Appendix B

.

Unistrut Survey Design

				·· · · ·	ي.
••			(JBICI	NAL
FirstEnergy SN			OVER SHE	ET	
	CALCU	LATION DESCR	IPTION		
Calculation Number		Revision Number	Effective Date	P	age Number
E900-04-004		0	4/15/04		1 of 9
Subject	VEY DESIGN				
Question 1 - Is this calculation defi	ined as "In QA Sco	pe"? Refer to definition	n 3.5. Yes 🛛 🛚 N	10 🔲	
Question 2 - Is this calculation defi	ined as a *Design (Calculation"? Refer to (definitions 3.2 and 3.	.3. Yes 🛛	No 🗖
Question 3 - Does the calculation	have the potential f	o affect an SSC as des	cribed in the USAR	?Yes 🗌	No 🖾
NOTES: If a "Yes" answer is obtained Assurance Plan. If a "Yes" answer calculation as the Technical Reviewer. calculation. Calculations that do not ha	for Question 1, the ca is obtained for Que . If a "YES" answer is we the potential to aff	alculation must meet the re- estion 2, the Calculation s obtained for Question 3, fect SSC's may be implem	equirements of the SNE Originator's immediate SNEC Management a sented by the TR.	EC Facility Dec e supervisor s pproval is requ	commissioning Quality hould not review the uired to implement the
	DESCI	RIPTION OF REV	ISION		
	_				
	·				
	APPR	OVAL SIGNATU	IRES	· ·	
Calculation Originator	B. Brosey/	B. Brow	~~~~	Date	9/15/04
Technical Reviewer	P. Donnachie	Allamar	hộ t	Date	4/15/04
Additional Review	A. Paynter/	Mitt ()É	Date	4/16/04
Additional Review			0	Date	
SNEC Management Approval				Date	

.

FirstEnerg	Y
, ,	Colored and

SNEC CALCULATION SHEET

Calculation Number

Revision Number

E900-04-004

0

Subject

CV TUNNEL & UNISTRUT SURVEY DESIGN

1.0 PURPOSE

- 1.1 The purpose of this calculation is to develop a survey design for remnants of CV Tunnel unistrut embedded in the SNEC CV Steam Tunnel ceiling and walls. The total length of the remaining unistrut sections is approximately 70.5 feet.
- 1.2 This survey effort may be performed in conjunction with the CV Tunnel concrete re-survey effort.

2.0 SUMMARY OF RESULTS

The following information should be used to develop a survey request for this survey design. If remediation actions are taken as a result of this survey, this survey design must be revised.

- 2.1 Nal Survey Work
 - 2.1.1 No scanning of unistrut is required by this survey design.
 - 2.1.2 Static measurements at a fixed distance over segments of unistrut shall be performed using a <u>2"D by 2"L Nal detector</u> with a Cs-137 window setting. The Cs-137 window shall straddle the Cs-137 energy peak at 662 keV IAW the applicable calibration sheet (see example of Attachment 1-1).
 - 2.1.3 The Nal instrument conversion factor/efficiency shall be no less than 176 cpm/uR/h.
 - 2.1.4 <u>Static measurements shall be made 2</u>" from unistrut locations (see below). Whenever possible, each measurement shall be centered in the middle of a one (1) foot section (). Segments less than 1 foot in length should be surveyed separately at an estimated center position. Record the length of these shorter segments. Note when a segment contains concrete estimate how full the channel is.

- 2.1.5 A <u>two (2) minute count time</u> shall be employed. An integrated 2 minute count shall be recorded at one (1) foot increments IAW site procedures. Measurements shall be made over the entire length of the unistrut sections.
- 2.1.6 Background measurements shall be made by covering a segment of unistrut with a 2" thick lead brick and then placing the probe against the lead at the center of the brick (see following diagram).
- 2.1.7 A ten (10) minute count time shall be employed for all background measurements.

FratEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-04-004	0	Page 3 of <u>9</u>

2.1.8 <u>At least three</u> background measurements should be made on each wall and ceiling area in the CV Tunnel area. These measurements should be approximately evenly spaced along the Tunnel length (a total of 9 background measurements). Document all results

NOTE

Background measurements require the handling of lead bricks. Use caution when positioning these objects to ensure a safe work area. It is recommended that a jig, or custom holder be used to position lead for each background measurement.

- 2.1.9 All survey points shall be clearly marked and sequentially numbered.
- 2.1.10 Each two minute integrated counting result (at all locations) shall be recorded IAW site procedures.
- 2.1.11 Other instruments of the type specified in Section 2.1.2 above may be used during the FSS but must demonstrate an efficiency at or above 176 cpm/uR/h for Cs-137.
- 2.1.12 Some starting points may need to be adjusted to accommodate obstructions within the tunnel area. Contact the SR coordinator to report any difficulties encountered when laying out measurement points.
- 2.1.13 The following are the applicable effective DCGLw values:

Surface DCGLw (dpm/100 cm ²)	Volumetric DCGLw (pCi/g)
GA = 27,479 (20,609 A.L.)	Cs-137 = 6.32 (4.74 A.L.)

GA = Gross Activity

A.L. = Administrative Limit is 75% of the actual DCGLw value.

E	X	Energy
•		- Come

SNEC CALCULATION SHEET

Calculation Number E900-04-004 Revision Number

Subject

CV TUNNEL & UNISTRUT SURVEY DESIGN

2.1.14 The MDCstatic Cs-137 surface value is $2215 \text{ dpm/100 cm}^2$. The gross activity <u>concentration</u> is as follows: 2215 dpm/100 cm² Cs-137/0.992 (Cs-137 fraction) = $2233 \text{ dpm/100 cm}^2$.

3.0 <u>REFERENCES</u>

- 3.1 SNEC Calculation No. E900-03-018, "Optimize Window and Threshold Settings for the Detection of Cs-137 Using the Ludlum 2350-1 and a 44/10 Nal Detector", 8/7/03.
- 3.2 SNEC procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".
- 3.3 Plan SNEC Facility License Termination Plan, Rev 3.
- 3.4 SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA".
- 3.5 SNEC Facility Historical Site Assessment, Rev 0, March, 2000.
- 3.6 SNEC procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design".
- 3.7 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.
- 3.8 Microsoft Excel 97, Microsoft Corporation Inc., SR-2, 1985-1997.
- 3.9 SNEC Calculation No. E900-03-012, Effective DCGL Worksheet Verification.

4.0 ASSUMPTIONS AND BASIC DATA

4.1 Remediation History

The below grade CV Pipe Tunnel originally extended around the base of the CV approximately 270 degrees and connected to the old Waste Treatment, C & A and SSGS Footprint areas. The only remaining section still in tact extends from the SSGS footprint East approximately 40 feet toward the CV area. The CV Tunnel diagram is shown on Attachments 2-1 and 2-2.

Piping systems originally installed in the CV Tunnel, were removed from about 1972 to 1974. These early remediation efforts were not specifically documented. In the late 80's an isolation wall was erected at the far eastern end. Since the CV Tunnel collected seasonal rain and ground water seepage, this wall served to isolate water accumulation to only a portion of the remaining structure.

In the spring of 1994, SNEC personnel entered the tunnel through a hole installed in the ceiling to complete characterization surveys for this structure. No evidence of abrasive remediation of the interior surface of the tunnel was noted. A thorough characterization survey was performed in late 1994. Areas indicating elevated activity were core bored to determine the depth of the contamination.

Shonka Research Associates (SRA) initially surveyed the CV Tunnel concrete surface using a large area GFPC detector array. Remediation was performed to reduce the residual volumetric concentration of Cs-137 and lower the general area exposure rate. However, little was done to reduce the contamination present in/on unistrut sections. Since the unistrut did not appear to contain contamination levels above the effective surface DCGLw,

BratEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-04-004	0	Page 5 of <u>9</u>
Subject CV TUNNEL & UNISTRUT S	URVEY DESIGN	_

it was decided that this component could be surveyed and allowed to remain in the collapsed CV Tunnel structure.

- 4.2 Inspection of the concrete surface was conducted IAW Reference 3-6. There is approximately 70.5 feet of unistrut remaining which is embedded in the floor and wall areas of this structure (see Attachment 9-1 to 9-3). The majority of this length is not filled with concrete or other materials that would alter the MicroShield modeling effort (see Attachment 3-1 to 3-2).
- 4.3 MicroShield modeling considers a one foot segment of unistrut as a volume contaminated object. The results are then assumed to be a surface contamination and are averaged over the entire surface area of a one foot section.
- 4.4 The sample data base used to determine the effective radionuclide mix for the CV Pipe Tunnel area has been drawn from previous samples that were assayed at off-site laboratories. This list is shown as Attachment 4-1 and 4-6, and includes five (5) analysis results that are thought most applicable. Review of the data indicates eight radionuclides have not been positively identified at any concentration. These radionuclides have been removed from the data set and are not be considered further. Radionuclides removed include H-3, Am-241, Pu-238, Pu-239, Pu-241, C-14, Ni-63 and Eu-152.

Inspection of the data also shows that Cs-137 is by far the predominant radioactive contaminant found in this area. Sr-90 on the other hand, was positively identified in only one (1) sample. Co-60 was identified as a positive contaminant in only two (2) samples.

The re-assessment of the radionuclide mix for the CV Tunnel area was transmitted to the US NRC for concurrence. The current applicable volumetric and surface limit DCGLw values were determined to be as follows (from Attachment 4-1 to 4-6):

Surface DCGLw (dpm/100 cm ²)	Volumetric DCGLw (pCi/g)	
GA = 27,479 (20,609 A.L.)	Cs-137 = 6.32 (4.74 A.L.)	

GA = Gross Activity

A.L. = Administrative Limit is 75% of the actual DCGLw value.

- 4.5 The Nal MDCstatic calculation is determined on the basis of a 2 minute sample count time combined with a 10 background count time. The MicroShield modeled unistrut section is assumed to have a homogeneous composition such that the weight per foot of unistrut divided by the volume of the outer profile yields a mean density of ~1.77 g/cc. The unistrut diagram is shown on Attachment 5-1.
- 4.6 The resulting range of general area background values in the survey unit using the 44-10 probe is a 99 to ~175 cpm (see Attachment 6-1 and 6-3). Then mean background value is 132 cpm. The resulting volumetric MDCstatic value is ~8.651 pCi/g Cs-137 and the surface MDCstatic value is 2215 dpm/100 cm² for Cs-137 (see Attachment 7-1 and 7-2). A series of reasonably conservative assumptions must be made to interpret the data they are:
 - 4.6.1 The contamination is a surface deposit and thus the surface MDCstatic value is the correct MDC to be used for unistrut sections.

SNEC CALCU	JLATION SHEET		
Calculation Number	Revision Number	Page Number	
E900-04-004	0	Page 6 of <u>9</u>	
Subject			
CV TUNNEL & UNISTRUT SURVEY DESIGN			

- 4.6.2 It is assumed that there is no concrete fill or other materials present in the channel of the unistrut.
- 4.6.3 The actual surface area of a one foot section of unistrut is about 866 cm². For purposes of this calculation, the activity is assumed to be evenly dispersed over this area and the result will be reported per 100 cm².
- 4.6.4 The entire unistrut area is 866 cm²/ft x 70.5 feet = 61,053 cm² or \sim 6.1 m². The CV Tunnel unistrut will be considered one (1) survey unit.
- 4.6.5 The MDCstatic Cs-137 surface value is 2215 dpm/100 cm². The gross activity concentration is as follows: 2215 dpm/100 cm² Cs-137/0.992 (Cs-137 fraction) = 2233 dpm/100 cm². If all the activity is assumed to be present on only the exposed side of the unistrut (the non-embedded side), the MDCstatic value is twice this surface value or 4466 dpm/100 cm². This is well below the actual administrative limit for this area of 20,609 dpm/100 cm². Since the total area of unistrut is only 6.8 m² at the most and one half of this value if only the exposed side is considered, an area factor between 2 and 3.4 could be applied (Co-60). Thus the actual DCGLw limit for unistrut could be as high as 2.62 x 20,609 = ~54,000 dpm/100 cm² (see Attachment 8-1).
- 4.7 The survey unit described in this survey design was inspected after remediation efforts were shown effective. A copy of portions of the SNEC facility post-remediation inspection report (Reference 3.6), is included as Attachment 9-1 to 9-3.
- 4.8 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in this survey area.
- 4.9 The applicable SNEC site radionuclides and their individual DCGLw values are listed on Exhibit 1 of this calculation.
- 4.10 The survey design checklist is listed in Exhibit 2.

5.0 CALCULATIONS

5.1 All calculations are performed internal to applicable computer codes or within an Excel spreadsheet.

6.0 APPENDICES

- 6.1 **Attachment 1-1**, is an example of a typical calibration data from one typical Nal radiation detector that may be used for this survey effort.
- 6.2 Attachment 2-1 and 2-2, are diagrams that depict and locate this survey area.
- 6.3 Attachment 3-1 and 3-2, is a MicroShield model of a one foot section of unistrut used to determine the exposure rate from a 1 pCi/cc Cs-137 source term.
- 6.4 Attachment 4-1 to 4-6, is the US NRC concurred sample listing for this area.
- 6.5 Attachment 5-1, is a cross-sectional diagram of unistrut.
- 6.6 Attachment 6-1 to 6-3, is the SR-106 post-remediation survey results for the CV Tunnel.
- 6.7 Attachment 7-1 to 7-2, is the MDCstatic results for a modeled section of unistrut.

SNEC CALCI	JLATION SHEET			
Calculation Number	Revision Number	Page Number		
E900-04-004	0	Page 7 of <u>9</u>		
Subject				
CV TUNNEL & UNISTRUT SURVEY DESIGN				

- 6.8 Attachment 8-1, is area factor estimate for the Unistrut sections.
- 6.9 Attachment 9-1 to 9-3, is the site inspection report for this survey unit.

FirstEnergy

SNEC CALCULATION SHEET

Calculation Number E900-04-004

Revision Number

0

Page Number

Subject

CV TUNNEL & UNISTRUT SURVEY DESIGN

Exhibit 1

SNEC Facility Individual Radionuclide DCGL Values (a)

Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm ²)	25 mrem/y Limit (All Pathways) Open Land Areas (Surface & Subsurface) (pCi/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	1.9E+04
Pu-238	3.0E+01	1.8	0.41
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	0.61

NOTES:

(a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

(b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

FirstEnergy

E900-04-004

SNEC CALCULATION SHEET

Calculation Number

Revision Number

0

Page Number

Page 9 of 9

Subject

CV TUNNEL & UNISTRUT SURVEY DESIGN

Exhibit 2 **Survey Design Checklist**

Calcul	ation No.	Location Codes		
<u> </u>	E900-04-004	SS22-5 (Unistrut)		
ITEM	REVIEW	V FOCUS	(Circle One)	Reviewer
1	Has a survey design calculation number be description	een assigned and is a survey design summary on provided?	Yes, NA	A) y/15/04
2	Are drawings/diagrams adequate for the s hear	ubject area (drawings should have compass dings)?	Yes, N/A	A) y/sof
3	Are boundaries property identified and is the	e survey area classification clearly indicated?	Yes, N/A	A HISTOF
4	Has the survey area(s) been properly	divided into survey units IAW EXHIBIT 10	Yes, NA	MAD +/15/01
5	Are physical characteristics of the	area/location or system documented?	Yes, N/A	4/15/04
6	Is a remediation effective	eness discussion included?	(Yes) NA	Dilislot
7	Have characterization survey and/or sam comparable to app	pling results been converted to units that are licable DCGL values?	Yes, N/A	04/15/04
8	Is survey and/or sampling data that was used	for determining survey unit variance included?	res, N/A	A HIJoy
9	Is a description of the background reference sampling results included along v	e areas (or materials) and their survey and/or vith a justification for their selection?	Yes, NA	AD y/15/04
10	Are applicable survey and/or sampling data t	that was used to determine variability included?	Yes NA	HA) 4/15/04
11	Will the condition of the survey area have probable impact been	an impact on the survey design, and has the considered in the design?	Yes	A 4/15/04
12	Has any special area characteristic incluc previously noted during characterization) b de	ling any additional residual radioactivity (not een identified along with its impact on survey sign?	Yes, N/A	Dylistoy
13	Are all necessary supporting calculations a	nd/or site procedures referenced or included?	Yes NA	ANY/15/04
14	Has an effective DCGLw been	identified for the survey unit(s)?	Yes, N/A	Adulislot
15	Was the appropriate DCGL _{EMC} inclu	uded in the survey design calculation?	Yes N/A	ALY/15/04
16	Has the statistical tests that will be us	ed to evaluate the data been identified?	Yes, N/A	PUY/15/04
17	Has an elevated measurement comp	arison been performed (Class 1 Area)?	Yes N/A	H)4/15/01
18	Has the decision error levels been identified	and are the necessary justifications provided?	Yes, N/A	A) 4/15/04
19	Has scan instrumentation been identified al	ong with the assigned scanning methodology?	Yes, N/A) +/15/04
20	Has the scan rate been identified, and is the	ne MDCscan adequate for the survey design?	Yes NA	A) flistof
21	Are special measurements e.g., in-situ gamn and is the survey methodology, a	na-ray spectroscopy required under this design, and evaluation methods described?	Yes, NA	Alistor
22	Is survey instrumentation calibration data inc	luded and are detection sensitivities adequate?	Yes, N/A	1/15/04
23	Have the assigned sample and/or measureme or CAD drawing of the survey ar	ent locations been clearly identified on a diagram ea(s) along with their coordinates?	Yes, N/A	Dilistor
24	Are investigation levels and administrative li clearly i	mits adequate, and are any associated actions indicated?	Yes NA	Dellistor
25	For sample analysis, have the requ	uired MDA values been determined.?	Yes NA	A y/isloy
26	Has any special sampling methodology been	identified other than provided in Reference 6.3?	Yes NA	AD 4/15Toy
NOTE: a	copy of this completed form or equivalent, shall	be included within the survey design calculation.		J

NOTE: a copy of this completed form or equivalent, shall be included within the survey design calculation.

LUDLUM MODEL 44-10 HIGH VOLTAGE PLATEAU DATA SHEET (Detector peaked using Cs137 #019454 5uCi button)

HIGH VOLTAGE					
700	37,380				
701	39,	576			
702	40,	089			
703	41,	493			
704	42,5	325			
705	42,	859			
706	42,1	756			
707	41,:	336			
708	40,1	700			
709	N	A			
710	N/A				
711	N/A				
Det	Detector Parameters for Peaking				
Parameter	Setting	Comments			
Threshold (10mV/100)	612	Peaked for Cs ¹³⁷ at			
Window (On)	100	662keV			
High Voltage	705				
CPM/mR	221,028				
FWHM values performed with Threshold = 642 and Window = 40					
$FWHM = \frac{685 - 605}{662 \times 100\%}$	\ 12.5	1%			
Detector peaked for Cs ¹³⁷ using Ludium peaking procedure and threshold setting of 612 and window setting of 100 as requested by John Duskin, 2350-1 #117566 calibration due					

Serial Number: 196021

01/22/04 used for peaking 44-10 detector.

Performed By: ______ Date: ______ Reviewed By: _______ Date: _______ Date: __________

ATTACHMENT 1.1

•

ATTACHMENT 2 - 2

MicroShield v5.05 (5.05-00121) GPU Nuclear

Page : 1 DOS File : UNISTRUT:MS5 Run Date : March 30, 2004 Run Time: 10:52:05 AM Duration : 00:00:20

File Ref:	_	
Date:		
By:	-	
Checked:		

Case Title: Unistrut Description: 1 Foot Section of Unistrut - 564 uCi of Cs-137 per ft. Geometry: 13 - Rectangular Volume

		•	× Length Width Height	Source Dimens 4.3 cn 4.3 cn 30.48 cn	s ions n n	1.7 in 1.7 in 1 ft
z			<u>X</u> # 1 11.9202	Dose Point <u>Y</u> 2 cm 15.24 c 4.7 in 6.0	s cm 2.15 in	<u>Z</u> 011 cm 0.8 in
			<u>Shield Name</u> Source Air Gap	Shields <u>Dimension</u> 34.395 in ³	<u>Material</u> Iron Air	<u>Density</u> 1.771 0.00122
		So	urce Input			
	Muskala	Grouping Method	Actual Photon E	nergies		
	<u>Nuciide</u> Ba-137m	<u>curies</u> <u>becq</u> 5.3354e-004 1.974	<u>uereis <u>µCi/c</u> 1e+007 9.46626</u>	<u>Bq/c</u> -001 3.50256	<u>m²</u> 2+004	
	Cs-137	5.6400e-004 2.0868	3e+007 1.0007e	+000 3.7024	+004	
		E The material r	3uildup eference is : Soui	ce		
		Integrati	on Parameters			
		X Direction		40		
		Z Direction		40 40		
		-	N			
<u>Energy</u> <u>MeV</u>	<u>Activity</u> photons/se	Fluence Rate <u>c MeV/cm²/sec</u> No Buildup	Fluence Rate MeV/cm²/sec	Exposure Rate <u>mR/hr</u> No Buildup	Exposur mR/ W/ith Bi	<u>e Rate</u> /hr uildup
0.0318	4.087e+05	1.499e-01	1.540e-01	1.249e-03	1.283	e-03
0.0322	7.541e+05	2.895e-01	2. 9 75e-01	2.330e-03	2.394	e-03
0.0364	2.744e+05	1.688e-01	1.751e-01	9.588e-04	9.947	e-04 12102
0.0010	1.//0840/	4.7306700	J.0002TUJ	5.2900-00	1.1410	

Page : 2 DOS File : UNISTRUT.MS5 Run Date : March 30, 2004 Run Time: 10:52:05 AM Duration : 00:00:20

Energy	Activity	Fluence Rate	Fluence Rate	Exposure Rate	Exposure Rate
MeV	photons/sec	MeV/cm ² /sec	MeV/cm ² /sec	mR/hr	<u>mR/hr</u>
		No Buildup	With Buildup	No Buildup	With Buildup
TOTALÊ:	1.920e+07	4.796e+03	5.887e+03	9.301e+00	1.142e+01

.

.

ATTACHMENT______

.

DCGL Calculation Logic-CV Steam Tunnel/Seal Chamber Roof

- I. Survey Unit: SNEC Containment Vessel (CV) Steam Tunnel & Top of Seal Chamber 1 & 2 Roof
- II. Description: The purpose of this calculation is to determine a representative isotopic mix for the CV Steam Tunnel and top of the Seal Chamber 1 & 2 roof from available sample analyses. The effective surface area and volumetric DCGL_ws are then determined from the mean percent of applicable samples.
- III. Data Selection Logic Tables: The radionuclide selection logic and subsequent DCGL calculations are provided in six (6) tables. These tables were developed using Microsoft Excel. Table explanation is as follows.

Table 1: Data Listing – This table, which has been extracted from a larger database, provides a list of the most representative sample analyses for the CV Steam Tunnel and top of the Seal Chamber 1 & 2 roof. These results are from scoping, characterization, and pre/post remediation surveys. The samples consist of various sediments, scrapings and concrete cores that were taken in support of the aforementioned surveys. As applicable, a sample number, sample location/description, radionuclide concentration, analysis date are provided for each sample. Positive nuclide concentrations are noted with yellow/shaded background fields while MDAs are noted in the gray shaded fields.

Table 2: Decayed Listing of Positive Nuclides & MDAs Removed – This table provides the best overall representation of data selected from Table 1. Half-life values (days) are listed above each respective nuclide column. Samples are decayed to the date noted above Table 1 (e.g. January 15, 2004). Positive results are denoted in a yellow background while the MDA values, which were listed in Table 1, have been stripped out.

Table 3: Mean Percent of Total for Positive Nuclides – This table provides the calculation methodology for determining the relative fractions of the total activity contributed by each radionuclide. From this information the mean, sigma, and mean % of total are calculated. The mean % of total values is used to calculate the surface gross activity DCGL_w per MARSSIM equation 4-4. See Table 5. Note that the Co-60 mean percent values were averaged using only samples 1 & 5. In addition, the mean percent calculated from sample 1 for Sr-90 was not averaged throughout the spreadsheet, since this sample was the only one where this respective nuclide was positive. This results in higher "mean percent of total" values in the mix, which is conservative.

Table 4: Ratio to Cs-137 for Positive Nuclides – This table provides the calculation methodology for determining the surrogate ratio to Cs-137 for each radionuclide. From this information the mean, sigma, and mean % of total are calculated. The mean % of total values is used to calculate the volumetric DCGL_w per MARSSIM equation I-14. See Table 6. Note that the Co-60 ratios were averaged using only samples 1 & 5. In addition, the ratio value calculated from sample 1 for Sr-90 was not averaged throughout the spreadsheet, since this sample was the only one where this respective nuclide was positive. This results in higher "mean percent of total" values in the mix, which are conservative.

Note: From Tables 3 and 4 only the "mean % of total" values are used as input to the "Effective DCGL Calculation Spreadsheet" as illustrated in Tables 5 and 6.

Table 5: Effective DCGL Calculator for Cs-137 (dpm/100 cm^2) – This table provides the surface gross activity DCGL_w calculation results from data derived from Table 3.

ATTACHMENT	<u> </u>	<u> </u>
------------	----------	----------

Table 6: Effective DCGL Calculator for Cs-137 (in pCi/g) – This table provides the surrogate volumetric concentration for the Cs-137 $DCGL_w$ calculation results from data derived from Table 4.

IV. Summary – Since the CV Steam Tunnel is a concrete structure the release limit is primarily based on the surface area DCGL_w. However, some CV Tunnel walls contain unistrut, which are treated as volumetric contamination. Therefore, a volumetric DCGL_w is also determined. The Seal Chamber 1 & 2 roof release limit will be based on the surface area DCGL_w only. Using the above data selection logic tables, the calculated gross activity DCGL_w for surface area is 27,479 dpm/100 cm². The Cs-137 volumetric DCGL_w is 6.32 pCi/g. These values would be reduced by 25% as part of SNEC's requirement to apply an administrative limit as discussed in the License Termination Plan (LTP).

•

ATTACHMENT Y . 2

					TABLE 1	- Data List	ing (pCi/g)						
														Decay Date
														January 15, 2004
T	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	Am-241	Pu-238	Pu-239	Pu-241	C-14	Ni-63	Eu-152	Analysis Date
1	CV Tunnel	CV Tunnel Sediment Composite, OL1	< 9.4	9.67	1.26	1250	< 0.18	< 0.55	<0.22	< 44.69	< 9.34	< 4.02	< 0.13	February 14, 2001
2	SXSD105	CV Steam Tunnel, Vac-Pac Debris	< 0.808	< 0.0382	< 0.0251	9.26	< 0.0221	< 0.0348	< 0.00279	< 2.6	< 0.147	< 0.322	< 0.0899	December 10, 2003
3	SXSD1531,1532, 1533	CV Steel Shell Scrapings - Exterior Below Grade (Tar)		< 0.04	< 0.0331	0.177	< 0.0246	< 0.0517	< 0.0231	< 3.99				October 11, 2001
4	SXSD1552, 1553	CV Steel Shell Scrapings - Exterior Below Grade (Tar)		< 0.04	< 0.0305	0.297	< 0.0113	< 0.0372	< 0.0131	< 2.36				October 11, 2001
5	SXSD744	SSGS Mezzanine, East, Pipe Internals, SR-0004	< 123	< 0.18	2.26	39.6	< 0.709	< 0.33	< 0.33	< 50.8	< 37.9	< 82.6	< 1.46	March 21, 2001

		TAB	LE 2 . D	ecayed L	isting of P	ositive Nu	clides & I	IDAs Rem	oved (pCi/	g)				
			T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	
			4485.27	10446.15	1925.23275	11019.5925	157861.05	32050.6875	8813847.75	5259.6	2092882.5	36561.525	4967.4	
	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	Am-241	Pu-238	Pu-239	Pu-241	C-14	Ni-63	Eu-152	Total (pCi/g)
1	CV Tunnel	CV Tunnel Sediment Composite, OL1		9.01E+00	8.59E-01	1.17E+03								1178.89
2	SXSD105	CV Steam Tunnel, Vac-Pac Debris				9.24E+00								9.24
3	SXSD1531,1532, 1533	CV Steel Shell Scrapings - Exterior Below Grade (Tar)				1.68E-01								0.17
4	SXSD1552, 1553	CV Steel Shell Scrapings - Exterior Below Grade (Tar)				2.82E-01								0.28
5	SXSD744	SSGS Mezzanine, East, Pipe Internals, SR-0004			1.56E+00	3.71E+01								38.68
		Mean⇒		9.01E+00	8.59E-01	2.95E+02								304.55
		Sigma⇒				582.912								
		Mean % of Tota⊨		2.96%	0.28%	96.76%								100.00%

KEY		
	Yellow Shaded Background = Positive Result	
	Gray Shaded Background = MDA	

	SNEC Sample No	Location/Description	Sr-90	Co-60	Cs-137	
1	CV Tunnel	CV Tunnel Sediment Composite, OL1	0.76%	0.07%	99.16%	1
2	SXSD105	CV Steam Tunnel, Vac-Pac Debris			100.00%	1
3	SXSD1531,1532, 1533	CV Steel Shell Scrapings - Exterior Below Grade (Tar)			100.00%	1
4	SXSD1552, 1553	CV Steel Shell Scrapings - Exterior Below Grade (Tar)			100.00%	1
5	SXSD744	SSGS Mezzanine, East, Pipe Internals, SR-0004		4.03%	95.97%	1
		Mean⇒	7.64E-03	7.28E-04	9.98E-01	
		Sigma⇒			0.004185775	
		Mean % of Tota⊨	0.76%	0.07%	99.17%	1
		TABLE 4 - Ratio To Cs-137 for P	ositive N	luclides		
		TABLE 4 - Ratio To Cs-137 for P	ositive N	Nuclides		
	SNEC Sample No	TABLE 4 - Ratio To Cs-137 for P Location/Description	ositive M	Nuclides Co-60	Cs-137	
1	SNEC Sample No CV Tunnel	TABLE 4 - Ratio To Cs-137 for P Location/Description CV Tunnel Sediment Composite, OL1	ositive 1 sr-90 0.008	Nuclides Co-60	Cs-137 1.000	
1 2	SNEC Sample No CV Tunnel SXSD105	TABLE 4 - Ratio To Cs-137 for P Location/Description CV Tunnel Sediment Composite, OL1 CV Steam Tunnel, Vac-Pac Debris	ositive N Sr-90 0.008	Vuclides Co-60 0.001	Cs-137 1.000 1.000	
1 2 3	SNEC Sample No CV Tunnel SXSD105 SXSD1531,1532, 1533	Location/Description CV Tunnel Sediment Composite, OL1 CV Steam Tunnel, Vac-Pac Debris CV Steel Shell Scrapings - Exterior Below Grade (Tar)	ositive N Sr-90 0.008	Nuclides Co-60 0.001	Cs-137 1.000 1.000 1.000	
1 2 3 4	SNEC Sample No CV Tunnel SXSD105 SXSD1531,1532, 1533 SXSD1552, 1553	Location/Description CV Tunnel Sediment Composite, OL1 CV Steam Tunnel, Vac-Pac Debris CV Steel Shell Scrapings - Exterior Below Grade (Tar) CV Steel Shell Scrapings - Exterior Below Grade (Tar)	ositive N Sr-90 0.008	Vuclides Co-60 0.001	Cs-137 1.000 1.000 1.000 1.000	
1 2 3 4 5	SNEC Sample No CV Tunnel SXSD105 SXSD1531,1532, 1533 SXSD1552, 1553 SXSD744	TABLE 4 - Ratio To Cs-137 for P Location/Description CV Tunnel Sediment Composite, OL1 CV Steam Tunnel, Vac-Pac Debris CV Steel Shell Scrapings - Exterior Below Grade (Tar) CV Steel Shell Scrapings - Exterior Below Grade (Tar) CV Steel Shell Scrapings - Exterior Below Grade (Tar) SSGS Mezzanine, East, Pipe Internals, SR-0004	ositive N sr-90 0.008	Nuclides Co-60 0.001	Cs-137 1.000 1.000 1.000 1.000 1.000 1.000	
1 2 3 4 5	SNEC Sample No CV Tunnel SXSD105 SXSD1531,1532, 1533 SXSD1552, 1553 SXSD744	Location/Description CV Tunnel Sediment Composite, OL1 CV Steam Tunnel, Vac-Pac Debris CV Steel Shell Scrapings - Exterior Below Grade (Tar) CV Steel Shell Scrapings - Exterior Below Grade (Tar) SSGS Mezzanine, East, Pipe Internals, SR-0004	ositive N Sr-90 0.008 7.71E-03	Nuclides Co-60 0.001 0.042 7.35E-04	Cs-137 1.000 1.000 1.000 1.000 1.000 1.00E+00	
1 2 3 4 5	SNEC Sample No CV Tunnel SXSD105 SXSD1531,1532, 1533 SXSD1552, 1553 SXSD744	TABLE 4 - Ratio To Cs-137 for P Location/Description CV Tunnel Sediment Composite, OL1 CV Steam Tunnel, Vac-Pac Debris CV Steel Shell Scrapings - Exterior Below Grade (Tar) CV Steel Shell Scrapings - Exterior Below Grade (Tar) SGS Mezzanine, East, Pipe Internals, SR-0004 Mean⇒ Sigma⇒	ositive N sr-90 0.008 7.71E-03	Nuclides Co-60 0.001 0.042 7.35E-04	Cs-137 1.000 1.000 1.000 1.000 1.000 1.00E+00 0.00E+00	

Γ	Effective DC	GL Calculator	r for Cs-13	7 (dpm/100 c	:m^2)	Gross Acti	vity DCGLw	Gross Activity A	dministrative Limit	
						27479	dpm/100 cm^2	20609	dpm/100 cm*2	
	25.0	mremh TEDE Limit	•							
	23.0		L			3	Limitssee	Cs-137 Administrative Limit		
	SAMPLE NO(s)⇒	CV Tunnel				27250	dpm/100 cm^2	20438	dpm/100 cm^2	
		<u> </u>					· · · · · · · · · · · · · · · · · · ·			
						SNEC ALS	75%			
			•		1	· · · · · · · · · · · · · · · · · · ·	1	r	1	
				Individual						
	la adama	Sample Input	** -* ****	Limits	Allowed		Beta dpm/100	Alpha dpm/100		
Ι.	Isotope	(puig, uui, etc.)		(apm/100 cm*2)			cm ²	<u> </u>	A 214	
1	<u>Am-241</u>		0.000%		0.00	0.00	IIA	<u> </u>	Am-241	
2	C-14		0.000%	3,700,000	0.00	0.00	0.00	IFA	C-14	
3	Co-60	7.28E-04	0.072%	7,100	19.88	0.07	19.88	ll'A	Co.60	
4	Cs-137	9.98E-01	<u> 99.16</u> 8%	28,000	27250.22	24.33	27250.2	1174	Cs-137	
5	Eu-152		0.000%	13,000	0 00	0.00	0.00	11/A	Eu-152	
6	H.3		0.000%	120,000,000	0 0 0	0.00	flot Detectable	B'A	H-3	
7	Ni-63		0 000%	1,800,000	0.00	0.00	Not Detectable	3)?A	111-63	
8	Pu-238		0.000%	30	0.00	0.00	11/A	0.00	Pu-238	
9	Pu-239		0.000%	28	0.00	0.00	lí A	0.00	Pu-239	
10	Pu-241		0.000%	880	0.00	0.00	llot Detectable	31°A	Pu-241	
11	Sr-90	7.64E-03	0.759%	8,700	208.61	0.60	208.61	31/A	Sr-90	
1			100.000%		27479	25.0	27479	0	l :	
1					Maximum				•	
	•				dpm/100 cm^2					

Table 5

.

Tab	ble	6
-----	-----	---

					SNEC AL	75%	-Total Activity Limit D	CGLW	🔄 🖓 Adminis	trative Limit	
Effective	DCGL Calcu	lator for C	s-137 (in pCi	ig)			6.38	pCl/g	4.78	pCi/g]
SAMP	LE NUMBER(s)=	CV Tunnet				1					
						•	- 2972 . Cs-137 Limit av orthe . Cs-137 Administrative Lim]
15.82%	25.0	mrem/y TEDE	Limit				6.32	pCl/g	4.74	pCi/g	
1.52%	4.0	mrem y Drinki	ing Water (DW) Lir	nit	Check for 25 mrem/y						•
Isotope	Sample Input (pCI/g, uCI, %) of Total, etc.)	is of Total	25 mremły TEDE Limits (pCiłg)	4 mrem/y DW Limits (pCl/g)	A - Allowed pCilg for 25 mremiy TEDE	B - Allowed pCl/g	Value Checked from Column A or B		This Sample mremiy TEDE	This Sample : mremly DW	
Am-241		0 000%	9.9	2.3 Sale	0 00	0.00	0 00		0 00	0.00	An
C-14		0 000%	2.0	5.4	0 00	, 0.00	0 0 0		0 00	0.00	C.
Co.60	0.0007	0 073%	3.5	67.0	0 00	0.05	0 00		0 01	0.00	C
Cs-13/	1.0000	99 163%	6.6	397	6 32	65.92	6.32		3 79	0.01	IC:
Eu-152	1	0 000%	10.1	1440	0 00	0.00	0 00		0 00	v: v: 0.00};	E
H-3		0 000%	132	31.14	0 00	0.00	0 00		0 00	0.00	IH.
111-63		0 000%	141	19000	0 00	0.00	0 00		0 00	0.00	100
PU-238		0 000%	1.8		0 00	0.00	0 00		0 00	0.00	IP
Pu-239	1		1.6	0.31	0 00	0.00	0.00		0.00	0.00	IP(
PU-241	0.0077	0 00076	10	19.6	0.00	0.00	000		0.00	1.2.1.2.0.00	i Pi
21-20	0.0077	100.000#	1.2	04:122 U.D I 42:42	6 29	2239470.5122450	0.05		0.16	0.004	발
	1.012+00	100.000 %	l		0.30	00.40	0.30	I	3,934	0.061	4
					Maximum Permissible pCiig (25 mremis)	Maximum Permissible pCl/g			To Use Thi Sample Input	is information, Units flust Be in	1

TACHMEN Y. 6

.

ATTACHMENT 5.1

HFORMATION CALY

	SURVEY	REQUEST CONTINUA	TION SHEET				
SR NUMBER	SR-106	AREA/LOCATION	CV Steam Pipe Tunnel				
SPECIFIC EAMPLING / SURVEY INSTRUCTIONS OR COMMENTS							

RESULTS SUMMARY FOR SR-106

SR-106 was issued to obtain Nal detector scan measurements of CV Steam Pipe Tunnel surfaces. The data will indicate whether remediation is complete. The SR required the following radiological measurements:

- Surface Scan Measurements for Gamma Activity Using a Nal Detector -- perform a scan survey representative
 of the entire tunnel to include approx. 50% of total surface area. Focus on previously known contamination
 areas. Scan at a rate not exceeding 5 cm per second at a distance not exceeding 2 inches. Established action
 level is 200 gross cpm.
- Variability Study Using the LM 2350-1 with a GFPC obtain at least 20 unbiased measurement pairs using a GFPC. Perform 1-minute counts spaced throughout the entire tunnel and include a combination of floors, walls, and ceiling surfaces. The detector will be held on contact with surface.
- Variability Study Using the LM 2350-1 Nal Detector obtain at least 20 unbiased measurements using a Nal Detector. Perform 1-minute counts spaced throughout the entire tunnel and include a combination of floors, walls, and ceiling surfaces. The detector shall be within 2 inches of the surface.
- Loose Surface Contamination (Smear Survey) obtain at least 20 smears spaced throughout the entire tunnel and include a combination of floors, walls, and ceiling surfaces.
- Additional sampling/surveying may be performed as requested by the SR Coordinator.
- QC Repeat Measurements A minimum of 5% of all measurements and sampling will be re-performed using identical methodology.

1. Summary of Results

A. Surface Scan Measurements Using a Nal Detector

Approximately 63% of the tunnel surfaces were scanned.

Results: all areas indicated activity <action level except for 6 areas. Static measurements performed on these areas indicated <action level.

B. Static Measurements Using a GFPC Detector

Twenty-two unbiased measurement pairs were obtained.

Results: The range of static measurement pairs' difference was from 8 to 220 ncpm. The highest unshielded reading, taken at F.P #17, was 431 cpm. Unshielded readings ranged from 237 to 431 cpm.

C. Static Measurements Using a Nal Detector

Twenty-three unbiased measurements were obtained.

Results: The range of measurement results was from 99 to 175 gross cpm.

Page 1 of 3

MFORMATION GNLY

	SURVEY	REQUEST CONTINU	ATION SHEET
SR NUMBER	SR-106	AREA/LOCATION	CV Steam Pipe Tunnel
	SPECIFIC SA	MPLING / SURVEY INSTRUCT	ONS OR COMMENTS

D. Loose Surface Contamination Survey

Twenty-three unbiased smears were obtained.

Results: The smears indicated <MDA (166 dpm, Beta-gamma and 13.5 dpm, Alpha). Theses smears were composited and the gamma analysis indicated <1.6 E -5 uCl/smear group Cs-137.

E. Result Summary Table

The following table lists the survey/smear locations with the static measurement and smear results:

Survey Point /	44-10 Detector Result	23-58B Detector Unshielded Reading	Smear Results (ncpm/100 cm²)			
Officar Location	(gross chill)	(cpm)	Beta-gamma	Alpha		
1	111	304	3	0		
2	123	337	-6	0		
3	144	313	-2	0		
4	132	288	2	0		
5	131	338	1	0		
6	174	316	-2	0		
7	157	244	-8	0		
8	110	362	-4	0		
9	125	301	-1	0		
10	116	missed	0	0		
11	116	318	-3	0		
12	115	298	1	0		
13	93	265	3	0		
14	157	237	-7	0		
15	120	304	1	0		
16	155	322	-3	0		
17	175	431	8	C		
18	110	323	2	0		
19	122	316	1	G		
20	133	398	2	0		
21	113	391	-2	0		
22	155	398	-3	0		
23	137	401	-7	0		
MEAN	131.74	327.5				
2-Sigma						
Uncertainty	42.9	102.6				
MIN	99	237.0				
MAX	175	431.0				
MEDIAN	125	317.0		A CHARLE BY CATA		

٦,

Page 2 of 3

INFORMATION ONLY

	SURVEY	REQUEST CONTIN	UATION SHEET
SR NUMBER	SR-106	AREALOCATION	CV Steam Pipe Tunnel
	SPECIFIC SA	MPLING / SURVEY INSTRUC	TIONS OR COMMENTS

- F. Quality Control (QC) Measurements and Comparisons
- Scan, Static measurements and smears were obtained. This percentage meets the 5% requirement and the QC static measurements meet the applicable acceptance criteria (20%) established in Section 4.6 of E900-IMP-4520.04.

2. Discrepancies and Exceptions

The technician performing the 23-68B survey inadvertently missed the unshielded static measurement of survey point #10.

3. Final Summary:

• • •

Based on the results of the surveys performed under this SR. the CV Steam Tunnel indicates residual activity below the acceptable release limits.

David Sarge (GRCS) Dat	•
------------------------	---

Page 3 of 3

Nal Static Measurement MDC Calculation

<u>Use when Background Count Time ≠ Sample Count Time</u>

B := 1320 $T_{SB} := 2$ $T_B := 10$ $MSO := 1.141 \cdot 10^1$ CF := 176080

 $Ci := 5.64 \cdot 10^{-4}$

$$K := CF \cdot \frac{MSO}{(Ci \cdot 2.22 \cdot 10^{12})} \qquad K = 1.605 \cdot 10^{-3} \qquad Mass := 998.83$$

Area := 866

- $R_{B} \coloneqq \frac{B}{T_{B}}$ Background counting rate $L_{C} \coloneqq 2.33 \cdot \sqrt{B}$ Calculation of critical level (page 6-34 of MARSSIM)
- $L_C = 84.7$ <u>Critical level</u>

 $L_{C} + B = 1.4 \cdot 10^{3}$ Any count above this value should be regarded at being greater than background (page 6-37 of MARSSIM).

 $L_D \coloneqq 3 + 4.65 \cdot \sqrt{B}$

$$L_{D} = 171.943 \quad \underline{Detection \ limit}$$

$$MDC := \frac{\left[3 + 3.29 \cdot \sqrt{R_{B} \cdot T_{SB} \cdot \left(1 + \frac{T_{SB}}{T_{B}}\right)}\right]}{K \cdot T_{SB}}$$

$$MDC = 1.918 \cdot 10^{4} \quad dpm \qquad \frac{MDC \cdot 100}{Area} = 2.215 \cdot 10^{3} \quad \frac{dpm}{100} \ cm^{2}$$

$$\frac{MDC}{2.22} = 8.641 \cdot 10^{3} \quad Results \ in \ pCi \qquad \frac{\left(\frac{MDC}{2.22}\right)}{Mass} = 8.651 \qquad \frac{pCi}{g}$$

ATTACHMENT__

where:

Area = area in square centimeters

 $B = background count in time T_B (counts)$

CF = conversion factor for instrument calibration (cpm/mR/h)

K = instrument efficiency and other correction factors used to convert to appropriate units

.

L_C = critical level (counts)

 L_D = detection limit (counts)

Mass = modeled volume in grams

MDC = minimum detectable concentration (dpm or pCi)

MSO = MicroShield output in mR/h per uCi/cc or uCi/cm²

R_B = background count rate (cpm)

 T_{SB} = sample count time (in minutes)

 T_B = background count time (in minutes)

ATTACHMENT 7.2

Radionuciide

AF INTERPOLATOR

Co-60

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		M.2403 (464).				Ar	ea factor vs	Area (m ²))					
Nuclide	36	25	<u> </u>	9	4	1						•		
Am-241	1	1.5	2.3	4.1	9.2	36.2					-			
C-14	1	1.4	2.2	4	8.9	35.9			У	= 0.0896x* -	0.994x ³ + 3.	.9035x ² - 5.9	701x + 3.9	833
Co-60	1	1.2	1.5	2	3.4	10.1		12 r		·	$R^2 = 0$).9994		
Cs-137	1	1.2	1.5	2.2	3.7	11.2		ţ						
Eu-152	1	1.2	1.5	2.1	3.5	10.7		. t						
H-3	1	1.4	2.2	4	8.9	35.8		10 F						10.1
NI-63	1	1.4	2.2	4	9	35.3		ł						1
Pu-238	1	1.4	2.3	4	9.1	36.9		яÈ						
Pu-239	1	1.4	2.2	4	9	35.4	DR	۰f						
Pu-241	1	1.4	2.2	4	9	34.8	Ē	F						//
Sr-90	1	1.4	2.2	3.9	8.8	34.7	Ę	6 -						//
NOTE: Used when	e DCGL is ir	1 dpm/100 cm	^2				≦	Ļ					//	/
	1						ARI	Ţ						
Area Factor	2018 1852	E 1.2 C	2*:1:5 ****	已经第2位4月	x:::3:4*5	St 10.1		4		•••			~	
745 Area (m;2)3=	2223660	144125 High	16210	S(19 53)	5.2% (A 36.6%)			Ŀ.					3.4	-
								2				2		-
,	-	1000-1000 (2011) (2010) (10		and the set of the		• I		- ł		12				
	TEPOIntil 1	13 Point 22	Sinput Area	Projected	Area Factora			ł	1 +					
9578 APM (m; 2) 5	<u>א </u>	4	6.8	2.	62			0 Ĺ		· · · · · · · · · · · · · · · · · · ·	L	<u> </u>		ł
Į.	mini filaraka	Antipate is a set	werte auftige a serve	Hillington King Tt	ترجار وتروي ورجوني				36	25	16	9	4	1
Area Factor	141.POINT.1覧	POINT 253	atinput AF 33	Project	ed Area SSA						AREA	(m^2)		
THE FUNCTION	1 4	3.4	2.02	6.	/9	J j						/		

ATTACHMENT 8

- .

•

.

ORIGINAL

Exhibit 1	
Survey Unit Inspection Check	Shee

•

Survey	Unit #	SS22-1, 2	2, 3	Survey Unit Location	1 CV \$	Steam Pipe Tunnel – flo	or, walls,	and co	eiling
Date	Date 4/8/04 Time 1100 Inspection Team Members D.Sarge, G. Houtz, B							G. Wo	omer
			SECTIO	N 2 - SURVEY UNIT	INSPEC	TION SCOPE			
	Insp	ection Requ	irements	(Check the appropria	nte Yes/N	lo answer.)	Yes	No	N//
1. Hav	e sufficient su	irveys (i.e., pos	t remediati	on, characterization, etc.)	een obtain	ned for the survey unit?	X		
2. Dot	he surveys (fi	rom Question 1) demonstr	ate that the survey unit wil	most likely	y pass the FSS?	X		
3. Is th	e physical wo	ork (i.e., remedi	ation & hou	sekeeping) in or around th	e survey u	nit complete?		X .	
4. Hav	e all tools, no	n-permanent eo	quipment, a	and material not needed to	perform th	e FSS been removed?		x	
5. Are	he survey su	rfaces relatively	free of loc	ose debris (i.e., dirt, concre	te dust, me	etal filings, etc.)?	X		
6. Are	he survey su	rfaces relatively	y free of liq	uids (i.e., water, moisture,	oil, etc.)?			X	
7. Are	he survey su	rfaces free of a	ll paint, wh	ich has the potential to shi	eld radiatio	n?		x	
8. Hav	e the Surface	Measurement	Test Areas	(SMTA) been established	? (Refer to	Exhibit 2 for instructions.)	X		
9. Hav	e the Surface	Measurement	Test Areas	(SMTA) data been collect	ed? (Refer	to Exhibit 2 for instructions.)	X		
10. Are	he survey su	rfaces easily ac	cessible?	(No scaffolding, high react	, etc. is ne	eded to perform the FSS)		X	
11. Is lig	hting adequa	te to perform th	e FSS?				X		
12. Is th	e area indust	rially safe to pe	rform the F	SS? (Evaluate potential fa	ll & trip haz	ards, confined spaces, etc.)	X		
13. Hav	e photograph:	s been taken st	nowing the	overall condition of the are	a?		X		
14. Hav	e all unsatisfa	ctory condition	s been res	plved?				x	
NOTE: If responsit sheets as	a "No" answ le site depart necessary.	er is obtained ment, as applic	above, the cable. Doc	inspector should immedi ument actions taken and/o	ately correct or justification	ct the problem or initiate corr ons in the "Comments" section	ective action below. A	ons throu Attach ad	ugh ti Iditior
Comment Respon	s: se to Ques	stion #3 – Va	acuuming	g is required prior to F	SS. (esp	ecially in troughs and co	ore boret	noles). uids.	
Respon		50011 # 4 10			s guno, a				
Respon	se to Ques	stion #6 – St	anding w	vater located in troug	ns (west o	end).			
Respon	se to Ques	stion #7 – Sp	oray pain	t used on walls to ma	rk survey	y grids.			
Respon ceiling :	se to Que supports ar	stion #10 – nd (East end	Some a) are ina	reas of ceiling and ccessible due to stee	walis (W I wali cor	est end) are inaccessit npaonents. • 4/11404	ole due 1	o tem	pora
Survey	Unit Inspe		n) G	Houtz / 📿			Date		ปกน

ATACHMENY 9-1

GRIGINAL

EXHIBIT 3 Surface Measurement Test Area (SMTA) Data Sheet

					`	<u> </u>	SEC	TION	1 - D	E	SCRIP	TION	1		· ·			
	S	MTA Nu	mber		S	MTA-SS	-22-1		Sur	ve	ey Unit Number SS22-1					<u>.</u>		
	s	MTA Loc	ation	CV Ste	eam	Pipe Tur	nnel											
	Survey Unit Inspector G. Houtz											Date	4	/8/04	Time	1120		
				SE	CTI	ON 2 - C	ALIPER	ГІС	ON & P	ERS	ONNE		LVED					
	С	aliper M	anufactu	ırer		N	Aitotoyo		Calipe	r Mo	del Nu	mber		CD-6" CS	;			
	Caliper Serial Number 763893 Ca										alibratio	n Du	ue Date	e (as ap	plicable)	1	N/A	
	R	ad Con	Technici	an G	G. Ho	outz			⇒-		~ (6	1	Date	4	/8/04	Time	1120	
	S	urvey Ur	nit Inspe	ctor Ap	opro	val G.	Houtz /	S	<u>S</u>	<u>1</u>	AND	5			Date	1	120	
					. <u> </u>	SE	ECTION 3	-ME	ASU	RE	IMENT	RE	SULTS					
	5	SMTA Gr	id Map (Insert F	& Mea: Results	sure in V	ment Re: Vhite Blo	sults in U cks Belov	nits of v)_	mm					Co	nments			
	ſ	1	7	13	3	19	25	31			• E	ntire	floor h	as beer	n scabbled	l (1 – 2" d	lepth)	
		0.21	1.44	2.9	97	2.28	1.05	2.5			• E	ast e	end has steel plate installed with bracing					
		2	8	14	۲	20	26	32			a: (5	ncho S' len	red into	d into floor. Brace obstructs floor access				
거	ļ	1.58	1.0	1.4	4	1.09	0.95	1.35			pl	blane of the floor, therefore obstructs survey.						
Š		3	9	18	5	21	27	33	Í									
	ļ	2.3	1.42	1.0	8	1.47	1.25	1.32			• Ti	roughs scabbled into floor at wall seams					ns	
Ś		4	10	16	5	22	28	34			require special survey considerations							
F	ŀ	2.94	4.82	1.1	8	2.31	1.48	1.32			• C	ore b	oore ho	les pos	e same su	irvev		
Ē		5 .	11	17	14	23 1 S	29	35			cc	onsid	isiderations					
05	┢	1.99	9.11	1.9		1.02	0.44	1.94										
ž		0.74	171	. 10	4	4 9 1.37	263	30 1.46			 Drain trench has been chiseled/scabbled inf "\" shaped configuration. Poses same support 							
	L	0.1	Avom/				1.86 mm				CC	onsid	eration	IS		So Same	Survey	
ŀ			Averaç				Addition	al Mea	Sure		ents R	equir	red					
ŀ		2 (lbss										Dog			1 4" to 71 4			
	•	3 (me			Southernormal Southernorma Southernormal Southernormal South		i eveniy a • wido x 2		engu	н с 5	Dooth	Dep		ween 1	-4 10 2 -0			
	•) trough	along	Sou	in wall, o		24 -∠ 10 57 usid	engu o v 7	11. 71 -		belw		1 1 5"				
	•			along	Nor	wall (W	est end).	DIW C	e x /	י- י רי	c. Dep		stween	1-1.5 [°] .	1 57			
	•		ronahia	along		11 wall (ea			= X 1 5 2 9'	ے بر ہ	ienyui.	, шер ад 44	ינון הקנא איז הייקר		·1.0.	anth		
	•			y (west		1). IU WI	ue X 3 +0 h	length	1 X 0	d	epin al		, MIG6	x 4 iei	iyui xo a	epui.		
	•	4 (lour	JS COTE	: noten	lotes	s s uepti												

EXHIBIT 3 Surface Measurement Test Area (SMTA) Data Sheet											
:				SEC	TION 1 -	- DESCRIPTION					
SMTA Number SMTA-SS-22-2 and 3 Survey Unit Number SS22-2 and 3											
SMTA Location CV Steam Pipe Tunnel (Walls and Ceiling)											
Survey U	nit Inspec	tor		G. H	outz	Date 4/8/04 Time 1100					
		SECT	ON 2 - C	ALIPER	INFORM	IATION & PERSONNEL INVOLVED					
Caliper N	lanufactu	rer	N	litotoyo		Caliper Model Number CD-6" CS					
Caliper S	erial Nur	nber	7	63893		Calibration Due Date (as applicable) N/A					
Rad Con	Technicia	an G. H	outz		\frown	Date 4/8/04 Time 1120					
Survey L	nit Inspec	tor Appro	val G.	Houtz /		Date 1100					
			SE	ECTION 8	MEAS	SUREMENT RESULTS					
SMTA G	ind Map 8 (Insert R	k Measure esults in V	ement Re White Blo	sults in U cks Belov	nits of m v)	Comments					
1	7	13	19	25	31	Wall surfaces are smooth except for areas					
o	0	ο	o	0	O	disturbed by scabbling, core boring, and the removal of uni-strut.					
2	8	14	20	26	32						
0	0	ο	ο	0	o	 East end has steel plate installed with bracing anchored into floor. Plate installed within the 					
3	. 9	15	21	27	33	plane of the walls, therefore obstructs survey.					
ο	0	O	0	0	0	Some wall areas are not accessible currently.					
4	. 10	16	22	28	34	Steel plate blocks access.					
O	0	0	0	0	0	Uni-strut at far west end has concrete filler in					
5	11	17	23	29	25	three locations. Length is 3', depths between					
o	0	o	0	0	o	70'-6". Uni-strut depth is 2".					
.6	12	18	. 24	30	36	Ceiling surfaces are smooth except for form					
0	0	0	0	0	0	separation crack roughly mid-point of tunnel					
	Averag	e Measur	ement -	1.86 mm							
				Addition	al Measu	urements Required					
NORTH	VALL				· <u>·</u> ····						

- 7 (seven) vertically installed uni-struts 1' length spaced 6' on center along ceiling line.
- 7 (seven) vertically installed uni-struts 1' length spaced 6' on center along floor line.
- 2 (two) 3" core boreholes. Depth is 2".
- 1 (one) steel plate installed at east end. Poses special survey considerations.

SOUTH WALL

INFORMATION ONLY

- 7 (seven) vertically installed uni-struts 5' length spaced 6' on center (top at ceiling line).
- 1 (one) trough 7' length x 8" high x 3" depth (middle of wall at floor line).
- 1 (one) trough 4' length x 16" high x 3" depth (west end at floor line).
- 1 (one) trough 16" length x 10" high x 2" depth (west end at floor line).
- 1 (one) chiseled hole 30" high x 1' wide (far west end at uni-strut removal location)

CEILING

- Form separation crack located mid-point. Depth is 0.5'
- 5 (five) north-south oriented Uni-struts 4' length spaced 6' on center.