APPENDIX A-1

.

SNEC Calculation No. E900-04-027

•

	SNEC CALC	ULATION C	OVER SHEFT	- rev	för	-
	CALCUL	LATION DESCR			LOST	- FININ
Calculation Number		Revision Number	Effective Date	F	Page Number	
E900-04-027		0	2/25/05		1 of	[i]]əl (
Subject	<u>,</u>		<i>ttt</i>	I		Ŧ·V
CV Yard Survey Design -	- Temporary Water S	upply Trench in C	V Yard			
,	<u> </u>					
Question 1 - Is this calculation	n defined as "In QA Scop	pe"? Refer to definitio	n 3.5. Yes 🛛 No 🗌]		
Question 2 - Is this calculation	n defined as a "Design C	alculation"? Refer to	definitions 3.2 and 3.3.	Yes 🛛	No 🗌	
NOTES: If a "Yes" answer is obta Assurance Plan. If a "Yes" and calculation as the Technical Revie	ined for Question 1, the call swer is obtained for Ques ewer.	Iculation must meet the i stion 2, the Calculation	equirements of the SNEC Fa Originator's immediate sup	acility De pervisor	commissionir should not re	ng Quality eview the
	DESCR		/ISION			
		OVAL SIGNAT	IPES			
	APPR	OVAL SIGNATI	JRES			
Calculation Originator	APPR B. Brosey/	OVAL SIGNATI	JRES	Date	2/25	105.
Calculation Originator	APPR B. Brosey/	OVAL SIGNATI	JRES	Date	2/25	105.
Calculation Originator Technical Reviewer	APPR B. Brosey/	OVAL SIGNATI	JRES	Date	2/25	105.
Calculation Originator Technical Reviewer	APPR B. Brosey/ R. Holmes/	OVAL SIGNATI 3. From 2 Holmes	JRES	Date	2/25/ 3/10/03	105.
Calculation Originator Technical Reviewer Additional Review	APPR B. Brosey/ R. Holmes/ A. Paynter/	OVAL SIGNATI 3. From 2 Holmes	JRES	Date Date Date	2/25 3/10/0: 11 Murc	105. 5 1.2003
Calculation Originator Technical Reviewer Additional Review	APPR B. Brosey/ R. Holmes/ A. Paynter/	OVAL SIGNATI 3. Bronz 2 Holmes Mille	JRES	Date Date Date	2/25 3/10/0: 11 Murc	105. 5 12003
Calculation Originator Technical Reviewer Additional Review	APPR B. Brosey/ R. Holmes/ A. Paynter/	OVAL SIGNATI 3. From 2 Holmes MALLE	JRES	Date Date Date Date	2/25 3/10/0: 11 Murc	105 . 5 L2003
Calculation Originator Fechnical Reviewer Additional Review	APPR B. Brosey/ R. Holmes/ A. Paynter/	OVAL SIGNATI 3. Bronn 2 Holmes Mithe	JRES	Date Date Date Date	2/25 3/10/00 11 Murc	105. 5 L2003

r

FratEnergy	SNEC CALCULATION SHEET					
Calculation Number	Revision Number	Page Number				
E900-04-027	0	Page 2 of 8				
Subject	· · · · · · · · · · · · · · · · · · ·	······································				

CV Yard Survey Design – Temporary Water Supply Trench in CV Yard

1.0 PURPOSE

- 1.1 The purpose of this calculation is to develop a survey design for one (1) "Temporary Water Supply Trench" located in the CV Yard (OL1). This soil survey unit is shown on Attachment 1-1 and in the Attachment 1-2 photo. The trench is about 160 feet long, having an average width of about 46 inches and a mean depth of about forty (40) inches. It is a below grade Class 1 open land area and begins in site grid No. AS-127. This survey design is only valid for the section of trench depicted on Attachment 1-1 (beginning in grid AS-127 and ending in grid AW-125).
- 1.2 This survey unit lies in site area <u>OL1</u> and is designated <u>OL1-6</u>.
- 1.3 The total exposed soil surface area is <u>~163 square meters</u> which include the side walls.

2.0 SUMMARY OF RESULTS

The following information should be used to develop a survey request for this survey unit. The effective DCGLw values are listed below. The US NRC has reviewed and concurred with the methodology used to derive these values. See Attachment 2-1 to 2-6.

Volumetric DCGLw (pCi/g – Cs-137)							
5.75 (4.31 A.L.)							

NOTE: A.L. is the site Administrative Limit (75% of effective DCGLw)

- 2.1 Survey Design
 - 2.1.1 Scanning of soil (and fill materials) shall be performed using a <u>2" D by 2" L Nal</u> <u>detector</u> with a Cs-137 window setting. The window will straddle the Cs-137 662 keV full energy peak width (see calibration information on Attachment 3-1).

Soil Scanning Parameters

MDCscan (pCi/g) – Cs-137	Scan Speed (cm/sec)	Maximum Distance from Surface	% Coverage
3.3	25	4" (gap between detector face & soil surface)	100%

- 2.1.2 The instrument conversion factor/efficiency shall be not less than the lowest value reported on Attachment 3-1 (<u>205 cpm/uR/h Cs-137</u>).
- 2.1.3 <u>Class 1</u> soil should be scanned using a serpentine pattern that is ~0.5 meters wide.
- 2.1.4 The MDCscan is determined using the MicroShield model of Attachment 4-1. MDCscan calculations are shown on Attachments 4-2 and 4-3.
- 2.1.5 Background has been measured in the OL1 area over similar materials, and ranges from about 100 cpm to about 400 cpm (see Reference 3.1). If a <u>count rate</u> of greater than <u>300 gross cpm</u> is encountered during the scanning process, the surveyor should stop and locate the boundary of the elevated area. The surveyor should then mark the elevated area with stakes or other appropriate marking methods. <u>Sample the elevated areas(s)</u> IAW SNEC procedure E900-IMP-4520.04 (Reference 3.2).

FirstEnergy

SNEC CALCULATION SHEET

Calculation Number E900-04-027

Revision Number

Page Number

Subject

CV Yard Survey Design – Temporary Water Supply Trench in CV Yard

NOTE

0

This survey design must be revised if it is shown that the true background count rate (from natural occurring materials) is greater than ~550 counts per minute.

- 2.1.6 Sampling points are to be *clearly marked, identified* and *documented*.
- 2.1.7 All survey personnel shall be trained to identify 300 gross cpm based on the audible instrument response.
- 2.1.8 Other instruments of the type specified in Section 2.1.1 above may be used during the FSS, but they must demonstrate a detection efficiency at or above the value listed in Section 2.1.2.
- 2.1.9 The minimum number of sampling points indicated by the Compass computer program for this survey unit (Reference 3.3) is 16 (see Compass output on Attachment 5-1 to 5-4). Sampling depth should be the first 6 inches (15 cm) of soil.
- 2.1.10 VSP (Reference 3.4) is used to plot all sampling points on the included diagrams. The actual number of random start systematically spaced measurement points may be greater than that required by the Compass computer code because of any or all of the following:
 - placement of the initial random starting point (edge effects),
 - odd shaped diagrams, and/or
 - coverage concerns

(see Attachment 6-1 for VSP sampling point locations)

- 2.1.11 The starting points for physically locating sample sites in the trench area are based on measurements from a local landmark (South end of trench well header and North end region – see diagram on Attachment 6-1). Soil sample points are positioned using coordinates developed from these landmarks.
- 2.1.12 Some sampling points may need to be adjusted to accommodate obstructions within the survey area. Contact the SR coordinator to report any difficulties encountered when laying out systematic grid sampling points.
- 2.1.13 When an obstruction is encountered that will not allow collection of a sample, contact the cognizant SR coordinator for permission to delete the sampling point.

NOTE

If remediation actions are taken as a result of this survey, this survey design must be revised or re-written entirely.

Page 3 of 8

FirstEnergy	SNEC CALCUL		
Calculation Number		Revision Number	Page Number
E900-04-027		0	Page 4 of 8

Subject

CV Yard Survey Design - Temporary Water Supply Trench in CV Yard

3.0 <u>REFERENCES</u>

- 3.1 SNEC Calculation No. E900-03-018, "Optimize Window and Threshold Settings for the Detection of Cs-137 Using the Ludlum 2350-1 and a 44/10 Nal Detector", 8/7/03.
- 3.2 SNEC Procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".
- 3.3 Compass Computer Program, Version 1.0.0, Oak Ridge Institute for Science and Education.
- 3.4 Visual Sample Plan, Version 2.0 (or greater), Copyright 2002, Battelle Memorial Institute.
- 3.5 Plan SNEC Facility License Termination Plan.
- 3.6 SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA".
- 3.7 GPU Nuclear, SNEC Facility, "Site Area Grid Map", SNECRM-020, Sheet 1, Rev 2, 1/29/03.
- 3.8 SNEC Calculation No. E900-03-012, Effective DCGL Worksheet Verification.
- 3.9 SNEC procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design".
- 3.10 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.
- 3.11 Microsoft Excel 97, Microsoft Corporation Inc., SR-2, 1985-1997.

4.0 ASSUMPTIONS AND BASIC DATA

- 4.1 The Compass computer program is used to calculate the required number of random start systematic samples to be taken in the survey unit (Reference 3.3).
- 4.2 Post-remediation soil samples from this area are used as the initial estimate of variability for the OL1-6 area. These results are shown on Attachment 7-1.
- 4.3 The MARSSIM Sign Test will be applicable for this survey design. No background subtraction will be performed under this criteria during the DQA phase.
- 4.4 The number of points chosen by Compass are located on the survey map for the survey unit by the Visual Sample Plan (VSP) computer code (**Reference 3.4**).
- 4.5 **Reference 3.5** and **3.6** were used as guidance during the survey design development phase.
- 4.6 The site area drawing used to determine the physical extent of this area is listed as **Reference 3.7**.
- 4.7 Remediation History

The Temporary Water Supply Trench in the OL1 area was installed to supply water to a trailer complex in the OL1 area. Clean materials were used to lay the water line (PVC pipe, etc.), but slightly contaminated soil was used to backfill the trench. SNEC site management decided to remediate these materials. The open trench area was selected to be surveyed IAW FSS methodology so that clean materials could be used to backfill the trench allowing closure. The open trench area is a safety hazard to site personnel. This final status survey

FistEnergy	SNEC CALCULATION SHEET					
Calculation Number	Revision Number	Page Number				
E900-04-027	0	Page 5 of 8				
Subject						

CV Yard Survey Design – Temporary Water Supply Trench in CV Yard

only addresses the trench area starting in grid AS-127 and ending in AW-125 as shown on Attachment 1-1.

A review of pre-remediation survey data pertaining to this area was conducted in support of this survey design. Analysis of soil samples showed Cs-137 concentrations ranging from ~0.1 pCi/g to ~43 pCi/g (see Attachment 7-1). After remediation to less than 2 pCi/g, post remediation samples show that the area has been reduced to an average concentration of 0.87 pCi/g (Cs-137) with a maximum value of 1.15 pCi/g (based on four (4) samples).

4.8 This survey design uses Cs-137 as a surrogate to bound the average concentration for all SNEC facility related radionuclides in the survey unit. The effective DCGLw is just the permitted Cs-137 concentration (6.6 pCi/g) lowered to compensate for the presence (or potential presence) of other SNEC related radionuclides. In addition, an administrative limit (75%) has been set that further lowers the permissible Cs-137 concentration to an effective DCGLw for this radionuclide.

The impact of remediation must be considered in determining the effective Cs-137 DCGLw surrogate value. The initial remediation phase in the OL1 area was complete by about July of 2001. Most samples collected prior to this date have been disqualified. The final listing was decayed to December 15th, 2004. In all, twenty three (23) sample results were used to determine the best representative mix for OL1. Current remediation efforts in the trench area have been effective in lowering the average concentration of Cs-137 in the survey unit to less than 2 pCi/g (unprocessed) (see Attachment 7-1).

4.9 The sample database used to determine the effective radionuclide mix for the CV Yard area has been drawn from previous samples that were assayed at off-site laboratories. This list is shown on Attachment 2-1 to 2-6, and includes (23) analysis results. Review of the data shows several radionuclides have not been positively identified at any significant concentration. These radionuclides have been removed from the data set and will not be considered further. Radionuclides removed include Am-241, C-14, Eu-152, Ni-63, Pu-238, Pu-239 and Pu-41. Additionally, the data shows Cs-137 to be the predominant radioactive contaminant found in the area. Sr-90 on the other hand, was positively identified in only one (1) sample. H-3 was identified as a positive contaminant in six (6) samples, and Co-60 was identified in three (3) samples.

The decayed sample results were input to the spreadsheet titled "Effective DCGL Calculator for Cs-137" (Reference 3-8) to determine the effective volumetric DCGLw values for the OL1 area. The output of this spreadsheet is shown on Attachment 2-6.

The Nal scan MDC calculation is determined based on a 25 cm/sec scan rate, a 1.38 index of sensitivity (95% correct detection probability and 60% false positive) and a detector sensitivity of 205 cpm/uR/h for Cs-137. Additionally, the detection system incorporates a Cs-137 window that lowers sensitivity to background in the survey unit. The resulting range of background values varies from about 100 cpm to ~400 cpm, but for most locations in OL1 it lies between 100 and 200 cpm. The resulting MDCscan is ~3.3 pCi/g (see Attachment 4-2 and 4-3). This value is based on a nominal background value of 200 cpm.

4.10 The survey unit described in this survey design was inspected after remediation efforts were shown effective. A copy of portions of the SNEC facility post-remediation inspection report (Reference 3.9), is included as Attachment 8-1.

FirstEnergy	SNEC CALCULATION SHEET						
Calculation Number	Revision Number	Page Number					
E900-04-027	0	Page 6 of 8					
Subject							

CV Yard Survey Design – Temporary Water Supply Trench in CV Yard

- 4.11 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in this survey area.
- 4.12 The decision error for this survey design is 0.05 for the α value and 0.1 for the β value.
- 4.13 "Special measurements" (as described in the SNEC LTP) are not included in this survey design.
- 4.14 No additional sampling will be performed IAW this survey design beyond that described herein.
- 4.15 SNEC site radionuclides and their individual DCGLw values are listed on Exhibit 1 of this calculation.
- 4.16 The survey design checklist is listed in Exhibit 2.
- 4.17 Area factors are not applicable in subsurface soil volumes (below 1 meter). Therefore, the area factor input requirement for soil in the Compass computer program is 1 for both a 10,000 square meter area as well as for a 1 square meter area (see Attachment 5-1).

5.0 CALCULATIONS

5.1 All calculations are performed internal to applicable computer codes or within an Excel spreadsheet.

6.0 APPENDICES

6.1 Attachment 1-1, is a diagram of survey unit OL1-6 in the OL1 area.

6.1.11 Attachment 1-2, is a photo of a section of the trench area.

- 6.2 Attachment 2-1 to 2-6 is the sample results from the OL1 area in addition to the DCGL calculation sheets (decayed to December 15, 2004).
- 6.3 **Attachment 3-1**, is a copy of the calibration data from typical Nal radiation detection instrumentation that will be used in this survey.
- 6.4 Attachment 4-1, is a MicroShield model of a soil volume used to determine the exposure rate from a 1 pCi/g Cs-137 source term in a cylindrical geometry of six (6) inches in depth for an assumed density of 1.6 g/cc.
- 6.5 Attachment 4-2 and 4-3, is the MDCscan calculation sheets.
- 6.6 Attachment 5-1 to 5-4, is the Compass output for the OL1-6 soil survey unit.
- 6.7 Attachment 6-1, is the sample point locations with dimensions.
- 6.8 Attachment 7-1, is the soil variability results for selected soil samples from the OL1-6 area.
- 6.9 Attachment 8-1, is the inspection report for the OL1-6 survey area.

FirstEnergy

SNEC CALCULATION SHEET

Calculation Number E900-04-027 Revision Number

0

Page 7 of 8

......

Page Number

Subject

CV Yard Survey Design – Temporary Water Supply Trench in CV Yard

Exhibit 1

SNEC Facility Individual Radionuclide DCGL Values (a)

Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm ²)	25 mrem/y Limit (All Pathways) Open Land Areas (Surface & Subsurface) (pCi/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	·· 1.9E+04
Pu-238	3.0E+01	1.8	0.41
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	0.61

NOTES:

(a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

(b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

FirstEnergy

SNEC CALCULATION SHEET

Revision Number

0

Calculation Number E900-04-027

Page 8 of 8

Page Number

Subject

CV Yard Survey Design – Temporary Water Supply Trench in CV Yard

Exhibit 2 Survey Design Checklist

Calculation No. **Location Codes** E900-04-027 OL1-6 (Temporary Water Supply Trench) Status Reviewer ITEM **REVIEW FOCUS** (Circle One) Initials & Date Has a survey design calculation number been assigned and is a survey design summary 1 Yes N/A description provided? Are drawings/diagrams adequate for the subject area (drawings should have compass 2 Yes N/A headings)? 3 Are boundaries properly identified and is the survey area classification clearly indicated? Yes N/A 4 Has the survey area(s) been properly divided into survey units IAW EXHIBIT 10 N/A Yeş 5 Ye Are physical characteristics of the area/location or system documented? N/A 6 **Yes** Is a remediation effectiveness discussion included? N/A Have characterization survey and/or sampling results been converted to units that are 7 Yeà N/A comparable to applicable DCGL values? 8 Is survey and/or sampling data that was used for determining survey unit variance included? Yes N/A Is a description of the background reference areas (or materials) and their survey and/or 9 Yes, N/A sampling results included along with a justification for their selection? 10 Yes Are applicable survey and/or sampling data that was used to determine variability included? N/A Will the condition of the survey area have an impact on the survey design, and has the 11 (N/A Yes probable impact been considered in the design? Has any special area characteristic including any additional residual radioactivity (not 12 previously noted during characterization) been identified along with its impact on survey Yes. N/A design? 13 Are all necessary supporting calculations and/or site procedures referenced or included? Yes N/A 14 (Yes) Has an effective DCGLw been identified for the survey unit(s)? N/A 15 Was the appropriate DCGLEMC included in the survey design calculation? (Ye3) N/A 16 (Ye) Has the statistical tests that will be used to evaluate the data been identified? N/A 17 (N/A Has an elevated measurement comparison been performed (Class 1 Area)? Yes, Yes. 18 Has the decision error levels been identified and are the necessary justifications provided? N/A 19 Yes Has scan instrumentation been identified along with the assigned scanning methodology? N/A 20 "Ye∮ Has the scan rate been identified, and is the MDCscan adequate for the survey design? N/A Are special measurements e.g., in-situ gamma-ray spectroscopy required under this design, 21 Yes. INIA and is the survey methodology, and evaluation methods described? 22 Is survey instrumentation calibration data included and are detection sensitivities adequate? Yes N/A Have the assigned sample and/or measurement locations been clearly identified on a diagram 23 Yes N/A or CAD drawing of the survey area(s) along with their coordinates? Are investigation levels and administrative limits adequate, and are any associated actions 24 Yes N/A clearly indicated? 25 For sample analysis, have the required MDA values been determined.? Yes N// 26 Has any special sampling methodology been identified other than provided in Reference 6.3? Yes. (N/A

NOTE: a copy of this completed form or equivalent, shall be included within the survey design calculation.

DCGL Calculation Logic-CV Yard Soil & Boulders

- I. Survey Unit: SNEC Containment Vessel (CV) Yard Soil and Boulders
- II. Description: The purpose of this calculation is to determine a representative isotopic mix for the CV Yard Soil and associated Boulders from available sample analyses. The effective volumetric DCGL_ws are then determined from the mean percent of applicable samples.
- III. Data Selection Logic Tables: The radionuclide selection logic and subsequent DCGL calculations are provided in six (6) tables. These tables were developed using Microsoft Excel. Table explanation is as follows.

Table 1: Data Listing – This table, which has been extracted from a larger database, provides a list of the most representative sample analyses. Results are from scoping, characterization, and pre/post remediation surveys. The samples consist of soil media that was taken in support of the aforementioned surveys. As applicable, a sample number, sample location/description, radionuclide concentration, analysis date are provided for each sample. Positive nuclide concentrations are noted with yellow/shaded background fields while MDA values are noted in the gray shaded fields.

Table 2: Decayed Listing – This table decays the data from Table 1. Half-life values (days) are listed above each respective nuclide column. Samples are decayed from the respective analysis date to January 15, 2004. Positive results are denoted in a yellow background field while MDA values are noted in the gray shaded fields.

Table 3: Decayed Listing of Positive Nuclides & MDAs Removed – This table provides the best overall representation of the data. Non-positive nuclide columns have been removed as well as all the MDA values. Therefore, 11 nuclides have been reduced to four (4).

Table 4: Ratio to Cs-137 for Positive Nuclides – This table provides the calculation methodology for determining the surrogate ratio to Cs-137 for each radionuclide. From this information the mean, sigma, and mean % of total are calculated. The mean % of total values is used to calculate the volumetric DCGL_w per MARSSIM equation I-14. See Table 5. Note that the mean percent values were averaged using only the positive sample results in each column. In some cases only a single nuclide value (e.g. Sr-90) had a positive result. This value is listed as the value in the mean result field. This results in higher "mean percent of total" values in the mix, which are conservative.

Note: From Table 4 only the "mean % of total" values are used as input to the "Effective DCGL Calculation Spreadsheet" as illustrated in Table 5.

Table 5: Effective DCGL Calculator for Cs-137 (in pCi/g) – This table provides thesurrogate volumetric modified Cs-137 DCGLw calculation results from data derived fromTable 4.

IV. Summary – Since the CV Yard and Boulders are volumes of soil or rock material, existing in place or in a pile, the release limit is primarily based on the volumetric DCGL_w. Using the above data selection logic tables the calculated Cs-137 volumetric DCGL_w is 5.73 pCi/g. This value will be reduced by 25% as part of SNEC's requirement to apply an administrative limit as discussed in the License Termination Plan (LTP).

				TABLE 1	- Data Listing	ı (pCi/g)							
	CHEC Completing	LeastingDescription	H-3	Sr-90	Co-60	Cs-137	Am-241	Pu-238	Pu-239	Pu-241	C-14	Ni-63	Eu-152
	SHEC Sample no	CV/Tunnel Sediment Composite OL1	9.40E+00	9.67E+00	1.26E+00	1.25E+03	1.80E-01	5.50E-01	2.20E-01	4.47E+01	9.34E+00	4.02E+00	1.30E-01
2	CV 1011101	Subsuface Sample #29 (0.5'), AY-128, OL1			7.00E-02	5.90E-01							
2	SXSI 4083	Horth CV Yard Soil BA-127, 812' FL Sample # 5, OL2	4.58E+00	5.31E-02	1.92E-02	8.86E-01	9.61E-02	4.68E-02	3.27E-02	3.77E+00	2.10E-01	1.09E+01	5.25E-0
4	SX SL 1003	North CV Yard Soil AY-127, 810' EL Sample # 3, OL1	3.03E+00	6.95E-02	3.32E-02	1.29E+00	9.93E-02	1.28E-01	5.00E-02	4.97E+00	2.10E-01	7.54E+00	8.28E-0
5	SXSE1005	North CV Yard Soil AY-128, 804' EL Sample # 2, OL1	4.88E+00	5.36E-02	2.43E.02	1.80E+00	2.40E-01	1.38E-01	4.07E-02	4.21E+00	2.10E-01	7.60E+00	5.71E-0
8	SXSL1113	North CV Yard Soil 4Y-129, 798' EL Sample # 2, OL 1	3.44E+00	5.29E-02	2.79E-02	4.77E+00	1.83E-01	8.94E-02	4.00E-02	3.68E+00	2.06E-01	8.75E+00	8.62E-0
7	SYSI 1130	Horth CV Yard Soll AX-128 803' FL Sample # 4. 0L1	4.99E+00	6.48E-02	2.98E-02	2.26E+01	1.49E-01	8.56E-02	1.21E-02	3.55E+00	2.31E-01	1.34E+01	9.89E-0
2	SXSE1130	North CV Yard Soil 47-130. Sample # 5. OL1	2.98E+00	7.15E-02	3.50E-02	2.59E+00	1.64E-01	7.46E-02	6.46E-02	5.27E+00	2.15E-01	1.26E+01	7.34E-0
0	SVSL 1270	AV 129 3.3 Soil CV SE Side 5' From CV 800' FL 0L1	1.13E+01	2.00E-02	1.00E-02	2.31E+01	3.70E-02	7.00E-03	7.00E-03	2.10E+00	3.93E+00	8.68E+00	7.00E-0
40	SX3L1210	AV 128 3-1 Soil CV Tunnel Fast 5' From CV, 800' EL OL1	1.15E+01	3.00E-02	1.00E-02	4.38E+00	3.10E-02	1.60E-02	7.00E-03	1.91E+00	4.00E+00	7.78E+00	4.00E-0
11	SX SL 1201	Anulus Well, A-2, 5 to 10' Depth, OL 1	2.00E+00	3.14E-02	1.00E-01	6.00E-01	9.78E-03	1.33E-02	1.10E-02	1.87E+00	1.83E-01	1.75E+00	
43	SYSI 2874	CV Area - Fast Yard Dirt Pile - Middle, 1/2 Way Up, OL 1		3.00E-02	7.00E-02	5.60E-01			and the second second second				
44	SYSI 2872	CV Area - Fast Yard Dirt Pile - Bottom (also top center), OL1		3.00E-02	6.00E-02	1.00E-01							
45	SX362072	East CV Yard Soll Pile @ 8' on West Side (6" Depth), OL1	1.89E+00	1.20E-02	1.40E-02	8.25E-01	7.00E-03	5.00E-03	5.00E-03	3.69E-01	8.60E-02	3.41E+00	3.00E-0
16	SXSL 3142	Soll Pile, CV Yard, Three Feet on East Side, SR-37, OL1		2.95E-02	7.00E-02	6.00E-01							
17	SX5L3145	Fast CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1	1.90E+00	1.70E-02	1.30E-02	1.26E+00	4.00E-03	5.00E-03	5.00E-03	3.76E-01	8.30E-02	3.69E+00	3.80E-0
18	SXSI 3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1		2.97E-02	8.00E-02	3.00E-01							-
19	SXSI 3153	East CV Yard, Soll Pile @ Top (6" Depth), OL1	1.94E+00	4.30E-02	2.30E-02	3.00E-01	3.00E-03	5.00E-03	5.00E-03	3.43E-01	8.70E-02	4.18E+00	5.10E-0
21	SXSI 4142	CV Yard Soil - West Side, AP1-7, OL1	2.22E+00	3.25E-02	5.00E-02	9.00E-01	1.76E-02	6.71E-02	2.02E-02				1
22	SXSL 4143	CV Yard Soil - West Side, AP1-7, OL1	2.23E+00	3.16E-02	5.00E-02	5.00E-01	2.21E-02	6.31E-02	3.64E-02				
23	SYSI 4140	CV Yard Soil - West Side, AP1-7, OL1	2.24E+00	2.77E-02	7.00E-02	3.90E+00	2.77E-02	4.30E-02	3.04E-02			1	_

					TABLE 2 - Dec	ayed Listing	pCi/g)								I
			T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	Decay Date	1
			4485.27	10446.15	1925.23275	11019.5925	157861.05	32050.6875	8813847.75	5259.6	2092882.5	36561.525	4967.4	January 15, 2004	
	SHEC Sample No.	Location/Description	H-3	Sr-90	Co-60	Cs-137	Am-241	Pu-238	Pu-239	Pu-241	C-14	Ni-63	Eu-152	Analysis Date	ET (d
1	CV Tunnel	CV Tunnel Sediment Composite, 0L1	7.97E+00	9.01E+00	8.59E-01	1.17E+03	1.79E-01	5.37E-01	2.20E-01	3.88E+01	9.34E+00	3.94E+00	1.12E-01	February 14, 2001	1003
2	SX951 99219	Subsuface Sample #29 (0-5'), AY-128, OL1			4.05E-02	5.36E-01							1055 00	November 17, 1999	152
2	SXSI 1083	North CV Yard Soll BA-127, 812' El, Sample # 5, OL2	4.20E+00	5.11E-02	1.57E-02	8.55E-01	9.59E-02	4.62E-02	3.27E-02	3.50E+00	2.10E-01	1.08E+01	4.85E-02	June 27, 2002	367
A	5751 1089	North CV Yard Soil AY-127, 810' EL Sample # 3, OL1	2.78E+00	6.69E-02	2.71E-02	1.24E+00	9.91E-02	1.26E-01	5.00E-02	4.61E+00	2.10E-01	7.46E+00	7.65E-02	June 28, 2002	300
5	SXSL 1005	North CV Yard Soil AY-128, 804' El, Sample # 2, OL1	4.47E+00	5.16E-02	1.98E-02	1.74E+00	2.39E-01	1.36E-01	4.07E-02	3.91E+00	2.10E-01	7.52E+00	5.28E-02	June 29, 2002	000
8	SXSL1110	Horth CV Yard Soil AY-129, 798' EL Sample # 2, OL1	3.15E+00	5.10E-02	2.28E-02	4.60E+00	1.83E-01	8.83E-02	4.00E-02	3.42E+00	2.06E-01	8.66E+00	7.97E-02	June 29, 2002	000
7	SX3L1122	North CV Yard Soil AX-129 803' EL Sample # 4 OI 1	4.58E+00	6.24E-02	2.44E-02	2.18E+01	1.49E-01	8.46E-02	1.21E-02	3.30E+00	2.31E-01	1.33E+01	9.15E-02	July 3, 2002	361
0	SX3L1130	North CV Yard Soil 47-130. Sample # 5. 0L1	2.73E+00	6.89E-02	2.86E-02	2.50E+00	1.64E-01	7.37E-02	6.46E-02	4.89E+00	2.15E-01	1.25E+01	6.79E-02	July 3, 2002	561
0	SVSL 4270	AV 129 3.3 Soil CV SE Side 5' From CV 800' EL OL 1	9.84E+00	1.88E-02	7.22E-03	2.18E+01	3.69E-02	6.86E-03	7.00E-03	1.87E+00	3.93E+00	8.53E+00	6.17E-02	July 26, 2001	903
5	SASL1210	AX 128 3.1 Soil CV Tunnel Fast 5' From CV, 800' FL 01 1	1.00E+01	2.83E-02	7.22E-03	4.14E+00	3.09E-02	1.57E-02	7.00E-03	1.69E+00	4.00E+00	7.65E+00	3.53E-02	July 26, 2001	903
10	SASE 1201	Apulus Well A 2 5 to 10' Depth OI 1	1.79E+00	3.00E-02	7.77E-02	5.74E-01	9.75E-03	1.31E-02	1.10E-02	1.71E+00	1.83E-01	1.73E+00		February 13, 2002	701
11	SA3L2048	CV Area East Vard Dirt Pile - Middle 1/2 Way IIn OI 1		2.87E-02	5.48E-02	5.37E-01								March 6, 2002	680
15	3A3L20/1	CV Area East Vard Dirt Pile Bottom (also ton center) OL1		2.87E-02	4.70E-02	9.58E-02	1							March 6, 2002	680
14	SX3L2072	East CV Vard, Soil Dile @ 5' on West Side (6" Denth) OL1	1.75E+00	1.16E-02	1.17E-02	7.99E-01	6.98E-03	4.95E-03	5.00E-03	3.45E-01	8.60E-02	3.37E+00	2.80E-02	August 30, 2002	503
15	5X5L3140	Sail Bila CV Yard Three East on East Side SB 17 OL 1		2.85E-02	5.81E-02	5.81E-01								August 13, 2002	520
10	5X5L3142	Soll Pile, CV Tard, Thee Peer on East Side, Skist, Oct	1.76E+00	1.64E-02	1.08E-02	1.22E+00	3.99E-03	4.95E-03	5.00E-03	3.52E-01	8.30E-02	3.65E+00	3.54E-02	August 30, 2002	503
1/	3X3L3140	Call Dila CV Yard Six East an East Side SP 27 OI 1		2.87F.02	6.63E-02	2.90E-01								August 13, 2002	520
10	3A3L3149	Son File, CV Iard, Six Feet Of East Side, Skist, OCT	1 79E+00	4.16F.02	1.92E-02	2.91E-01	2.99E-03	4.95E-03	5.00E-03	3.21E-01	8.70E-02	4.14E+00	4.75E-02	August 30, 2002	503
19	52513163	Cit Vard Soil West Side AP1 7 014	2 18E+00	3.23E.02	4.81E-02	8.94E-01	1.76E-02	6.69E-02	2.02E-02					October 2, 2003	105
21	SX5L4142	CV Tard Soll - West Side, AP1-7, OL1	2 19E+00	3 14F-02	4.81E-02	4.97E-01	2.21E-02	6.30E-02	3.64E-02					October 2, 2003	105
22	SXSL4143	CV Yard Soll - West Side, AP1-7, OL1	2.10E+00	2 75E-02	6.74E.02	3.87E+00	2.77E-02	4.29E-02	3.04E-02					October 2, 2003	105

KEY	
	Yellow Shaded Background = Positive Result
	Gray Shaded Background = MDA

		TABLE 3 - Decayed Listing of Pos	Itive Nuclides	a MDAs Rem	oved (polig)		
	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	Total pC
1	CV Tunnel	CV Tunnel Sediment Composite, OL1		9.01E+00	8.59E-01	1.17E+03	1178.8
2	SX9SL99219	Subsuface Sample #29 (0-5'), AY-128, OL1				5.36E-01	0.54
3	SXSL1063	North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	4.20E+00			8.55E-01	5.05
4	SX SL 1089	North CV Yard Soil AY-127, 810' El, Sample # 3, OL1	2.78E+00			1.24E+00	4.02
5	SX SL1115	North CV Yard Soil AY-128, 804' El, Sample # 2, OL1	4.47E+00			1.74E+00	6.21
6	SX SI 1122	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	3.15E+00			4.60E+00	7.76
7	SX5L1130	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	4.58E+00		2.44E-02	2.18E+01	26.42
8	SX SI 1132	North CV Yard Soil AZ-130, Sample # 5, OL1	2.73E+00			2.50E+00	5.23
9	SX SI 1270	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El., OL1				2.18E+01	21.82
10	SX SL 1281	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1				4.14E+00	4.14
11	SX SI 2649	Anulus Well, A-2, 5 to 10' Depth, OL1				5.74E-01	0.57
13	SX SI 2871	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1				5.37E-01	0.54
14	SX SI 2872	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1				9.58E-02	0.10
15	SXSL3140	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1				7.99E-01	0.80
16	SX SL 3142	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1				5.81E-01	0.58
17	SX SI 3145	Fast CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1				1.22E+00	1.22
18	SX SL 3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1				2.90E-01	0.29
10	SX SL 3153	Fast CV Yard, Soil Pile @ Top (6" Depth), OL1				2.91E-01	0.29
24	SX SI 4142	CV Yard Soil - West Side, AP1-7, OL1				8.94E-01	0.89
22	SX SI 4143	CV Yard Soil - West Side, AP1-7, OL1				4.97E-01	0.50
22	SYSI 4140	CV Yard Soil - West Side, AP1-7, OL1			6.74E-02	3.87E+00	3.94

		TABLE 4 - Ratio To Cs	-13/ 10/ -08	live Nuclides			1
	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	
1	CV Tunnel	CV Tunnel Sediment Composite. 0L1		7.71E-03	7.35E-04	1.00E+00	
2	52951 99219	Subsuface Sample #29 (0-5'), AY-128, OL1				1.00E+00	
2	SXSI 1063	North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	4.91E+00			1.00E+00	
4	SXSI 1089	North CV Yard Soil AY-127, 810' El, Sample # 3, OL1	2.23E+00			1.00E+00	
5	SXSL 1115	North CV Yard Soil AY-128, 804' El, Sample # 2, OL1	2.57E+00			1.00E+00	
8	SXSI 1122	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	6.85E-01			1.00E+00	
7	SXSI 1130	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	2.10E-01		1.12E-03	1.00E+00	
8	SXSI 1132	North CV Yard Soil AZ-130, Sample # 5, OL1	1.09E+00			1.00E+00	
9	SX SI 1270	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El., OL1				1.00E+00	
10	SX SI 1281	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1				1.00E+00	
11	SX SI 2649	Anulus Well, A-2, 5 to 10' Depth, OL1				1.00E+00	
13	SX SI 2871	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1				1.00E+00	
14	SX SI 2872	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1				1.00E+00	
15	SXSL3140	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1				1.00E+00	
16	SX SL 3142	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1				1.00E+00	
17	SX SL 3145	East CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1				1.00E+00	
18	SX SL 3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1				1.00E+00	
19	SX SL 3153	East CV Yard, Soil Pile @ Top (6" Depth), OL1				1.00E+00	
21	SX SL 4142	CV Yard Soil - West Side, AP1-7, OL1				1.00E+00	
22	SX SL 4143	CV Yard Soil - West Side, AP1-7, OL1				1.00E+00	
23	SX SL 4149	CV Yard Soil - West Side, AP1-7, OL1			1.74E-02	1.00E+00	
		Mean⇒	1.95E+00	7.71E-03	6.42E-03	1	
		Sigma⇒	1.708		0.010	0.000	
		Mean % of Total⇒	65.79%	0.26%	0.22%	33.74%	10

Tab	le	5
-----	----	---

[1.	1			1	1	1		1	
		i				SNEC AL SALES	75%	ATotal Activity Limit	CGLw	Administ	trative Limit	
ļ	Effective E	DCGL Calcu	lator for C	s-137 (in pCi	/g)	i		16.98	pCl/g	12.74	pCi/g	
			l	<u> </u>	l	! ·			1	í	1	1
	SAMPL	E HUMBER(\$)⇒	CV YARD SOIL	& BOULDER SAMP	PLES					l		1
1	 	 		1		j		CE-137 Limit	538 (A)	ECEIST Adm	mistrative Limit)	
	17.45%	25.0	mrem/y TEDE I	Limit		1		5.73	pCl/g	4.30	pCi/g	
	7.79%	240	mrem/y Drinki	ng Water (DW) Lir	mit	Check for 25 mrem/y		}		•	į	
		Sample Input										
		(pCi/g, uCi, %		25 mrem/y TEDE	a mrem/s Dvra	A - Allowed pCilg for	Balanowed pelig	Value Checked from	ļ	This Sample	CTINS Samples	
	Isotope	of Total, etc.)	% of Total	Limits (pCi/g)	ALIMIT# (DCI/D)3	25 mrem/y TEDE	Tor Chiremy DWS	Column A or B		mrem/y TEDE	Sumremby Divisi	
1	Am-241		0 000%	9.9		0 00	0.00	0 00		0 00	A 20:00 THE	Am-241
2	C-14	1	0.000%	2.0	1. J	0.00		0.00		0 0 0	514 0100 ES	C-14
3	Co-60	0.0064	0 216%	3.5	070-H-1	0.04	ASS 7 (0.0)3 (37)	0 04		0 05	10100-22	Co.60
4	Cs-137	1.0000	33.738%	6.6		5.73		\$355475.73 NO. 178		3.79	56 10 (011 Tre	Cs-137
5	Eu-152		0 000%	10.1	241403 S	0.00	(SC2) - (0400)	0 00		0.00	T 000	Eu-152
6	H-3	1.9499	65.786%	132		11.17	25 022	11.17		0.37	025.23	H-3
7	NI-63		0.000%	747	19000 VA	0.00	0.00	0 00		0 00	0.000	111.63
8	Pu-238	1	0 000%	1.8	2 OAT 5 2	0.00	6 2 (0.000	0 00		0 00	F 10 10 1	Pu-238
9	Pu-239		0 000%	1.6	0.037	0 0 0	11	0 00		0 00	0.002	Pu-239
10	Pu-241	1	0 000%	86	S. 1985	0 00	000.55	0 00		0.00	0100	Pu-241
11	Sr-90	0.0077	0.260%	1.2	A 10.61 A	0.04	010	0.04		0.16	0.0524	Sr-90
1		2.96E+00	100.000%			16.98	38.03	16.98		4.364	0.312	
		:				Maximum Permissible	Maximum			To Use Th	a information.	
	•	•		• r	:	pCi/g	Permissible pCi/g			Sample Input	Units Must Be in	
				l		(25 mrem/y)	(4 mrem/y)		:	pCi/g <u>no</u>	t % of Total.	_

ATTACHMENT 2.4

CV YARD SOIL BOULDERS

SNEC Sample No	LAB No	Location/Description	H-3	81.90	Co 60	Cs-137	Total
CV Tunnel	BWXT, 0102059-01	CV Tunnel Sediment Composite, (3) 1		7 70E-03	6 65E-04	1 00E+00	1 01
5×951 99219	111074	Subsulace Sample #29 (0 5'), AY-128, Ot 1				1 00E+00	1 00
S×SI 1063	Teledyne 80018; L18184 1	North CV Yard Boll BA-127, 812 EL Sample # 5, DL2	4 76E+00			1 00E+00	5 76
5×51 1089	Teledyne \$0019; [19184 2	North CV Yard Soll AY-127, 810" EL Sample # 3 OL 1	2 16E+00			1 00E+00	3 16
5×5(1115	Teledyne 80020; L19184-3	North CV Yard Soll AY-128, 804" EI, Sample # 2, OL 1	2 50E+00			1 00E+00	3 50
S×SI 1122	Teledyne 80021; £ 19184-4	North CV Yard Sod AY-129 798" El Sample # 2, OL 1	6 64E-01			1 00E+00	1 66
5×511130	Teledyne 80022; £ 19184 5	North CV Yard Soll AX-129 803" EI Sample # 4, OL 1	2 03E-01		101E-03	1 00E+00	1 20
5×51 1132	Teledyne 80023; [19184 6	North CV Yard Soll AZ-130, Sample # 5, Cit 1	1 06E+00			1 00E+00	2.06
5×54 1270	BWXT, 0108055-02	AX-129 3 3, Sol, CV SE Side S' From CV, 800' EL, OL 1				1 00E+00	1 00
SXSL 1281	BWXT, 0108055 01	AX-120, 3-1, Soit, CV Tunnel East S' From CV, 800' EL OL 1				1 00E+00	1 00
SX51 2649	Taledyne-73220; L 18077 2	Anulus Well, A-2, \$ to 10' Depth, OL 1				1 00E+00	1 00
SXSL2871	Teledyne-71849; L17838-11	CV Area - East Yard Dirt Pile - Middle, 1/2 Wey Up, Ct 1				1 00E+00	1 00
5×51 2872	Teledyne-71848; L17838-10	CV Area - East Yard Det Pile - Bottom (also top center), OL 1				1 00E+00	1 00
5XSI 3140	BWXT,1030 003 10 01	East CV Yard Soil Pile @ 6" on West Side (6" Depth), CL 1				1 00E+00	1 00
SXSL3142	Teledyne; 1 20326 3	Soil Prie, CV Yard, Three Feet on East Side SR 37, OL 1				1 00E+00	1 00
SXSI 3145	BWXT,1030-003 10-01	East CV Yard, Soil Pile @ 3" on East Side (6" Depith), OL 1				1 00E+00	1 00
SXSI 3149	Teledyne; L 20326 4	Solt Pile CV Yerd, Str Feet on East Side SR 37, OL 1				1 00E+00	1 00
5×513153	BWXT,1030.003-10-01	East CV Yard, Soil Prie @ Top (6" Depth) Cit 1				1 00E+00	1 00
5×51 4142	Teledyna; L 22187-2	CV Yard Sol - West Side, AP1-7, OL 1				1 00E+00	1 00
\$XSI 4143	Teledyne; L 22187-3	CV Yard Sod - West Side, AP1-7, C4 1				1 00E+00	1 00
5×SI 4149	Teledyne; L22187-4	CV Yard Soll - West Side AP1-7, Ot 1			1 57E 02	1 00E+00	1 02
		Meanus	1 890991	0 007699	0 005808	1	2 90
		Sigma ==	1 656		0 009	0 000	
		Mean % of Tulat	65 11%	0 27%	0 20%	34 43%	100 00%
		2 Sigma + Meanin	5 20E+00	7 70E-03	2 30E-02	1 00E+00	6 2 3
		% of Total_	83 47%	0 12%	0.37%	18 04%	100.009

KEY______Yallow Background + Postive Result

.

1_____ Sample Non-representative or Lacked any Posteve Information

2/25/2005

٠

.

												_
						SNEC AL	75%	Total Activity Limit D	CGLw	Adminis	trative Limit	
	Effective D	CGL Calcul	ator for Cs-	137 (in pCi/g)			16.70	pCI/g	12.53	pCi/g]
	SAMPLE NUMBER(S)⇒ CV YARD SOIL & BOULDER SAMPLES - Decayed to 12/15/04											•
							Cs-137 Limit	Cs-137 Limit Cs-137 Administrative Limit			Į	
17.39% 25.0 mrem/y TEDE Limit					_	5.75	pCl/g	4.31	pCl/g			
	7.60%	4.0	mrem/y Drinking	Water (DW) Limit		Check for 25 mrem/y						-
	isotope	Sample Input (pCi/g, uCl, % of Total, etc.)	% of Total	25 mrem/y TEDE Limits (pCl/g)	4 mremly DW Limits	A - Allowed pCi/g for 25 mrem/y TEDE	B - Allowed pCl/g for 4 mrem/y DW	Value Checked from Column A or B		This Sample mrem/y TEDE	This Sample mrem/y DW	
1	Am-241	1	0.000%	9.9	2.3	0.00	0.00	0.00	1	0.00	0.00	Am-241
1	C-14		0.000%	2.0	5.4	0.00	0.00	0.00		0.00	0.00	C-14
3	Co-60	0 0058	0.200%	3.5	67.0	0.03	0.08 ·	0.03		0.04	0.00	Co-60
4	Cs-137	1.0000	34.429%	6.6	397	5.75	13.15	5.75		3.79	0.01	Cs-137
E	Eu-152		0.000%	10.1	1440	0.00	0.00	0.00		0.00	0.00	Eu-152
6	H-3	1 8910	65.106%	132	31.1	10.87 -	24.87	10.87		0.36	0.24	H-3
7	NI-63	1	0.000%	747	19000	0.00	0.00	0.00		0.00	0.00	NI-63
٤	Pu-238		0.000%	1.8	0.41	0.00	, 0.00	0.00	1	0.00	0,00	Pu-2.38
9	Pu-239		0.000%	1.6	0.37	0.00	0.00	0.00		0.00	0,00	Pu-239
10	Pu-241		0.000%	86	; 19.8	0.00	0.00	0.00		0.00	0.00	Pu-241
11	Sr-90	0.0077	0.265%	1.2	0.61	0.04	0.10	0.04		0.16	0.05	Sr-90
2.90E+00 100.000%			16.70	38.20	16.70]	4.348	0.304				
						Maximum Permissible pCi/g (25 mrem/y)	Maximum Permissible pCI/g (4 mrem/y)			To Use This in Input Units Mu % O	nformation, Sample at Be in pCi/g <u>not</u> of Total.	

ATTACHMENT 2 - 6

2350 INSTRUMENT AND PROBE EFFICIENCY CHART								
10)/06/04	T	YPICAL VA	ALUES				
Inst.#	Cal Due	AP#		Probe #	Cal Due	cpm/mR/h		
						Ĺ		
95361	6/25/05	P & W		25686 Pk	6/28/05	211,799		
98625	5/18/05	<u>R&Y</u>		211680 Pk	5/18/05	214,882		
08617	9/28/04	R&W		185844	9/28/04	200 771		
70042	9/20/04	D& W		105044	3/20/04	203,771		
98647	5/18/05	G & Y		211667 Pk	5/18/05	218,807		
117566	4/09/05	G&R		185852 Pk	4/13/05	209,862		
117573	5/18/05	0&Y		211674 Pk	5/18/05	212,173		
10(170	(107105	C 9 JU		10(000 DI-	(107105	208 202		
120172	6/07/05	G& W		190022 PK	0/07/05	208,302		
126198	11/03/04	R&W		196021Pk	5/25/05	209,194		
129423	5/18/05	P & Y		211687 Pk	5/18/05	213,539		
129440	4/09/05	O&W		210938 Pk	4/14/05	205,603		

2350 INSTRUMENT AND PROBE EFFICIENCY CHART 8/26/04

INST #	INST C/D	43-68 PROBE #	PROBE C/D		BETA EFF	ALPHA EFF
79037	04/06/05	122014	04/23/05	 	25.8%	N/A
126188	1/27/05	099186	1/27/05	 	28.2%	10.7%
126218	01/08/05	095080	01/09/05		27.9%	N/A

ATTACHMENT 6.1

MicroShield v5.05 (5.05-00121) GPU Nuclear

Page : 1 OOS File : SOIL.MS5 Run Date: October 20, 2004 Run Time: 12:54:38 PM Duration : 00:00:01

File Ref:	
Date:	
By:	
Checked:	

Air

0.00122

Hei Ra	ight dius	Source Dimens 15.24 cm 28.21 cm	sions 1	6.0 in 1.1 in
# 1	<u>X</u> 0 cm 0.0 in	Dose Point <u>Y</u> 27.94 11.0	cm) in	<u>Z</u> 0 cm 0.0 in
<u>Shield</u> Sou	<u>Name</u> rce	Shields Dimension 3.81e+04 cm ³	<u>Material</u> Concrete	<u>Density</u> 1.6

Source Input Grouping Method : Actual Photon Energies

Air Gap

Nuclide	curies	becquerels	<u>µCi/cm³</u>	<u>Ba/cm³</u>
Ba-137m	5.7670e-008	2.1338e+003	1.5136e-006	5.6003e-002
Cs-137	6.0962e-008	2.2556e+003	1.6000e-006	5.9200e-002

Buildup The material reference is : Source

Integration Parameters

Radial	40
Circumferential	40
Y Direction (axial)	40

			Results		
Energy	Activity	Fluence Rate	Fluence Rate	Exposure Rate	Exposure Rate
MeV	photons/sec	MeV/cm ² /sec	MeV/cm ² /sec	mR/hr	mR/hr
		No Buildup	With Buildup	No Buildup	With Buildup
0.0318	4.418e+01	6.794e-06	8.222e-06	5.659e-08	6.849e-08
0.0322	8.150e+01	1.306e-05	1.591e-05	1.051e-07	1.280e-07
0.0364	2.966e+01	7.236e-06	9.448e-06	4.111e-08	5.368e-08
0.6616	1.920e+03	6.179e-02	1.091e-01	1.198e-04	2.115e-04
OTALS:	2.075e+03	6.182e-02	1.091e-01	1.200e-04	2.118e-04

ATTACHMENT 4 - 1

Nal Scan MDC Calculation

b := 200 p := 0.5 HS d := 56.42 SR := 25 d := 1.38

Conv :=
$$205.603$$
 MS _{output} := $2.115 \cdot 10^{-4}$

 $\frac{\text{HS}}{\text{SR}} = 2.257 \quad Observation Interval (seconds)$

ATTACHMENT 4.2

4 of 5

where:

- b = background in counts per minute
- $b_i = background counts in observation interval$
- Conv = Nal manufacturers reported response to energy of contaminant (cpm/uR/h)
- d = index of sensitivity (Table 6.5 MARSSIM), 1.38 = 95% of correct detection's. 60% false positives
- HS_d = hot spot diameter (in centimeters)

MDC_{scan} = Minimum Detectable Concentration for scanning (pCi/g)

MDCR_i = Minimum Detectable Count Rate (ncpm)

MDCR_{surveyor} = MDCR_i corrected by human performance factor (ncpm)

- MDER = Minimum Detectable Exposure Rate (uR/h)
- MSoutput = MicroShield output exposure rate for 1 pCig of contaminant (mR/h)
- $O_i = observation Interval (seconds)$
- p = human performance factor
- SR = scan rate in centimeters per second

NOTE

This is an example of an MDCscan calculation that is valid for a specific set of site conditions including the computer model used, soil density, soil moisture content, surveyor efficiency, ground cover, soil background and other variables that influence the calculated results. However, this and similar scan MDC's have been deemed valid for survey planning.

ATTACHMENT 4 - 3

Site Summary

Site Name: TRENCH OL1-6

Planner(s): BHB

Contaminant Summary

NOTE: Surface soil DCGLw units are pCi/g. Building surface DCGLw units are dpm/100 cm².

Contaminant	Туре	DCGLw	Screening Value Used?	Area (m²)	Area Factor
Cs-137	Surface Soil	4.31	No	1 10,000	1 1

Survey Plan Summary

Site:	TRENCH OL1	-6		
Planner(s):	BHB			
Survey Unit Name:	Temporary Wa	ter Supply Trenc	h	
Comments:	AS-127 to AW-	125		
Area (m²):	163		Classification:	1
Selected Test:	Sign		Estimated Sigma (pCi/g):	0.39
DCGL (pCi/g):	4.31		Sample Size (N):	16
LBGR (pCi/g):	3.8		Estimated Conc. (pCi/g):	0.9
Alpha:	0.050		Estimated Power:	1
Beta:	0.100		EMC Sample Size (N):	16
Scanning Instrumentati	on:	2" by 2" Nal (C	s-137 w)	

Prospective Power Curve

Contaminant Summary

Contaminant	DCGLw (pCi/g)	Inferred Contaminant	Ratio	Modified DCGLw (pCi/g)	Scan MDC (pCi/g)	
Cs-137	4.31	N/A	N/A	N/A	3.3	
Contaminant	Survey Unit Estimate (Mean ± 1-Sigma) ninant (pCl/g)			Reference Area Esti (Mean ± 1-Sigma (pCi/g)	mate a)	
Cs-137		0.87 ± 0.39		0.28 ± 0.39		

Martin and a state of the state	COMPASS
Elevated Measurement Comparison (E S Enter in a description for the scanning instru- measured contaminant. Click the CALCUL- results. All entered and calculated scan MI	No additional samples are required because the actual scan MDC is less than the DCGLw.
Scanning Instrumentation Description: 2" b	by 2" Nal (Cs-137 w)
Contaminant Scan MDC Cs-13/ 3.3	NUREG-1507
<u>Statistical Design</u>	Hut Sput Design
N: 16 Bounded Area (m²): 10.2 Area Factor: 1 DCGLw: 4.31 Scan MDC Required: N/A	Actual Scan MDC: 3.3 Area Factor: N/A Bounded Area (m²): N/A Post-EMC N: 16
Enable Training	g Card Help DACK NDXT

.

.

.

ATTACHMENT_5.4

•

Main Section of Trench

Samples of Soil from Trench Area				
Sample No.	Survey or Assay No.	pCi/g (Cs-137)		
SP-1	306-04-1530	22.6		
SP-2	306-04-1530	13.5		
SP-3	306-04-1530	12		
SP-11	306-04-1539	0.10		
SP-12	306-04-1539	0.55		
SP-4	306-04-1539	1.60		
SP-5	306-04-1539	6.6		
SP-6	306-04-1539	2.35		
SP-7	306-04-1539	0.12		
SP-4	306-04-1557	42.6		
SP-5	306-04-1557	11.1		
SP-1	306-04-1557	3.9		
SP-2	306-04-1557	12.1		
SP-3	306-04-1557	6.9		
SP-4	306-04-1557	12.2		
SP-5	306-04-1557	4.3		
SP-6	306-04-1557	7.9		
SP-7	306-04-1557	7.4		
SP-8	306-04-1557	7.8		
SP-1	306-04-1557	20.3		
SP-6	306-04-1555	1.30		
SP-7	306-04-1555	4		
SP-8	306-04-1555	1.18		
SP-8	306-04-1529	39.24		
SP-9	306-04-1529	12.46		
SP-10	306-04-1529	10.85		
SP-1	306-04-1529	5.27		
SP-2	306-04-1529	7.68		
SP-3	306-04-1529	4.54		

PRE-REMEDIATION RESULTS

POST-REMEDIATION RESULTS

.

Samples of Soil from Trench Area						
Sample No.	Sample No. Survey or Assay No. pCl/g (Cs-137)					
SP-1	1-21168	1.15				
SP-1	1-21170	0.88				
SP-1	2-21169	1.12				
SP-1	2-21171	0.32				
	Mean=>	0.87				
	STDEV=>	0.39				
	Max=>	1.15				
	Min=>	0.32				

ATTACHMENT 7.1

CRICINAL Exhibit 1 Survey Unit Inspection Check Sheet			
SECTION 1 - SURVEY UNIT INSPECTION DESCRIPTION	ana ana ang Tanggang		
Survey Unit # OL1-6 Survey Unit Location Temporary Water L	ine Tren	ch	
Date 12/13/04 Time 1100 Inspection Team Members D.Sa	rge		
SECTION 2 - SURVEY UNIT INSPECTION SCOPE		• •	
Inspection Recuirements (Check the appropriate Yes/No answer.)	Yas	No	N/A
Have sufficient surveys (Le., post remediation, characterization, etc.) been obtained for the survey unit?			
. Do the surveys (from Question 1) demonstrate that the survey unit will most likely pass the FSS7	ixi	1	
l. is the physical work (i.e., remediation & housekeeping) in or around the survey unit complete?	X	1	
Have all tools, non-permanent equipment, and material not needed to perform the FSS been removed?	1	X	
Are the survey surfaces relatively free of loose debris (I.e., dirt. concrete dust, metal filings, etc.)?	X		
Are the survey surraces relatively free of liquids (i.s., water, moisture, dii, etc.)?	1	X	
Are the survey surfaces free of all paint, which has the potential to snield radiation?	X	1	
Have the Surface Measurement Test Areas (SMTA) been established? (Refer to Exhibit 2 for Instructions)		ļ	X
Have the Surface Measurement Test Areas (SMTA) data been collected? (Refer to Exhibit 2 for Instructions.)	İ		X
C. Are the survey surfaces easily accessible? (No scarfolding, high reach, etc. is needed to perform the FSS)		X	
1. Is lighting adequate to perform the FSS?	X	!	
2. Is the area industrially safe to perform the F6S7 (Evaluate potential fall & trip hazards, confined spaces, etc.)		XI	
3 Have protographs been taken showing the overall condition of the area?	×	1	
4. Have all unsatisfactory conditions been resolved?	X		_
IOTE: If a "No" answer is obtained above, the inspector should immediately correct the problem or Initiate corre esponsible site department, as applicable. Document actions taken and/or justifications in the "Comments" section ineets as necessary.	ctive acto pelow. Al	ns throu Itacn add	ça the atlicnai
Note to Question 1: The boundaries for the survey unit have not, at this time, been establish the trench area to be surveyed for FSS will have to be placed prior to setting PRI. Response to Question 4: Miscellaneous material remeins in trench. (cone, LSA Box gasket blog section embedded in concrete and approx. 8' in length should be removed ariar to Shamenek. Response to Question 6: Water is present in low-lying areas throughout trench. Notified L. S Response to Question 10: Access assistance is required. Notified 1. Shamenek.	ed. Barn roll) Ar o FSS. Shamene	lers de Idition: Notifi .k.	fininą ally a ed L.
Response to Question (2, Wails of iterion are not stabilized and personnel in iterion should	se aiert	107 001	18 <u>0</u> 3e
occurrence. wolnied L. Shameliek.	1		
Burrey 1 A Inspector (grint/sign) D. Barga / / / / / / / / / / / / / / / / / / /	Data I	4 () / 4 , 2004	

•

.

ATTACHMENT O

APPENDIX A-2

_----

[·] SR-0189 (OL1-6)

	SURVE	Y REQUEST CO	NTINUATION SHEET
SR NUMBER	SR-0189	AREA/LOCATION	East Yard Trench (with surface area of 163 m ²)
	SPECIFIC	SAMPLING / SURVEY IN	STRUCTIONS OR COMMENTS

RESULTS SUMMARY FOR SR-0189

SR-0189 was issued to collect radiological survey and sample data (FSS) in the temporary water supply trench. The survey unit covered under this SR is OL1-6 (grids are listed in the SR). The SR required the following radiological measurements:

- Surface Scan Measurements Using a 2" x 2" Sodium Iodide Detector (set to identify Cs-137) 100% surface scan is required of the grids at a rate not exceeding 10 inches/second at a distance within 4 inches. The action level is 300 gross cpm. If any areas indicate activity exceeding 550 gross cpm, contact the SR Coordinator before proceeding with survey.
- Surface Soil Sampling Obtain samples in the locations indicated in the SR. (20 total). In addition, obtain
 samples of areas indicating activity exceeding the action level. If only rock media is available in a sample
 location, obtain a sample by chipping the rock.
- QC Repeat Measurements A minimum of 5% of all surface scan measurements and sampling will be reperformed using identical methodology.
- Additional sampling/surveys may be performed at the request of the RSO.

1. Summary of Results

A. Surface Scan Measurements (2"x 2" Sodium lodide Detector)

100% surface scan was performed on the trench walls and bottom.

Results: All areas indicated activity below action level with two exceptions. Static measurements were performed at these areas which indicated two areas exceeding the action level. The range of static measurement results was 312 to 362 gross cpm. Soil samples were obtained of these areas.

B. Surface Soil Sampling

Twenty (20) samples were obtained in the locations indicated in the SR. In addition, two samples were obtained in areas indicating activity above the action level and one sample obtained of the sump area.

Results: The highest result indicated 4.1 ± 0.4 pCi/g Cs-137, <0.08 pCi/g Co-60. This sample, SX-SL-9257 was obtained from Sample Point #10. Positive Cs-137 samples ranged from 0.09 to 4.1 pCi/g with a typical achieved Co-60 MDA of 0.1 pCi/g. The following table lists the samples and results: SURVEY REQUEST CONTINUATION SHEET

SR NUMBER

SR-0189 AREA/LOCATION

East Yard Trench (with surface area of 163 m²)

SPECIFIC SAMPLING / SURVEY INSTRUCTIONS OR COMMENTS

		Y	
Sample Location	Cs-137 Activity (pCi/g)	Cs-137 Uncertainty (pCi/g)	Co-60 Activity (pCi/g)
SP-1	0.28	0.09	<0.14
SP-2	0.18	0.08	<0.12
SP-3	0.09	0.05	<0.07
SP-4	<0.1	N/A	<0.1
SP-5	<0.13	N/A	<0.14
SP-6	<0.1	N/A	<0.1
SP-7	<0.08	N/A	<0.08
SP-8	0.40	0.07	<0.08
SP-9	0.14	0.07	<0.13
SP-10	4.10	0.4	<0.08
SP-11	1.60	0.2	<0.07
SP-12	0.83	0.04	<0.09
SP-13	<0.1	N/A	<0.1
SP-14	<0.1	N/A	<0.1
SP-15	<0.1	N/A	<0.1
SP-16	0.16	0.06	<0.08
SP-17	<0.14	N/A	<0.1
SP-18	<0.14	N/A	<0.1
SP-19	2.7	0.29	<0.1
SP-20	0.37	0.08	<0.08
Trench Sump	0.40	0.1	<0.13
AP-1	<0.12	N/A	<0.1
AP-2	0.18	0.09	<0.14
Mean	0.79		
2 Standard Deviations	2.23		
Мах	4.10		
Min	0.09		
Median	0.37		

2. Quality Control (QC) Measurements and Comparisons

- Repeat Scan/Static measurements and Soil samples were performed and met the applicable acceptance criteria established in Section 4.6 of E900-IMP-4520.04.
- 3. Exceptions and Discrepancies: Photographs of the surveying and sampling of the trench during FSS were not obtained. This was an oversight of the technicians and the GRCS. Photographs obtained prior to and after the FSS are included in this package as a substitute. Pre-FSS photographs indicate the types of soil and terrain and the post-FSS photographs indicate the sample points.

David Sarge (GRCS) Date 5.26.05

EXHIBIT 10

.....

	SURVEY DATA VERIFICATION AND VALIDATION FORM						
Su	Survey Unit Number OL1-6 SR Number			0189			
	Check	the appropriate answer for each question I	below.		Yes	No	N/A
1.	Was each radiological level? If not, acceptable	instrument capable of detecting the radiation of interest e compensatory measures have been taken.	at or below the inv	estigation	x		
2.	Did each radiological ir traceable to recognized	strument have a current calibration and were radioactive standards or calibration organizations?	sources used for o	alibration	x		
З.	Was each radiological i	nstrument source checked daily (before and, where require	d, after use)?		x		
4.	Were survey team per adequately documented	rsonnel properly trained in the applicable survey techni 1?	iques, and was th	e training	x		
5.	Were the MDCs and t methods used to collect	the assumptions used to develop them appropriate for the data?	the instruments ar	nd survey	x		
6.	Were the survey metho	ds appropriate for the media and types of radiation being m	leasured?		x		
7.	If special measurement approved site procedure	methods were used to collect data, were they properly do es?	cumented in accord	ance with	x		
8.	Were the samples aded the analysis process in	quately tracked from their collection point (Field Sample C accordance with the SNEC Sample Chain of Custody Prog	collection Sheet) an ram?	d through	x		
9.	Were the data collected	I in accordance with the Survey Design Package and Surve	ey Request?		x		
10.	10. Were the data representative of current site conditions?				x		
11.	11. If Survey Request investigation levels were exceeded, was appropriate action taken?			x			
12. Were at least 5% of all survey and/or sample points randomly re-sampled and/or re-surveyed using identical methodology contained in the Survey Request per Section 4.6.2?				x			
13.	13. Were the samples analyzed in accordance with requirements contained in the Survey Request Sample Analysis Sheet?			x			
14. Did all sample analyses meet the MDA requirements contained in the Survey Request Sample Analysis Sheet and Step 4.5.2 (10% of the applicable DCGLs)?			x				
15.	15. Were at least 5% of <u>FSS</u> samples obtained under the Survey Request re-analyzed? Were replicate analysis calculations performed per Section 4.6.3?				x		
16.	Were documented inve 12 & 15 above) and we	stigations performed for all survey and/or sample QA/QC re corrective actions implemented as necessary?	non-agreements (Questions			x
17.	Has the GRCS summa	ry of surveying/sampling results been completed per Step 4	4.7.3?		x		
NO GR sect	NOTES: If the question does not apply to the survey package, check the N/A (not applicable) box. If a "No" answer is obtained above, the GRCS should initiate corrective action in accordance with site procedures. Document actions taken and/or justifications in the "Comments" section below. Attach additional sheets as necessary.						ove, the iments"
	- <u></u>						
GR	CS (print/sign) D.	Sarge / Varia		C	Date	01/1	9/05