Appendix B

Upper Spray Pump Area And Discharge Tunnel Entrance Survey Design

.

	CALCI	ULATION C	IDTION				
Calculation Number		Revision Number	Effective Date	P	age Nur	mber	
E900-04-017		0	8/31/04		1	of	
Subject	· · · · · · · · · · · · · · · · · · ·	L		l_			
Upper Spray Pump Area	& DT Entrance - Su	rvey Design					
Question 1 - Is this calculation	defined as "In QA Sco	ope"? Refer to definitio	n 3.5. Yes 🛛 No				
Question 2 - Is this calculation	defined as a *Design	Calculation"? Refer to	definitions 3.2 and 3.3.	Yes 🛛	No		
Question 3 - Does the calculat	ion have the potential	to affect an SSC as de	scribed in the USAR?	Yes 🗌	No	\boxtimes	
NOTES: If a "Yes" answer is obtain Assurance Plan. If a "Yes" and calculation as the Technical Reviet calculation. Calculations that do n	wer is obtained for Que wer. If a "YES" answer i	estion 2, the Calculation is obtained for Question 3	Originator's immediate s SNEC Management app	supervisor s	should n	not revie	W
	DESC	RIPTION OF REV	VISION				
	APPf	ROVAL SIGNATI	JRES				
Calculation Originator	APPI B. Brosey/	ROVAL SIGNATI	JRES	Date	8	30	0
Calculation Originator Technical Reviewer		B. Bros	JRES	Date Date	8 8/.	30 31/0	0
······	B. Brosey/	B. Bros	JRES		8/	30 31/0 Aus	4
Technical Reviewer	B. Brosey/ P. Donnachi	B. Bros	JRES	Date	8/	31/0	4

•

· ·

FirstEnergy	SNEC CALCULATION SHEET					
Calculation Number	Revision Number	Page Number				
E900-04-017	0 Page 2 of 9					
Subject	······································	······································				
Upper Spray Pump Area & DT Entrance - Survey Design						

1.0 PURPOSE

1.1 The purpose of this calculation is to develop a survey design for the upper Spray Pump building and the Discharge Tunnel entrance area. These survey units are listed in Table 1 and are shown in Attachments 1-1 to 1-2.

Survey Units	Location	Material Types	Area Classification	Area (m^2)
SS9-2	Spray Pump Bldg. Floor at El. 795'	Concrete	2	30.2
<u>SS11-1</u>	Walls of Spray Pump Bldg. To El. ~802'	Concrete	2	59.7
SS11-2	Walls of Spray Pump Bldg. Above El. ~802'	Concrete	3	58.2
SS23-1	Entrance to Discharge Tunnel	Concrete	2	65.9
SS23-2	Entrance to Discharge Tunnel	Soil/Stone	2	31

Table 1, Survey Unit Information

2.0 SUMMARY OF RESULTS

The following information should be used to develop a survey request for this survey design:

- 2.1 GFPC Scanning Criteria
 - 2.1.1 A gas flow proportional counter (GFPC) shall be used in the beta detection mode for the initial scan survey work on all concrete surfaces (Ludlum 2350-1 with a 43-68B probe).
 - 2.1.2 All GFPC instruments used shall demonstrate an efficiency (ϵ_t) at or above <u>23.9%</u> (value used for planning). Detector efficiency factors are presented in the following Table.

Material Type	Ej.	εs	£t (as %)*	ECF	% Cs-137	Resulting counts/disintegration
Concrete	0.478	0.5	23.9%	0.31	0.982	0.0728

Table 2, GFPC Detection Efficiency Results Used for Planning

*Typical SNEC GFPC detector efficiency factors (as of 7/1/04) are provided in Attachment 2-1.

NOTE 1: Total efficiency should not be less than \mathcal{E}_t value for any instrument used during this survey effort. NOTE 2: ECF is efficiency correction factor.

- 2.1.3 An efficiency correction factor (ECF) is applied to compensate for efficiency loss over rough surface areas based on **Reference 3.1** criteria and **Attachment 3-1**. An applicable ECF has been determined for both survey areas listed in Table 2. This value corrects detection efficiency based on the average depth of the worst rough surface area in either location. Use of this factor for all concrete surfaces will underestimate the detection efficiency for the majority of surfaces in these two areas.
- 2.1.4 The amount of detectable beta emitter is dependant on the amount of Cs-137 present in the radionuclide mix. From **Reference 3.2** the mix is determined to be 98.2% Cs-137. No other radionuclides are credited with providing any additional (detectable) beta emissions.

FirstEnergy

SNEC CALCULATION SHEET

Calculation Number E900-04-017

Revision Number

Û

Page 3 of 9

Page Number

Subject

Upper Spray Pump Area & DT Entrance - Survey Design

Table 3, Summary Of GFPC Scanning Parameters

Area or Structure	Material Type	Scan Speed	Surface to Detector Face	Minimum Coverage*	MDCscan
		0.9* per sec			
SS9-2, SS11-1, SS23-1	Concrete	(2.2 cm/sec)	Contact	25%	1,817 dpm/100 cm ²
		0.9" per sec			
SS11-2	Concrete	(2.2 cm/sec)	Contact	10%	1,817 dpm/100 cm ²

Table 4, Summary Of GFPC Action Levels

Area or Structure	First Phase (gcpm)	DCGLw (ncpm)
All Concrete	500	593

2.1.5 The action levels during <u>first phase</u> scanning is provided above. If this level is reached, the surveyor should stop and perform a count of at least <u>1/2 minute</u> duration to identify the <u>actual</u> second phase count rate from the elevated area. If the second phase count rate is equal to or greater than the DCGLw cpm, the area must be identified, bounded and documented to include an area estimate.

2.2 <u>Nal Scanning Criteria</u>

- 2.2.1 A 2" by 2" diameter Nal detector with a Cs-137 window setting shall be used for gamma scanning these survey units IAW Table 5 parameters.
- 2.2.2 The conversion factor for Nal survey instruments used shall not be less than <u>208,302 cpm/mR/h</u> (see Attachment 2-1 for current Nal instrument conversion factors as of 7-1-04).

Instrument Type Used	Area or Structure	Material Type	Scan Speed	Surface to Detector Face	Coverage	MDCscan*
Nal (2" by 2" Cs- 137 Window)	\$\$23-2	Soil/Stone	10" per sec (25 cm/sec)	4" (5.08 cm)	100% of accessible surfaces	2 2.84 pCi/g

Table 5, Summary Of Scanning Parameters

See Attachment 4-1 to 4-4 for calculation results using an assumed 100–200 cpm background values and MicroShield output for modeled survey areas. The soil model assumes a 6 thick source term and is ~56.4 cm in diameter with a density of loose lime stone (~2/3 of 3 g/cc = 2 g/cc).

- 2.2.3 The <u>action level</u> during first phase scanning using a Nal instrument is <u>300 gross</u> <u>cpm</u>. If this level is reached, the surveyor should stop and perform a count of at least 15 seconds duration to identify the actual count rate of the elevated area.
- 2.2.4 Based on Nal scanning work, sample areas IAW the following criteria:
 - 2.2.4.1 When an area is confirmed to be above the action level sited in Section 2.2.3, the location should be marked for sampling (see Section 2.5) These areas shall be bounded and documented.

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-04-017	0	Page 4 of 9
Subject		

Upper Spray Pump Area & DT Entrance - Survey Design

2.3 DCGLw Values

The following Table shows the DCGLw values that were used to plan surveys in these areas. Soil volumetric DCGLw values are used as a planning tool.

Areas above the action level should be sampled to determine the actual concentration and fraction of Table 6 values.

Table 6, Summary Of DCGLw Values

Surface DCGLw (dpm/100 cm ²)	Volumetric DCGLw (pCi/g)
GA = 8,968 (6,726 A.L.)	6.52 (4.89 A.L.) for Cs-137

DCGLw values from Reference 3.2.

A.L. = the administrative limit.

2.4 Fixed Point GFPC Static Measurements

2.4.1 The minimum required number of static survey points for each area is provided in Table 7 (see Attachment 5-1 to 5-10 for the calculations yielding the minimum No. of random start systematic grid survey points – Compass output, Reference 3.3).

Table 7, Minimum No. Random Start Systematic Grid Survey Points (GFPC)

Survey Units	Location	Static Points
SS9-2	Spray Pump Bldg. Floor at El. 795'	9
SS11-1	Walls of Spray Pump Bldg. to El. ~802'	9
SS11-2	Walls of Spray Pump Bldg. Above El. ~802'	9
SS23-1	Entrance to Discharge Tunnel - Concrete	9
SS23-2	Entrance to Discharge Tunnel - Stone/Soil	8

See Attachment 6-1 to 6-2 for locations of fixed point measurements.

- 2.4.2 VSP (Reference 3.4) is used to plot all measurement points on Attachment 6-1 and 6-2. The actual number of random start systematically spaced measurement points may be greater than that required by the Compass computer code because of any of the following:
 - placement of the initial random starting point (edge effects),
 - odd shaped diagrams, and/or
 - coverage concerns

2.5 <u>Sampling of Soil/Loose Stone</u>

2.6.1 Obtain a sample volume IAW Reference 3.5.

3.0 REFERENCES

- 3.1 SNEC Calculation No. 6900-02-028, GFPC Instrument Efficiency Loss Study.
- 3.2 SNEC Calculation No. E900-04-015, Spray Pump Pit Survey Design
- 3.3 Compass Computer Program, Version 1.0.0, Oak Ridge Institute for Science and Education.

FirstEnergy	SNEC CALCULATION SHEE	ET
Calculation Number	Revision Number	Page Number
E900-04-017	0	Page 5 of 9

Subject

Upper Spray Pump Area & DT Entrance - Survey Design

- 3.4 Visual Sample Plan, Version 2.0 (or greater), Copyright 2002, Battelle Memorial Institute.
- 3.5 SNEC Procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".
- 3.6 ISO 7503-1, Evaluation of Surface Contamination, Part 1: Beta-emitters (maximum beta energy greater than 0.15 MeV) and alpha-emitters, 1988.
- 3.7 Plan SNEC Facility License Termination Plan.
- 3.8 SNEC Procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design".
- 3.9 SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA".
- 3.10 MicroShield, Computer Radiation Shielding Code, Version 5.05-00121, Grove Engineering.
- 3.11 NUREG-1507, "Minimum Detectable Concentrations With Typical Radiation Survey Instruments for Various Contaminants and Field Conditions," June 1998.
- 3.12 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.
- 3.13 Microsoft Excel 97, Microsoft Corporation Inc., SR-2, 1985-1997.

4.0 ASSUMPTIONS AND BASIC DATA

4.1 Remediation History

Since the Spray Pump moved water from the Discharge Tunnel, the same radionuclide mix is assumed for this area as was used inside the Discharge Tunnel. The Discharge Tunnel access area has been used during remediation efforts in the Discharge Tunnel. No remediation was necessary in either of these areas, but materials that could hinder survey work were removed prior to performing these surveys. Some potential safety issues with regard to collapsing loose stone side walls exist in the Discharge Tunnel access area and thus only the accessible exposed stone wall surfaces will be surveyed.

- 4.2 Cs-137's detection efficiency has been checked by SNEC personnel using ISO standard 7503-1 methodology (**Reference 3.6**). The SNEC facility uses a conservatively low GFPC efficiency as input to the survey design process.
- 4.3 Survey unit variability (GFPC only) used to plan the number of fixed point measurement locations is shown on Attachment 7-1 and 7-2. Attachment 8-1 is the Williamsburg concrete background results. From the SNEC LTP (Reference 3.7), the off-site background soil samples yielded a mean concentration for Cs-137 of 0.28 \pm 0.39 pCi/g. This background values variability was used as input to the Compass computer program.
- 4.4 A GFPC detector stand-off distance of ~2.1" is assumed for all survey areas. This value is used to compensate for rough surfaces in each survey unit. These survey units were inspected IAW Reference 3.8. A copy of portions of the SNEC facility post-remediation inspection reports are included (see Attachment 9-1 to 9-8). Surface defects (gouges, cracks, etc.), are present within these survey units, yielding a efficiency correction factor (ECF). Thus the average concentration of the source term will be overestimated for all surfaces (GFPC only).
- 4.5 The detectors physical probe area is 126 cm², and the instrument is calibrated to the same source area for Cs-137. The gross activity DCGLw is taken to be 6,726 dpm/100 cm² x (126

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-04-017	0	Page 6 of 9

Subject

Upper Spray Pump Area & DT Entrance - Survey Design

cm² physical probe area/100 cm²) = 8,475 x (0.982 disintegration of Cs-137/ disintegration in mix) x ε_i (0.478) x ε_s (0.5) x 0.31 (distance factor) which yields ~617 net cpm above background (Compass calculates 593 ncpm as the gross beta DCGLw). The 0.0728 count per disintegration counting efficiency considers only the Cs-137 contaminant present in the sample material matrix, and is calculated by: ε_i (0.478) x ε_s (0.5) x 0.982 disintegration of Cs-137/disintegration in mix x 0.31 (efficiency correction factor due to distance from surface) = <u>0.0728 cts/disintegration</u>.

- 4.6 A MicroShield soil slab model was used to develop Nal scan MDC value for the soil/stone in the Discharge Tunnel access area (see Attachment 4-1). The model is a 6" thick slab of soil/stone 56.4 cm in diameter with a density of 2 g/cc model assumes that the majority of the activity resides in no more than the first 6 inches of exposed materials. The modeled concentration used was 1 pCi/g Cs-137. Then the concentration of Cs-137 in the model is 2.0 g/cc x 1 pCi/g = 2.0E-06 uCi/cc of Cs-137. The calculated MDCscan is shown in Table 5.
- 4.7 The results of the MicroShield modeling indicate that an exposure rate of approximately 2.41E-04 mR/h is obtained at a distance of 5" (4" inches from the face of the detector). Exposure rate is measured to the center of the detector and therefore the air gap is taken to be 4".
- 4.8 The majority of the structural surface area is concrete. GFPC measurements of structural concrete are compared to concrete background values (see Williamsburg concrete background values Attachment 8-1).
- 4.9 The scan MDC calculation is determined based on a 1.38 index of sensitivity at a 95% correct detection probability and 60% false positive rate. In all cases, the scan MDC is less than the gross and volumetric activity DCGLw values for these survey units. A surveyor efficiency factor of 0.5 is assumed.
- 4.10 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in these survey units.
- 4.11 No special measurements are included for this survey design.
- 4.12 The applicable SNEC site radionuclides and their associated DCGLw values are listed on Exhibit 1 of this calculation.
- 4.13 The survey design checklist is listed in Exhibit 2.
- 4.14 Area factors are not applicable for Class 2 and 3 areas.
- 4.15 The decision errors and other Data Quality Objectives for this survey design are listed within Attachment 5-1 through 5-10, and are justified IAW Reference 3.9 criteria.
- 4.16 Analysis results (MDA requirements, etc.) will be IAW Reference 3.5 criteria.

5.0 CALCULATIONS

5.1 All complex calculations are performed internal to applicable computer codes or within an Excel spreadsheet previously identified.

FirstEnergy	SNEC CALCULATION SHEET				
Calculation Number	Revision Number	Page Number			
E900-04-017	0 Page 7 of 9				
Subject					
Upper Spray Pump Area	& DT Entrance - Survey Design				

6.0 APPENDICES

- 6.1 Attachment 1-1 to 1-2, diagrams of Spray Pump and Discharge Tunnel areas.
- 6.2 **Attachment 2-1**, is typical calibration information for Nal and GFPC detection systems used at the SNEC facility as of 7-1-04.
- 6.3 **Attachment 3-1**, is a calculation result for determining efficiency loss for a GFPC detector as a function of distance from a calibration source.
- 6.4 Attachment 4-1 to 4-4, is the MicroShield output and MDCscan calculation results for a Nal detector.

6.4.1 Attachment 4-5 and 4-6, are the GFPC MDCscan results.

- 6.5 Attachment 5-1 to 5-10, are Compass output results for all areas.
- 6.6 **Attachment 6-1** to 6-2, are the random start, systematic grid diagrams for GFPC fixed point survey locations.
- 6.7 Attachment 7-1 and 7-2, are the GFPC variability measurements from these survey units.
- 6.8 Attachment 8-1, is the Williamsburg background measurements of concrete using a GFPC instrument (an non-impacted area).
- 6.9 Attachment 9-1 to 9-8, are sections of survey unit inspection reports for the Spray Pump and Discharge Tunnel areas.

FirstEnergy

SNEC CALCULATION SHEET

Calculation Number E900-04-017

Revision Number 0

Page 8 of 9

Page Number

Subject

Upper Spray Pump Area & DT Entrance - Survey Design

Exhibit 1

SNEC Facility Individual DCGL Values (a)

Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm²)	25 mrem/y Limit (All Pathways) Open Land Areas (Surface & Subsurface) (pCi/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	1.9E+04
Pu-238	3.0E+01	1.8	0.41
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	0.61

NOTES:

(a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

(b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

FirstEnergy

SNEC CALCULATION SHEET

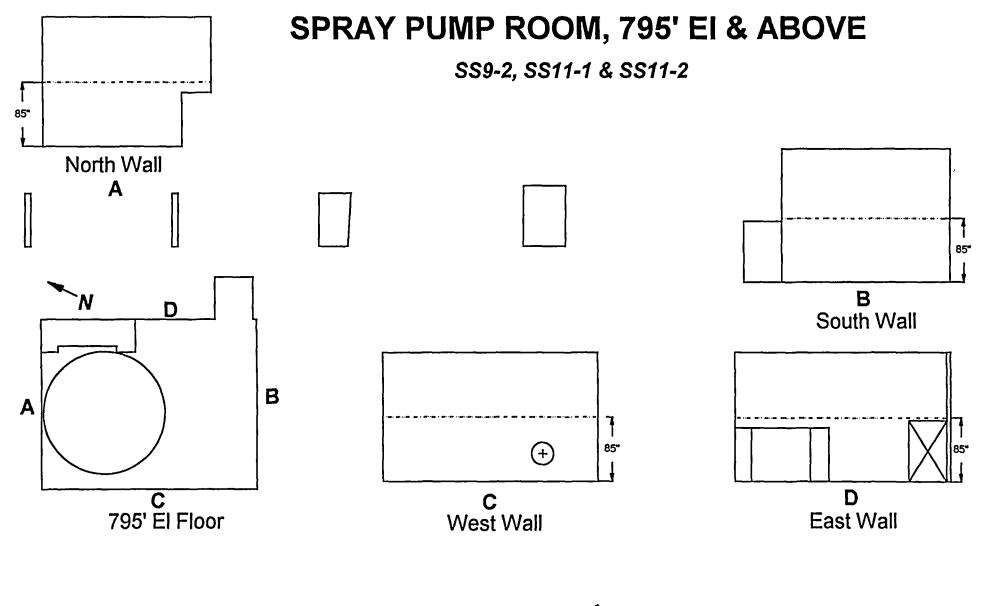
Revision Number

Calculation Number E900-04-017

0

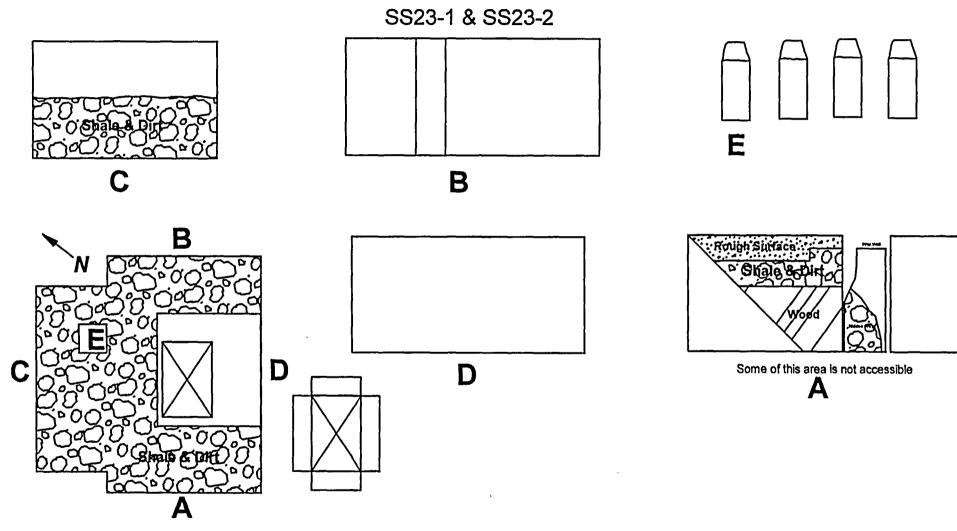
Page 9 of 9

Page Number


Subject

Upper Spray Pump Area & DT Entrance - Survey Design

Exhibit 2


Survey Design Checklist (From Reference 3.7)

	ation No. E900-04-017	SS9-1 & SS11-1, SS11-2, SS23-1 & S	<u>\$23-2</u>
ITEM	1	REVIEW FOCUS	Status Reviewer (Circle One) Initials & Dat
1		mber been assigned and is a survey design summers escription provided?	nary (Yes, N/A AD 8/3//04
2	Are drawings/diagrams adequate t	for the subject area (drawings should have compa headings)?	ass Yes N/A A 8/3/04
3	Are boundaries properly identified a	and is the survey area classification clearly indicat	ted? (Yes, N/A A) 8/31/04
4	Has the survey area(s) been pr	operly divided into survey units IAW EXHIBIT 10	(Yes) N/A AD 8/31/04
5	Are physical characteristics	of the area/location or system documented?	(res_N/A AD8/31/04
6	Is a remediation	effectiveness discussion included?	(Yes, N/A 8 8/31/04
7		for sampling results been converted to units that a to applicable DCGL values?	are Yes, N/A 8/31/04
8	Is survey and/or sampling data that w	ras used for determining survey unit variance inclu	uded? (Yes, N/A A) 8/11/04
9		eference areas (or materials) and their survey an along with a justification for their selection?	d'or Yes N/A ADE/31/04
10	Are applicable survey and/or samplin	g data that was used to determine variability inclu	uded? (Yes, N/A) 8/11/04
11		a have an impact on the survey design, and has t t been considered in the design?	the Yes N/A \$ 8/31/04
12		ic including any additional residual radioactivity (n ation) been identified along with its impact on sur design?	
13	Are all necessary supporting calcula	ations and/or site procedures referenced or includ	led? (Yes N/A) 8/31/04
14	Has an effective DCGL	w been identified for the survey unit(s)?	Yes, N/A A 8/31/04
15	Was the appropriate DCGL	EMC included in the survey design calculation?	Yes, N/A (P) 8/11/04
16	Has the statistical tests that w	ill be used to evaluate the data been identified?	(Yes, N/A 4) 8/31/04
17	Has an elevated measuremen	nt comparison been performed (Class 1 Area)?	Yes N/A P) 8/3//04
18	Has the decision error levels been id	entified and are the necessary justifications provi	ded? Yes N/A 2 8/31/04
19	Has scan instrumentation been iden	tified along with the assigned scanning methodolo	ogy? (Yes) N/A (2) 8/31/04
20	Has the scan rate been identified, a	and is the MDCscan adequate for the survey desig	gn? (Yes, N/A) 8/3/14
21	Are special measurements e.g., in-sit and is the survey method	u gamma-ray spectroscopy required under this de ology, and evaluation methods described?	esign, Yes, N/A 1/8/1/04
22	Is survey instrumentation calibration of	data included and are detection sensitivities adeq	uate? Yes, N/A AD 8/11/04
23		surement locations been clearly identified on a di urvey area(s) along with their coordinates?	iagram Yes N/A 1/8/31/04
24		rative limits adequate, and are any associated ac clearly indicated?	tions Yes N/A A 8/3/04
25	For sample analysis, have	the required MDA values been determined.?	Yes NA AD 8/31/01
26	Has any special sampling methodolog	y been identified other than provided in Referenc	e 6.3? Yes, N/A 9/1/04

ATTACHMENT 1.1

ENTRANCE TO DISCHARGE TUNNEL

2350 INSTRUMENT AND PROBE EFFICIENCY CHART 7/01/04 (Typical 2" by 2" Nal (Cs-137 W) Conversion Factors)

Inst.#	Cal Due	AP#	Probe #	Cal Due	cpm/mR/h
98625	5/18/05	R&Y	211680 Pk	5/18/05	214.882
98647	5/18/05	G&Y	211667 Pk	5/18/05	218.807
129423	5/18/05	P&Y	211687 Pk	5/18/05	213.539
117573	5/18/05	0&Y	211674 Pk	5/18/05	212.173
117566	4/9/05	G&R	185852 Pk	4/13/05	209.862
111000					
126183	11/19/04	B&R	206280 Pk	12/12/04	190,907
120105	11/1//04	Dair	20020011		170,507
129429	11/3/04	Y&W	206283 Pk	10/31/04	177185
129429	11/5/04		2002051K	10/31/04	177105
12(100	11/02/04	R&W	196021Pk	5/25/05	200.104
126198	11/03/04	Kaw	190021PK	5/25/05	209.194
	(10 7 10 7		10(022	(107/07	200 202
126172	6/07/05	G&W	196022	6/07/05	208.302
129440	4/09/05	0&W	210938 Pk	4/14/05	205,603
120588	6/08/05	B&W	185844 Pk	6/09/05	216,654
95361	6/25/05	P&W	025686	6/28/05	211.799

2350 INSTRUMENT AND PROBE EFFICIENCY CHART 7/01/04 (Typical 43-68 Beta Efficiency Factors)

Different Instrument/Probe Cal. Due Cesium only instruments (10mV to 100)

INST #	INST C/D	43-68 PROBE #	PROBE C/D	44-10 PROBE #	PROBE C/D	BETA EFF	ALPHA EFF
79037	04/05/05	122014	04/23/05			25.2%	N/A
126188	1/27/05	099186	1/27/05	č	· ·	28.2%	N/A _
126218	01/08/05	095080	01/09/05			27.9%	N/A

ATTACHMENT 2

ATTACHMENT_3.

MicroShield v5.05 (5.05-00121) GPU Nuclear

Page : 1 DOS File : DTEA.MS5 Run Date : August 30, 2004 Run Time: 10:21:06 AM Duration : 00:00:01

File Ref:	
Date:	
By:	
Checked:	

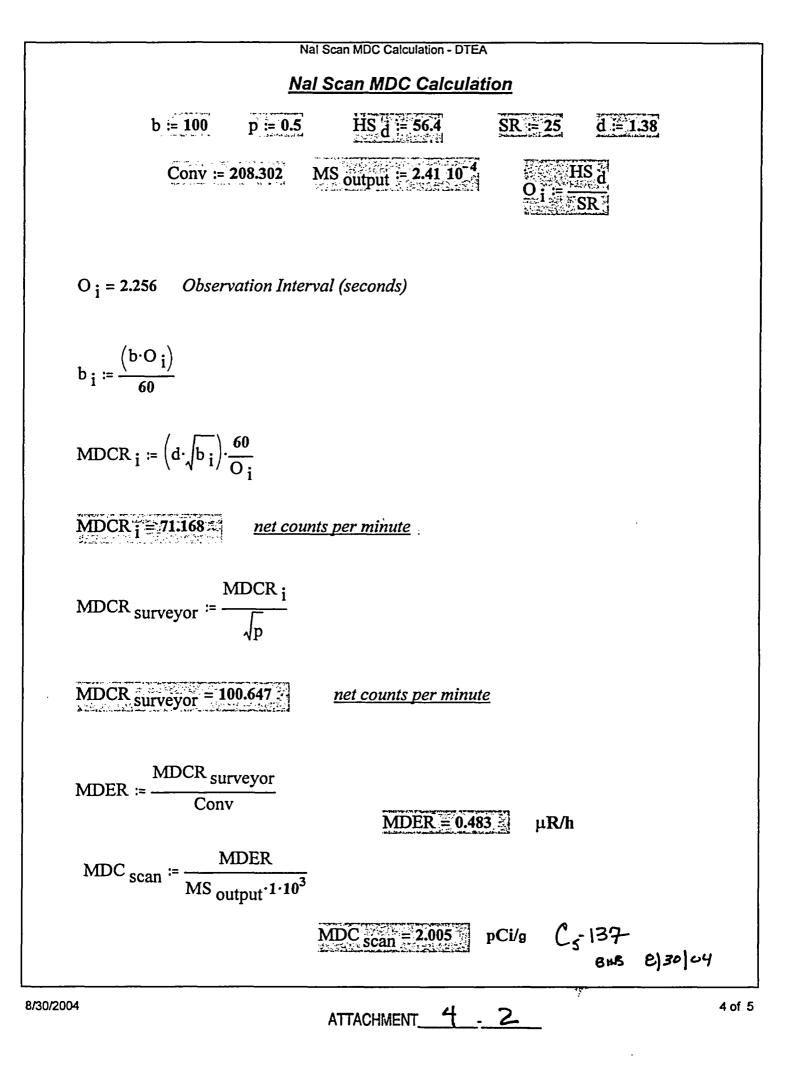
Case Title: Stone/Soil Description: Density 2 g/cc, 6" Cylinder @ 5" from Surface Geometry: 8 - Cylinder Volume - End Shields

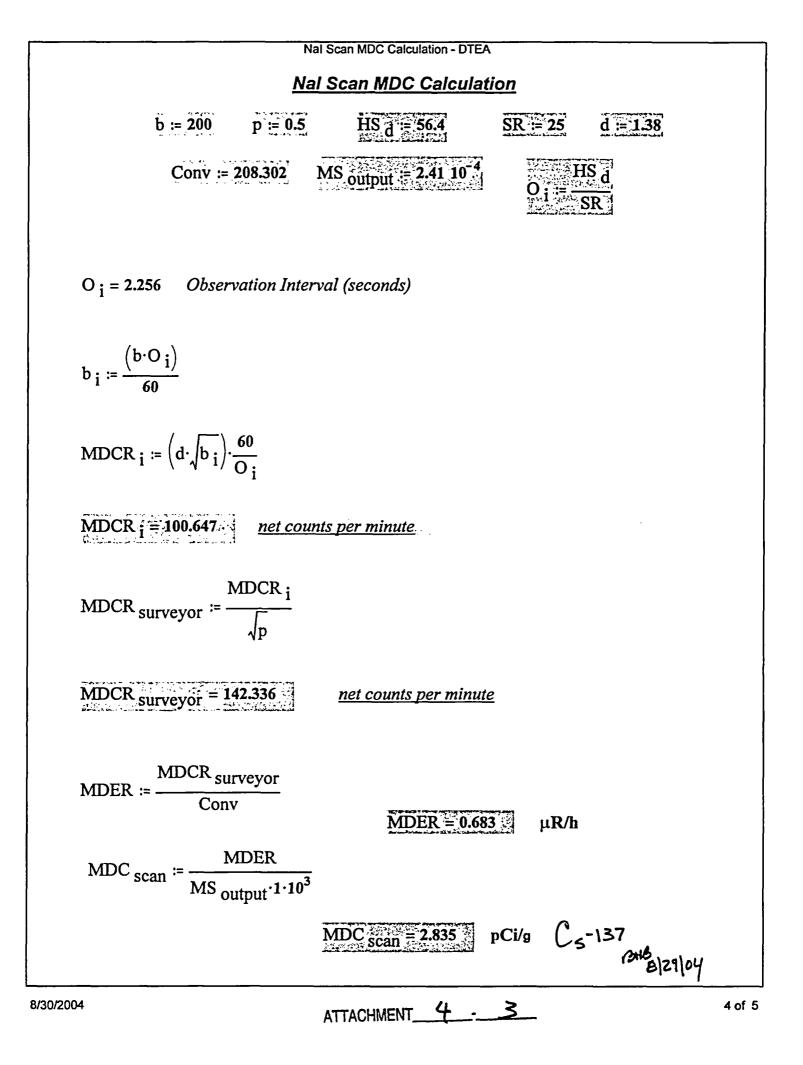
	Hei Rad		Source Dimen: 15.24 cm 28.21 cm		6.0 in 11.1 in
	# 1	<u>X</u> 0 cm 0.0 in	Dose Point <u>Y</u> 27.94 11.0	cm	<u>Z</u> 0 cm 0.0 in
z	<u>Shield</u> Sou Air (Shields Dimension 2325.091 in ³	<u>Material</u> Concrete Air	<u>Density</u> 2 0.00122

Source Input

	Grouping Method : Actual Photon Energies						
<u>Nuclide</u>	Nuclide curies becquerels µCi/cm ³ Bq/cm ³						
Ba-137m	7.2088e-008	2.6673e+003	1.8920e-006	7.0004e-002			
Cs-137	7.6203e-008	2.8195e+003	2.0000e-006	7.4000e-002			

Buildup The material reference is : Source

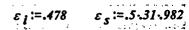

Integration Parameters


Desults

Radial	40
Circumferential	40
Y Direction (axial)	40

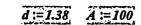
			Results		
Energy	<u>Activity</u>	Fluence Rate	Fluence Rate	Exposure Rate	Exposure Rate
<u>MeV</u>	photons/sec	MeV/cm ² /sec	MeV/cm ² /sec	mR/hr	mR/hr
		No Buildup	With Buildup	No Buildup	With Buildup
0.0318	5.522e+01	6.811e-06	8.245e-06	5.673e-08	6.868e-08
0.0322	1.019e+02	1.310e-05	1.595e-05	1.054e-07	1.284e-07
0.0364	3.707e+01	7.262e-06	9.488e-06	4.126e-08	5.391e-08
0.6616	2.400e+03	6.601e-02	1.243e-01	1.280e-04	2.410e-04
TOTALS:	2.594e+03	6.604e-02	1.244e-01	1.282e-04	2.413e-04

ATTACHMENT_4_1_



where:

- b = background in counts per minute
- $b_i = background counts in observation interval$
- Conv = Nal manufacturers reported response to energy of contaminant (cpm/uR/h)
- d = index of sensitivity (Table 6.5 MARSSIM), 1.38 = 95% of correct detection's, 60% false positives
- $HS_d = hot \, spot \, diameter \, (in \, centimeters)$
- MDC_{scan} = Minimum Detectable Concentration for scanning (pCi/g)
- MDCR_i = Minimum Detectable Count Rate (ncpm)
- MDCR_{surveyor} = MDCR_i corrected by human performance factor (ncpm)
- MDER = Minimum Detectable Exposure Rate (uR/h)
- MS_{output} = MicroShield output exposure rate for 1 pCi/g of contaminant (mR/h)
- $O_i = observation Interval (seconds)$
- p = human performance factor
- SR = scan rate in centimeters per second


Beta Scan Measurement MDC Calculation

Concrete Surface in Upper SPR & DTEA

5 W.d := 8.8 Sr := 2.2

 $\frac{W_d}{S_r} = 4$ Observation Interval (seconds)

 $O_1 := \frac{W_d}{S_r}$

Observation Interval (seconds)

 $b_i = 20.4$ Counts in observation Interval

 $b_i := \frac{(b \cdot O_i)}{60}$

$$C := \frac{1}{\left(\varepsilon_i \cdot \varepsilon_s \cdot \frac{A}{100}\right) \sqrt{p}}$$

C = *19.438*

$$MDCR_{i} := \left(d \cdot \sqrt{b_{i}} \right) \cdot \frac{60}{O_{i}}$$

MDCR i = 93.5 <u>net counts per minute</u>

MDCR_i+b=399.494 gross counts per minute

 $\frac{MDCR_{i}}{O_{i}} = 23.4$ <u>net counts per minute in observation interval</u>

 $MDC_{scan} := C \cdot MDCR_{i}$

$$MDC_{scan} = 1.817 \cdot 10^3$$
 dpm per 100 cm²

MARSSDM, Pages 6-38 to 6-43 Equations 6-9 & 6-10; and NUREC-1507, Pages 6-15 to 6-17

where:

b = background counts per minute

 b_i = background counts in observation interval

p = human performance factor

 W_d = detector width in centimeters

 $S_r = scan rate in centimeters per second$

d = index of sensitivity (Table 6.5 MARSSIM), 1.38 = 95% of correct detection's, 60% false positives $MDC_{scan} = Minimum$ Detectable Concentration for scanning (dpm/100 square centimeters)

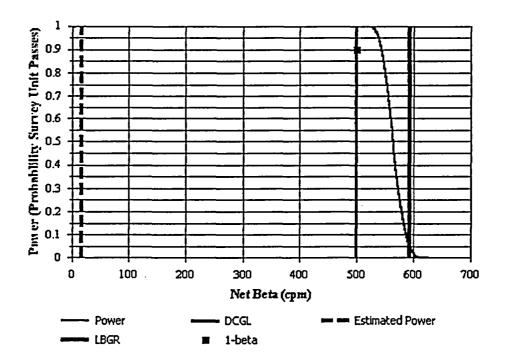
C = constant used to convert MDCR to MDC

 $\varepsilon_i = instrument \, efficiency \, (counts/emission)$

 $\varepsilon_s = source \ efficiency \ (emissions/disintegration)$

A = instrument physical probe area (in square centimeters)

ATTACHMENT 4.6


.

Survey Plan Summary

Site:	Upper Spray Pump Bldg.		
Planner(s):	ВНВ		
Survey Unit Name:	Spray Pump Bldg. Floor @ El.	785' 559-2 BHB 9/26/04	
Comments:		.,	
Area (m²):	30	Classification:	2
Selected Test:	WRS	Estimated Sigma (cpm):	34.5
DCGL (cpm):	593	Sample Size (N/2):	9
LBGR (cpm):	500	Estimated Conc. (cpm):	17
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100		

Prospective Power Curve

Contaminant Summary

559-2 BUB 8/26/04

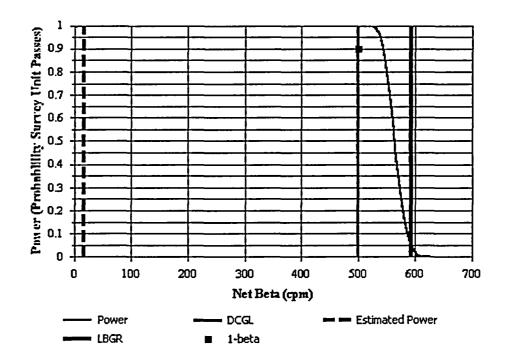
 DCGLw

 Contaminant
 (dpm/100 cm²)

 Gross Activity
 6,726

Beta Instrumentation Summary

Gross Beta DCGLw (dpm/100 c Total Efficiency: Gross Beta DCGLw (cpm):	m²):	6,726 0.07 593			
ID Type			Mode	,	Area (cm²)
26 GFPC			Beta		126
Contaminant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Gross Activity	187.87	1.0000	0.48	0.15	0.0728
Average beta energy (keV) [N/ Activity fraction	'A indicates alpha	emission]			
Gross Survey Unit Mean (cpm): Count Time (min): 1	323 ± 34 (1-sign	na)			
Material		Number of BKG Counts	Average (cpm)	Standard Deviation (cpm)	MDC (dpm/100 cm²)
Concrete		31	306	34.5	956


8/26/2004 ATTACHMENT 5 . 2

Survey Plan Summary

Site:	Upper Spray Pump Bldg.		
Planner(s):	BHB		
Survey Unit Name:	Walls of Spray Pump Bldg. to	El. ~802'	
Comments:	SS11-1		
Area (m²):	60	Classification:	2
Selected Test:	WRS	Estimated Sigma (cpm):	34.5
DCGL (cpm):	593	Sample Size (N/2):	9
LBGR (cpm):	500	Estimated Conc. (cpm):	17
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100		

Prospective Power Curve

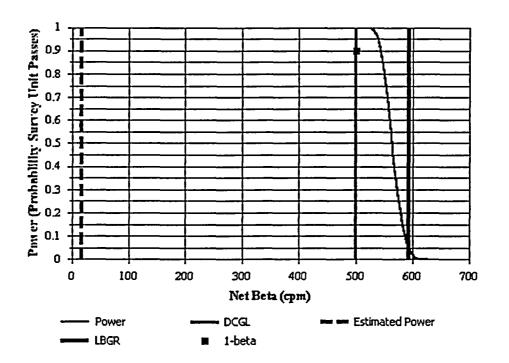
onta	minant Summ	ary		<u>_</u>	55/	1 <u> - B11</u> B 8 26
	Contamina Gross Activi			(dpm	CGLw /100 cm²) 5,726	01007
eta I	nstrumentatio	n Summa	ary		······	
Total I	Beta DCGLw (dpm/100 ca Efficiency: Beta DCGLw (cpm):	m²):	6,726 0.07 593			
ID	Туре			Mode		Area (cm²)
26	GFPC	<u> </u>	<u> </u>	Beta		126
Conta	minant	Energy'	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Gross	Activity	187.87	1.0000	0.48	0.15	0.0728
² Activ Gross	age beta energy (keV) [N// rity fraction Survey Unit Mean (cpm): Time (min): 1	·	-			
Mater	ial		Number of BKG Counts	Average (cpm)	Standard Deviation (cpm)	MDC (dpm/100 cm ²)

31

306

34.5

956


Concrete

Survey Plan Summary

Site:	Upper Spray Pump Bldg.		
Planner(s):	BHB		
Survey Unit Name:	Walls of Spray Pump Bldg. Ab	oove El. ~802'	
Comments:	SS11-2		
Area (m²):	58	Classification:	3
Selected Test:	WRS	Estimated Sigma (cpm):	34.5
DCGL (cpm):	593	Sample Size (N/2):	9
LBGR (cpm):	500	Estimated Conc. (cpm):	17
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100		

Prospective Power Curve

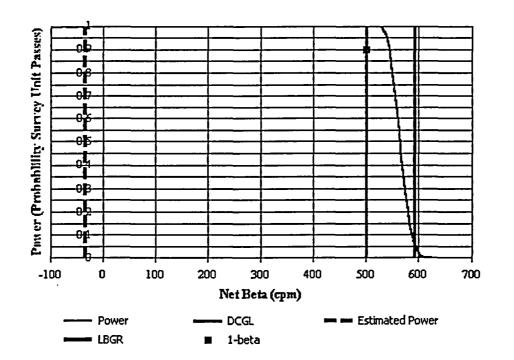
onta	minant Summ	ary				5511-Z	_B,HB
	Contamina Gross Activ			(dpm	CGL w h/100 cm ³) 6,726	B #B 8/26/04	
ta l	nstrumentatio	on Summa	ary				
Gross	Beta DCGLw (dpm/100 c	200 2):	6,726				
Total I	Efficiency:		0.07				
Gross	Beta DCGLw (cpm):		593				
ID	Туре			Mode	•	Area (cm²)	
26	GFPC			Beta	······································	126	
Conta	minant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.	
Gross	Activity	187.87	1.0000	0.48	0.15	0.0728	
² Activ Gross	age beta energy (keV) [N/ ity fraction Survey Unit Mean (cpm): Time (min): 1	·	-				
Materi	ial		Number of BKG Counts	Average (cpm)	Standard Deviation (cpm)	MDC (dpm/100 cm ²)	

31

306

34.5

956


Concrete

Survey Plan Summary

Site:	DT Entrance		
Planner(s):	BHB		
Survey Unit Name:	Entrance to Discharge Tunnel	- Concrete	
Comments:	SS23-1		
Area (m²):	66	Classification:	2
Selected Test:	WRS	Estimated Sigma (cpm):	34.5
DCGL (cpm):	593	Sample Size (N/2):	9
LBGR (cpm):	500	Estimated Conc. (cpm):	-35
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100		

Prospective Power Curve

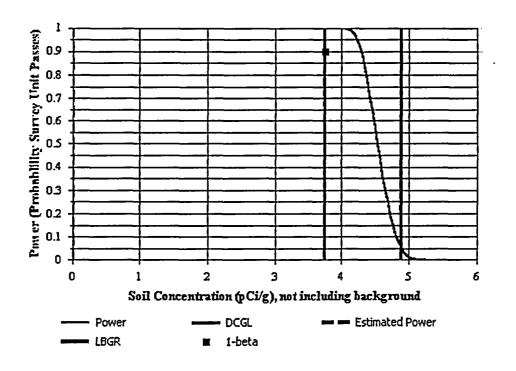
onta	minant Summa	ary			5	523-1	BNS
	Contaminar			D (dpm		(BNS & 26 / 0	
Gross Activity							
ta I	nstrumentatio	n Summa	ary				
Gross	Beta DCGLw (dpm/100 cn	n²):	6,726				
	Efficiency:		0.07				
Gross	Beta DCGLw (cpm):		593				
ID	Туре			Mode)	Area (cm²)	
27	GFPC			Beta		126	
Conta	minant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff,	Total Eff.	
Gross	Activity	187.87	1.0000	0.48	0.15	0.0728	
² Activ Gross	age beta energy (keV) [N/A ity fraction Survey Unit Mean (cpm): Time (min): 1	·	-				
Materi	ial .		Number of BKG Counts	Average (cpm)	Standard Deviation (cpm)	MDC (dpm/100 cm ³	')

306

34.5

956

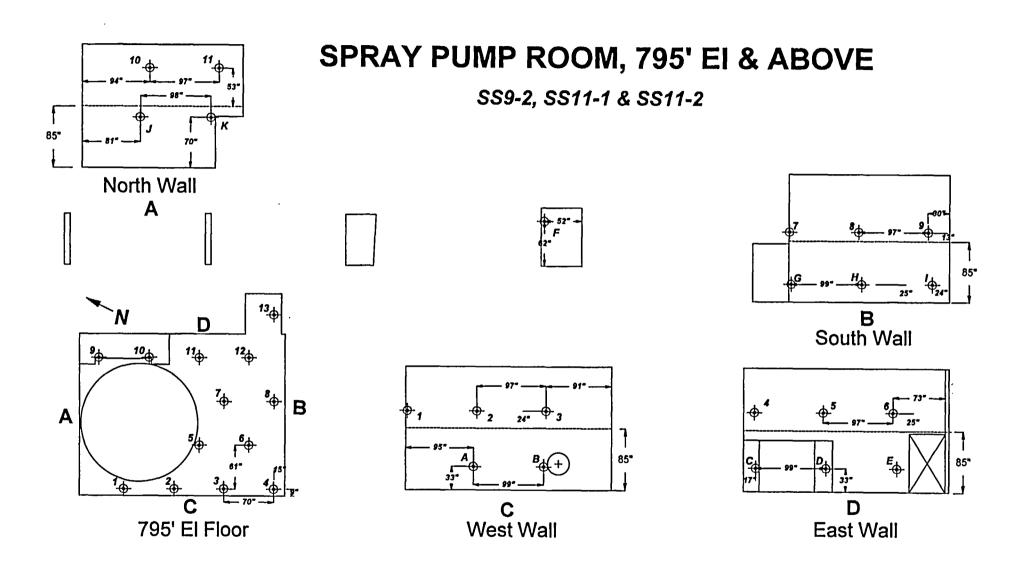
31


Concrete

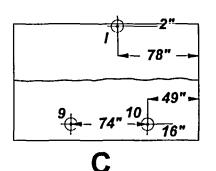
Survey Plan Summary

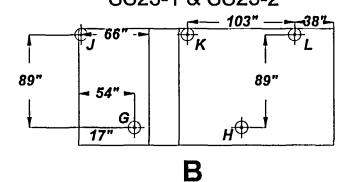
Site:	Entrance to Discharge Tunnel	Entrance to Discharge Tunnel - Stone/Soil						
Planner(s):	ВНВ							
Survey Unit Name:	Entrance to Discharge Tunnel	Intrance to Discharge Tunnel - Stone/Soil						
Comments:	SS23-2							
Area (m²):	31	Classification:	2					
Selected Test:	WRS	Estimated Sigma (pCi/g):	0.39					
DCGL (pCi/g):	4.89	Sample Size (N/2):	8					
LBGR (pCi/g):	3.75	Estimated Conc. (pCi/g):	0					
Alpha:	0.050	Estimated Power:	1					
Beta:	0.100							

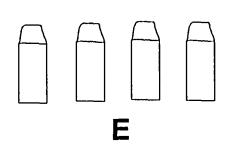
Prospective Power Curve

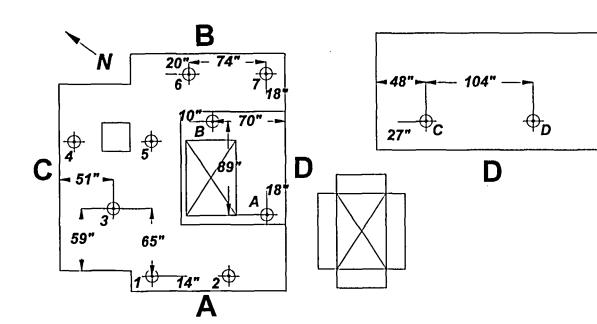


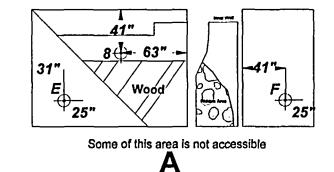
Contaminant Summary


.


Contaminant	DCGLw (pCl/g)	Inferred Contaminant	Ratio	Modified DCGLw (pCi/g)	Scan MDC (pCi/g)			
Cs-137	4.89	N/A	N/A	N/A	N/A			
Contaminant	:	Survey Unit Estimate (Mean ± 1-Sigma) (pCi/g)	Reference Area Estimate (Mean ± 1-Sigma) (pCi/g)					
Cs-137		0.28 ± 0.39		0.28 ± 0.39				




ATTACHMENT 6 - 1



6.Z ATTACHMENT_

	SPF	RAY PUN	IP. BL	DG. 79	95' El. F	LOOR & ABC	DVE -	CONCRE	TE		
	Instrument 126188	Lane/Gra	ham					SR-108		FSS-491	BHB
No.	Location	Date	Time	Detector	Counts	Count Time (sec)	Mode	Designator		Shielded	Unshielde
4	SS9 FP1S	3/31/2004	13:47	1	2.56E+02	60	SCL	Shielded	ß	2.56E+02	
5	SS9 FP1U	3/31/2004	13:48	1	3.43E+02	60	SCL	Unshielded	B		3.43E+02
6	SS9 FP2S	3/31/2004	14:03	1	2.61E+02	60	SCL	Shielded	ß	2.61E+02	
7	SS9 FP2U	3/31/2004	14:05	1	3.36E+02	60	SCL	Unshielded	B		3.36E+02
8	SS9 FP3S	3/31/2004	14:07	1	2.60E+02	60	SCL	Shielded	β	2.60E+02	
10	SS9 FP3U	3/31/2004	14:10	1	3.78E+02	60	SCL	Unshielded	ß		3.78E+02
11	SS9 FP4S	3/31/2004	14:12	1	2.55E+02	60	SCL	Shielded	ß	2.55E+02	
12	SS9 FP4U	3/31/2004	14:15	1	3.64E+02	60	SCL	Unshielded	ß		3.64E+02
13	SS9 FP5S	3/31/2004	14:17	1	2.60E+02	60	SCL	Shielded	ß	2.60E+02	
14	SS9 FP5U	3/31/2004	14:19	1	3.34E+02	60	SCL	Unshielded	ß		3.34E+0
15	SS11 FP6S	3/31/2004	14:21	1	2.07E+02	60	SCL	Shielded	ß	2.07E+02	
16	SS11 FP6U	3/31/2004	14:24	1	3.07E+02	60	SCL	Unshielded	ß		3.07E+02
17	SS11 FP7S	3/31/2004	14:26	1	2.08E+02	60	SCL	Shielded	ß	2.08E+02	
18	SS11 FP7U	3/31/2004	14:27	1	2.85E+02	60	SCL	Unshielded	ß		2.85E+02
19	SS11 FP8S	3/31/2004	14:29	1	2.10E+02	60	SCL	Shielded	ß	2.10E+02	
20	SS11 FP8U	3/31/2004	14:31	1	3.05E+02	60	SCL	Unshielded	ß		3.05E+02
21	SS11 FP9S	3/31/2004	14:32	1	2.07E+02	60	SCL	Shielded	ß	2.07E+02	
22	SS11 FP9U	3/31/2004	14:34	1	2.75E+02	60	SCL	Unshielded	B		2.75E+02
23	SS9 FP10S	3/31/2004	14:36	1	1.95E+02	60	SCL	Shielded	B	1.95E+02	-
24	SS9 FP10U	3/31/2004	14:37	1	3.00E+02	60	SCL	Unshielded	ß		3.00E+02
					•			Minimum ⇒ Maximum ⇒ Mean ⇒	•	1.95E+02 2.61E+02 2.32E+02	2.75E+02 3.78E+02 3.23E+02
								Sigma ⇒		2.83E+01	3.38E+0

ATTACHMENT 7.1

.

· .

.

x

			ANCE	TO DI	SCHAR	GE TUNNEL	CON	CRETE		
37122N21	Instrument 126188	BH4008			-				FSS-912	BHB
No.	Location	Date	Time	Detector	Counts	Count Time (sec)		Designator		Unshielded
2	SS23 EW1S	8/12/2004	10:56	1	1.99E+02	60	SCL	Shielded β Unshielded β	1.99E+02	
3	SS23 EW1U SS23EW2S	8/12/2004 8/12/2004	<u>10:58</u> 11:00	1	2.56E+02 2.23E+02	<u> </u>	SCL	Unshielded B Shielded B	0.005.00	2.56E+02
4	SS23EW25 SS23EW2U	8/12/2004	11:00	1 1			SCL		2.23E+02	2.055.02
6			11:03	<u>i</u>	3.06E+02 1.89E+02	<u>60</u>	SCL_	Unshielded β Shielded β	1.89E+02	3.06E+02
7	SS23EW3U	8/12/2004	11:04	1	2.61E+02	60	SCL	Unshielded B	1.092+02	2.61E+02
8			11:04	$-\frac{1}{1}$	1.86E+02	60	SCL	Shielded B	1.86E+02	2.012+02
9	SS23EW4U		11:07	1	2.53E+02	60	SCL	Unshielded B	1.002+02	2.53E+02
10	SS23EW5S	8/12/2004	11:08	<u> </u>	2.05E+02	60	SCL	Shielded B	2.05E+02	2.556+02
11	SS23EW5U		11:12	1	2.40E+02	60	SCL	Unshielded B	2.032+02	2.40E+02
15	SS23EW6S		11:21	<u></u>	2.06E+02	60	SCL	Shielded B	2.06E+02	2.402+02
16	SS23EW6U		11:23	1	2.23E+02	60	SCL	Unshielded B	2.002.02	2.23E+02
17	SS23EW7S	8/12/2004	11:24	1	2.08E+02	60	SCL	Shielded B	2.08E+02	
18	SS23EW7U		11:26	1	2.38E+02	60	SCL	Unshielded B	2.002.02	2.38E+02
19	SS23EW8S	8/12/2004	11:28	1	1.92E+02	60	SCL	Shielded B	1.92E+02	2.002.02
20	SS23EW8U		11:29	1	2.52E+02	60	SCL	Unshielded B		2.52E+02
24	SS23SW1S		13:02	1	1.73E+02	60	SCL	Shielded ß	1.73E+02	
25	SS23SW1U		13:03	1	2.31E+02	60	SCL	Unshielded B		2.31E+02
26	SS23SW2S	8/12/2004	13:04	1	2.13E+02	60	SCL	Shielded B	2.13E+02	<u> </u>
27	SS23SW2U		13:06	1	2.50E+02	60	SCL	Unshielded B		2.50E+02
28	SS23SW3S	8/12/2004	13:08	1	2.04E+02	60	SCL	Shielded B	2.04E+02	
29	SS23SW3U		13:09	1	2.50E+02	60	SCL	Unshielded B		2.50E+02
30	SS23SW4S		13:10	1	1.98E+02	60	SCL	Shielded B	1.98E+02	
31	SS23SW4U	8/12/2004	13:12	1	2.70E+02	60	SCL	Unshielded B		2.70E+02
32	SS23SW5S	8/12/2004	13:13	1	1.97E+02	60	SCL	Shielded [β]	1.97E+02	
33	SS23SW5U	8/12/2004	13:14	1	2.87E+02	60	SCL	Unshielded B		2.87E+02
34	SS23SW6S	8/12/2004	13:16	1	1.95E+02	60	SCL	Shielded B	1.95E+02	
35	SS23SW6U	8/12/2004	13:17	1	2.81E+02	60	SCL	Unshielded B		2.81E+02
36	SS23SW7S	8/12/2004	13:18	1	2.19E+02		SCL	Shielded B	2.19E+02	
37	SS23SW7U	8/12/2004	13:19	1	2.73E+02	60	SCL	Unshielded β Shielded β		2.73E+02
38	SS23SW8S		13:22	1	2.07E+02	60	SCL	Shielded B	2.07E+02	
39	SS23SW8U		13:23	1	2.79E+02	60	_SCL	Unshielded B	· · ·	2.79E+02
40	SS23SW9S		13:24	1	2.14E+02	60	SCL	Shielded B	2.14E+02	
41	SS23SW9U		13:26	1	2.54E+02	60	SCL	Unshielded B		2.54E+02
42	SS23SW10S		13:27	1	2.18E+02	60	SCL	Shielded ß	2.18E+02	
43	SS23SW10U		13:28	1	2.88E+02	60	SCL	Unshielded ß		2.88E+02
47	SS23WW1S		13:39	1	1.88E+02	60	SCL	Shielded B	1.88E+02	
48	SS23WW1U		13:40	1	2.75E+02	60	SCL	Unshielded B		2.75E+02
49	SS23WW2S		13:41	1	2.04E+02	60	SCL	Shielded B	2.04E+02	
50	SS23WW2U	8/12/2004	13:43		3.03E+02	60	_SCL_	Unshielded B		3.03E+02
51	SS23WW3S		13:44	1	2.60E+02	60	SCL	Shielded B	2.60E+02	
52	SS23WW3U	8/12/2004			3.29E+02	60	SCL	Unshielded ß	0.005.00	3.29E+02
53	SS23WW4S	8/12/2004		1	2.80E+02	60	SCL	Shielded B	2.80E+02	0.405.00
54	SS23WW4U		13:48		3.12E+02	60	SCL	Unshielded β Shielded β	2.055.00	3.12E+02
55	SS23WW5S		13:49		2.26E+02	60 60	SCL	Shielded B	2.26E+02	2 125+02
<u>56</u> 57	SS23WW5U	8/12/2004	13:51		3.13E+02 2.55E+02	60	SCL	Unshielded β Shielded β	2 555 100	3.13E+02
58	SS23WW6S SS23WW6U		13:52		2.55E+02 2.95E+02	60 60	SCL SCL		2.55E+02	2.95E+02
63	SS-23 NW1S	8/12/2004	9:02	1	2.95E+02 1.83E+02	<u> </u>	SCL		1.83E+02	2.952702
64	SS-23 NW15	8/16/2004	9.02 9:04	1	2.32E+02	60	SCL	Shielded β Unshielded β	1.035702	2.32E+02
65	SS-23 NW10 SS-23 NW2S	8/16/2004	9:04	1	2.32E+02 1.87E+02	60	SCL	Shielded B	1.87E+02	2.325702
66	SS-23 NW25 SS-23 NW2U	8/16/2004	9:00 9:07	1	2.76E+02	60	SCL	Unshielded B	1.07 2702	2.76E+02
67	SS-23 NW20 SS-23 NW3S	8/16/2004	9:07		2.06E+02	60	SCL	Shielded B	2.06E+02	2.102-02
68	SS-23 NW35	8/16/2004	9:00 9:10		2.00E+02 2.91E+02	60 ·	SCL	Unshielded B	2.000702	2.91E+02
69	SS-23 NW30	8/16/2004	9:11	_	2.01E+02	60	SCL	Shielded B	2.01E+02	2.010102
70	SS-23 NW43	8/16/2004	9:13	1	2.29E+02	60	SCL	Unshielded B	2.012702	2.29E+02
71	SS-23 NW5S	8/16/2004	9:14		2.44E+02	60	SCL	Shielded B	2.44E+02	
72	SS-23 NW5U	8/16/2004	9:15		3.20E+02	60	SCL	Unshielded ß		3.20E+02
73	SS-23 NW6S	8/16/2004	9:17		2.14E+02	60	SCL	Shielded B	2.14E+02	
74	SS-23 NW6U	8/16/2004	9:18		2.77E+02	60	SCL	Unshielded B		2.77E+02
								1/	L	
								Minimum ⇒	1.73E+02	2.23E+02
								Maximum ⇒	2.80E+02	3.29E+02
1								Mean ⇒	2.10E+02	2.71E+02
								Sigma ⇒	2.39E+01	2.91E+01
							~			

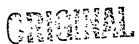
ATTACHMENT 7.2

37122N21	Instrument 95348					te Backgroun Count Time (sec)					SS-001	
0	BKGND	1/4/2002	8:52	Detector	7.26E+03	1800	SCL	Designator Inital Background	ß	F;	55-001	BHB
1	Source Check	1/4/2002	9:07	1	1.79E+05	60	SCL	Source	ß			
2	BKGND	1/4/2002		2	4.40E+01	1800	SCL	Inital Background	•	Concrete CF	(com) =>	0
14	Source Check	1/4/2002	10:39	2	1.51E+05	60	SCL	Source	α		hielded	Unshielded
15	CON A1S	1/4/2002	13:00	1	2.78E+02	60	SCL	Shielded	B	2.7	78E+02	27 (St. 687-124
16	CON A1U	1/4/2002		1	3.88E+02	60	SCL	Unshielded	ß		tere to	3.88E+02
17	CON A2S	1/4/2002		1	2.39E+02	60	SCL	Shielded	ß		39E+02	· · · · · · · · · · · · · · · · · · ·
18	CON A2U	1/4/2002			2.22E+02	60	SCL	Unshielded	B		9 : • • • ° • • •	2.22E+02
19	CON A3S	1/4/2002		1	2.39E+02	60	SCL	Shielded	B		39E+02	
<u>20</u> 21	CON A3U CON A4S	1/4/2002	13:30		2.62E+02 2.45E+02	<u> </u>	SCL SCL	Unshielded Shielded	B		5E+02	2.62E+02
21	CON A45	1/4/2002		1	2.45E+02 2.71E+02	60 60	SCL	Shielded Unshielded	B		45E7U2	2.71E+02
23	CON A5S		13:58	<u> </u>	2.00E+02	60	SCL	Shielded	B		00E+02	2.712702
24	CON A5U	1/4/2002		1	2.82E+02	60	SCL	Unshielded	He I			2.82E+02
25	CON A6S	1/4/2002	14:03	1	1.84E+02	60	SCL	Shielded	ß		34E+02	1.546825326825
26	CON A6U	1/4/2002	_	11	3.10E+02	60	SCL	Unshielded	B	e Pysy	Net per Cr	3.10E+02
27	CON A7S		14:09	1	1.98E+02	60	SCL	Shielded	ß	1.9	98E+02	(
28	CON A7U	1/4/2002			3.15E+02	60	SCL	Unshielded	ß		-402.1YP.	3.15E+02
29	CON A8S		14:19	1	2.34E+02	60	SCL	Shielded	P		34E+02	
30 31	CON A8S CON A8U	1/4/2002 1/4/2002	• ···==	1	2.31E+02	60 60	SCL SCL	Shieided Upshielded	ß		31E+02	2 005103
32	CON A9S		14:24		2.88E+02 2.65E+02	60	SCL	Unshielded Shielded	ß		55E+02	2.88E+02
33	CON A9U	1/4/2002		i	2.89E+02	60	SCL	Unshielded	ß		<u>, ~~</u> ,	2.89E+02
34	CON A10S	1/4/2002		<u></u>	2.46E+02	60	SCL	Shielded	B		6E+02	5.00L.02
35	CON A10U	1/4/2002	14:43	1	3.16E+02	60	SCL	Unshielded	β		00200	3.16E+02
36	CON A11S		15:10	1	1.95E+02	60	SCL	Shielded	ß	1.9	95E+02	
37	CON A11U	1/4/2002		1	2.94E+02	60	SCL	Unshielded	ß		388-1259	2.94E+02
38	CON A12S	1/4/2002		1	2.21E+02	60	SCL	Shielded	B		21E+02	xv28996394
<u> </u>	CON A12U	1/4/2002			2.84E+02	60	SCL	Unshielded	B		477 (2.84E+02
40 41	CON A13S CON A13U	1/4/2002 1/4/2002	15:23	1 1	1.74E+02 2.94E+02	60 60	SCL	Shielded Unshielded	LB		4E+02	2.94E+02
42	CON A14S	1/4/2002		1	1.96E+02	60	SCL	Shielded	B B		6E+02	2.946702
43	CON A14U	1/4/2002		1	3.33E+02	60	SCL	Unshielded	В			3.33E+02
44	CON A15S	1/4/2002		1	2.16E+02	60	SCL	Shielded	B		6E+02	
45	CON A15U	1/4/2002	15:29	_1	3.45E+02	60	SCL	Unshielded	B		40000094.200	3.45E+02
46	CON A16S		15:30	1	1.83E+02	60	SCL	Shielded	B	1.8	3E+02	and a the second
47	CON A16U	1/4/2002		1	3.13E+02	60	SCL	Unshielded	ß		(?	3.13E+02
48	CON A17S		15:33	1	1.82E+02	60	SCL	Shielded	B		2E+02	177833200878849
<u>49</u> 50	CON A17U	1/4/2002	<u>15:34</u> 15:35		3.22E+02	<u> </u>	SCL	Unshielded	B			3.22E+02
51	CON A18S CON A18U	1/4/2002		1	1.84E+02 3.24E+02	60	SCL	Shielded Unshielded	B		4E+02	3.24E+02
52	CON A19S		15:37	1	1.91E+02	60	SCL	Shielded	B		1E+02	3.24E+U2
53	CON A19U	1/4/2002			3.07E+02	60	SCL	Unshielded	в		200-200 200-200	3.07E+02
54	CON A20S	1/4/2002	15:40	1	1.94E+02	60	SCL	Shielded	ß		4E+02	
55	CON A20U	1/4/2002	15:41	1	3.33E+02	60	SCL	Unshielded	ß			3.33E+02
56	CON A21S	1/4/2002		1	2.23E+02	60	SCL	Shielded	ß		3E+02	w.29662042
57	CON A21U	1/4/2002			2.92E+02	60	SCL	Unshielded	ß		9388-9894	2.92E+02
58 50	CON A22S	1/4/2002		1	1.72E+02	60	SCL	Shielded	β.	the second s	2E+02	************
<u>- 59</u> 60	CON A22U CON A23S	1/4/2002		1	2.80E+02 1.94E+02	<u>60</u>		<u>Unshielded</u> Shielded	ß		45402	2.80E+02
61	CON A235	1/4/2002		1	3.29E+02	60	SCL	Unshielded	β β		4E+02	3.29E+02
62	CON A24S	1/4/2002		1	1.87E+02	60	SCL	Shielded	ß		7E+02	3.292+02
63	CON A24U	1/4/2002			3.48E+02	60	SCL	Unshielded	β		809.LC7987	3.48E+02
64	CON A25S	1/4/2002	16:06	1	2.07E+02	60	SCL	Shielded	β		7E+02	
65	CON A25U	1/4/2002			3.72E+02	60	SCL	Unshielded	ß		a din denan	3.72E+02
66	CON A26S	1/4/2002			2.09E+02	60	SCL	Shielded	β β		9E+02	ulan kalendi kara
67	CON A26U	1/4/2002			3.26E+02	60	SCL	Unshielded	B			3.26E+02
68 60	CON A27S	1/4/2002			2.07E+02	60	SCL	Shielded	β		7E+02	27 12 XXX 00 2 4 1
<u>69</u> 70	CON A27U CON A28S	1/4/2002			3.30E+02 2.30E+02	<u> 60 </u>	SCL SCL	Unshielded Shielded	ß		05+02	3.30E+02
70	CON A285 CON A28U	1/4/2002			3.06E+02	60	SCL	Unshielded	β β		0E+02	3.06E+02
72	CON A29S	1/4/2002			2.13E+02	60	SCL	Shielded	ß		3E+02	3.002+02
73	CON A29U	1/4/2002			2.58E+02	60	SCL	Unshielded	β			2.58E+02
74	CON A30S	1/4/2002			2.33E+02	60	SCL	Shielded	ß		3E+02	
75	CON A30U	1/4/2002		1	2.89E+02	60	SCL	Unshielded	β			2.89E+02
76	CON A31S	1/4/2002			1.84E+02	60	SCL	Shielded	β	· · · · · · · · · · · · · · · · · · ·	4E+02	alessailtes :
	CON A31U	1/4/2002			2.63E+02	60	SCL	Unshielded	β	320	98299522CE	2.63E+02
	Source Check	1/4/2002	17:27	1	1.70E+05	60	SCL		β			
										num ⇒ 1.7		2.22E+02
								N		num ⇒ 2.7 ean ⇒ 2.1		3.88E+02 3.06E+02
												3.062+02

Sigma ⇒ 2.69E+01 3.45E+01

ATTACHMENT_6___

Exhibit 1 Survey Unit Inspection Check Sheet	IGINAL			
SECTION 1-SURVEY UNIT INSPECTION DESCRIPTION				
Survey Unit # SS23-1/2 Survey Unit Location Discharge Tunnel Access Are	ea – Flo	or and \	Walls	
Date 8/25/04 Time 1300 Inspection Team Members D. Sa	rge		-	
SECTION 2 - SURVEY UNIT INSPECTION SCOPE				
Inspection Requirements (Check the appropriate Yes/No answer.)	Yes	No	N/A	
1. Have sufficient surveys (i.e., post remediation, characterization, etc.) been obtained for the survey unit?	X			
2. Do the surveys (from Question 1) demonstrate that the survey unit will most likely pass the FSS?	X			
3. Is the physical work (i.e., remediation & housekeeping) in or around the survey unit complete?		X		
4. Have all tools, non-permanent equipment, and material not needed to perform the FSS been removed?		X	~	
5. Are the survey surfaces relatively free of loose debris (i.e., dirt, concrete dust, metal filings, etc.)?	X			
6. Are the survey surfaces relatively free of liquids (i.e., water, moisture, oil, etc.)?	X			
7. Are the survey surfaces free of all paint, which has the potential to shield radiation?	x			
8. Have the Surface Measurement Test Areas (SMTA) been established? (Refer to Exhibit 2 for instructions.)	X			
9. Have the Surface Measurement Test Areas (SMTA) data been collected? (Refer to Exhibit 2 for instructions.)	X			
10. Are the survey surfaces easily accessible? (No scaffolding, high reach, etc. is needed to perform the FSS)	X			
11. Is lighting adequate to perform the FSS?	X			
12. Is the area industrially safe to perform the FSS? (Evaluate potential fall & trip hazards, confined spaces, etc.)		X		
13. Have photographs been taken showing the overall condition of the area?	X			
14. Have all unsatisfactory conditions been resolved?		X		
NOTE: If a "No" answer is obtained above, the inspector should immediately correct the problem or initiate corre responsible site department, as applicable. Document actions taken and/or justifications in the "Comments" section sheets as necessary.	ctive action below. A	ons throu ttach ad	igh the ditional	
Comments:				
Response to Question #3: Miscellaneous rope, supplies, sock filters, trash, herculite remains	in area.			
Response to Question #4: Scaffolding, "A" Frame hoist, stairway remain in area.				
			:	
Survey Unit Inspector (print/sign) David Sarge / Art A	Date	8/25	6/04	
Survey Designer (print/sign) B. BROSEN / B. Brown	Date	8/2		


......

:

ATTACHMENT_	9	. 1
-------------	---	-----

ORIGINAL

	Ľ	31110		face Measu	EXH rement Te:		3 rea (SMTA) D	ata Sheet				. 19
MARKER (**							SCRIPTIO					
SMTA Num	iber	SI	MTA-SS2	3-2-1	S	urve	ey Unit Nu	mber		SS	23-2	
SMTA Loca	tion D	ischarge	Tunnel A	ccess Ar	ea – Sou	th V	Vall					
Survey Unit				D. Sa				Date		25/04	Time	1245
		SECTI	ON 2 - C	ALIPER I	NFORM	AT I				LVED		
Caliper Mar				litotoyo			Caliper M		_ استر		CD-6" CS	<u> </u>
Caliper Serial Number 763893 Calibration Due Date (as applicable) N/A												
Rad Con Te			<u> </u>		A.C.			Date	8/2	25/04	Time	1245
Survey Unit	t Inspect	or Appro		Sarge /	VIAS	-			· · · · · · · · · · · · · · · · · · ·	Date	8/2	25/04
ICANS STORAGE							EMENT, R	ESULTS				
SMTA Grid				sults in U cks Belov		ח 			Cor	nments		
		13	19	25	31			-		• ·-		-
3.6	4.0	3.5	3.8	1.5	1.1					ghout the ion and ex		
8 233	8		20	26	32		surface of	character	istics. 7	Therefore	these rea	dings
2.3	7.4	0.6	1.7	0.5	0.4					typical ra		oncrete
▏┠┯┉┉┉┠╸		ARTIST	21				surfaces	to be su	veyea	during FS	5.	
	9	(2 15)	· · · · · · · · · · · · · · · · · · ·	27	33							
1.2	0.3	1.3	3.0	2.3	1.9		}					
	10	16	5,22	28	34							
3.7	0.4	2.7	<u>.</u> 5.5	10.8	2.8)					
6	\$173£	12.22	23	29	25		}					
3.0	3.0	3.4	3.5	2.8	5.2							
1 0	12	18	24	30	36		l				•	
3.0	1.5	2.2	4.5	2.1	6.3							
	Averag	e Measu	rement -	3.3 mm								
				Addition	al Measu	iren	nents Requ	uired				;
												. – –
1												
L								<u>.</u>				

		Surface Meas		IBIT : st Are		ata Sheet	L					
		SEC					36.49		1.3.7.7.A			
SMTA Number	SI	MTA-SS23-1-1	S	urve	y Unit Nun	nber		SS2	23-1			
SMTA Location	Discharge	Tunnel Access A	rea – Pilla	r			_					
Survey Unit Inspe	ctor	D. S	Sarge			Date	8/2	5/04	Time	1300		
	SECTI	ON 2-CALIPER	INFORM	ATIC	ON & PER	SÖNNEI	INVO	LVED				
Caliper Manufactu	urer	Mitotoyo			Caliper Mo	odel Nun	nber	(CD-6" CS	\$		
Caliper Serial Nu	mber	(as app	olicable)	1	N/A							
Rad Con Technic	ian D.Sa	rge				Date	8/2	5/04	Time	1245		
Survey Unit Inspe			Up-	-				Date	8/2	25/04		
		SECTION			EMENT, RE	SULTS				1944 1954		
		ement Results in L Nhite Blocks Belo		m			Соп	nments				
	A IS	19 25	231					caliper wi in various				
2	* 243	20 - 26	32		throu	ghout the	e pillar.					
	- 15 -2-	21 21 27	333		surfa		ollows ((in mm): 1				
4	16	22 5 28	34		Aver	age dept	mm.					
111	新教性教	23 5 29	25									
6 2 12	18	24 30	38									
Ave	erage Mea	surement - mm			-							
		Additio	nal Measu	irem	nents Requ	ired						

1

GR	IG		
----	----	--	--

		Su	face Measi	EXH Jrement Te				ata Sheet			WEEK	a saka		
			_			-			SF 16 2 1	22633	1994-2017	NOT CHE		
SMTA Number		SMTA-SS2	3-2-2	S	urve	ey U	nit Nur	nber		SS2	23-2			
SMTA Location	Discha	arge Tunnel A	ccess Ar	ea – Wes	t W	'all –	North	Side						
Survey Unit Insp			D. S				Date	8/25		Time	1215			
	S∰ SE	ECTION 2 - C	ALIPER	NFORM	ATIC	DN 8	PER	SONNEL	INVOL	VED				
Caliper Manufac							<u> </u>	odel Nurr						
Caliper Serial N					Ca	alibra	ation D	ue Date						
Rad Con Techni).Sarge		A-12-				Date	8/25		Time	1215		
Survey Unit Insp	ector A	·	Sarge / (Yarg			đi (1997) - 1993, (199		201-7 1 2-601-62	Date	8/2	5/04		
SMTA Grid Maj (Insert			sults in U				NI, KE	50L15		nents	<u> </u>			
		3	25 26	31.55		•	detec		late to si		easure us actual rad			
	2. V. (31		27	33.2		S	surfa	eadings ces, as fo 1.0, 1.0	ollows (ii	n inches	nout conc): 2.0, 2.9 .0, 1.25	rete 5, 2.0,		
4 5 10		····	28			•			depth = 1.5 inches. has imbedded metal.					
2.6 .20 90111	\$	23 23 72	29	26										
29			30 😒	36										
Av	erage N	leasurement -	mm											
		·, ·, ·	Addition	al Measu	rem	nents	s Requ	ired						

.

ORIGINAL

		S1#	face Measu	EXH			ΜΤΔΙ D	ata Shoot	VII	IVALEE	8 12 <u>26</u> 29				
SMTA Number		MTA-SS2					nit Nur				23-2				
SMTA Location	Discharge	Tunnel A	ccess Ar	ea – Wes	st W	ali -	South	Side							
Survey Unit Inspec	ctor		D. Sa	arge				Date	8/2	25/04	Time	1200			
	SECTI	ON 2 - C	ALIPER	NFORM	ATIC	DŃ 8	PER	SONNE	LINVO	LVED					
Caliper Manufactu	ırer					Cal	iper M	odel Nur	nber						
Caliper Serial Nun	nber				Ca	alibra	ation D	ue Date	(as ap	plicable)					
Rad Con Technici	an D.Sa	rge		0.1				Date	8/2	25/04	Time	1200			
Survey Unit Inspe			Sarge /	Vaf g	_			· · · · · · · · · · · · · · · · · · ·	<u></u>	Date		25/04			
		SE	CTION 3	MEAS	URI	EME	NT RE	SULTS							
SMTA Grid Map & (Insert R	& Measure Results in V				n		~		Cor	nments	···· · ··· · ··· · · · · · · · · · · ·				
	213 28	19	25	31		•	detec		plate to	a tape m simulate :					
2123 218	1	20	26	32		•	Twelv surfa	ve readir ces, as f	ngs obt foliows	ained thro (in inches	oughout c):	oncrete			
	16	21	27	33			2.5, 2	2.0, 2.25	, 2.0, 2	.0, 1.75, 2	2.25, 3.0,	1.0, 1.75			
4 10	20 16	22	28	ાર્ચ છે.		 2.0, 2.25. Average depth = 2.1 inches. Concrete has imbedded metal. 									
6 5 11 7		23	29	26							-				
6 1 2	18	24	30	35											
Aver	rage Meas	urement -	- mm	L											
			Addition	al Measu	irem	nents	s Requ	ired							

•

Exhibit 1 Survey Unit Inspection Check Sheet			
SECTION 1 - SURVEY UNIT INSPECTION DESCRIPTION			
Survey Unit # SS9-1, SS10, SS11 Survey Unit Location Spray Pump Pit Floor, Walls E	Below 8	Above	795'
Date 7/29/04 Time 0800 Inspection Team Members D. Sa	rge		
SECTION 2 - SURVEY UNIT INSPECTION SCOPE	· 		
Inspection Requirements (Check the appropriate Yes/No answer.)	Yes	No	N/A
1. Have sufficient surveys (i.e., post remediation, characterization, etc.) been obtained for the survey unit?	x		
2. Do the surveys (from Question 1) demonstrate that the survey unit will most likely pass the FSS?	. X .		
3. Is the physical work (i.e., remediation & housekeeping) in or around the survey unit complete?	X		
4. Have all tools, non-permanent equipment, and material not needed to perform the FSS been removed?	- X		
5. Are the survey surfaces relatively free of loose debris (i.e., dirt, concrete dust, metal filings, etc.)?	X		
6. Are the survey surfaces relatively free of liquids (i.e., water, moisture, oil, etc.)?	X		
7. Are the survey surfaces free of all paint, which has the potential to shield radiation?	X		
8. Have the Surface Measurement Test Areas (SMTA) been established? (Refer to Exhibit 2 for instructions.)	X		
9. Have the Surface Measurement Test Areas (SMTA) data been collected? (Refer to Exhibit 2 for instructions.)	X		
10. Are the survey surfaces easily accessible? (No scaffolding, high reach, etc. is needed to perform the FSS)	x		
11. Is lighting adequate to perform the FSS?	X		
12. Is the area industrially safe to perform the FSS? (Evaluate potential fall & trip hazards, confined spaces, etc.)	X		
13. Have photographs been taken showing the overall condition of the area?	x		
14. Have all unsatisfactory conditions been resolved?	X		
NOTE: If a "No" answer is obtained above, the inspector should immediately correct the problem or initiate correct responsible site department, as applicable. Document actions taken and/or justifications in the "Comments" section sheets as necessary.	ctive actibelow.	ons throu Attach ad	igh the ditional
Survey Unit Inspector (print/sign) D. Sarge / Day	Date	7/29	9/04
Survey Designer (print/sign) B. BROSEY / B. Brown	Date	8 3	07

ATTACHMENT	<u>9</u> .	6

EXHIBIT 3 Surface Measurement Test Area (SMTA) Data Sheet

		SECTION 1 - DESCRIPTION															
SMTA Nu	nber		SMTA-SS11-1 Survey Unit Number SS11														
SMTA Loc	ation	Spray	y Pump	House	Floor												
Survey Un	it Inspe				D. Sa			_		Date		9/04	Time	0800			
		S	ECTIO	12-C	ALIPER I	NFOR	MAT	'IC	ON & PER	SONN	EL INVOL	VED					
Caliper Ma	liper Manufacturer Mitotoyo Caliper Model Number CD-6" C												CD-6" CS	;			
Caliper Se	rial Nu	mber 763893 Calibration Due Date (as applicable)											1	√A			
Rad Con 1	Technic	ian	D. Sarg	e / 🖉	f ,					Date	7/2	9/04	Time	0800			
Survey Ur	iit Inspe	ector A	Approva	1 D.4	Sarge/ (947						Date	0	800			
				SE	CTION 3	MEA	SUF	RE	MENT RE	SULT	S,						
SMTA Gr					sults in U cks Belov		nm					ments					
1	. 7	1	13	19	25	31		Ī			es indicat		depth in	egularity			
0.8	0.1	c	0.6	0.4	3.7	4.4		1	simila	ar to the	ese readi	ngs.					
2	8		14	20	26 ·	32	7				straps fo						
1.0	3.2	1	1.0	1,9	10.3	17.3	Ì				e. These a . Notified						
3	9.`		15	21	27	. 33			wires								
0.9	1.0	3	3.0	6.3	0.9	16.2								1			
4	10		16	.22	28	34											
1.2	0.9	1	1.5	1.1	10.0	0.9											
5	11		17	23	29	[°] 25											
1.4	1.0	1 2	2.6	1.0	1.0	0.5											
6	• • 12		18	24	30	36											
4.6	7.1	ŧ	5.9	6.2	4.0	0.6											
	Aver	age M	leasurei	nent –	3.5 mm												
					Addition	al Mea	sure	m	ients Requ	lired							
1) Pu	Imp Pe	desta	I has b	een ch	iseled ca	using	surf	fac	ce irregula	arities:							
10	depth	readin	ıgs usin	g a tap	e measu	re were	obta	air	ned throug	hout s	urface. Re	esults rar	nged				
fro	om 0.4 -	- 2.0 ii	nches w	rith an	average (of 1 incl	h.		-					1			
2) Dra	ain Tro	ugh is	s cut ac	ross c	outside e	dge of	floo	er:									
Tro	ough is	appro	x. 3 inc	hes wid	de and va	ries in (dept	h	between 1	.375 to	0 1.75 inc	hes deep					
3) Co	re Bor	es Ho	les are	prese	nt in floo	r.											
Th	ree 3-ir	nch ho	les vary	in dep	oth betwe	en 4.75	to 6	5.5	5 inches. C	One 4-ii	nch hole i	s approx	. 5.5 inch	es deep.			
					<u> </u>												

ATTACHMENT 9.7

EXHIBIT 3 Surface Measurement Test Area (SMTA) Data Sheet

					SEC	TION 1 -	DE	S	CRIPTIC	N						
SMTA Nu	mber		SMT	A-SS	11-2	S	urve	ey	Unit Nu	mber			SS	511		
SMTA Loc	cation	Spray	Pump H	ouse	West Wa	all (Sout	nwe	est	corner)						_	
Survey Ur	nit Inspe	ector			D. Sa	arge				Dat	e	7/29	9/04	Time	0815	
•		SE	CTION	2 - C	ALIPER I	NFORM	ATI	0	N & PEF	SON	NEL IN	VOL	VED			
Caliper M	anufact	urer		V	Aitotoyo			C	Caliper N	lodel I	Number	r	(CD-6" CS	3	
Caliper S	caliper Serial Number 763893 Calibration Due Date (as applicable)													N/A		
Rad Con	Rad Con Technician D. Sarge Och Date 7/29/04												Time	0815		
Survey Unit Inspector Approval D. Sarge / Of Date 0815													815			
SECTION 3 - MEASUREMENT RESULTS																
SMTA Grid Map & Measurement Results in Units of mm (Insert Results in White Blocks Below) Comments																
1	7	13		19	25	31		Γ						depth irre	egularity	
1.3	2.6	1.1	6).6	4.1	0.7			simil	ar to t	hese re	eadin	gs.			
-2	8	14		20	26	32			Stee	Bolts	s/Mount	ting I	Brackets	are prot	ruding	
1.0	4.8	0.5	5 0).6	1.4	1.0		ł	from	the w	all in va	anou	s areas.			
3	9	15		21	27	33	1	l	• Pum	p Dise	charge	Line	(30-inch	i diamete	er)	
7.2	15.6	0.3	3 0).3	2.6	3.6			indic	ates s	surface	flaki	ng.			
	10	16		22	28	34	1								!	
5.7	25.4	1.3	3 0	0.8	4.6	0.3	l									
5	11	17		23	29	25	1									
11.6	15.4	3.0		2.3	7.5	0	1									
16.6	12	18		24 .	30	36	1									
11.3	11.1	8.8	3 2	2.6	12.5	1.2										
	Aver	age Me	asurem	ent –	4.9 mm		-									
					Addition	al Measu	iren	ne	ents Req	uired						
			<u> </u>						·							
1																
[, <u></u>		<u>.</u>	<u> </u>											<u> </u>		

***...**

.