Appendix B

1

.

.

.

and the second second

Chambers 2 and 3 area Survey Design

UNIGINAL

.

FirstEnergy							
SI Con SI	IEC CALC	ULATION CO	VER SHEE	T			
CALCULATION DESCRIPTION							
Calculation Number	- <u></u>	Revision Number	Effective Date	P	age Numbe	r	
E900-04-012		0	6/30/04	Í	1 of	10	
Subject		<u> </u>	.	I			
CV Tunnel & Top of Seal Cha	mbers 1 & 2 Su	rvey Design	<u>,</u>				
Question 1 - Is this calculation defi	ned as "In QA Sco	pe"? Refer to definition	3.5. Yes 🖾 No				
Question 2 - Is this calculation defi	ned as a "Design (Calculation"? Refer to de	efinitions 3.2 and 3.3.	Yes 🛛	No 🔲		
Question 3 - Does the calculation I	have the potential	to affect an SSC as desc	ribed in the USAR?	Yes 🔲	No 🛛		
NOTES: If a "Yes" answer is obtained a Assurance Plan. If a "Yes" answer calculation as the Technical Reviewer. calculation. Calculations that do not ha	is obtained for Que If a "YES" answer i	estion 2, the Calculation O s obtained for Question 3, S	riginator's immediate s NEC Management app	supervisor s	should not r	eview the	
	DESC	RIPTION OF REVI	SION				
	·	* <u> </u>					
		ROVAL SIGNATUR	RES		.		
Calculation Originator	B. Brosey/	B. Brown		Date	6/29	04	
Technical Reviewer	P. Donnachie	# Al Lanae	the	Date	6/30	04	
Additional Review	A. Paynter/	(ht) (21	V.	Date	121	484	
Additional Review				Date		•	
SNEC Management Approval				Date			

and a second second

File	Ener	gy 🛛
		- Com

SNEC CALCULATION SHEET

Calculation Number E900-04-012

Page 2 of 10

Subject

.

. .

CV Tunnel & Top of Seal Chambers 1 & 2 Survey Design

1.0 PURPOSE

1.1 The purpose of this calculation is to develop a survey design for the SNEC CV Steam Tunnel interior concrete surface and the top of Seal Chambers 1 and 2. Survey locations are shown on Attachment 1-1. Attachment 2-1 and 2-2 show the individual structures that are to be surveyed using this survey design.

Revision Number

0

2.0 SUMMARY OF RESULTS

- 2.1 The following information should be used to develop a survey request for this survey work:
 - 2.1.1 Basic survey unit information is provided in the following Table.

Survey Unit No.	Area Description	Classification	Survey Coverage	Area (m²)
SS22-1	CV Pipe Tunnel Floor	11	100%	20.6
<u>SS22-2</u>	CV Pipe Tunnel Walls	1	100%	47.8
SS22-3	CV Pipe Tunnel Ceiling	1	100%	16.2
<u>SS17-2</u>	Walls Around Top of Seal Chambers 1 & 2	2	50%	50.3
SS18-2	Top of Seal Chamber 1 & 2	1	100%	43.3

Table 1, Basic Information

2.1.2 The effective DCGLw values for these survey units are provided below.

Table 2, DCGLw Values

Gross Surface DCGLw* (dpm/100 cm ²)*	Volumetric DCGLw* (pCi/g)	Cs-137 Fraction
20,609	4.74 (Cs-137)	0.992

*Administrative limit (75% of DCGLw value) from Attachment 3-1 to 3-6.

2.2 Nal Scan Survey Work

2.2.1 Nal detector scanning parameters shall be IAW MicroShield model(s) used to develop applicable MDCscan values (see the following Table and Attachments 4-1 to 4-9).

Table 3, SUMMARY OF Nal SCANNING PARAMETERS

Model Type	Scan Speed	Surface to Detector Face	Calculated MDCscan Values
Surface Deposition	~2" per sec (5 cm/sec)	2" (5.1 cm)	4,128 – 5,838 dpm/100 cm ² (~100 -200 cpm bkgnd)*
Volumetric	~2" per sec (5 cm/sec)	2° (5.1 cm)	3.7 - 5.3 pCi/g Cs-137 (~100 -200 cpm bkgnd)

* NOTE: Values from Attachment 4-3 and 4-4 have been corrected to gross activity by dividing by the Cs-137 fraction from Table 2.

FrestEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-04-012	0	Page 3 of 10
Subject		

CV Tunnel & Top of Seal Chambers 1 & 2 Survey Design

2.2.2 The Nal scan MDC calculation is determined based on a 5 cm/sec scan rate, a 1.38 index of sensitivity (95% correct detection probability and 60% false positive) and a detector sensitivity of at least 208 cpm/uR/h for Cs-137. Additionally, the detection system incorporates a Cs-137 window that lowers sensitivity to background in the survey unit. The resulting range of background values is about 100 cpm to ~200 cpm. Thus the resulting MDCscan is about 3.7 to 5.3 pCi/g (see Attachment 4-1 to 4-9).

Table 4, Nal Scanning & Instrumentation Parameters (Cont'd)

Scanning Width	Required Conversion/Efficiency*
0.305 meters (12")	> = 208 cpm/µR/h

* Minimum requirement. See Attachment 5-1 for typical site instrument efficiencies as of 6-01-04.

- 2.2.3 All Nal detectors (<u>2" by 2</u>") shall employ a Cs-137 window setting (single channel analyzer). The window width should straddle the Cs-137 662 keV full peak (see **Reference 3.1**).
- 2.2.4 The following have been identified as the initial action levels for these survey units.

Table 5, Nal Al	arm Set-Point	(in Gross	CPM)
-----------------	---------------	-----------	------

Material	GCPM
All Types	300

- 2.2.5 All survey personnel shall be trained to identify the action levels (alarm set-points are considered action levels) described above in Section 2.2.4 based on the audible instrument indicators.
- 2.2.6 If a count rate of greater than <u>300 gross cpm</u> is identified during the scanning process, stop and locate the boundary of the elevated area. Mark the elevated area with a magic marker, chalk or other appropriate marking tool.
 - 2.2.6.1 Sample any elevated areas(s) IAW applicable sections of SNEC procedure E900-IMP-4520.04 (Reference 3-2), and Section 2.4 of this survey design.

2.3 GFPC Survey Work

- 2.3.1 A gas flow proportional counter (GFPC) shall be used in the beta detection mode for this survey work (Ludlum 2350-1 with a 43-68B probe).
- 2.3.2 The action level during first phase scanning is <u>1,100 gross cpm</u>. If this level is reached, the surveyor should stop and perform a count of at least 1/2 minute duration to identify the actual count rate (second phase scanning).
- 2.3.3 <u>Areas greater than the DCGLw (2,077 ncpm) (identified during second phase</u> <u>scanning), must be documented, marked, and bounded to include an area</u> <u>estimate</u>.
- 2.3.4 Following remediation, a portion of the survey unit inspection reports for these areas are included in this calculation as **Attachment 6-1** through **6-8**. For the CV tunnel area (excluding core bore holes and unistrut areas), the Surface Measurement Test

FirstEnergy	SNEC CALCULATION SHEET		
Calculation Number	Revision Number	Page Number	
E900-04-012	0	Page 4 of _/0	
Subject			

CV Tunnel & Top of Seal Chambers 1 & 2 Survey Design

Area (SMTA) result indicated that a nominal deviation from a smooth surface characteristic was ~0.2 cm with some trough areas reaching 2" in depth. On the top of Seal Chamber 1 and 2, the mean SMTA result was ~0.84 mm with one cradle having a roughness of up to 1.75". Using the larger of these values (2") and **Reference 3.3** data, an efficiency correction factor (CF) of 0.328 is assumed for these areas. See **Attachment 7-1**.

Table 6, GFPC Detection Efficiency Used for Planning

Material Type	°i3	£s	E _t (as %)	% Cs-137	Efficiency CF	Resulting counts/disintegration
All	0.478	0.5	23.9%	0.9916	0.33	0.0776

*See Attachment 5-1 as an example of current typical detector efficiency factors used at the SNEC site (as of 6/1/04). NOTE 1: Instruments are changed out frequently due to re-calibration requirements and failures in the field. The 23.9% value in Table 6 above, is from a previous instrument calibration check for an instrument not currently in service.

NOTE 2: Total efficiency shall not be less than ε_t value for any instrument used during this survey effort.

2.3.5 The Compass computer program (Reference 3.4) is used to calculate the required number of random 8-1 to 8-15.

Table 7, Minimum Random Start Systematic Measurements

Survey Unit No.	Area Description	No. of Points
SS22-1	CV Pipe Tunnel Floor	8
SS22-2	CV Pipe Tunnel Walls	8
SS22-3	CV Pipe Tunnel Ceiling	8
<u>SS17-2</u>	Walls Around Top of Seal Chambers 1 & 2	8
SS18-2	Top of Seal Chamber 1 & 2	8

See Attachment 11-1 to 11-5 for point locations as plotted by VSP.

- 2.3.6 VSP (Reference 3.5) is used to plot all measurement points on the included diagrams. The actual number of random start systematically spaced sample/measurement points may be greater than that required by the Compass computer code because of:
 - placement of the initial random starting point (edge effects),
 - odd shaped diagrams, and/or
 - coverage concerns

Some starting point locations may need to be adjusted to accommodate obstructions within a survey unit. Contact the SR coordinator to report any difficulties encountered when laying out random start systematically spaced sampling points.

Table 8, SUMMARY OF GFPC SCANNING PARAMETERS

Structural Material	Scan Speed	Surface to Detector Face
All Types	0.9" per sec (2.2 cm/sec)	Contact

SNEC CALCULATION SHEET						
Calculation Number	Revision Number	Page Number				
E900-04-012	0	Page 5 of _/O				
Subject						
CV Tunnel & Top of Seal	Chambers 1 & 2 Survey Design					

- 2.3.7 Scanning efforts shall be based on audible speaker output levels. Earphones are recommended.
- 2.3.8 When an obstruction is encountered during the static measurement phase that will not allow placement of a static survey point, contact the cognizant SR coordinator for permission to delete that survey point. Document the reason for the deletion. Note that up to two survey points in any survey unit, may be deleted without reducing survey design effectiveness.
- 2.3.9 A smear survey shall be performed in each survey unit at static measurement point locations. These smears shall be obtained after static measurements are acquired. These smears shall be assayed for beta/gamma and alpha contamination. A composite gamma scan of each survey units smear group shall be performed and reported.
- 2.3.10 Other instruments of the type specified in 2.3.1 above may be used during the FSS but they must demonstrate an efficiency at or above the value listed in Table 6 (23.9%).
- 2.4 Sampling
 - 2.4.1 Whenever possible, sample concrete by extracting a 4" long core bore so that the depth of penetration can be identified. When a core bore cannot be taken because of the quality of the concrete, or because of limited access in an area, sampling should remove the first 1" of concrete and yield a volume of at least <u>200 cc</u> to ensure an adequate counting MDA for Cs-137 (a 4" diameter area by 1" deep = ~200 cc).
 - 2.4.2 For steel surfaces, scrape the surface to collect a sample for gamma scanning by removing as much material as possible over/in the suspect area. Document the approximate size of the area where the materials were removed. Whenever possible, obtain a volume of no less then 25 cc's (200 cc's is preferred).
 - 2.4.3 In general, samples shall be collected at biased locations where measurements indicate elevated count rates exist, or where measurement capability is deemed inadequate due to poor geometry.

NOTE

If remediation actions are taken as a result of this survey effort, this survey design must be revised or re-written entirely.

3.0 <u>REFERENCES</u>

- 3.1 SNEC Calculation No. E900-03-018, "Optimized Window and Threshold Settings for the Detection of Cs-137 Using the Ludlum 2350-1 and a 44/10 Nal Detector", 8/7/03.
- 3.2 SNEC Procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".
- 3.3 SNEC Calculation No. 6900-02-028, "GFPC Instrument Efficiency Loss Study".
- 3.4 Compass Computer Program, Version 1.0.0, Oak Ridge Institute for Science and Education.
- 3.5 Visual Sample Plan, Version 2.0 (or greater), Copyright 2002, Battelle Memorial Institute.

E	rstEnerg	Ň
	<u>csu=nerg</u>	<u> </u>

SNEC CALCULATION SHEET

Revision Number

0

E900-04-012

Page Number

Subject

CV Tunnel & Top of Seal Chambers 1 & 2 Survey Design

- 3.6 SNEC Facility License Termination Plan.
- 3.7 SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA".
- 3.8 SNEC Facility Historical Site Assessment, Rev 0, March, 2000.
- 3.9 1994 Saxton Soil Remediation Project Report, GPU Nuclear Inc., May 11, 1995.
- 3.10 SNEC procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design".
- 3.11 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.
- 3.12 Microsoft Excel 97, Microsoft Corporation Inc., SR-2, 1985-1997.
- 3.13 SNEC Calculation No. E900-03-012, "Effective DCGL Worksheet Verification".

4.0 ASSUMPTIONS AND BASIC DATA

4.1 Remediation History

The below grade CV Pipe Tunnel originally extended around the base of the CV approximately 270 degrees and connected to the old Radioactive Waste Disposal Facility (RWDF), Control and Auxiliary building the Saxton Steam Generating Station (SSGS) Footprint buildings. The only remaining section still in tact extends from the SSGS footprint East approximately 36 feet toward the CV area. The remaining CV Tunnel section diagram is shown on Attachment 1-1.

Piping systems originally installed in the CV Tunnel, were removed from about 1972 to 1974. These early remediation efforts were not specifically documented. In the late 80's an isolation wall was erected at the far eastern end. Since the CV Tunnel collected seasonal rain and ground water seepage, this wall served to isolate water accumulation to only a portion of the remaining structure.

In the spring of 1994, SNEC personnel entered the tunnel through a hole installed in the ceiling to complete characterization surveys for this structure. No evidence of abrasive remediation of the interior surface of the tunnel was noted. A thorough characterization survey was performed in late 1994. Areas indicating elevated activity were core bored to determine the depth of the contamination.

Most of the CV Tunnel has now been removed, leaving only about a 36' section remaining as shown on Attachment 2-1. In the summer of 2003, Shonka Research Associates (SRA) surveyed the remaining section of tunnel area using a large area GFPC detector array. Remediation was then performed to reduce the residual volumetric concentration of Cs-137 and lower the general area exposure rate before a final round of FSS work.

The Seal Chambers are located in the Discharge Tunnel, but the tops are exposed in the SSGS footprint area. The tops of Seal Chamber 1 and 2 are not extensively contaminated, and in August of 2003 the concrete surfaces were cleared of sediment and debris in preparation for FSS work by SRA (see **Attachment 2-2**). After the initial survey work was performed, several small locations were identified that required further remediation. A final round of survey work was then planned.

4.2 The MARSSIM WRS Test will be applicable for this survey design.

FratEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-04-012	0	Page 7 of <u>10</u>
Subject		

CV Tunnel & Top of Seal Chambers 1 & 2 Survey Design

- 4.3 Variability in these survey units includes both steel and concrete surface measurements. However, steel surfaces represent only ~10% of the surface area in only one (1) survey unit. The remainder of these survey units have little or no steel surface area present. Therefore, true variability within these survey units is driven by one main material type (concrete). Variability for these two (2) survey units is shown in **Attachment 9-1** to **9-2**.
- 4.4 Backgrounds for these survey units are taken from the Williamsburg background materials study (see Attachment 10-1).
- 4.5 The number of points chosen by Compass are located on the survey map for the survey unit by the Visual Sample Plan (VSP).computer code (Reference 3.5). VSP is used to plot random start systematically spaced sampling points. The coordinates of the survey points are provided for each survey unit referenced to an existing survey area landmark (key point measurement location). Because of edge effects and a desire to error on the conservative side, additional measurement points have been forced by increasing the MARSSIM overage above the required 20%.
- 4.6 **Reference 3.6** and **3.7** was used as guidance during the survey design development phase.
- 4.7 This survey design uses Cs-137 as a surrogate to bound the average concentration for all SNEC facility related radionuclides in the survey unit. The effective volumetric DCGLw is just the permitted Cs-137 concentration (6.6 pCi/g) lowered to compensate for the presence (or potential presence) of other SNEC related radionuclides. The surface DCGLw is a gross activity values that includes all relevant radionuclides. For both DCGLw values, an administrative limit has been set that further lowers the permissible Cs-137 concentration to an effective DCGLw for this radionuclide. The sample data base used to determine the effective radionuclide mix for the CV Tunnel and Seal Chambers has been drawn from samples that were assayed at off-site laboratories. This list is shown as Attachment 3-1 and 3-6. Review of the data points out that only three radionuclides have been positively identified (Co-60, Cs-137 & Sr-90). Inspection of the data also shows that Cs-137 is by far the predominant radioactive contaminant found in this area (>99%). Both Sr-90 and Co-60 combined are < 1% of the mix.</p>

Remediation has further impacted the radionuclide concentration levels in this area. Remediation efforts have been shown to be effective in the CV Tunnel and Seal Chamber areas. Therefore, the impact of remediation must be considered in determining the effective Cs-137 DCGLw surrogate value. The final sample listing was decayed to January 15th, 2004.

- 4.8 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in this survey area.
- 4.9 The decision error for this survey design is 0.05 for the α value and 0.1 for the β value.
- 4.10 Special measurements including gamma-ray spectroscopy are not included in this survey design.
- 4.11 No additional sampling will be performed IAW this survey design beyond that described herein.
- 4.12 The applicable SNEC site radionuclides and their associated DCGLw values are listed on **Exhibit 1** of this calculation.

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-04-012	0	Page 8 of <u>10</u>
Subject		

CV Tunnel & Top of Seal Chambers 1 & 2 Survey Design

- 4.13 The survey design checklist is listed in Exhibit 2.
- 4.14 Area factors for structural surfaces are shown below. These values are for Co-60 which is a constituent of the mix. However, Cs-137 and Co-60 area factors are very similar and therefore there is little impact from using the more conservative Co-60 values. The lower limit area factor for areas less than 1 square meter is 10.1. Area factors for values between the values listed in the following table, are interpolated from the data by Compass.

AREA (m ²)	AREA FACTOR
1	10.1
4	3.4
9	2
16	1.5
25	1.2
36	1

5.0 CALCULATIONS

5.1 All calculations are performed internal to applicable computer codes or within an Excel spreadsheet.

6.0 APPENDICES

- 6.1 Attachment 1-1, is a diagram of the SNEC site area showing the CV Tunnel.
- 6.2 Attachment 2
 - 6.2.1 Attachment 2-1, is a diagram of the remaining CV Tunnel remnant.

6.2.2 Attachment 2-2, is a diagram of the top of Seal Chamber 1 & 2.

- 6.3 Attachment 3-1 to 3-6, is the final list of sample results decayed to January 15, 2004 and the "Effective DCGLw Calculator" spreadsheet file used to determine the effective Cs-137 concentration for the CV Tunnel and Seal Chamber 1 & 2 areas.
- 6.4 Attachment 4-1 to 4-9, are MicroShield models of surface and volumetric concentrations used to determine the MDCscan values for various scanning conditions in these survey units.
- 6.5 Attachment 5-1, is a listing of typical detection efficiencies for Nal and GFPC instrumentation at the SNEC site.
- 6.6 Attachment 6-1 to 6-8, are copies of inspection reports for these two survey areas.
- 6.7 Attachment 7-1, is a graph of efficiency loss results with increasing distance from a source of Cs-137 for the GFPC instrument.
- 6.8 Attachment 8-1 to 8-15, are the Compass output reports for these survey units.
- 6.9 Attachment 9-1 and 9-2, are the variability results for these two survey areas.
- 6.10 Attachment 10-1, is the Williamsburg background measurements of concrete materials made with the GFPC instrument.
- 6.11 Attachment 11-1 to 11-5, are fixed point measurement locations determined by the VSP computer code.

FirstEnergy

SNEC CALCULATION SHEET

Calculation Number

Revision Number

Page Number

E900-04-012

0

Subject

CV Tunnel & Top of Seal Chambers 1 & 2 Survey Design

Exhibit 1

SNEC Facility DCGL Values (a)

Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm²)	25 mrem/y Limit (All Pathways) Open Land Areas (Surface & Subsurface) (pCi/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	1.9E+04
Pu-238	3.0E+01	1.8	0.41
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	0.61

NOTES:

(a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

(b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

FirstEnergy

SNEC CALCULATION SHEET

Calculation Number E900-04-012 Revision Number

0

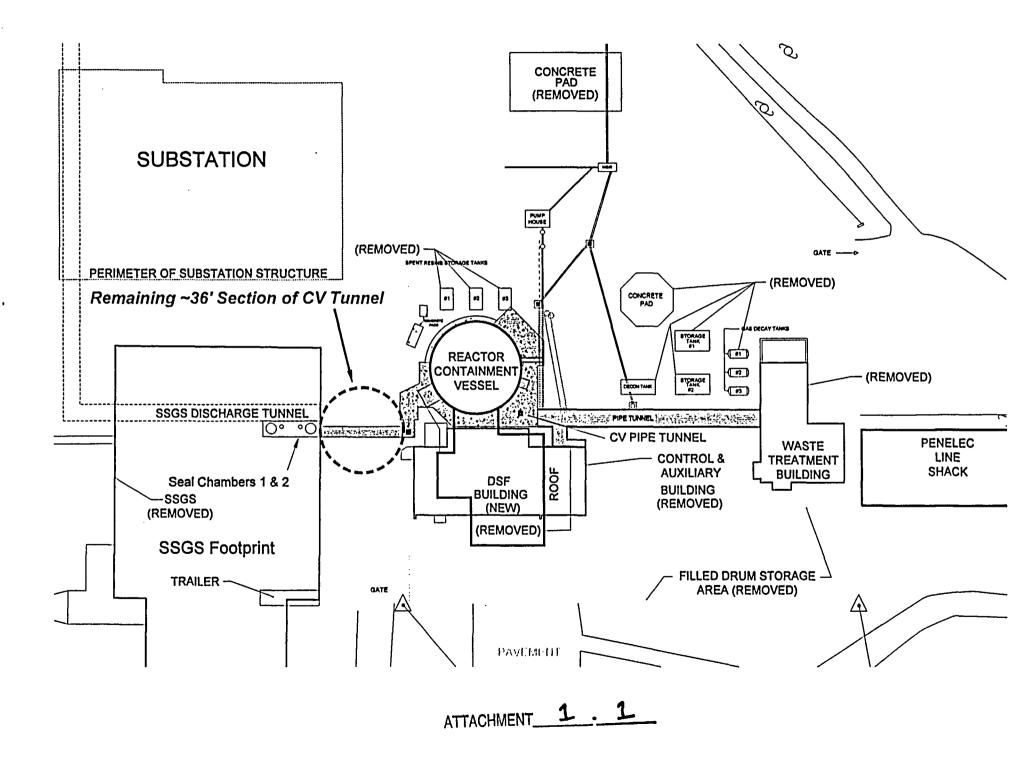
Page 10 of **10**

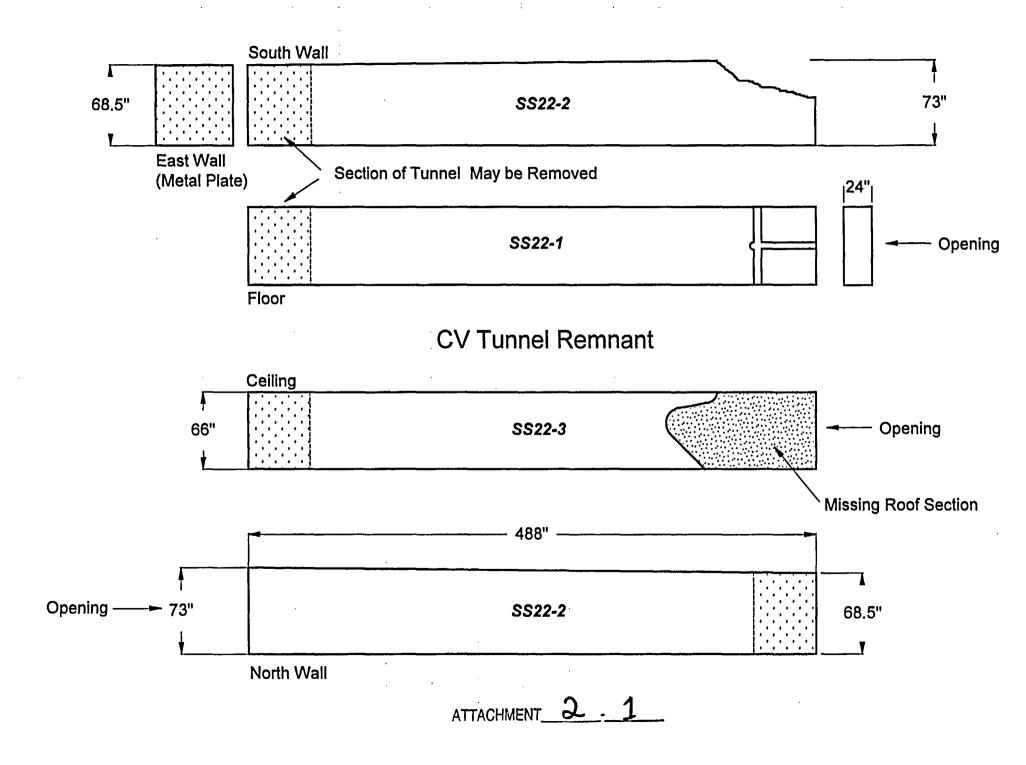
77

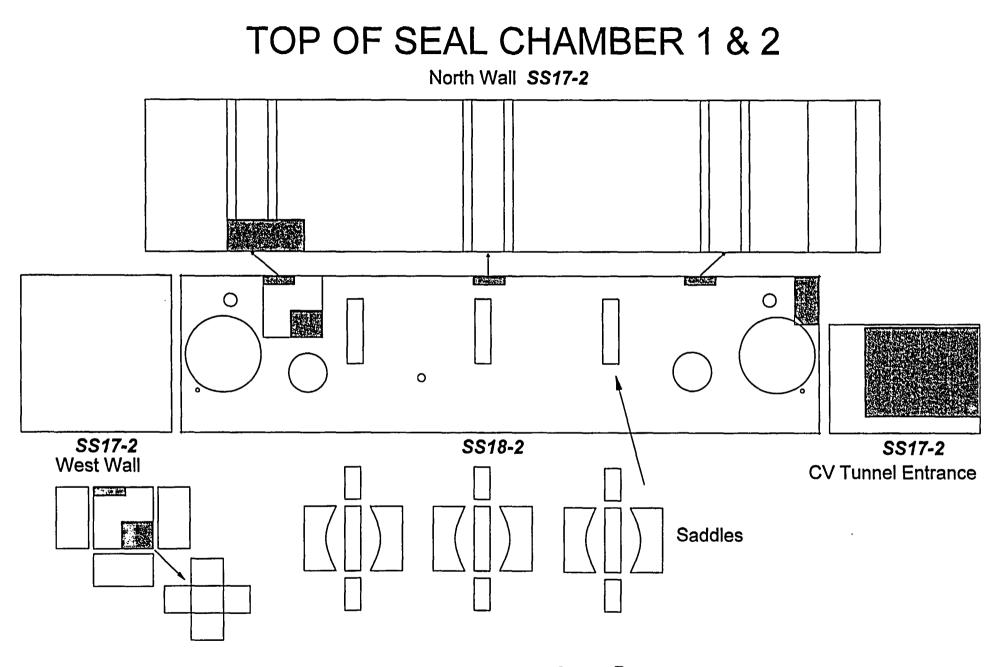
υ

Page Number

Subject


CV Tunnel & Top of Seal Chambers 1 & 2 Survey Design


Exhibit 2 Survey Design Checklist


Calcul	ation No. Location Codes E900-04-012 SS22-1, SS22-3, SS17-2 and SS18-	2	······
ITEM	REVIEW FOCUS	Status (Circle One)	Reviewer Initials & Date
1	Has a survey design calculation number been assigned and is a survey design summary description provided?	Yes N/A	APD 6/30/01
2	Are drawings/diagrams adequate for the subject area (drawings should have compass headings)?	Yes N/A	APO 6/30/04
3	Are boundaries properly identified and is the survey area classification clearly indicated?	Yes N/A	AD 6/20/04
4	Has the survey area(s) been properly divided into survey units IAW EXHIBIT 10	Yes, N/A	10 6/30/04
5	Are physical characteristics of the area/location or system documented?	Yes N/A	10 6/20/04
6	Is a remediation effectiveness discussion included?	Yes N/A	AD 6 130/04
7	Have characterization survey and/or sampling results been converted to units that are comparable to applicable DCGL values?	Yes N/A	HD 6/30/04
8	Is survey and/or sampling data that was used for determining survey unit variance included?	Yes N/A	170 6/30/04
9	Is a description of the background reference areas (or materials) and their survey and/or sampling results included along with a justification for their selection?	Yes, N/A	10 6/30/04
10	Are applicable survey and/or sampling data that was used to determine variability included?	res N/A	HD 6/20/04
11	Will the condition of the survey area have an impact on the survey design, and has the probable impact been considered in the design?	Yes, N/A	APD 6/30/04
12	Has any special area characteristic including any additional residual radioactivity (not previously noted during characterization) been identified along with its impact on survey design?	YesNA	(D) G/32/04
13	Are all necessary supporting calculations and/or site procedures referenced or included?	Yes N/A	10 6/30/04
14	Has an effective DCGLw been identified for the survey unit(s)?	(Yes? N/A	1 6/20/04
15	Was the appropriate DCGL _{EMC} included in the survey design calculation?	(Yes) N/A	P06/20/04
16	Has the statistical tests that will be used to evaluate the data been identified?	Yes N/A	AD 6/3/04
17	Has an elevated measurement comparison been performed (Class 1 Area)?	Yes, N/A	D 6/30/04
18	Has the decision error levels been identified and are the necessary justifications provided?	Yes N/A	106/30/04
19	Has scan instrumentation been identified along with the assigned scanning methodology?	Yes N/A	12 6/30/04
20	Has the scan rate been identified, and is the MDCscan adequate for the survey design?	Yes N/A	12 6/30/04
21	Are special measurements e.g., in-situ gamma-ray spectroscopy required under this design, and is the survey methodology, and evaluation methods described?	Yes. N/A	1 6/30/04
22	Is survey instrumentation calibration data included and are detection sensitivities adequate?	Yes N/A	1 6/30/04
23	Have the assigned sample and/or measurement locations been clearly identified on a diagram or CAD drawing of the survey area(s) along with their coordinates?	Yes, N/A	6/30/04
24	Are investigation levels and administrative limits adequate, and are any associated actions clearly indicated?	(Yes)N/A	(D) 6/30/04
25	For sample analysis, have the required MDA values been determined.?	Yes N/A	10 6/30/04
26	Has any special sampling methodology been identified other than provided in Reference 6.3?	Yes, N/A	10 6/30/04

NOTE: a copy of this completed form or equivalent, shall be included within the survey design calculation.

ATTACHMENT 2.2

DCGL Calculation Logic-CV Steam Tunnel/Seal Chamber Roof

- I. Survey Unit: SNEC Containment Vessel (CV) Steam Tunnel & Top of Seal Chamber 1 & 2 Roof
- II. Description: The purpose of this calculation is to determine a representative isotopic mix for the CV Steam Tunnel and top of the Seal Chamber 1 & 2 roof from available sample analyses. The effective surface area and volumetric DCGL_ws are then determined from the mean percent of applicable samples.
- III. Data Selection Logic Tables: The radionuclide selection logic and subsequent DCGL calculations are provided in six (6) tables. These tables were developed using Microsoft Excel. Table explanation is as follows.

Table 1: Data Listing – This table, which has been extracted from a larger database, provides a list of the most representative sample analyses for the CV Steam Tunnel and top of the Seal Chamber 1 & 2 roof. These results are from scoping, characterization, and pre/post remediation surveys. The samples consist of various sediments, scrapings and concrete cores that were taken in support of the aforementioned surveys. As applicable, a sample number, sample location/description, radionuclide concentration, analysis date are provided for each sample. Positive nuclide concentrations are noted with yellow/shaded background fields while MDAs are noted in the gray shaded fields.

Table 2: Decayed Listing of Positive Nuclides & MDAs Removed – This table provides the best overall representation of data selected from Table 1. Half-life values (days) are listed above each respective nuclide column. Samples are decayed to the date noted above Table 1 (e.g. January 15, 2004). Positive results are denoted in a yellow background while the MDA values, which were listed in Table 1, have been stripped out.

Table 3: Mean Percent of Total for Positive Nuclides – This table provides the calculation methodology for determining the relative fractions of the total activity contributed by each radionuclide. From this information the mean, sigma, and mean % of total are calculated. The mean % of total values is used to calculate the surface gross activity DCGL_w per MARSSIM equation 4-4. See Table 5. Note that the Co-60 mean percent values were averaged using only samples 1 & 5. In addition, the mean percent calculated from sample 1 for Sr-90 was not averaged throughout the spreadsheet, since this sample was the only one where this respective nuclide was positive. This results in higher "mean percent of total" values in the mix, which is conservative.

Table 4: Ratio to Cs-137 for Positive Nuclides – This table provides the calculation methodology for determining the surrogate ratio to Cs-137 for each radionuclide. From this information the mean, sigma, and mean % of total are calculated. The mean % of total values is used to calculate the volumetric DCGL_w per MARSSIM equation I-14. See Table 6. Note that the Co-60 ratios were averaged using only samples 1 & 5. In addition, the ratio value calculated from sample 1 for Sr-90 was not averaged throughout the spreadsheet, since this sample was the only one where this respective nuclide was positive. This results in higher "mean percent of total" values in the mix, which are conservative.

Note: From Tables 3 and 4 only the "mean % of total" values are used as input to the "Effective DCGL Calculation Spreadsheet" as illustrated in Tables 5 and 6.

Table 5: Effective DCGL Calculator for Cs-137 (dpm/100 cm²) – This table provides the surface gross activity DCGL_w calculation results from data derived from Table 3.

1

ATTACHMENT 3. 1

Table 6: Effective DCGL Calculator for Cs-137 (in pCi/g) – This table provides the surrogate volumetric concentration for the Cs-137 DCGL_w calculation results from data derived from Table 4.

IV. Summary – Since the CV Steam Tunnel is a concrete structure the release limit is primarily based on the surface area DCGL_w. However, some CV Tunnel walls contain unistrut, which are treated as volumetric contamination. Therefore, a volumetric DCGL_w is also determined. The Seal Chamber 1 & 2 roof release limit will be based on the surface area DCGL_w only. Using the above data selection logic tables, the calculated gross activity DCGL_w for surface area is 27,479 dpm/100 cm². The Cs-137 volumetric DCGL_w is 6.32 pCi/g. These values would be reduced by 25% as part of SNEC's requirement to apply an administrative limit as discussed in the License Termination Plan (LTP).

.

ATTACHMENT 3 . 2

.

.

. .

					TABLE 1	Data Listi	ng (pCi/g)						
														Decay Date
														January 15, 2
	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	Am-241	Pu-238	Pu-239	Pu-241	C-14	Ni-63	Eu-152	Analysis Da
1	CV Tunnel	CV Tunnel Sediment Composite, OL1	< 9.4	9.67	1.26	1250	< 0.18	< 0.55	< 0.22	< 44.69	< 9.34	< 4.02	< 0.13	February 14,
2	SXSD105	CV Steam Tunnel, Vac-Pac Debris	< 0.808	< 0.0382	< 0.0251	9.26	< 0.0221	< 0.0348	< 0.00279	< 2.6	< 0.147	< 0.322	< 0.0899	
3	SXSD1531,1532, 1533	CV Steel Shell Scrapings - Exterior Below Grade (Tar)		< 0.04	< 0.0331	0.177	< 0.0246	< 0.0517	< 0.0231	< 3.99				October 11, 2
4	SXSD1552, 1553	CV Steel Shell Scrapings - Exterior Below Grade (Tar)		< 0.04	< 0.0305	0.297	< 0.0113	< 0.0372	< 0.0131	< 2.36				October 11, 2
5	SXSD744	SSGS Mezzanine, East, Pipe Internals, SR-0004	< 123	< 0.18	2.26	39.6	< 0.709	< 0.33	< 0.33	< 50.8	< 37.9	< 82.6	< 1.46	March 21, 2
	I	TAB	LE 2 · D	ecayed L	Listing of P	ositive Nu T 1/2	clides & 1 T 1/2	IDAs Rem T 1/2	oved (pCi/ T 1/2	g) T 1/2	T 1/2	T 1/2	T 1/2	
		TAB	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2			and the second	
	SNEC Sample No				The second se	The second s	A REAL PROPERTY OF THE PARTY OF	T 1/2	and the second se	No. of Concession, Name	T 1/2 2092882.5 C-14		T 1/2 4967.4 Eu-152	Total (pCi/
1	SNEC Sample No CV Tunnel	Location/Description	T 1/2 4485.27 H-3	T 1/2 10446.15	T 1/2 1925.23275	T 1/2 11019.5925	T 1/2 157861.05	T 1/2 32050.6875	T 1/2 8813847.75	T 1/2 5259.6	2092882.5	36561.525	4967.4	Total (pCi/ 1178.89
1 2			T 1/2 4485.27 H-3	T 1/2 10446.15 Sr-90	T 1/2 1925.23275 Co-60	T 1/2 11019.5925 Cs-137	T 1/2 157861.05	T 1/2 32050.6875	T 1/2 8813847.75	T 1/2 5259.6	2092882.5	36561.525	4967.4	Total (pCi/s 1178 89 9.24
	CV Tunnel	Location/Description CV Tunnel Sediment Composite, OL1	T 1/2 4485.27 H-3	T 1/2 10446.15 Sr-90	T 1/2 1925.23275 Co-60	T 1/2 11019.5925 Cs-137 1.17E+03	T 1/2 157861.05	T 1/2 32050.6875	T 1/2 8813847.75	T 1/2 5259.6	2092882.5	36561.525	4967.4	1178.89
	CV Tunnel SXSD105	Location/Description CV Tunnel Sediment Composite, OL1 CV Steam Tunnel, Vac-Pac Debris	T 1/2 4485.27 H-3	T 1/2 10446.15 Sr-90	T 1/2 1925.23275 Co-60	T 1/2 11019.5925 Cs-137 1.17E+03 9.24E+00	T 1/2 157861.05	T 1/2 32050.6875	T 1/2 8813847.75	T 1/2 5259.6	2092882.5	36561.525	4967.4	1178.89 9.24 0.17 0.28
3	CV Tunnel SXSD105 SXSD1531,1532, 1533	Location/Description CV Tunnel Sediment Composite. OL1 CV Steam Tunnel. Vac-Pac Debris CV Steel Shell Scrapings - Exterior Below Grade (Tar)	T 1/2 4485.27 H-3	T 1/2 10446.15 Sr-90	T 1/2 1925.23275 Co-60	T 1/2 11019.5925 Cs-137 1.17E+03 9.24E+00 1.68E-01	T 1/2 157861.05	T 1/2 32050.6875	T 1/2 8813847.75	T 1/2 5259.6	2092882.5	36561.525	4967.4	1178.89 9.24 0.17
3	CV Tunnel SXSD105 SXSD1531,1532,1533 SXSD1552,1553	Location/Description CV Tunnel Sediment Composite, OL1 CV Steam Tunnel, Vac-Pac Debris CV Steel Shell Scrapings - Exterior Below Grade (Tar) CV Steel Shell Scrapings - Exterior Below Grade (Tar)	T 1/2 4485.27 H-3	T 1/2 10446.15 Sr-90	T 1/2 1925.23275 Co-60 8.59E-01	T 1/2 11019.5925 Cs-137 1.17E+03 9.24E+00 1.68E-01 2.82E-01	T 1/2 157861.05	T 1/2 32050.6875	T 1/2 8813847.75	T 1/2 5259.6	2092882.5	36561.525	4967.4	1178.89 9.24 0.17 0.28
3	CV Tunnel SXSD105 SXSD1531,1532,1533 SXSD1552,1553	Location/Description CV Tunnel Sediment Composite, OL1 CV Steam Tunnel, Vac-Pac Debris CV Steel Shell Scrapings - Exterior Below Grade (Tar) CV Steel Shell Scrapings - Exterior Below Grade (Tar) SSGS Mezzanine, East, Pipe Internals, SR-0004	T 1/2 4485.27 H-3	T 1/2 10446.15 sr-90 9.01E+00	T 1/2 1925.23275 Co-60 8.59E-01 1.56E+00	T 1/2 11019.5925 Cs-137 1.17E+03 9.24E+00 1.68E-01 2.82E-01 3.71E+01	T 1/2 157861.05	T 1/2 32050.6875	T 1/2 8813847.75	T 1/2 5259.6	2092882.5	36561.525	4967.4	1178.89 9.24 0.17 0.28 38.68

KEY	
	Yellow Shaded Background = Positive Result
	Gray Shaded Background = MDA

3

		TABLE 3 - Mean Percent of Total fo	r Positiv	e Nuclid	les	
	SNEC Sample No	Location/Description	Sr-90	Co-60	Cs-137	T
1	CV Tunnel	CV Tunnel Sediment Composite, OL1	0.76%	0.07%	99.16%	100
2	SXSD105	CV Steam Tunnel, Vac-Pac Debris			100.00%	100
3	SXSD1531,1532, 1533	CV Steel Shell Scrapings - Exterior Below Grade (Tar)			100.00%	100
4	SXSD1552, 1553	CV Steel Shell Scrapings - Exterior Below Grade (Tar)			100.00%	100
5	SXSD744	SSGS Mezzanine, East, Pipe Internals, SR-0004		4.03%	95.97%	100.
1		Mean⇒	7.64E-03	7.28E-04	9.98E-01	1.
		Sigma⇒			0.004185775	
		Mean % of Tota⊨	0.76%	0.07%	99.17%	100
		TABLE 4 - Ratio To Cs-137 for P	ositive N	luclides		
		TABLE 4 - Ratio To Cs-137 for P	ositive N	luclides		
	SNEC Sample No	TABLE 4 - Ratio To Cs-137 for P Location/Description	ositi∨e N _{Sr-90}	Co-60	Cs-137	
1	SNEC Sample No CV Tunnel				Cs-137 1.000	<u>т</u> с 1.(
1 2	and the second	Location/Description	Sr-90	Co-60	Cs-137 1.000 1.000	1.(1.(
	CV Tunnel	Location/Description CV Tunnel Sediment Composite, OL1	Sr-90	Co-60	Cs-137 1.000 1.000 1.000	1.(1.(1.(
2 3 4	CV Tunnel SXSD105	Location/Description CV Tunnel Sediment Composite, OL1 CV Steam Tunnel, Vac-Pac Debris	Sr-90	Co-60 0.001	Cs-137 1.000 1.000 1.000 1.000	1.(1.(1.(1.(
2 3	CV Tunnel SXSD105 SXSD1531,1532, 1533	Location/Description CV Tunnel Sediment Composite, OL1 CV Steam Tunnel, Vac-Pac Debris CV Steel Shell Scrapings - Exterior Below Grade (Tar) CV Steel Shell Scrapings - Exterior Below Grade (Tar) SSGS Mezzanine, East, Pipe Internals, SR-0004	Sr-90 0.008	Co-60 0.001 0.042	Cs-137 1.000 1.000 1.000 1.000 1.000 1.000	1.(1.(1.(1.(1.(
2 3 4	CV Tunnel SXSD105 SXSD1531,1532, 1533 SXSD1552, 1553	Location/Description CV Tunnel Sediment Composite, OL1 CV Steam Tunnel, Vac-Pac Debris CV Steel Shell Scrapings - Exterior Below Grade (Tar) CV Steel Shell Scrapings - Exterior Below Grade (Tar) SSGS Mezzanine, East, Pipe Internals, SR-0004	Sr-90	Co-60 0.001 0.042	Cs-137 1.000 1.000 1.000 1.000 1.000 1.00E+00	1.(1.(1.(1.(1.(
2 3 4	CV Tunnel SXSD105 SXSD1531,1532, 1533 SXSD1552, 1553	Location/Description CV Tunnel Sediment Composite, OL1 CV Steam Tunnel, Vac-Pac Debris CV Steel Shell Scrapings - Exterior Below Grade (Tar) CV Steel Shell Scrapings - Exterior Below Grade (Tar) SSGS Mezzanine, East, Pipe Internals, SR-0004	Sr-90 0.008	Co-60 0.001 0.042	Cs-137 1.000 1.000 1.000 1.000 1.000 1.000	1.(1.(1.(1.(

Effec	ctive DC	GL Calculator	tor Cs-13	7 (dpm/100 d	:m^2)	Gross Act	vity DCGLw 🔅	Gross Activity A	dministrative Lin
						27479	dpm/100 cm^2	20609	dpm/100 cm^2
	25.0	mrem/y TEDE Limit	1						
						ويستعد والمتحجب التعوين فتشاك فستجرب وا		Cs-137 Adm	
SAMPL	LE IIO(s)⇒	CV Tunnel				27250	dpm/100 cm^2	20438	dpm/100 cm*2
						SNEC AL	75%		
Isotop)e	Sample Input (pClig, uCl, etc.)	್€ of Total	Individual Limits (dpm/100 cm^2)	Allowed dpm/100 cm^2	mremiy TEDE	Beta dpm/100 cm^2	Alpha dpm/100 cm^2]
1 Am-24	41		0.000%	27	0.00	0.00	Il A	0.00	Am-241
2 C-14 3 Co-60)	7.28E-04	0.000% 0.072%	3,700,000 7,100	0.00 19.88	0.00 0.07	0.00 19.88		C-14 Co-60
	7 + + + + + + + + + + + + + + + + + + +	the second s	99.168%	and so that the second s	27250.22		27250.2	All	Cs-137
5 Eu-15			0 000%	13,000	0.00	0 00	0 00	11'A	Eu-152
6 H.3			0.000%	120,000,000	0 0 0	0.00	llot Detectable	JI A	Н.3
Ni-63			0 000%	1,800,000	0 00	0.00	llot Detectable	1000000	111-63
8 Pu-23	38		0 000%	30	0.00	0.00	11/A	0.00	Pu-238
9 Pu-23			0.000%		0.00	0.00	II A	0.00	Pu-239
0 Pu-24			0.000%	880	0 00	0.00	llot Detectable	31:A	Pu-241
1 Sr-90		7.64E-03	0.759%		208.61	0.60	208.61	11/4	Sr.90
			100.000%		27479	25.0	27479	0	j
					Maximum Permissible dpm/100 cm^2				

Table 5

Та	bl	9	6
----	----	---	---

						SNEC AL-	75%	Total Activity Limit 0	CGLW		trative Limit	1
ļ	Effective	DCGL Calcı	ulator for C	s-137 (in pCi	(g)				pCi/g		pC1/g	
	* ^ 24	LE NUMBER(s)=	CV Tunnel			· · · · · · · · · · · · · · · · · · ·	1					-
	3ALIF					· · · · · · · · · · · · · · · · · · ·		trippes Cs-137 Limit	See and	. Ce-137 Adm	inistrative Limit:	I
	15.82%	25.0	mrem/y TEDE	Limit			_	6.32	pCI/g	4.74	pCI/g	
	1.52%	4.0	mrem'y Drink	ing Water (DW) Lli	nit	Check for 25 mrem/y						-
	Isotope	Sample Input (pCi/g, uCi, % of Total, etc.)		25 mremły TEDE Limits (pCiłg)		A - Allowed pClig for 25 mremiy TEDE	B - Allowed pCI/g for 4 mrem/y DW	Value Checked from Column A or B		This Sample mrem-y TEDE	This Sample mremly DWO	
	Am-241 C-14		0 000%	9.9 2.0		0 00	0.00	0 00 00 000		0 00	0.00	Am-241
	Co.60	0.0007	0 073%		5.4	0 00	0.00	0 00		0 00	1	C-14 Co-60
	Cs-137	1.0000	99.163%		397 🔬 👌	6 32	65.92	6.32		3 79	0.01	Cs-137
	Eu-152 H-3		0 000%	10.1	1440 31.1	0 00	0.00	0 00		0 00 0 00	0.00	Eu-152 H-3
	11.63		0 000%	747	10000	0 00	0.00	0 00		0 00	1 C	11.63
	Pu-238		0 000%	1.8	0.41	0 00	0.00	0 00		0 00		Pu-238
	Pu-239		0 000%		38310.319255	0 00	0.00	0 00		0 00	0.00	Pu-239
	Pu-241 Sr-90_	0.0077	0 000%	86 1.2	19.8 0.61	0 00	0.00	0 00 05		0 00	0.00	IPu-241
["	31.30	1.01E+00	100.000%		V6 970,0198045	6.38	66.48	6.38		3.954	0.061	131-30
		h				Maximum Permissible pCI/g (25 mrem/y)	tflaximum Permissible pCl/g (4 mrem/y)			To Use Th Sample Input	Is information, Units Liust Be In <u>t % of Total</u> ,	

•.

:

.

GPU Nuclear

Page : 1 DOS File : SURFC.MS5 Run Date: June 24, 2004 Run Time: 8:55:39 AM Duration : 00:00:00

File Ref:	
Date:	
By:	
Checked:	

Case Title: Steel Surface Description: 12" Diameter Model - FeO Geometry: 3 - Disk

	Radius	Source Dime 15.24		6.0 in
-×		Dose Poi	ints	
		<u>X</u>	Y	Z
Z	#1 7.7	'2 cm	0 cm	0 cm
		3.0 in	0.0 in	0.0 in
r i i i i i i i i i i i i i i i i i i i		Shield	S	
	Shield Name	Dimension	Material	Density
	Shield 1	.1 cm	Iron Oxide	5.1
	Air Gap		Air	0.00122

	Sour	ce	Inp	u	t	

Grouping Method : Actual Photon Energies

<u>Nuclide</u>	curies	becquerels	<u>µCi/cm²</u>	Bq/cm ²
Ba-137m	6.9026e-010	2.5540e+001	9.4600e-007	3.5002e-002
Cs-137	7.2966e-010	2.6997e+001	1.0000e-006	3.7000e-002

Buildup

The material reference is : Air Gap

Integration Parameters

F	40		
C	40		
A - 11 - 14 -		Results	

<u>Energy</u>	<u>Activity</u>	Fluence Rate	Fluence Rate	Exposure Rate	Exposure Rate
<u>MeV</u>	photons/sec	MeV/cm ² /sec	MeV/cm ² /sec	<u>mR/hr</u>	<u>mR/hr</u>
		<u>No Buildup</u>	<u>With Buildup</u>	<u>No Buildup</u>	<u>With Buildup</u>
0.0318	5.287e-01	3.025e-07	1.444e-06	2.520e-09	1.203e-08
0.0322	9.755e-01	6.265e-07	3.026e-06	5.042e-09	2.435e-08
0.0364	3.550e-01	6.443e-07	3.392e-06	3.661e-09	1.927e-08
0.6616	2.298e+01	7.805e-03	8.209e-03	1.513e-05	1.591e-05
TOTALS:	2.484e+01	7.806e-03	8.217e-03	1.514e-05	1.597e-05

4.1 ATTACHMENT_

MICrooniela vo.up (p.up-uu 121) GPU Nuclear

Page : 1 DOS File : SURFC.MS5 Run Date : June 24, 2004 Run Time: 8:49:11 AM Duration : 00:00:00

Same Alexander

File Ref:	
Date:	
By:	
Checked:	

Case Title: Concretel Surface Description: 12" Diameter Model - Paint Geometry: 3 - Disk

	Radius	Source Dimer 15.24 (6.0 in
×		Dose Poir	nts	
		Х	Y	Z
i z	#1 7.6	708 cm	0 cm	0 cm
		3.0 in	0.0 in	0.0 in
×		Shields	i	
	Shield Name	Dimension	Material	Density
	Shield 1	.051 cm	Concrete	2.35
	Air Gap		Air	0.00122

40 40

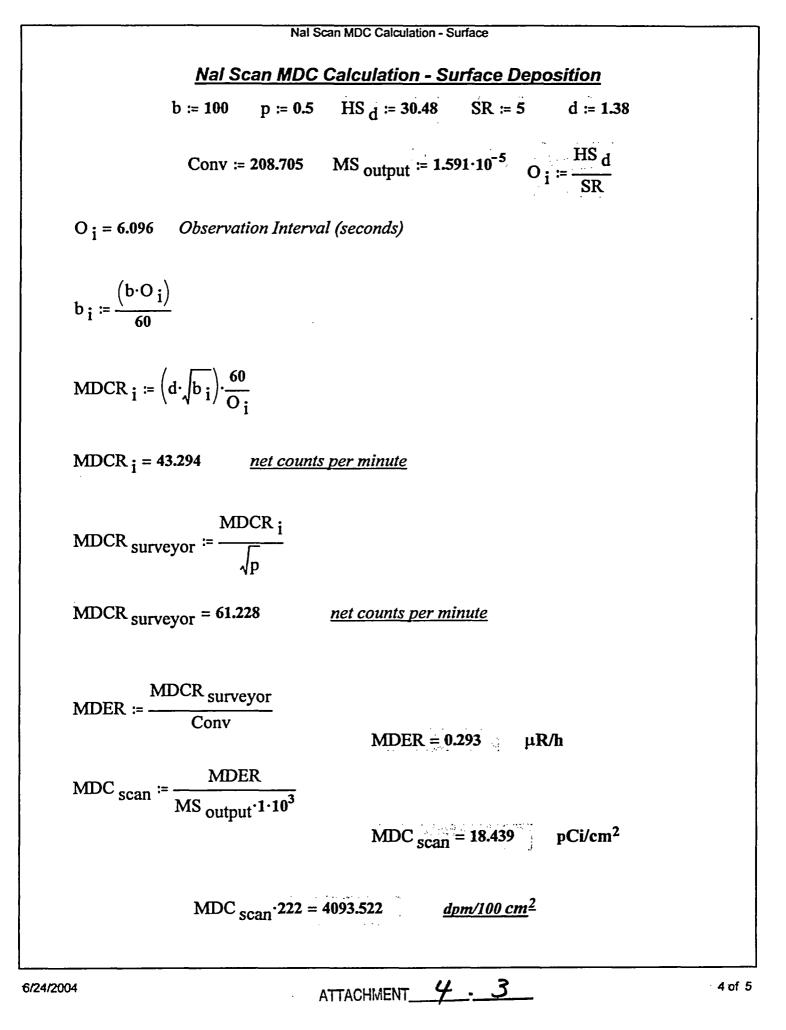
Source	Input	
--------	-------	--

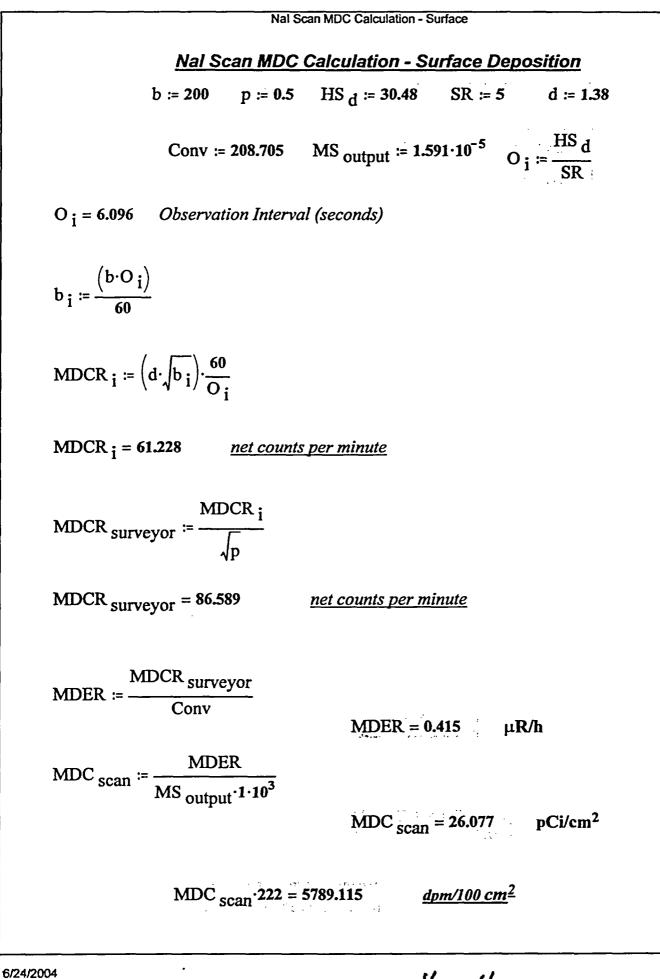
Grouping Method : Actual Photon Energies

Nuclide	curies	becquerels	µCi/cm ²	Bq/cm ²
Ba-137m	6.9026e-010	2.5540e+001	9.4600e-007	3.5002e-002
Cs-137	7.2966e-010	2.6997e+001	1.0000e-006	3.7000e-002

Buildup

The material reference is : Air Gap

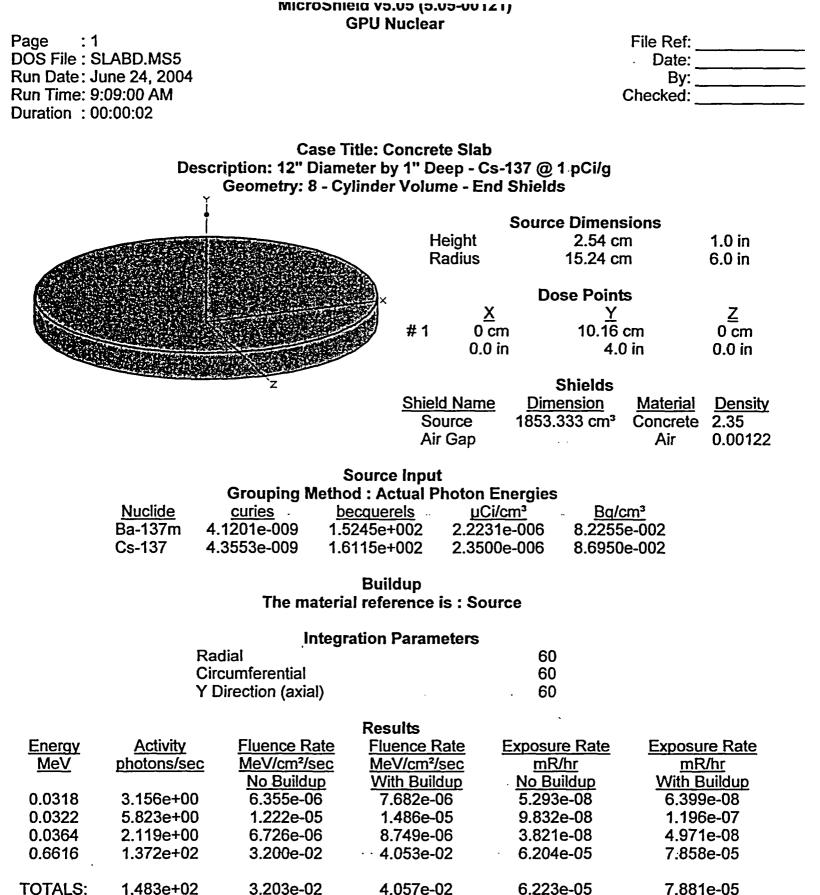

Integration Parameters


Radial	
Circumferential	

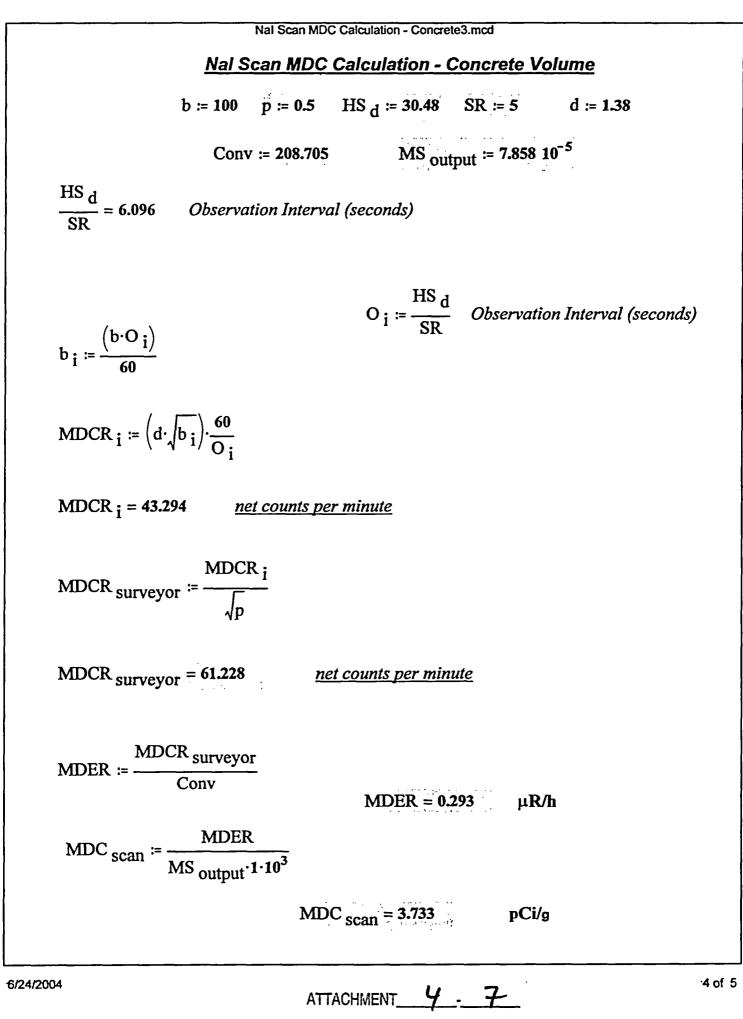
			Results		
Energy	Activity	Fluence Rate	Fluence Rate	Exposure Rate	Exposure Rate
MeV	photons/sec	MeV/cm ² /sec	MeV/cm ² /sec	<u>mR/hr</u>	mR/hr
	·	No Buildup	With Buildup	No Buildup	With Buildup
0.0318	5.287e-01	7.676e-06	9.614e-06	6.394e-08	8.008e-08
0.0322	9.755e-01	1.441e-05	1.799e-05	1.159e-07	1.448e-07
0.0364	3.550e-01	6.203e-06	7.507e-06	3.524e-08	4.265e-08
0.6616	2.298e+01	8.203e-03	8.312e-03	1.590e-05	1.611e-05
TOTALS:	2.484e+01	8.232e-03	8.347e-03	1.612e-05	1.638e-05

D. . . . 14 -

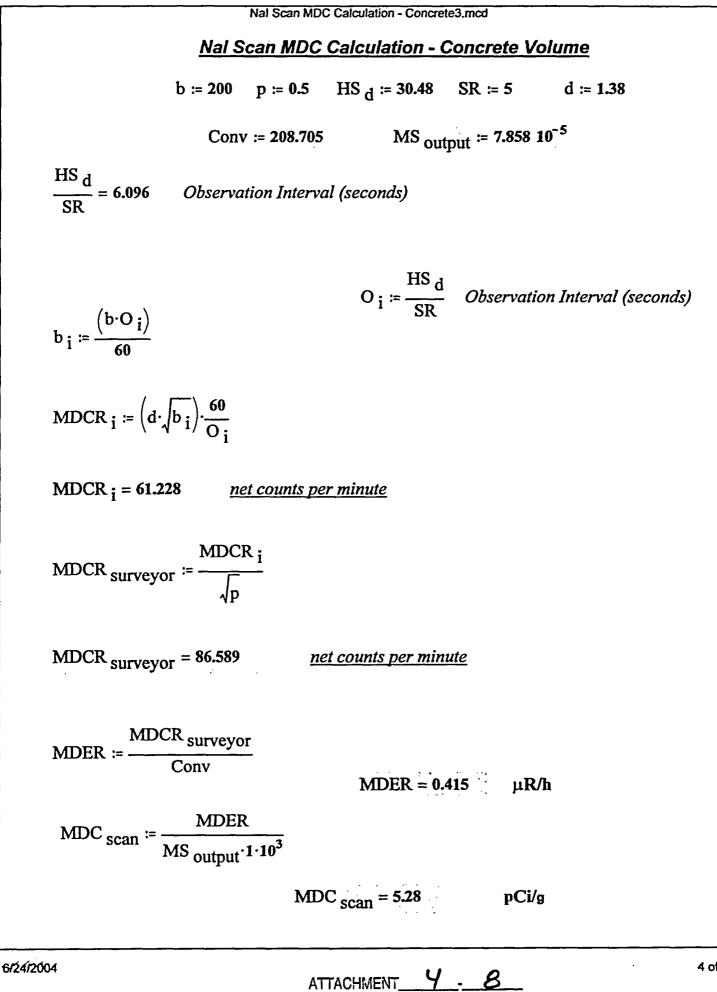
ATTACHMENT 4.2



ATTACHMENT 4.4


4 of 5

where:


- b = background in counts per minute
- $b_i = background counts in observation interval$
- Conv = Nal manufacturers or calibration information reported response to energy of contaminant (cpm/uR/h)
- d = index of sensitivity (Table 6.5 MARSSIM), 1.38 = 95% of correct detection's, 60% false positives
- $HS_d = hot \, spot \, diameter \, (in \, centimeters)$
- MDC_{scan} = Minimum Detectable Concentration for scanning (pCi/cm²)
- MDCR_i = Minimum Detectable Count Rate (ncpm)
- MDCR_{surveyor} = MDCR_i corrected by human performance factor (ncpm)
- MDER = Minimum Detectable Exposure Rate (uR/h)
- $MS_{output} = MicroShield output exposure rate for 1 pCi/cm² of contaminant (mR/h)$
- $O_i = observation Interval (seconds)$
- p = human performance factor
- SR = scan rate in centimeters per second

ATTACHMENT 4.6

· · · ·

4 of 5

where:

- b = background in counts per minute
- $b_i = background counts in observation interval$
- Conv = Nal manufacturers reported response to energy of contaminant (cpm/uR/h)
- d = index of sensitivity (Table 6.5 MARSSIM), 1.38 = 95% of correct detection's, 60% false positives
- $HS_d = hot \, spot \, diameter \, (in \, centimeters)$
- MDC_{scan} = Minimum Detectable Concentration for scanning (pCi/g)
- MDCR_i = Minimum Detectable Count Rate (ncpm)
- MDCR_{surveyor} = MDCR_i corrected by human performance factor (ncpm)
- MDER = Minimum Detectable Exposure Rate (uR/h)
- MS_{output} = MicroShield output exposure rate for I pCi/g of contaminant (mR/h)
- $O_i = observation Interval (seconds)$
- p = human performance factor
- SR = scan rate in centimeters per second

	50 INSTRU 1/04 7		ND PROB FPC EFFICI				ART		
ÎNST #	ÎNST C/D	43-68 PROBE #	PROBE C/D	44-10 PROBE #		ROBE C/D		ETA EFF	ALPHA EFF
126179	1/27/05	094819	1/27/05				25	.1%	N/A
126188	1/27/05	099186	1/27/05				28	.2%	N/A
126218	01/08/05	095080	01/09/05					.9%	N/A
TYPICAL 2"X 2" NAI EFFICIENCY FACTORS									
Inst.#	Cal Due	AP#		Probe #	1	Cal D	ue	срі	m/mR/h
98625	5/18/05	R & Y		211680 F	°k	5/18/0	05	2	14,882
		•							
98647	5/18/05	G&Y		211667 F	<u>'k</u>	5/18/0	05	2	18,807
129423	5/18/05	P&Y		211687 P	Ŷk	5/18/0	18/05 21		13,539
117573	5/18/05	0&Y		211674 F	Ŷk	5/18/0	5/18/05 21		12,173
117566	4/9/05	G&R		185852 F	'nk	4/13/	05	2	09,862
129429	11/3/04	W&Y		206283 F	² k	10/31/	′04	1	77185
126183	11/19/04	R&B		206280 F	Ŷk	12/12/	04	19	90,907
126198	11/03/04	R&W		196021P	k	5/25/(05	20	09,194
Donat mot	in use	(6L)		210938 	<u>*</u> k	<u>-4/14/(</u>)5-) 5,603_e ^
	Different Instru	ment/Probe Cal.	Due Cesium on	ly instruments (1	0mV	/ to 100)			

ATTACHMENT_5_1

Exhibit 1 CRIG	ATIO INA	N ON L	
SECTION 1 - BURVEY UNIT INSPECTION DESCRIPTION			
Survey Unit # SS18-2, SS17-2 Survey Unit Location Top of Seal Chambers 1 and (up to 812)		r and V	Valls
Date 6/28/04 Time 0800 Inspection Team Members D. Sar	rge		
BECTION 2 - SURVEY UNIT INSPECTION SCOPE	n na serie de la composition de la comp Composition de la composition de la comp	·	
Inspection Requirements (Check the appropriate Yes/No answer.)	Yes	No	N/A
1. Have sufficient surveys (i.e., post remediation, characterization, etc.) been obtained for the survey unit?	X		
2. Do the surveys (from Question 1) demonstrate that the survey unit will most likely pass the FSS?	X		
3. Is the physical work (i.e., remediation & housekeeping) in or around the survey unit complete?	X		
4. Have all tools, non-permanent equipment, and material not needed to perform the FSS been removed?		X	
5. Are the survey surfaces relatively free of loose debris (i.e., dirt, concrete dust, metal filings, etc.)?		X	
6. Are the survey surfaces relatively free of liquids (i.e., water, moisture, oil, etc.)?		Х	
7. Are the survey surfaces free of all paint, which has the potential to shield radiation?	X		
8. Have the Surface Moasurement Test Areas (SMTA) been established? (Refer to Exhibit 2 for instructions.)	X		
9. Have the Surface Measurement Test Areas (SMTA) data been collected? (Refer to Exhibit 2 for Instructions.)	X		
10. Are the survey surfaces easily accessible? (No scaffolding, high reach, etc. is needed to perform the FSS)	X		
11. Is lighting adequate to perform the FSS7	X		
12. Is the eres industrially safe to perform the FSS? (Evaluate potential fail & trip hazards, confined spaces, etc.)		X	
13. Have photographs been taken showing the overall condition of the area?	X		
14. Have all unsatisfactory conditions been resolved?		X	
NOTE: If a "No" answer is obtained above, the inspector should immediately correct the problem or initiate correct responsible site department, as applicable. Document actions taken and/or justifications in the "Comments" section is sheets as necessary.			
Comments: Response to Question 4 – The wooden stairway needs to be removed prior to FSS.			
Response to Question 5 – Freestanding water has been identified to be present in three ar cover to 2' downcomer, east end – core bore / scabbled areas (2).	eas: we	est side	e —on
Response to question #6 – The floor has to be swept prior to survey, (loose stones and sedime	ent pres	ent).	
Response to Question #12 – Lead-containing paint has been identified on the walls. The paint technicians performing FSS must not disturb surface to the best of their ability.			
Additionally, the downcomer to #2 Seal Chamber is covered with plywood that must be remove scan surveys. This will expose the individual to a potential fall hazard.	ed wher	i perfoi	ming
Survey Unit Inspector (print/sign) David Sarge / Charles	Date	6/28	/04
	Date	<u> </u>	

ATTACHMENT_6

EXHIBIT 3 Surface Measurement Test Area (SMTA) Data Sheet

		See an		SEC	TION 1 -	DE	SCRIPTIO	N			· · · · · · · · · · · · · · · · · · ·	aa Xaadaa ah a
,	SMTA Number SMTA-SS17-2-1 Survey Unit Number SS17-2											
SMTA LO	cation	Top of Se	al Chamb	ers 1 and	i 2 (Wall /	Area	a)					
Survey U	•			D, Sa	•			Date		5/04	Time	1200
		SECTI	ON 2 - C	ALIPER	NFORM	ATI	ON & PER	SONNE	INVO	VED		
Caliper N	lanufactu	rer	N	litotoyo	~ <u>-</u> ,		Caliper M	odel Nur	nber		CD-6* CS	S
Caliper S	erial Nurr	nber	70	33893		C	allbration D	Due Date	(as app	licable)	<u> </u>	N/A
Rad Con	Technicia	an D. Sa	inge / 🖉	apa		_		Date	4/1	5/04	Time	1200
		tor Appro		Sarge /	-110					Date	[15/04
	the second design of the secon					_	EMENT RI	SULTS				*******
SMTA G		k Measure esults in V				n			Com	ments		
the second	7	. 13	19	25	.at							
1,4	0.78	0.62	4,1	0.73	0.37							
1 10 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8		20	25	32							
1.94	1.25	2.45	0.67	1.05	0.4							
		18	21	1 - 2 2 7 - 2 -								
0.08	1.05	0.78	2.32	0.18	0.25							
	19	16	22	28	195 34 (89							
0.19	0.63	0.8	2.36	0.16	011							
6.87		*** 17 %	23.00	29	35							
0.4	0 45	0.39	0 28	0.58	0.05							
6	12.0	k ₹18 (**)	- 24,	i.⊲ 30 . (4								
0:00	0.53	0.69	0.63	03	0 89							
	Averag	e Measur	ement –	0 84mm								
				Addition	al Measu	ren	ients Requ	lred				

ATTACHMENT 6.2

. . . .

										NF	DRMAT	ION (1777
									Surface	Measur	RIG		- EXHIBIT 3 A) Data Shee
Γ					SEC	TION 1 -	DE	SCRIPTIO					
~~	MTA NU		SMTA-SS					ey Unit Nu				<u>18-2</u>	
5	MTA Lo	cation	Top of Se	al Chamb	pers 1 and	1 2 (Floor	r)		l~				
S	urvey Ur	nit Inspe	ctor	_	D. Sa	arge /			Date	4/	15/04	Time	1100
			SECT	ON 2 - C	ALIPER	INFORM	ATI	ON & PER	SONNE	L INVO	LVED		
C	Caliper M	anufact	urer	N	Vitotoyo			Caliper M	odel Nu	mber		CD-6" CS	3
	aliper S		~~~		63893		C	alibration D	Due Date	(as ap	plicable)	1	N/A
	ad Con				chi _	<u></u>		······	Date	4/	15/04	Time	1100
			ctor Appro		Sarge /	Out		· · · · ·			Date		5/04
_							i	EMENT_R	ESULTS				
			& Measure Results in V				m 			Cor	nments		
		. Z	13	19	25	31							
	0.24	0.03	0.27	1.13	0.22	0.37	ļ	}					
	, in 2 , in the second	8	14	20		32		(
	0.09	0.3	0.06	1.86	0.76	0.12	Į.	[
	3	3	a star de la s		27	- 83							
	0.19	0.3	0.06	0.27	0.15	0.02							
	4.6	10	16	22	28.	<u>ः 34</u> ्र							
	0.31	0.63	0.01	0 34	0.17	0.05		ļ					
	- S ≥	0,64	0.5	0.07	::: :29 ⊴‰ 0000	:							
ļ	1,39	-	- -		090	056		1					ł
	0.04	0.15	011	24 0 15	'_⊶30.⊖; 0.43	034							
l							1						
		Avera	ge Measur	ement -		al Monsu	ran	ients Requ					
					////////						······		···
								_		_			

ATTACHMENT 6.3

INFORMATION CALLY ORIGINAL

Surface Measurement Test Area (SMTA) Data Sheet

	a status services	An				SCOID	101					
SMTA Number	SMTA-SS	•	- 050			ey Unit i	~ ~	· · · ·			18-2	
SMTA Location	Top of Sea				NUII	Dei			10-2			
Survey Unit Inspe			D. Sa			Date 6/28/04 Time			1000			
Survey one inspe	λ		FRA									
Caliper Manufact			N/A			Calipe						<u></u>
Caliper Serial Nu	ł,				Ta	<u> </u>				plicable)		
Rad Con Technic		arge / O	afr				T	Date	· ·	28/04	Time	1000
Survey Unit Inspe	I		Sarge /	OF					L	Date	}ł	28/04
					SUF	REMENT	RE	BULTS			L	
SMTA Grid Map (Insert I 2 2 3 3 3 4 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	& Measure Results in V 13 14 14 18 V	ement Res White Block 20 20 21 A A	suits in U cks Belov 26 27 27 27 27 27 27 27 27 27 27 27 27 27	nits of n v) 32 32 33 34 34		Di ta ac o To ec in	epth pe n ctual en m ige (ches	measu neasure measu easure of the c	Con rement and d rement ments radie, r	mments ts were ob letector ho t distance. obtained o ranged from readings o	itained us Ider to si of the des m 0.5 to	sing a mulate structed 1.75
	·		Addition	al Meas	sure	ments R	equi	red			<u> </u>	
Additional Measurements Required SSGS OIL STORAGE TANK CRADLE VIN REMOVED SECTION												
			AT	TACHIV	IEN	т6		Ч				

					Exhibit 1 Survey Unit Inspection C					
				ECTION	1 - SURVEY UNIT INSP	ECTIO	N DESCRIPTION			
	vey Unit #		SS22-1,2		Survey Unit Location		team Pipe Tunnel – floor uni-strut			
Date 4/27/04 Time 0900 Inspection Team Members D. Sarg										
				SECTK	ON 2 - SURVEY UNIT IN	18PEC				
	Ir	spec	tion Req	uirements	s (Check the appropriate	Yes/N	o answer.)	Yes	No	N/A
1.	Have sufficier	t surv	ey s (1.e., po	et remediat	tion, characterization, etc.) bee	n obtain	ed for the survey unit?	x		
2.	Do the survey	s (fron	n Question	1) demonst	rate that the survey unit will m	ost likely	pass the FSS?	x		
3.	is the physica	work	(i.e., remed	liation & ho	usekeeping) in or around the s	urvey ur	nit complete?	×		
4. 1	Have all tools,	non-ç	oermanent e	quipment,	and material not needed to pe	form the	: FSS been removed?	×		
5	Are the survey	r surfs	ices relative	ly free of lo	ose dobris (i e., dirt, concrete (dust, me	tal filings, etc.)?	x		
6	Are the survey	y surfa	ces relative	ly free of lic	quids (i.e., water, moisture, oil,	etc.)?		×		
7. /	Are the survey	y surfa	ces free of	all paint, wh	hich has the potential to shield	radiatior	17	x		
8. 1	Have the Surf	ace M	easuremen	Test Areas	s (SMTA) been established? (f	Refer to 1	Exhibit 2 for instructions)	×		
9 (Have the Surf	ace M	easuremen	Test Areas	s (SMTA) data been collected?	(Refert	to Exhibit 2 for instructions.)	×		
10. /	Are the survey	surfa	ces essily a	ccessible?	(No scalfolding, high reach, ei	c. is nee	ded to perform the FSS)	x		
11. 1	s lighting ade	quate	to perform i	he FSS?				x		
12. 1	is the area ind	uztrial	lly safe to p	erform the F	FSS7 (Evaluate potential fall &	trip haza	ards, confined spaces, etc)	×		
13. 1	Have photogra	aphs b	een taken :	howing the	overall condition of the area?			×		
14. 1	Have all unsat	islacto	ory condition	ne been res	iolved?			x		
respo	E: If a "No" an insible site de a as necessar	partm	is obtained ent, as appl	above, the icable. Doc	e Inspector should immediatel cument actions taken and/or ju	y correc Istificatio	t the problem or initiate corrections in the "Comments" section	tive actio below. A	ns throu Itach ad	igh the ditional
Com	nents:					· · · · ·				
	FIN	LJ	NSPE CTI	on Priv	OF TE SETTING "PFI	- "				

Survey Unit Inspector (print/sig	n) David Sarge 1 Rapra	Date	4/27/04
Survey Designer (print/sign)	D. Sarge / daff FOR B. BROSEY	Date	6/28/04

-

.

5

					Exhibit 1 Survey Unit Inspection C	heck Si	INFORMATIO ORIGIN	N P ^{ar} IAL	17) 114 1	
•	14. 1 . 14. 14. 1 . 14.			SECTION	1 - SURVEY UNIT INSP	ECTIO	N DESCRIPTION		10 A.	
<u>`</u> ~	/ey U	T		1, 2, 3, 5	Survey Unit Location	CV 8	Steam Pipe Tunnel – floo			
Date	0	4/8/04	4 Tim	1100	Inspection Team Mer	nbers	D.Sarge, G. Houtz, B. M. McC		G. Wo	omer,
		a ter stat		SECTI	ON 2 - SURVEY UNIT IN	SPEC	TION SCOPE	5 a 25 a 24		
-		Ins	pection Re	quirements	s (Check the appropriate	Yes/N	lo answer.)	Yes	No	N/A
1 1	- Have 6	utticient	surveys (i.e.,	post remediat	tion, characterization, etc.) bee	n obtein	ed for the survey unit?	X	1	
2. 1	Do the	surveys	(from Questi	n 1) demonst	rate that the survey unit will m	ost likely	pass the FSS7	x	<u> </u>	
3. 1	is the p	hysical v	work (i.e., ren	ediation & ho	usekceping) in or around the s	urvey ur	nit complete?	1	x	
4 1	Have a	# tocha, r	non-permanei	nt equipment,	and material not needed to pe	form the	= FSS been removed?		x	
5. /	Are the	survey	surfaces relat	Ively free of lo	ose debris (i.e., dirt, concrete (lust, me	tel filings, etc.)?	x	}	
6. /	Are the	survey	surfaces relat	ively free of lic	quids (i.e., water, moisture, oil,	etc.)?		1	x	
7. /	Are the	survey :	ourfaces free	of all paint, wi	hich has the potential to shield	radiatior	n 7		X	
8 1	Have II	e Surfec	ce Measurem	ent Test Areas	s (SMTA) been established? (I	Refer to l	Exhibit 2 for instructions)	×		
9. 1	Have It	ne Surlac	e Measurem	ent Test Area:	s (SMTA) data been collected?	(Refer	to Exhibit 2 for instructions.)	X		
10. 4	Are the	ourvey a	surfaces eazi	y accessible?	(No scaffolding, high reach, et	c. is nee	eded to perform the FSS)		X	
11. 1	s lighti	ng adequ	uate to perfor	m the FSS?				X		
12. I	s the a	rea Indu	strially safe to	perform the f	FSS7 (Evaluate potential fail &	top haz	ards, confined spaces, etc.)	X		
13. H	Have p	holograp	hs been lake	n showing the	overall condition of the area?		P	X		
14. }	- lave a	ll unsatis	lactory condi	lions been res	olved?				x	
respo	nsible	"No" ans site depa icessary.	artment, as a	ed above, the oplicable. Doc	e inspector should immediatei cument actions taken and/or ju	y correc stificatio	t the problem or initiate corre ons in the "Comments" section	ctive actic below. A	ms throi Mach ad	igh the ditional
Comn					•					
Resp	onse	to Qu	estion #3 -	Vacuumin	g is required prior to FSS	S. (esp	ecially in troughs and co	re boret	oles).	
Resp	oonse	to Qu	estion #4 -	Items to be	e removed – 2 scabble g	uns, ai	ir hose, and misc. equip	nent/liq	uids.	

Response to Question #6 - Standing water located in troughs (west end).

Response to Question #7 - Spray paint used on walls to mark survey grids.

Response to Question #10 – Some areas of ceiling and walls (West end) are inaccessible due to temporary ceiling supports and (East end) are inaccessible due to steel wall companents.

		the second s
Survey Unit Inspector (print/sign) G. Houtz /	Date	4/12/04
Survey Designer (print/sign) D. Sarge / Daufy	Date	6 28 0A

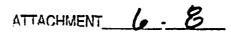
ATTACHMENT_6_6 SNEC FACILITY RADCON

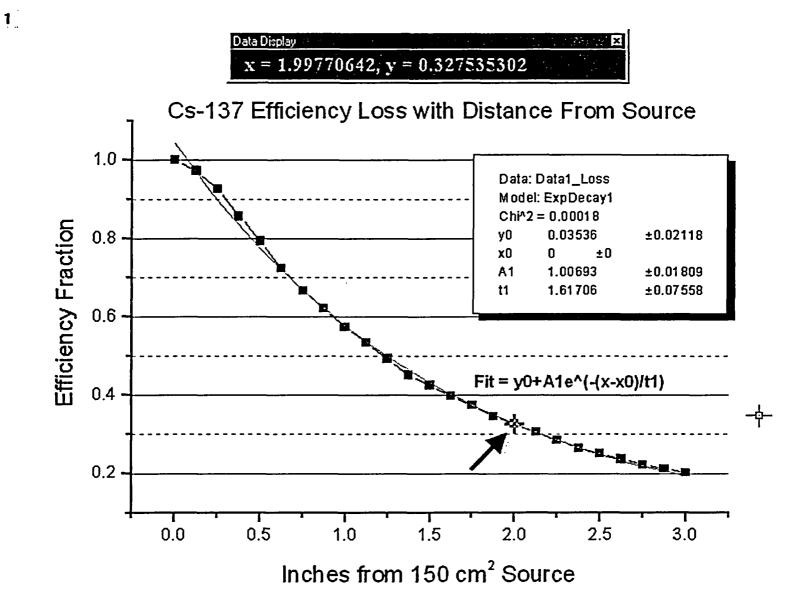
EXHIBIT 3 Surface Measurement Test Area (SMTA) Data Sheet

					SEC	TION 1	- DE	ES	CRIPTIO	N	•			
\$	MTA Nu	mber	S	MTA-SS	-22-1		Surv	ve	y Unit Nu	mber		SS	22-1	
S	MTA Loo	cation	CV Steam	Pipe Tu	nnel		_			_				
Survey Unit Inspector G. Houtz Date 4/8/04 Time 1120								1120						
	SECTION 2 - CALIPER INFORMATION & PERSONNEL INVOLVED													
C	Caliper Manufacturer Mitotoyo Caliper Model Number CD-6" CS									5				
Caliper Serial Number 763893 Calibration Due Date (as applicable) N/A							N/A							
Rad Con Technician G. Houtz								~ @	Date	4	/8/04	Time	1120	
Survey Unit Inspector Approval G. Houtz / Survey Date 1120								120						
	SECTION 3-MEASUREMENT RESULTS													
			& Measure esults in V				nm				Co	mments		
	1	7	13	19	25	31		ſ	• Entir	e floor ha	as bee	n scabbled	(1 - 2")	depth)
	0.21	1.44	2.97	2.28	1.05	2.5			• East	end has	steel	olate instal	led with I	bracing
	2	8	14	20	26	32		anchored into floor. Brace obstructs floor						or access
	1.58	1.0	1.44	1.09	0.95	1.35		(5' length x 8 " width). Plate installed with plane of the floor, therefore obstructs sur						
	3	9	15	21	27	33								-
	2.3	1.42	1.03	1.47	1.25	1.32						nto floor at		ms
	4	10	16	22	28	34			requi	re specia	al surv	ey conside	rations	
	2.94	4.82	1.18	2.31	1.48	1.32								
	5	11	17	23	29	35				bore holderation	•	se same su	irvey	
	1,99	9.11	1.91	1.62	0.44	1.94								
	6	12	18	24	30	36			• Drain	trench l	nas be	en chiseleo	d/scabble	ed into a
	0.74	1.71	1.4	1.37	2.63	1.46				haped co deration		ation. Pose	es same	survey
		Averag	le Measur	ement -	1.86 mm									
					Addition	al Mea	surer	me	ents Requ	ired				
•	3 (thre	e) 6" cor	e borehol	es spaced	i evenly a	along le	ngth	1 0	f floor, De	pths bet	ween	1'-4" to 2'-6	5".	
•	1 (one)) trough	along Sou	ith wall. 8	" wide x 2	24 '-2" le	ength). [Depth bet	ween 1.5	5 to 2".			
•	1 (one)) trough	along Nor	th wall (w	est end).	5" wide	e x 7'	'-2	". Depth k	between	1-1.5".			
•	1 (one)) trough	along Nor	th wall (e	ast end).	4" wide	x 12	2'	length. De	epth betv	veen 1	-1.5".		

- Drain trenching (west end). 10" wide \times 5'-6" length \times 8" depth and 10" wide \times 4' length \times 8" depth.
- 4 (four) 3" core boreholes. 3" depth. .

ſ


ATTACHMENT 6.7


								1994) 201				3010		1
				.Su	rface Measi		XHIBI Test A	IT 3 Area	(SMTA) D	ata Sheet	l l			
		• •			SEC							•		· an an an ann
SMTA Number SMTA-SS-22-2 and 3 Si					Surv	vey	Unit Nur	mber		SS22-	2 and 3			
SMTA Location CV Steam Pipe Tunnel (Walls and Ceiling)														
\$	Survey Unit InspectorG. HoutzDate4/8/04Time1100									1100				
	SECTION 2 - CALIPER INFORMATION & PERSONNEL INVOLVED													
	Caliper Manufacturer Mitotoyo Caliper Model Number CD-6" CS													
	Caliper Serial Number 763893 Calibration Due Date (as applicable) N/A													
	╶──────────────────────────────────────										1120			
Ľ	Survey U	nit Inspec	tor Appro				<u>Bin</u>	¥				Date	1	100
					CTION S				JENT RE	230213				· · · · · · · · · · · · · · · · · · ·
			& Measure esults in V				mm				Com	ments		
	1	7	13	19	25	31		•					ept for an	
	0	0	0	0	0	0				rbed by : wal of ur		g, core b	oring, an	d the
	2	8	14	20	26	32			Fact	and has	ato al at	nto inctol	lad with t	
	0	0	0	0	0	0			anch	ored into	floor. P	late insta	led with t alled withi	in the
	3	9	15	21	27	33			plane	e of the v	valls, the	erefore of	bstructs s	urvey.
	0	0	0	0	0	0							ssible cui	rently.
	4	10	16	22	28	34			Steel	plate bl	ocks acc	æss.		
	0	0	0	0	0	0							oncrete fi	
	5	11	17	23	29	25							epths bet rut in tun	
	0	0	0	0	0	0				". Uni-sti				
	6	12	. 18	_24	30	36			Ceilir	ng surfac	es are s	mooth e	xcept for	form
	0	0	0	0	0	0				ration cra h. Depth			point of tu	innel
		Averag	e Measur	ement -	1.86 mm				iciigu	п. Берп	13 0.0 ,			
					Addition	al Mea	surer	me	nts Requ	ired				
N	ORTHW	ALL												
•	7 (sev	en) vertio	ally instal	led uni-st	ruts 1' ler	ngth sp	aced	6'	on cente	r along d	ceiling lir	ne.		1
•	7 (sev	en) vertio	ally instal	led uni-st	ruts 1' ler	ngth sp	aced	6'	on cente	r along f	loor line	•		
•	2 (two)	3" core	boreholes	. Depth is	s 2 " .									
٠	1 (one)) steel pl	ate install	ed at east	end. Pos	ses sp	ecial	sur	vey cons	sideratio	ns.			
s	OUTH W	ALL												
•	7 (seve	en) vertio	ally instal	led uni-st	ruts 5' len	igth sp	aced	6'	on cente	r (top at	ceiling li	ne).		

- 1 (one) trough 7' length x 8" high x 3" depth (middle of wall at floor line).
- 1 (one) trough 4' length x 16" high x 3" depth (west end at floor line).
- 1 (one) trough 16" length x 10" high x 2" depth (west end at floor line).
- 1 (one) chiseled hole 30" high x 1' wide (far west end at uni-strut removal location)

CEILING

- Form separation crack located mid-point. Depth is 0.5'
- 5 (five) north-south oriented Uni-struts 4' length spaced 6' on center.

ATTACHMENT_____

Site Summary

Site Name: CV TUNNEL & SEAL CHAMBERS 1 & 2

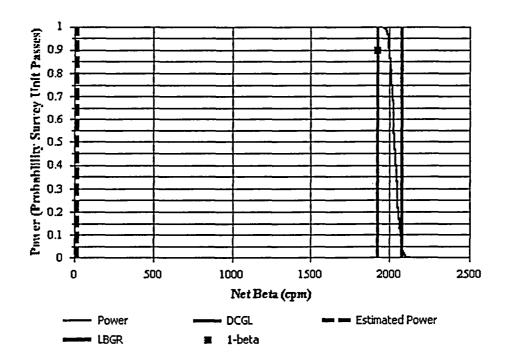
Planner(s):

•

BHB

Contaminant Summary

NOTE: Surface soil DCGLw units are pCi/g. Building surface DCGLw units are dpm/100 cm².


Contaminant	Туре	DCGLw	Screening Value Used?	Area (m²)	Area Factor
Gross Activity	Building Surface	20,609	No	36 25 16 9 4 1 0, 25 34 ^B 6] ²⁶ °4	1 1.2 1.5 2 3.4 10.1 10.1

COMPASS v1.0.0	6/28/2004	Page 1
COMFA35 41.0.0		1 490 1
	ATTACHMENT	

Site:	CV TUNNEL & SEAL CHAME	BERS 1 & 2	
Planner(s):	BHB		
Survey Unit Name:	CV PIPE TUNNEL FLOOR		
Comments:	SS22-1		
Area (m²):	21	Classification:	1
Selected Test:	WRS	Estimated Sigma (cpm):	51.3
DCGL (cpm):	2,077	Sample Size (N/2):	8
LBGR (cpm):	1,925	Estimated Conc. (cpm):	22
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100	EMC Sample Size (N):	8

Prospective Power Curve

• • • •	DCGLw
Contaminant	(dpm/100 cm²)
Gross Activity	20,609

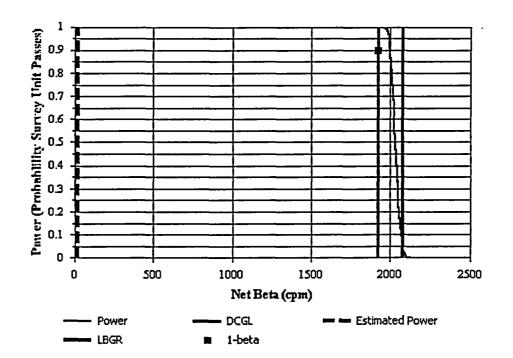
Beta Instrumentation Summary

Gross Beta DCGLw (dpm/1	100 cm²):	20,609			
Total Efficiency:		0.08			
Gross Beta DCGLw (cpm):	:	2,077			
D Туре			Mode		Area (cm²)
22 GFPC		<u> </u>	Beta		126
Contaminant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Gross Activity	187.87	1.0000	0.48	0.16	0.0776
	V) [N/A indicates alpha	emissionj			
* Average beta energy (keV * Activity fraction Gross Survey Unit Mean (c Count Time (min): 1		-			
Activity fraction Gross Survey Unit Mean (c		-	Average (cpm)	Standard Deviation (cpm)	MDC {dpm/100 cm ² }

COMPASS v1.0.0	6/28/2004
	ATTACHMENT_8_3

Page 2

WICOMP!	SS2000 Wizard for Building	Suidselassesso	ent constants			
•	Elevated Measurement (Comparison (E	MC) for Beta			
	Follow the order of each t	ab below to perfo	rm the EMC.			
	1) Enter Scanning Instrument Effic	iencies 2) Enter	Scan MDC Parameters	3) View EMC Results		
		Scan MDC Re	equired per Contamir	ant		
	Contaminant	DCGLw*	Area Factor	Scan MDC Required*		
:	Gross Activity	20,609	6.53	134,577		
ه، لس						
· · · · ·	<u>Statistical</u>	<u>Design</u>	Н	ot Spot Design		
·••* 1	N/2:	8	Actual Sca	an MDC*: 1,653		
••••	Bounded Area (m²):	2.6	Are	a Factor: N/A		
·	Area Factor:	6.53	Bounded A	vrea (m²): N/A		
	DCGLw*:	20,609	Post-E	EMCN/2: 8		
	Scan MDC Required*:	134,577	COMPASS			
	* dpm/100 cm ²		No additional	samples are required because the actual		
				less than the DCGLw for each		
ا د این آمد قم		7 Enable Trainin 1.0.0		OK		


ATTACHMENT 8 - 4

.

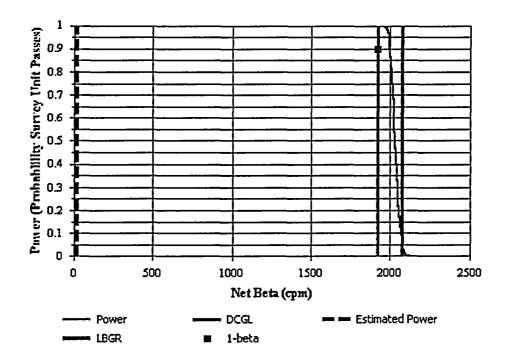
Site:	CV TUNNEL & SEAL CHAMB	ERS 1 & 2	
Planner(s):	BHB		
Survey Unit Name:	CV PIPE TUNNEL WALLS		
Comments:	SS22-2		
Area (m²):	48	Classification:	1
Selected Test:	WRS	Estimated Sigma (cpm):	51.3
DCGL (cpm):	2,077	Sample Size (N/2):	8
LBGR (cpm):	1,925	Estimated Conc. (cpm):	22
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100	EMC Sample Size (N):	8

Prospective Power Curve

	DCGLw
Contaminant	(dpm/100 cm²)
Gross Activity	20,609

Beta Instrumentation Summary

Gross Survey Unit Mean (cpm Count Time (min): 1 Material		Number of BKG Counts	Average (cpm)	Standard Deviation (cpm)	MDC (dpm/100 cm ²)
): 328 ± 51 (1-sign	na)			
Average beta energy (keV) [N Activity fraction	N/A indicates alpha	emission]			
Gross Activity	187.87	1.0000	0.48	0.16	0.0776
Contaminant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
22 GFPC			Beta	_	126
D Туре			Mode		Area (cm²)
Gross Beta DCGLw (cpm):		2,077			
•	-	0.08			
Total Efficiency:	cm²):	20,609			


WCOMP.	SS-DOC Wizard for Building	Suffred Assessmi	11. Horacia de la compañía de la com	
	Elevated Measurement	Comparison (El	MC) for Beta	
	Follow the order of each	tab below to perfo	rm the EMC.	
، بين جي المت	1) Enter Scanning Instrument Effic	ciencies 2) Enter S	ican MDC Parameters	3) View EMC Results
:		Scan MDC Re	equired per Contamir	nant
منت من المنتخب ا	Contaminant	DCGLw*	Area Factor	Scan MDC Required*
1	Gross Activity	20,609	2.84	58,530
and and				
e** .				
and the second s	<u>Statistical</u>	Design	<u>H</u>	lot Spot Design
1996 <u>- 1</u> 997 1996 -	N/2:	8	Actual Sc	an MDC*: 1,653
• •	Bounded Area (m²):	6.0	Are	a Factor: N/A
	Area Factor.	2.84	Bounded A	Area (m²): N/A
	DCGLw*:	20,609	Post-f	EMC N/2: 8
	Scan MDC Required*:	58,530	COMPASS	
.4	* dpm/100 cm²		No additiona	I samples are required because the actual less than the DCGLw for each
، ، سب سم		Enable Training	contaminant.	

ATTACHMENT 8 - 7

Site:	CV TUNNEL & SEAL CHAMBERS 1 & 2				
Planner(s):	ВНВ				
Survey Unit Name:	CV PIPE TUNNEL CEILING				
Comments:	SS22-3				
Area (m²):	16	Classification:	1		
Selected Test:	WRS	Estimated Sigma (cpm):	51.3		
DCGL (cpm):	2,077	Sample Size (N/2):	8 .		
LBGR (cpm):	1,925	Estimated Conc. (cpm):	22		
Alpha:	0.050	Estimated Power:	1.00		
Beta:	0.100	EMC Sample Size (N):	8		

Prospective Power Curve

	DCGLw
Contaminant	(dpm/100 cm²)
Gross Activity	20,609

Beta Instrumentation Summary

		Number of	Average	Standard	MDC
Gross Survey Unit Mean (cp Count Time (min): 1	m): 328 ± 51 (1-sigm	la)			
¹ Average beta energy (keV) ² Activity fraction	[N/A indicates alpha	emission]			
Gross Activity	187.87	1.0000	0.48	0.16	0.0776
Contaminant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
22 GFPC			Beta		126
D Type			Mode	<u>ا ا</u>	Area (cm²)
Gross Beta DCGLw (cpm):		2,077			
Total Efficiency:		0.08			
Gross Beta DCGLw (dpm/10	00 cm²):	20,609			

306

34.5

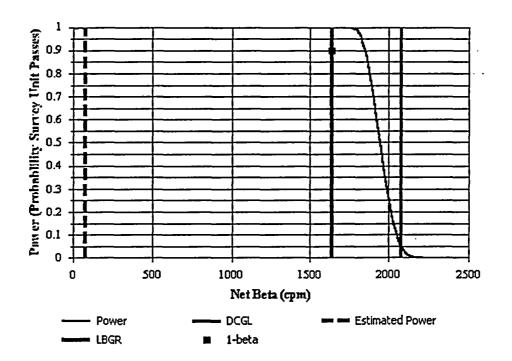
837

31

Concrete

6/28/2004

ATTACHMENT 8 9


MEIMP	SS DUD Wrzaid for Unidim	n Sunface/Assessm	ent	
	Elevated Measurement	Comparison (E	MC) for Beta	
	Follow the order of each	tab below to perfo	orm the EMC.	
	1) Enter Scanning Instrument Efficient	ciencies 2) Enter	Scan MDC Parameters	3) View EMC Results
		Scan MDC R	equired per Contamir	nant
	Contaminant	DCGLw*	Area Factor	Scan MDC Required*
	Gross Activity	20,609	7.87	162,193
ا ا به ایشه				
1944 a	Statistica	<u>Design</u>	Ŀ	lot Spot Design
، مرتبع ، به مر	N/2:	8	Actual Sc	an MDC*: 1.653
·	Bounded Area (m ²):	2.0	Are	a Factor: N/A
Same of	Area Factor:	7.87	Bounded A	Area (m²): N/A
	DCGLw*:	20,609	Post-l	EMC N/2: 8
5 -	Scan MDC Required*:	162,193	COMPASS	
••	* dpm/100 cm ²		No additiona scan MDC is contaminant	I samples are required because the actual less than the DCGLw for each
: . ••• •••		✓ Enable Trainin 1.0.0		

ATTACHMENT 8 . 10

Site:	CV TUNNEL & SEAL CHAMBERS 1 & 2				
Planner(s):	BHB				
Survey Unit Name:	Walls Around Top of Seal Cha	amber 1 & 2			
Comments:	SS17-2				
Area (m²):	50	Classification:	2		
Selected Test:	WRS	Estimated Sigma (cpm):	147		
DCGL (cpm):	2,077	Sample Size (N/2):	8		
LBGR (cpm):	1,640	Estimated Conc. (cpm):	76		
Alpha:	0.050	Estimated Power:	1.00		
Beta:	0.100				

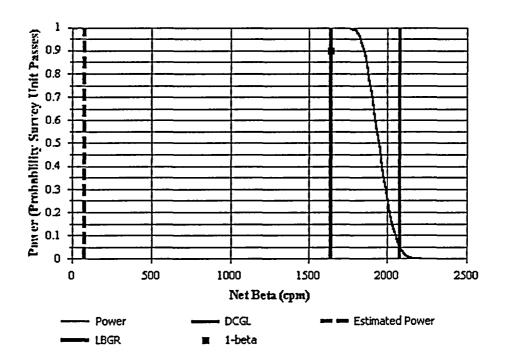
Prospective Power Curve

COMPASS v1.0.0

6/28/2004

	DCGLw
Contaminant	(dpm/100 cm ²)
Gross Activity	20,609

Beta Instrumentation Summary


Gross Beta DCGLw (dpm/100 c Total Efficiency: Gross Beta DCGLw (cpm):	m²):	20,609 0.08 2,077			
ID Type			Mode		Area (cm²)
22 GFPC			Beta		126
Contaminant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Gross Activity	187.87	1.0000	0.48	0.16	0.0776
¹ Average beta energy (keV) [N/ ² Activity fraction	A indicates alpha	emission]			
Gross Survey Unit Mean (cpm): Count Time (min): 1	382 ± 147 (1-sig	ma)			
Material		Number of BKG Counts	Average (cpm)	Standard Deviation (cpm)	MDC (dpm/100 cm²)
Concrete		31	306	34.5	837

6/28/2004

Site:	CV TUNNEL & SEAL CHAMBERS 1 & 2						
Planner(s):	BHB	ВНВ					
Survey Unit Name:	Top of Seal Chamber 1 &2						
Comments:	SS18-2						
Area (m²):	43	Classification:	1				
Selected Test:	WRS	Estimated Sigma (cpm):	147				
DCGL (cpm):	2,077	Sample Size (N/2):	8				
LBGR (cpm):	1,640	Estimated Conc. (cpm):	76				
Alpha:	0.050	Estimated Power:	1.00				
Beta:	0.100	EMC Sample Size (N):	8				

Prospective Power Curve

		DCGLw
Contaminant	<u>.</u>	(dpm/100 cm ²)
Gross Activity		20,609

Beta Instrumentation Summary

	Beta DCGLw (dpm/100 c Efficiency:	cm²):	20,609 0.08			
Gross	Beta DCGLw (cpm):		2,077			
D	Туре			Mode		Area (cm²)
22	GFPC		<u></u>	Beta		126
Conta	minant	Energy'	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Gross	Activity	187.87	1.0000	0.48	0.16	0.0776
	age beta energy (keV) [N ity fraction	/A indicates alpha	emission]			
	Survey Unit Mean (cpm): Time (min): 1	: 382 ± 147 (1-sig	ıma)			
Mater	ial		Number of BKG Counts	Average (cpm)	Standard Deviation (cpm)	MDC (dpm/100 cm ²)

Material	Number of BKG Counts	Average (cpm)	Standard Deviation (cpm)	MDC (dpm/100 cm ²)	_
Concrete	31	306	34.5	837	

ATTACHMENT 8.14

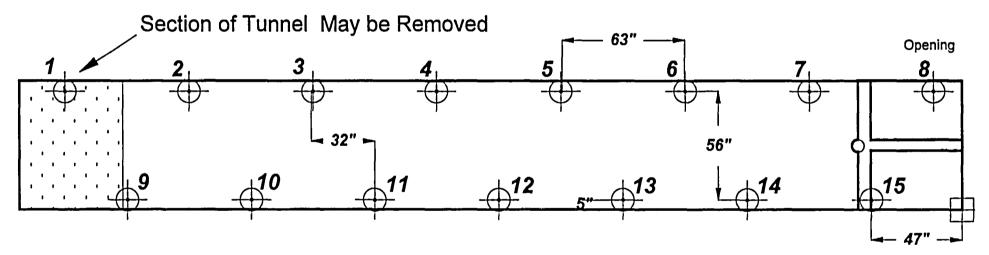
WEOMP	SS DUUNVEatrine Comp		Beta	<u>_[] ×</u>							
:	Follow the order of each tab bel	ow to perform the E	MC.								
م الم	1) Enter Scanning Instrument Efficiencies	2) Enter Scan MDC	Parameters	3) View EMC Results							
	Scan MDC Required per Contaminant										
а ^{ран} . •••	Contaminant D	CGLw* Area	Factor So	an MDC Required*							
• • • • • • • • • • • • • • • • • • • •	Gross Activity 2	0,609	3.01	62,033							
	Statistical Desig	<u>]n</u>	Hot S	Spot Design							
,	N/2:	8	Actual Scan MI	DC*: 1,653							
·•	Bounded Area (m²): 5	5.4	Area Fa	ctor: N/A							
·	Area Factor: 3.	01	m²): N/A								
	DCGLw*: 20,	609	Post-EMCI	N/2: 8							
· ·	Scan MDC Required*: 62,	033 COMPAS	S	· · · · · · · · · · · · · · · · · · ·							
.н.	* dpm/100 cm ²	i	No additional samp scan MDC is less th contaminant.	les are required because the actual nan the DCGLw for each							
ا و د د منت قم	₩ F Enab v1.0.0	ole Trainin <u>c</u>		<u>OK</u>							

ATTACHMENT 8 . 15

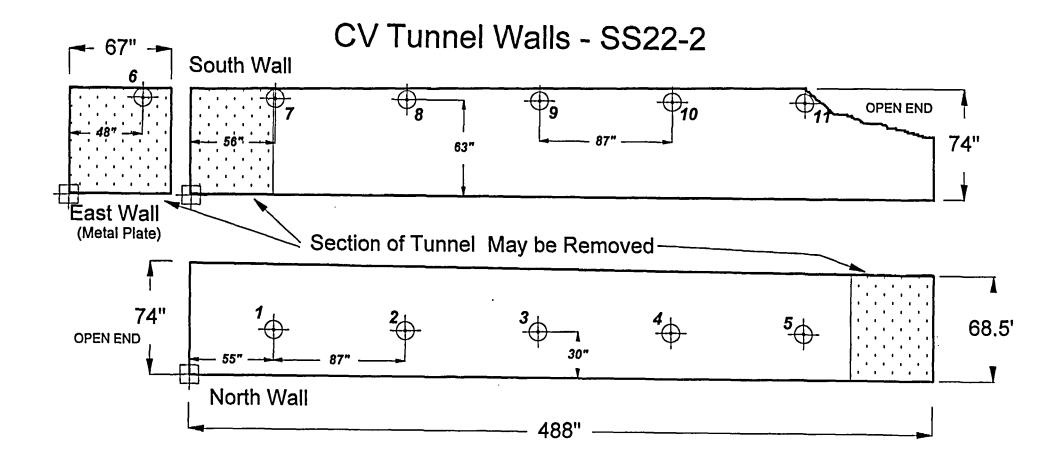
	C	V TUNNEL -	VAR	ABILITY		
43-68B				SR-0106		BHB
No.	Counts	Count Time (sec)	Mode	Designator		Unshielded
1	304	60	SCL	Unshielded	β	304
2	337	60	SCL	Unshielded	β	337
3	313	60	SCL	Unshielded	β	313
4	288	60	SCL	Unshielded	β	288
5	338	60	SCL	Unshielded	β	338
6	316	60	SCL	Unshielded	β	316
7	244	60	SCL	Unshielded	β	244
8	362	60	SCL	Unshielded	β	362
9	301	60	SCL	Unshielded	β	301
11	318	60	SCL	Unshielded	ß	318
12	298	60	SCL	Unshielded	ß	298
13	266	60	SCL	Unshielded	β	266
14	237	60	SCL	Unshielded	ß	237
15	304	60	SCL	Unshielded	ß	304
16	322	60	SCL	Unshielded	ß	322
17	431	60	SCL	Unshielded	β	431
18	323	60	SCL	Unshielded	β	323
19	316	60	SCL	Unshielded	β	316
20	398	60	SCL	Unshielded	β	398
21	391	60	SCL	Unshielded	β	391
22	398	60	SCL	Unshielded	β	398
23	401	60	SCL	Unshielded	β	401
	<u> </u>					
			Minimu	2.37E+02		
			Maximu	4.31E+02		
			Media	3.17E+02		
				Ме	an⇒	3.28E+02
				Sigr	na ⇒	5.13E+01

ATTACHMENT_ 9 _ 1

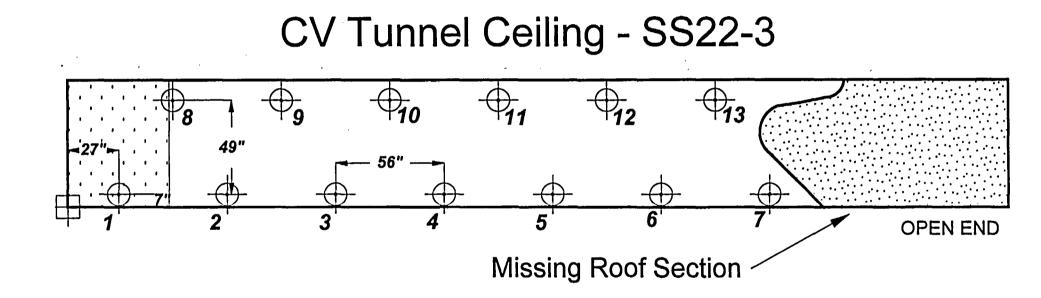
. •


SEAL CHAMBER VARIABILITY									
43-68B						SR-120	BHB		
No.	Counts	Count Time (sec)	Mode	Designator		Shielded	Unshielded		
1	206	60	SCL	Shielded	ß		255		
2	255	60	SCL	Unshielded		206			
3	209	60	SCL	Shielded	ß		328		
4	328	60	SCL	Unshielded	<u> </u>	209			
5	232	60	SCL	Shielded	ß		385		
6	385	60	SCL	Unshielded	ß	232			
7	205	60	SCL	Shielded	ß		333		
8	333	60	SCL	Unshielded	ß	205			
9	223	60	SCL	Shielded	ß		268		
10	268	60	SCL	Unshielded		223			
11	209	60	SCL	Shielded	ß		263		
12	263	60	SCL	Unshielded	β	209			
13	155	60	SCL	Shielded	ß		267		
14	267	60	SCL	Unshielded	ß	155			
15	170	60	SCL	Shielded	β		260		
16	260	60	SCL	Unshielded		170			
17	326	60	SCL	Shielded	β		477		
18	477	60	SCL	Unshielded	ß	326			
19	372	60	SCL	Shielded	ß		451		
20	451	60	SCL	Unshielded	ß	372			
21	540	60	SCL	Shielded	β	:	590		
22	590	60	SCL	Unshielded	ß	540			
23	529	60	SCL	Shielded	ß		705		
24	705	60	SCL	Unshielded	ß	529			
_									
				Minimum ⇒		1.55E+02	2.55E+02		
				Maximum ⇒ Median ⇒		5.40E+02	7.05E+02		
						2.16E+02	3.31E+02		
				Me	an⇒	2.81E+02	3.82E+02		
				Sig	ma ⇒	1.33E+02	1.47E+02		

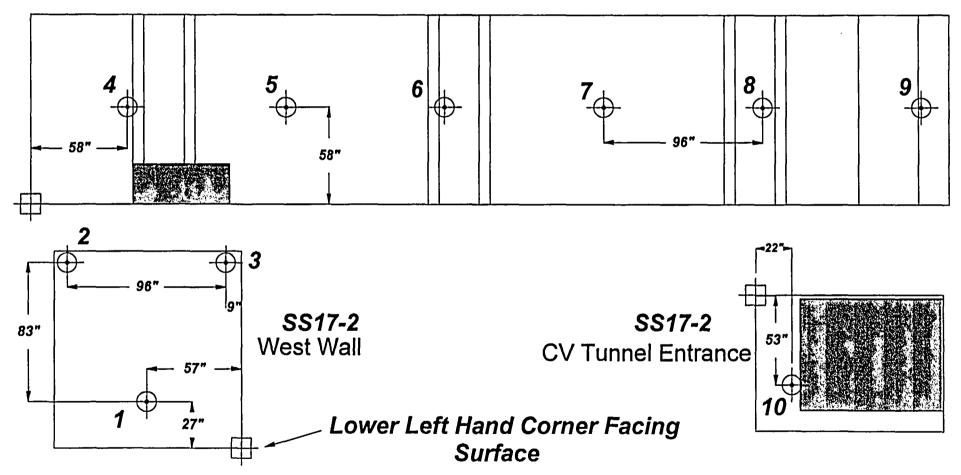
ATTACHMENT 9.2

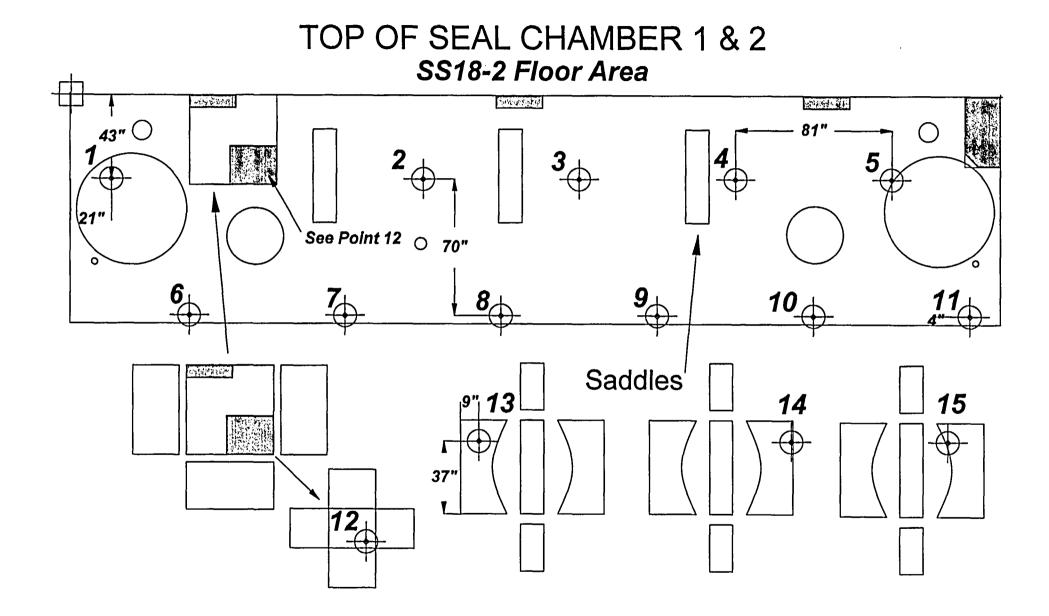

	·					te Backgroun					
37122N21	Instrument 95348				Counts 7.26E+03	Count Time (sec)	Mode	Designator	-	FSS-001	BHB
0	BKGND Source Check	1/4/2002	8:52 9:07	1	1.79E+05	1800 60	SCL SCL	Inital Background Source	β		
2	BKGND	1/4/2002		2	4.40E+01	1800	SCL	Inital Background		Concr ete CF(cpm) ⇒	0
14	Source Check	1/4/2002	10:39	2	1.51E+05	60	SCL	Source	α	Shielded	Unshielded
15	CON A1S	1/4/2002	13:00	1	2.78E+02	60	SCL	Shielded	ß	2.78E+02	
16	CON A1U	1/4/2002			3.88E+02	60	SCL	Unshielded	B		3.88E+02
17 18	CON A2S CON A2U	1/4/2002		1 1	2.39E+02 2.22E+02	60 60	SCL	Shielded Unshielded	B	2.39E+02	2.22E+02
19	CON A3S		13:28	1	2.39E+02	60	SCL	Shielded	B	2.39E+02	
20	CON A3U	1/4/2002		1	2.62E+02	60	SCL	Unshielded	B		2.62E+02
21	CON A4S		13:36	1	2.45E+02	60	SCL	Shielded	B	2.45E+02	
22	CON A4U CON A5S	1/4/2002	<u>13:38</u> 13:58	1	2.71E+02 2.00E+02	<u> </u>	SCL SCL	Unshielded Shielded	B B	2.00E+02	2.71E+02
24	CON ASU	1/4/2002		1	2.82E+02	60	SCL	Unshielded	B	2.002+02	2.82E+02
25	CON A6S	1/4/2002		1	1.84E+02	60	SCL	Shielded	B	1.84E+02	
26	CON A6U	1/4/2002		1	3.10E+02	60	SCL	Unshielded	B		3.10E+02
27	CON A7S	1/4/2002		1	1.98E+02	60	SCL	Shielded	B	1.98E+02	
<u>28</u> 29	CON A7U CON A8S	1/4/2002		<u> </u>	3.15E+02 2.34E+02	<u>60</u>	SCL SCL	Unshielded Shielded	B	2.34E+02	3.15E+02
30	CON A8S	1/4/2002		1	2.31E+02	60	SCL	Shielded	ß	2.31E+02	
31	CON A8U	1/4/2002	14:24	1	2.88E+02	60	SCL_	Unshielded	В		2.88E+02
32	CON A9S		14:31	1	2.65E+02	60	SCL	Shielded	B	2.65E+02	
<u>33</u> 34	CON A9U CON A10S	1/4/2002		<u>1</u>	2.89E+02 2.46E+02	<u>60</u> 60	SCL SCL	Unshielded Shielded	B	2.46E+02	2.89E+02
34	CON A105	1/4/2002		1	3.16E+02	60	SCL	Unshielded	B	2.402+02	3.16E+02
36	CON A11S	1/4/2002	15:10	1	1.95E+02	60	SCL	Shielded	B	1.95E+02	
37	CON A11U	1/4/2002		1	2.94E+02	60	SCL	Unshielded	B		2.94E+02
38	CON A12S	1/4/2002		1	2.21E+02	60	SCL	Shielded	B	2.21E+02	
<u>39</u> 40	CON A12U CON A13S	1/4/2002	15:14 15:23	<u> </u>	2.84E+02 1.74E+02	<u> 60 </u>	SCL SCL	Unshielded Shielded	В В	1.74E+02	2.84E+02
41	CON A13U	1/4/2002		1	2.94E+02	60	SCL	Unshielded	B	1.746702	2.94E+02
42	CON A14S	1/4/2002		1	1.96E+02	60	SCL	Shielded	B	1.96E+02	
43	CON A14U	1/4/2002			3.33E+02	60	SCL	Unshielded	B.		3.33E+02
44	CON A15S	1/4/2002		1	2.16E+02	60	SCL	Shielded	β β	2.16E+02	0.455.00
<u>45</u> 46	CON A15U CON A16S	1/4/2002		1	3.45E+02 1.83E+02	<u> 60 </u>	SCL SCL	Unshielded Shielded		1.83E+02	3.45E+02
47	CON A16U	1/4/2002		1	3.13E+02	60	SCL	Unshielded	B B	1.002.102	3.13E+02
48	CON A17S	1/4/2002	15:33	1	1.82E+02	60	SCL	Shielded	β β	1.82E+02	
49	_CON A17U	1/4/2002			3.22E+02	60	SCL	Unshielded	ß		3.22E+02
50 51	CON A18S CON A18U	1/4/2002		1	1.84E+02 3.24E+02	60 60	SCL SCL	Shielded Unshielded	B	1.84E+02	3.24E+02
52	CON A19S	1/4/2002		<u> </u>	1.91E+02	60	SCL	Shielded	_β _β	1.91E+02	3.246702
53	CON A19U	1/4/2002		1	3.07E+02	60	SCL	Unshielded	B		3.07E+02
54	CON A20S	1/4/2002		1	1.94E+02	60	SCL	Shielded	ß	1.94E+02	
55	CON A20U	1/4/2002			3.33E+02	60	SCL	Unshielded	B	0.005.00	3.33E+02
56 57	CON A21S CON A21U	1/4/2002 1/4/2002		1 1	2.23E+02 2.92E+02	60 60	SCL SCL	Shielded Unshielded	β B	2.23E+02	2.92E+02
58		1/4/2002		1	1.72E+02	60	SCL	Shielded	B	1.72E+02	2.322.02
59	CON A22U	1/4/2002	16:00	1	2.80E+02	60	SCL_	Unshielded	β	· · · · ·	2.80E+02
60		1/4/2002		1	1.94E+02	60	SCL	Shielded	β	1.94E+02	
<u>61</u> 62	CON A23U CON A24S	1/4/2002		1	3.29E+02 1.87E+02	<u> </u>		Unshielded Shielded	B	1.87E+02	3.29E+02
62		1/4/2002		1	1.87E+02 3.48E+02	60 60	SCL	Unshielded	β β	1.0/2+02	3.48E+02
64		1/4/2002		1	2.07E+02	60	SCL	Shielded	β	2.07E+02	0.100.02
65	CON A25U	1/4/2002	16:07	1	3.72E+02	60	SCL	Unshielded	β β		3.72E+02
66 67		1/4/2002		1	2.09E+02	60	SCL	Shielded	β β	2.09E+02	0.005.00
<u>67</u> 68		1/4/2002		<u>1</u>	3.26E+02 2.07E+02	<u>60</u>	SCL SCL	Unshielded Shielded	β B	2.07E+02	3.26E+02
69		1/4/2002		1	3.30E+02	60	SCL	Unshielded	β	2.012+02	3.30E+02
70	CON A28S	1/4/2002		1	2.30E+02	60	SCL	Shielded	β	2.30E+02	1
71	CON A28U	1/4/2002		1	3.06E+02	60	SCL	Unshielded	β		3.06E+02
72		1/4/2002		1	2.13E+02	60 60	SCL	Shielded	ß	2.13E+02	2 505+02
<u>73</u> 74		1/4/2002		<u>1</u> 1	2.58E+02 2.33E+02	<u>60</u>	SCL SCL	Unshielded Shielded	β β	2.33E+02	2.58E+02
75		1/4/2002		1	2.89E+02	60	SCL	Unshielded	B	2.002.02	2.89E+02
76	CON A31S	1/4/2002	16:28	1	1.84E+02	60	SCL	Shielded	β	1.84E+02	
		1/4/2002		1	2.63E+02	60	SCL	Unshielded	β		2.63E+02
	Source Check	1/4/2002	17:27	1	1.70E+05	60	SCL		β		
									Minim	um ⇒ 1.72E+02	2.22E+02
										$um \Rightarrow 2.78E+02$	3.88E+02
										ean ⇒ 2.11E+02	3.06E+02
L									Sia	ima ⇒ 2.69E+01	3.45E+01
					-	10		_			

ATTACHMENT 10 - (


CV Tunnel Floor - SS22-1

ATTACHMENT_ // _ /


ATTACHMENT_11_2


ATTACHMENT_ // . 3

TOP OF SEAL CHAMBER 1 & 2

North Wall SS17-2

ATTACHMENT 11 . 4

ATTACHMENT_ 11 . 5