

• . ..

.

APPENDIX E

COMPASS DQA Surface Soil Report OL3-3

.

•

......

Assessment Summary

Site:	OL3		
Planner(s):	Tristan M. Tritch		
Survey Unit Name:	OL3-3y		
Report Number:	1		
Survey Unit Samples:	11		
Reference Area Samples:	0		
Test Performed:	Sign	Test Result:	Not Performed
Judgmental Samples:	0	EMC Result:	Not Performed
Assessment Conclusion:	Reject Null Hypothesis (Survey Unit PASSE	S)

Retrospective Power Curve

Survey Unit Data

NOTE: Type = "S" indicates survey unit sample. Type = "R" indicates reference area sample.

Sample Number	Туре	Cs-137 (pCi/g)	
AO128SP1	S	0.27	
AO127SP2	S	0.16	
AP128SP3	S	0.08	
AP126SP4	S	0.05	
AQ128SP5	S	0.1	
AQ127SP6	S	0.14	
AR129SP7	S	0.1	
AR128SP8	S	0.06	
AR126SP9	S	0.14	
AS128SP10	S	0.06	
AS127SP11	S	0.12	

Basic Statistical Quantities Summary

Statistic	Survey Unit	Background	DQO Results
Sample Number	11	N/A	N=11
Mean (pCi/g)	0.12	N/A	0.34
Median (pCi/g)	0.10	N/A	N/A
Std Dev (pCi/g)	0.06	N/A	0.3431
High Value (pCi/g)	0.27	N/A	N/A
Low Value (pCi/g)	0.05	N/A	N/A

· · · · · · · · · · ·

APPENDIX F

COMPASS DQA Surface Soil Report OL3-4

Assessment Summary

Site:	OL3		
Planner(s):	Tristan M. Tritch		
Survey Unit Name:	OL3-4		
Report Number:	1		
Survey Unit Samples:	11		
Reference Area Samples:	0		
Test Performed:	Sign	Test Result:	Not Performed
Judgmental Samples:	0	EMC Result:	Not Performed
Assessment Conclusion:	Reject Null Hypothesis (S	Survey Unit PASSE	S)

Retrospective Power Curve

. . • •

Survey Unit Data

NOTE: Type = "S" indicates survey unit sample. Type = "R" indicates reference area sample.

Sample Number	Туре	Cs-137 (pCi/g)			
AL124SP1	S	0.11			
AL123SP2	S	0.14	-		•-
AL122SP3	S	0.13	-		
AM124SP4	S	0.2			
AM122SP5	S	0.15			
AN128SP6	S	0.39			
AN126SP7	S	0.12			
AN125SP8	S	0.16			
AN124SP9	S	0.06			
AN123SP10	S	0.1			
AN122SP11	S	0.1			

Basic Statistical Quantities Summary

Statistic	Survey Unit	Background	DQO Results
Sample Number	11	N/A	N=11
Mean (pCi/g)	0.15	N/A	0.71
Median (pCi/g)	0.13	N/A	N/A
Std Dev (pCi/g)	0.09	N/A	0.6485
High Value (pCi/g)	0.39	N/A	N/A
Low Value (pCi/g)	0.06	N/A	N/A

.

• .
APPENDIX G

-

COMPASS DQA Surface Soil Report OL3-5

Assessment Summary

Site:	OL3		
Planner(s):	Tristan M. Tritch		
Survey Unit Name:	OL3-5x		
Report Number:	1		
Survey Unit Samples:	12		
Reference Area Samples:	0		
Test Performed:	Sign	Test Result:	Not Performed
Judgmental Samples:	0	EMC Result	Not Performed
Assessment Conclusion:	Reject Null Hypothesis (S	Survey Unit PASSE	S)

Retrospective Power Curve

Survey Unit Data

NOTE: Type = "S" indicates survey unit sample. Type = "R" indicates reference area sample.

Sample Number	Туре	Cs-137 (pCi/g)	
AO124SP1	S	0.11	
A0123SP2	S	0.17	
AP125SP3	S	0.1	
AP123SP4	S	0.1	
AP122SP5	S	0.19	
AQ124SP6	S	0.13	
AQ123SP7	S	0.14	
AR125SP8	S	0.21	
AR123SP9	S	0.1	
AR122SP10	S	0.29	
AS124SP11	S	0.12	
AS123SP12	S	0.07	

Basic Statistical Quantities Summary

Statistic	Survey Unit	Background	DQO Results
Sample Number	12	N/A	N=11
Mean (pCi/g)	0.14	N/A	0.39
Median (pCi/g)	0.12	N/A	N/A
Std Dev (pCi/g)	0.06	N/A	0.2349
High Value (pCi/g)	0.29	N/A	N/A
Low Value (pCi/g)	0.07	N/A	N/A

-

APPENDIX H

.

COMPASS DQA Surface Soil Report OL3-6

Assessment Summary

Site:	OL3		
Planner(s):	Tristan M. Tritch		
Survey Unit Name:	OL3-6		
Report Number:	1		
Survey Unit Samples:	11		
Reference Area Samples:	0		
Test Performed:	Sign	Test Result:	Not Performed
Judgmental Samples:	0	EMC Result:	Not Performed
Assessment Conclusion:	Reject Null Hypothesis (Survey Unit PASSE	S)

Retrospective Power Curve

.

Survey Unit Data

NOTE: Type = "S" indicates survey unit sample. Type = "R" indicates reference area sample.

Sample Number	Туре	Cs-137 (pCl/g)	
AT140SP1	S	0.12	
AT140SP2	S	0.09	
AT139SP3	S	0.1	
AT138SP4	S	0.04	
AT137SP5	S	0.11	
AT136SP6	S	0.14	
AT140SP7	S	0.17	
AT139SP8	S	0.08	
AT138SP9	S	0.2	
AT137SP10	S	0.21	
AT136SP11	S	0.17	

Basic Statistical Quantities Summary

Statistic	Survey Unit	Background	DQO Results
Sample Number	11	N/A	N=11
Mean (pCi/g)	0.13	N/A	0.42
Median (pCi/g)	0.12	N/A	N/A
Std Dev (pCi/g)	0.05	N/A	0.5065
High Value (pCi/g)	0.21	N/A	N/A
Low Value (pCi/g)	0.05	N/A	N/A

.