ORIGINAL

SNEC CALCULATION COVER SHEET								
CALCULATION DESCRIPTION								
Calculation Number		Revision Number	Effective Date	F	Page Nun	nber		
E900-04-009		0	6-14-04		1	of	12	
Subject .								
CV Yard Survey Design - So	CV Yard Survey Design - South Side of CV							
Question 1 - Is this calculation defi		•						
Question 2 - Is this calculation def	_							
Question 3 - Does the calculation	-			Yes 🗌	No [_	
NOTES: If a "Yes" answer is obtained Assurance Plan. If a "Yes" answer calculation as the Technical Reviewer. calculation. Calculations that do not ha	is obtained for Que	estion 2, the Calculation O s obtained for Question 3, S	riginator's immediate su NEC Management appro	pervisor :	should n	ot rev	iew the	
	DESCI	RIPTION OF REVI	SION					
· · ·								
				•				
•								
							Ì	
	•		•					
				^				
·	APPR	OVAL SIGNATUR	RES					
Calculation Originator	B. Brosey/	B. Brong		Date	6-	14 -	40	
Technical Reviewer	P. Donnachie	1 Durch	() -9	Date	6-14	1-09	1	
Additional Review	A. Paynter/	Cht CX	· V	Date	172	رم مر	γa	
Additional Review				Date				
SNEC Management Approval				Date				

FirstEnergy St	NEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-04-009	0	Page 2 of 12
Subject		
CV Yard Survey Design – South Si	de of CV	

1.0 PURPOSE

1.1 The purpose of this calculation is to develop a survey design for one (1) CV Yard open land area survey unit, and an exposed steel surface on the south side of the SNEC CV (located in the same area). In addition, several residual concrete structures in this area are to be surveyed. These are below grade Class 1 survey units. These areas and objects will be surveyed IAW Reference 3.1 and 3.2.

2.0 SUMMARY OF RESULTS

The following information should be used to develop a survey request for these survey units.

- 2.1 The open land area begins about 10' below the ~804' El (the cut-off elevation of the CV shell), and extends to about grade level at ~811' El. This survey unit is bounded on the western side by the southern edge of an old concrete transformer support structure, and on the eastern side by a wing wall extension from the CV support structure. These landmarks are shown in Attachment 1-1. This survey area is located in site area OL1 and the open land survey unit portion is designated <u>OL1-3</u>. This survey unit includes all concrete block in the area to the base of the DSB foundation (the DSB foundation will be surveyed using a different survey design). The total exposed surface soil area including concrete block wall sections is ~395 square meters.
- 2.2 Exposed solid concrete structures such as old foundation segments and pillars of the Control, DSF and CV Tunnel, are collectively designated <u>MA8-2</u> (see Attachment 1-2 to 1-8). These exposed building segments are approximately <u>13 square meters</u> in area.
- 2.3 The CV Yard steel surface is an external section of the CV steel shell that extends about 77 feet along the south side of the circumference of the CV. This exposed steel surface is divided into a Class 1 area and a Class 2 area, with a non-impacted area below the Class 2 area. The actual surface area for these three exposed sections of CV shell are shown below. This does not include the wing wall steel which was radiologically clean materials added by SNEC personnel during dismantlement.
 - 2.3.1 Class 1 (<u>CV4-2</u>) <u>7.4 m²</u> (100% scan coverage).
 - 2.3.2 Class 2 ($\underline{CV5-1}$) $\underline{16.2 \ m^2}$ (upper 31" to be surveyed (12.6 m²)) @ 100% scan coverage.
 - 2.3.3 Non-impacted area of ~12.3 m² (not surveyed)

The Class 2 area is prepared for survey work down to about the 800' elevation. (see Attachment 1-9). Thus only the <u>top 48"</u> (from the cut-off down) of the external steel shell will be scanned (100% coverage). The top 48" includes both the Class 1 and Class 2 areas. Remnants of the CV support steel structure are visible at both ends of this area. These clean add-on steel materials (including the "wing walls") were welded to areas previously surveyed. Accessible areas of all add-on structural steel should be scanned.

- 2.4 Concrete structures found in the open land area are in poor overall condition. Much of this material is concrete block that is cracked and/or crumbling. Concrete block may be scanned as though it were soil since its density is similar to soil (~1.7 g/cc area Vs ~1.5 g/cc for soil).
- 2.5 Remaining solid concrete structures in this area should be scanned using a NaI detector, using a slower scanning rate. In addition, a GFPC beta radiation detection system will be

FirstEnergy	SNEC CALCULATION SH	EET	
Calculation Number	Revision Number		Page Number
E900-04-009	ļ	0	Page 3 of 12
Subject			
CV Yard Survey Design –	South Side of CV		

used to survey these structures. Scanning parameters for these items are listed in the Table below.

SUMMARY OF SCANNING PARAMETERS

Area or Structure	Instrument Type Used	Scan Speed	Surface to Detector Face	Calculated MDCscan Values
OL1-3 (soil & block)	Nal (2" by 2" Cs-137 Window)	9.8" per sec (25 cm/sec)	4" (10.2 cm)	2.2 to 4.4 pCi/g (100 - 400 cpm bkgnd)
MA8-2 (solid concrete sections)	Na1 (2" by 2" Cs-137 Window)	1.2" per sec (3.1 cm/sec)	2" (5.1 cm)	4.1 pCi/g or 4,425 dpm/100 cm ² (@~200 cpm bkgnd)
MA8-2 (solid concrete sections)	GFPC (beta)	0.9" per sec (2.2 cm/sec)	Contact	2,204 dpm/100 cm²
CV4-2 & CV5-1 (CV steel shell)	GFPC (beta)	0.9" per sec (2.2 cm/sec)	Contact	784 dpm/100 cm²

2.6 Generic Nal Scanning Criteria

- 2.6.1 A <u>2" D by 2" L Nal detector</u> with a Cs-137 window setting shall be used. The window will straddle the Cs-137 662 keV full energy peak width.
- 2.6.2 The Nal instrument conversion factor/efficiency shall not be less than <u>208 cpm/uR/h</u> which was used for planning purposes. See Attachment 2-1 for typical site listing of instrument efficiency factors (Cs-137).
- 2.6.3 Scan in a serpentine pattern that is ~0.5 meters wide (soil, fill materials and concrete block). Şcan width for solid concrete foundations and pillars should be IAW the objects narrowest dimension.
- 2.7 The effective DCGLw values for the CV Yard area are listed below. The US NRC has reviewed and concurred with the derivation logic for applicable DCGL determination. See Attachment 3-1 to 3-5.

DCGLw Table

Volumetric DCGLw (pCi/g - Cs-137)	Surface Gross Activity DCGLw (dpm/100 cm²)
5.73 (4.3 A.L.)	44,434 (33,325 A.L.)

NOTE: A.L. is the site Administrative Limit (75% of effective DCGLw)

2.8 GFPC Scanning of Concrete Pillars, Foundations (not for concrete block) and Steel Surfaces

A Gas Flow Proportional Counter (GFPC) shall be used to scan steel and selected concrete structures. The following parameters were used to develop this survey design.

2.9 For rough surfaces, a GFPC efficiency factor is based on estimating the gap between the probe face plate and the surface being measured. This information is collected IAW Reference 3.3. The rough surface factor is then determined from Reference 3.4 and used to estimate the efficiency loss. See Attachment 4-1 to 4-7 for the inspection report summary for this area. From Attachment 5-1, the correction factor used is a "worst case" estimate based on the objects shown in Attachments 1-2 to 1-8. No efficiency correction factor is applied for steel surfaces.

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-04-009	0	Page 4 of <u>12</u>
Subject		
CV Yard Survey Design -	South Side of CV	

GFPC Detection Efficiency Results Used for Planning

Material Type	Ej•	εs	ε _t (as %)	% Cs-137	Efficiency Factor	Resulting counts/disintegration
Concrete	0.478	0.5	23.9%	0.5952	0.45	0.0640
Steel	0.478	0.5	23.9%	0.5952	1.0	0.1423

^{*}See Attachment 2-1 as an example of typical detector efficiency factors used at the SNEC site (as of 6/1/04).

NOTE: Total efficiency should not be less than Et value for any instrument used during this survey effort.

2.10 Alarm Set-Points

Based on the expected detection efficiency, the following are the alarm set-points for these objects and areas.

Alarm Set-Points

Area or Structure	Instrument Type Used	Alarm Set (gross cpm)	DCGL (in ncpm)
OL1-3 (soil & block)	Nal (2" by 2" Cs-137 Window)"	300	~200
MA8-2 (solid concrete sections)	Nal (2" by 2" Cs-137 Window)*	300	~300 (surface limit), ~70 (volumetric limit)
MA8-2 (solid concrete sections)	GFPC (beta)	1,200	2,519
CV4-2 & CV5-1 (CV steel shell)	GFPC (beta)	2,500	5,879

^{*} See Attachment 6-1 to 6-12 for the actual calculations used to determine these factors.

NOTE

Nal Background has been measured in this area and ranges from about 100 to 400 cpm (from Reference 3.5).

- 2.10.1 All survey personnel shall be trained to identify count rates at or above the alarm set-points previously identified.
- 2.10.2 If an alarm set point is reached during any scanning process, the surveyor should stop and locate the boundary of the elevated area. The surveyor should then mark the elevated area with stakes or other appropriate marking tools.
- 2.11 <u>Sample elevated areas(s) IAW SNEC procedure E900-IMP-4520.04 (Reference 3-2) and the following.</u>
 - 2.11.1 Clearly mark, identify and document all sample locations
 - 2.11.2 Sample any location that is above the action level cited is Section 2.10 above.
 - 2.11.3 For concrete, a 4" long core bore sample is preferred so that the depth of penetration can be identified. However, when a core bore cannot be taken because of the lack of volume, quality of concrete, or because of limited access in the area, sampling should remove the first 1" of material and yield a volume of at least 200 cc to ensure an adequate counting MDA for Cs-137 (a 4" diameter area by 1" deep = ~200 cc).
- 2.12 The minimum number of sampling points indicated for these survey units by the Compass (Reference 3.6) are listed in the following Table. See Attachments 7-1 to 7-13 for Compass results and Attachment 8-1 to 8-4 for diagrams of measurement and sampling points.

FystEnergy	SNEC CALCULATION SHEET				
Calculation Number		Revision Number	Page Number		
E900-04-009	0 Page 5 of <u>12</u>				
Subject					
CV Yard Survey Design - \$	South Side of CV				

Minimum Number of Samples or Fixed Points per Area

Survey Unit No.	Classification	No. of Points
OL1-3 (sail & block)	Class 1	14
MA8-2 (solid concrete remnants)	Class 1	8
CV4-2 (CV steel shell)	Class 1	8
CV5-1 (CV steel shell)	Class 2	8

See Attachments 7-1 to 7-13 for Compass output and Attachment 8-1 to 8-4 for locations of measurement or sampling points.

- 2.13 VSP (Reference 3.7) is used to plot all sampling and measurement points on the included diagrams. In some cases, the actual number of random start systematically spaced sample/measurement points may be greater than that required by the Compass computer code because of:
 - placement of the initial random starting point (edge effects),
 - odd shaped diagrams, and/or
 - coverage concerns
 - 2.13.1 The starting points for physically locating sites in the excavation area (OL1-3) are based on measurements from the CV outer shell. All key measurement points are marked on Attachments 8-1 and 8-2. Once the key points are located in the survey unit, a triangular grid system of sample points must be laid out over the sloped survey area. <u>Distances for soil sample points are measured over the contour of the survey unit.</u>
 - 2.13.1.1 Some starting point locations may need to be adjusted to accommodate obstructions within the survey area. Contact the SR coordinator to report any difficulties encountered when laying out systematic grid sampling points.
 - 2.13.2 When an obstruction is encountered that will not allow collection of a sample or placement of a measurement point, contact the cognizant SR coordinator for permission to delete or move the point.

NOTE

If remediation actions are taken as a result of this survey, this survey design must be revised or re-written entirely.

3.0 REFERENCES

- 3.1 SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA".
- 3.2 SNEC Procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".
- 3.3 SNEC Procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design".
- 3.4 SNEC Calculation No. 6900-02-028, GFPC Instrument Efficiency Loss Study.

FirstEnergy	SNEC CALCU	LATION SHEET	
Calculation Number		Revision Number	Page Number
E900-04-009		0	Page 6 of <u>12</u>
Subject			
CV Yard Survey Design - S	South Side of CV		

- 3.5 SNEC Calculation No. E900-03-018, "Optimize Window and Threshold Settings for the Detection of Cs-137 Using the Ludlum 2350-1 and a 44/10 Nal Detector", 8/7/03.
- 3.6 Compass Computer Program, Version 1.0.0, Oak Ridge Institute for Science and Education.
- 3.7 Visual Sample Plan, Version 2.0 (or greater), Copyright 2002, Battelle Memorial Institute.
- 3.8 SNEC Calculation No. E900-03-022, Rev 0, "CV Yard Soil Survey Design to El 803".
- 3.9 Plan SNEC Facility License Termination Plan.
- 3.10 Westinghouse Electric Corporation, Gilbert Associates, Inc., Drawing No. D-37798, Saxton Reactor Project, "Containment Vessel Penetration Access", 7/21/60.
- 3.11 GPU Nuclear, SNEC Facility, "Containment Vessel Survey", SNECRM-019, Rev 1, 1/18/02.
- 3.12 ISO 7503-1, Evaluation of Surface Contamination, Part 1: Beta-emitters (maximum beta energy greater than 0.15 MeV) and alpha-emitters, 1988.
- 3.13 SNEC Facility Historical Site Assessment, Rev 0, March, 2000.
- 3.14 SNEC Calculation No. E900-03-012, Effective DCGL Worksheet Verification.
- 3.15 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.
- 3.16 Microsoft Excel 97, Microsoft Corporation Inc., SR-2, 1985-1997.

4.0 ASSUMPTIONS AND BASIC DATA

- 4.1 Soil, Fill Materials and Concrete Block Survey Parameters (Nal Detector)
 - 4.1.1 The MDCscan for soil and concrete block (in pCi/g), is determined using a MicroShield model. MDCscan calculations for the open land portion of these survey units are shown in Attachment 6-1 to 6-6.
- 4.2 Solid Concrete Structures (Footers and Pillars) (Nal Detector)
 - 4.2.1 The MDCscan value determined for a NaI detector and assuming a surface deposition (in dpm/100 cm²), is determined using a MicroShield model. MDCscan calculations are shown on Attachments 6-7 to 6-9.
 - 4.2.2 The MDCscan value, assuming a volumetric concentration (pCi/g) in solid concrete is determined using a MicroShield model. MDCscan calculations are shown on Attachments 6-10 to 6-12.
- 4.3 The Compass computer program is used to calculate the required number of random start systematic samples (or measurements) to be taken in each survey unit (Reference 3.6). The off-site soil background from Reference 3.9 is used to estimate background as input to the Compass program (see Attachments 7-1 to 7-13).
- 4.4 Soil samples from this area are used as the initial estimate of variability for the OL1-3 area. These results are shown on **Attachment 9-1**.
- 4.5 Concrete variability of the areas structures was performed at the start of this work and are reported in **Attachment 10-1**. Background variability results are taken from the

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-04-009	0	Page 7 of <u>12</u>
Subject		
CV Yard Survey Design -	South Side of CV	

Williamsburg survey work of non-impacted background material (see Attachment 10-2). No elevation correction is applied to the Williamsburg results.

- 4.6 Steel variability of the areas structures was performed at the start of this work and are reported in Attachment 11-1. Background variability results are taken from the Williamsburg survey work of non-impacted background material (see Attachment 11-2). No elevation correction is applied to the Williamsburg results.
- 4.7 The MARSSIM WRS Test criteria will be used for work in this area.
- 4.8 The number of points chosen by Compass are located on the survey map for the survey unit by the Visual Sample Plan (VSP) computer code (Reference 3.7). VSP is used to plot random start systematically spaced sampling points. The dimensions of selected survey points are provided for each survey unit referenced to an existing survey area landmark (key point measurement location). These diagrams are shown in Attachment 8-1 to 8-4.
- 4.9 Reference 3.8 and 3.9 were also used as guidance during the survey design development phase. The construction/assembly drawings used to determine the original physical extent of these areas are listed as Reference 3.10 and 3.11.

4.10 Remediation History

A review of survey request data pertaining to this open land area adjacent to the CV shell was conducted in support of this survey design. Analysis of soil samples taken after remediation of the area (from SR-107), shows that this area (below the 803' elevation), has been reduced to an average of 0.19 pCi/g (Cs-137) with a maximum value of 0.4 pCi/g. Other subsurface sample data collected in conjunction with installation of the anchor bolts, grout curtain, and various wells within this area were also reviewed. These data are compiled and summarized in SR-0029. Earlier remediation history in this area is reported in the SNEC facility Historical Site Assessment document (Reference 3-13) and the 1994 Soil Remediation Project Report.

- 4.11 This survey design uses Cs-137 as a surrogate to bound the average concentration for all SNEC facility related radionuclides in the survey unit. The effective DCGLw is just the permitted Cs-137 concentration (6.6 pCi/g) lowered to compensate for the presence (or potential presence) of other SNEC related radionuclides. In addition, an administrative limit (75%) has been set that further lowers the permissible Cs-137 concentration to an effective DCGLw for this radionuclide.
- 4.12 The sample data base used to determine the effective radionuclide mix for the CV Yard area has been drawn from previous samples that were assayed at off-site laboratories. This list is shown as Attachment 3-1 and 3-5, and includes (23) analysis results. Review of the data shows several radionuclides have not been positively identified at any significant concentration. These radionuclides have been removed from the data set and will not be considered further. Radionuclides removed include Am-241, C-14, Eu-152, Ni-63, Pu-238, Pu-239 and Pu-41. The data shows Cs-137 and H-3 (99%) to be the predominant radioactive contaminants found in this area. Sr-90 and Co-60 on the other hand, were also positively identified, but constitute less than 1% of the mix.

Remediation has impacted radionuclide concentration levels in this survey unit. Remediation efforts have been shown to be effective in lowering the average concentration of Cs-137 in this survey unit. Therefore, the impact of remediation must be considered in determining the effective Cs-137 DCGLw surrogate value. Remediation of this survey unit

FratEnergy SNEC CALC	CULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-04-009	0	Page 8 of <u>12</u>
Subject		
CV Yard Survey Design – South Side of CV		

was largely complete by about July of 2001. Samples collected prior to this date have been disqualified in the final listing which was decayed to September 20th, 2003. In all, about twenty three (23) sample results were used to determine the best representative mix for this survey unit.

The decayed sample results were input to the spreadsheet titled "Effective DCGL Calculator for Cs-137" (Reference 3-14) to determine the effective volumetric and surface DCGLw values for the OL1-3 area. The output of this spreadsheet is shown on Attachment 3-4 and 3-5.

- 4.13 The Nal scan MDC calculation is determined based on a 25 cm/sec scan rate, a 1.38 index of sensitivity (95% correct detection probability and 60% false positive) and a detector sensitivity of 208 cpm/uR/h for Cs-137. Additionally, the detection system incorporates a Cs-137 window that lowers sensitivity to background in the survey unit. The resulting range of background values varies from about 100 cpm to ~400 cpm.
- 4.14 These survey units were inspected after remediation efforts were shown effective. A copy of portions of the SNEC facility post-remediation inspection report is included as **Attachment** 4-1 to 4-7.
- 4.15 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in this survey area.
- 4.16 The decision error for this survey design is 0.05 for the α value and 0.1 for the β value.
- 4.17 Special measurements including gamma-ray spectroscopy are not included in this survey design.
- 4.18 No additional sampling will be performed IAW this survey design beyond that described herein.
- 4.19 The applicable SNEC site radionuclides and their individual DCGLw values are listed on **Exhibit 1** of this calculation.
- 4.20 The survey design checklist is listed in Exhibit 2.
- 4.21 Area factors are not applicable in subsurface soil volumes (below 1 meter). Therefore, the area factor input requirement for soil in the Compass computer program is 1 for both a 10,000 square meter area as well as for a 1 square meter area (see Attachment 7-1).
- 4.22 Area factors for structural surfaces are shown on Attachment 7-5. These values are for Co-60 which is a constituent of the mix. However, Cs-137 and Co-60 area factors are very similar and therefore there is little impact from using this more conservative area factor. The lower limit area factor for areas less than 1 square meter is 10.1. Area factors for values between the values listed in the following table, are interpolated from the data by Compass.

FirstEnergy	ET		
Calculation Number	Revision Number		Page Number
E900-04-009		0	Page 9 of <u>12</u>
Subject			
CV Yard Survey Design -	- South Side of CV		

AREA (m²)	AREA FACTOR
1	10.1
4	3.4
9	2
16	1.5
25	1.2
36	1

5.0 CALCULATIONS

5.1 All calculations are performed internal to applicable computer codes or within an Excel spreadsheet.

6.0 APPENDICES

- 6.1 Attachment 1-1 to 1-9, are diagrams of survey unit OL1-3, MA8 –2, CV4-2 & CV5-1.
- 6.2 Attachment 2-1, is a listing of typical calibration data from both GFPC & Nal radiation detection instrumentation that may be used during this survey effort.
- 6.3 Attachment 3-1 to 3-5 is the sample results from the OL1 area and the DCGL calculation sheets.
- 6.4 Attachment 4-1 to 4-7, is copies of the inspection reports from these survey units.
- 6.5 Attachment 5-1, is the efficiency correction factor employed for a GFPC instrument as a result of the survey unit inspections.

6.6 Attachment 6

- 6.6.1 Attachment 6-1, is the MicroShield model of a soil volume used to determine the exposure rate from a 1 pCi/g Cs-137 source term in the OL1-3 area.
- 6.6.2 Attachment 6-2 to 6-6, are calculations of MDCscan values for soil in the OL1-3 area for backgrounds ranging from 100 cpm to 400 cpm.
- 6.6.3 Attachment 6-7, is the MicroShield output for a 12" surface source term used to model a surface deposition in a small area.
- 6.6.4 Attachment 6-8 & 6-9, are calculations of MDCscan values for a surface deposition in the MA8-2 survey unit.
- 6.6.5 Attachment 6-10, is the MicroShield output for a 12" volumetric source term used to model a concentration in concrete materials.
- 6.6.6 Attachment 6-11 & 6-12, are calculations of MDCscan values for a volumetric concentrations in concrete.
- 6.7 Attachment 7-1 to 7-13, is the Compass output for these four survey units.

6.8 Attachment 8

- 6.8.1 Attachment 8-1, is key sample point location coordinates from the CV shell (points 1 & 6), for sampling soil materials around the CV.
- 6.8.2 Attachment 8-2, is the complete layout of sample points for the OL1-3 area.

FratEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-04-009	О	Page 10 of <u>12</u>
Subject		
CV Yard Survey Design - South	n Side of CV	

- 6.8.3 Attachment 8-3, is the layout of survey points along the south side of the SNEC CV steel shell for both the CV4-2 & CV5-1 survey units.
- 6.8.4 Attachment 8-4, is the layout of survey points for the MA8-2 miscellaneous concrete sections in the OL1-3 area.
- 6.9 **Attachment 9-1**, is the soil variability results for soil samples from the OL1-3 area collected under SR-107.
- 6.10 Attachment 10-1 to 10-2, is the concrete surface variability measurements from MA8-2 (FSS-636) and the Williamsburg concrete background measurement results (FSS-001).
- 6.11 Attachment 11-1 to 11-2, is the steel surface variability measurements from CV4-2 and CV5-1 and the Williamsburg steel background measurement results (FSS-004).

SNEC CALCULATION SHEET								
Calculation Number	Revision Number	Page Number						
E900-04-009	0	Page 11 of <u>12</u>						
Subject								
CV Yard Survey Design -	South Side of CV							

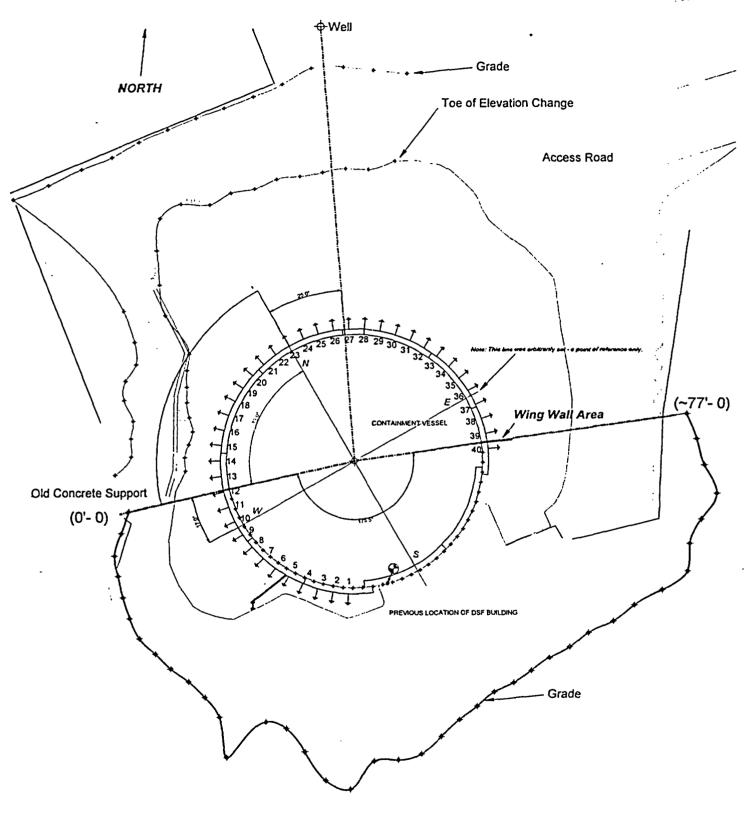
Exhibit 1

SNEC Facility Individual Radionuclide DCGL Values (a)

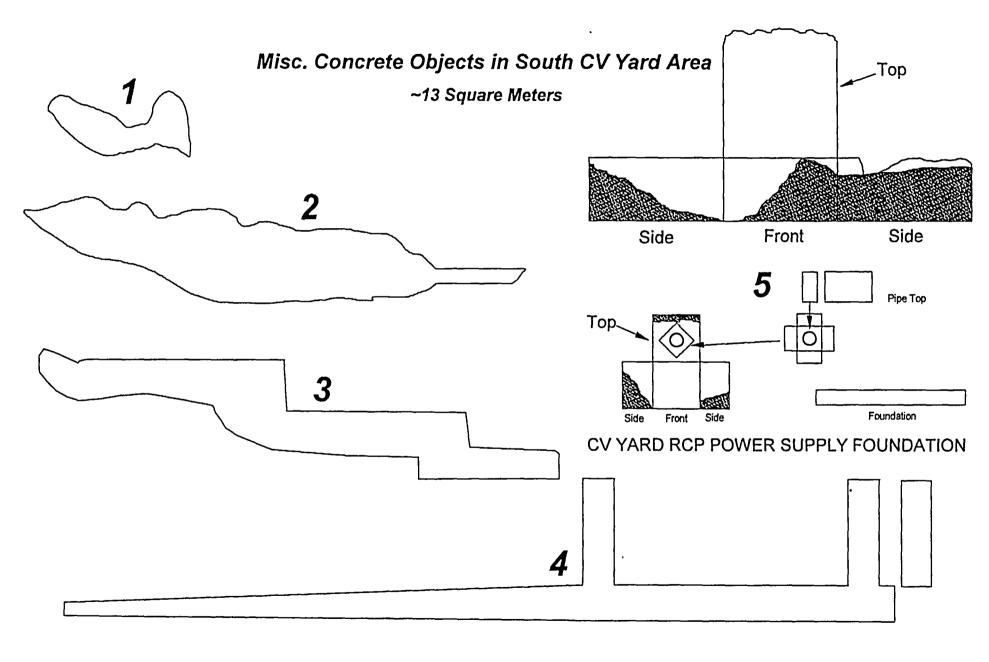
Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm²)	25 mrem/y Limit (All Pathways) Open Land Areas (Surface & Subsurface) (pCi/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	1.9E+04
Pu-238	3.0E+01	1.8	0.41
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	0.61

NOTES:

⁽a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

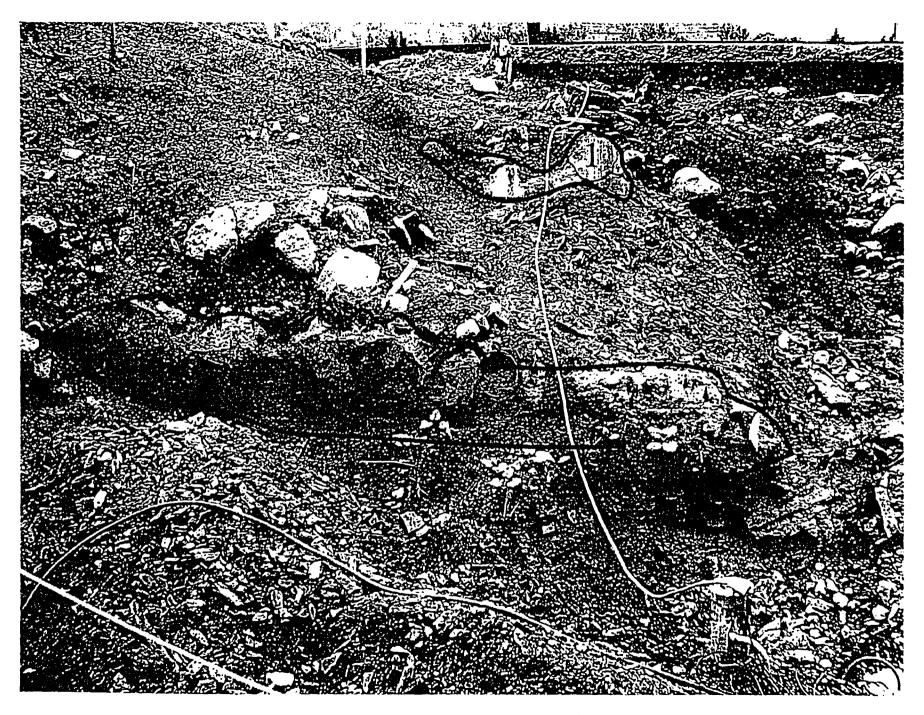

⁽b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-04-009) 0	Page 12 of <u>12</u>
Subject		
CV Yard Survey Design -	- South Side of CV	

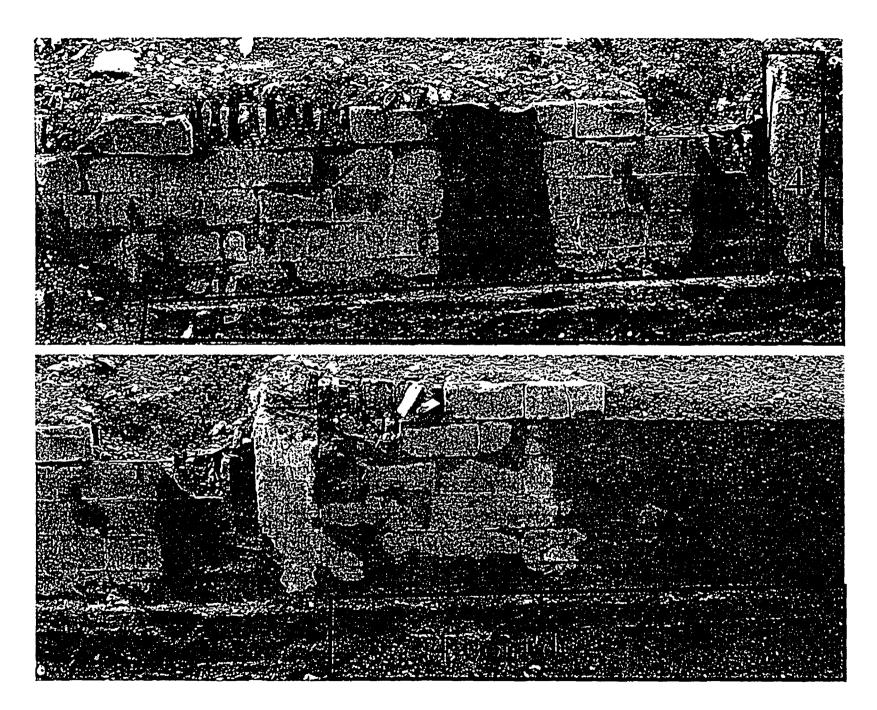

Exhibit 2 Survey Design Checklist

	E900-04-009 Location Codes OL1-3, MA8-2, CV4-2 & CV5-1		
ITEM	REVIEW FOCUS	Status (Circle One)	Reviewer Initials & Dat
1	Has a survey design calculation number been assigned and is a survey design summary description provided?	(Yes) N/A	Polith.
2	Are drawings/diagrams adequate for the subject area (drawings should have compass headings)?	Yes N/A	D6/14/04
3	Are boundaries properly identified and is the survey area classification clearly indicated?	Yes N/A	1 6/14/03
4	Has the survey area(s) been properly divided into survey units IAW EXHIBIT 10	Yes N/A	Deliston
5	Are physical characteristics of the area/location or system documented?	(Yes) N/A	(1)6/14/03
6	Is a remediation effectiveness discussion included?	Yes N/A	10 6/1/0)
7	Have characterization survey and/or sampling results been converted to units that are comparable to applicable DCGL values?	Yes N/A	W Gliyloy
8	Is survey and/or sampling data that was used for determining survey unit variance included?	(Yes) N/A	VE) (Jylor
9	Is a description of the background reference areas (or materials) and their survey and/or sampling results included along with a justification for their selection?	(Yes) N/A	Delyby
10	Are applicable survey and/or sampling data that was used to determine variability included?	(Yes.) N/A	WY)//////
11	Will the condition of the survey area have an impact on the survey design, and has the probable impact been considered in the design?	Yes, N/A	XXX Jolish
12	Has any special area characteristic including any additional residual radioactivity (not previously noted during characterization) been identified along with its impact on survey design?	Yes N/A	\D4/11/61
13	Are all necessary supporting calculations and/or site procedures referenced or included?	Yes, N/A	AY LI /14/64
14	Has an effective DCGLw been identified for the survey unit(s)?	(Yes) N/A	PLISTO
15	Was the appropriate DCGL _{EMC} included in the survey design calculation?	(Yes) N/A	AP 14/4
16	Has the statistical tests that will be used to evaluate the data been identified?	(Yes) N/A	NY /6/14/6
17	Has an elevated measurement comparison been performed (Class 1 Area)?	(Yes) N/A	11/26/14/0
18	Has the decision error levels been identified and are the necessary justifications provided?	(Yes) N/A	ARJULINA
19	Has scan instrumentation been identified along with the assigned scanning methodology?	Yes N/A	XA 26/19/6
20	Has the scan rate been identified, and is the MDCscan adequate for the survey design?	Yes N/A	18) (/y/6
21	Are special measurements e.g., in-situ gamma-ray spectroscopy required under this design, and is the survey methodology, and evaluation methods described?	Yes, N/A	100
22	Is survey instrumentation calibration data included and are detection sensitivities adequate?	(Yes) N/A	18 /////
23	Have the assigned sample and/or measurement locations been clearly identified on a diagram or CAD drawing of the survey area(s) along with their coordinates?	Yes) N/A	10/14/0
24	Are investigation levels and administrative limits adequate, and are any associated actions clearly indicated?	Yes, N/A	106/14/64
25	For sample analysis, have the required MDA values been determined.?	Yes, N/A	18 /1/1/0
26	Has any special sampling methodology been identified other than provided in Reference 6.3?	Yes N/A	VA 17.115

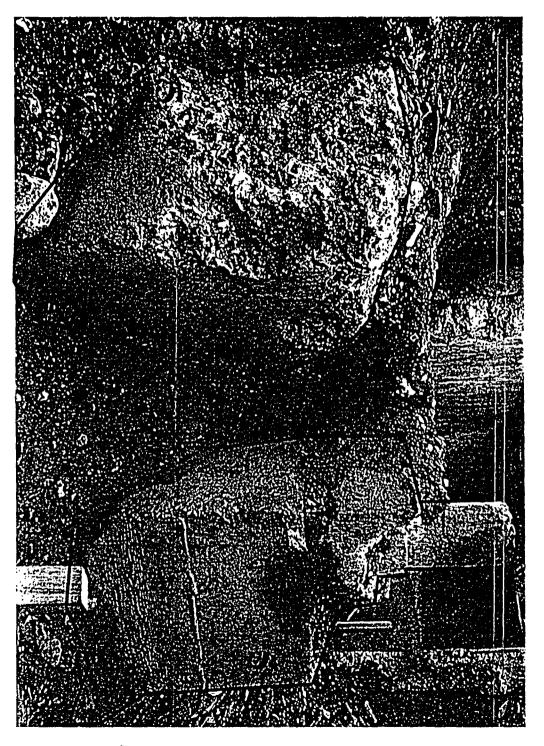
SOUTH CV YARD AREA EXCAVATION

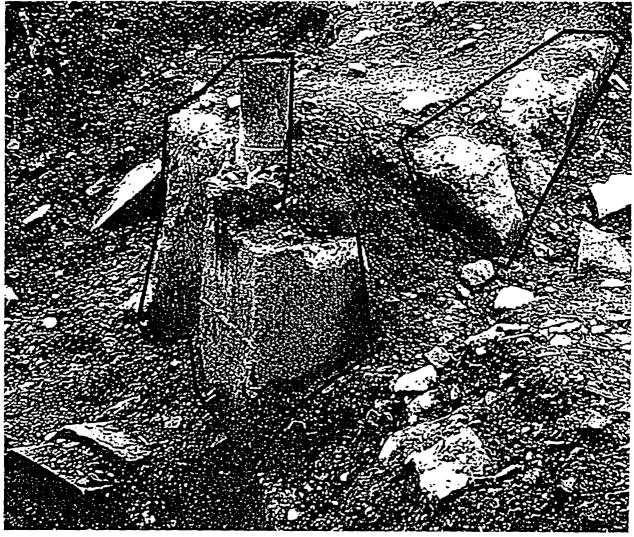


ATTACHMENT 1 . 1

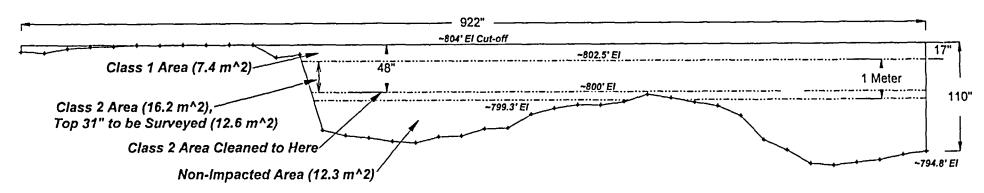


11:


ATTACHMENT / - Z



ATTACHMENT 1 . 7



ATTACHMENT | 8

South Wall of CV Steel External Shell

~36 Square Meters

ATTACHMENT 1 . 9

2350 INSTRUMENT AND PROBE EFFICIENCY CHART 6/1/04 TYPICAL GFPC EFFICIENCY FACTORS

INST #	INST C/D	43-68 PROBE #	PROBE C/D	44-10 PROBE #	PROBE C/D	BETA EFF	ALPHA EFF
126179	1/27/05	094819	1/27/05			25.1%	N/A
126188	1/27/05	099186	1/27/05			28.2%	N/A
126218	01/08/05	095080	01/09/05 2" NAI EF	FICIENCY	FACTORS	27.9% (C5-137)	N/A
Tnot #	Cal Dua	· AD#	2 MAI EL	Probe#	<u> </u>		m/mP/h

						
Inst.#	Cal Due	AP#		Probe #	Cal Due	cpm/mR/h
98625	5/18/05	R&Y		211680 Pk	5/18/05	214,882
98647	5/18/05	G&Y		211667 Pk	5/18/05	218,807
129423	5/18/05	P&Y		211687 Pk	5/18/05	213,539
•					-	
117573	5/18/05	O&Y		211674 Pk	5/18/05	212,173
117566	4/9/05	G&R		185852 Pk	4/13/05	209,862
129429	11/3/04	W&Y		206283 Pk	10/31/04	177185
126183	11/19/04	R&B		206280 Pk	12/12/04	190,907
126198	11/03/04	R&W		196021Pk	5/25/05	209,194
Inst mit	in use	· (6L)		210938 Pk	4/14/05	205,603-RA
- 1-1-1.	Different Instru	ment/Probe Cal. Due	Cesium on	ly instruments (10mV	' to 100)	

ATTACHMENT 2 - 1

				IADLE	- Data Listing	(pci/g)	m			91			
	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	Am-241	Pu-238	Pu-239	Pu-241	C-14	Ni-63	Eu-152
1	CV Tunnel	CV Tunnel Sediment Composite, OL1	9.40E+00	9.67E+00	1.26E+00	1.25E+03	1.80E-01	5.50E-01	2.20E-01	4.47E+01	9.34E+00	4.02E+00	1.30E-01
2	SX9SL99219	Subsuface Sample #29 (0-5'), AY-128, OL1			7.00E-02	5.90E-01						100	
3	SXSL1063	North CV Yard Soil 8A-127, 812' El, Sample # 5, OL2	4.58E+00	5.31E-02	1.92E-02	8.86E-01	9.61E-02	4.68E-02	3.27E-02	3.77E+00	2.10E-01	1.09E+01	5.25E-02
4	SXSL1089	North CV Yard Soil AY-127, 810" El, Sample # 3, OL1	3.03E+00	6.95E-02	3.32E-02	1.29E+00	9.93E-02	1.28E-01	5.00E-02	4.97E+00	2.10E-01	7.54E+00	8.28E-02
5	SXSL1115	North CV Yard Soil AY-128, 804' El, Sample # 2, OL1	4.88E+00	5.36E-02	2.43E-02	1.80E+00	2.40E-01	1.38E-01	4.07E-02	4.21E+00	2.10E-01	7.60E+00	5.71E-02
6	SXSL1122	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	3.44E+00	5.29E-02	2.79E-02	4.77E+00	1.83E-01	8.94E-02	4.00E-02	3.68E+00	2.06E-01	8.75E+00	8.62E-02
7	SXSL1130	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	4.99E+00	6.48E-02	2.98E-02	2.26E+01	1.49E-01	8.56E-02	1.21E-02	3.55E+00	2.31E-01	1.34E+01	9.89E-02
8	SXSL1132	North CV Yard Soll AZ-130, Sample # 5, OL1	2.98E+00	7.15E-02	3.50E-02	2.59E+00	1.64E-01	7.46E-02	6.46E-02	5.27E+00	2.15E-01	1.26E+01	7.34E-02
9	SXSL1270	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El., OL1	1.13E+01	2.00E-02	1.00E-02	2.31E+01	3.70E-02	7.00E-03	7.00E-03	2.10E+00	3.93E+00	8.68E+00	7.00E-02
0	SXSL1281	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1	1.15E+01	3.00E-02	1.00E-02	4.38E+00	3.10E-02	1.60E-02	7.00E-03	1.91E+00	4.00E+00	7.78E+00	4.00E-02
1	SXSL2849	Anulus Well, A-2, 5 to 10' Depth, OL1	2.00E+00	3.14E-02	1.00E-01	6.00E-01	9.78E-03	1.33E-02	1.10E-02	1.87E+00	1.83E-01	1.75E+00	
13	SXSL2871	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1		3.00E-02	7.00E-02	5.60E-01							
14	SXSL2872	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1		3.00E-02	6.00E-02	1.00E-01							
15	\$X\$L3140	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1	1.89E+00	1.20E-02	1.40E-02	8.25E-01	7.00E-03	5.00E-03	5.00E-03	3.69E-01	8.60E-02	3.41E+00	3.00E-02
16	SXSL3142	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1		2.95E-02	7.00E-02	6.00E-01					1		
17	SXSL3145	East CV Yard, Soll Pile @ 3' on East Side (6" Depth), OL1	1.90E+00	1.70E-02	1.30E-02	1.26E+00	4.00E-03	5.00E-03	5.00E-03	3.76E-01	8.30E-02	3.69E+00	3.80E-02
8	SXSL3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1		2.97E-02	8.00E-02	3.00E-01							50000-00
19	SXSL3153	East CV Yard, Soil Pile @ Top (6" Depth), OL1	1.94E+00	4.30E-02	2.30E-02	3.00E-01	3.00E-03	5.00E-03	5.00E-03	3.43E-01	8.70E-02	4.18E+00	5.10E-02
1	SXSL4142	CV Yard Soil - West Side, AP1-7, OL1	2.22E+00	3.25E-02	5.00E-02	9.00E-01	1.76E-02	6.71E-02	2.02E-02				
2	\$X\$L4143	CV Yard Soil - West Side, AP1-7, OL1	2.23E+00	3.16E-02	5.00E-02	5.00E-01	2.21E-02	6.31E-02	3.64E-02				
3	SXSL4149	CV Yard Soil - West Side, AP1-7, OL1	2.24E+00	2.77E-02	7.00E-02	3.90E+00	2.77E-02	4.30E-02	3.04E-02				

21	SXSL4142	CV Yard Soil - West Side, AP1-7, OL1	2.22E+00	3.25E-02	5.00E-02	9.00E-01	1.76E-02	6.71E-02	2.02E-02						
22	SXSL4143	CV Yard Soil - West Side, AP1-7, OL1	2.23E+00	3.16E-02	5.00E-02	5.00E-01	2.21E-02	6.31E-02	3.64E-02						
23	SXSL4149	CV Yard Soil - West Side, AP1-7, OL1	2.24E+00	2.77E-02	7.00E-02	3.90E+00	2.77E-02	4.30E-02	3.04E-02						
					TABLE 2 - Dec	cayed Listing	(pCi/g)								
			T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	Decay Date	7
			4485.27	10446.15	1925.23275	11019.5925	157861.05	32050.6875	8813847.75	5259.6	2092882.5	36561.525	4967.4	January 15, 2004	1
	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	Am-241	Pu-238	Pu-239	Pu-241	C-14	Ni-63	Eu-152	Analysis Date	Ť
1	CV Tunnel	CV Tunnel Sediment Composite, OL1	7.97E+00	9.01E+00	8.59E-01	1.17E+03	1.79E-01	5.37E-01	2.20E-01	3.88E+01	9.34E+00	3.94E+00	1.12E-01	February 14, 2001	Ť
2	SX95L99219	Subsuface Sample #29 (0-5'), AY-128, OL1			4.05E-02	5.36E-01								November 17, 1999	
3	SXSL1063	North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	4.20E+00	5.11E-02	1.57E-02	8.55E-01	9.59E-02	4.62E-02	3.27E-02	3.50E+00	2.10E-01	1.08E+01	4.85E-02	June 27, 2002	T
4	SXSL1089	North CV Yard Soil AY-127, 810' El, Sample # 3, OL1	2.78E+00	6.69E-02	2.71E-02	1.24E+00	9.91E-02	1.26E-01	5.00E-02	4.61E+00	2.10E-01	7.46E+00	7.65E-02	June 28, 2002	T
5	SXSL1115	North CV Yard Soil AY-128, 804' El, Sample # 2, OL1	4.47E+00	5.16E-02	1.98E-02	1.74E+00	2.39E-01	1.36E-01	4.07E-02	3.91E+00	2.10E-01	7.52E+00	5.28E-02	June 29, 2002	T
6	SXSL1122	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	3.15E+00	5.10E-02	2.28E-02	4.60E+00	1.83E-01	8.83E-02	4.00E-02	3.42E+00	2.06E-01	8.66E+00	7.97E-02	June 29, 2002	T
7	SXSL1130	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	4.58E+00	6.24E-02	2.44E-02	2.18E+01	1.49E-01	8.46E-02	1.21E-02	3.30E+00	2.31E-01	1.33E+01	9.15E-02	July 3, 2002	T
8	SXSL1132	North CV Yard Soil AZ-130, Sample # 5, OL1	2.73E+00	6.89E-02	2.86E-02	2.50E+00	1.64E-01	7.37E-02	6.46E-02	4.89E+00	2.15E-01	1.25E+01	6.79E-02	July 3, 2002	T
9	SXSL1270	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El., OL1	9.84E+00	1.88E-02	7.22E-03	2.18E+01	3.69E-02	6.86E-03	7.00E-03	1.87E+00	3.93E+00	8.53E+00	6.17E-02	July 26, 2001	T
10	SXSL1281	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1	1.00E+01	2.83E-02	7.22E-03	4.14E+00	3.09E-02	1.57E-02	7.00E-03	1.69E+00	4.00E+00	7.65E+00	3.53E-02	July 26, 2001	Ť
11	SXSL2649	Anulus Well, A-2, 5 to 10' Depth, OL1	1.79E+00	3.00E-02	7.77E-02	5.74E-01	9.75E-03	1.31E-02	1.10E-02	1.71E+00	1.83E-01	1.73E+00		February 13, 2002	Ť
13	SXSL2871	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1		2.87E-02	5.48E-02	5.37E-01								March 6, 2002	T
14	SXSL2872	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1		2.87E-02	4.70E-02	9.58E-02								March 6, 2002	T
15	SXSL3140	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1	1.75E+00	1.16E-02	1.17E-02	7.99E-01	6.98E-03	4.95E-03	5.00E-03	3.45E-01	8.60E-02	3.37E+00	2.80E-02	August 30, 2002	Т
16	SXSL3142	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1		2.85E-02	5.81E-02	5.81E-01								August 13, 2002	T
17	SXSL3145	East CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1	1.76E+00	1.64E-02	1.08E-02	1.22E+00	3.99E-03	4.95E-03	5.00E-03	3.52E-01	8.30E-02	3.65E+00	3.54E-02	August 30, 2002	Τ
18	SXSL3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1		2.87E-02	6.63E-02	2.90E-01								August 13, 2002	Τ
19	SXSL3153	East CV Yard, Soil Pile @ Top (6" Depth), OL1	1.79E+00	4.16E-02	1.92E-02	2.91E-01	2.99E-03	4.95E-03	5.00E-03	3.21E-01	8.70E-02	4.14E+00	4.75E-02	August 30, 2002	T
21	SXSL4142	CV Yard Soil - West Side, AP1-7, OL1	2.18E+00	3.23E-02	4.81E-02	8.94E-01	1.76E-02	6.69E-02	2.02E-02					October 2, 2003	T
22	SXSL4143	CV Yard Soil - West Side, AP1-7, OL1	2.19E+00	3.14E-02	4.81E-02	4.97E-01	2.21E-02	6.30E-02	3.64E-02					October 2, 2003	T
23	SXSL4149	CV Yard Soil - West Side, AP1-7, OL1	2.20E+00	2.75E-02	6.74E-02	3.87E+00	2.77E-02	4.29E-02	3.04E-02				1	October 2, 2003	T

KEY	
	Yellow Shaded Background = Positive Result
	Gray Shaded Background = MDA

	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	Total pCi/g
1	CV Tunnel	CV Tunnel Sediment Composite, OL1		9.01E+00	8.59E-01	1.17E+03	1178.89
2	SX9SL99219	Subsuface Sample #29 (0-5'), AY-128, OL1				5.36E-01	0.54
3	SXSL1063	North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	4.20E+00			8.55E-01	5.05
4	SXSL1089	North CV Yard Soil AY-127, 810' El, Sample # 3, OL1	2.78E+00			1.24E+00	4.02
5	SXSL1115	North CV Yard Soil AY-128, 804' El, Sample # 2, OL1	4.47E+00			1.74E+00	6.21
6	\$X\$L1122	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	3.15E+00			4.60E+00	7.76
7	SXSL1130	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	4.58E+00		2.44E-02	2.18E+01	26.42
8	SXSL1132	North CV Yard Soil AZ-130, Sample # 5, OL1	2.73E+00			2.50E+00	5.23
9	SXSL1270	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El., OL1				2.18E+01	21.82
10	SXSL1281	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1				4.14E+00	4.14
11	SXSL2649	Anulus Well, A-2, 5 to 10' Depth, OL1				5.74E-01	0.57
13	SXSL2871	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1				5.37E-01	0.54
14	SXSL2872	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1				9.58E-02	0.10
15	SXSL3140	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1				7.99E-01	0.80
16	SXSL3142	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1				5.81E-01	0.58
17	SXSL3145	East CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1				1.22E+00	1.22
18	SXSL3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1				2.90E-01	0.29
19	SXSL3153	East CV Yard, Soil Pile @ Top (6" Depth), OL1				2.91E-01	0.29
21	SXSL4142	CV Yard Soil - West Side, AP1-7, OL1				8.94E-01	0.89
22	SXSL4143	CV Yard Soil - West Side, AP1-7, OL1				4.97E-01	0.50
23	SXSL4149	CV Yard Soil - West Side, AP1-7, OL1			6.74E-02	3.87E+00	3.94

	SNEC Sample No	LAB No.	Location/Description	H-3	Sr-90	Co-60	Cs-137	Total
۱ [CV Tunnel	BWXT, 0102059-01	CV Tunnel Sediment Composite, OL1		0.76%	0.07%	99.16%	100.0%
2	SX9SL99219	111074	Subsuface Sample #29 (0-5'), AY-128, OL1				100.00%	100.0%
	SXSL1063	Teledyne-80018; L19184-1	North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	83.07%			16.93%	100.0%
·	SXSL1089	Teledyne-80019; L19184-2	North CV Yard Soil AY-127, 810' El, Sample # 3, OL1	69.04%			30.96%	100.0%
, [SXSL1115	Teledyne-80020; L19184-3	North CV Yard Soil AY-128, 804' El, Sample # 2, OL1	72.02%			27.98%	100.0%
. [SXSL1122	Teledyne-80021; L19184-4	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	40.65%			59.35%	100.0%
	SXSL1130	Teledyne-80022; L19184-5	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	17.32%		0.09%	82.59%	100.0%
. [SXSL1132	Teledyne-80023; L19184-6	North CV Yard Soil AZ-130, Sample # 5, OL1	52.22%			47.78%	100.0%
	SXSL1270	BWXT, 0108055-02	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El., OL1				100.00%	100.0%
0	SXSL1281	BWXT, 0108055-01	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1				100.00%	100.0%
1	SXSL2649	Teledyne-73220; L18077-2	Anulus Well, A-2, 5 to 10' Depth, OL1				100.00%	100.0%
3	SXSL2871	Teledyne-71949; L17838-11	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1				100.00%	100.0%
4	SXSL2872	Teledyne-71948; L17838-10	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1				100.00%	100.0%
5	SXSL3140	BWXT,1030-003-10-01	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1				100.00%	100.0%
вГ	SXSL3142	Teledyne; L20326-3	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1				100.00%	100.0%
7	SXSL3145	BWXT,1030-003-10-01	East CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1				100.00%	100.0%
В	SXSL3149	Teledyne; L20326-4	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1				100.00%	100.0%
9	SXSL3153	BWXT,1030-003-10-01	East CV Yard, Soil Pile @ Top (6" Depth), OL1				100.00%	100.0%
ı	SXSL4142	Teledyne; L22187-2	CV Yard Soil - West Side, AP1-7, OL1			7	100.00%	100.0%
2	SXSL4143	Teledyne; L22187-3	CV Yard Soil - West Side, AP1-7, OL1				100.00%	100.0%
3 [SXSL4149	Teledyne; L22187-4	CV Yard Soil - West Side, AP1-7, OL1			1.71%	98.29%	100.0%
			Mean⇒	0.557207	0.007643	0.00625	0.839541	1.41
			Sigma⇒	0.241		0.009	0.284	
			Mean % of Total⇒	39.50%	0.54%	0.44%	59.51%	100.00

	SNEC Sample No	LAB No.	Location/Description	H-3	Sr-90	Co-60	Cs-137	Total
L	CV Tunnel	BWXT, 0102059-01	CV Tunnel Sediment Composite, OL1		7.71E-03	7.35E-04	1.00E+00	1.01
L	SX9SL99219	111074	Subsuface Sample #29 (0-5'), AY-128, OL1				1.00E+00	1.00
	SXSL1063	Teledyne-80018; L19184-1	North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	4.91E+00			1.00E+00	5.91
	SXSL1089	Teledyne-80019; L19184-2	North CV Yard Soil AY-127, 810' El, Sample # 3, OL1	2.23E+00			1.00E+00	3.23
	SXSL1115	Teledyne-80020; L19184-3	North CV Yard Soil AY-128, 804' El, Sample # 2, OL1	2.57E+00			1.00E+00	3.57
	SXSL1122	Teledyne-80021; L19184-4	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	6.85E-01			1.00E+00	1.68
	SXSL1130	Teledyne-80022; L19184-5	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	2.10E-01		1.12E-03	1.00E+00	1.21
	SXSL1132	Teledyne-80023; L19184-6	North CV Yard Soil AZ-130, Sample # 5, OL1	1.09E+00			1.00E+00	2.09
	SXSL1270	BWXT, 0108055-02	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El., OL1			1	1.00E+00	1.00
	SXSL1281	BWXT, 0108055-01	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, OL1	7			1.00E+00	1.00
	SXSL2649	Teledyne-73220; L18077-2	Anulus Well, A-2, 5 to 10' Depth, OL1				1.00E+00	1.00
	SXSL2871	Teledyne-71949; L17838-11	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1			7	1.00E+00	1.00
	SXSL2872	Teledyne-71948; L17838-10	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1				1.00E+00	1.00
	SXSL3140	BWXT,1030-003-10-01	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1				1.00E+00	1.00
	SXSL3142	Teledyne; L20326-3	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1				1.00E+00	1.00
	SXSL3145	BWXT,1030-003-10-01	East CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1				1.00E+00	1.00
	SXSL3149	Teledyne; L20326-4	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1				1.00E+00	1.00
	SXSL3153	BWXT,1030-003-10-01	East CV Yard, Soil Pile @ Top (6" Depth), OL1	100			1.00E+00	1.00
	SXSL4142	Teledyne; L22187-2	CV Yard Soil - West Side, AP1-7, OL1				1.00E+00	1.00
	SXSL4143	Teledyne; L22187-3	CV Yard Soil - West Side, AP1-7, OL1				1.00E+00	1.00
	SXSL4149	Teledyne; L22187-4	CV Yard Soil - West Side, AP1-7, OL1			1.74E-02	1.00E+00	1.02
-0.00			Mean⇒	1.949929	0.007708	0.006416	1 1	2.96
			Sigma⇒	1.708		0.010	0.000	
			Mean % of Total⇒	65.79%	0.26%	0.22%	33.74%	100.00

Table 7

					Maximum Permissible pCi/g (25 mrem/y)	Maximum Permissible pCi/g (4 mrem/y)			Sample Input	s Information, Units Must Be In t % of Total.	
	2.96E+00	100.000%			16.98	38.03	16.98		4.364	0.312	
Sr-90	0.0077	0.260%	1.2	0.61	0.04	0.10	0.04		0.16	0.05	Sr-9
Pu-241	1	0.000%	86	19.8	0.00	0.00	0.00		0.00	0.00	Pu-2
Pu-239		0.000%		0.37	0.00	0.00	0.00		0.00	0.00	Pu-2
Pu-238		0.000%	1.8	0.41	0.00	0.00	0.00		0.00	0.00	Pu-2
Ni-63	1.5455	0.000%	747	19000	0.00	0.00	0.00		0.00	0.00	Ni-6
H-3	1,9499	65.786%		31.1	11.17	25.02	11.17		0.00	0.00	H-3
Eu-152	1.0000	0.000%	10.1	397 1440	5.73 0.00	12.83 0.00	5.73 0.00	±,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.00	0.00	Eu-1
Co-60 Cs-137	0.0064	0.216% 33.738%		67.0	0.04	0.08	0.04		0.05 3.79	0.00	Co-6
C-14	0.0001	0.000%		5.4	0.00	0.00	0.00		0.00	0.00	C-14
Am-241		0.000%		2.3	0.00	0.00	0.00		0.00	0.00	Am-
Isotope	Sample Input (pCi/g, uCi, % of Total, etc.)	% of Total	25 mrem/y TEDE Limits (pCi/g)	4 mrem/y DW Limits (pCi/g)	A - Allowed pCi/g for 25 mrem/y TEDE	for 4 mrem/y DW	Value Checked from Column A or B		This Sample mrem/y TEDE		
7.79%	4.0	mrem/y Drinki	ing Water (DW) Lin	nit	▼ Check for 25 mrem/y						
17.45%	25.0	mrem/y TEDE	Limit				5.73	pCi/g	4.30	pCi/g	Januari Gillia
							Cs-137 Limit		Cs-137 Administrative Limit		
SAMP	LE NUMBER(s)⇒	CV YARD SOIL	& BOULDER SAMP	LES							
Effective	DCGL Calcu	lator for C	s-137 (in pCi/	g)			16.98	pCi/g	12.74	pCi/g	
					SNEC AL	75%	Total Activity Limit [CGLW	Adminis	trative Limit	

Table 6

Effective D	OCGL Calculator	for Cs-137	(dpm/100 cm	1^2)	Gross Acti	vity DCGLw	Gross Activity	Administrative Limit
					44434	dpm/100 cm^2	33325	dpm/100 cm^2
25	5.0 mrem/y TEDE Limit			- 197 - 188		n die der der der der der der der der der de		
		Placemanianus - Za e Singilares -			Cs-13	7 Limit	Cs-137 Adn	ninistrative Limit
SAMPLE NO(s)=	⇒ CV Yard Soil & Bould	der Samples - De	ecay 1-15-04		26445	dpm/100 cm^2	19834	dpm/100 cm^2
					SNEC AL	75%		
					ONLOAL	7070		
Isotope	Sample Input (pCl/g, uCi, etc.)	% of Total	Individual Limits (dpm/100 cm^2)	Allowed dpm/100 cm^2	mrem/y TEDE	Beta dpm/100 cm^2	Alpha dpm/100 cm^2	
Am-241		0.000%	27	0.00	0.00	N/A	0.00	Am-241
C-14		0.000%	3,700,000	0.00	0.00	0.00	N/A	C-14
3 Co-60	6.25E-03	0.443%	7,100	196.87	0.69	196.87	N/A	Co-60
Cs-137	8.40E-01	59.515%	28,000	26444.70	23.61	26444.7	N/A	Cs-137
Eu-152		0.000%	13,000	0.00	0.00	0.00	N/A	Eu-152
H-3	5.57E-01	39.500%	120,000,000	17551.46	0.00	Not Detectable	N/A	H-3
Ni-63		0.000%	1,800,000	0.00	0.00	Not Detectable	N/A	Ni-63
Pu-238		0.000%	30	0.00	0.00	N/A	0.00	Pu-238
Pu-239		0.000%	28	0.00	0.00	N/A	0.00	Pu-239
Pu-241		0.000%	880	0.00	0.00	Not Detectable	N/A	Pu-241
Sr-90	7.64E-03	0.542%	8,700	240.75	0.69	240.75	N/A	Sr-90
granes i manane per la reputa		100.000%		44434	25.0	26882	0	
				Maximum Permissible dpm/100 cm^2				 #

Exhibit 1	
Survey Unit Inspection Check	Sheet

Chicago

	7699.29.19	eren Sympe	1. Sec. 54 1281 1	A Comment	_	urvey U	_	_	_	-	7			<u> </u>			-	
		•	នុ	CTION	1 - 8	URVE	YUN	IIT IN	18PE	ÇTIC	N DE	SCRI	PTIO	4	;	· · · · · ·		
Surve	y Unit #	OL1	-3, MA8- 2, CV5	2. CV4- -2	Sı	irvey U	nit Lo	ocatio	on						l Liner, vall, op			
Date	5/10/	/04	Time	1100	10	nspectio	on Te	eam l	Mem	bers	l		Ð.	Sarge	/D. Bla	ck		
14 38 Z	19 <u>24</u> 495.	<u>-</u>	 	SECTIO	3N :	z-sur	VĖY	UNI	T IN	SPEC	HOLT	sco	PE	. · .				
	lr	spect	ion Requ	uirements	(C)	heck the	e app	propr	iate	Yes/N	lo ans	wer.)			Ye	s	No	N/A
1. Ha	ve sufficien	t surve	ys (i e , po	st remediat	on, c	harscterl	Ization), etc)) beer	obtain	ed for ti	he surv	ey unit	?			X	
2. Do	the survey	s (from	Question	1) damonst	rale t	hat the s	urvey	unit w	rill mo	st likely	1) 236q \	ne FSS	7					X
3. Is t	he physica	work (i.e., femed	iation & ho	usek	eeping) ln	וט זס ר	ound l	lie si	irvay ui	nit comp	lete?			×			
4, Ha	ve all tools,	non-pe	ermanent e	quipment,	and r	naterial n	not nee	eded t	o pen	orm the	e FSS b	een rer	noved1	· 			X	
5. Are	the survey	y surfac	es relative	ly free of lo	ose d	lebris (i e	., dirt,	concr	rete d	ust, me	tal filing	js, etc.)	?				X	
6. Are	the survey	ourfac	es relative	ly free of liq	uids	(1.e., v/ut)	er, mo	osture	, oli, e	etc)7					×			
7. Are	the survey	surfac	es free of	ell paint, wh	ich h	as the po	otentia	al to Et	nield r	adlatio	n?				X			
8. Hav	ve the Surf	ace Me	รรบเธเบอกใ	Test Areas	(6M	ITA) beer	n estat	blishe	d7 (R	efer to	Exhibit :	2 for ins	structio	ns.)	X			
9. Ha	ve the Surf	ace Me	asurement	Test Areas	(5M	ITA) data	been	collec	ted?	(Refer	to Exhib	at 2 for	Instruc	tions)	×			
10. Are	the survey	surfac	es easily 8	ccessible?	(No 1	scattoldin	ng, higi	h reac	th, etc	. Is nea	eded to	perform	the F	5\$)			X	
11. fs h	ghling ade	quale to	perform t	he FSS?											X			
12. Is t	he area ind	lustrially	y safe to pe	erform the F	657	(Evaluat	e pate	ential f	ail & I	no naz	ards, co	nfined	spaces	, etc.)			X	
13. Hav	ve photogra	phs be	en taken s	showing the	0491	ali condit	tion of	tna ar	rea?						X			
14. Ha	ve all unsol	isfactor	y condition	ns been rus	alved	17											X	
lanoqeen	l a "No" ai ble site de s necessar	partmer	a obtained nt, as appli	above, the	ins; uma	pector sh nt actions	ould li s takei	mmed n and	ilately /or ju:	curec	t the pr	roblem na "Con	or inition	sectio	ective at	tions: Atta	throu	gh the ditlonat
Commer	nts:																	
				- misce establist					amica	iding)	, exte	ension	con	ds, b	uckets	ne	ed t	o be
FSS. A	nse to C Additiona orior to F	lly, se	on 5 – C diment n	aked-on needs to l	mu be r	d/sedin emovec	nent d fron	on s m the	ectic str	ons of octura	cinde I braci	rblock ing we	k wall elded	must on the	be rer shell	nove on th	ed pr ne fai	ior to r c ast
system	is, i.e. fu	ill bod	ly hame:	ersonnel ssing/lany igh Reacl	yard	s may	need	d to t	as of be w	f thesi orn w	e surv hen ti	ey un ravers	its wil ing s	requi	ire assi ireas. 7	stan Anol	ice. S her (Safety
hazard	is to per	sonne	i white	There a performir an option	ng r	equired	i sur	vøys.	. As	state	id in r	ese s	surve) ise to	units ques	which	po (a	se fa bove	ill/slip). the
Survey	Unit Ins	pecto	r (print/s	ign) Da	vid	Sarge	, 1	Var	5	/					Date		6/1/	04
Surve	y Design	er (pri	nt/sign)	1,4) (7R	056	EQ.	/	B.	A	ימל	~~~		Date		6/2	104

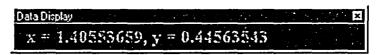
EXHIBIT 3
Surface Measurement Test Area (SMTA) Data Sheet

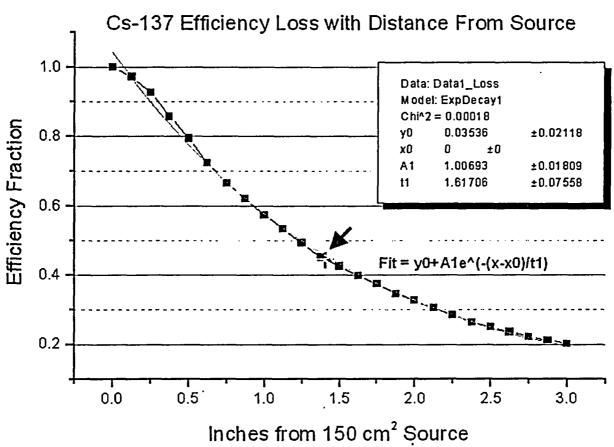
Caliper Manufacturer	Time D-6" CS N/ Time 6/1/	1115											
SMTA Location CV Shell - Southwest corner (upprox. 795' et)	Time D-6°CS N/ Time 6/1/	/A 1115 /04											
Survey Unit Inspector D. Sarge / Date 6/1/04 Transport Transport	D-6" CS N/ Time 6/1/	/A 1115 /04											
Caliper Manufacturer	D-6" CS N/ Time 6/1/	/A 1115 /04											
Caliper Manufacturer	N/ Time 6/1/	1115 /04											
Rad Con Technician D. Sarge / Ug Date 6/1/04 Tisurey Unit Inspector Approval D. Sarge / Ug Date	Time 6/1/	1115 /04											
Survey Unit Inspector Approval D. Sarge / SECTION 3 - MEASUREMENT RESULT8	6/1/	104											
SECTION 3 - MEASUREMENT RESULT8 SMTA Grid Map & Measurement Results in Units of mm (Insert Results in White Blocks Below) 1 7 13 18 25 31 18.3 19.1 20.6 19.9 19.6 22.1 2 8 32 28 32 4 39 8 32 4 39 8 32 8 32 8 32 8 32 8 32 8 32 8 32 8													
SMTA Grid Map & Measurement Results in Units of mm (Insert Results in White Blocks Below) 1 13 18 25 31 18.3 19.1 20.6 19.9 19.6 22.1 2 1 2 1 20 28 32 0.0 00 00 00 00 00 00 00 00 00 00 00 00 00													
(Insert Results in White Blocks Below) 18.3	steel plate												
18.3 19.1 20.6 19.9 19.6 22.1 Welded to steel liner. 7.	steel plate												
18.3 19.1 20.6 19.9 19.6 22.1 Welded to steel liner. 7.		е											
0.0 0.0 0.0 0.0 0.0 0.0 0.0 SMTA. The measurements obtain (20.7, 20.3 and 22.7 mm) is similar gap located above this gap. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0													
(20.7, 20.3 and 22.7 mm) is similar gap located above this gap. (20.7, 20.3 and 22.7 mm) is similar gap located above this gap. (20.7, 20.3 and 22.7 mm) is similar gap located above this gap.													
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	SMTA. The measurements obtained for this (20.7, 20.3 and 22.7 mm) is similar to another												
134 147													
0.0 0.0 207 00 00 00 203 203 21.2 21.2 202 204 204 204 205 203 21.2 300 360		•											
10 mm 10													
20.3 19.5 20.3 21.2 21.2 20.2 	}												
- Pre 250 (10/12元)													
33 35 22.7 30 47 41													
Average Mensurement – 8 45 mm													
Additional Measurements Required													
Additional Measurements Required Additional Measurements Required													

Printer, Lars	SECTION 1 - DESCRIPTION , MH.													
SMTA Number	MA	8-2 Struc	ture #1	s	urv	ey Unit Nur	nber	•	MA	8-12				
SMTA Location	CV - Sou	thside of	CV - Soll	d Concre	te S	Structure #1								
Survey Unit Insp	E .		D. S	_			Date	6/8		Time	1100			
e, table as part of the	SECT	ION 2 - C	ALIPER I	NFORM	ÁTI	ON & PER	SONNE	L INVOL	VED		GHALLAND, Z Likerana			
Caliper Manufac						Caliper M								
Caliper Serial N	umber				С	alibration Due Date (as applicable)			N/A					
Rad Con Techni	cian D. S	arge				Date 06/08/04 Time				Time	1100			
Survey Unit Inst			_						Date	8/	08/04			
SECTION 3 - MEASUREMENT REBULTS														
SMTA Grid Map & Measurement Results in Units of mm (Insert Results in White Blocks Below) Comments														
Using a tape measure, eight depth measurements were obtained with the aid of a Ludium 43-68 detector to simulate actual measurement depth.														
San San Care	A. 14	.20	26	The readings were obtained throughout the surface of the concrete structure in areas demonstrating										
	18	21	27		surface r	-			s calcula	ited to be				
74 710	16	22	28	** 34 ***		1.0 *.								
रेड्ड ड ेड्ड स्ट्रेनंत	36 Diga y Va	. F123 TT A	14-29 AK	∳ ∛36 .∧										
1440 8 (56) (147 42	(Telloris 18 (S)	24	20°	:34 × 1.										
A	verage Mea	surement	- mm	<u> </u>	1									
			Addition	al Measi	nen	nents Requ	uired							

		 _							Measurem	10111 70317	104 (01011	TO DATE CHECK			
respectively.			· · · · · · · · ·	SEC	TION 1	DE	SCRIPTIO	N	· · · · · ·		تراناء				
SMTA Number		MA8	-2 Slnid	lure #2	3	SIIV	ey Unit Nu	mber	•	MA	8-12	~~~~~~			
SMTA Location	cv-	South	side of C	CV - Solo	d Concre	שום 5	Structure #	2	·			,			
Survey Unit Insp				D. S				Date	6/8/		Time	1100			
and the second s	8	ECTIC	N 2 - C	ALIPERI	NFORM	ATI	ON & PER	SONNE	L INVOL	VED	e Maria de Caracteria de C Caracteria de Caracteria d				
Caliper Manufac	turer						Caliper M								
Caliper Serial N	umber					C	alibration D	Due Date	e (as appl	icable)		N/A			
Rad Con Techni	cian	D. Sar	ge					Date	08/0	8/04	Time	1110			
Survey Unit Insp	ector /	\pprov	at D.	Sarge /						Date	6/	08/04			
a da ka matakan k	A SA		4		**************************************										
SMTA Grid May	p & Me	asuren	nent Res		nits of m			-	_	nents					
og tok still	24 ·	43	. 18	.26	.31		Using a t	ained wi	th the aid	of a Lu	dlum 43-	68			
Francisco (Production	2.80	14	20	26	22		detector to simulate actual measurement depth. The readings were obtained throughout the surface of the concrete structure in areas demonstrating								
The same of the sa	Commence of the Commence of th														
Section 18	(\$ P.) - 1	18	- 22	28		outal lage									
्रिक्ट के विकास	200	17:50	[™] 23 [™]	W28 // 1	· /36 °										
ন্ত্ৰাক্ত কাৰিছ	* j	12 (5)	0. 24 . (0	30	· · 36 · ·										
A	verage	Measu	urement	– mm		_1									
			· · · · · · · · · · · · · · · · · · ·	Addition	al Meas	urer	nents Requ	ured							

ATTACHMENT 4 . 4


SMTA Number MA8-2 Structure #3 Survey Unit Number MA8-12														
SMTA Number		MA8-2 S	strud	ture #3	s	urv	ey Unit Nur	nber	•	MA	8-12			
SMTA Location	CV-	Southside	e of C	CV — Solid	d Concre	te S	tructure #3	3						
Survey Unit Insp				D. S				Date	•	8/04	Time	1100		
	81	CTION:	2 - C	ALIPER I	NFORM	ATI	ON & PER	SONNE	L INVO	LVED	•	. संबंध स		
Caliper Manufac	cturer						Caliper M	odel Nu	mber					
Caliper Serial N	umber					С	alibration E	ue Date	e (as app	plicable)	N/A			
Rad Con Techn	ician [). Sarge						Date	Time	1115				
Survey Unit Ins	pector A	pprovat	D. \$	Sarge /						Date	6/0	8/04		
Alignosta de A														
SMTA Grid Map & Measurement Results in Units of mm (Insert Results in White Blocks Below) Comments Using a tape measure, eight depth measurements														
	100 Feet	3.5 ₂₀ [3.4	9	28	were obta	ained wi	th the ai	id of a Luc	dlum 43-6	8				
2		4	0 .	.26	. 32		detector to simulate actual measurement depth. The readings were obtained throughout the surfa of the concrete structure in areas demonstrating							
		5 2	1	27	33		The average of these readings was calculated							
1.2 ·.														
19 33	५ सः ५७%	12 m	3 4	29	: 35									
1923 of 1944 1974 1974 1974 1974 1974 1974 1974	::SF (%)1	2	4 00	- '30'	36									
A	verage l	Measurer	nent	– mm										
				Addition	al Measi	urer	nents Requ	ulred						
Additional Measurements Required														


ATTACHMENT 4 . 5

		. · ·	:: SECT	ION 1 -	DE	SCRIPTIO	N		٠.	· P STA OV.	p - 1 ** 1 *** }
SMTA Number MA8-2 Structure #4 Survey Unit Number MA8-1/2											
SMTA Location CV - Southside of CV - Solid Concrete Structure #4											
Survey Unit Inspector D. Sarge							Date	6/8	04	Time	1100
1996 Style 1, 1, 15 m 1 5	SECTION 2 - CALIPER INFORMATION & PERSONNEL INVOLVED										
Caliper Manufacti	Caliper Manufacturer Caliper Model Number										
Caliper Serial Nur	nber				C	alibration Due Date (as applicable) N/A			N/A		
Rad Con Technici	an D. Sarg	e					Date	06/0	3/04	Time	1120
Survey Unit Inspe	ctor Approva	I D S	arge /						Date	6/	08/04
782.444 P. 458.14 (1869)	alik desir opera	SE(CTION 3	-MEAS	UR	EMENT, RE	SULTS			. :	arja (1823)
SMTA Grid Map (Insert F	& Measurem Results in Wh				m			Comr	nents		
	13 Prof 13 Pro	19	25	31 .		were obtain	ained wi		of a Luc	dlum 43-	68
		20	26	32		detector to simulate actual measurement depth. The readings were obtained throughout the surface of the concrete structure in areas demonstrating surface roughness/recesses. The average of these readings was calculated to be 1.4°.					
		21	27	33							
- 1000 - 1000	718	22	28	34 7							
	कर्त है जिस्से में किया है जिस कर क जिस के किया है जिस के किया किया किया किया किया किया किया किया										
Designation assigned	\$ 1600 18 \$65 25	24	`.€ '30 -€	3.6							
Ave	rage Measur	rement -	- mm	<u>.</u>							
			Addition	al Measu	ren	nents Requ	ured				

ATTACHMENT 4 . 6

Comment in the	14 × 14 14	State of the	. SEC	TION 1 -	DE	SCRIPTIO	N .			<u>.</u>	31/25-1-1-25
SMTA Number MA8-2 Structure #5 Survey Unit Number MA6-2											
SMTA Location CV - Southside of CV - Solid Concrete Structure #5											
Survey Unit Inspector D. Sarge							Date	_	/04	Time	1100
	SECTION 2 -CALIPER INFORMATION & PERSONNEL INVOLVED										
Callper Manufacturer Caliper Model Number											
Caliper Serial Number Calibration Due Date (as applicable)						licable)		N/A			
Rad Con Techni	Rad Con Technician D. Sarge						Date	06/0	8/04	Time	1130
Survey Unit Inst			Sarge /						Date		08/04
ong samen (j. 1877) a sa sa	intera bibe di	6E	CTION	- MEAS	UR	EMENT RE	SULTS		••	· · · · · · · · · · · · · · · · · · ·	
SMTA Grid Ma (Insert	p & Measure Results in V				m			Com	ments		
holes on		19	. 25	3,1		Using a tape measure, six depth measurements were obtained with the aid of a Ludlum 43-88					
				32		detector to simulate actual measurement depth. The readings were obtained throughout the surface of the concrete structure in areas demonstrating surface roughness/recesses. The average of these readings was calculated to be					surface
	18	21	27	33							ited to be
32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	22	278 TR	34		1.3 *.					
कर ाह ाक समित	कुरु स्ट ाकु प्राप्तनाथक व्यवस्था विश्वप्रकार विश्वप्रकार । १८८७ ।						!				
निक्रिकेती के जिल्लाक	부분역2 ² (원· 전경·18·4각 전 <mark>24</mark> · : (조·20 · : · · · · 36 · ·						: :				
A	verage Mess	surement	– mm		•						
			Addition	ıaı Meası	ıren	nents Requ	ilred				

ATTACHMENT 5 . 1

MicroShield v5.05 (5.05-00121) **GPU Nuclear**

Page : 1

DOS File: SOILC.MS5 Run Date: May 25, 2004 Run Time: 9:28:26 AM Duration: 00:00:01

File Ref: _	
Date:	
By: _	
Checked:	

Case Title: Soil

Description: Soil Density 1.7 g/cc, 6" Cylinder @ 5" from Surface Y Geometry: 8 - Cylinder Volume - End Shields

	So	urce Dimensions			
He	ight	15.24 cm	6.0 in		
Radius		28.21 cm	11.1 in		
		Dose Points			
	<u>X</u>	<u>Y</u>	<u>Z</u>		
# 1	0 cm	27.94 cm	0 cm		
	0.0 in	11.0 in	0.0 in		

Shields Shield Name Dimension Material Density Source 3.81e+04 cm³ Concrete 1.7 Air Gap Air 0.00122

Source Input

Grouping Method: Actual Photon Energies

<u>Nuclide</u>	curies	<u>becquerels</u>	μCi/cm³	Bq/cm³
Ba-137m	6.1275e-008	2.2672e+003	1.6082e-006	5.9503e-002
Cs-137	6.4772e-008	2.3966e+003	1.7000e-006	6.2900e-002

Buildup The material reference is: Source

Integration Parameters

Radial	40
Circumferential	40
Y Direction (axial)	40

			Results		
Energy	<u>Activity</u>	Fluence Rate	Fluence Rate	Exposure Rate	Exposure Rate
MeV	photons/sec	MeV/cm²/sec	MeV/cm²/sec	mR/hr	mR/hr
		No Buildup	With Buildup	No Buildup	With Buildup
0.0318	4.694e+01	6.799e-06	8.229e-06	5.663e-08	6.854e-08
0.0322	8.660e+01	1.307e-05	1.592e-05	1.052e-07	1.281e-07
0.0364	3.151e+01	7.243e-06	9.460e-06	4.115e-08	5.375e-08
0.6616	2.040e+03	6.302e-02	1.133e-01	1.222e-04	2.197e-04
TOTALS:	2.205e+03	6.305e-02	1.133e-01	1.224e-04	2.199e-04

ATTACHMENT 6. 1

$$b := 100$$

$$p := 0.5$$

$$b := 100$$
 $p := 0.5$ $HS_d := 56.42$ $SR := 25$ $d := 1.38$

$$d := 1.38$$

Conv :=
$$208.705$$
 MS output := $2.197 \cdot 10^{-4}$

$$\frac{\text{HS d}}{\text{SR}} = 2.257$$
 Observation Interval (seconds)

$$b_i := \frac{\left(b \cdot O_i\right)}{60}$$

$$O_i := \frac{HS_d}{SR}$$
 Observation Interval (seconds)

MDCR_i :=
$$\left(d \cdot \sqrt{b_i}\right) \cdot \frac{60}{O_i}$$

$$MDCR_{i} = 71.155$$

MDCR; = 71.155 net counts per minute

$$MDCR_{surveyor} := \frac{MDCR_{i}}{\sqrt{p}}$$

$$MDCR_{surveyor} = 100.629$$
 net counts per minute

$$MDER := \frac{MDCR_{surveyor}}{Conv}$$

MDER =
$$0.482$$
 μ R/h

$$MDC_{scan} := \frac{MDER}{MS_{output} \cdot 1 \cdot 10^3}$$

$$MDC_{scan} = 2.195$$
 pCi/g

$$b := 200$$

$$p := 0.5$$

$$b := 200$$
 $p := 0.5$ $HS_d := 56.42$ $SR := 25$ $d := 1.38$

$$d := 1.38$$

$$MS_{output} := 2.197 \cdot 10^{-4}$$

$$\frac{\text{HS d}}{\text{SR}} = 2.257$$
 Observation Interval (seconds)

$$b_i := \frac{\left(b \cdot O_i\right)}{60}$$

$$O_i := \frac{HS_d}{SR}$$
 Observation Interval (seconds)

MDCR_i :=
$$\left(d \cdot \sqrt{b_i}\right) \cdot \frac{60}{O_i}$$

MDCR
$$_{i}$$
 = 100.629 net counts per minute

$$MDCR_{surveyor} := \frac{MDCR_{i}}{\sqrt{p}}$$

$$MDER := \frac{MDCR_{surveyor}}{Conv}$$

$$MDER = 0.682 \qquad \mu R/h$$

$$MDC_{scan} := \frac{MDER}{MS_{output} \cdot 1 \cdot 10^3}$$

$$MDC_{scan} = 3.104$$
 pCi/g

$$b := 300$$

$$p := 0.5$$

$$b := 300$$
 $p := 0.5$ $HS_d := 56.42$ $SR := 25$ $d := 1.38$

$$d := 1.38$$

$$MS_{output} := 2.197 \cdot 10^{-4}$$

$$\frac{\text{HS d}}{\text{SR}} = 2.257$$
 Observation Interval (seconds)

$$b_i := \frac{\left(b \cdot O_i\right)}{60}$$

$$O_i := \frac{HS_d}{SR}$$
 Observation Interval (seconds)

MDCR_i :=
$$\left(d \cdot \sqrt{b_i}\right) \cdot \frac{60}{O_i}$$

$$MDCR_{i} = 123.245$$

MDCR; = 123.245 net counts per minute

$$MDCR_{surveyor} := \frac{MDCR_{i}}{\sqrt{p}}$$

$$MDER := \frac{MDCR_{surveyor}}{Conv}$$

$$MDER = 0.835 \qquad \mu R/h$$

$$MDC_{scan} := \frac{MDER}{MS_{output} \cdot 1 \cdot 10^3}$$

$$MDC_{scan} = 3.801$$
 pCi/g

$$b := 400$$

$$p := 0.5$$

$$b := 400$$
 $p := 0.5$ $HS_d := 56.42$ $SR := 25$ $d := 1.38$

MS output :=
$$2.197 \cdot 10^{-4}$$

$$\frac{\text{HS d}}{\text{SR}} = 2.257 \quad Observation Interval (seconds)$$

$$b_i := \frac{\left(b \cdot O_i\right)}{60}$$

$$O_i := \frac{HS_d}{SR}$$
 Observation Interval (seconds)

MDCR
$$_{i} := \left(d \cdot \sqrt{b_{i}}\right) \cdot \frac{60}{O_{i}}$$

$$MDCR_{i} = 142.311$$

MDCR; = 142.311 net counts per minute

$$MDCR_{surveyor} := \frac{MDCR_{i}}{\sqrt{p}}$$

$$MDER := \frac{MDCR_{surveyor}}{Conv}$$

MDER =
$$0.964$$
 μ R/h

$$MDC_{scan} := \frac{MDER}{MS_{output} \cdot 1 \cdot 10^3}$$

$$MDC_{scan} = 4.389$$
 pCi/g

where:

b = background in counts per minute

 $b_i = background counts in observation interval$

Conv = Nal manufacturers reported response to energy of contaminant (cpm/uR/h)

d = index of sensitivity (Table 6.5 MARSSIM), 1.38 = 95% of correct detection's, 60% false positives

 $HS_d = hot spot diameter (in centimeters)$

MDC_{scan} = Minimum Detectable Concentration for scanning (pCi/g)

 $MDCR_i = Minimum Detectable Count Rate (ncpm)$

 $MDCR_{surveyor} = MDCR_{i}$ corrected by human performance factor (ncpm)

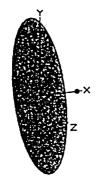
MDER = Minimum Detectable Exposure Rate (uR/h)

 $MS_{output} = MicroShield$ output exposure rate for 1 pCi/g of contaminant (mR/h)

 $O_i = obervation Interval (seconds)$

p = human performance factor

SR = scan rate in centimeters per second


MicroShield v5.05 (5.05-00121) GPU Nuclear

Page :1

DOS File: SURFC.MS5 Run Date: May 25, 2004 Run Time: 5:58:36 PM Duration: 00:00:00 File Ref: _______
Date: ______
By: _____
Checked:

Case Title: Concrete Surface
Description: 12" Diameter Model

Geometry: 3 - Disk

Radius		Source Dimensions 15.24 cm		
	Dose	Points		
	<u>X</u>	<u>Y</u>	<u>Z</u>	
# 1	7.62 cm	0 cm	0 cm	
	3.0 in	0.0 in	0.0 in	

Shield Name Material Density
Air Gap Air 0.00122

Source Input

Grouping Method: Actual Photon Energies

<u>Nuclide</u>	<u>curies</u>	<u>becquerels</u>	μCi/cm²	<u>Bq/cm²</u>
Ba-137m	6.9026e-010	2.5540e+001	9.4600e-007	3.5002e-002
Cs-137	7.2966e-010	2.6997e+001	1.0000e-006	3.7000e-002

Buildup
The material reference is : Air Gap

Integration Parameters

Radial 40 Circumferential 40

			Results		
Energy	Activity	Fluence Rate	Fluence Rate	Exposure Rate	Exposure Rate
MeV	photons/sec	MeV/cm²/sec	MeV/cm ² /sec	mR/hr	mR/hr
		No Buildup	With Buildup	No Buildup	With Buildup
0.0318	5.287e-01	9.237e-06	9.286e-06	7.694e-08	7.735e-08
0.0322	9.755e-01	1.725e-05	1.734e-05	1.388e-07	1.395e-07
0.0364	3.550e-01	7.100e-06	7.137e-06	4.034e-08	4.055e-08
0.6616	2.298e+01	8.375e-03	8.383e-03	1.62 4e -05	1.625e-05
TOTALS:	2.484e+01	8.409e-03	8.417e-03	1.649e-05	1.651e-05

ATTACHMENT 6 - 7

Nal Scan MDC Calculation - Surface Deposition

b := 200 p := 0.5 HS
$$_d$$
 := 30.48 SR := 3.048 d := 1.38

Conv := 208.705 MS output :=
$$1.625 \cdot 10^{-5}$$
 O $\frac{\text{HS d}}{\text{SR}}$

$$b_i := \frac{\left(b \cdot O_i\right)}{60}$$

$$MDCR_{i} := \left(d \cdot \sqrt{b_{i}}\right) \cdot \frac{60}{O_{i}}$$

MDCR
$$_{i}$$
 = 47.805 net counts per minute

$$MDCR_{surveyor} := \frac{MDCR_{i}}{\sqrt{p}}$$

$$MDER := \frac{MDCR_{surveyor}}{Conv}.$$

MDER =
$$0.324$$
 μ R/h

$$MDC_{scan} := \frac{MDER}{MS_{output} \cdot 1 \cdot 10^3}$$

$$MDC_{scan} = 19.934$$
 pCi/cm^2

MDC
$$_{\text{scan}} \cdot 222 = 4425.389$$
 $\frac{dpm/100 cm^2}{}$

where:

b = background in counts per minute

 $b_i = background counts in observation interval$

Conv = Nal manufacturers or calibration information reported response to energy of contaminant (cpm/uR/h)

d = index of sensitivity (Table 6.5 MARSSIM), 1.38 = 95% of correct detection's, 60% false positives

 $HS_d = hot spot diameter (in centimeters)$

 $MDC_{scan} = Minimum Detectable Concentration for scanning (pCi/cm²)$

 $MDCR_i = Minimum Detectable Count Rate (ncpm)$

 $MDCR_{surveyor} = MDCR_{i}$ corrected by human performance factor (ncpm)

MDER = Minimum Detectable Exposure Rate (uR/h)

 $MS_{output} = MicroShield$ output exposure rate for 1 pCi/cm² of contaminant (mR/h)

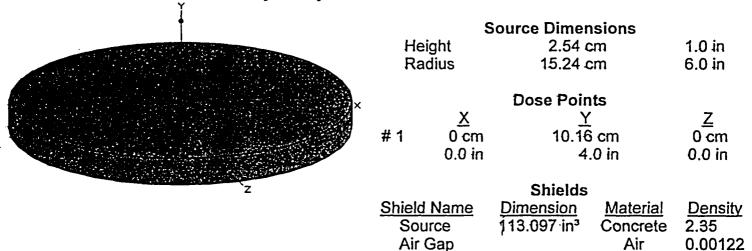
 $O_i = obervation Interval (seconds)$

p = human performance factor

SR = scan rate in centimeters per second

MicroShield v5.05 (5.05-00121) GPU Nuclear

Page: 1


DOS File: SLABD.MS5 Run Date: May 25, 2004

Run Time: 6:03:50 PM Duration: 00:00;02

Case Title: Concrete Slab

Description: 12" Diameter by 1" Deep - Cs-137 @ 1 pCi/g

Geometry: 8 - Cylinder Volume - End Shields

Source Input

Grouping Method: Actual Photon Energies

<u>Nuclide</u>	<u>curies</u>	<u>becquerels</u>	μCi/cm³	Bq/cm³
Ba-137m	4.1201e-009	1.5245e+002	2.2231e-006	8.2255e-002
Cs-137	4.3553e-009	1.6115e+002 ·	2.3500e-006	8.6950e-002

Buildup The material reference is: Source

Integration Parameters

Radial	6 0
Circumferential	60
Y Direction (axial)	60

Results

Energy	Activity	Fluence Rate	Fluence Rate	Exposure Rate	Exposure Rate
MeV	photons/sec	MeV/cm²/sec	MeV/cm²/sec	mR/hr	mR/hr
		No Buildup	With Buildup	No Buildup	With Buildup
0.0318	3.156e+00	6.355e-06	7.682e-06	5.293e-08	6.399e-08
0.0322	5.823e+00	1.222e-05	1.486e-05	9.832e-08	1.196e-07
0.0364	2.119e+00	6.726e-06	8.749e-06	3.821e-08	4.971e-08
0.6616	1.372e+02	3.200e-02	4.053e-02	6.204e-05	7.858e-05
TOTALS:	1.483e+02	3.203e-02	4.057e-02	6.223e-05	7.881e-05

ATTACHMENT 6 . 10

Nal Scan MDC Calculation - Concrete Volume

$$b := 200$$
 $p := 0.5$ $HS_d := 30.48$ $SR := 3.048$ $d := 1.38$

$$HS_d := 30.48$$

$$MS_{output} = 7.858 \cdot 10^{-5}$$

$$\frac{\text{HS d}}{\text{SR}} = 10$$

Observation Interval (seconds)

$$b_i := \frac{\left(b \cdot O_i\right)}{60}$$

 $O_i := \frac{HS_d}{SR}$ Observation Interval (seconds)

MDCR
$$_{i} := \left(d \cdot \sqrt{b_{i}} \right) \cdot \frac{60}{O_{i}}$$

$$MDCR : = 47.805$$

MDCR $_{i} = 47.805$ <u>net counts per minute</u>

$$MDCR_{surveyor} := \frac{MDCR_{i}}{\sqrt{p}}$$

$$MDER := \frac{MDCR_{surveyor}}{Conv}$$

MDER = 0.324 μ R/h

$$MDC_{scan} := \frac{MDER}{MS_{output} \cdot 1 \cdot 10^3}$$

$$MDC_{scan} = 4.122$$

pCi/g

where:

b = background in counts per minute

 b_i = background counts in observation interval

Conv = NaI manufacturers reported response to energy of contaminant (cpm/uR/h)

d = index of sensitivity (Table 6.5 MARSSIM), 1.38 = 95% of correct detection's, 60% false positives

 $HS_d = hot spot diameter (in centimeters)$

MDC_{scan} = Minimum Detectable Concentration for scanning (pCi/g)

MDCR_i = Minimum Detectable Count Rate (ncpm)

 $MDCR_{surveyor} = MDCR_{l}$ corrected by human performance factor (ncpm)

MDER = Minimum Detectable Exposure Rate (uR/h)

 $MS_{output} = MicroShield$ output exposure rate for 1 pCi/g of contaminant (mR/h)

 $O_i = obervation Interval (seconds)$

p = human performance factor

SR = scan rate in centimeters per second

Site Summary

Site Name:

SOUTH CV SOIL AREA

Planner(s):

BHB

Contaminant Summary

Surface soil DCGLw units are pCi/g. Building surface DCGLw units are dpm/100 cm².

Contaminant	Туре	DCGLw	Screening Value Used?	Area (m²)	Area Factor
Cs-137	Surface Soil	4.30	No	10,000	1
				1 .	1

COMPASS v1.0.0 6/9/2004 Page 1 ATTACHMENT_ 7

Survey Plan Summary

Site:

SOUTH CV SOIL AREA

Planner(s):

BHB

Survey Unit Name:

South CV Yard Area

Comments:

Area (m²):

395

Classification:

1

Selected Test:

WRS

Estimated Sigma (pCi/g):

0.39

DCGL (pCi/g):

4.30

Sample Size (N/2):

14

LBGR (pCi/g):

3.7

Estimated Conc. (pCi/g):

-0.1

Alpha:

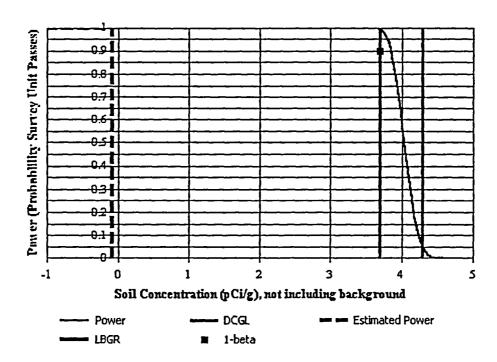
0.050

Estimated Power:

1

Beta:

0.100


EMC Sample Size (N):

14

Scanning Instrumentation:

2" x 2" Nal W Detector

Prospective Power Curve

COMPASS v1.0.0 6/9/2004 Page 1

Contaminant Summary

Contaminant	DCGLw (pCl/g)	Inferred Contaminant	Ratio	Modified DCGLw (pCi/g)	Scan MDC (pCl/g)
Cs-137	4.30	N/A	N/A	N/A	4.1
Contaminant	Survey Unit Estimate (Mean ± 1-Sigma) nant (pC <i>U</i> g)			Reference Area Est (Mean ± 1-Sigma (pCi/g)	
Cs-137		0.193 ± 0.108	0.28 ± 0.39		

COMPASS v1.0.0 6/9/2004 Page 2

SACOMP.	ASS - DQO Wizard for Surface Soil Assessment. Elevated Measurement Comparison (El	
		umentation used. Then enter a scan MDC for each ATE button to view the integrated survey design DC and DCGL units are in pCl/g.
	Scanning Instrumentation Description: 2" x	2" Nal W Detector
	[Garage Land Land Land Land Land Land Land Land	FEnter Scan MDC
	Contaminant Scan MDC Cs-137 4.1	A I NUMBER AFOR
	CS-137 4.1	Scan MDC: NUREG-1507
		SAVE
		CALCUIATE
	·	
	Statistical Design	Hot Spot Design
	N/2: 14	Actual Scan MDC: 4.1
	Bounded Area (m²): 28.2	Area Factor: N/A
	Area Factor: 1	Bounded Area (m²): N/A
	DCGLw: 4.30	PostEMCN/2: 14
31	Scan MDC Required: N/A	COMPASS X
		O No difficulty and the state of the state o
444		No additional samples are required because the actual scan MDC is less than the DCGLw.
101	F Enable Training	[
是特別的	v1.00	[<u>OK</u> j

Site Summary

Site Name:

South CV Yard Concrete & Steel A

Planner(s):

BHB

Contaminant Summary

NOTE:

Surface soil DCGLw units are pCi/g. Building surface DCGLw units are dpm/100 cm².

Contaminant	Туре	DCGLw	Screening Value Used?	Area (m²)	Area Factor
Gross Activity	Building Surface	33,325	No	36	1
				25 16	1.2
				9	1.5 2
				4	3.4
				1	10.1
				0.25	10.1
				BHB	
				13HB 6/10/0	4

COMPASS v1.0.0 6/10/2004 Page 1

Survey Plan Summary

Site:

South CV Yard Concrete & Steel A

Planner(s):

BHB

Survey Unit Name:

South CV Yard Misc. Concrete

Comments:

Concrete Foundation Remnants

Area (m²):

13

Classification:

1

Selected Test:

WRS

Estimated Sigma (cpm):

50.9

DCGL (cpm):

2,519

Sample Size (N/2):

8

LBGR (cpm):

2,375

Estimated Conc. (cpm):

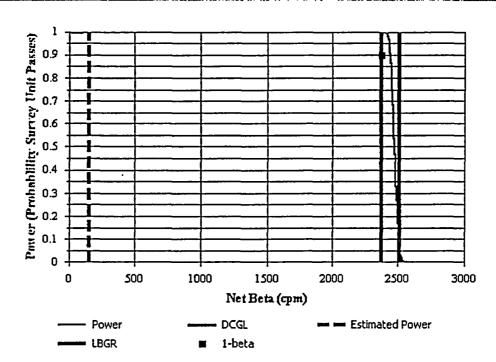
157

Alpha:

0.050

Estimated Power:

1.00


Beta:

0.100

EMC Sample Size (N):

8

Prospective Power Curve

6/10/2004 ATTACHMENT 7 - 6

Co	on	tar	nir	ıaı	nt	Sι	ım	m	ar	У

DCGLw Contaminant (dpm/100 cm²) **Gross Activity** 33,325

Beta Instrumentation Summary

Gross Beta DCGLw (dpm/100 cm²):

33,325

Total Efficiency:

0.06

Gross Beta DCGLw (cpm):

ID Type 2,519

20 Beta 126

Mode

Area (cm²)

Fraction² Inst. Eff. Total Eff. Contaminant Energy' Surf. Eff. 0.0624 **Gross Activity** 187.87 1.0000 0.48 0.13

Gross Survey Unit Mean (cpm): 463 ± 51 (1-sigma)

Count Time (min): 1

	Number of	Average	Standard	MDC
Material	BKG Counts	(cpm)	Deviation (cpm)	(dpm/100 cm ²)
Concrete	31	306	34.5	1,116

6/10/2004 Page 2 COMPASS v1.0.0

ATTACHMENT_

¹ Average beta energy (keV) [N/A indicates alpha emission]

² Activity fraction

SECTION SE	SS: Dilli Wizard for i inding হায় Elevated Measurement Con				<u> </u>			
1	Follow the order of each tab b	pelow to perfo	rm the EMC	Σ.				
	1) Enter Scanning Instrument Efficience	es 2) Enter :	Scan MDC Pa	3) View EMC Results				
1		Scan MDC Re	equired per	Contaminant				
7	Contaminant	DCGLw*	Area F	actor So	can MDC Required*			
[]	Gross Activity	33,325	8.7	6	291,927			
]							
	Statistical De	sign_	Hot Spot Design &					
,	N/2:	8	,	Actual Scan MDC*: 2.204				
~	Bounded Area (m²):	1.6		Area Factor: N/A				
السب	Area Factor:	8.76	В	ounded Area	(m²): N/A			
	DCGLw*:	33,325		Post-EMC	N/2: 8			
	Scan MDC Required*:	291,927	COMPASS		aligna arben under 🗴			
	* dpm/100 cm²			oles are required because the actual han the DCGLw for each				
171	√1.000 v1.000	nable Training			<u>OK</u>			

Survey Plan Summary

Site:

South CV Yard Concrete & Steel A

Planner(s):

BHB

Survey Unit Name:

External CV Steel on South Side

Comments:

Area (m²):

7

Classification:

1

Selected Test:

WRS

Estimated Sigma (cpm):

93.9

DCGL (cpm):

5,879

Sample Size (N/2):

U

LBGR (cpm):

5,600

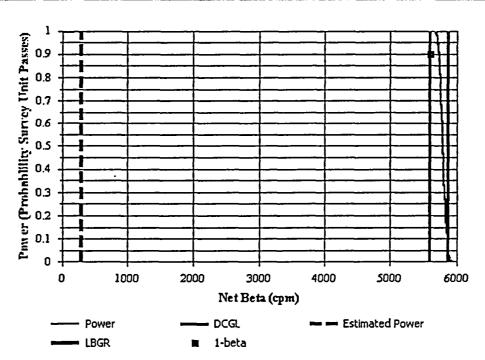
Estimated Conc. (cpm):

290

Alpha:

0.050

Estimated Power:


1.00

Beta:

0.100

EMC Sample Size (N): 8

Prospective Power Curve

COMPASS V1.0.0 6/10/2004

ATTACHMENT 7 9

Page 1

onta	minant Sun	nmary			•	
	Contai	minant			GLw 00 cm²)	
	Gross	Activity		33,	325	
eta l	nstrumenta	tion Summa	ary			****
Gross	Beta DCGLw (dpm/1	100 cm²):	33,325			
Total B	Efficiency:		0.14			
Gross	Beta DCGLw (cpm):		5,879			
ID	Туре			Mode		Area (cm²)
20	GFPC			Beta		126
Conta	minant	Energy¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Gross	Gross Activity		1.0000	0.48	0.30	0.1423

Gross Survey Unit Mean (cpm): 501 ± 94 (1-sigma) Count Time (min): 1

	Number of	Average	Standard	MDC
Material	BKG Counts	(cpm)	Deviation (cpm)	(dpm/100 cm ²)
Steel	37	210.9	17.7	400

6/10/2004 COMPASS v1.0.0 Page 2

¹ Average beta energy (keV) [N/A indicates alpha emission] ² Activity fraction

				Samuel Commence of the second				
	Elevated Measurement C	comparison (EN	IC) for Beta	·				
,	Follow the order of each to	b below to perfor	m the EMC.					
11	1) Enter Scanning Instrument Efficie	encies 2) Enter S	can MDC Parameter	3) View EMC Results				
		Scan MDC Re	quired per Conta	minant				
J	Contaminant	DCGLw*	Area Factor	Scan MDC Required*				
1 1	Gross Activity	33,325	10.10	336,582				
		······································						
· ;	<u>Statistical</u>	<u>Design</u>	<u>Hot Spot Design</u>					
,	N/2:	8	Actual Scan MDC*: 784					
·	Bounded Area (m²):	.9		Area Factor: N/A				
1	Area Factor:	10.10	Bounde	ed Area (m²): N/A				
	DCGLw*:	33,325	Po	st-EMC N/2: 8				
	Scan MDC Required*:	336,582	COMPASS	, i to a success also technics of a 🗵				
. /	* dpm/100 cm²		No additional samples are required because the scan MDC is less than the DCGLw for each contaminant.					
		Enable Training	co rom	ÖK				

Survey Plan Summary

Site:

South CV Yard Concrete & Steel A

Planner(s):

BHB

Survey Unit Name:

External CV Steel on South Side - Class 2

Comments:

Area (m²):

16

Classification:

2

Selected Test:

WRS

Estimated Sigma (cpm):

93.9

DCGL (cpm):

5,879

Sample Size (N/2):

8

LBGR (cpm):

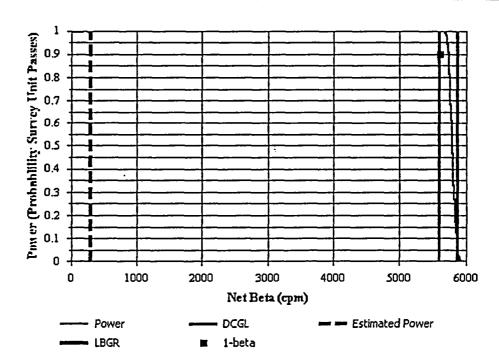
5,600

Estimated Conc. (cpm):

290

Alpha:

0.050


Estimated Power:

1.00

Beta:

0.100

Prospective Power Curve

COMPASS v1.0.0

6/10/2004

Page 1

ATTACHMENT 7.12

Contam	inant Sı	ummary
--------	----------	--------

	DCGLw
Contaminant	(dpm/100 cm ²)
Gross Activity	33,325

Beta Instrumentation Summary

Gross Beta DCGLw (dpm/100 cm²):

33,325

Total Efficiency:

0.14

Gross Beta DCGLw (cpm):

5,879

ID Type

Mode Beta

Area (cm²) 126

20 GFPC

Energy¹ Fraction²

Inst. Eff. Surf. Eff.

Total Eff.

Contaminant Gross Activity

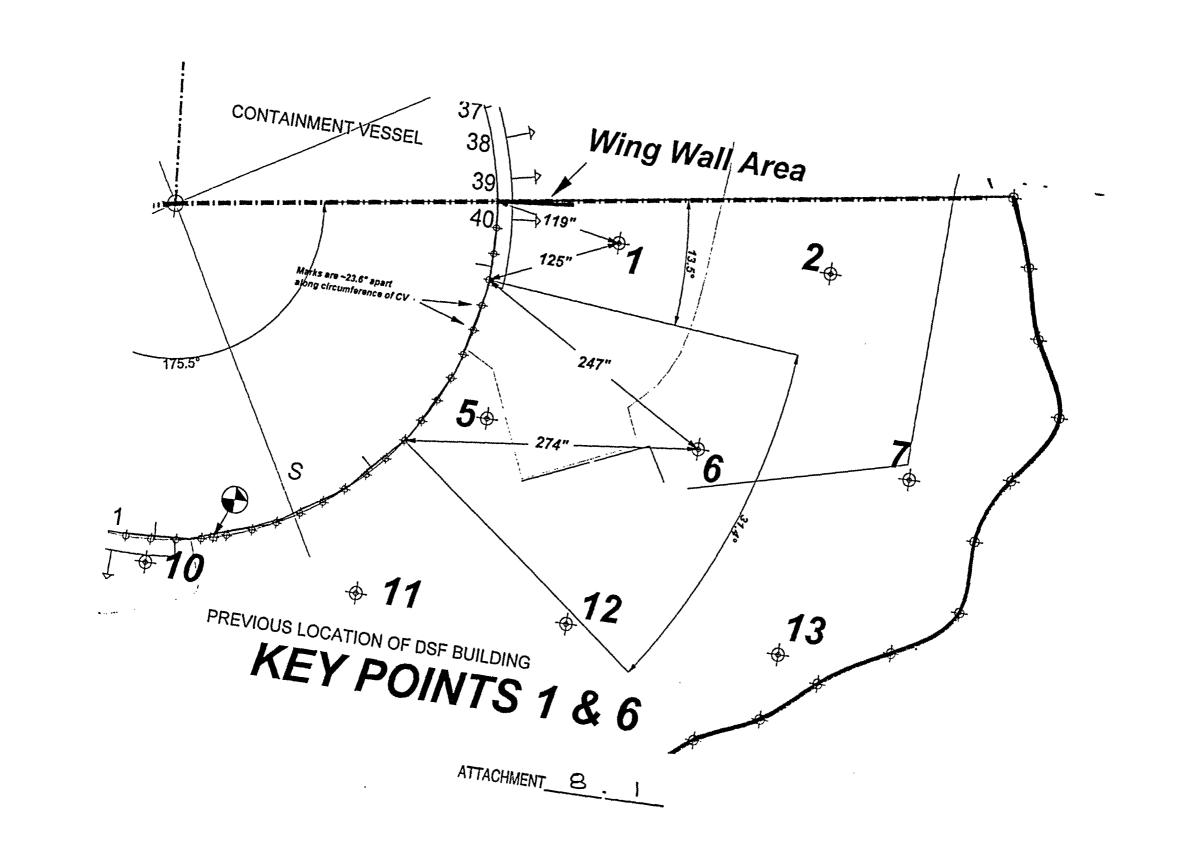
87 1 000

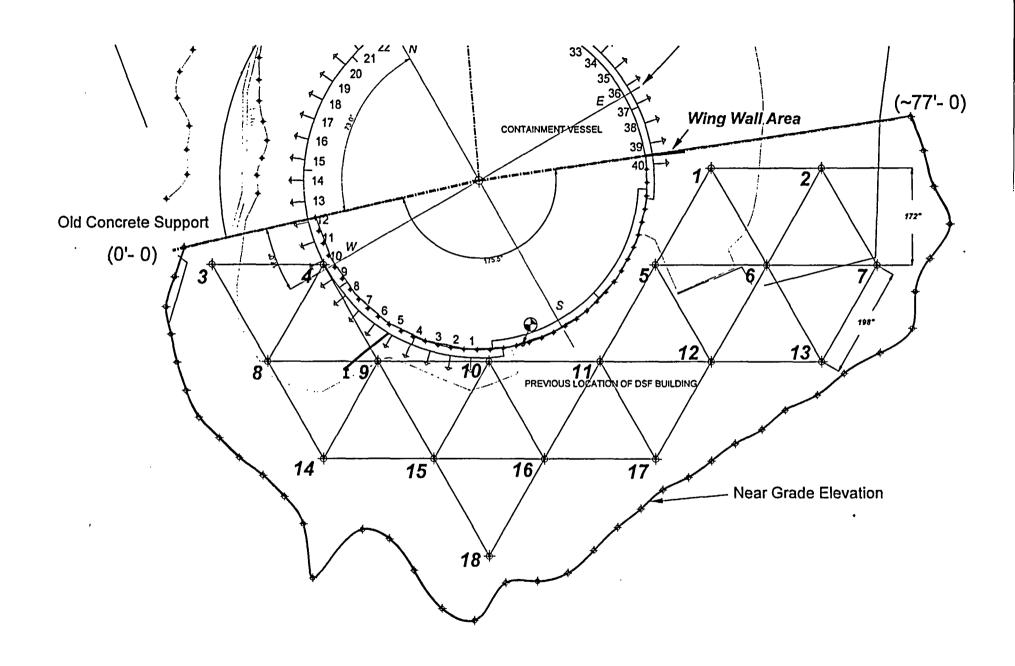
0.48

0.30

0.1423

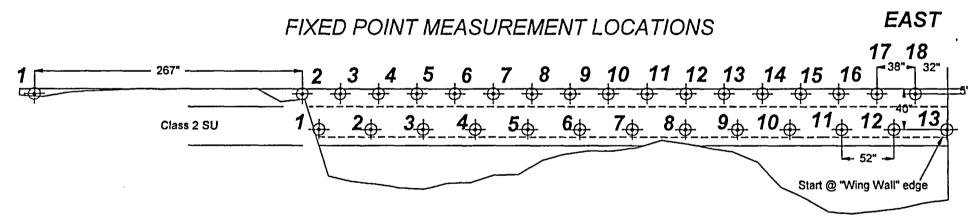
Gross Survey Unit Mean (cpm): 501 ± 94 (1-sigma)

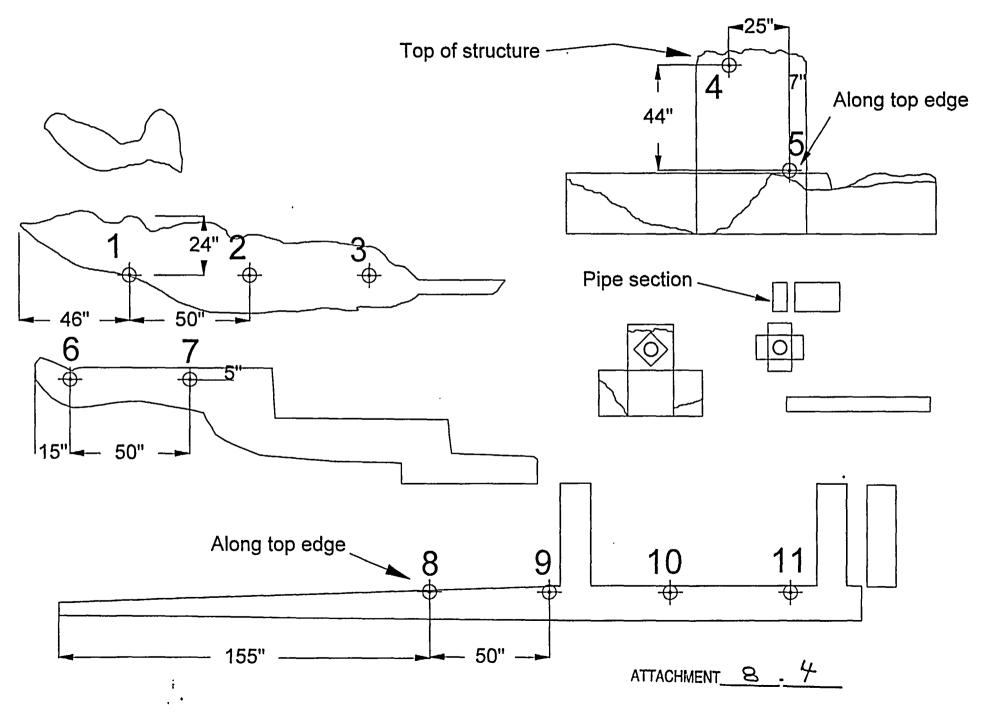

Count Time (min): 1


	Number of	Average	Standard	MDC
Material	BKG Counts	(cpm)	Deviation (cpm)	(dpm/100 cm²)
Steel	37	210.9	17.7	400

ATTACHMENT_7-13

¹ Average beta energy (keV) [N/A indicates alpha emission]


² Activity fraction



ATTACHMENT 8 . 2

CV STEEL SHELL-SOUTH

MISC. CV YARD CONCRETE - SOUTH

0.000	9316119(57 <u>2)</u>	Trues in
Cs-137	Sample Re	sults
Sample No.	pCi/g	Grid
SXSL4778	0.3	AX-130
SXSL4779	0.13	AX-130
SXSL4780	0.15	AX-130
SXSL4781	0.3	AX-130
SXSL4782	0.1	AX-130
SXSL4813	0.08	AX-128
SXSL4814	0.2	AX-128
SXOT4815	0.08	AX-128
SXSL4816	0.17	AX-128
SXSL4827	0.1	AX-128
SXSL4828	0.4	AX-129
SXSL4829	0.08	AX-129
SXSL4830	0.1	AX-129
SXSL4838	0.35	AX-129
SXOT4890	0.3	AX-128
SXOT4891	0.25	AX-128
Min ⇒	0.08	
Max ⇒	0.4	
Mean ⇒	0.193	
Sigma ⇒	0.108	
Median ⇒	0.16	

MA8-2	126170		SOUTH SIDE OF CV - CONCRETE											
	120173	B. Hortor	1						FSS-636	внв				
No.	Location	Date	Time	Detector	Counts	Count Time (sec)	Mode	Designator	Shielded	Unshielded				
36	CVCON FP1S	6/7/2004	15:17	1	299	60	SCL	Shielded B		439				
12	CVCON FP1U	6/7/2004	13:15	1	439	60	SCL	Unshielded B	299					
35	CVCON FP2S	6/7/2004	15:15	1	294	60	SCL	Shielded B		425				
14	CVCON FP2U	6/7/2004	13:18	1	425	60	SCL	Unshielded B	294					
34	CVCON FP3S	6/7/2004	15:14	1	311	60	SCL	Shielded B		475				
15	CVCON FP3U	6/7/2004	13:28	11	475	60	SCL	Unshielded B	311					
33	CVCON FP4S	6/7/2004	15:12	1	348	60	SCL	Shielded B		539				
16	CVCON FP4U	6/7/2004	13:33	1	539	60	SCL	Unshielded B	348					
32	CVCON FP58	6/7/2004	15:11	1	301	60	SCL	Shielded B		479				
17	CVCON FP5U	6/7/2004	13:37	_1_	479	60	SCL	Unshielded B	301					
31	CVCON FP6S	6/7/2004	15:09	1	308	60	SCL	Shielded B		383				
18	CVCON FP6U	6/7/2004	13:40	1	383	60	SCL	Unshielded β	308					
30	CVCON FP7S	6/7/2004	15:06	1	306	60	SCL	Shielded B		415				
19	CVCON FP7U	6/7/2004	13:55	1	415	60	SCL	Unshielded B	306					
29	CVCON FP8S	6/7/2004	15:05	1	332	60	SCL	Shielded B		450				
20	CVCON FP8U	6/7/2004	13:57	1	450	60	SCL	Unshielded β	332					
28	CVCON FP9S	6/7/2004	15:03	1	469	60	SCL	Shielded B		569				
21	CVCON FP9U	6/7/2004	14:00	1	569	60	SCL	Unshielded B	469					
27	CVCON FP10S	6/7/2004	15:02	1	414	60	SCL	Shielded B		462				
22	CVCON FP10U	6/7/2004	14:04	1	462	60	SCL	Unshielded B	414					
24	CVCON FP11S	6/7/2004	14:21	1	383	60	SCL	Shielded B		467				
23	CVCON FP11U	6/7/2004	14:17	1	467	60	SCL	Unshielded B	383					
25	CVCON FP12S	6/7/2004	14:26	1	351	60	SCL	Shielded B		451				
26	CVCON FP12U	6/7/2004	14:27	1	451	60	SCL	Unshielded B	351					
						· · · · · · · · · · · · · · · · · · ·								
ı							j	Minimum ⇒	2.94E+02	3.83E+02				
								Maximum ⇒		5.69E+02				
							,		3.22E+02	4.57E+02				
ı									3.43E+02	4.63E+02				
									5.43E+01	5.09E+01				

						te Backgroun					
37122N21	Instrument 95348			Detector		Count Time (sec)	Mode	Designator	0	FSS-001	внв
0	BKGND Source Check	1/4/2002 1/4/2002	8:52 9:07	1 1	7.26E+03 1.79E+05	1800 60	SCL	Inital Background Source	β B		
2	BKGND	1/4/2002	10:05	2	4.40E+01	1800	SCL	Inital Background	•	te CF(com) ⇒	0
14	Source Check	1/4/2002	10:39	2	1.51E+05	60	SCL	Source	α	Shielded	Unshielded
15	CON A1S	1/4/2002	13:00	1	2.78E+02	60	SCL	Shielded	B	2.78E+02	3.88E+02
16	CON A1U CON A2S	1/4/2002	13:02 13:20	1	3.88E+02 2.39E+02	60 60	SCL	Unshielded Shielded	B	2.39E+02	3.88E+02
18	CON A2U	1/4/2002		<u>i</u>	2.22E+02	60	SCL	Unshielded	B	11. (444.4)	2.22E+02
19	CON A3S	1/4/2002	13:28	1	2.39E+02	60	SCL	Shielded	В	2.39E+02	44.05x62.44
20	CON A3U CON A4S	1/4/2002		1 1	2.62E+02 2.45E+02	60 60	SCL	Unshielded Shielded	B	2.45E+02	2.62E+02
21 22	CON A4S	1/4/2002		i	2.43E+02 2.71E+02	60	SCL	Unshielded	B	2.43E.402	2.71E+02
23	CON A5S	1/4/2002	13:58	1	2.00E+02	60	SCL	Shielded	В	2.00E+02	ery i yezhoù er e
24	CON A5U CON A6S	1/4/2002	14:00 14:03		2.82E+02 1.84E+02	60 60	SCL	Unshielded Shielded	B	1.84E+02	2.82E+02
25	CON A6U	1/4/2002		1	3.10E+02	60	SCL	Unshielded	β	1.042.102	3.10E+02
27	CON A7S	1/4/2002	14:09	1	1.98E+02	60	SCL	Shielded	B	1.98E+02	20 P C 112126 (2000)
28	CON A7U	1/4/2002		1	3.15E+02 2.34E+02	60 60	SCL	Unshielded Shielded	β	2.34E+02	3.15E+02
29 30	CON A8S CON A8S	1/4/2002		1	2.34E+02 2.31E+02	60 60	SCL	Shielded	B	2.34E+02 2.31E+02	13.77 Jacob Ne.
31	CON A8U	1/4/2002		<u>i</u>	2.88E+02	60	SCL	Unshielded	β	n, Anne Samma	2.88E+02
32	CON A9S	1/4/2002	14:31	1	2.65E+02	60	SCL	Shielded	B	2.65E+02	2.005+03
33	CON A9U CON A10S	1/4/2002	14:33 14:42	- 1	2.89E+02 2.46E+02	60 	SCL	Unshielded Shielded	β β	2.46E+02	2.89E+02
35	CON A105	1/4/2002		<u>i</u>	3.16E+02	60	SCL	Unshielded	ß	2:40E+02	3.16E+02
36	CON A11S	1/4/2002	15:10	1	1.95E+02	60	SCL	Shielded	β	1.95E+02	POTH (80.98)
37	CON A11U	1/4/2002		1	2.94E+02 2.21E+02	60 60	SCL	Unshielded Shielded	P	2.21E+02	2.94E+02
38 39	CON A12S CON A12U	1/4/2002		1	2.21E+02 2.84E+02	60 60	SCL	Unshleided	ββ	7/24/2017/2019	2.84E+02
40	CON A13S	1/4/2002	15:23	1	1.74E+02	60	SCL	Shielded	В	1.74E+02	773,074885,0737
41	CON A13U		15:24	1	2.94E+02	60 	SCL	Unshielded Shielded	β	1.065402	2.94E+02
42 43	CON A14S CON A14U	1/4/2002	15:25 15:26	1 1	1.96E+02 3.33E+02	60 60	SCL	Shielded Unshielded	B	1.96E+02	3.33E+02
44	CON A15S	1/4/2002	15:28	- i	2.16E+02	60	SCL	Shielded	β	2.16E+02	52/900/98/923
45	CON A15U	1/4/2002	15:29		3.45E+02	60	SCL	Unshielded	β	4.005.00	3.45E+02
46 47	CON A16S CON A16U	1/4/2002 1/4/2002	15:30 15:31	1	1.83E+02 3.13E+02	60 60	SCL	Shielded Unshielded	B	1.83E+02	3.13E+02
48	CON A17S	1/4/2002		1	1.82E+02	60	SCL	Shielded		1.82E+02	3.13E+02
49	CON A17U	1/4/2002	15:34	1	3.22E+02	60	SCL	Unshielded	β	er espegana	3.22E+02
50 51	CON A18S CON A18U	1/4/2002 1/4/2002	15:35 15:36	1	1.84E+02 3.24E+02	60 60	SCL	Shieided Unshielded	B	1.84E+02	3.24E+02
52	CON A19S	1/4/2002		- i -	1.91E+02	60	SCL	Shielded	B	1.91E+02	3.246.402
53	CON A19U	1/4/2002	15:39	1	3.07E+02	60	SCL	Unshielded	LE	24-1-1-100	3.07E+02
54 55	CON A20S	1/4/2002		1	1.94E+02	60 60	SCL	Shielded Unshielded	B	1.94E+02	3.33E+02
55 56	CON A20U	1/4/2002 1/4/2002	15:41 15:57	<u>1</u>	3.33E+02 2.23E+02	60	SCL	Unshleided Shielded	ββ	2.23E+02	3.33E+UZ
57	CON A21U	1/4/2002	15:58	1	2.92E+02	60	SCL	Unshielded	ß	M. L. WOLKY	2.92E+02
58	CON A22S	1/4/2002		1	1.72E+02	60	SCL	Shielded	3	1.72E+02	5.0300000000000000000000000000000000000
59 60	CON A22U CON A23S	1/4/2002		1	2.80E+02 1.94E+02	60	SCL	Unshielded Shielded	B	1.94E+02	2.80E+02
61	CON A23U	1/4/2002	16:02	<u>i</u>	3.29E+02	60	SCL	Unshielded		111110000000000000000000000000000000000	3.29E+02
62	CON A24S	1/4/2002		1	1.87E+02	60	SCL	Shielded	B	1.87E+02	2.40E+02
63	CON A24U CON A25S	1/4/2002			3.48E+02 2.07E+02	60 	SCL	Unshielded Shielded	B	2.07E+02	3.48E+02
65	CON A25U	1/4/2002		11	3.72E+02	60	SCL	Unshielded	<u>s</u>	707 W.W.	3.72E+02
66	CON A26S	1/4/2002		1	2.09E+02	60	SCL	Shielded	β	2.09E+02	
67	CON A26U CON A27S	1/4/2002 1/4/2002		1	3.26E+02 2.07E+02	60 60	SCL	Unshielded Shielded	β	2.07E+02	3.26E+02
68 69	CON A275	1/4/2002		1	3.30E+02	60	SCL	Unshielded	뮵	2.07E+02	3.30E+02
70	CON A28S	1/4/2002	16:14	1	2.30E+02	60	SCL	Shielded	直	2.30E+02	10-E2119-0000000086
71	CON A28U	1/4/2002		1	3.06E+02	60	SCL	Unshielded	B	3.425.03	3.06E+02
72 73	CON A29S CON A29U	1/4/2002		1	2.13E+02 2.58E+02	60 60	SCL	Shielded Unshielded	B	2.13E+02	2.58E+02
74	CON A30S	1/4/2002		1	2.33E+02	60	SCL	Shielded		2.33E+02	1v5 // (v // (k) (k/ s)
75	CON A30U	1/4/2002	16:25	1	2.89E+02	60	SCL	Unshielded	β	ia distriggi	2.89E+02
76	CON A31S	1/4/2002		1	1.84E+02	60 60	SCL	Shielded Unshielded	<u>B</u>	1.84E+02	2 63E+02
77	CON A31U Source Check	1/4/2002		1 1	2.63E+02 1.70E+05	60	SCL	Unsnielded	В	1.67.59	2.63E+02
		.,		<u>-</u>		<u> </u>			بـــا		
}									Minimum ⇒		2.22E+02
									laximum⇒ → Dean		3.88E+02
1										2.11E+02 2.69E+01	3.06E+02 3.45E+01
											

				sol	JTH SI	DE OF CV - S	TEEL	•			
37122N21	126218	BH4008									внв
No.	Location	Date	Time	Detector	Counts	Count Time (sec)	Mode	Designator		Shielded	Unshielded
6	CVSH FP1S	6/8/2004	10:50	1	397	60	SCL	Shielded	ß		443
7_	CVSH FP1U	6/8/2004	10:51	1	443	60	SCL	Unshielded	ß	397	
8	CVSH FP2S	6/8/2004	10:53	1	357	60	SCL	Shielded	β		344
9	CVSH FP2U	6/8/2004	10:54	1	344	60	SCL	Unshielded	β	357	
10	CVSH FP3S	6/8/2004	10:55	1	433	60	SCL	Shielded	B		437
11	CVSH FP3U	6/8/2004	10:57	1	437	60	SCL	Unshielded	B	433	
12	CVSH FP4S	6/8/2004	10:58	1	403	60	SCL	Shielded	β		432
13	CVSH FP4U	6/8/2004	11:00	<u> </u>	432	60	SCL	Unshielded	B	403	
14	CVSH FP5S	6/8/2004	11:01	1	459	60	SCL	Shielded	B B		418
15	CVSH FP5U	6/8/2004	11:02	1	418	60	SCL	Unshielded	В	459	
16	CVSH FP6S	6/8/2004	11:17	1	474	60	SCL	Shielded	β		447
17	CVSH FP6U	6/8/2004	11:18	1	447	60	SCL	Unshielded	β	474	
18	CVSH FP7S	6/8/2004	11:20	1	511	60	SCL	Shielded	<u>a</u>		566
19	CVSH FP7U	6/8/2004	11:21	1	566	60	SCL	Unshielded	β	511	
20	CVSH FP8S	6/8/2004	11:23	1	487	60	SCL	Shielded	β		505
21_	CVSH FP8U	6/8/2004	11:24	1	505	60	SCL	Unshielded	ß	487	
22	CVSH FP9S	6/8/2004	11:26	1	491	60	SCL	Shielded	β		578
23	CVSH FP9U	6/8/2004	11:27	1	578	60	SCL	Unshielded	B	491	
26	CVSHFP10S	6/8/2004	12:54	1	565	60	SCL	Shielded	β		630
27	CVSHFP10U	6/8/2004	12:55	1	630	60	SCL	Unshielded	B	565	
28	CVSHFP11S	6/8/2004	12:57	1	579	60	SCL	Shielded	B		622
29	CVSHFP11U	6/8/2004	12:58	1	622	60	SCL	Unshielded	ß	579	
30	CVSHFP12S	6/8/2004	13:00	1	564	60	SCL	Shielded	ß		595
31	CVSHFP12U	6/8/2004	13:02	1	595	60	SCL	Unshielded	B	564	

1							i	Minim		3.57E+02	3.44E+02
Ì								Maxim		5.79E+02	6.30E+02
j					;		J		ian ⇒	4.81E+02	4.76E+02
[M	ean ⇒	4.77E+02	5.01E+02
								Sig	ma ⇒	7.12E+01	9.39E+01

Second 1114/2002 64/ 1 55/E-020 1500 SCL Intall Background 5 Second 6 Se	494441164	1			irg Steel Backgro					E88 804	BUR .
Source Cheed									В		ВНВ
STEELANS									•		Unshielded
4 STEELANS 1114/0702 1037 1 205-072 60 SCL Sheeledd 10 1 205-072 60 SCL Sh									P		2.045402
STEELANS 1114/CO20 1034 1 2255-02 60 SOL Unshelded 1											2.04E+02
Colored Colo							SCL		B		2.25E+02
8 STEELANS 1111/0002 10-02 1 205-02 60 SCL Sheeked 2 1 10-02 10-02 11-02									ß	1.85E+02	0.005.00
9 STEELAU 111/4000 10-4 1 1556-02 60 SCL Umbeleded 1 1556-02 11-1 1556-02 11-1 1556-02 11-1 1556-02 11-1 1556-02 11-1 1556-02 11-1 1556-02 11-1 1556-02 11-1 1556-02 11-1 1556-02 11-1 1556-02 11-1 1556-02 11-1 1566-02 11-										2.03E+02	2.09E+02
12 STEELARS			11/14/2002			60	SCL		β	to the light de	1.67E+02
12 STEELARS									<u>D</u>	1 55E+02	0.005.000
13 STELLARD										1.92E+02	2.26E+02
16 STEELANS	13	STEELA6U	11/14/2002	10:47	1 1.95E+02	60	SCL	Unshielded	ß	11141,5131,21,	1.95E+02
16 STEELANS									D		2.01E+02
17											2.012402
20 STEELANGS 111/4/2002 10.59 1 1,85E-02 60 SCL Unshielded 1 1,95E-02 1,95E	17	STEELA8U	11/14/2002	10:52	1 2.38E+02	60	SCL		β		2.38E+02
20 STEELANGS 111/4/2002 10.59 1 1,85E-02 60 SCL Unshielded 1 1,95E-02 1,95E									밀		1.92E+02
22 STEELANIO 111/4/2002 1058 1 1556-02 60 SCL Unsheded [] 23 STEELANIU 111/4/2002 1058 1 2156-02 60 SCL Sheded [] 24 STEELANIU 111/4/2002 1059 1 2156-02 60 SCL Unsheded [] 25 STEELANIU 111/4/2002 1100 1 2766-02 60 SCL Unsheded [] 27 STEELANIU 111/4/2002 1100 1 2066-02 60 SCL Unsheded [] 28 STEELANIU 111/4/2002 1100 1 2066-02 60 SCL Unsheded [] 29 STEELANIU 111/4/2002 1100 1 2066-02 60 SCL Unsheded [] 20 STEELANIU 111/4/2002 1100 1 1886-02 60 SCL Unsheded [] 20 STEELANIU 111/4/2002 1100 1 1886-02 60 SCL Unsheded [] 21 STEELANIU 111/4/2002 1100 1 1886-02 60 SCL Unsheded [] 21 STEELANIU 111/4/2002 1100 1 1886-02 60 SCL Unsheded [] 23 STEELANIU 111/4/2002 1100 1 1886-02 60 SCL Unsheded [] 23 STEELANIU 111/4/2002 1100 1 1886-02 60 SCL Unsheded [] 24 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 25 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 26 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 27 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 28 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 29 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 20 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 21 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 27 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 27 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 27 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 27 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 27 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 28 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 29 STEELANIU 111/4/2002 1101 1 1886-02 60 SCL Unsheded [] 20 STEELANIU 111/4/2002 1102 1 1886-02 60 SCL Unsheded [] 20 STEELANIU 111/4/2002 1102 1 1886-02 60 SCL Unsheded [] 20 STEELANIU 111/4/2002 1102 1 1886-02 60 SCL Unsheded [] 20 STEELANIU 111/4/2002 1102 1 1886-02 60 SCL Unsheded [] 20 STEELANIU 111/4/2002 1102 1 1886-02 60 SCL Unsheded [] 20 STEELANIU 111/4/2002 1102 1 1886-02 60 SCL Unsheded [] 21 STEELANIU 111/4/2002 1102 1 1886-02 60 SCL Unsheded [] 21 STEELANIU 111/4											1.92E+02
24 STEELAHU 111/4/2002 10:05 1 2:15E-02 60 SCL Unshedded B 11/4/2002 11:00 1 17/E-02 60 SCL Shedded B 17/E-02 25 STEELAHU 111/4/2002 11:00 1 2:34E-02 60 SCL Unshedded B 17/E-02 25 STEELAHU 111/4/2002 11:00 1 2:34E-02 60 SCL Unshedded B 17/E-02 25 STEELAHU 111/4/2002 11:00 1 2:16E-02 60 SCL Unshedded B 17/E-02 25 STEELAHU 111/4/2002 11:00 1 2:16E-02 60 SCL Unshedded B 17/E-02 25 STEELAHU 111/4/2002 11:00 1 2:16E-02 60 SCL Unshedded B 17/E-02 25 STEELAHU 111/4/2002 11:00 1 2:16E-02 60 SCL Unshedded B 17/E-02 25 STEELAHU 111/4/2002 11:00 1 2:16E-02 60 SCL Unshedded B 17/E-02 25 STEELAHU 111/4/2002 11:00 1 1:88E-02 60 SCL Unshedded B 18/E-02 60 SCL Unshedded B 18/E	21		11/14/2002	10:57	1 2.25E+02	60	SCL		ß		2.25E+02
25 STEELAIS 111/4/2002 11:00 1 1.77E-02 60 SCL Unsheded 1.77E-02 60 SCL U											1-1-419-14090
28 STEELA12U 1114/2002 11:00 1 2.38f-02 60 SCI, Unshielded fl. 2025-02											2.15E+02
STEELAISS	25					60			β		2.34E+02
28 STEELAI4S 1111/4/2002 11:06 1 1.886-02 60 SCI, Unshelded 1 1.896-02 10:06 1.896-02 1.896-02 10:06 1.896-02 10:06 1.896-02 10:06 1.896-02 10:06 1.896-02 10:06 1.896-02 10:06 1.896-02 10:0									B		0.495.00
STEELANU									9		2.18E+02
STEELAISS	29			11:07		60	SCL	Unshielded	β		1.99E+02
32 STEELARS 11114/2002 11:10 1 1.88E+02 60 SCL Sheleded 1 1.88E+02 1.88E+02 1.88E+03								Shielded	P		Committee Mindows
33 STEELAIGU 1111/4/2002 11:11 1 2.055-02 60 SCL Unshelded β 2.155-02 2.15 2.055-02 3.5 STEELAITU 1111/4/2002 11:14 1 2.115-02 60 SCL Unshelded β 2.155-02 2.15 3.5 STEELAITU 1111/4/2002 11:16 1 1.905-02 60 SCL Unshelded β 2.055-02 2.15 3.5 STEELAIGU 1111/4/2002 11:16 1 1.905-02 60 SCL Unshelded β 2.055-02 3.3 STEELAIGU 1111/4/2002 11:16 1 1.905-02 60 SCL Unshelded β 1.905-02 1.905-0								Unshielded Shielded	티		2.15E+02
STEELATIS								Unshielded	β		2.05E+02
37 STEELAIS 11114/2002 11:16 1 1.905+02 60 SCI								Shielded	β		19869-9-128-89-898
37 STEELAIBU 11/14/2002 11:16 1 19/25-02 60 SCI, Urshieded 0 19/25-02 13/25 13/25-02 13/25 13/25-02 13/25 13/2								Shielded			2.11E+02
38 STEELAISU 111/4/2002 11:11 1 1.84E+02 50 SCL Unshielded β 1.84E+02 2.05	37							Unshielded	B		1.93E+02
41 STEELAQU 111/4/2002 11:39 1 1.94E+02 60 SCL Shelded β 1.94E+02 1.20E+02 11.40C 11:20 1 2.30E+02 60 SCL Unshelded β 1.20E+02 1.20E+02 11.40C 11:23 1 1.39E+02 60 SCL Unshelded β 1.20E+02 1.20E+02 1.40C 11.40C 11:23 1 1.39E+02 60 SCL Unshelded β 1.20E+02 1.40C 11.40C 11:24 1 2.0SE+02 60 SCL Unshelded β 1.20E+02 1.40C 11.40C 11:25 1 1.99E+02 60 SCL Unshelded β 1.70E+02 1.40C 11.40C 11:26 1 1.70E+02 60 SCL Unshelded β 1.70E+02 1.40C 11.40C 11:28 1.10E+02 60 SCL Unshelded β 1.70E+02 1.20E+02 1.40C 11.40C 11:28 1 1.88E+02 60 SCL Unshelded β 1.70E+02 1.20E+02 1.40C 11.40C 11:28 1 1.88E+02 60 SCL Unshelded β 1.70E+02 1.20E+02 1.40C 11.40C 11:28 1 1.88E+02 60 SCL Unshelded β 1.70E+02 1.20E+02 1.40C 11.40C 11:33 1 2.13E+02 60 SCL Unshelded β 1.70E+02 1.20E+02 1.40C 11.40C 11:33 1 2.13E+02 60 SCL Unshelded β 1.70E+02 1.20E+02 1.40C 11.40C 11:33 1 2.13E+02 60 SCL Unshelded β 1.70E+02 1.20E+02 1.40C 11.40C 11:33 1 2.10E+02 60 SCL Unshelded β 1.70E+02 1.20E+02 1.								Shielded	且		7 Fares 600.7000000
43 STEELAZIU 11/14/2002 11:23 1 139E-02 60 SCL Shielded [] 2.10E-02 1.20E-02 60 SCL Unshielded [] 2.00E-02 1.20E-02 1.2								Unshielded	β		2.09E+02
43 STEELAZIU 11/14/2002 11:23 1 139E-02 60 SCL Shielded [] 2.10E-02 1.20E-02 60 SCL Unshielded [] 2.00E-02 1.20E-02 1.2								Unshielded	힘		2.30E+02
STEELAZU 11/14/2002 11:25 1 .916-02 60 SCL Unshielded β 2.056-02 1.916-02 1.9								Shielded	B		10110000110001011014
45 STEELAZU 11/14/2002 11/26 1 1.91E-02 60 SCL Unshielded β 1.77E-02 1.77E								Unshielded	밁		1.93E+02
47 STEELA238 111/4/2002 11:26 1 1.77E-02 60 SCL Unshielded β 1.77E-02 11:27 1 1.98E-02 60 SCL Unshielded β 1.77E-02 11:28 1 1.88E-02 60 SCL Unshielded β 1.77E-02 11:28 1 1.88E-02 60 SCL Unshielded β 1.88E-02 11:28 1 11/4/2002 11:30 1 2.44E-02 60 SCL Unshielded β 1.88E-02 11:33 1 2.13E-02 60 SCL Unshielded β 1.88E-02 11:33 1 2.13E-02 60 SCL Unshielded β 1.88E-02 11:34 1 2.10E-02 60 SCL Unshielded β 1.88E-02 11:35 STEELOC119 11/14/2002 11:36 1 1.88E-02 60 SCL Unshielded β 1.88E-02 11:36 1 1.88E-02 60 SCL Unshielded β 1.88E-02 11:37 1 1.99E-02 60 SCL Unshielded β 1.88E-02 11:38 1 11/4/2002 11:37 1 1.99E-02 60 SCL Unshielded β 1.88E-02 11:39 1 1.99E-02 60 SCL Unshielded β 1.88E-02 11:39 1 1.99E-02 60 SCL Unshielded β 1.88E-02 1.99 STEELBIS 11/14/2002 13:10 1 1.94E-02 60 SCL Unshielded β 1.88E-02 1.99 STEELBIS 11/14/2002 13:13 1 2.50E-02 60 SCL Unshielded β 1.78E-02 1.99 STEELBIS 11/14/2002 13:13 1 2.50E-02 60 SCL Unshielded β 1.78E-02 1.99 STEELBIS 11/14/2002 13:13 1 2.50E-02 60 SCL Unshielded β 1.78E-02 1.99 STEELBIS 11/14/2002 13:13 1 2.50E-02 60 SCL Unshielded β 1.78E-02 1.99 STEELBIS 11/14/2002 13:13 1 2.50E-02 60 SCL Unshielded β 1.78E-02 1.99 STEELBIS 11/14/2002 13:15 1 2.11E-02 60 SCL Unshielded β 1.78E-02 1.99 STEELBIS 11/14/2002 13:15 1 2.11E-02 60 SCL Unshielded β 1.78E-02 1.99 STEELBIS 11/14/2002 13:16 1 1.78E-02 60 SCL Unshielded β 1.78E-02 1.79 STEELBIS 11/14/2002 13:20 1 2.28E-02 60 SCL Unshielded β 1.78E-02 1.79 STEELBIS 11/14/2002 13:20 1 2.28E-02 60 SCL Unshielded β 1.78E-02 1.79 STEELBIS 11/14/2002 13:20 1 2.28E-02 60 SCL Unshielded β 1.78E-02 1.79 STEELBIS 11/14/2002 13:20 1 2.28E-02 60 SCL Unshielded β 1.78E-02 1.79 STEELBIS 11/14/2002 13:22 1 2.2EE-02 60 SCL Unshielded β 1.78E-02 1.79 STEELBIS 11/14/2002 13:22 1 2.2EE-02 60 SCL Unshielded β 1.2EE-02 1.79 STEELBIS 11/14/2002 13:23 1 2.2EE-02 60 SCL Unshielded β 1.2EE-02 1.79 STEELBIS 11/14/2002 13:24 1 2.2EE-02 60 SCL Unshielded β 1.2EE-02 1.79 STEELBIS 11/14/2002 13:24 1 2.2EE-02 60 SCL Unshielded β 1.2EE-02 1.79 STEELBIS 11/14/2002 13:34 1 1.								Unshielded	刮		1.91E+02
49 STEELA24U 111/4/2002 11:30 1 2.44E+02 60 SCL Unshielded β 2.13E+02 2.44 50 STEELA24U 111/4/2002 11:33 1 2.41E+02 60 SCL Unshielded β 2.13E+02 2.44 50 STEELAC11S 111/4/2002 11:34 1 2.10E+02 60 SCL Unshielded β 2.13E+02 2.45 51 STEELAC19S 111/4/2002 11:35 1 1.80E+02 60 SCL Unshielded β 1.80E+02 2.15 52 STEELAC19S 111/4/2002 11:37 1 1.99E+02 60 SCL Unshielded β 2.55E+02 2.55 53 STEELBS 111/4/2002 13:09 1 2.5E+02 60 SCL Unshielded β 2.5E+02 2.55 54 STEELBS 111/4/2002 13:10 1 1.94E+02 60 SCL Unshielded β 2.5E+02 1.96 55 STEELBS 111/4/2002 13:10 1 1.94E+02 60 SCL Unshielded β 2.5E+02 1.96 60 STEELBS 111/4/2002 13:12 1 1.78E+02 60 SCL Unshielded β 1.78E+02 1.96 61 STEELBS 111/4/2002 13:13 1 2.50E+02 60 SCL Unshielded β 1.78E+02 2.56 62 STEELBS 111/4/2002 13:14 1 2.30E+02 60 SCL Unshielded β 1.78E+02 2.56 63 STEELBS 111/4/2002 13:15 1 2.11E+02 60 SCL Unshielded β 2.03E+02 2.56 64 STEELBS 111/4/2002 13:15 1 2.11E+02 60 SCL Unshielded β 2.03E+02 2.56 65 STEELBS 111/4/2002 13:16 1 1.78E+02 60 SCL Unshielded β 2.03E+02 2.56 66 STEELBS 111/4/2002 13:18 1 1.78E+02 60 SCL Unshielded β 2.03E+02 2.56 67 STEELBS 111/4/2002 13:18 1 1.78E+02 60 SCL Unshielded β 2.03E+02 2.71 68 STEELBS 111/4/2002 13:19 1 2.32E+02 60 SCL Unshielded β 2.32E+02 2.66 68 STEELBS 111/4/2002 13:20 1 2.00E+02 60 SCL Unshielded β 2.23E+02 2.66 69 STEELBS 111/4/2002 13:22 1 2.22E+02 60 SCL Unshielded β 2.22E+02 2.66 60 SCL Unshielded β 2.22E+02 60 SCL Unshielded β 2.22E+02 2.67 70 STEELBS 111/4/2002 13:24 1 2.21E+02 60 SCL Unshielded β 2.22E+02 2.77 71 STEELBS 111/4/2002 13:24 1 2.21E+02 60 SCL Unshielded β 2.22E+02 2.77 72 STEELBS 111/4/2002 13:24 1 2.21E+02 60 SCL Unshielded β 2.22E+02 2.77 73 STEELBS 111/4/2002 13:24 1 2.21E+02 60 SCL Unshielded β 2.22E+02 2.77 74 STEELBS 111/4/2002 13:24 1 2.21E+02 60 SCL Unshielded β 2.22E+02 2.77 75 STEELBS 111/4/2002 13:34 1 2.16E+02 60 SCL Unshielded β 2.45E+02 2.77 76 STEELBS 111/4/2002 13:41 1 2.45E+02 60 SCL Unshielded β 2.45E+02 2.77 77 STEELBS 111/4/2002 13:41 1 2.45E+02 60 SCL Unshielded β 2.45E+02 2.77 78								Shielded	直		4790107179400000
49 STEELA24U								Unshielded	붜		1.98E+02
50 STEELCC11S 11/14/2002 11:33 1 2.13E-02 60 SCL Unshielded β 2.13E-02 2.10E-02 51 STEELCC19S 11/14/2002 11:36 1 1.80E-02 60 SCL Unshielded β 1.80E-02 52 STEELDS 11/14/2002 11:37 1 1.99E-02 60 SCL Unshielded β 1.80E-02 60 SCL Unshielded β 2.03E-02 6								Unshielded	뷤		2.44E+02
STEELCH9S								Shielded	Ē		Z 1000000000000000000000000000000000000
STEELCC19U								Unshielded	횝		2.10E+02
STEELB1U 11/14/2002 13:10 1 1.94E-02 60 SCL Unshielded β 1.78E-02 60 STEELB2S 11/14/2002 13:13 1 2.50E-02 60 SCL Unshielded β 1.78E-02 2.50 62 STEELB3S 11/14/2002 13:14 1 2.03E-02 60 SCL Unshielded β 2.03E-02 63 STEELB3S 11/14/2002 13:15 1 2.11E-02 60 SCL Unshielded β 2.03E-02 64 STEELB4S 11/14/2002 13:15 1 2.03E-02 60 SCL Unshielded β 2.03E-02 66 STEELB4S 11/14/2002 13:16 1 7.86E-02 60 SCL Unshielded β 2.03E-02 66 STEELB4S 11/14/2002 13:18 1 7.86E-02 60 SCL Unshielded β 2.03E-02 66 STEELB4S 11/14/2002 13:18 1 7.86E-02 60 SCL Unshielded β 2.32E-02 67 STEELB5S 11/14/2002 13:20 1 2.08E-02 60 SCL Unshielded β 2.32E-02 66 SCL Unshielded β 2.32E-02 67 STEELB6U 11/14/2002 13:20 1 2.08E-02 60 SCL Unshielded β 2.22E-02 68 STEELB6S 11/14/2002 13:22 1 2.22E-02 60 SCL Unshielded β		OTET 004011	4444 45555	44.67				Unshielded	β		1.99E+02
STEELB2S								Shielded	Ď		-19409-00-00:0000
61 STEELB2U 11/14/2002 13:13 1 2:50E+02 60 SCL Unshielded β 2:03E+02 60 SCL Shielded β 2:03E+02 50 SCL Shielded β 3:03E+02 50 SC								Unshielded Shielded	릵		1.94E+02
62 STEELB3S 11/14/2002 13:14 1 2.03E+02 60 SCL Shielded β 2.03E+02 2.11 64 STEELB4S 11/14/2002 13:17 1 2.03E+02 60 SCL Unshielded β 2.03E+02 2.11 65 STEELB4U 11/14/2002 13:18 1 1.78E+02 60 SCL Unshielded β 2.03E+02 2.11 66 STEELB5S 11/14/2002 13:19 1 2.32E+02 60 SCL Unshielded β 2.32E+02 2.06 SCL Unshielded β 2.22E+02 60 SCL Unshielded β 2.22E+02 60 SCL Unshielded β 2.22E+02 2.06 SCL Unshielded β 2.	61	STEELB2U	11/14/2002	13:13	1 2.50E+02	60	SCL	Unshielded	Ĕ	2770 (27.00)	2.50E+02
64 STEELBAS 11/14/2002 13:17 1 2.03E+02 60 SCL Shielded β 2.03E+02 1.78								Shielded	β		215 A2000 152 250
1.78 1.78								Shielded	붜		2.11E+02
66 STEELBSS 11/14/2002 13:19 1 2.32E+02 60 SCL Shielded β 2.32E+02 68 STEELBSU 11/14/2002 13:20 1 2.08E+02 60 SCL Unshielded β 2.22E+02 60 SCL Unshielded β 2.21E+02 60 SCL Unshielded β 2.24E+02 60 SCL Unshielded β 2.24		STEELB4U						Unshielded	ă		1.78E+02
68 STEELB6S 11/14/2002 13:22 1 2.22E+02 60 SCL Shielded β 2.22E+02 70 STEELB7S 11/14/2002 13:24 1 2.21E+02 60 SCL Unshielded β 2.21E+02 71 STEELB7S 11/14/2002 13:25 1 2.18E+02 60 SCL Unshielded β 2.21E+02 72 STEELB8S 11/14/2002 13:25 1 2.18E+02 60 SCL Unshielded β 2.18E+02 73 STEELB8U 11/14/2002 13:28 1 2.15E+02 60 SCL Unshielded β 2.18E+02 74 STEELB9S 11/14/2002 13:29 1 1.90E+02 60 SCL Unshielded β 1.21E-02 75 STEELB9S 11/14/2002 13:29 1 1.90E+02 60 SCL Unshielded β 1.90E+02 75 STEELB9U 11/14/2002 13:30 1 2.17E+02 60 SCL Unshielded β 1.90E+02 75 STEELB9U 11/14/2002 13:41 1 2.45E+02 60 SCL Unshielded β 2.45E+02 77 STEELB10U 11/14/2002 13:41 1 2.45E+02 60 SCL Unshielded β 2.45E+02 77 STEELB10U 11/14/2002 13:42 1 2.32E+02 60 SCL Unshielded β 2.45E+02 77 STEELB10U 11/14/2002 13:44 1 1.81E+02 60 SCL Unshielded β 2.45E+02 3.32							SCL	Shielded	ß	2.32E+02	61.1 Med 1940100
69 STEELB6U 11/14/2002 13:23 1 2.22E+02 60 SCL Unshielded β 2.21E+02 70 STEELB7S 11/14/2002 13:24 1 2.21E+02 60 SCL Shielded β 2.21E+02 71 STEELB8U 11/14/2002 13:25 1 2.18E+02 60 SCL Unshielded β 2.18E+02 72 STEELB8S 11/14/2002 13:26 1 2.18E+02 60 SCL Unshielded β 2.18E+02 73 STEELB8U 11/14/2002 13:28 1 2.15E+02 60 SCL Unshielded β 2.18E+02 74 STEELB8S 11/14/2002 13:29 1 1.90E+02 60 SCL Unshielded β 1.90E+02 75 STEELB9U 11/14/2002 13:30 1 2.17E+02 60 SCL Unshielded β 1.90E+02 76 STEELB9U 11/14/2002 13:41 1 2.45E+02 60 SCL Unshielded β 2.45E+02 77 STEELB10U 11/14/2002 13:42 1 2.32E+02 60 SCL Unshielded β 2.45E+02 77 STEELB10U 11/14/2002 13:42 1 2.32E+02 60 SCL Unshielded β 2.45E+02 79 STEELOCB5U 11/14/2002 13:44 1 1.81E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 79 STEELOCB5U 11/14/2002 13:45 1 2								Unshielded Shielded	B		2.08E+02
70 STEELB7S 11/14/2002 13:24 1 2.21E+02 60 SCL Shielded β 2.21E+02 71 STEELB7U 11/14/2002 13:25 1 2.18E+02 60 SCL Unshielded β 2.18E+02 73 STEELB8S 11/14/2002 13:26 1 2.18E+02 60 SCL Unshielded β 2.18E+02 73 STEELB8U 11/14/2002 13:28 1 2.15E+02 60 SCL Unshielded β 2.18E+02 74 STEELB9S 11/14/2002 13:29 1 1.90E+02 60 SCL Unshielded β 1 2.15E+02 75 STEELB9U 11/14/2002 13:30 1 2.17E+02 60 SCL Unshielded β 1 1.90E+02 75 STEELB9U 11/14/2002 13:41 1 2.45E+02 60 SCL Unshielded β 2.45E+02 77 STEELB10U 11/14/2002 13:42 1 2.32E+02 60 SCL Unshielded β 2.45E+02 78 STEELB0U 11/14/2002 13:44 1 1.81E+02 60 SCL Unshielded β 1 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+0									B		2.22E+02
72 STEELB8S 11/14/2002 13:26 1 2.18E+02 60 SCL Shielded β 2.18E+02 73 STEELB8U 11/14/2002 13:28 1 2.15E+02 60 SCL Unshielded β 2.18E+02 74 STEELB9S 11/14/2002 13:29 1 1.90E+02 60 SCL Shielded β 1.90E+02 75 STEELB9U 11/14/2002 13:30 1 2.17E+02 60 SCL Unshielded β 1.90E+02 76 STEELB9U 11/14/2002 13:41 1 2.45E+02 60 SCL Unshielded β 2.45E+02 77 STEELB10U 11/14/2002 13:42 1 2.32E+02 60 SCL Unshielded β 2.45E+02 78 STEELCOB5S 11/14/2002 13:44 1 1.81E+02 60 SCL Shielded β 1.81E+02 79 STEELCOB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02			11/14/2002		1 2.21E+02		SCL	Shielded	Ē	2.21E+02	991 - 19 619 pareo.
73 STEELB8U 11/14/2002 13:28 1 2.15E+02 60 SCL Unshielded β 1.90E+02 60 SCL Shielded β 1.90E+02 60 SCL Shielded β 1.90E+02 60 SCL Unshielded β 1.81E+02 60 SCL											2.18E+02
74 STEELB9S 11/14/2002 13:29 1 1.90E+02 60 SCL Shielded β 1.90E+02 75 STEELB9U 11/14/2002 13:30 1 2.17E+02 60 SCL Urshielded β 2.45E+02 77 STEELB10U 11/14/2002 13:41 1 2.45E+02 60 SCL Shielded β 2.45E+02 78 STEELB10U 11/14/2002 13:42 1 2.32E+02 60 SCL Urshielded β 2.45E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81E+02 79 STEELOCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Urshielded β 1.81											2.15E+02
76 STEELB10S 11/14/2002 13:41 1 2.45E+02 60 SCL Shielded β 2.45E+02 77 STEELB10U 11/14/2002 13:42 1 2.32E+02 60 SCL Unshielded β 2.45E+02 78 STEELQCB5S 11/14/2002 13:44 1 1.81E+02 60 SCL Shielded β 1.81E+02 79 STEELQCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 13:45 1 2.13E+02 60 SCL Unshielded β 1.55E+02 1.67 Maximum ⇒ 1.55E+02 1.67 Maximum ⇒ 2.45E+02 2.550	74	STEELB9S	11/14/2002	13:29	1 1.90E+02	60	SCL	Shielded	B	1 90E+02	Modra Mukaansati
77 STEELB10U 11/14/2002 13:42 1 2.32E+02 60 SCL Unshielded β 2.32E+02 78 STEELCCB5S 11/14/2002 13:44 1 1.81E+02 60 SCL Shielded β 1.81E+02 79 STEELCCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 2.13E+02 13:45 1 2.13E+02 60 SCL Unshielded β 1.81E+02 2.13E+02 1.87E+02 2.13E+02 2.45E+02 2.50E+02 2.50E+											2.17E+02
78								Unshielded	밁		2.32E+02
79 STEELQCB5U 11/14/2002 13:45 1 2.13E+02 60 SCL Unshielded β 2.13E+02 1.67 Minimum ⇒ 1.55E+02 1.67 Maximum ⇒ 2.45E+02 2.560	78	STEELQC85S	11/14/2002	13:44	1 1.81E+02	60	SCL	Shielded	ß	1.81E+02	MATERIA (A GAMAGA)
Maximum ⇒ 2.45E+02 2.501	79	STEELQCB5U	11/14/2002	13:45	1 2.13E+02	60	scl			18, 30, 19, 20, 73	2.13E+02
Maximum ⇒ 2.45E+02 2.501								Minim	m =	1.55F+02	1.67E+02
Mean ⇒ 2.00E+02 2.11								Maximu	m ⇒	2.45E+02	2.50E+02
Signa ⇒ 1.81E+01 1.77											2.11E+02 1.77E+01