Appendix A

Chamber 3 area Survey Design

•

.

	CALCU	LATION DESCRIP	PTION			
Calculation Number		Revision Number	Effective Date	P	Page Nu	mber
E900-03-032		D	8/2/04		1	of 10
Subject Top of Seal Chamber 3 - Sui	rvey Design	<u>. </u>	<u> </u>			
Question 1 - Is this calculation de	fined as "In QA Sco	ppe"? Refer to definition :	3.5. Yes 🛛 No			
Question 2 - Is this calculation de	fined as a "Design (· Calculation"? Refer to de	finitions 3.2 and 3.3.	Yes 🛛	No	
Question 3 - Does the calculation	have the potential	to affect an SSC as desc	ribed in the USAR?	Yes 🗌	No	\boxtimes
NOTES: If a "Yes" answer is obtained Assurance Plan. If a "Yes" answer calculation as the Technical Reviewer calculation. Calculations that do not h	I for Question 1, the ca r is obtained for Que r. If a "YES" answer is ave the potential to af	alculation must meet the req estion 2, the Calculation O s obtained for Question 3, S fect SSC's may be implemen	uirements of the SNEC I riginator's immediate su NEC Management appr nted by the TR.	Facility Decupervisor s oval is requ	commiss should r uired to	sioning Quali not review th implement th
	DESCI	RIPTION OF REVI	SION			
	APPF	ROVAL SIGNATUF	RES			
Calculation Originator	APPF B. Brosey/	ROVAL SIGNATUR B. Brown	RES	Date	F	z 64
Calculation Originator Technical Reviewer	APPF B. Brosey/ R. Holmes/	ROVAL SIGNATUF 3. Brosm Rolwn A. D.A	RES	Date	8/1	z 64 2 64
Calculation Originator Technical Reviewer Additional Review	APPF B. Brosey/ R. Holmes/ A. Paynter/	ROVAL SIGNATUR B. Brown Robert Ha	RES	Date Date Date	8/ 2A	z 6 4 /2/04
Calculation Originator Technical Reviewer Additional Review Additional Review	APPF B. Brosey/ R. Holmes/ A. Paynter/	ROVAL SIGNATUR B. Brosm Robert Att	RES	Date Date Date Date	8/2 2 A	z 64 2/64 2584

•

FirstEnergy

SNEC CALCULATION SHEET

Calculation Number

E900-03-032

Page Number

Subject

Top of Seal Chamber 3 - Survey Plan

1.0 PURPOSE

1.1 The purpose of this calculation is to develop a survey design for the top of Seal Chamber 3 (SC3) (roof and walls). Seal Chamber 3 survey units are shown in Attachment 1-1 & 1-2.

Revision Number

Ó

Table 1, Survey Unit Information

Survey Units	Location	Material Types	Area Classification	Area (m^2)
SS17-1	Walls Above Seal Chamber 3 Roof	Concrete/Steel	3	35.4
SS18-1	Roof of Seal Chamber 3	Concrete/Steel	22	20.4

NOTE: There is << 2 m² of steel surface area included within these survey units. The majority of this steel surface is severely corroded with portions that are difficult to access.

2.0 SUMMARY OF RESULTS

The following information should be used to develop a survey request for this survey design:

2.1 GFPC Scanning Criteria

- 2.1.1 A gas flow proportional counter (GFPC) shall be used in the beta detection mode for the initial scan survey work (Ludlum 2350-1 with a 43-68B probe).
- 2.1.2 All GFPC instruments used shall demonstrate an efficiency (ϵ_t) at or above <u>23.9%</u> (value used for planning). Detector efficiency factors are presented in the following Table.

Table 2, GFPC Detection Efficiency Results Used for Planning

Material Type	εί	ε _s	ɛ _t (as %)*	ECF	% Cs-137	Resulting counts/disintegration
Concrete	0.478	0.5	23.9%	0.881	0.851	0.179

*Typical SNEC GFPC detector efficiency factors (as of 7/1/04) are provided in Attachment 2-1.

NOTE 1: Total efficiency should not be less than ε_t value for any instrument used during this survey effort.

- 2.1.3 An efficiency correction factor (ECF) is applied to compensate for efficiency loss over rough surface areas based on **Reference 3.1** criteria and **Attachment 3-1**.
- 2.1.4 The amount of detectable beta emitter is dependant on the amount of Cs-137 present in the radionuclide mix. From **Reference 3.2** the mix is determined to be 85.12% Cs-137. No other nuclides are credited with providing any additional detectable beta emissions for this mix.

Instrument Type Used	Area or Structure	Material Type	Scan Speed	Surface to Detector Face	Coverage	MDCscan
			0.9" per sec			2
GFPC (beta)	SS17-1 & SS18-1	Concrete	(2.2 cm/sec)	Contact	50%	738 dpm/100 cm*
GFPC (beta)	SS17-1 & SS18-1	Steel	0.9" per sec (2.2 cm/sec)	Contact	All available in designated area*	738 dpm/100 cm²

Table 3, Summary Of GFPC Scanning Parameters

The scan locations are assigned IAW Table 5-5 of Reference 3.3. See Attachment 1-1 for areas identified for scanning.

*Only lightly corroded and accessible steel surfaces should be scanned using a GFPC beta detection system. A lightly corroded steel surface is typically discolored and may be not entirely smooth, but it must not have significant scale present (surface erosion). When in doubt about surface quality, contact the cognizant GRCS.

FirstEnergy	SNEC CALCULATION SHEET		l
Calculation Number	Revision Number	Page Number	1

E900-03-032

0

Page 3 of 10

Subject

Top of Seal Chamber 3 - Survey Plan

- 2.1.5 The action level during <u>first phase</u> scanning is <u>900 cpm</u> above background. If this level is reached, the surveyor should stop and perform a count of at least <u>1/2 minute</u> duration to identify the <u>actual</u> second phase count rate from the elevated area. If the second phase count rate is equal to or greater than <u>1,300 cpm</u>, the area must be identified, bounded and documented to include an area estimate.
- 2.1.6 Any area or hardware that cannot be adequately surveyed with a GFPC as described in Table 3 above, should be identified for Nal scanning IAW Section 2.2.

2.2 Nal Scanning Criteria

- 2.2.1 A 2" by 2" diameter Nal detector with a Cs-137 window setting shall be used for gamma scanning these survey units IAW Table 4 parameters.
- 2.2.2 The conversion factor for Nal survey instruments used shall not be less than <u>208,302 cpm/mR/h</u> (see Attachment 2-1 for current Nal instrument conversion factors as of 7-1-04).

Instrument Type Used	Area or Structure	Material Typ e	Scan Speed	Surface to Detector Face	Coverage	MDCscan*
Nal (2" by 2" Cs-			1" per sec			
137 Window)	SS17-1 & SS18-1	Concrete	(2.54 cm/sec)	2* (5.08 cm)	50%	2.7 pCi/g
Nal (2" by 2" Cs-			2" per sec			4,208 dom/100
137 Window)	<u>SS18-1</u>	Steel	(5.08 cm/sec)	2" (5.08 cm)	100%	cm ²

Table 4, Summary Of Scanning Parameters

The scan locations are assigned IAW Table 5-5 of Reference 3.3. See Attachment 1-1 for areas identified for scanning. *See Attachment 4-1 to 4-4 for calculation results based on a 100 cpm background value.

- 2.2.3 The <u>action level</u> during first phase scanning using a Nal instrument is <u>200 gross</u> <u>cpm</u>. If this level is reached, the surveyor should stop and perform a count of at least 15 seconds duration to identify the actual count rate of the elevated area.
- 2.2.4 Based on Nal scanning work, sample areas IAW the following:
 - 2.2.4.1 When an area is confirmed to be above the action level the location should be marked for sampling (see Section 2.5) These areas shall be bounded and documented, and
 - 2.2.4.2 At the highest location encountered during the Nal scanning process.

2.3 <u>DCGLw Values</u>

The following Table shows the DCGLw values that were used to plan surveys in these areas. Note that the SNEC facility has no specific volumetric DCGLw value for concrete. Instead, the soil volumetric DCGLw is used as a planning tool.

With regard to Nal scanning, a Nal detector is used to scan the areas shown on **Attachment 1-1.** Areas above the action level are then sampled to determine their real concentration and show what fraction of Table 5 values exist in the sampled media.

FratEnergy	SNEC CALCULATION SHEET	
and a second		

Calculation Number E900-03-032

Revision Number

0

Page 4 of 10

Page Number

Subject

Top of Seal Chamber 3 - Survey Plan

Table 5, Summary Of DCGLw Values

FSS Calculation No.	Surface DCGLw (dpm/100 cm ²)	Volumetric DCGLw (pCl/g)
E900-04-008	GA = 7,650 (5,737 A.L.)	3.19 (2.39 A.L.) for Cs-137

DCGLw values from Reference 3.2.

Fixed Point GFPC Static Measurements 2.4

The minimum required number of static survey points for each area is provided in 2.4.1 Table 6 (see Attachment 5-1 to 5-4 for calculation of minimum No. of random start systematic grid survey points - Compass output). See Attachment 6-1 to 6-2 for calculation of GFPC MDCscan value.

Table 6, Minimum No. Random Start Systematic Grid Survey Points (GFPC)

Survey Units	Location	Static Points
SS17-1	Walls Above Seal Chamber 3	8
SS18-1	Roof of Seal Chamber 3	8

See Attachment 7-1 for locations of fixed point measurements.

- 2.4.2 VSP (Reference 3.4) is used to plot all measurement points on Attachment 7-1. The actual number of random start systematically spaced measurement points is greater than that required by the Compass computer code because of any of the following:
 - placement of the initial random starting point (edge effects),
 - odd shaped diagrams, and/or
 - coverage concerns

2.5 Sampling of Concrete and Steel Surfaces

Sample concrete or steel materials at locations above action levels when scanning with a Nal detector. (see Section 2.2).

- 2.5.1 A 4" long core bore sample is preferred so that the depth of penetration can be identified. However, when a core bore cannot be taken because of the quality of the concrete, or because of limited access in an area, sampling should remove the first 1" of concrete and yield a volume of at least 200 cc to ensure an adequate counting MDA for Cs-137 (a 4" diameter area by 1" deep = \sim 200 cc).
- 2.5.2 For steel surfaces above the action level, scrape the surface to collect a sample for gamma scanning by removing as much material as possible in the suspect area. Document the approximate size of the area where the materials were removed. Whenever possible, obtain a volume of no less then 25 cc's (200 cc's is preferred).
- 2.5.3 In general, samples should be collected at all locations where measurements indicate elevated count rates exist above action levels, or where measurement capability is deemed inadequate due to poor geometry.

FirstEnergy	SNEC CALCULATION SHEET			
Calculation Number	Revision Number	Page Number		

E900-03-032

Subject

Top of Seal Chamber 3 - Survey Plan

3.0 <u>REFERENCES</u>

- 3.1 SNEC Calculation No. 6900-02-028, GFPC Instrument Efficiency Loss Study.
- 3.2 SNEC Calculation No. E900-04-008, "Assessment of E900-03-030, Rev 0 Seal Chambers Survey Plan".
- 3.3 Plan SNEC Facility License Termination Plan.
- 3.4 Visual Sample Plan, Version 2.0 (or greater), Copyright 2002, Battelle Memorial Institute.
- 3.5 ISO 7503-1, Evaluation of Surface Contamination, Part 1: Beta-emitters (maximum beta energy greater than 0.15 MeV) and alpha-emitters, 1988.
- 3.6 SNEC Procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design".
- 3.7 GPU Nuclear, SNEC Facility, SSGS Footprint, Drawing, SNECRM-039, 040 & 041.
- 3.8 SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA".
- 3.9 MicroShield, Computer Radiation Shielding Code, Version 5.05-00121, Grove Engineering.
- 3.10 NUREG-1507, "Minimum Detectable Concentrations With Typical Radiation Survey Instruments for Various Contaminants and Field Conditions," June 1998.
- 3.11 SNEC Procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".
- 3.12 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.
- 3.13 Compass Computer Program, Version 1.0.0, Oak Ridge Institute for Science and Education.
- 3.14 Microsoft Excel 97, Microsoft Corporation Inc., SR-2, 1985-1997.

4.0 ASSUMPTIONS AND BASIC DATA

4.1 Remediation History

The roof of Seal Chamber 3 is located in the footprint of the SSGS area. This area was cleaned-up (general housekeeping) to remove loose material and prepare the area for FSS. A post remediation type survey was then performed in the area. However, no remediation was necessary with exception of removal of all downcomer steel cover plates to allow access to Seal Chamber 3. Since access to and from the interior of Seal Chamber 3 was via this route, the same radionuclide mix is assumed for this area as was used inside Seal Chamber 3.

- 4.2 Cs-137's detection efficiency has been checked by SNEC personnel using ISO standard 7503-1 methodology (Reference 3.5). The SNEC facility uses a conservatively low GFPC efficiency as input to the survey design process.
- 4.3 Survey unit variability (GFPC only) used to plan the number of fixed point measurement locations, is shown in **Attachment 8-1**.
- 4.4 An GFPC detector stand-off distance of 0.33" is assumed for all areas to compensate for rough surfaces in each survey unit. This factor corrects the overall efficiency by a factor of 0.88 (see **Reference 3.1**), as shown on **Attachment 3-1**.

SNEC CALCULATION SHEET			
Calculation Number	F	Revision Number	Page Number
E900-03-032		0	Page 6 of <u>/0</u>

Subject

Top of Seal Chamber 3 - Survey Plan

- 4.5 The detectors physical probe area is 126 cm², and the instrument is calibrated to the same source area for Cs-137. The gross activity DCGLw is taken to be 5,737 dpm/100 cm² x (126 cm² physical probe area/100 cm²) = 7,229 (0.8512 disintegration of Cs-137/ disintegration in mix) x ε_i (0.478) x ε_s (0.5) x 0.881 (distance factor) which yields ~1,296 net cpm above background (Compass calculates 1,301 ncpm as the gross beta DCGLw). The 0.1792 count per disintegration counting efficiency considers only the Cs-137 contaminant present in the sample material matrix, and is calculated by: ε_i (0.478) x ε_s (0.5) x 0.8512 disintegration in mix x 0.881 (efficiency loss factor due to distance from surface) = <u>0.179 cts/disintegration</u>.
- 4.6 Survey units described in this survey design were inspected IAW Reference 3.6. A copy of portions of the SNEC facility post-remediation inspection report are included (see Attachment 9-1 to 9-4). Surface defects (gouges, cracks, etc.), are present within these survey units, yielding a mean rough surface factor of 0.881. Thus the average concentration of the source term will be overestimated by using this factor for all surfaces (GFPC only).
- 4.7 Inaccessible areas or corroded steel surfaces, or any area where a 43-68 beta probe can not be used, shall be scanned using a 2" x 2" Nal detector.
- 4.8 MicroShield models containing Cs-137 were developed for this survey design. One slab and one surface model were used to work out Nal scan MDC values (see Attachment 10-1 to 10-3):
 - a 1" thick slab of concrete 12" in diameter with a density of 2.35 g/cc. This model assumes that the majority of the activity resides in no more than the first inch of concrete and that elevated areas are small in diameter. These models are based on previous remediation information from other areas within the SSGS facility.
 - a surface deposition of 12" in diameter to simulate a surface area of concrete or steel. A 1/8" layer of Fe_xO_x is assumed to compensate for a heavily corroded steel surfaces.
- 4.9 The modeled concentration used was 1 pCi/g or 1 pCi/cm² Cs-137, and a full density concrete is assumed. Then the concentration of Cs-137 in the first model is 2.35g/cc x 1 pCi/g or 2.35E-06 uCi/cc of Cs-137 for slab model, and 1.00E-06 uCi/cm² for the surface model. The calculated MDCscan for these two models is shown in the following table for a typical 2" by 2" Nal detector.

Material/Model	Estimated BKGND (cts/min)	MDC _{SCAN}
1" Concrete Slab (2.35 g/cc)	100	Attachment 4-1 & 4-2 = 2.7 pCi/g
Surface Deposition	100	Attachment 4-3 & 4-4 = 4,208 dpm/100 cm ²

Table	7, Nal	Scanning	Parameters
-------	--------	----------	------------

See attachment 4-1 to 4-4.

- 4.10 The results of the MicroShield modeling indicate that an exposure rate of approximately 7.888E-05 mR/h is obtained at a distance of 3" (2" inches from the face of the detector), from the surface of the slab model, and 1.563E-05 mR/h is seen 3 inches from the surface model. Exposure rate is measured to the center of the detector and therefore the air gap between the surface of both models is taken to be 2".
- 4.11 The majority of the structural surface area is concrete. GFPC measurements of structural concrete are compared to concrete background values (see Williamsburg concrete background values Attachment 11-1).

FirstEnergy	SNEC CALCU	LATION SHEET	
Calculation Number		Revision Number	Page Number
E900-03-032		0	Page 7 of _ <i>(</i> 0_

Subject

Top of Seal Chamber 3 - Survey Plan

- 4.12 The scan MDC calculation is determined based on a 1.38 index of sensitivity at a 95% correct detection probability and 60% false positive rate. In all cases, the scan MDC is less than the gross activity DCGLw for these survey units. A surveyor efficiency factor of 0.5 is assumed.
- 4.13 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in these survey units.
- 4.14 No special measurements are included for this survey design.
- 4.15 The applicable SNEC site radionuclides and their associated DCGLw values are listed on Exhibit 1 of this calculation.
- 4.16 The survey design checklist is listed in Exhibit 2.
- 4.17 Diagrams shown in this survey design have been developed from Reference 3.7.
- 4.18 There are no Class 1 survey units covered by this survey design. Thus area factors do not apply to these survey units.
- 4.19 The decision error for this survey design are listed on Attachment 5-1 to 5-4 and are justified IAW Reference 3.3 criteria.
- 4.20 Analysis results (MDA requirements, etc.) will be IAW Reference 3.11 criteria.

5.0 CALCULATIONS

5.1 All complex calculations are performed internal to applicable computer codes or within an Excel spreadsheet previously identified.

6.0 APPENDICES

- 6.1 Attachment 1-1 to 1-2, diagram/photo of Seal Chamber 3 area.
- 6.2 **Attachment 2-1**, is typical calibration information for Nal and GFPC detection systems used at the SNEC facility as of 7-1-04.
- 6.3 **Attachment 3-1**, is a calculation result for determining efficiency loss for a GFPC detector as a function of distance from a source.
- 6.4 Attachment 4-1 to 4-4, is calculation sheets to determine the scan MDC for a Nal detection system using a typical background count rate and a 12" diameter, 1" thick MicroShield slab model, and a 12" diameter surface deposition model.
- 6.5 Attachment 5-1 to 5-4, are Compass output results for the top of Seal Chamber 3.
- 6.6 Attachment 6-1 to 6-2, are calculation sheets used to determine the scan MDC for a GFPC detection system.
- 6.7 **Attachment 7-1**, is the random start, systematic grid diagram of GFPC fixed point survey locations.
- 6.8 **Attachment 8-1**, is the GFPC variability measurements from the roof of Seal Chamber three (3).
- 6.9 Attachment 9-1 to 9-4, are sections of survey unit inspection reports for the top of the Seal Chamber 3 area.

FirstEnergy	SNEC CALCULATION SHEET		
Calculation Number	Revision Number	Page Number	
E900-03-032	0	Page 8 of <u>10</u>	
Subject			

Top of Seal Chamber 3 - Survey Plan

- 6.10 Attachment 10-1 to 10-3, is MicroShield output for two (2) models used for planning Nal measurements. Model one is a 1" thick slab. Model two is for a surface deposition.
- 6.11 Attachment 11-1, are background measurements of concrete using a GFPC instrument in an non-impacted area (Williamsburg).

FirstEnergy

SNEC CALCULATION SHEET

Calculation Number E900-03-032 Revision Number

Page Number

Subject

Top of Seal Chamber 3 - Survey Plan

Exhibit 1

SNEC Facility Individual DCGL Values (a)

Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm ²)	25 mrem/y Limit (All Pathways) Open Land Areas (Surface & Subsurface) (pCi/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	1.9E+04
Pu-238	3.0E+01	1.8	0.41
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	0.61

NOTES:

(a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

(b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

FicstEnergy

SNEC CALCULATION SHEET

Calculation Number

E900-03-032

Revision Number

0

Page 10 of <u>10</u>

Page Number

Subject

Top of Seal Chamber 3 - Survey Plan

Exhibit 2 <u>Survey Design Checklist (From Reference 3.8)</u>

Calcul	ation No.			
	E900-03-032	SS17-1 & SS18-1		
ITEM	REVIEW	Status (Circle One)	Reviewer	
1	Has a survey design calculation number be description	en assigned and is a survey design summary n provided?	Yes N/A	BA B/2/04
2	Are drawings/diagrams adequate for the s hear	subject area (drawings should have compass dings)?	Yes, N/A	Est Elzloy
3	Are boundaries properly identified and is th	e survey area classification clearly indicated?	Yes N/A	131 9/1/04
4	Has the survey area(s) been properly of	divided into survey units IAW EXHIBIT 10	Yes N/A	and elify
5	Are physical characteristics of the	area/location or system documented?	Yes N/A	12 8/2/04
6	Is a remediation effective	eness discussion included?	Yes, N/A	Part 8/2/04
7	Have characterization survey and/or sam comparable to app	oling results been converted to units that are licable DCGL values?	Yes N/A	aut 8/2/14
8	Is survey and/or sampling data that was used	for determining survey unit variance included?	Yes N/A	PSA B/2/14
9	Is a description of the background reference sampling results included along v	e areas (or materials) and their survey and/or with a justification for their selection?	Yes N/A .	1004 8/2/04
10	Are applicable survey and/or sampling data t	hat was used to determine variability included?	Yes N/A	May 8/2/04
11	Will the condition of the survey area have probable impact been of	an impact on the survey design, and has the considered in the design?	Yes N/A	All 8/2/04
12	Has any special area characteristic incluc previously noted during characterization) b de	ling any additional residual radioactivity (not een identified along with its impact on survey sign?	Yes, N/A	AL 8/2/04
13	Are all necessary supporting calculations a	nd/or site procedures referenced or included?	Yes N/A	174 8/2/04
14	Has an effective DCGLw beer	identified for the survey unit(s)?	Yes N/A	AD1 8/2/04
15	Was the appropriate DCGL _{EMC} inclu	Ided in the survey design calculation?	Yes, N/A	ASH 0/4/04
16	Has the statistical tests that will be us	ed to evaluate the data been identified?	Yes N/A	ay e/2/04
17	Has an elevated measurement comp	arison been performed (Class 1 Area)?	Yes, N/A	PA Bleloy
18	Has the decision error levels been identified	and are the necessary justifications provided?	Yes N/A	QX 8/2/04
19	Has scan instrumentation been identified al	ong with the assigned scanning methodology?	Yes N/A	AV1-8/2/04
20	Has the scan rate been identified, and is the	e MDCscan adequate for the survey design?	Yes, N/A	DA 8/2/04
21	Are special measurements e.g., in-situ gamn and is the survey methodology, a	na-ray spectroscopy required under this design, and evaluation methods described?	Yes, N/A	AXA 8/2/04
22	Is survey instrumentation calibration data inc	luded and are detection sensitivities adequate?	Yes N/A	1948/2/04
23	Have the assigned sample and/or measureme or CAD drawing of the survey ar	ent locations been clearly identified on a diagram ea(s) along with their coordinates?	Yes N/A	PAL 8/2/04
24	Are investigation levels and administrative li clearly i	mits adequate, and are any associated actions ndicated?	Yes N/A	BY 8/4/04
25	For sample analysis, have the requ	uired MDA values been determined.?	Yes N/A	DAA 8/2/04
26	Has any special sampling methodology been	identified other than provided in Reference 6.3?	Yes, N/A).	ANA 8/2/04

NOTE: a copy of this completed form or equivalent, shall be included within the survey design calculation.

1.1 ATTACHMENT___

JUL 3 0 2004

2350 INSTRUMENT AND PROBE EFFICIENCY CHART 7/01/04 (Typical 2" by 2" Nal (Cs-137 W) Conversion Factors)

••	• = • • •					
Inst.#	Cal Due	AP#	1	Probe #	Cal Due	cpm/mR/h
98625	5/18/05	R&Y I		211680 Pk	5/18/05	214.882
98647	5/18/05	G & Y		211667 Pk	5/18/05	218.807
	!					
129423	5/18/05	P&Y		211687 Pk	5/18/05	213.539
	1					
117573	5/18/05	0&Y		211674 Pk	5/18/05	212.173
		,				
117566	4/9/05	G&R		185852 Pk	4/13/05	209.862
		1				
126183	11/19/04	B&R		206280 Pk	12/12/04	190,907
129429	11/3/04	Y&W		206283 Pk	10/31/04	177185
126198	11/03/04	R&W		196021Pk	5/25/05	209.194
126172	6/07/05	G&W		196022	6/07/05	208.302
129440	4/09/05	0&W		210938 Pk	4/14/05	205.603
120588	6/08/05	B&W		185844 Pk	6/09/05	216.654
95361	6/25/05	P&W	1	025686	6/28/05	211,799

2350 INSTRUMENT AND PROBE EFFICIENCY CHART7/01/04(Typical 43-68 Beta Efficiency Factors)

Different Instrument/Probe Cal. Due | Cesium only instruments (10mV to 100)

INST #	INST C/D	43-68 PROBE #	PROBE C/D	44-10 PROBE #	PROBE C/D	BETA EFF	ALPHA EFF
79037	04/05/05	122014	04/23/05			25.2%	N/A
126188	1/27/05	099186	1/27/05	ć		28.2%	N/A
126218	01/08/05	095080	01/09/05		· · · · · · · · · · · · · · · · · · ·	27.9%	N/A ·

ATTACHMENT 2.1

JUL 3 0 2004

ATTACHMENT 3.1

JUE 3 0 2004

where:

- b = background in counts per minute
- $b_i = background counts in observation interval$
- Conv = NaI manufacturers reported response to energy of contaminant (cpm/uR/h)
- d = index of sensitivity (Table 6.5 MARSSIM), 1.38 = 95% of correct detection's, 60% false positives
- $HS_d = hot \, spot \, diameter \, (in \, centimeters)$
- MDC_{scan} = Minimum Detectable Concentration for scanning (pCi/g)
- MDCR_i = Minimum Detectable Count Rate (ncpm)
- MDCR_{surveyor} = MDCR_i corrected by human performance factor (ncpm)
- MDER = Minimum Detectable Exposure Rate (uR/h)
- MS_{output} = MicroShield output exposure rate for 1 pCi/g of contaminant (mR/h)
- $O_i = observation Interval (seconds)$
- p = human performance factor
- SR = scan rate in centimeters per second

•

where:

b = background in counts per minute

 $b_i = background counts in observation interval$

Conv = NaI manufacturers or calibration information reported response to energy of contaminant (cpm/uR/h)

- d = index of sensitivity (Table 6.5 MARSSIM), 1.38 = 95% of correct detection's, 60% false positives
- $HS_d = hot \, spot \, diameter \, (in \, centimeters)$

 $MDC_{scan} = Minimum Detectable Concentration for scanning (pCi/cm²)$

MDCR_i = Minimum Detectable Count Rate (ncpm)

MDCR_{surveyor} = MDCR_i corrected by human performance factor (ncpm)

MDER = Minimum Detectable Exposure Rate (uR/h)

 $MS_{output} = MicroShield output exposure rate for 1 pCi/cm² of contaminant (mR/h)$

 $O_i = observation Interval (seconds)$

p = human performance factor

SR = scan rate in centimeters per second

Survey Plan Summary

Site:	TOP OF SEAL CHAMBER 3		
Planner(s):	ВНВ		
Survey Unit Name:	TOP OF SEAL CHAMBER 3a -	WALLS	
Comments:			
Area (m²):	35	Classification:	3
Selected Test:	WRS	Estimated Sigma (cpm):	34.5
DCGL (cpm):	1,301	Sample Size (N/2):	8
LBGR (cpm):	1,200	Estimated Conc. (cpm):	0
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100		

Prospective Power Curve

Attachment 5-1

Contaminant Summary

	DCGLw
Contaminant	(dpm/100 cm²)
Gross Activity	5,737

Beta Instrumentation Summary

Gross Beta DCGLw (dpm/100 cm Total Efficiency: Gross Beta DCGLw (cpm):	n²):	5,737 0.18 1,301			
ID Type			Mode		Area (cm²)
24 GFPC		<u></u>	Beta	<u> </u>	126
Contaminant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Gross Activity	187.87	1.0000	0.48	0.37	0.1792
¹ Average beta energy (keV) [N/A ² Activity fraction	indicates alpha	emission]			
Gross Survey Unit Mean (cpm): Count Time (min): 1	306 ± 35 (1-sign	na)			
Material		Number of BKG Counts	Average (cpm)	Standard Deviation (cpm)	MDC (dpm/100 cm ²)
Concrete		31	306	34.5	372

AHACHMENT 5-2

Survey Plan Summary

Site:	TOP OF SEAL CHAMBER 3		
Planner(s):	ВНВ		
Survey Unit Name:	TOP OF SEAL CHAMBER 3b - ROOF		
Comments:			
Area (m²):	20	Classification:	2
Selected Test:	WRS	Estimated Sigma (cpm):	34.5
DCGL (cpm):	1,301	Sample Size (N/2):	8
LBGR (cpm):	1,200	Estimated Conc. (cpm):	0
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100		

Prospective Power Curve

Attachment 5-3

Contaminant Summary

	DCGLw
Contaminant	(dpm/100 cm ²)
Gross Activity	5,737

Beta Instrumentation Summary

Gross Beta DCGLw (dpm/100 c	:m²):	5,737			
Total Efficiency:	•	0.18			
Gross Beta DCGLw (cpm):		1,301			
iD Type			Mode	•	Area (cm²)
24 GFPC			Beta		126
Contaminant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Gross Activity	187.87	1.0000	0.48	0.37	0.1792
¹ Average beta energy (keV) [N/ ² Activity fraction	A indicates alpha	emission]			
Gross Survey Unit Mean (cpm): Count Time (min): 1	306 ± 35 (1-sign	na)			
Material		Number of BKG Counts	Average (cpm)	Standard Deviation (cpm)	MDC (dpm/100 cm²)
Concrete		31	306	34.5	372

Beta Scan Measurement MDC Calculation

Top of Seal Chamber 3

$$\frac{r}{S_r} = 4$$
 Observation Interval (seconds)

 $\bar{O}_1 := \frac{W_d}{S_r}$

Observation Interval (seconds)

$$\varepsilon_1 := \varepsilon_1 \cdot \varepsilon_s$$

E1=0.1792

$$b_i := \frac{(b \cdot O_i)}{60}$$

b

$$C := \frac{1}{\left(\varepsilon_i \cdot \varepsilon_s \cdot \frac{A}{100}\right) \sqrt{p}}$$

C = 7.891

$$MDCR_{i} := \left(d \cdot \sqrt{b_{i}} \right) \cdot \frac{60}{O_{i}}$$

MDCR i = 93.5 <u>net counts per minute</u>

 MDCR i+b = 399.494
 gross counts per minute

$$\frac{MDCR_{i}}{O_{i}} = 23.4 \qquad \underline{net \ counts \ per \ minute \ in \ observation \ interval}$$

MDC_{scan} := C·MDCR_i

MARSSIM, Pages 6-38 to 6-43 Equations 6-9 & 6-10; and NUREG-1507, Pages 6-15 to 6-17 7/30/2004

ATTACHMENT 6-1

· · · · · · ·

where:

b = background counts per minute

b_j= background counts in observation interval

p = human performance factor

 W_d = detector width in centimeters

 $S_r = scan rate in centimeters per second$

d = index of sensitivity (Table 6.5 MARSSIM), 1.38 = 95% of correct detection's, 60% false positives $MDC_{scan} = Minimum$ Detectable Concentration for scanning (dpm/100 square centimeters)

C = constant used to convert MDCR to MDC

 $\varepsilon_i = instrument \, efficiency \, (counts/emission)$

 ε_s = source efficiency (emissions/disintegration)

A = instrument physical probe area (in square centimeters)

Attachment 6-2

7/30/2004

. .

SEAL CHAMBER 3 ROOF Variability Measurements SR-049											
	126179	JG1135	Time	Detector	Counts	Count Time (sec)	Mode	Designator	FSS-463	BHB	
			_						Steel CF(cpm) ⇒	0	
									Shielded	Unshielded	NET cpm
2	SC3-FP1S	12/3/2003	12:51	1	1.89E+02	60	SCL	Shielded B	1.89E+02	1.05.00.75.427-5782	AFRICAT
3_	SC3-FP1U	12/3/2003	12:52	1	2.84E+02	60	SCL	Unshielded ß	2272/3334i (JZ > 1/942)	2.84E+02	9.50E+01
4	SC3-FP2S	12/3/2003	12:54	1	2.30E+02	60	SCL	Shielded B	2.30E+02	NG\$\$\$\$\$\$\$\$\$\$\$	MERCE
5	SC3-FP2U	12/3/2003	12:55	1	2.76E+02	60	SCL	Unshielded B	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.76E+02	4.60E+01
6	SC3-FP3S	12/3/2003	12:56	1	2.06E+02	60	SCL	Shielded B	2.06E+02		307 507 80 100
7	SC3-FP3U	12/3/2003	12:57	1	2.54E+02	60	SCL	Unshielded B		2.54E+02	4.80E+01
8	SC3-FP4S	12/3/2003	12:59	1	2.09E+02	60	SCL	Shielded B	2.09E+02	1488829994438988	Str. Carlo
9	SC3-FP4U	12/3/2003	13:00	1	2.70E+02	60	SCL	Unshielded B	-HTREMONATOR	2.70E+02	6.10E+01
10	SC3-FP5S	12/3/2003	13:02	1	2.28E+02	60	SCL	Shielded B	2.28E+02	ni donni da da da da	50033-0727
11	SC3-FP5U	12/3/2003	13:03	1	2.92E+02	60	SCL	Unshielded B		2.92E+02	6.40E+01
12	SC3-FP6S	12/3/2003	13:05	1	1.40E+02	60	SCL	Shielded B	1.40E+02	200-261-20024	
13	SC3-FP6U	12/3/2003	13:06	1	1.77E+02	60	SCL	Unshielded B	3829.0023.0023.	1.77E+02	3.70E+01
14	SC3-FP7S	12/3/2003	13:07	1	1.27E+02	60	SCL	Shielded B	1.27E+02	1032040-480-3002	384034263
15	SC3-FP7U	12/3/2003	13:08	1	1.94E+02	60	SCL	Unshielded B	:226.822922353333333	1.94E+02	6.70E+01
16	SC3-FP8S	12/3/2003	13:10	1	1.48E+02	60	SCL	Shielded B	1.48E+02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25-27-6553434
17	SC3-FP8U	12/3/2003	13:11	1	1.86E+02	60	SCL	Unshielded B	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.86E+02	3.80E+01
18	SC3-FP9S	12/3/2003	13:12	1	1.38E+02	60	SCL	Shielded B	1.38E+02	Section 2 Constants	SESTATISTIC:
19	SC3-FP9U	12/3/2003	13:13	1	1.90E+02	60	SCL	Unshielded B	114443000000000000000000000000000000000	1.90E+02	5.20E+01
20	SC3-FP10S	12/3/2003	13:15	1	1.30E+02	60	SCL	Shielded B	1.30E+02	~~~~~~~~~~~	CHARTER STREET
21	SC3-FP10U	12/3/2003	13:16	1	1.84E+02	60	SCL	Unshielded B	::::::::::::::::::::::::::::::::::::::	1.84E+02	5.40E+01
22	SC3-QC9S	12/3/2003	13:17	1	1.38E+02	60	SCL	Shielded B	1.38E+02	0.000000000000	Martin 1997
23	SC3-QC9U	12/3/2003	13:18	1	2.00E+02	60	SCL	Unshielded B		2.00E+02	6.20E+01
								Minimum	⇒ 1.27E+02	1.77E+02	3.70E+01
l								Maximum	⇒ 2.30E+02	2.92E+02	9.50E+01
í								Mean	⇒ 1.71E+02	2.28E+02	5.67E+01
			_					Sigma	⇒ 4.12E+01	4.65E+01	1.62E+01

							E . hi	15.10 4			ß	חום		J GR: A I	ul : Ati	302 W D
				CTION	Su 4	vey Uni	It inspe	ction C	heck Sh			ILIU TION				
C	ov Line at	-\ <u>`</u>							SS		Top of	Seal (Chamt	per #3 -	Floor	and
Date	ידריד		Time				n LUUC	n Mar	mbarc			N	/alls			
	12// Nacional Science		x which	SECT		Silo		NIT IN	USPEC		SCOF	F				
	In	spectu	on Requ	iremen	ts (Che	ck the	2000	priate	Yes/N	o ansi	wer.)		<u></u>	Yes	No	N/A
1. F	lave sufficien				alion, cha	aractenz	ation, et	tc.) bee		ed for th		y unit?		X		
2. C	o the survey:	s (frcm (Question 1) demon	strate that	it the su	rvey uni	t will m	ost likely	pass th	ne FSS1			x		
3. la	the physical	work (i	e, semed	lation & h	lousekee	ping) in	or arour	nd the s	survey un	it comp	plate7			X	<u> </u>	<u></u>
. F	lave all tools.	non-pe	rmanent e	quipment	t, end ma	iterial no	ot neada	d to pe	erform the	FSS b	een ren	noved?		X		
5, A	ire the survey	surface	relativel	y free of l	loose del	bris (i.e.,	, dirt, co	ncrate	dust, met	at filing	ps, elc.)'	?		X		
3 A	re the survey	surface	es relativel	y free of l	llquids (i.	e., wate	er, moiste	ure, oïl,	, etc.)7					1	x	
7. A	ro the survey	surface	rs free of t	all paint, v	which has	s the pol	tential to	shield	radiation					X		
3. H	lave the Surfa	ace Mea	isurement	Test Are	as (SMT	A) been	establis	ihed? (i	Refer to E	Exhibit	2 for ins	tructions	5.)	X		
9. F	lave the Surfi	ace Mea	usurement	Test Are	as (SMT	A) data i	been co	liected'	7 (Refer t	o Exhib	at 2 for	instructio	ons.)	X		
10. A	re the survey	surface	us easily a	ccessible	 7 (No sc	affolding	, high ri	each, e	tc. is nee	ded to	perform	the FSS	S)	X		
t1. li	s lighting adec	quale to	perform ti	he FSS7										X		
12. k	the area ind	ustrially	safe to pe	erform the	e FSS7 (1	Evaluate	: potenti	al fall 8	trip haza	irde, co	onfined	spacee,	etc.)	X		
13. H	lave photogra	aphs bee	en taken s	howing th	na overa:	l conditi	on of the	e ares?						X		
14. H	lave all unsat	isfactory	r condition	s been re	solved?									X		
NOTE respor sheets Comm Resp	: If B "No" ar hyble site deg as necessar herts terns: tonse to C	nswer is parlmen Y. Questic	on 6: Fr	above, ti cable. D	he inspe ecument	actions	prese	nediate nd/or ji	ly correct ustificatio	t the pr ns in th 	surfac	or initiat iments" : 	e corres section w-lyin	g areas	ons thro Mach ac	ugh the Iditional
Surv	ey Unit Ins	pector	(print/si	gn) D), Sarge	a i U	la fo	9						Date	7/2	8/04
					-				1-	-			•			

- - -

•

ORIGINAL

INFORMATION ONLY

EXHIBIT 3 Surface Measurement Test Area (SMTA) Data Sheet

54			lande best	SEC	TION 1	, DE	28	CRIPTIO	N , terr				
SMTA Number SMTA-SS18-1-2 Survey Unit Number SS18-1													
SMTA Location Top of Seal Chamber #3 Floor (East)													
Survey Unit In:	specto	pr		D. S	arge				Date	7/2	8/04	Time	0815
		SECT	ON 2 - C	ALIPER	INFORM	IATI	0	N& PER	SONNE	LINVOL	VED		
Caliper Manufacturer N/A Caliper Model Number N/A													
Caliper Serial	er		N/A		C	ali	ibration D	ue Date	(as app	licable)	1	N/A	
Rad Con Tech	Rad Con Technician D. Sarge / //								Date	07/2	8/04	Time	0815
Survey Unit In	specto	or Appro	val D. S	Sarge /	<u>Uf</u>			······			Date	7/2	28/04
	<u></u>		SE	CTION :	- MEAS	SUR		MENT RE	SULTS			N	
SMTA Grid Map & Measurement Results in Units of mm (Insert Results in White Blocks Below) Comments													
Surface has cracks and chipping occurring in													
5.2 2.2 8.5 14.5 11.0 9.8 areas.													
ter finder ander ander andere ander													
14 11.6 11.5 4.0 16.4 10.2													
27 3 THE LOCAL ST 13 46 19 18 - 21 Vol - 10 27 THE CL 33 10 1													
14 2.	0	15.3	9.0	15.1	6.1	ł							
	9		27 ³ 22.35	28	° 34 °								
7.3 1.	6	8.3	1.2	11.6	35								
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1	17/3		28	36	1	Į						
40 2	8	9.0	7.6	0.3	1.0								
8. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	.18	°	- 30	38	1							
10.8 7.	7	11	58	11.1	5.9								
Av	verage	Measu	rement -4	8.3 mm		-							
······································				Addition	al Measi	uren	ne	nts Requi	ired				
Floor surface a	round	downco	mers has	surficial	cracking	/chij	pp	ing at dep	pths up t	o 1.5 ind	ches.		
Internal surface	s of d	owncom	ers indica	ated som	e pitting/	'scal	ling	g .					
Seven 5 inch holes are present on floor (south edge) Depth is approx. 3.5 inches.													
													1
													}
		· · · · · · · · · · · · · · · · · · ·		<u> </u>									j

AHACHMENT 9-2

INFORMATION GETY

CRIGINAL EXHIBIT 3 CRIGINAL Test Area (SMTA) Data Sheet

			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	SEC	TION 1 -	DE	SCRIPTIO	N		••••		
SMTA Nu	mber	S	MTA-SS1	8-1-1	s	urve	ey Unit Nur	mber		SS	18-1	
SMTA Lor	cation	on Top of Seal Chamber #3 Floor (West)										
Survey Ur	ut Inspe	ctor		D. S:	arge			Date	7/2	8/04	Time	0800
		SECTI	ION 2 - C	ALIPER I	NFORM	ATI	ON & PER	SONNE	LINVOL	VED	<u> </u>	···· ··· · ··· ··· ···
Caliper M	anufacti	urer		N/A		Caliper Model Number N/A					N/A	
Caliper Sr	Caliper Serial Number N/A					<u> </u>	alibration D	Jue Dale	: (as app	licable)	<u> </u>	N/A
Rad Con	Technici	an D. Sa	arge / D	lafsy_	-^			Date	07/2	:8/04	Time	0800
Survey Ur	nit Inspe	ctor Appro	wal D.	Sarge / (life					Date	7/:	28/04
1994 (1995) 1994 (1995) 1995 (1995)	<u> </u>	atas di se di anti- di se di segna di si	8F	ECTION 3	- MEAS	UR	EMENT RE	EBULTS	<u>, , , , , , , , , , , , , , , , , , , </u>	••••	· · · · · ·	
SMTA Grid Map & Measurement Results In Units of mm (Insert Results in White Blocks Below) Comments												
	10.94	15	19	25	31	1	 Surfa 	ace has	cracks in	i areas.		
1.4	3.6	8.4	4.1	3.4	40	Į	ļ					
<u>;</u> ;;; ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		14	20	2	32							ļ
43	48	1.8	1.6	3.7	4.0							ļ
		H 2006 (24	32195	27	10 53 ***							
2.5	03	1.6	3,0	2.1	1.1							
-10 4 .85	10	10	2-22	17892 8 (1997	34	1						
3.6	2.0	38	3.7	23	50	Į	}					
. 5	1.511	5 15 17 (Sel	30.23 Ja	29	35	1						
53	41	1,4	6.4	4.3	3.3							ĺ
	12/12	2.18 %	24				1					4
5.0	2.6	2.4	75	35	88							
	Avera	age Measu	rement -	3.6 mm				<u> </u>				
			•	Addition	al Measu	lueu	tents Requ	lited				
Floor surfa	ice arou	ind downco	omers has	s surficial	cracking	/chi	pping at de	epths up	to 1.5 in	iches.		
Internal su	infaces o	of downcon	ners indic	aled som	e pitting/	scal	ling.					
												İ

ATTACHMENT 9-3

CRIGINAL

EXHIBIT 3 Surface Measurement Test Area (SMTA) Data Sheat

				SEC	TION 1	DE	8C	RIPTIO	N		ter yar	i ji wa ta	en e
SMTA Num	ber	SN	ATA-SS1	7-1-1		Survi	ey l	Jnit Nur	nber		SS	17-1	
SMTA Local	lion T	op of Sea	d Chamb	er #3 Wa	ll (East)							·	
Survey Unit	Inspec	tor		D. Sa	arge				Date	7/2	8/04	Time	0900
		SECTI	ON 2 - C	ALIPERI	NFORM	IATI	ON	& PER	SONN	EL INVO	LVED		
Caliper Man	ufactur	rer		N/A		Caliper Model Number					N/A	N/A	
Caliper Seri	Caliper Serial Number N/A								Due Da	le (as ap	plicable)		N/A
Rad Con Te	chnicia	in D. Sa	rge /	i app-	Ar	<u> </u>			Date	07/	28/04	Time	0900
Survey Unit	Inspec	tar Approv	val D. s	Sarge /	Ngp						Date	7/	28/04
			SE	CTION 3	- MEA	SUR	EM	ENT RI	ESULT	8			
SMTA Gnd Map & Measurement Results in Units of mm (Insert Results in White Blocks Below) Comments													
		13	19	25	31		•	Grid	#22 ha	is 2° cond	iuit protru	ding wat	і арргох.
1.4	2.0	2.0	1.5	0.2	2.7			∠°. Grid	#24 ha	is 1° stud	protrudin	g wall ap	oprox. 1°.
199 1 2 7 4 5 1 1	2							East	wall su	urface is s	similar to	north and	dwest
1.2 0.9 0.5 0.4 1.2 2.5								Wans	•				
12 1973 (ASS)	- D 🧐	98 46 (%)	- 21 A	27	~~ 33 ***		{						
1.5	0.1	0.1	1.4	0.4	3.0								
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-10.	<u></u> (6)	14 22 (16)	28	7-24								
02	0.4	0.5	1.5	08	0.5								
1.420 6 4007-612	₩ 1 1.5	:		: (2 9 -0)	38 '								
08	04	0.1	08	0. 0	1.0								
144 5 1	12	18	-24	30	- 38								
0.78	0.4	0.6	7.3	1.0	1.8								
	Avera	ge Measu	rement	1.2 mm									
				Addition	al Meas	surer	ner	its Requ	uired				
					·								

Attachment 9-4

MicroShield v5.05 (5.05-00121) GPU Nuclear

Page : 1 DOS File : SLAB3.MS5 Run Date : July 29, 2004 Run Time : 9:46:14 AM Duration : 00:00:01

File Ref: _ Rate: 3 . 2004 Checked:

Case Title: 12" Diameter Description: Cs-137 @ 1 pCi/g in 1" Thick Slab Geometry: 8 - Cylinder Volume - End Shields

	He Ra	ight dius	Source Dimen 2.54 c 15.24 c	sions m m	1.0 in 6.0 in
×	# 1	<u>X</u> 0 cm	Dose Poin <u>Y</u> 10.16	ts cm 0 in	<u>Z</u> 0 cm
Z	<u>Shield</u> Sou Air	<u>Name</u> Irce Gap	4. Shields <u>Dimension</u> 113.097 in ³	<u>Material</u> Concrete Air	<u>Density</u> 2.35 0.00122

Source Input Grouping Method : Actual Photon Energies

Nuclide	<u>curies</u>	<u>becquerels</u>	<u>µCi/cm³</u>	<u>Bq/cm³</u>
Ba-137m	4.1201e-009	1.5245e+002	2.2231e-006	8.2255e-002
Cs-137	4.3553e-009	1.6115e+002	2.3500e-006	8.6950e-002

Buildup The material reference is : Source

Integration Parameters

Radial	40
Circumferential	40
Y Direction (axial)	40

			Results		
Energy	<u>Activity</u>	Fluence Rate	Fluence Rate	Exposure Rate	Exposure Rate
MeV	photons/sec	MeV/cm ² /sec	MeV/cm ² /sec	<u>mR/hr</u>	<u>mR/hr</u>
		<u>No Buildup</u>	With Buildup	<u>No Buildup</u>	With Buildup
0.0318	3.156e+00	6.355e-06	7.682e-06	5.293e-08	6.399e-08
0.0322	5.823e+00	1.222e-05	1.486e-05	9.832e-08	1.196e-07
0.0364	2.119e+00	6.726e-06	8.749e-06	3.821e-08	4.971e-08
0.6616	1.372e+02	3.202e-02	4.057e-02	6.207e-05	7.865e-05

AHACHMENT 10-1

Run Date: July 29, 2004 Run Time: 9:46:14 AM Duration: 00:00:01

.

· · .

JUL 3 0 200%

<u>Energy</u>	<u>Activity</u>	Fluence Rate	Fluence Rate	Exposure Rate	Exposure Rate
MeV	photons/sec	MeV/cm ² /sec	MeV/cm ² /sec	mR/hr	mR/hr
TOTALS:	1.483e+02	No Buildup 3.204e-02	With Buildup 4.060e-02	No Buildup 6.226e-05	With Buildup 7.888e-05

;

.

Attachment 10-2

and the second
•

and the second
MicroShield v5.05 (5.05-00121) GPU Nuclear

Page : 1 DOS File : SURFC.MS5 Run Date : July 29, 2004 Run Time : 9:40:56 AM Duration : 00:00:00

JUL 30 File Ref:	2004
Date:	
By:	
Checked:	

Case Title: Surface Source Description: 12" Diameter Model Geometry: 3 - Disk

Rad	Source D lius 1	0 imensions 5.24 cm	6.0 in					
	Dose Points							
	<u>X</u>	Y	<u>Z</u>					
# 1	7.62 cm	0 cm	0 cm					
	3.0 in	0.0 in	0.0 in					

Shields							
Shield Name	Dimension	Material	Density				
Shield 1	.125 in	Iron Oxide	5.1				
Air Gap		Air	0.00122				

Source Input Grouping Method - Actual Photon Energies

Grouping Method : Actual Photon Energies								
Nuclide	curies	becquerels	µCi/cm ²	Bq/cm ²				
Ba-137m	6.9026e-010	2.5540e+001	9.4600e-007	3.5002e-002				
Cs-137	7.2966e-010	2.6997e+001	1.0000e-006	3.7000e-002				

Buildup The material reference is : Shield 1

Integration Parameters

Radial	40
Circumferential	40

			Results		
Energy	Activity	Fluence Rate	Fluence Rate	Exposure Rate	Exposure Rate
MeV	photons/sec	MeV/cm ² /sec	MeV/cm ² /sec	mR/hr	mR/hr
		No Buildup	With Buildup	No Buildup	With Buildup
0.0318	5.287e-01	5.791e-10	6.709e-10	4.824e-12	5.589e-12
0.0322	9.755e-01	1.438e-09	1.670e-09	1.157e-11	1.344e-11
0.0364	3.550e-01	7.257e-09	8.723e-09	4.123e-11	4.956e-11
0.6616	2.298e+01	6.973e-03	8.064e-03	1.352e-05	1.563e-05
TOTALS:	2.484e+01	6.973e-03	8.064e-03	1.352e-05	1.563e-05

		N	lilliar	nsburg	Concre	te Backgroun	<u>d Me</u>	asurements			
37122N21	Instrument 95348	RLM6220	Time	Detector	Counts	Count Time (sec)	Mode	Designator		FSS-001	BHB
0	BKGND	1/4/2002	8:52	1	7.26E+03	1800	SCL	Inital Background	ıβ		
	Source Check	1/4/2002	9:07	1	1.79E+05	60	SCL	Source	β		
2	BKGND	1/4/2002	10:05	2	4.40E+01	1800	SCL	Inital Background	α Conc	rete CF(cpm) ⇒	<u> </u>
14	Source Check	1/4/2002	10:39		1.51E+05	60	SCL	Source	α	Shielded	Unshielded
15	CON A1S	1/4/2002	13:00	1	2.78E+02	60	SCL	Shielded	<u>p</u>	2.78E+02	0.005.00
10	CON ATU	1/4/2002	13:02		3.08E+U2	60	SCL	Shielded		2 205+02	3.88E+02
18	CON A21	1/4/2002	13.20	1	2.395+02	00	SCL	Unchielded	P	2.39E+U2	2 225+02
19	CON A3S	1/4/2002	13:28	<u> </u>	2.39E+02	60	SCI	Shielded	R	2 39E+02	2.222-02
20	CON A3U	1/4/2002	13:30	1	2.62E+02	60	SCL	Unshielded	B	1.002.02	2.62E+02
21	CON A4S	1/4/2002	13:36	1	2.45E+02	60	SCL	Shielded	B	2.45E+02	in alterative
22	CON A4U	1/4/2002	13:38	1	2.71E+02	60	SCL	Unshielded	ß	1999-948 (2019 - 1997)	2.71E+02
23	CON A5S	1/4/2002	13:58	1	2.00E+02	60	SCL	Shielded	B	2.00E+02	1.000
24	CON A5U	1/4/2002	14:00		2.82E+02	60	SCL	Unshielded	B		2.82E+02
25	CON A6S	1/4/2002	14:03	1	1.846+02	60 60	SCL	Shielded	L B	1.84E+02	2 105+02
20	CON A7S	1/4/2002	14.00		1 98E+02	00	SCL	Shielded		1 98E+02	3.102+02
28	CON A7U	1/4/2002	14:10	i	3.15E+02	60	SCL	Unshielded	片	1.302.02	3.15E+02
29	CON A8S	1/4/2002	14:19	1	2.34E+02	60	SCL	Shielded	B	2.34E+02	1300 C 2008
30	CON A8S	1/4/2002	14:22	1	2.31E+02	60	SCL	Shielded	ß	2.31E+02	n ing kabapatèn ing k
31	CON A8U	1/4/2002	14:24	1	2.88E+02	60	SCL	Unshielded	ß	del constante en	2.88E+02
32	CON A9S	1/4/2002	14:31	1	2.65E+02	60	SCL	Shielded	L	2.65E+02	n kozvedski «
	CON A9U	1/4/2002	14:33		2.89E+02	60	SCL	Unshielded	<u>B</u>		2.89E+02
34	CON ATUS	1/4/2002	14:42	1	2.455+02	60	SCL	Snieided	LEI LEI	2.46E+02	2 165402
36	CON A11S	1/4/2002	15-10		1.95E+02	60	SCI	Shielded		1 955+02	3.10ETUZ
37	CON A11U	1/4/2002	15:12	1	2.94E+02	60	SCL	Unshielded	B	1.55L 102	2.94E+02
38	CON A12S	1/4/2002	15:13	1	2.21E+02	60	SCL	Shielded	B	2.21E+02	11.1.2889.50 MA
39	CON A12U	1/4/2002	15:14	• 1	2.84E+02	60	SCL	Unshielded	B	1200-00 2000-2000	2.84E+02
40	CON A13S	1/4/2002	15:23	1	1.74E+02	60	SCL	Shielded	ß	1.74E+02	\$\$\$\$\$\$\$ <u>\$</u> \$\$\$\$\$\$\$
<u>• 41</u>	CON A13U	1/4/2002	15:24		2.94E+02	60	SCL	Unshielded	B	155 201 234 02 454	2.94E+02
42	CON A14S	1/4/2002	15:25	1	1,96E+02	60	SCL	Shielded	LB	1.96E+02	
43	CON A155	1/4/2002	15:20		2.16E+02	60	SCL	Unshielded		2 165+02	3.33E+02
45	CON A15U	1/4/2002	15:29	1	3 45E+02	60	SCL	Unshielded	IR I	2.101.702	345E+02
46	CON A16S	1/4/2002	15:30	1	1.83E+02	60	SCL	Shielded	8	1.83E+02	10 828096
47	CON A16U	1/4/2002	15:31	1	3.13E+02	60	SCL	Unshielded	ß	****:********	3.13E+02
48	CON A17S	1/4/2002	15:33	1	1.82E+02	60	SCL	Shielded	β	1.82E+02	
49	CON A17U	1/4/2002	15:34	1	3.22E+02	60	SCL	Unshielded	β	190500009.0000.5	3.22E+02
50	CON A18S	1/4/2002	15:35	1	1.84E+02	60	SCL	Shielded	Щ	1.84E+02	Second and the second
52	CON A180	1/4/2002	15:30		3.24E+02	<u> </u>	SCL	Unshielded Shielded		1.015+02	3.24E+02
53	CON A19U	1/4/2002	15:39	1	3 07E+02	60	SCL	Unshielded	R	1.912+02	3.07E+02
54	CON A20S	1/4/2002	15:40	1	1.94E+02	60	SCL	Shielded	8	1.94E+02	7.000000000000000000000000000000000000
55	CON A20U	1/4/2002	15:41	1	3.33E+02	60	SCL	Unshielded	B		3.33E+02
56	CON A21S	1/4/2002	15:57	1	2.23E+02	60	SCL	Shielded	β	2.23E+02	NACOMS.1590
57	CON A21U	1/4/2002	15:58	1	2.92E+02	60	SCL	Unshielded	B	 - 16130 - 10105 - 1000 	2.92E+02
58	CON A22S	1/4/2002	15:59	1	1.72E+02	60	SCL	Shielded	몓	1.72E+02	
<u>ec</u>	CON A220	1/4/2002	16:00	1	1 945+02	<u> </u>	SUL	Unshielded	1 p	1.045-02	2.802+02
61	CON A230	1/4/2002	16.01	1	3.295+02	00	SCI	Unshielded	R	1.84E+U2	3.29F+02
62	CON A24S	1/4/2002	16:04	<u> </u>	1.87E+02	60	SCL	Shielded	1 B	1.87E+02	2000.000.0000
63	CON A24U	1/4/2002	16:05	11	3.48E+02	60	SCL	Unshielded	ß	:************	3.48E+02
64	CON A25S	1/4/2002	16:06	1	2.07E+02	60	SCL	Shielded	ß	2.07E+02	4.00343000004.948
65	CON A25U	1/4/2002	16:07		3.72E+02	60	SCL	Unshielded	B	28:000.000 (8:00)	3.72E+02
66	CON A26S	1/4/2002	16:09	1	2.09E+02	60 60	SCL	Shielded	旧	2.09E+02	2.065.00
83	CON A279	1/4/2002	16:10	<u> </u>	2 075+02	0	SCI	Shialdad	HP-	2075-02	3.20E+U2
69	CON A2711	1/4/2002	16:12	1	3.30F+02	60	SCI	Unshielded	版	2.01E7U2	3 30E+02
70	CON A28S	1/4/2002	16:14	1	2.30E+02	60	SCL	Shielded	B	2.30E+02	1 200 J 083 / Coo 5 201
71	CON A28U	1/4/2002	16:15	1	3.06E+02	60_	SCL	Unshielded	ß	s marranetae	3.06E+02
72	CON A29S	1/4/2002	16:20	1	2.13E+02	60	SCL	Shielded	B	2.13E+02	
73	CON A29U	1/4/2002	16:21	1	2.58E+02	60	SCL	Unshielded	β	1400000000	2.58E+02
74	CON A30S	1/4/2002	16:24	1	2.33E+02	60	SCL	Shielded	LE I	2.33E+02	
75	CON A30U	1/4/2002	16:25	1	2.89E+02	60	SCL		LB	1945-002	2.89E+02
77	CON ASIS	1/4/2002	16:29	1	2 635+02	60	SCI	Unshialdad	片	1.040+02	2 63E+02
- <u></u>	Source Check	1/4/2002	17:27	1	1.70E+05	60	SCL				2.000.04
								······	151		- 1
									Minimum =	1.72E+02	2.22E+02
								I	Maximum =	> 2.78E+02	3.88E+02
									Mean =	> 2.11E+02	3.06E+02
									Siama =	2.69E+01	3.45E+01

.

ATTACHMENT 11-1