

NuStart_{Energysm}

Marilyn C. Kray
Vice President, Exelon Generation
President, NuStart Energy Development
NRC 2005 Regulatory Information Conference
Session A2 – New Reactor Licensing Issues
March 8, 2005

Who is NuStart?

NuStart Energy Development, LLC

Constellation Exelon

Duke Florida Power & Light

EDF, INA Progress

Entergy Southern

- Tennessee Valley Authority
- Westinghouse
- General Electric

NuStart Vision

• Nuclear energy is viewed by power companies, investors and other stakeholders as a safe and economically-viable alternative to meeting our country's future electricity needs, and that the nuclear industry is poised to meet new demands for generation.

Basis for NuStart Vision

- Excellent performance of current nuclear fleet
- Sensitivity to grid stability
- Recognized need for fuel diversity
- Heightened concern with environment
- Increasing demand for electricity
- Rising price and demand for natural gas

Assessment

- All supply components to electricity portfolio are critical
- Nuclear component unique given specific challenges to new investment
- Action needed now in order to preserve the nuclear option for the future

Challenges Facing New Nuclear Plants

- Demonstrated need for base load power
- 2. Resolution of spent fuel disposal issue
- 3. Regulatory unpredictability
- 4. Lack of completed advanced designs
- Public confidence
- Reestablishment of nuclear infrastructure
- 7. Acceptable financial returns

NuStart Project Objectives

- Complete the design engineering for selected technologies:
 Westinghouse Advanced Passive (AP) 1000 and General Electric
 Economic Simplified Boiling Water Reactor (ESBWR)
 - Design Certification
 - COL input
 - Design Finalization
- Demonstrate "new" NRC licensing process by submitting a COL applications
- Validate assumptions for construction cost and schedule and ongoing operating costs
- Position industry for investment decisions

Need for Acceptable Financial Returns

- Must be favorable to shareholders on an individual project basis
- Must be superior to other fuel alternative investments
 - Clean coal
 - Combined cycle natural gas

Fuel Alternative Comparisons

Costs

- Capital
- Fixed & Variable O&M
- •Fuel/Heat Rate
- Decommissioning
- Emissions
- Financial
 - Cost of Debt
 - Cost of Equity
 - Tax
 - Inflation

Revenue

- Capacity
- Capacity Factor
- Market Projection
- Other Revenue

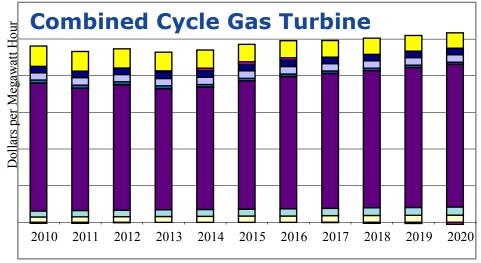
Project Details

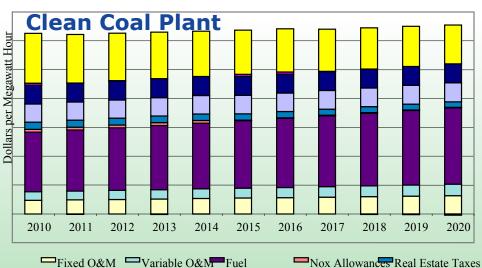
- Site Selection
- •Time and cost to Permit
- Time and cost to Construct
- Project Duration

Nuclear Analysis

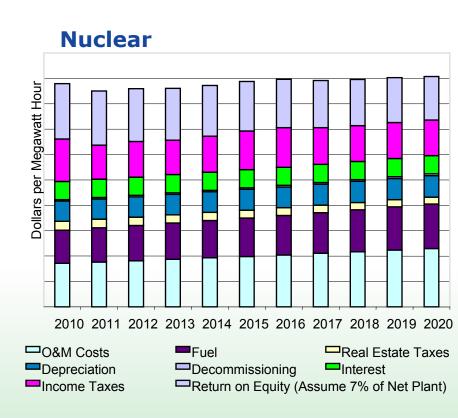
Coal Analysis

Gas Analysis


Analysis Results Comparison


- •Total Busbar Cost
- Net Present Value
- •Internal Rate of Return
- •Earnings per Share impact
- •Risk Profile
- Strategic Fit

Recommendation



Total Cost Curves

Depreciation Interest Income Taxes Return of Equity

University of Chicago Study

NEW NUCLEAR POWER PLANTS—CLEARLY COMPETITIVE			
	Nuclear	Coal	Gas
No policy assistance	\$47-\$71 per MWh	\$33-\$41 per MWh	\$35-\$45 per MWh
After engineering costs are paid; no policy assistance	\$31-\$46 per MWh	\$33-\$41 per MWh	\$35-\$45 per MWh
Limited production and investment tax credit for nuclear	\$25-\$45 per MWh	\$33-\$41 per MWh	\$35-\$45 per MWh

Note: Under a greenhouse gas reduction policy, the capital cost of new fossil-fuel plants would increase significantly, according to the University of Chicago study. Coal-fired plants would cost \$83 to \$91 per MWh and gas-fired plants would cost \$58 to \$68 per MWh.

SOURCE: UNIVERSITY OF CHICAGO STUDY; MWH=MEGAWATT-HOUR

Summary

- Investment decisions based on economics
- Regulatory process directly impacts the financial and risk analysis of a nuclear investment
 - Time and cost of licensing
 - Finality of decisions
- Coordinated government and industry action needed now to reduce the time to market for new nuclear investments
- Financial incentives needed for "first movers"