Appendix A

Open Land Survey Design

FirstEnergy SNEC CALCULATION COVER SHEET						
CALCULATION DESCRIPTION						
Calculation Number		Revision Number	Effective Date	P	age Number	<u> </u>
E900-05-014		0	5/10/05		1 of	11
Subject		L	//			
SNEC Plant Area Open Land	- OL1 - Survey	Design				
Question 1 - Is this calculation defi	ined as *In QA Sco	pe"? Refer to definition 3	3.5. Yes 🛛 No 🗍		•	
Question 2 - Is this calculation defi		•		s 🛛	No 🗖	
NOTES: If a "Yes" answer is obtained in Assurance Plan. If a "Yes" answer calculation as the Technical Reviewer.	is obtained for Que	alculation must meet the req stion 2, the Calculation O	uirements of the SNEC Facil riginator's immediate supen	ity Dec risor s	commissioning hould not rev	g Quality riew the
	DESCI	RIPTION OF REVIS	SION		:	
	•					i
· · · · · · · · · · · · · · · · · · ·		ROVAL SIGNATUR	RES			
Calculation Originator	W. J. Cooper	CHP/		ate	4/21/0	05
Technical Reviewer	R. Hoimes/	A Admes	D	ate	5/10/0	5
Additional Review	A. Paynter/	Unt 1/4	D	ate	20May	2005
Additional Review) D	ate		

:

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-014	0	Page 2 of 11
Subject		
SNEC plant area open land	1 – OL1 - Survey Design	

1.0 PURPOSE

- 1.1 The purpose of this calculation is to develop a survey design for the Saxton Nuclear Experimental Corporation "OL1 SNEC and SSGS open land" areas that are located in the original SNEC facility site and the site of the Saxton Steam Generating Station (SSGS). The area (OL1) is approximately <u>11600 square meters</u>, including the 1018 square meters in the existing east yard tank excavation. The area is a Class 1 survey area. Because the survey area exceeds the 2000 square meter limitation in Table 5-5 of the SNEC LTP (Reference 3.5) for maximum class 1 open land survey unit area, this survey area is subdivided into multiple survey units.
- 1.2 Multiple survey units of exposed concrete or macadam: MA8, DB1, PF1, and DB5 will be covered in a separate survey design (E900-05-015). This includes small concrete pads and monoliths, macadam driveways and parking areas, and the remaining pad footprint from the DSF building.
- 1.3 The OL1-8 area, which consists of the northern portion of the SSGS area is also **not** included in this design and will be covered by design E900-05-025. About one-third of OL1-8 is covered with a 'PRI pile'. This area is expected to contain both soil/rubble backfill and some residual concrete surfaces. Since layout of this area cannot be completed until the PRI pile is removed, a separate design will be used for the SSGS portion of OL1.
- 1.4 The Yard Storage Tank Excavation OL1-7 is covered in a separate design (E900-05-012).
- 1.5 This survey design includes five survey units:
 - 1.5.1 OL1-9, consisting of the 1290 square meter area around and including the CV footprint between the SSGS footprint and the east yard excavation (Attachment 1-3).
 - 1.5.1.1 This area has some exposed concrete NW of the CV.
 - 1.5.1.2 A driveway/parking area west of the CV (145 m²) has a thin (about 4 to 6 inches) soil cover. The soil will be surveyed under this design, then removed to expose the pavement, which will then be separately surveyed under design E900-05-015.
 - 1.5.1.3 A portion of OL1 in this vicinity is inside the switchyard (e.g. grid AZ131 and portions of others) and will be surveyed with the switchyard under another design.
 - 1.5.1.4 There is a large 'PRI pile' in the CV area that must be removed prior to survey, so that the as-left soil surface at the CV area can be surveyed as part of OL1-9.
 - 1.5.2 OL1-10 which consists of about 1200 square meters of the SNEC yard (RWST, RWDF, east yard excavation). This area must be surveyed after the east yard excavation is backfilled (Attachment 1-4) so that the as-left soil surface is surveyed.
 - 1.5.3 OL1-11 the barrel bunker area about 1200 square meters (Attachment 1-5).
 - 1.5.4 OL1-12, the line shack surrounding area of about 1575 square meters (Attachment 1-6) not including the line shack itself, which was previously surveyed.
 - 1.5.4.1 Portions of this survey unit are gravel road.

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number

E900-05-014

0

Subject

SNEC plant area open land – OL1 - Survey Design

- 1.5.4.2 There are a number of small concrete or macadam ramps and sidewalks around the line shack. These paved surfaces will be separately surveyed under design E900-05-015.
- 1.5.5 OL1-13, an odd shaped perimeter of soil of approximately 1480 square meters around the barrel bunker area and the DSB slab and pavement (Attachment 1-7).
- 1.6 The general layout of these survey units is shown in Attachment 1-1.
- 1.7 Fences in and/or bordering the area will be surveyed using a separate design E900-05-023.

2.0 SUMMARY OF RESULTS

The following information should be used to develop a survey request for this survey unit. The effective DCGLw value is listed below. The US NRC has reviewed and concurred with the methodology used to derive these values. See Attachment 2-1 to 2-4. These are copied from **Reference 3.10** which was previously approved.

Table 1, DCGLw Values

Volume	tric DCGLw (pCi/g – Cs-137)
	5.73 (4.3 A.L.)
	•

NOTE: A.L. is the site Administrative Limit (75% of effective DCGLw)

- 2.1 Survey Design
 - 2.1.1 Scanning of soil (and fill materials) shall be performed using a <u>2" D by 2" L Nal</u> <u>detector</u> with a Cs-137 window setting (Reference 3.1). The window will straddle the Cs-137 662 keV full energy peak width (see typical calibration information on Attachment 3-1).
 - 2.1.2 The instrument conversion factor/efficiency shall not be less than that assumed on Attachment 4-1 as <u>205.6 cpm/uR/h Cs-137</u>.
 - 2.1.3 Other instruments of the type specified in Section 2.1.1 above may be used during the final status survey (FSS), but must demonstrate detection efficiencies at or above the value listed in Section 2.1.2 above.

Table 2, S	Soil Scanning	Parameters	
			_

MDCscan (pCi/g) - Cs-137*	Scan Speed (cm/sec)	Maximum Distance from Surface	Action Level	% Coverage
6.2	25	4" (gap between detector face & soil surface)	> 175 ncpm	100%

See Attachment 4-1 *

- 2.1.4 The action level specified is based on the MDCscan at a 300 cpm background. This is adequate since the MDCscan is expected to be less than the DCGLw times the area factor. Typical observed backgrounds are about 100 to 200 cpm (Attachment 8-3).
- 2.1.5 If a net count rate greater than the action level of Table 2 is encountered during the scanning process, the surveyor should stop and locate the boundary of the elevated

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-014	0	Page 4 of 11
Subject		

SNEC plant area open land - OL1 - Survey Design

area. The surveyor should then mark the elevated area with stakes or other appropriate marking methods. Continue the scan survey. <u>Sample the elevated areas(s)</u> IAW SNEC procedure E900-IMP-4520.04 (Reference 3.2), and Section 2.2 of this document following evaluation and investigation survey planning.

- 2.1.5.1 <u>Class 1</u> soil should be scanned using a serpentine pattern that is ~0.5 meters wide.
- 2.1.5.2 This is a class 1 survey area. All accessible surfaces are required to be 100% scanned.
- 2.1.5.3 There is a large pile of 'PRI' soil in the south-central portion of OL1-9 on the CV cap. This pile should be removed prior to completion of the survey, so that the soils under the pile are subjected to the survey requirements of this design. No residual concrete surfaces are expected to be exposed by removal of this PRI pile.
- 2.1.5.4 The CV soil pile is an established PRI area, and was previously 100% scan surveyed and sampled during an automated conveyor measurement campaign in the summer of 2003 as SR186 and 190 (References 3.15 and 3.16). The results of this survey indicate that the soil pile meets LTP residual activity release requirements and the thoroughness of the survey is adequate to meet FSS measurement needs. One hundred and fifty-seven composite samples were collected of the scanned soil, all of which are less than 25 percent of the AL in this design. Additionally, the automated scanning (see Reference 3.17 for data on a previous scanning campaign) typically achieved an alarm setpoint less than 70% of the AL and detection limits substantially below the alarm setpoints. This soil pile is expected to be used as backfill elsewhere around the plant.
- 2.1.5.5 Areas that cannot be accessed should be clearly noted along with the reason for not completing the scan in that area.
- 2.1.6 The minimum number of soil sampling points indicated by the COMPASS computer program (Reference 3.3) is <u>11</u> for each of the survey units (see COMPASS output on Attachment 7-4 to 7-8). However, the number of samples is increased to 16 in OL1-13 to provide a more widely distributed layout of sample points in the unusual shape.
 - 2.1.6.1 Sampling depth should be IAW Section 2.2.
 - 2.1.6.2 The MDCscan (soil) exceeds the effective administrative DCGLw for Cs137 (6.2 pCi/g MDCscan @300cpm bkg > 4.3 pCi/g AL) but given the area factor for the assumed 1 meter squared elevated area (AF 28.7) and for the effective sample area (AF > 3), the scan MDC meets MARSSIM requirements.
- 2.1.7 VSP (Reference 3.4) is used to plot all sampling points on the included diagrams. The actual number of random start systematically spaced measurement points may

FrstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-014	0	Page 5 of 11

Subject

SNEC plant area open land - OL1 - Survey Design

be greater than that required by the Compass computer code because of any or all of the following:

- placement of the initial random starting point (edge effects),
- odd shaped diagrams, and/or
- coverage concerns

(see Attachment 6-3 to 6-12 for VSP sampling point locations)

- 2.1.8 The starting points for physically locating sample sites in the survey unit are based on measurements from site grid pins or other evident markers (see diagrams on Attachment 6-3, 6-5, 6-7, 6-9, and 6-11). Soil sampling points are positioned using coordinates developed from these markers and listed on Attachments 6-4, 6-6, 6-8, 6-10, and 6-12.
- 2.1.9 Because of the proximity to the RWDF and drum bunker, a biased sample location (BP-01) is placed in OL1-12 west of the line shack between the line shack wall and the fence.
- 2.1.10 Because of the potential for residual activity transfer through vehicle movement and post-shutdown topfill on the gravel, two biased samples locations (BP-02 and BP-03) are defined in the gravel areas north and south of the line shack in OL1-12. See note below for sampling process for gravel areas.
- 2.1.11 A portion of the area of OL1-9 has a layer of old pavement underneath of a thin (4-6 inch) layer of soils. This area is indicated by the darker color on Attachment 6-3. The soil sample in this area should only be collected from the soils on top of the pavement. Cutting down through the pavement to obtain a deeper sample is not required. The soil will be removed after FSS of the soil so that the pavement can be separately surveyed under design E900-05-015.
- 2.1.12 Some sampling points may need to be adjusted to accommodate obstructions within the survey area. Contact the SR coordinator to report any difficulties encountered when laying out systematic grid sampling points.
- 2.1.13 When an obstruction is encountered that will not allow collection of a sample, contact the cognizant SR coordinator for permission to delete the sampling point.

NOTE
If remediation actions are taken as a result of this survey, this survey design must be
revised or re-written entirely.

2.2 Sample the biased and random fixed points and any elevated areas(s) IAW SNEC procedure E900-IMP-4520.04 (Reference 3.2) and the following.

FirstEne	nav

SNEC CALCULATION SHEET

Calculation Number E900-05-014 Revision Number

0

Page Number

Subject

SNEC plant area open land – OL1 - Survey Design

NOTE

Since the site surface dose model is 1 meter in depth, samples representative of the entire one meter thick dose model layer must be collected to satisfy the sampling requirements of Section 2.1.5 (of this document). This should be done by obtaining a well mixed sample of an entire 1 meter deep core. Section 4.2.3, 4.2.6 or 4.2.7 of site procedure E900-IMP-4520.04 are applicable when satisfying Section 2.1.5. Sampling due to an instrument alarm condition should also be of the entire 1 meter of soil/material.

The gravel samples in OL1-12 (including the two biased samples BP-02 and BP-03) should be sampled by collecting two well mixed samples of the layers, one of the gravel overburden layer, and a second of the underlying soil down to a total of 1 meter in depth. This same process should be used whenever a random point lies on a gravel road or gravel parking area.

For the fixed point soil sample in OL1-9 over the pavement (FP-11), only the soil layer on top of the pavement is to be sampled under this design.

- 2.2.1 Clearly mark, identify and document all sample locations.
- 2.2.2 Sample any location that is above the action level cited is Table 2 based on specific investigation plan.
- 2.2.3 Maintain chain-of custody requirements on all design fixed point and action level samples (Reference 3.14).

3.0 REFERENCES

- 3.1 SNEC Calculation No. E900-03-018, "Optimize Window and Threshold Settings for the Detection of Cs-137 Using the Ludlum 2350-1 and a 44/10 Nal Detector", 8/7/03.
- 3.2 SNEC Procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".
- 3.3 COMPASS Computer Program, Version 1.0.0, Oak Ridge Institute for Science and Education.
- 3.4 Visual Sample Plan, Version 3.0, Copyright 2004, Battelle Memorial Institute.
- 3.5 SNEC Facility License Termination Plan.
- 3.6 SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA".
- 3.7 SNEC survey Nal measurements in OL1 & OL2 3/8/05
- 3.8 GPU Nuclear, SNEC Facility, "Site Area Grid Map", SNECRM-020, Sheet 1, Rev 4, 1/18/05.
- 3.9 SNEC Calculation No. E900-03-012, Effective DCGL Worksheet Verification.
- 3.10 SNEC Calculation No. E900-04-005 "CV Yard Survey Design North West Side of CV"
- 3.11 SNEC Procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design".
- 3.12 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.
- 3.13 Microsoft Excel 97, Microsoft Corporation Inc., SR-1 and SR-2, 1985-1997.

SNEC CALCULATION SHEET

Calculation Number

E900-05-014

0

Page Number

Subject

SNEC plant area open land - OL1 - Survey Design

- 3.14 SNEC Procedure E900-ADM-4500.39 "Chain of Custody for Samples"
- 3.15 SNEC survey SR0186
- 3.16 SNEC survey SR0190
- 3.17 "Final Report for Survey of Debris Pile", Revision 3 1/4/05 Shonka Research Associates

4.0 ASSUMPTIONS AND BASIC DATA

- 4.1 The COMPASS computer program is used to calculate the required number of random start systematic samples to be taken in the survey unit (**Reference 3.3**).
- 4.2 Scoping and post-remediation soil samples from this area are used as the initial estimate of variability. These results are shown on **Attachment 8-1** and **8-2**. The grid locations where these samples were taken are shown on **Attachment 1-1**.
- 4.3 The MARSSIM Sign Test (Reference 3.12) will be applicable for this survey design. No background subtraction will be performed under this criteria during the DQA phase. Normal environmental background of Cs137 will (conservatively) not be subtracted.
- 4.4 The required number of fixed survey points as determined by COMPASS are then located on the survey map for the survey unit by the Visual Sample Plan (VSP) computer code (Reference 3.4).
- 4.5 **Reference 3.5** and **3.6** were used as guidance during the survey design development phase.
- 4.6 Background has been measured in the area, and ranges from about 100 cpm to about 200 cpm (**Reference 3.7**). See Attachment 8-3.
- 4.7 The determination of the physical extent of this area is based on the drawing **Reference 3.8** and numerous walkdowns and measurements.
- 4.8 Remediation History: OL1 is an open land area. Portions contained the original SNEC site facility and the Saxton Steam Generating Station. Extensive remediation has occurred in the survey area.
 - 4.8.1 The SNEC Radwaste building (RWDF), Control and Auxiliary (C&A) building, Containment Vessel (CV), the SSGS, various buried pipe tunnels and underground tanks were all extensively remediated by removal, various decon methods and extensive concrete removal. The buildings were then demolished to grade or below. The residual building portions have been previously surveyed and the release surveys have been accepted.
 - 4.8.2 Extensive soil remediation (removal) was performed.
 - 4.8.3 The SSGS was backfilled when it was permanently shut down. Subsequently, activity was found using core bores. The SSGS backfill was removed and surveyed through an automated conveyor system. Additional concrete surfaces in the SSGS basement were remediated and then the scanned backfill was replaced.
 - 4.8.4 The underground tank excavation was backfilled after the tanks were removed early in the project. This backfill was removed. Portions were disposed of as radioactive

FirstEnergy	SNEC CALCULATION SHEET	· · · · · · · · · · · · · · · · · · ·
Calculation Number	Revision Number	Page Number
E900-05-014	0	Page 8 of 11
Subject		I

SNEC plant area open land - OL1 - Survey Design

waste, while the remainder was scanned using a automated conveyor scanning system and is currently stored for re-use.

- 4.8.5 The barrel bunker was removed to below grade.
- 4.8.6 Underground drainage and sewerage systems have been removed.
- 4.9 This survey design uses Cs-137 as a surrogate for all SNEC facility related radionuclides in the survey unit. The effective DCGLw is the Cs-137 DCGLw from the SNEC LTP (6.6 pCi/g) adjusted (lowered) to compensate for the presence (or potential presence) of other SNEC related radionuclides. In addition, an administrative limit (75%) has been set that further lowers the permissible Cs-137 concentration to an effective surrogate DCGLw for this survey area.
- 4.10 The sample database used to determine the effective radionuclide mix for the OL1 area has been drawn from samples that were assayed at off-site laboratories. This list is shown on Attachment 2-1 through 2-3, and includes twenty-one analysis results. Review of the data shows several radionuclides were not positively identified at any significant concentration. These radionuclides have been removed from the data set and are not considered further as any minor contribution is accounted for by the administrative reduction of the surrogate DCGLw to 75% of the surrogate DCGLw based on the identified nuclide ratios. Radionuclides remaining include H-3, Co-60, Sr-90, and Cs-137. Additionally, the data shows Cs-137 to be the predominant radioactive contaminant (based on activity) found in the area.
- 4.11 The decayed set of sample results were input to the spreadsheet titled "Effective DCGL Calculator for Cs-137" (Reference 3.9) to determine the effective volumetric DCGLw values for the OL1 area. The output of this spreadsheet is shown on Attachment 2-4. This data is copied from Reference 3.10.
- 4.12 The Nal detector scan MDC calculation is determined based on a 25 cm/sec scan rate, a 1.38 index of sensitivity (95% correct detection probability and 60% false positive) and a detector sensitivity of 205.6 cpm/uR/h for Cs-137. Additionally, the detection system incorporates a Cs-137 window that lowers sensitivity to background in the survey unit. The resulting range of background values varies from about 100 to 200 cpm (Attachment 8-3).
- 4.13 The survey unit described in this survey design was inspected after remediation efforts were shown effective. A copy of the OL1 specific portion of the SNEC facility post-remediation inspection report (Reference 3.11) is included as Attachment 9-1.
- 4.14 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in this survey area.
- 4.15 The decision error for this survey design is 0.05 for the α value and 0.1 for the β value.
- 4.16 "Special measurements" (as described in the SNEC LTP sec 5.5.3.4) are included in this survey design. Section 5.5.3.4.4 discusses re-fill materials. Portions of this survey will include areas that consist of crushed structural materials and backfill. These will be treated as soil for scanning and sampling.
- 4.17 No additional sampling will be performed IAW this survey design beyond that described herein.

FicstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number

E900-05-014

0

Subject

SNEC plant area open land – OL1 - Survey Design

- 4.18 SNEC site radionuclides and their individual DCGLw values are listed on **Exhibit 1** of this calculation based on Table 5-1 of **Reference 3.5**.
- 4.19 The survey design checklist is listed in **Exhibit 2**.
- 4.20 Area factors are shown as part of COMPASS output (see Attachment 7-1) and are based on the Cs-137 area factors from the SNEC LTP.

5.0 CALCULATIONS

5.1 All calculations are performed internal to applicable computer codes or within an Excel (Reference 3.13) spreadsheet.

6.0 <u>APPENDICES</u>

- 6.1 Attachment 1-1, is a diagram of survey unit OL1. Attachment 1-3 through 1-7 are the grid layouts for the five OL1 open land survey units included in this design.
- 6.2 Attachment 2-1 to 2-4 is the DCGLw calculation logic and sample results from the OL1 and OL2 areas in addition to the DCGL calculation sheets (decayed to January 15, 2004).
- 6.3 **Attachment 3-1**, is a copy of the calibration data from typical Nal radiation detection instrumentation that will be used in this survey area.
- 6.4 Attachment 4-1, is the MDCscan calculation sheet for volumetric materials in pCi/g.
- 6.5 Attachment 5-1, is the MicroShield dose rate calculation results for 6" thick soil used to determine the exposure rate from a 1 pCi/cm³ Cs-137 source term in a end-cylinder geometry.
- 6.6 Attachment 6-3 to 6-12, show the randomly picked scan locations (from VSP) and reference coordinates for the five OL1 open land survey units included in this design.
- 6.7 Attachment 7-1 is a COMPASS output showing the area factors used. Attachment 7-2 shows the variability used for all five survey units. Attachments 7-4 through 7-8, are the COMPASS output for the five OL1 open land survey units included in this design, showing the number of sampling points in the survey unit, area factors, and prospective power.
- 6.8 Attachment 8-1 and 8-2, is the soil variability results from selected recent soil samples from the OL1 area. Attachment 8-3 is the general area Nal detector backgrounds measured on 3/8/05.
- 6.9 Attachment 9-1, is the results of the inspection report for the OL1 area.

NOTE Attachments 1-2, 6-1, 6-2, and 7-3 are left intentionally blank due to transfer of OL1-8 to a separate design

FicilEnergy	
-------------	--

SNEC CALCULATION SHEET

Revision Number

Calculation Number E900-05-014

0

Page Number

Subject

SNEC plant area open land - OL1 - Survey Design

Exhibit 1

SNEC Facility Individual Radionuclide DCGL Values (a)

Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm ²)	25 mrem/y Limit (All Pathways) Open Land Areas (Surface & Subsurface) (pCi/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	1.9E+04
Pu-238	3.0E+01	1.8	0.41
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	0.61

NOTES:

(a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

(b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

FicstEnergy

SNEC CALCULATION SHEET

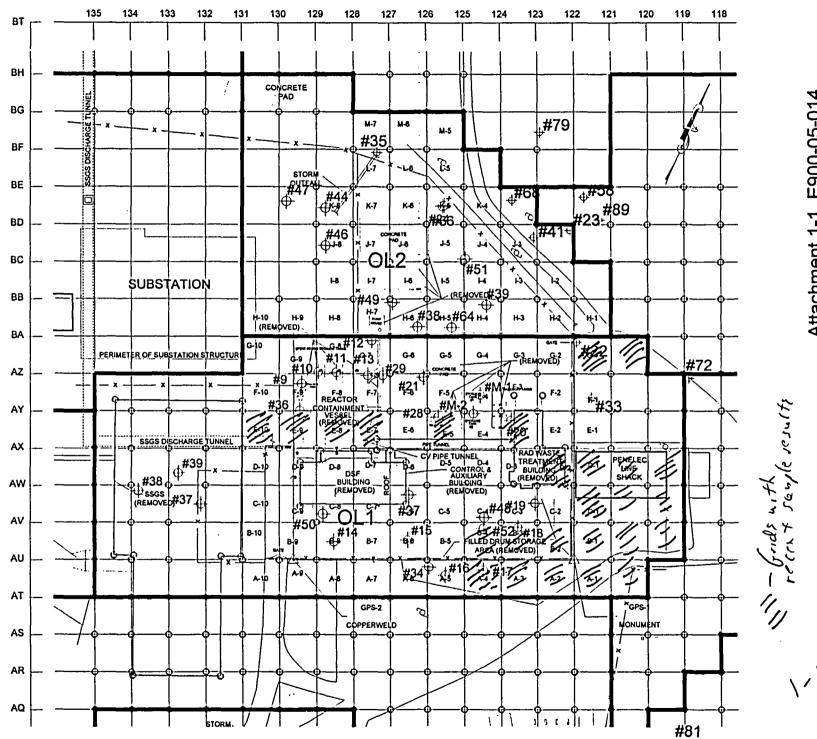
Revision Number

0

Calculation Number

E900-05-014

Page Number Page 11 of 11

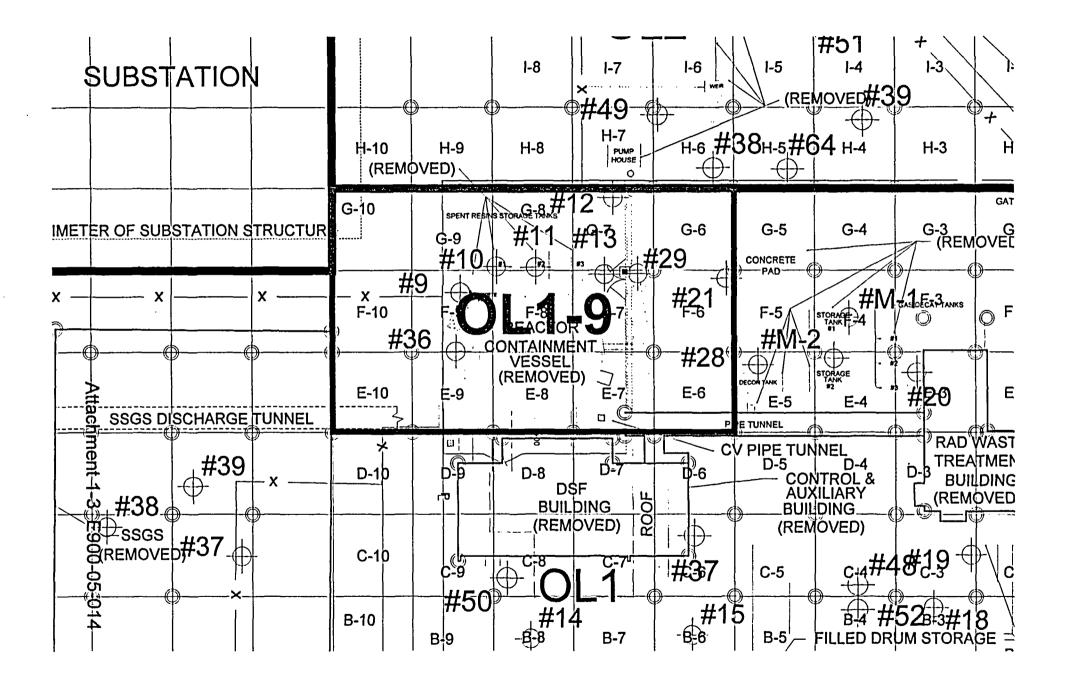

Subject

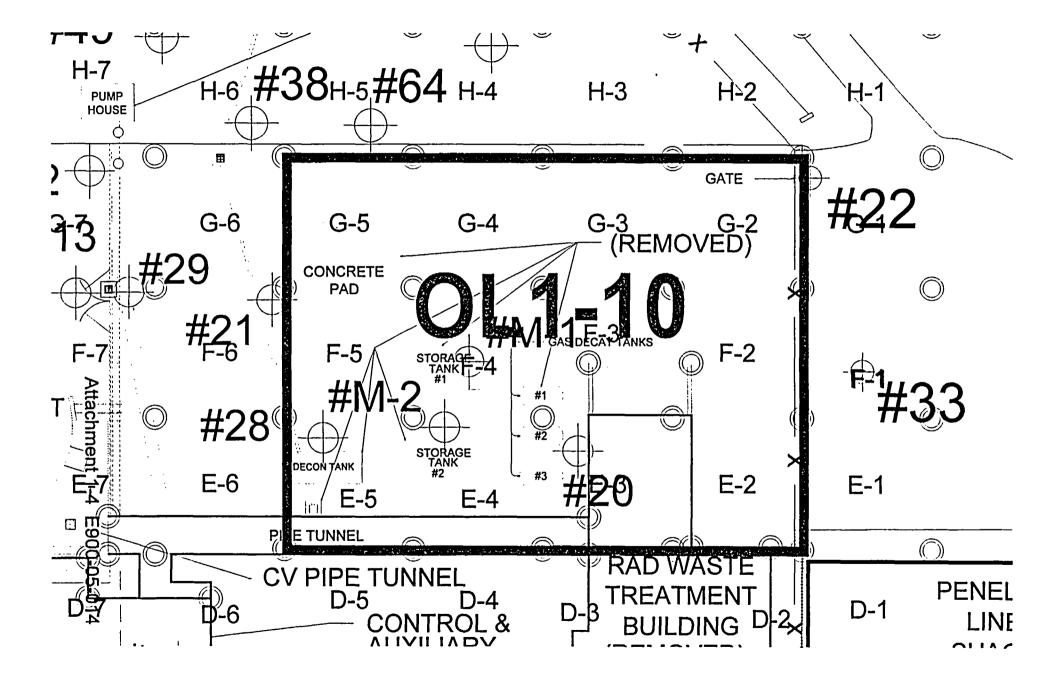
SNEC plant area open land – OL1 - Survey Design

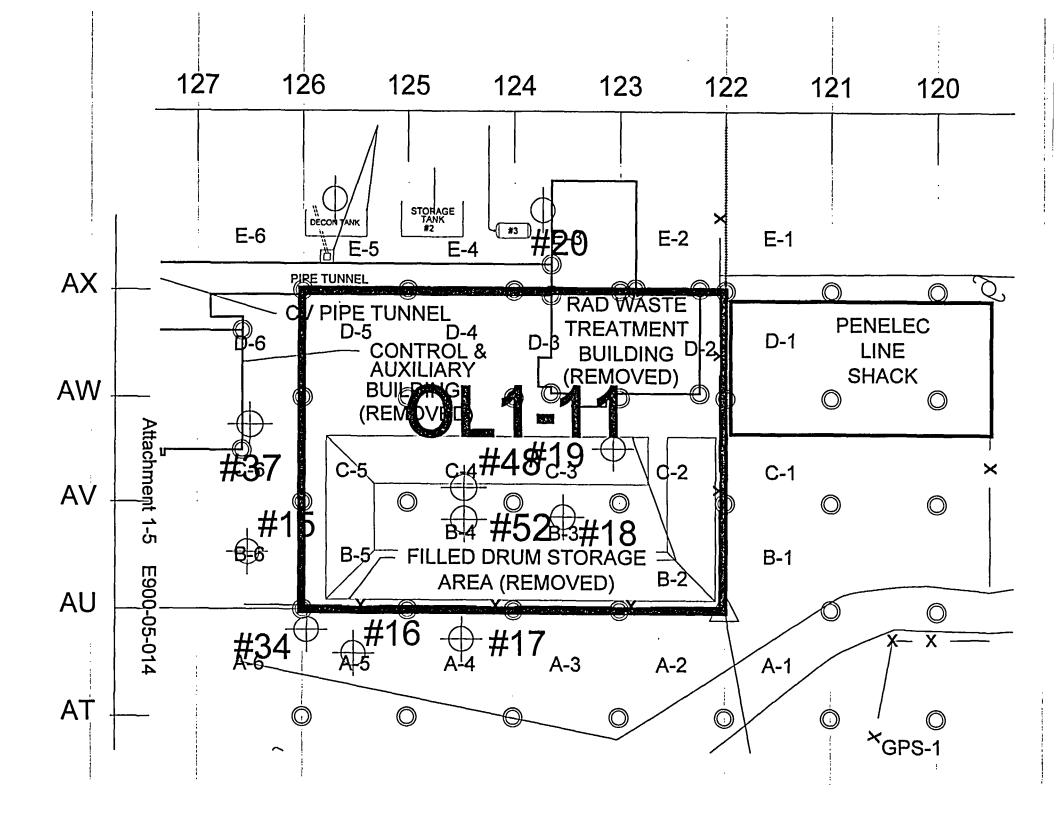
Exhibit 2 Survey Design Checklist

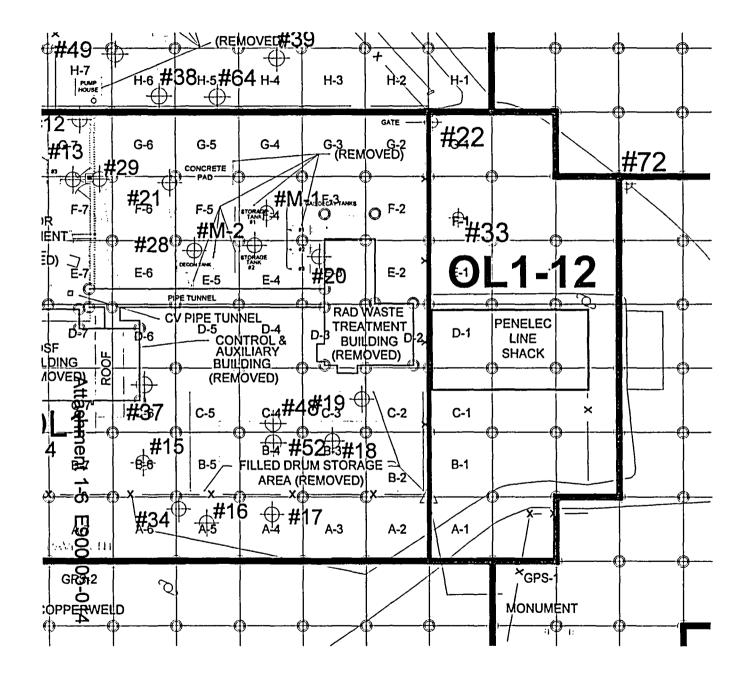
Calcul	ation No.		- <u></u>
	E900-05-014	Location Codes SNEC plant area open land – OL1 - Survey D	esign
ITEM	REVIEW	Y FOCUS	Status Reviewer (Circle One) Initials & Date
1		en assigned and is a survey design summary n provided?	Yes NA Jalos
2		ubject area (drawings should have compass lings)?	(Pes) NA Aldos
3	Are boundaries properly identified and is th	e survey area classification clearly indicated?	Tes, NA 94 Figos
4	Has the survey area(s) been properly of	livided into survey units IAW EXHIBIT 10	(Yes) NA ANA FINOS
5	Are physical characteristics of the a	area/location or system documented?	(Yes) NA DY Stidos
6	Is a remediation effective	eness discussion included?	(Yes NA ANT 5/10/05
7		bling results been converted to units that are icable DCGL values?	(Yes, NA 901 5/1905
8	Is survey and/or sampling data that was used	for determining survey unit variance included?	Yes N/A 47/7/05
9		e areas (or materials) and their survey and/or rith a justification for their selection?	Yes, NA Art 5/10/05
10	Are applicable survey and/or sampling data t	hat was used to determine variability included?	Ves NA AXA Talos
11		an impact on the survey design, and has the considered in the design?	Yes, NA 001 5/10/05
12	previously noted during characterization) b	ling any additional residual radioactivity (not een identified along with its impact on survey sign?	Yes NA ALL TIDS
13	Are all necessary supporting calculations an	nd/or site procedures referenced or included?	(Yes, N/A AUL S/10/05
14	Has an effective DCGLw been	identified for the survey unit(s)?	Yes NA QUA 5/10/05
15	Was the appropriate DCGL _{EMC} inclu	ded in the survey design calculation?	Yes, NA 204 5/1905
16	Has the statistical tests that will be us	ed to evaluate the data been identified?	Yes, NA AV SINGS
17	Has an elevated measurement comp	arison been performed (Class 1 Area)?	Yes, NA AN Sido
18	Has the decision error levels been identified	and are the necessary justifications provided?	(res, NA APU 5/10/05
19	Has scan instrumentation been identified alo	ong with the assigned scanning methodology?	Yes, NA 5700
20	Has the scan rate been identified, and is the	e MDCscan adequate for the survey design?	(Yes) NA AL 5/00/00
21		na-ray spectroscopy required under this design, and evaluation methods described?	(Yes, NA AN Sholos
22	Is survey instrumentation calibration data incl	luded and are detection sensitivities adequate?	Vez NA AXI 570/05
23		nt locations been clearly identified on a diagram ea(s) along with their coordinates?	(Yes NA PALI 5/0/03
24		nits adequate, and are any associated actions ndicated?	Yes NA ANA 510/05
25	For sample analysis, have the requ	uired MDA values been determined.?	Yes, NA Dryf 5/10/00
26	Has any special sampling methodology been i	identified other than provided in Reference 6.3?	Yes, NA ATA Trofos
	<u> </u>		

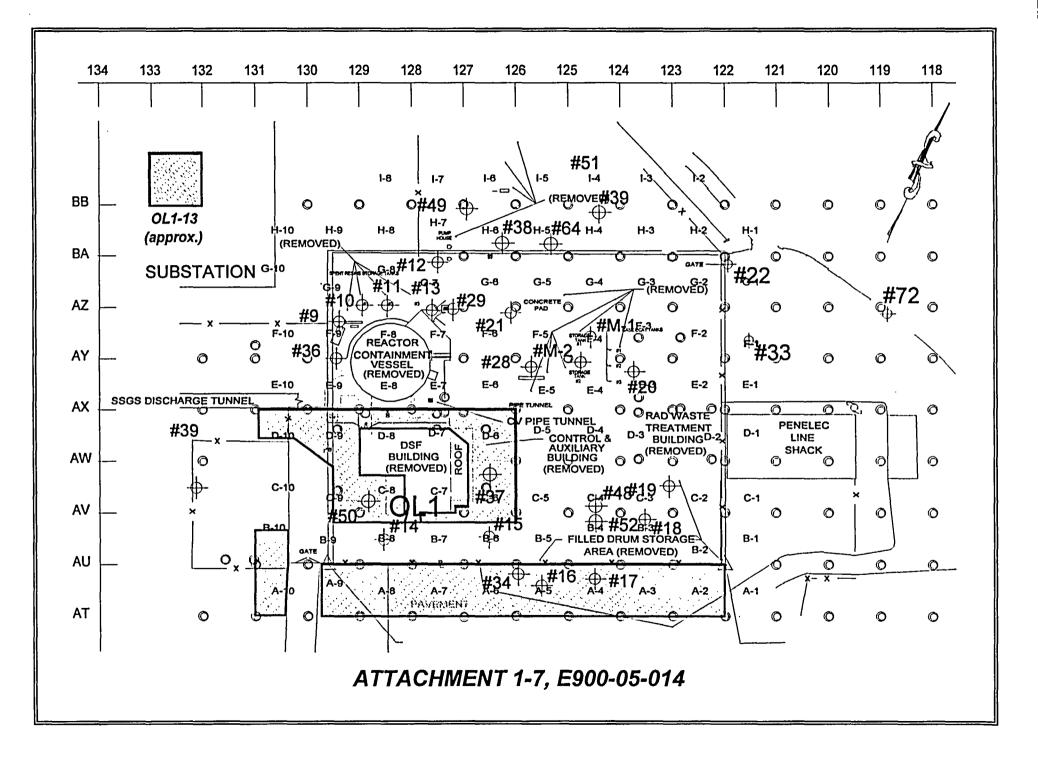
NOTE: a copy of this completed form or equivalent, shall be included within the survey design calculation.


Attachment 1-1 E900-05-014


5


LEFT INTENTIONALLY BLANK


.


Attachment 1-2 E900-05-014

DCGL Calculation Logic-CV Yard Soil & Boulders

- I. Survey Unit: SNEC Containment Vessel (CV) Yard Soil and Boulders
- II. Description: The purpose of this calculation is to determine a representative isotopic mix for the CV Yard Soil and associated Boulders from available sample analyses. The effective volumetric DCGL_ws are then determined from the mean percent of applicable samples.
- III. Data Selection Logic Tables: The radionuclide selection logic and subsequent DCGL calculations are provided in six (6) tables. These tables were developed using Microsoft Excel. Table explanation is as follows.

Table 1: Data Listing – This table, which has been extracted from a larger database, provides a list of the most representative sample analyses. Results are from scoping, characterization, and pre/post remediation surveys. The samples consist of soil media that was taken in support of the aforementioned surveys. As applicable, a sample number, sample location/description, radionuclide concentration, analysis date are provided for each sample. Positive nuclide concentrations are noted with yellow/shaded background fields while MDA values are noted in the gray shaded fields.

Table 2: Decayed Listing – This table decays the data from Table 1. Half-life values (days) are listed above each respective nuclide column. Samples are decayed from the respective analysis date to January 15, 2004. Positive results are denoted in a yellow background field while MDA values are noted in the gray shaded fields.

Table 3: Decayed Listing of Positive Nuclides & MDAs Removed – This table provides the best overall representation of the data. Non-positive nuclide columns have been removed as well as all the MDA values. Therefore, 11 nuclides have been reduced to four (4).

Table 4: Ratio to Cs-137 for Positive Nuclides – This table provides the calculation methodology for determining the surrogate ratio to Cs-137 for each radionuclide. From this information the mean, sigma, and mean % of total are calculated. The mean % of total values is used to calculate the volumetric DCGL_w per MARSSIM equation I-14. See Table 5. Note that the mean percent values were averaged using only the positive sample results in each column. In some cases only a single nuclide value (e.g. Sr-90) had a positive result. This value is listed as the value in the mean result field. This results in higher "mean percent of total" values in the mix, which are conservative.

Note: From Table 4 only the "mean % of total" values are used as input to the "Effective DCGL Calculation Spreadsheet" as illustrated in Table 5.

Table 5: Effective DCGL Calculator for Cs-137 (in pCi/g) – This table provides the surrogate volumetric modified Cs-137 DCGL_w calculation results from data derived from Table 4.

IV. Summary – Since the CV Yard and Boulders are volumes of soil or rock material, existing in place or in a pile, the release limit is primarily based on the volumetric DCGL_w. Using the above data selection logic tables the calculated Cs-137 volumetric DCGL_w is 5.73 pCi/g. This value will be reduced by 25% as part of SNEC's requirement to apply an administrative limit as discussed in the License Termination Plan (LTP).

Attachment 2-1 E900-05-014

				TABLE	1 - Data Listing	g (pCi/g)									
	SNEC Sample No	Location/Description	Н-3	\$r-90	Co-60	Cs-137	Am-241	Pu-238	Pu-239	Pu-241	C-14	NI-63	Eu-152		
1	CV Tunnel	CV Tunnel Sediment Composite, OL1	9.40E+00	9.67E+00	1.26E+00	1.25E+03	1.80E-01	5.50E-01	2.20E-01	4.47E+01	9.34E+00	4.02E+00	1.30E-01	alahii ingi kilak Chakimaliy	
2	SX9SL99219	Subsuface Sample #29 (0-5'), AY-128, OL1	9.40E+00	9.072+00	7.00E-02	5.90E-01	1.002-01	5.30E-01	2.202-01	4.4/6+01	9.342+00	4.02E+00	1.30E-01		
3	SXSL1063	North CV Yard Soil BA-127, 812' El, Sample # 5, 0L2	4.58E+00	5.31E-02	1.92E-02	8.86E-01	9.61E-02	4.68E-02	3.27E-02	3.77E+00	2.10E-01	1.09E+01	5.25E-02		
4	SXSL1089	North CV Yard Soil 6A-127, 812 Et, Sample # 5, 012 North CV Yard Soil AY-127, 810' El, Sample # 3, 011	3.03E+00	6.95E-02	3.32E-02	1.29E+00	9.93E-02	1.28E-01	5.00E-02	4.97E+00	2.10E-01	7.54E+00	8.28E-02	heren her here here here here here here	
5	SXSL1115	North CV Yard Soll AY-127, 810 El, Sample # 3, 0E1	4.88E+00	5.36E-02	2.43E-02	1.80E+00	2.40E-01	1.38E-01	4.07E-02	4.37E+00	2.10E-01	7.60E+00	5.71E-02		
6	SXSL1115	North CV Yard Soil AY-120, 804 El, Sample # 2, 0L1	3.44E+00	5.29E-02	2.79E-02	4.77E+00	1.83E-01	8.94E-02	4.07E-02 4.00E-02	4.21E+00 3.68E+00	2.06E-01	8.75E+00	8.62E-02		
7	SXSL1122 SXSL1130	North CV Yard Soll AX-129, 798 El, Sample # 2, 0L1 North CV Yard Soll AX-129, 803' El, Sample # 4, 0L1	4.99E+00	6.48E-02	2.98E-02	2.26E+01	1.49E-01	8.56E-02	1.21E-02	3.55E+00	2.06E-01 2.31E-01	1.34E+01	9.89E-02		
8	SXSL1130	North CV Yard Soil AZ-129, 803 EI, Sample # 4, OL1	2.98E+00	7.15E-02	3.50E-02	2.26E+01 2.59E+00	1.64E-01	7.46E-02	6.46E-02	5.27E+00	2.31E-01 2.15E-01	1.34E+01 1.26E+01	7.34E-02		
9	SXSL1132 SXSL1270	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El., OL1	1.13E+01	2.00E-02	1.00E-02	2.31E+01	3.70E-02	7.00E-02	7.00E-02	2.10E+00	3.93E+00	8.68E+00	7.00E-02		
10	SXSL1270		1.15E+01	3.00E-02	1.00E-02	4.38E+00	3.10E-02	1.60E-03	7.00E-03	1.91E+00	4.00E+00	7.78E+00	4.00E-02		
11	SXSL2649	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1 Anulus Well, A-2, 5 to 10' Depth. OL1	2.00E+00	3.14E-02	1.00E-02	4.38E+00 6.00E-01	9.78E-03	1.60E-02 1.33E-02	1.10E-03	1.91E+00	1.83E-01	1.75E+00	4.000-02		
13	SXSL2871		2.00E+00				9.762-03	1.33E-02	1.10E-02	1.0/2+00	1.03E-01	1.752+00		landing a second second	
13	SXSL2871 SXSL2872	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1	Contraction of the second	3.00E-02 3.00E-02	7.00E-02 6.00E-02	5.60E-01 1.00E-01									
14	SXSL2872 SXSL3140	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1	1.89E+00	3.00E-02 1.20E-02	6.00E-02 1.40E-02	1.00E-01 8.25E-01	7.00E-03	5.00E-03	5.00E-03	3.69E-01	8.60E-02	3.41E+00	3.00E-02		
15	SXSL3140 SXSL3142	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1	1.89E+00	1.20E-02 2.95E-02			7.00E-03	5.00E-03	5.00E-03	3.692-01	0.60E-02	3.41E+00	3.00E-02		
16	SXSL3142 SXSL3145	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1	1.90E+00		7.00E-02	6.00E-01	4.00E-03	E 00E 02	E 005 00	2 705 04	0 205 02	2 005 .00	3.80E-02		
	SXSL3145 SXSL3149	East CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1	1.90E+00	1.70E-02 2.97E-02	1.30E-02 8.00E-02	1.26E+00 3.00E-01	4.00E-03	5.00E-03	5.00E-03	3.76E-01	8.30E-02	3.69E+00	3.80E-02	L	
18	and the second se	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1	4.045.00				0.005.00	5 005 00	E 005 00	0.105.04	0.705.00	1 105 00	F 405 00	يه ومنابع محصور ويتبا	
19	SXSL3153	East CV Yard, Soll Pile @ Top (6" Depth), OL1	1.94E+00	4.30E-02	2.30E-02	3.00E-01	3.00E-03	5.00E-03	5.00E-03	3.43E-01	8.70E-02	4.18E+00	5.10E-02		
21	\$X\$L4142	CV Yard Soil - West Side, AP1-7, OL1	2.22E+00	3.25E-02	5.00E-02	9.00E-01	1.76E-02	6.71E-02	2.02E-02	<u></u>					
22	SXSL4143	CV Yard Soil - West Side, AP1-7, OL1	2.23E+00	3.16E-02	5.00E-02	5.00E-01	2.21E-02	6.31E-02	3.64E-02						
23	SXSL4149	CV Yard Soil - West Side, AP1-7, OL1	2.24E+00	2.77E-02	7.00E-02	3.90E+00	2.77E-02	4.30E-02	3.04E-02						
					TABLE 2 - Dec	ayed Listing	(pCi/g)								
					TABLE 2 - Dec	ayed Listing	(pCi/g)								Ţ
			T 1/2	T 1/2	T 1/2	T 1/2	(pCi/g)	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	T 1/2	Decay Date]
			4485.27	T 1/2 10446.15	T 1/2 1925.23275	T 1/2 11019.5925	T 1/2 157861.05	32050.6875	8813847.75	5259.6	2092882.5	36561.525	4967.4	January 15, 2004	J
	SNEC Sample No	LocationDescription	4485.27 н-з	T 1/2 10446.15 Sr-90	T 1/2 1925.23275 Co-60	T 1/2 11019.5925 Cs-137	T 1/2 157861.05 Am-241	32050.6875 Pu-238	8813847.75 Pu-239	5259.6 Pu-241	2092882.5 C-14	36561.525 Ni-63	4967.4 Eu-152		
	CV Tunnel	CV Tunnel Sediment Composite, OL1	4485.27	T 1/2 10446.15	T 1/2 1925.23275 Co-60 8.59E-01	T 1/2 11019.5925 Cs-137 1.17E+03	T 1/2 157861.05	32050.6875	8813847.75	5259.6	2092882.5	36561.525	4967.4	January 15, 2004 Analysis Date February 14, 2001	
2	CV Tunnel SX9SL99219	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-5'), AY-128, OL1	4485.27 н-з 7.97E+00	T 1/2 10446.15 sr-90 9.01E+00	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01	T 1/2 157861.05 Am-241 1.79E-01	32050.6875 Pu-238 5.37E-01	8813847.75 Pu-238 2.20E-01	5259.6 Pu-241 3.88E+01	2092882.5 C-14 9.34E+00	36561.525 Ni-63 3.94E+00	4967.4 Eu-152 1.12E-01	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999	
2 3	CV Tunnel SX9SL99219 SXSL1063	CV Tunnel Sediment Composite, OL1 Subsuface Sample ≢29 (0-5'), AY-128, OL1 North CV Yard Soli BA-127, 812' EI, Sample ≢ 5, OL2	4485.27 н-з 7.97E+00 4.20E+00	T 1/2 10446.15 sr-90 9.01E+00 5.11E-02	T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02	32050.6875 Pu-238 5.37E-01 4.62E-02	8813847.75 Pu-238 2.20E-01 3.27E-02	5259.6 Pu-241 3.88E+01 3.50E+00	2092882.5 C-14 9.34E+00 2.10E-01	36561.525 Ni-63 3.94E+00 1.08E+01	4967.4 Eu-152 1.12E-01 4.85E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002	
2 3 4	CV Tunnel SX95L99219 SX5L1063 SX5L1089	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-57), AY-123, OL1 North CV Yard Soll BA-127, 812° EI, Sample # 5, OL2 North CV Yard Soil AY-127, 810° EI, Sample # 3, OL1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00	T 1/2 10446.15 Sr-90 9.01E+00 5.11E-02 6.69E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01 1.24E+00	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01	8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01	36561.525 Ni-63 3.94E+00 1.08E+01 7.46E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002	9
2 3 4 5	CV Tunnel SX9SL99219 SXSL1063 SXSL1089 SXSL1115	CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-97), AY-128, 0L1 North CV Yard Soli BA-127, 812 EL, Sample # 5, 0L2 North CV Yard Soli AY-127, 810' EL, Sample # 3, 0L1 North CV Yard Soli AY-128, 804' EL, Sample # 2, 0L1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00	T 1/2 10446.15 5r-90 9.01E+00 5.11E-02 6.69E-02 5.16E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 1.98E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01 1.24E+00 1.74E+00	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01	8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.07E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01	36561.525 Ni-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 29, 2002	
2 3 4 5 6	CV Tunnel SX9 SL99219 SX SL1063 SX SL1089 SX SL1115 SX SL1112	CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-5'), AY-128, 0L1 North CV Yard Soil BA-127, 812' El, Sample # 5, 0L2 North CV Yard Soil AY-127, 810' El, Sample # 3, 0L1 North CV Yard Soil AY-128, 804' El, Sample # 2, 0L1 North CV Yard Soil AY-128, 788' El, Sample # 2, 0L1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00	T 1/2 10446.15 5r-90 9.01E+00 5.11E-02 6.69E-02 5.16E-02 5.10E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.77E-02 2.77E-02 1.98E-02 2.28E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01 1.24E+00 1.74E+00 4.60E+00	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02	8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.42E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01	36561.525 Ni-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 29, 2002 June 29, 2002	
2 3 4 5 6 7	CV Tunnel SX95L89219 SX5L1063 SX5L1089 SX5L115 SX5L1122 SX5L1130	CV Tunnel Sediment Composite, 0L1 Subsuface Sample #28 (0-5'), AY-128, 0L1 North CV Yard Soil 8A-127, 812' EI, Sample # 5, 0L2 North CV Yard Soil AY-127, 810' EI, Sample # 3, 0L1 North CV Yard Soil AY-128, 804' EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 803' EI, Sample # 2, 0L1 North CV Yard Soil AX-128, 803' EI, Sample # 4, 0L1	4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00	T 1/2 10446.15 \$r-90 9.01E+00 5.11E-02 6.69E-02 5.10E-02 5.10E-02 6.24E-02	T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.71E-02 2.28E-02 2.28E-02 2.44E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 8.55E-01 1.24E+00 1.74E+00 4.60E+00 2.18E+01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02	8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.42E+00 3.30E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.31E-01	36561.525 Ni-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 29, 2002 June 29, 2002 July 3, 2002	
2 3 4 5 6 7 8	CV Tunnel \$X95L89219 \$X5L1063 \$X5L1089 \$X5L115 \$X5L115 \$X5L1122 \$X5L1130 \$X5L1132	CV Tunnel Sediment Composite, OL1 Subsuface Sample #29 (0-57), AY-129, OL1 North CV Yard Soli 8A-127, 812° EI, Sample # 5, OL2 North CV Yard Soli AY-127, 810° EI, Sample # 5, OL1 North CV Yard Soli AY-128, 804° EI, Sample # 2, OL1 North CV Yard Soli AY-128, 804° EI, Sample # 2, OL1 North CV Yard Soli AZ-130, Sample # 5, OL1 North CV Yard Soli AZ-130, Sample # 5, OL1	4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00	T 1/2 10446.15 Sr-80 9.01E+00 5.11E-02 6.69E-02 5.16E-02 5.16E-02 5.10E-02 6.24E-02 6.89E-02	T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 2.71E-02 2.71E-02 2.28E-02 2.28E-02 2.86E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E.01 8.55E.01 1.24E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02	8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.00E-02 1.21E-02 6.46E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.42E+00 3.30E+00 4.89E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.31E-01 2.15E-01	36561.525 Ni-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 1.25E+01	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02	January 16, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 29, 2002 June 29, 2002 July 3, 2002 July 3, 2002	
2 3 4 5 6 7 8 9	CV Tunnel SX95L99219 SX5L1063 SX5L1089 SX5L115 SX5L1122 SX5L1130 SX5L1132 SX5L132	CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-57), AY-128, 0L1 North CV Yard Soil 8A-127, 812 EL, Sample #5, 0L2 North CV Yard Soil AY-127, 810' EL, Sample #2, 0L1 North CV Yard Soil AY-128, 780' EL, Sample #2, 0L1 North CV Yard Soil AY-128, 780' EL, Sample #2, 0L1 North CV Yard Soil AX-128, 803' EL, Sample #4, 0L1 North CV Yard Soil AX-128, 503' EL, Sample #4, 0L1 North CV Yard Soil AX-130, Sample #5, 0L1 AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' EL, 0L1	4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.16E-02 5.10E-02 6.24E-02 6.29E-02 1.88E-02	T 1/2 1925.23275 C-0-80 8.59E-01 4.05E-02 2.71E-02 2.71E-02 2.28E-02 2.28E-02 2.88E-02 7.22E-03	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 1.24E+00 1.74E+00 2.18E+01 2.50E-00 2.18E+01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 1.64E-01 3.69E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.42E+00 3.30E+00 4.89E+00 1.87E+00	2092882.5 C-14 9.34E+00 2.10E.01 2.10E.01 2.10E.01 2.06E.01 2.31E.01 2.31E.01 3.93E+00	36561.525 NI-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.17E-02	January 16, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 29, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 28, 2001	
2 3 4 5 6 7 8 9 10	CV Tunnel SX95L99219 SX5L1063 SX5L1089 SX5L115 SX5L1122 SX5L1122 SX5L1122 SX5L1122 SX5L1122 SX5L1270 SX5L1281	CV Tunnel Sediment Composite, 0L1 Subsuface Sample #28 (0-5°), AY-128, 0L1 North CV Yard Soil BA-127, 812° EI, Sample # 5, 0L2 North CV Yard Soil AY-127, 810° EI, Sample # 3, 0L1 North CV Yard Soil AY-128, 604° EI, Sample # 2, 0L1 North CV Yard Soil AY-129, 788° EI, Sample # 2, 0L1 North CV Yard Soil AY-129, 788° EI, Sample # 4, 0L1 North CV Yard Soil AY-129, Sample # 5, 0L1 North CV Yard Soil AY-129, 000° EI, Sample # 5, 0L1 AX-128, 3-3, Soil, CV St Side 5° From CV, 800° EI, 0L1 AX-128, 3-1, Soil, CV Tunnel East 5° From CV, 800° EI, 0L1	4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00 1.00E+01	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.10E-02 5.10E-02 6.24E-02 6.89E-02 1.88E-02 2.83E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.28E-02 2.28E-02 2.44E-02 2.86E-02 7.22E-03 7.22E-03	T 1/2 11019.5925 Ce-137 1.17E-03 5.36E.01 8.55E.01 1.24E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 4.44E+00	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 3.69E-02 3.09E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02	8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03 7.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.30E+00 4.89E+00 1.87E+00 1.69E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.31E-01 3.93E+00 4.00E+00	36561.525 NI-83 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 8.53E+00 7.65E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02	January 15, 2004 Analysis Date February 14, 2001 Ilovember 17, 1999 June 28, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 28, 2001 July 26, 2001	9
2 3 4 5 6 7 8 9 10 11	CV Tunnel SX95L89219 SX5L1063 SX5L1089 SX5L1116 SX5L1116 SX5L1112 SX5L1120 SX5L1120 SX5L1210 SX5L1281 SX5L2849	CV Tunnel Sediment Composite, 0L1 Subsurface Sample #29 (0-57), AY-129, 0L1 North CV Yard Soli BA-127, 812° EI, Sample # 5, 0L2 North CV Yard Soli AY-129, 804° EI, Sample # 3, 0L1 North CV Yard Soli AY-128, 804° EI, Sample # 2, 0L1 North CV Yard Soli AY-128, 805° EI, Sample # 2, 0L1 North CV Yard Soli AZ-130, Sample # 5, 0L1 North CV Yard Soli AZ-130, Sample # 5, 0L1 AX-129, 3-3, Soli, CV 3E Side S ² From CV, 800° EI, 0L1 AX-128, 3-1, Soli, CV Tunnel East S ² From CV, 800° EI, 0L1 Axulus Well, A-2, 5 to 10° Cepth, 0L1	4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.16E-02 5.16E-02 6.24E-02 6.24E-02 6.89E-02 1.88E-02 2.83E-02 3.00E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.271E-02 2.28E-02 2.48E-02 2.48E-02 2.48E-02 7.22E-03 7.72E-03 7.72E-03	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E.01 8.55E.01 1.24E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 2.18E+01 4.14E+00 5.74E-01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 1.64E-01 3.69E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.42E+00 3.30E+00 4.89E+00 1.87E+00	2092882.5 C-14 9.34E+00 2.10E.01 2.10E.01 2.10E.01 2.06E.01 2.31E.01 2.31E.01 3.93E+00	36561.525 NI-63 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.17E-02	January 16, 2004 Analysis Date February 14, 2001 Hovember 17, 1999 June 28, 2002 June 28, 2002 June 29, 2002 July 3, 2002 July 3, 2002 July 28, 2001 July 28, 2001 February 13, 2002	9
2 3 4 5 6 7 8 9 10 11 13	CV Tunnel \$X95L09219 \$X\$L1063 \$X\$L1089 \$X\$L1116 \$X\$L1122 \$X\$L1130 \$X\$L1132 \$X\$L1321 \$X\$L231	CV Tunnel Sediment Composite, 0L1 Subsurface Sample #29 (0-57), AY-128, 0L1 North CV Yard Soli 8A-127, 812 °EI, Sample # 5, 0L2 North CV Yard Soli AY-127, 810 °EI, Sample # 3, 0L1 North CV Yard Soli AY-128, 804 °EI, Sample # 2, 0L1 North CV Yard Soli AY-128, 804 °EI, Sample # 2, 0L1 North CV Yard Soli AX-129, 805 °EI, Sample # 4, 0L1 North CV Yard Soli AX-129, 805 °EI, Sample # 4, 0L1 North CV Yard Soli AX-129, 805 °EI, Sample # 4, 0L1 North CV Yard Soli AX-129, 807 °EI, Sample # 4, 0L1 AX-129, 3-3, Soli, CV SE Side 5' From CV, 800°EI, 0L1 AX-129, 3-3, Soli, CV Tunnel East 5' From CV, 800°EI, 0L1 Autuus Well, A2, 5 to 10' Depth, 0L1 CV Area - East Yard Dir Pile - Middle, 12 Way Up, 0L1	4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00 1.00E+01	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 5.16E-02 5.16E-02 5.16E-02 5.16E-02 6.24E-02 6.24E-02 6.24E-02 6.89E-02 1.88E-02 2.83E-02 3.00E-02 2.87E-02	T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02 2.77E-02 2.28E-02 2.28E-02 2.86E-02 7.22E-03 7.22E-03 7.77E-02 5.48E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 1.24E+00 1.74E+00 4.60E+00 2.18E+01 2.50E+00 2.18E+01 4.14E+00 5.74E-01 5.37E-01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 3.69E-02 3.09E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02	8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03 7.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.30E+00 4.89E+00 1.87E+00 1.69E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.31E-01 3.93E+00 4.00E+00	36561.525 NI-83 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 8.53E+00 7.65E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.17E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 28, 2001 July 28, 2001 July 28, 2001 July 28, 2001 February 13, 2002 March 6, 2002	9
2 3 4 5 6 7 8 9 10 11 13 14	CV Tunnel SX95L9219 SX5L1063 SX5L108 SX5L115 SX5L112 SX5L112 SX5L112 SX5L127 SX5L1281 SX5L2849 SX5L2871 SX5L2872	CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-57), AY-128, 0L1 North CV Yard Soil 8A-127, 812 'EI, Sample # 5, 0L2 North CV Yard Soil AY-127, 810' EI, Sample # 3, 0L1 North CV Yard Soil AY-128, 780' EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 780' EI, Sample # 2, 0L1 North CV Yard Soil AX-129, 803' EI, Sample # 4, 0L1 North CV Yard Soil AX-129, 803' EI, Sample # 5, 0L1 AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' EI, 0L1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, 0L1 Anulus Well, A-2, 5 to 10' Depth, 0L1 CV Area - East Yard Dirt Pile - Middle, 12' Way Up, 0L1 CV Area - East Yard Dirt Pile - Bottom (also top center), 0L1	4485.27 H-3 7.97E+00 2.78E+00 3.15E+00 4.47E+00 3.15E+00 4.458E+00 9.84E+00 1.00E+01 1.79E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.10E-02 5.10E-02 6.24E-02 6.24E-02 6.29E-02 1.88E-02 2.83E-02 2.87E-02 2.87E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.77E-02 2.77E-02 2.28E-02 2.44E-02 2.86E-02 7.22E-03 7.72E-03 7.72E-03 7.77E-02 5.49E-02 4.70E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 1.24E+00 1.74E+00 4.60E+00 2.18E+01 2.50E+00 2.18E+01 4.14E+00 5.74E-01 5.37E-01 9.58E-02	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 1.64E-01 3.69E-02 3.09E-02 9.75E-03	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02 1.31E-02	8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 1.21E-02 6.46E-02 7.00E-03 1.10E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.30E+00 4.89E+00 1.87E+00 1.69E+00 1.71E+00	2092882.5 C-14 9.34E+00 2.10E.01 2.10E.01 2.06E.01 2.31E.01 3.93E+00 4.00E+00 1.83E.01	36561.525 11.63 3.94E+00 1.08E+01 7.46E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 7.65E+00 1.73E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.79E-02 6.17E-02 3.53E-02	January 16, 2004 Analysis Date February 14, 2001 Hovember 17, 1999 June 27, 2002 June 28, 2002 June 29, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 26, 2001 July 26, 2001 July 26, 2001 March 6, 2002 March 6, 2002	9
2 3 4 5 6 7 8 9 10 11 13 14 15	CV Tunnel SX95L89219 SX5L1063 SX5L1089 SX5L1115 SX5L1122 SX5L1122 SX5L1122 SX5L1270 SX5L1271 SX5L2871 SX5L2872 SX5L2872	CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-57), AY-128, 0L1 North CV Yard Soil 8A-127, 912 EI, Sample # 5, 0L2 North CV Yard Soil AY-128, 904 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 904 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 904 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 789 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 904 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 904 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 789 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 789 EI, Sample # 2, 0L1 AX-128, 3-3, Soil, CV S Side 5' From CV, 800' EI, 0L1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, 0L1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, 0L1 CV Area - East Yard Dirt Pile - Biddel, 12 Way Up, 0L1 CV Area - East Yard Dirt Pile - Biddel, 12 Way Up, 0L1 CV Area, Soil Pile @ 6' on West Side (6'' Depth), 0L1	4485.27 H-3 7.97E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00 1.00E+01	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.10E-02 6.69E-02 5.10E-02 6.24E-02 6.89E-02 2.83E-02 2.83E-02 2.87E-02 2.87E-02 2.87E-02 1.16E-02	T 1/2 1925.23275 Co-60 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.28E-02 2.28E-02 2.28E-02 2.28E-02 7.22E-03 7.72E-03 7.77E-02 5.48E-02 4.70E-02 1.17E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E.01 1.24E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 5.74E.01 5.37E.01 9.58E.02 7.39E.01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 3.69E-02 3.09E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02	8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02 6.46E-02 7.00E-03 7.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.30E+00 4.89E+00 1.87E+00 1.69E+00	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.10E-01 2.06E-01 2.31E-01 3.93E+00 4.00E+00	36561.525 NI-83 3.94E+00 1.08E+01 7.46E+00 7.52E+00 8.66E+00 1.33E+01 8.53E+00 7.65E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.17E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 28, 2001 July 28, 2001 July 28, 2001 July 28, 2001 February 13, 2002 March 6, 2002	9
2 3 4 5 6 7 8 9 10 11 13 14 15 16	CV Tunnel SX95L09219 SX5L1063 SX5L1069 SX5L1122 SX5L1122 SX5L1122 SX5L1320 SX5L1321 SX5L1324 SX5L2849 SX5L2849 SX5L2849 SX5L2849 SX5L2849 SX5L2849 SX5L2849 SX5L2844 SX5L2844 SX5L3442	CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-57), AY-129, 0L1 North CV Yard Soli BA-127, 812° EI, Sample # 5, 0L2 North CV Yard Soli AY-127, 80° EI, Sample # 5, 0L1 North CV Yard Soli AY-128, 780° EI, Sample # 2, 0L1 North CV Yard Soli AY-128, 80° EI, Sample # 2, 0L1 North CV Yard Soli AZ-130, Sample # 5, 0L1 North CV Yard Soli AZ-130, Sample # 5, 0L1 AX-129, 3-3, Soli, CV SE Side S' From CV, 800° EI, 0L1 AX-129, 3-3, Soli, CV SE Side S' From CV, 800° EI, 0L1 AX-128, 3-1, Soli, CV Tunnel East S' From CV, 800° EI, 0L1 AX-128, 3-1, Soli, CV Tunnel East S' From CV, 800° EI, 0L1 CV Area - East Yard Dirt Pile - Middle, 12 Way Up, 0L1 CV Area - East Yard Dirt Pile - Bottom (also top center), 0L1 East CV Yard, Soli Pile @ S' on West Side (S' Depth), 0L1	4485.27 H-3 7.97E+00 4.20E+00 2.78E+00 4.47E+00 3.15E+00 4.58E+00 2.73E+00 9.84E+00 1.00E+01 1.79E+00 1.75E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 5.16E-02 5.16E-02 5.16E-02 5.16E-02 6.24E-02 6.24E-02 6.89E-02 1.88E-02 2.87E-02 2.87E-02 2.87E-02 2.87E-02 2.85E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.27E-02 2.28E-02 7.22E-03 7.22E-03 7.72E-03 7.77E-02 5.48E-02 4.70E-02 1.17E-02 5.88E-02	T 1/2 11019.5925 Ce-137 1.17E+03 5.36E.01 1.24E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 2.18E+01 5.37E.01 5.37E.01 5.37E.01 5.31E.01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.43E-01 1.49E-01 1.64E-01 3.69E-02 3.09E-02 9.75E-03 6.98E-03	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 1.37E-02 1.31E-02 4.95E-03	8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 4.07E-02 1.21E-02 6.46E-02 7.00E-03 1.10E-02 5.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.31E+00 3.34E+00 3.34E+00 1.87E+00 1.87E+00 1.71E+00 3.45E+01	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.06E-01 2.31E-01 2.31E-01 2.35E+00 4.00E+00 1.83E-01 8.60E-02	36561.525 11.63 3.94E+00 1.08E+01 7.46E+00 7.46E+00 1.32E+01 1.25E+01 1.25E+01 1.73E+00 1.73E+00 3.37E+00	4967.4 Eu-152 1.12E-01 4.85E-02 5.28E-02 5.28E-02 9.15E-02 6.79E-02 6.17E-02 3.53E-02 2.80E-02	January 16, 2004 Analysis Date February 14, 2001 Hovember 17, 1999 June 28, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 28, 2001 July 28, 2001 February 13, 2002 March 6, 2002 August 30, 2002 August 30, 2002	9
2 3 4 5 6 7 8 9 10 11 13 14 15 16 17	CV Tunnel \$X95L09219 \$X5L1063 \$X5L1089 \$X5L1115 \$X5L1122 \$X5L1122 \$X5L1120 \$X5L1122 \$X5L1270 \$X5L1270 \$X5L1281 \$X5L2872 \$X5L2871 \$X5L2872 \$X5L28740 \$X5L31420 \$X5L31420	CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-57), AY-128, 0L1 North CV Yard Soil 8A-127, 912 EI, Sample # 5, 0L2 North CV Yard Soil AY-128, 904 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 904 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 904 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 789 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 904 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 904 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 789 EI, Sample # 2, 0L1 North CV Yard Soil AY-128, 789 EI, Sample # 2, 0L1 AX-128, 3-3, Soil, CV S Side 5' From CV, 800' EI, 0L1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, 0L1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EI, 0L1 CV Area - East Yard Dirt Pile - Biddel, 12 Way Up, 0L1 CV Area - East Yard Dirt Pile - Biddel, 12 Way Up, 0L1 CV Area, Soil Pile @ 6' on West Side (6'' Depth), 0L1	4485.27 H-3 7.97E+00 2.78E+00 3.15E+00 4.47E+00 3.15E+00 4.458E+00 9.84E+00 1.00E+01 1.79E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 5.16E-02 5.16E-02 5.16E-02 5.16E-02 5.16E-02 5.16E-02 5.16E-02 5.16E-02 1.88E-02 2.87E-02 2.87E-02 2.87E-02 1.16E-02 1.64E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.77E-02 2.28E-02 2.28E-02 2.28E-02 7.22E-03 7.22E-03 7.72E-03 7.72E-02 5.44E-02 4.70E-02 1.17E-02 5.44E-02 1.08E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E-01 1.24E+00 1.74E+00 4.60E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 2.18E+01 4.14E+00 5.74E+01 5.37E-01 9.58E-02 7.99E-01 5.81E-01 1.22E+00	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.63E-01 1.64E-01 3.69E-02 3.09E-02 9.75E-03	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 6.86E-03 1.57E-02 1.31E-02	8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 1.21E-02 6.46E-02 7.00E-03 1.10E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.91E+00 3.30E+00 4.89E+00 1.87E+00 1.69E+00 1.71E+00	2092882.5 C-14 9.34E+00 2.10E.01 2.10E.01 2.06E.01 2.31E.01 3.93E+00 4.00E+00 1.83E.01	36561.525 11.63 3.94E+00 1.08E+01 7.46E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 7.65E+00 1.73E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 7.97E-02 9.15E-02 6.79E-02 6.79E-02 6.17E-02 3.53E-02	January 15, 2004 Analysis Date February 14, 2001 Ilovember 17, 1999 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 28, 2001 July 28, 2001 July 28, 2001 February 13, 2002 March 6, 2002 August 30, 2002	9
2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18	CV Tunnel \$X95L98219 \$X5L1063 \$X5L1063 \$X5L1089 \$X5L1122 \$X5L1122 \$X5L1120 \$X5L1120 \$X5L1120 \$X5L1281 \$X5L2810 \$X5L2871 \$X5L2871 \$X5L2871 \$X5L2872 \$X5L3140 \$X5L3146 \$X5L3149	CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-57), AY-129, 0L1 North CV Yard Soli BA-127, 812° EI, Sample # 5, 0L2 North CV Yard Soli AY-127, 80° EI, Sample # 5, 0L1 North CV Yard Soli AY-128, 780° EI, Sample # 2, 0L1 North CV Yard Soli AY-128, 80° EI, Sample # 2, 0L1 North CV Yard Soli AZ-130, Sample # 5, 0L1 North CV Yard Soli AZ-130, Sample # 5, 0L1 AX-129, 3-3, Soli, CV SE Side S' From CV, 800° EI, 0L1 AX-129, 3-3, Soli, CV SE Side S' From CV, 800° EI, 0L1 AX-128, 3-1, Soli, CV Tunnel East S' From CV, 800° EI, 0L1 AX-128, 3-1, Soli, CV Tunnel East S' From CV, 800° EI, 0L1 CV Area - East Yard Dirt Pile - Middle, 12 Way Up, 0L1 CV Area - East Yard Dirt Pile - Bottom (also top center), 0L1 East CV Yard, Soli Pile @ S' on West Side (S' Depth), 0L1	4485.27 H-3 7.97E+00 2.78E+00 3.15E+00 4.47E+00 3.15E+00 9.84E+00 1.00E+01 1.79E+00 1.75E+00 1.75E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.16E-02 5.10E-02 6.24E-02 6.24E-02 6.28E-02 2.83E-02 2.83E-02 2.87E-02 2.87E-02 2.85E-02 1.66E-02 2.87E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.28E-02 2.28E-02 2.44E-02 2.44E-02 2.46E-02 7.22E-03 7.77E-02 5.48E-02 1.77E-02 5.81E-02 1.08E-02 1.08E-02 5.81E-02 1.08E-02	T 1/2 11019.5925 Ce-137 1.17E-03 5.36E.01 8.55E.01 1.24E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 2.18E+01 4.14E+00 5.74E.01 5.37E.01 5.37E.01 5.38E.02 7.99E.01 5.81E.01 1.22E+00 2.30E.01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.33E-01 1.43E-01 1.43E-01 1.44E-01 1.64E-01 3.69E-02 9.75E-03 6.98E-03 3.99E-03	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 7.37E-02 1.57E-02 1.31E-02 4.95E-03 4.95E-03	8813847.75 Pu-238 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 4.07E-02 1.21E-02 6.46E-02 7.00E-03 7.00E-03 5.00E-03 5.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.391E+00 3.391E+00 3.391E+00 1.87E+00 1.69E+00 1.71E+00 3.45E-01 3.52E-01	2092882.5 C-14 9.34E+00 2.10E.01 2.10E.01 2.10E.01 2.06E.01 2.31E.01 3.93E+00 4.00E+00 1.83E.01 8.60E-02 8.30E-02	36561.525 11.63 3.94E+00 1.08E+01 7.46E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 7.65E+00 3.37E+00 3.65E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 9.15E-02 6.79E-02 6.79E-02 3.53E-02 2.80E-02 3.54E-02	January 16, 2004 Analysis Date February 14, 2001 Hovember 17, 1999 June 28, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 28, 2001 July 28, 2001 February 13, 2002 March 6, 2002 August 30, 2002 August 30, 2002	9
2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19	CV Tunnel SX95L06219 SX5L1063 SX5L1069 SX5L1115 SX5L1122 SX5L1130 SX5L1132 SX5L132 SX5L132 SX5L132 SX5L2849 SX5L2849 SX5L2849 SX5L2849 SX5L2840 SX5L2140 SX5L3142 SX5L3145 SX5L3149 SX5L3153	CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-57), AY-128, 0L1 North CV Yard Soli 8A-127, 812 °EI, Sample # 5, 0L2 North CV Yard Soli 8A-127, 810 °EI, Sample # 5, 0L1 North CV Yard Soli AY-128, 804 °EI, Sample # 2, 0L1 North CV Yard Soli AY-128, 804 °EI, Sample # 2, 0L1 North CV Yard Soli AY-128, 805 °EI, Sample # 4, 0L1 North CV Yard Soli AX-129, 805 °EI, Sample # 4, 0L1 North CV Yard Soli AX-129, 805 °EI, Sample # 4, 0L1 North CV Yard Soli AX-129, 50 °EI, Sample # 4, 0L1 AX-129, 3-3, Soli, CV SE Side 5' From CV, 800° EI, 0L1 AX-129, 3-3, Soli, CV SE Side 5' From CV, 800° EI, 0L1 AX-129, 3-3, Soli CV Tunnel East 5' From CV, 800° EI, 0L1 CV Area - East Yard Dirt Pile - Bottom (also top center), 0L1 CV Area - East Yard Dirt Pile - Bottom (also top center), 0L1 East CV Yard, Soli Pile @ 5' on West Side (6'' Depth), 0L1 East CV Yard, Soli Pile @ 5' on East Side (6'' Depth), 0L1	4485.27 H-3 7.97E+00 2.78E+00 2.78E+00 4.47E+00 3.15E+00 9.84E+00 1.00E+01 1.75E+00 1.75E+00 1.75E+00 1.76E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.16E-02 5.16E-02 6.24E-02 6.24E-02 6.89E-02 1.88E-02 2.87E-02 2.87E-02 1.16E-02 2.87E-02 1.64E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.271E-02 2.28E-02 2.28E-02 2.28E-02 7.22E-03 7.77E-02 5.48E-02 4.70E-02 1.17E-02 5.81E-02 1.08E-02 1.08E-02 1.92E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E.01 8.55E.01 1.24E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 2.18E+01 5.37E.01 5.37E.01 5.81E.01 1.22E+00 2.90E.01 2.90E.01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 1.64E-01 3.69E-02 3.09E-02 9.75E-03 6.98E-03 3.99E-03 2.99E-03	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 1.31E-02 1.31E-02 4.95E-03 4.95E-03	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 1.21E-02 6.46E-02 7.00E-03 1.10E-02 5.00E-03 5.00E-03 5.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.31E+00 3.34E+00 3.34E+00 1.87E+00 1.87E+00 1.71E+00 3.45E+01	2092882.5 C-14 9.34E+00 2.10E-01 2.10E-01 2.06E-01 2.31E-01 2.31E-01 2.35E+00 4.00E+00 1.83E-01 8.60E-02	36561.525 11.63 3.94E+00 1.08E+01 7.46E+00 7.46E+00 1.32E+01 1.25E+01 1.25E+01 1.73E+00 1.73E+00 3.37E+00	4967.4 Eu-152 1.12E-01 4.85E-02 5.28E-02 5.28E-02 9.15E-02 6.79E-02 6.17E-02 3.53E-02 2.80E-02	January 15, 2004 Analysis Date February 14, 2001 November 17, 1999 June 27, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 3, 2002 July 26, 2001 July 26, 2001 July 26, 2001 February 13, 2002 March 6, 2002 August 30, 2002	9
2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 21	CV Tunnel SX95L09219 SX5L1063 SX5L1069 SX5L1116 SX5L1122 SX5L1122 SX5L1120 SX5L1201 SX5L1201 SX5L1201 SX5L2649 SX5L2649 SX5L2649 SX5L2649 SX5L2442 SX5L3140 SX5L3142 SX5L3149 SX5L3149 SX5L3153 SX5L4142	CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-57), AY-128, 0L1 North CV Yard Soil BA-127, 812 'EL Sample # 5, 0L2 North CV Yard Soil AY-127, 810' EL Sample # 3, 0L1 North CV Yard Soil AY-128, 804' EL Sample # 2, 0L1 North CV Yard Soil AY-128, 780' EL Sample # 2, 0L1 North CV Yard Soil AX-128, 803' EL Sample # 2, 0L1 North CV Yard Soil AX-129, 803' EL Sample # 5, 0L1 AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' EL, 0L1 AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' EL, 0L1 AX-128, 3-4, Soil AV-129, Sol 5' From CV, 800' EL, 0L1 CV Area - East Yard Dirt Pile - Niddle, 112 Way Up, 0L1 CV Area - East Yard Dirt Pile - Bottom (laiso top center), 0L1 East CV Yard, Soil Pile @ 3' on Uset Side (8' Depth), 0L1 Soil Pile, CV Yard, Shi Feet on East Side, SR-37, 0L1	4485.27 H-3 7.37E+00 2.78E+00 2.78E+00 3.15E+00 3.15E+00 9.84E+00 1.00E+01 1.79E+00 1.75E+00 1.76E+00 1.79E+00 2.18E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E.02 5.16E.02 5.16E.02 5.16E.02 5.16E.02 6.24E.02 6.24E.02 6.89E.02 1.88E.02 2.83E.02 2.87E.02 2.87E.02 2.87E.02 2.87E.02 2.87E.02 1.64E.02 2.87E.02 1.64E.02 3.23E.02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.28E-02 2.28E-02 7.22E-03 7.22E-03 7.22E-03 7.77E-02 5.48E-02 4.70E-02 1.17E-02 5.88E-02 1.08E-02 1.08E-02 1.92E-02 4.88E-02	T 1/2 11019.5925 Ce-137 1.17E+03 5.36E.01 1.24E+00 1.74E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 2.18E+01 5.37E.01 5.37E.01 5.37E.01 5.88E.02 7.99E.01 5.81E.01 1.22E+00 2.99E.01 5.81E.01 1.22E+00 2.99E.01 5.81E.01 1.22E+00 2.99E.01 5.81E.01 1.22E+00 2.99E.01 5.81E.01 1.22E+00 2.99E.01 5.81E.01 1.22E+00 2.99E.01 5.81E.01 1.22E+00 2.99E.01 5.81E.01 1.22E+00 2.99E.01 5.81E.01 1.22E+00 2.99E.01 5.81E.01 1.22E+00 2.99E.01 5.81E.01 1.22E+00 2.99E.01 5.81E.01 1.22E+00 2.99E.01 5.81E.01 5.81E.01 5.81E.01 5.81E.01 5.81E.01 5.82E.01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.49E-01 1.49E-01 1.49E-01 3.69E-02 3.09E-02 9.75E-03 6.98E-03 3.99E-03 2.99E-03 1.76E-02	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.48E-02 8.48E-02 1.37E-02 1.37E-02 1.31E-02 1.31E-02 4.95E-03 4.95E-03 4.95E-03 6.69E-02	8813847.75 Fu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.00E-02 1.21E-02 7.00E-03 1.10E-02 5.00E-03 5.00E-03 5.00E-03 2.02E-02	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.391E+00 3.391E+00 3.391E+00 1.87E+00 1.69E+00 1.71E+00 3.45E-01 3.52E-01	2092882.5 C-14 9.34E+00 2.10E.01 2.10E.01 2.10E.01 2.06E.01 2.31E.01 3.93E+00 4.00E+00 1.83E.01 8.60E-02 8.30E-02	36561.525 11.63 3.94E+00 1.08E+01 7.46E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 7.65E+00 3.37E+00 3.65E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 9.15E-02 6.79E-02 6.79E-02 3.53E-02 2.80E-02 3.54E-02	January 16, 2004 Analysis Date February 14, 2001 Ilovember 17, 1999 June 27, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 28, 2001 July 28, 2001 July 28, 2001 July 28, 2001 March 6, 2002 March 6, 2002 August 30, 2002 August 30, 2002 August 30, 2002	9
1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 21 22 23	CV Tunnel SX95L06219 SX5L1063 SX5L1069 SX5L1115 SX5L1122 SX5L1130 SX5L1132 SX5L132 SX5L132 SX5L132 SX5L2849 SX5L2849 SX5L2849 SX5L2849 SX5L2840 SX5L2140 SX5L3142 SX5L3145 SX5L3149 SX5L3153	CV Tunnel Sediment Composite, 0L1 Subsuface Sample #29 (0-57), AY-129, 0L1 North CV Yard Soli BA-127, 812° EI, Sample # 5, 0L2 North CV Yard Soli AY-129, 804° EI, Sample # 5, 0L1 North CV Yard Soli AY-128, 804° EI, Sample # 2, 0L1 North CV Yard Soli AY-128, 805° EI, Sample # 2, 0L1 North CV Yard Soli AY-128, 805° EI, Sample # 2, 0L1 North CV Yard Soli AZ-130, Sample # 5, 0L1 AX-129, 3-3, Soli, CV Tunnel East 5° From CV, 800° EI, 0L1 AX-128, 3-1, Soli, CV Tunnel East 5° From CV, 800° EI, 0L1 AX-128, 3-1, Soli, CV Tunnel East 5° From CV, 800° EI, 0L1 CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, 0L1 CV Area - East Yard Dirt Pile - Niddle, 1/2 Way Up, 0L1 CV Area - East Yard Dirt Pile - Bottom (also top centr), 0L1 East CV Yard, Soli Pile @ 5° on West Side (8° Depth), 0L1 Soli Pile, CV Yard, Six Feet on East Side, SR-37, 0L1 East CV Yard, Six Feet on East Side, SR-37, 0L1 East CV Yard, Six Feet on East Side, SR-37, 0L1	4485.27 H-3 7.97E+00 2.78E+00 2.78E+00 4.47E+00 3.15E+00 9.84E+00 1.00E+01 1.75E+00 1.75E+00 1.75E+00 1.76E+00	T 1/2 10446.15 5r-80 9.01E+00 5.11E-02 6.69E-02 5.16E-02 5.16E-02 6.24E-02 6.24E-02 6.89E-02 1.88E-02 2.87E-02 2.87E-02 1.16E-02 2.87E-02 1.64E-02	T 1/2 1925.23275 Co-80 8.59E-01 4.05E-02 1.57E-02 2.71E-02 2.271E-02 2.28E-02 2.28E-02 2.28E-02 7.22E-03 7.77E-02 5.48E-02 4.70E-02 1.17E-02 5.81E-02 1.08E-02 1.08E-02 1.92E-02	T 1/2 11019.5925 Cs-137 1.17E+03 5.36E.01 8.55E.01 1.24E+00 1.74E+00 1.74E+00 2.18E+01 2.50E+00 2.18E+01 2.50E+00 2.18E+01 5.37E.01 5.37E.01 5.81E.01 1.22E+00 2.90E.01 2.90E.01	T 1/2 157861.05 Am-241 1.79E-01 9.59E-02 9.91E-02 2.39E-01 1.83E-01 1.49E-01 1.64E-01 3.69E-02 3.09E-02 9.75E-03 6.98E-03 3.99E-03 2.99E-03	32050.6875 Pu-238 5.37E-01 4.62E-02 1.26E-01 1.36E-01 8.83E-02 8.46E-02 7.37E-02 1.31E-02 1.31E-02 4.95E-03 4.95E-03	8813847.75 Pu-239 2.20E-01 3.27E-02 5.00E-02 4.07E-02 4.07E-02 1.21E-02 6.46E-02 7.00E-03 1.10E-02 5.00E-03 5.00E-03 5.00E-03	5259.6 Pu-241 3.88E+01 3.50E+00 4.61E+00 3.391E+00 3.391E+00 3.391E+00 1.87E+00 1.69E+00 1.71E+00 3.45E-01 3.52E-01	2092882.5 C-14 9.34E+00 2.10E.01 2.10E.01 2.10E.01 2.06E.01 2.31E.01 3.93E+00 4.00E+00 1.83E.01 8.60E-02 8.30E-02	36561.525 11.63 3.94E+00 1.08E+01 7.46E+00 8.66E+00 1.33E+01 1.25E+01 8.53E+00 7.65E+00 3.37E+00 3.65E+00	4967.4 Eu-152 1.12E-01 4.85E-02 7.65E-02 5.28E-02 9.15E-02 6.79E-02 6.79E-02 3.53E-02 2.80E-02 3.54E-02	January 15, 2004 Analysis Date February 14, 2001 Ilovember 17, 1999 June 28, 2002 June 28, 2002 June 28, 2002 July 3, 2002 July 3, 2002 July 28, 2001 July 26, 2001 February 13, 2002 March 6, 2002 August 30, 2002 August 30, 2002 August 30, 2002	9

KEY	
	Yellow Shaded Background = Positive Result
in the station	Gray Shaded Background = MDA

÷

2

		TABLE 3 - Decayed Listing of Pos	inve laucines	a MDAS Ken	loved (pciig)	<u> </u>	
	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	Total pCi/g
1	CV Tunnel	CV Tunnel Sediment Composite, OL1		9.01E+00	8.59E-01	1.17E+03	1178.89
2	SX9SL99219	Subsuface Sample #29 (0-5'), AY-128, OL1		Sector Contraction of the		5.36E-01	0.54
3	SXSL1063	North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	4.20E+00			8.55E-01	5.05
4	SXSL1089	North CV Yard Soil AY-127, 810' El, Sample # 3, OL1	2.78E+00			1.24E+00	4.02
5	SXSL1115	North CV Yard Soll AY-128, 804' El, Sample # 2, OL1	4.47E+00			1.74E+00	6.21
6	SXSL1122	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	3.15E+00			4.60E+00	7.76
7	SXSL1130	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	4.58E+00		2.44E-02	2.18E+01	26.42
8	SXSL1132	North CV Yard Soil AZ-130, Sample # 5, OL1	2.73E+00			2.50E+00	5.23
9	SXSL1270	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' El., OL1				2.18E+01	21.82
10	SXSL1281	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1				4.14E+00	4.14
11	SX SL2649	Anulus Well, A-2, 5 to 10' Depth, OL1				5.74E-01	0.57
13	SXSL2871	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1				5.37E-01	0.54
14	SX SL 2872	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1				9.58E-02	0.10
15	SXSL3140	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1				7.99E-01	0.80
16	SXSL3142	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1				5.81E-01	0.58
17	SXSL3145	East CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1				1.22E+00	1.22
18	SXSL3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1				2.90E-01	0.29
19	SXSL3153	East CV Yard, Soil Pile @ Top (6" Depth), OL1				2.91E-01	0.29
21	SXSL4142	CV Yard Soil - West Side, AP1-7, OL1				8.94E-01	0.89
22	SXSL4143	CV Yard Soil - West Side, AP1-7, OL1				4.97E-01	0.50
23	SXSL4149	CV Yard Soil - West Side, AP1-7, OL1			6.74E-02	3.87E+00	3.94

		TABLE 4 - Ratio To Ca	s-137 for Pos	itive Nuclides				
	SNEC Sample No	Location/Description	H-3	Sr-90	Co-60	Cs-137	Tot	
1	CV Tunnel	CV Tunnel Sediment Composite, OL1		7.71E-03	7.35E-04	1.00E+00	1.0	
2	SX9SL99219	Subsuface Sample #29 (0-5'), AY-128, OL1				1.00E+00	1.0	
3	SXSL1063	North CV Yard Soil BA-127, 812' El, Sample # 5, OL2	4.91E+00			1.00E+00	5.9	
4	SXSL1089	North CV Yard Soil AY-127, 810' El, Sample # 3, OL1	2.23E+00			1.00E+00	3.2	
5	SXSL1115	North CV Yard Soil AY-128, 804' El, Sample # 2, OL1	2.57E+00			1.00E+00	3.6	
6	SXSL1122	North CV Yard Soil AY-129, 798' El, Sample # 2, OL1	6.85E-01			1.00E+00	1.6	
7	SXSL1130	North CV Yard Soil AX-129, 803' El, Sample # 4, OL1	2.10E-01		1.12E-03	1.00E+00	1.2	
8	SXSL1132	North CV Yard Soil AZ-130, Sample # 5, OL1	1.09E+00			1.00E+00	2.0	
9	SXSL1270	AX-129, 3-3, Soil, CV SE Side 5' From CV, 800' EL, OL1				1.00E+00	1.0	
10	SX SL1281	AX-128, 3-1, Soil, CV Tunnel East 5' From CV, 800' El, OL1				1.00E+00	1.0	
11	SX SL2649	Anulus Well, A-2, 5 to 10' Depth, OL1				1.00E+00	1.0	
13	SX SL2871	CV Area - East Yard Dirt Pile - Middle, 1/2 Way Up, OL1				1.00E+00	1.0	
14	SX SL2872	CV Area - East Yard Dirt Pile - Bottom (also top center), OL1				1.00E+00	1.0	
15	SXSL3140	East CV Yard, Soil Pile @ 6' on West Side (6" Depth), OL1				1.00E+00	1.0	
16	SXSL3142	Soil Pile, CV Yard, Three Feet on East Side, SR-37, OL1				1.00E+00	1.0	
17	SX SL 3145	East CV Yard, Soil Pile @ 3' on East Side (6" Depth), OL1				1.00E+00	1.0	
18	SX SL3149	Soil Pile, CV Yard, Six Feet on East Side, SR-37, OL1				1.00E+00	1.0	
19	SX SL3153	East CV Yard, Soil Pile @ Top (6" Depth), OL1				1.00E+00	1.0	
21	SX SL4142	CV Yard Soil - West Side, AP1-7, OL1				1.00E+00	1.0	
22	SX SL4143	CV Yard Soil - West Side, AP1-7, OL1				1.00E+00	1.0	
23	SXSL4149	CV Yard Soil - West Side, AP1-7, OL1			1.74E-02	1.00E+00	1.0	
		Mean⇒	1.95E+00	7.71E-03	6.42E-03	1	2.9	
		Sigma⇒	1.708		0.010	0.000		
		Mean % of Total⇒	65.79%	0.26%	0.22%	33.74%	100.	

					SNEC AL	75%	Total Activity Limit	CGLW	Adminis	trative Limit	
Effective	DCGL Calcu	lator for C	s-137 (in pCi/	g)			16.98	pCi/g	12.74	pCi/g	
SAMF	LE NUMBER(s)⇒	CV YARD SOIL	& BOULDER SAMP	LES							
17.45%	25.0 mrem/y TEDE Limit						Cs-137 Limit 5.73 pCi/g		Cs-137 Administrative Limit 4.30 pCi/g		
7.79%		4.0 mrem/y Drinking Water (DW) Limit						1100.9			
Isotope	Sample Input (pCi/g, uCi, % of Total, etc.)	% of Total	25 mrem/y TEDE Limits (pCi/g)	4 mrem/y DW Limits (pCi/g)	A - Allowed pCi/g for 25 mrem/y TEDE	B - Allowed pCi/g for 4 mrem/y DW	Value Checked from Column A or B		This Sample mrem/y TEDE	This Sample mrem/y DW	
Am-241		0.000%	9.9	2.3	0.00	0.00	0.00		0.00	0.00	Am-2
2 C-14		0.000%	2.0	5.4	0.00	0.00	0.00		0.00	0.00	C-14
Co-60	0.0064	0.216%	3.5	67.0	0.04	0.08	0.04		0.05	0.00	Co-60
Cs-137	1.0000	33.738%	6.6	397	5.73	12.83	5.73		3.79	0.01	Cs-13
Eu-152		0.000%	10.1	1440	0.00	0.00	0.00		0.00	0.00	Eu-15
H-3	1.9499	65.786%	132	31.1	11.17	25.02	11.17		0.37	0.25	H-3
Ni-63		0.000%	747	19000	0.00	0.00	0.00		0.00	0.00	Ni-63
Pu-238		0.000%	1.8	0.41	0.00	0.00	0.00		0.00	0.00	Pu-23
Pu-239		0.000%	1.6	0.37	0.00	0.00	0.00		0.00	0.00	Pu-23
Pu-241		0.000%	86	19.8	0.00	0.00	0.00		0.00	0.00	Pu-24
Sr-90	0.0077	0.260%	1.2	0.61	0.04	0.10	0.04		0.16	0.05	Sr-90
	2.96E+00	100.000%			16.98	38.03	16.98		4.364	0.312	
					Maximum Permissible pCi/g (25 mrem/y)	Maximum Permissible pCi/g (4 mrem/y)			Sample Input	s Information, Units Must Be In <u>t % of Total.</u>	

COZ

2350 INSTRUMENT AND PROBE EFFICIENCY CHART 7/01/04 (Typical 2" by 2" Nal (Cs-137 W) Conversion Factors)

••

Inst.#	Cal Due	AP#	Probe #	Cal Due	cpm/mR/h
98625	5/18/05	R & Y	 211680 Pk	5/18/05	214.882
98647	5/18/05	G & Y	 211667 Pk	5/18/05	218.807
		D 0 1 :	 211(07.01	200.05	212 220
129423	5/18/05	P & Y.	 211687 Pk	5/18/05	213.539
117573	5/18/05	() &Y	211674 Pk	5/18/05	.212.173
117566	4/9/05	G&R	185852 Pk	4/13/05	209,862
			<u> </u>		
126183	11/19/04	B&R	 206280 Pk	12/12/04	190,907
129429	11/3/04	Y&W	 206283 Pk	10/31/04	177185
126198	11/03/04	R&W	196021Pk	5/25/05	209.194
126172	6/07/05	G&₩	 196022	6/07/05	208.302
129440	4/09/05	 ()&W	210938 Pk	4/14/05	205.603
		·		· · ·	· · · · · · · · · · · · · · · · · · ·
120588	6/08/05	B&W	185844 Pk	6/09/05	216.654
95361	6.25/05	 P&W	 025686	6/28/05	211,790

÷

Attachment 3-1 E900-05-014

.

Nal Scan MDC Calculation

MDCscan = 6.2 pCi/g

b = background in counts per minute

bi = background counts in observation interval

Conv = Nal Detector / meter calibrated response in cpm/uR/hr

d = Index of sensitivity from MARSSIM Table 6.5 based on 95% detection, 60% false positive

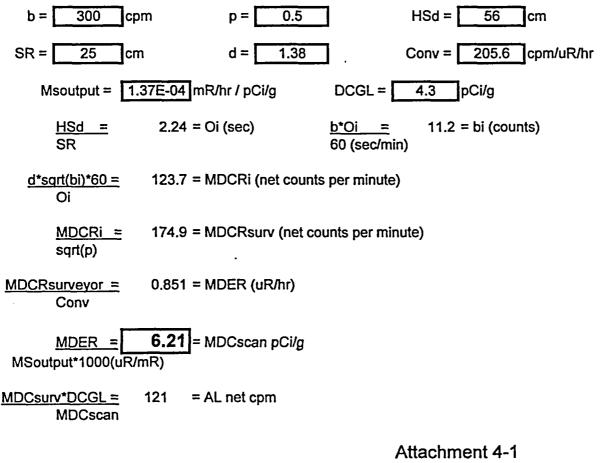
HSd = Elevated measurement spot diameter in centimeters

MDCscan = MinimumDetectable Concentration for scanning in pCi/g

MDCRi = Minimum Detectable Count Rate in net counts per minute

MDCRsurv = MDCRi adjusted for the human performance factor p - in net counts per minute

MDER = Minimum Detectable Exposure Rate in uR / hr


MSoutput = MicroShield derived exposure rate for 1 pCi/g contaminant in mR/hr

Oi = Observation interval in seconds

p = human performance adjustment factor - unitless

SR = Scanning movement rate in centimeters per second

DCGLeq = Net count rate equivalent to the Adjusted DCGL

E900-05-014

MicroShield v5.05 (5.05-00121) GPU Nuclear

....

1	Run Time	: 1 : MODEL.MS5 : September 23, 2003 : 2:43.26 PM : 00.00.02									
					Case Tille: Cs-137 Soil escription: Model for Scennin						
				Geometi	ry: 8 - Cylinder Volume - End : -	Shields					
			[Source Dir	nensions		
						H	eight	15.24 c	: m	6.0 in	
			Y	,		R	adius	28.0 c	m	11.0 in	
								Dose F	Points		
					·		A	X	Y	Z	
						1	‡1	0 cm	25.4 cm	0 cm	
				X				0.0 in	<u>10.0 in</u>	0.0 in	
								Shie	lds .		
				- All and a start and a start a		Shield Nan	ne	Dimension	Material	Densily	v
				Z .		Source		3.75e+04 cm ³	Concrete	1.6	
						Air Gap			hi	0.00122	
			L		J						
					Source Input						
				Groupin	ng Method : Actual Photon En		<u> </u>				

Nuclide	CLAIE\$	becquerels	μCi/cm ³	Bq/cm²			
Ba·137m	5.6915e-008	2.1022c+003	1.5136e-006	5.6003e-002			
Cs-137	6.0058e-008	2.2221e+003	1.6000e-006	5.9200a-002			

	Buildup		,
The material	reference	is :	Source

Integration Parameters					
Radial	50				
Circumferential	50				
Y Direction (axial)	50				

			Results		
Energy MeV	Activity photons/sec	Fluence Rate MeV/cm²/sec No Buildup	Fluence Rate MeV/cm²/sec With Buildup	Exposure Rate mR/In No Buildup	Exposure Rate mR/hr With Buildup
0 0318	4.352e+01	7.617e-06	9.220e-06	6.345e-08	7.680e-09
0 0322	8 030e+01	1,465e-05	1,784e-05	1.179e-07	1.436e-07
0.0364	2.922e+01	8.118e-06	1.060e-05	4.613e-08	6.024e-08
0 6616	1.892e+03	7.060a-02	1.260e-01	1.369e-04	2.443e-04
TOTALS:	2.045e+03	7.063e-02	1.261e-01	1.371e-04	2.446e-04

Attachment 5-1 E900-05-014

· ·

,

1

LEFT INTENTIONALLY BLANK

Attachment 6-1 E900-05-014

;

•

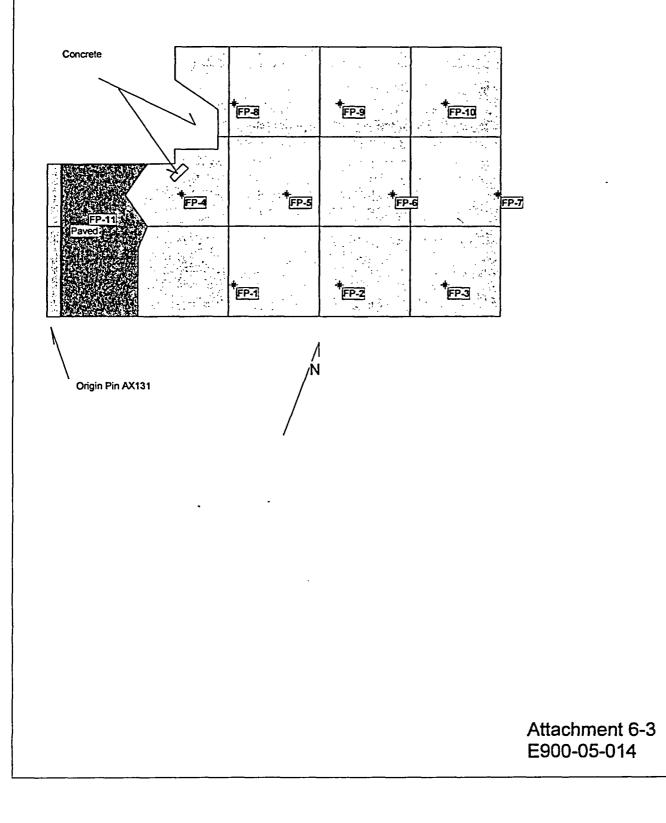
•

LEFT INTENTIONALLY BLANK

.

•

.


Attachment 6-2 E900-05-014

.

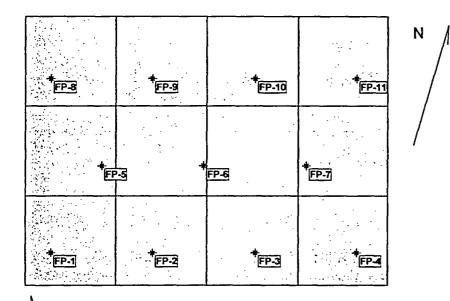
•

OL1-9 Fixed point Dimensions in METERS

X Coord	Y Coord	Label	Grid	Туре	East	North
20.63	3.52	FP-1	AX129	Systematic	0.6	3.5
32.27	3.52	FP-2	AX128	Systematic	2.3	3.5
43.91	3.52	FP-3	AX127	Systematic	3.9	3.5
14.81	13.60	FP-4	AY130	Systematic	4.8	3.6
26.45	13.60	FP-5	AY129	Systematic	6.5	3.6
38.09	13.60	FP-6	AY128	Systematic	8.1	3.6
49.73	13.60	FP-7	AY127	Systematic	9.7	3.6
20.63	23.68	FP-8	AZ129	Systematic	0.6	3.7
32.27	23.68	FP-9	AZ128	Systematic	2.3	3.7
43.91	23.68	FP-10	AZ127	Systematic	3.9	3.7
4.27	11.72	FP-11	AY131	Systematic	4.3	1.7

OL1-9 Fixed point Dimensions in FEET

X Coord	Y Coord	Label	Grid	Туре	East	North
67.67	11.55	FP-1	AX129	Systematic	2.1	11.5
105.85	11.55	FP-2	AX128	Systematic	7.5	11.5
144.03	11.55	FP-3	AX127	Systematic	12.8	11.5
48.59	44.61	FP-4	AY130	Systematic	15.8	11.8
86.76	44.61	FP-5	AY129	Systematic	21.2	11.8
124.94	44.61	FP-6	AY128	Systematic	26.5	11.8
163.11	44.61	FP-7	AY127	Systematic	31.9	11.8
67.67	77.67	FP-8	AZ129	Systematic	2.1	12.1
105.85	77.67	FP-9	AZ128	Systematic	7.5	12.1
144.03	77.67	FP-10	AZ127	Systematic	12.8	12.1
14.00	38.44	FP-11	AY131	Systematic	14.0	5.6


Xcoord and Ycoord values are from the origin pin AX131 East and North are from each grid ID pin

.

Attachment 6-4 E900-05-014 .

.

OL1-10 SNEC Yard after backill

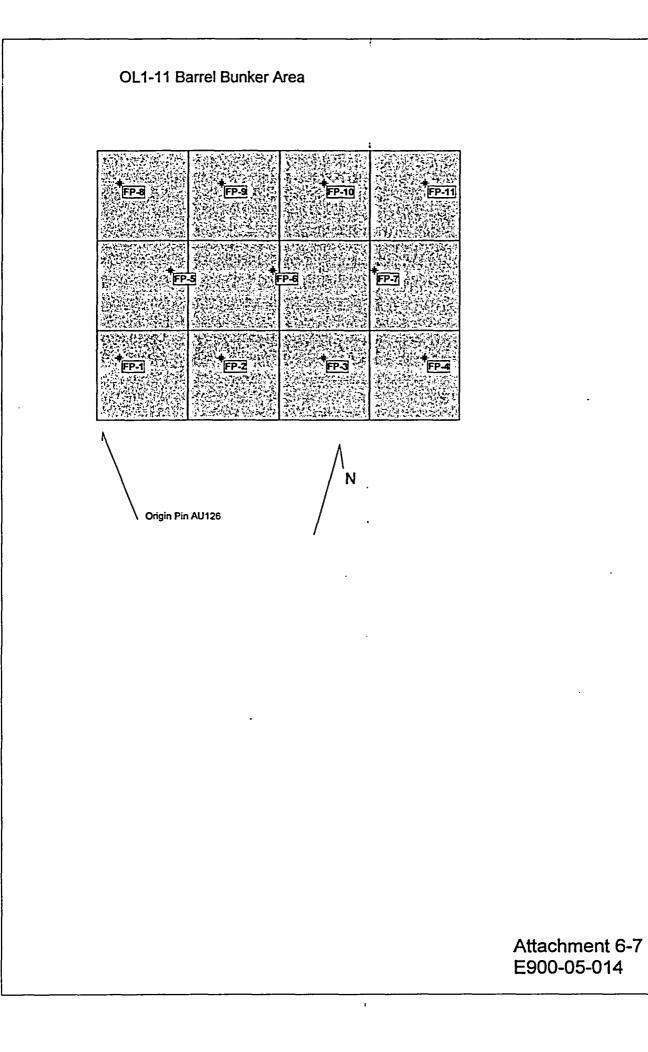
Origin Pin AX126

Attachment 6-5 E900-05-014

OL1-10 Fixed point Dimensions in METERS

X Coord	Y Coord	Label	GRID	Туре	East	North
2.87	3.64	FP-1	AX126	Systematic	2.87	3.64
14.09	3.64	FP-2	Ax125	Systematic	4.09	3.64
25.32	3.64	FP-3	Ax124	Systematic	5.32	3.64
36.54	3.64	FP-4	Ax123	Systematic	6.54	3.64
8.48	13.36	FP-5		Systematic	8.48	3.36
19.70	13.36	FP-6	AY125	Systematic	9.70	3.36
30.93	13.36	FP-7		Systematic	0.93	3.36
2.87	23.08	FP-8		Systematic	2.87	3.08
14.09	23.08	FP-9		Systematic	4.09	3.08
25.32	23.08	FP-10	AZ124	Systematic	5.32	3.08
36.54	23.08	FP-11	AZ123	Systematic	6.54	3.08

OL1-10 Fixed point Dimensions in FEET


.

X Coord	Y Coord	Label	GRID	Туре	East	North
9.41	11.95	FP-01	AX126	Systematic	9.4	12.0
46.22	11.95	FP-02	Ax125	Systematic	13.4	12.0
83.04	11.95	FP-03	Ax124	Systematic	17.4	12.0
119.85	11.95	FP-04	Ax123	Systematic	21.4	12.0
27.82	43.83	FP-05	AY126	Systematic	27.8	11.0
64.63	43.83	FP-06	AY125	Systematic	31.8	11.0
101.44	43.83	FP-07	AY123	Systematic	3.0	11.0
9.41	75.71	FP-08	AZ126	Systematic	9.4	10.1
46.22	75.71	FP-09	AZ125	Systematic	13.4	10.1
83.04	75.71	FP-10	AZ124	Systematic	17.4	10.1
119.85	75.71	FP-11	AZ123	Systematic	21.4	10.1

Xcoord and Ycoord values are from the origin pin AX126 East and North are from each grid ID pin

•

Attachment 6-6 E900-05-014

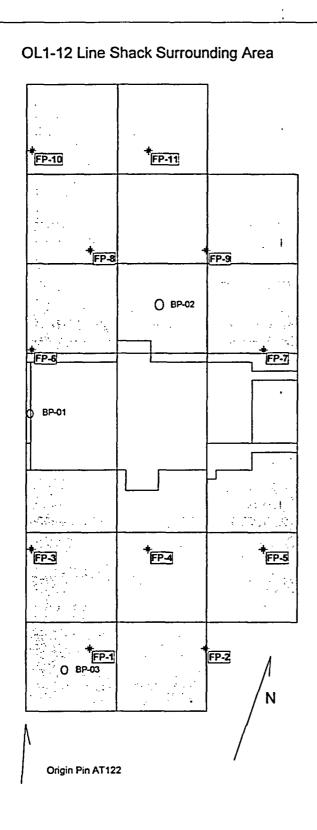
OL1-11 sample dimensions in METERS

X Coord	Y Coord	Label	Grid	Туре	East	North
2.50	6.95	FP-1	AU126	Systematic	2.5	7.0
13.72	6.95	FP-2	AU125	Systematic	3.7	7.0
24.95	6.95	FP-3	AU124	Systematic	4.9	7.0
36.17	6.95	FP-4	AU123	Systematic	6.2	7.0
8.11	16.67	FP-5	AV126	Systematic	8.1	6.7
19.33	16.67	FP-6	AV125	Systematic	9.3	6.7
30.56	16.67	FP-7	AV123	Systematic	0.6	6.7
2.50	26.39	FP-8	AW126	Systematic	2.5	6.4
13.72	26.39	FP-9	AW125	Systematic	3.7	6.4
24.95	26.39	FP-10	AW124	Systematic	4.9	6.4
36.17	26.39	FP-11	AW123	Systematic	6.2	6.4

OL1-11 Fixed point Dimensions in FEET

		-				
X Coord	Y Coord	Label	Grid	Туре	East	North
8.20	22.80	FP-1	AU126	Systematic	8.2	22.8
45.01	22.80	FP-2	AU125	Systematic	12.2	22.8
81.82	22.80	FP-3	AU124	Systematic	16.2	22.8
118.64	22.80	FP-4	AU123	Systematic	20.2	22.8
26.60	54.68	FP-5	AV126	Systematic	26.6	21.9
63.42	54.68	FP-6	AV125	Systematic	30.6	21.9
100.23	54.68	FP-7	AV123	Systematic	1.8	21.9
8.20	86.56	FP-8	AW126	Systematic	8.2	21.0
45.01	86.56	FP-9	AW125	Systematic	12.2	21.0
81.82	86.56	FP-10	AW124	Systematic	16.2	21.0
118.64	86.56	FP-11	AW123	Systematic	20.2	21.0

Xcoord and Ycoord values are from the origin pin AU126 East and North are from each grid ID pin


•

Attachment 6-8 E900-05-014

•

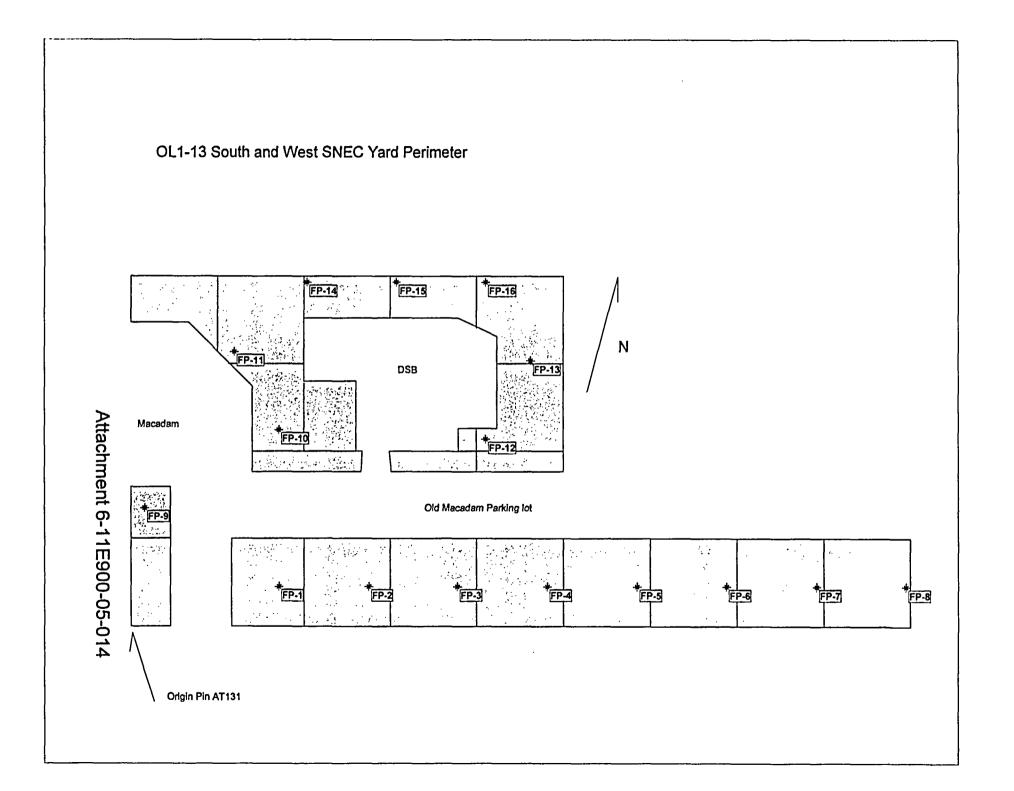
.

.

Attachment 6-9 E900-05-014

OL1-12 Fixed po	pint Dimensions	in METERS
-----------------	-----------------	-----------

					-	
X Coord	Y Coord	Label	Grid	Туре	East	North
7.03	7.00	FP-1	AT122	Systematic	7.0	7.0
19.87	7.00	FP-2	AT121	Systematic	9.9	7.0
0.60	18.12	FP-3	AU122	Systematic	0.6	8.1
13.45	18.12	FP-4	AU121	Systematic	3.4 .	8.1
26.29	18.12	FP-5	AU120	Systematic	6.3	8.1
0.60	40.37	FP-6	AX122	Systematic	0.6	0.4
26.29	40.37	FP-7	AX120	Systematic	6.3	0.4
7.03	51.50	FP-8	AY122	Systematic	7.0	1.5
19.87	51.50	FP-9	AY121	Systematic	9.9	1.5
0.60	62.62	FP-10	AZ122	Systematic	0.6	2.6
13.45	62.62	FP-11	AZ121	Systematic	3.4	2.6
0.40	34.00	BP-01	AW122	Biased	0.4	4
15.00	45.00	BP-02	AX121	Biased	5	5
5.00	5.00	BP-03	AT122	Biased	5	5


OL1-12 Fixed point Dimensions in FEET

X Coord	Y Coord	Label	Grid	Туре	East	North
23.05	22.96	FP-1	AT122	Systematic	23.0	23.0
65.18	22.96	FP-2	AT121	Systematic	32.4	23.0
1.98	59.45	FP-3	AU122	Systematic	2.0	26.6
44.11	59.45	FP-4	AU121	Systematic	11.3	26.6
86.25	59.45	FP-5	AU120	Systematic	20.6	26.6
1.98	132.42	FP-6	AX122	Systematic	2.0	1.2
86.25	132.42	FP-7	AX120	Systematic	20.6	1.2
23.05	168.91	FP-8	AY122	Systematic	23.0	4.9
65.18	168.91	FP-9	AY121	Systematic	32.4	4.9
- 1.98	205.40	FP-10	AZ122	Systematic	2.0	8.6
44.11	205.40	FP-11	AZ121	Systematic	11.3	8.6
1.31	111.52	BP-01	AW122	Biased	1.3	13.1
49.20	147.60	BP-02	AX121	Biased	16.4	16.4
16.40	16.40	BP-03	AT122	Biased	16.4	16.4

Xcoord and Ycoord values are from the origin pin AT122 East and North are from each grid ID pin

> Attachment 6-10 E900-05-014

-

OL1-13 Fixed	point Dimensions	in METERS
--------------	------------------	-----------

X Coord	Y Coord	Label	Grid	Туре	East	North
17.10	4.53	FP-1	AT130	Systematic	7.1	4.5
27.44	4.53	FP-2	AT129	Systematic	7.4	4.5
37.78	4.53	FP-3	AT128	Systematic	7.8	4.5
48.12	4.53	FP-4	AT127	Systematic	8.1	4.5
58.46	4.53	FP-5	AT126	Systematic	8.5	4.5
68.80	4.53	FP-6	AT125	Systematic	8.8	4.5
79.14	4.53	FP-7	AT124	Systematic	9.1	4.5
89.48	4.53	FP-8	AT123	Systematic	9.5	4.5
1.59	13.48	FP-9	AU131	Systematic	1.6	3.5
17.10	22.43	FP-10	AV130	Systematic	7.1	2.4
11.93	31.39	FP-11	AW130	Systematic	1.9	1.4
41.04	21.37	FP-12	AV127	Systematic	1.0	1.4
46.21	30.32	FP-13	AW127	Systematic	6.2	0.3
20.36	39.28	FP-14	AW129	Systematic	0.4	9.3
30.70	39.28	FP-15	AW128	Systematic	0.7	9.3
41.04	39.28	FP-16	AW127	Systematic	1.0	9.3

OL1-13 Fixed point Dimensions in FEET

X Coord	Y Coord	Label	Grid	Туре	East	North
56.09	14.84	FP-1	AT130	Systematic	23.3	14.8
90.00	14.84	FP-2	AT129	Systematic	24.4	14.8
123.92	14.84	FP-3	AT128	Systematic	25.5	14.8
157.83	14.84	FP-4	AT127	Systematic	26.6	14.8
191.75	14.84	FP-5	AT126	Systematic	27.7	14.8
225.66	14.84	FP-6	AT125	Systematic	28.9	14.8
259.58	14.84	FP-7	AT124	Systematic	30.0	14.8
293.49	14.84	FP-8	AT123	Systematic	31.1	14.8
5.21	44.22	FP-9	AU131	Systematic	5.2	11.4
56.09	73.59	FP-10	AV130	Systematic	23.3	8.0
39.13	102.96	FP-11	AW130	Systematic	6.3	4.6
134.60	70.09	FP-12	AV127	Systematic	3.4	4.5
151.56	99.46	FP-13	AW127	Systematic	20.4	1.1
66.77	128.83	FP-14	AW129	Systematic	1.2	30.4
100.68	128.83	FP-15	AW128	Systematic	2.3	30.4
134.60	128.83	FP-16	AW127	Systematic	3.4	30.4

Xcoord and Ycoord values are from the origin pin AT131 East and North are from each grid ID pin

.

Attachment 6-12 E900-05-014

Site Summary

Site Name: SSGS and SNEC Open land

Planner(s): WJCooper

Contaminant Summary

NOTE: Surface soil DCGLw units are pCi/g. Building surface DCGLw units are dpm/100 cm².

Contaminant	Туре	DCGLw	Screening Value Used?	Area (m²)	Area Factor
Cs-137	Surface Soil	4.30	No	400	3
				100 -	3.6
				25	4.7
				1	28.7

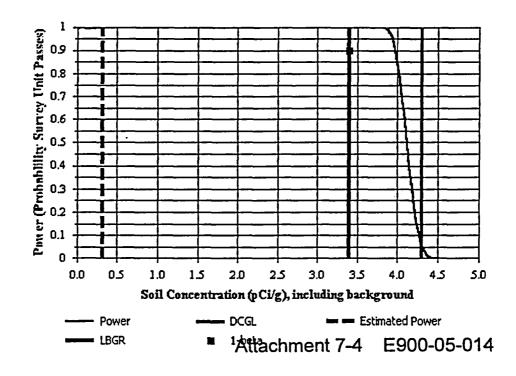
t Contaminant Summary SSGS and SNEC Open Land OL1

Contaminant	DCGLw (pCi/g)	Inferred Contaminant	Ratio	Modified DCGLw (pCl/g)	Scan MDC (pCi/g)
Cs-137	4.30	N/A	N/A	N/A	6.2
Contaminant	Survey Unit Estimate (Mean ± 1-Sigma) (pCi/g)			Reference Area Esti (Mean ± 1-Sigma (pCi/g)	
Cs-137	0.32 ± 0.3				

LEFT INTENTIONALLY BLANK

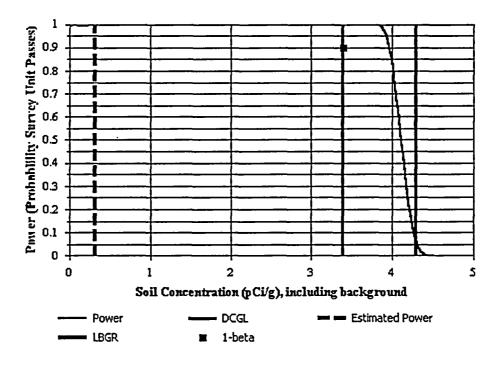
.

•


.

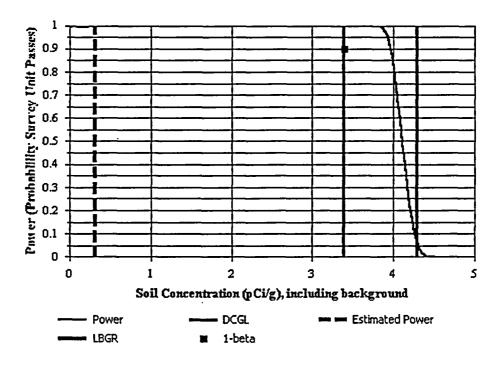
Attachment 7-3 E900-05-014

Site:	SSGS and SNEC Open land			
Planner(s):	WJCooper	WJCooper		
Survey Unit Name:	Open Land ARea CV OL1-9	Open Land ARea CV OL1-9		
Comments:				
Area (m²):	-1,500 1290 Sign 47,3/05	Classification:	1	
Selected Test:	Sign 4713/05	Estimated Sigma (pCi/g):	0.3	
DCGL (pCi/g):	4.30	Sample Size (N):	11	
LBGR (pCi/g):	3.4	Estimated Conc. (pCi/g):	0.3	
Alpha:	0.050	Estimated Power:	1	
Beta:	0.100	EMC Sample Size (N):	11	
Scanning Instrumenta	tion: Nal			


Prospective Power Curve

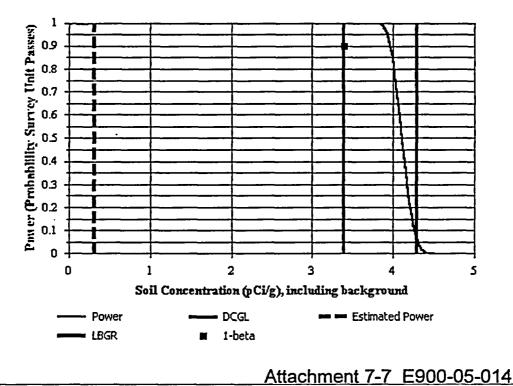
Site:	SSGS and SN	, SSGS and SNEC Open land			
Planner(s):	WJCooper				
Survey Unit Name:	SNEC Yard E	xcavation After I	Backfill OL1-10		
Comments:					
Area (m²):	1,200		Classification:	1	
Selected Test:	Sign		Estimated Sigma (pCi/g):	0.3	
DCGL (pCi/g):	4.30		Sample Size (N):	11	
LBGR (pCi/g):	3.4		Estimated Conc. (pCi/g):	0.3	
Alpha:	0.050		Estimated Power:	1	
Beta:	0.100		EMC Sample Size (N):	11	
Scanning Instrumenta	tion:	Nal			

Prospective Power Curve



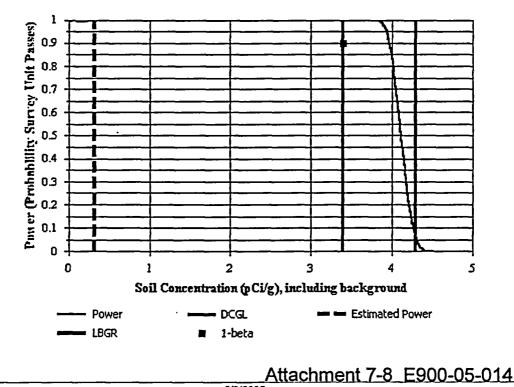
Site:	SSGS and SNEC Open land		
Planner(s):	WJCooper		
Survey Unit Name:	Barrrel Bunker Area OL1-11		
Comments:			
Area (m²):	1,500 1200 22 4/11/05	Classification:	1
Selected Test:	Sign	Estimated Sigma (pCi/g):	0.3
DCGL (pCi/g):	4.30	Sample Size (N):	11
LBGR (pCi/g):	3.4	Estimated Conc. (pCi/g):	0.3
Alpha:	0.050	Estimated Power:	1
Beta:	0.100	EMC Sample Size (N):	11
Scanning Instrumenta	tion: Nal		

Prospective Power Curve



Attachment 7-6_E900-05-014____

Site:	SSGS and SNEC Open land				
Planner(s):	WJCooper				
Survey Unit Name:	Line Shack Surrounding Area	Line Shack Surrounding Area OL1-12			
Comments:	Not including line shack and ra	Not including line shack and ramp			
Area (m²):	4,550 1575 Dayly/05	Classification:	1		
Selected Test:	Sign	Estimated Sigma (pCi/g):	0.3		
DCGL (pCi/g):	4.30	Sample Size (N):	11		
LBGR (pCi/g):	3.4	Estimated Conc. (pCi/g):	0.3		
Alpha:	0.050	Estimated Power:	1		
Beta:	0.100	EMC Sample Size (N):	11		
Scanning Instrumenta	tion: Nal				


Prospective Power Curve

Site:	SSGS and SNEC Open land			
Planner(s):	WJCooper			
Survey Unit Name:	South and West SNEC Yard F	South and West SNEC Yard Perimeter OL1-13		
Comments:				
Area (m ²):	1,300 1400 7 rey (4/05-	Classification:	1	
Selected Test:	Sign	Estimated Sigma (pCi/g):	0.3	
DCGL (pCi/g):	4.30	Sample Size (N):	11	
LBGR (pCi/g):	3.4	Estimated Conc. (pCi/g):	0.3	
Alpha:	0.050	Estimated Power:	1	
Beta:	0.100	EMC Sample Size (N):	11	
Scanning Instrumental	ion: Nal			

Prospective Power Curve

Recent OL1 Soil Sample Results

Grid	Cs137p	/m Date
Mean	0.32	14/05
Std Dev	0.30	5.7
AT125	0.13	12/14/2004
AT125	0.27	12/14/2004
AT124	0.3	12/13/2004
AT124	0.42	12/13/2004
AT123	0.82	12/13/2004
AT123	0.8	12/13/2004
AT122	0.07	12/14/2004
AT122	0.1	12/14/2004
AU125	0.13	12/14/2004
AU125	0.14	12/14/2004
AU124	0.4	12/14/2004
AU124	0.4	12/14/2004
AU123	0.3	12/14/2004
AU123	0.5	12/14/2004
AU122	0.34	12/14/2004
AU122	0.84	12/14/2004
AV122	0.55	12/13/2004
AV122	0.16	12/13/2004
AW123	0.13	12/14/2004
AW123	0.16	12/14/2004
AW123	0.13	12/14/2004
AW122	0.9	12/13/2004
AW120	0.33	1/26/2005
AX131	0.15	9/21/2004
AX131	0.13	9/21/2004
AX130	0.3	4/22/2004
AX130	0.13	4/22/2004
AX130	0.15	4/22/2004
AX130	0.3	4/22/2004
AX130	0.1	4/22/2004
AX129	0.4	4/22/2004
AX129	0.08	4/27/2004
AX129	0.1	4/27/2004
AX129 AX128	0.35	4/27/2004 4/26/2004
	0.08 0.2	
AX128 AX128	0.2	4/26/2004 4/26/2004
AX128	0.08	4/26/2004
Ax126	0.17	1/5/2004
Ax126	0.00	1/5/2005
AX120 AX124	0.09	1/4/2005
	•	
AX124	0.06	1/4/2005
AZ122	0.22	10/20/2004
AZ122	0.2	10/20/2004
AZ122	0.36	1/12/2005

Attachment 8-1 · E900-05-014

.

Ŧ

٩

Guid plifas Dete 3/14/05

bund	6977		•
AZ122	0.24	1/12/2005	Recent OL1 soil results (con't)
AZ122	0.13	1/12/2005	
AZ122	0.34	1/12/2005	
AZ122	0.2	1/12/2005	
AZ121	0.5	10/20/2004	
AZ121	0.15	10/20/2004	
AZ121	0.28	1/12/2005	
AZ121	0.1	1/12/2005	
AZ121	0.08	1/12/2005	
AZ121	0.08	1/12/2005	
AZ121	0.09	1/12/2005	
AU121	0.15	1/26/2005	
AU121	0.6	1/26/2005	
AT121	0.24	1/26/2005	
AT121	0.15	1/26/2005	
AU120	0.4	1/26/2005	
AU120	0.23	1/26/2005	
AV121	0.66	1/26/2005	
AV121	1.8	1/26/2005	
AV120	0.66	1/26/2005	
AV120	0.3	1/26/2005	
AW121	1	1/26/2005	
AW121	0.9	1/26/2005	
AW120	0.14	1/26/2005	Attachment 8-2

.

.

nt 8-2 E900-05-014

-

-

.

.

Location	Date	time	tom	count time ?
7 EYENORTH	3/8/05	14:31	123	BO SCL
8 EYEWEST	3/8/05	14:33 4	176	80 SCL
9 EYESOUTH	3/8/05	14:35 4		60 SCL
10 EYEEAST	3/8/05	14:37 4	141	60 SCL
11 FENCEEAST	3/8/05	14:38 4	144	60 SCL
12 FENCENORTH	3/8/05	14:41 4	150	60 SCL
13 LSHAKSOUTH	3/8/05	14:49	100	- 60 SCL
14 LSHAKEAST	3/8/05	14:52 4	110	BO SCL
T5 LSHAKNORTH	3/8/05	14:53	90	60 SCL
16 LSHAKE STAR WES	1 3/8/05	14:55	135 200	60 SCL
17 SSGSNORTH	3/8/05	15:04	154	60 SCL
18 SSGSWEST	3/8/05	15:07	207	80 SCL
19 SSGSSOUTH	3/8/05	15:09 4	137	60 SCL
20 SSGSEAST	3/8/05	15 10 4	174	60 SCL

•

Attachment 8-3 E900-05-014

• •					Exhibit 1 Survey Unit Inspection C	heck Sh	GRIGI	NAL		
			SE	CTION			ALTONIA THE NET THE FREE FREE FREE FREE FREE FREE FREE FR			
	Survey Unit	¥	OL-1 (La	ind)	Survey Unit Location		CV & SSGS Footpri	nts / CV	Yard	
	Date 4-	8-05	Time	1500	Inspection Team Men	nbers	R. She	epherd		
				SECTIC	N 2 - SURVEY UNIT IN	SPEC				
		Inspec	tion Requ	uirements	Check the appropriate	Yes/N	o answer.)	Yes	No	N/A
	1. Have suffic	ient surv	eys (i.e., po	st remediati	on, characterization, etc.) bee	n obtaine	ed for the survey unit?	X	1	
	2. Do the sur	veys (fror	n Question	1) demonstr	rate that the survey unit will me	st likely	pass the FSS?	X	1	
	3. Is the phys	ical work	(i.e., remed	iation & hou	usekeeping) in or around the s	urvey un	it complete?		X	
	4. Have all to	ols, non-j	permanent e	quipment, a	and material not needed to per	form the	FSS been removed?		X	
	5. Are the sur	vey surfa	ces relative	ly free of lo	ose debris (i.e., dirt, concrete c	lust, met	al filings, etc.)?		1	x
	6. Are the sur	vey surfa	ces relative	ly free of liq	uids (i.e., water, moisture, oil,	etc.)?		X		
• •	7. Are the sur	vey surfa	ces free of a	all paint, wh	ich has the potential to shield	radiation	?			X
	8. Have the S	urface M	easurement	Test Areas	(SMTA) been established? (F	lefer to E	Exhibit 2 for instructions.)			X
	9. Have the S	urface M	easurement	Test Areas	(SMTA) data been collected?	(Refer t	o Exhibit 2 for instructions.)			X
	10. Are the sur	vey surfa	ces easily a	ccessible?	(No scaffolding, high reach, et	c. is nee	ded to perform the FSS)	X		
	11. Is lighting a	dequate	to perform t	he FSS?						X
	12. Is the area	industria	lly safe to pe	erform the F	SS? (Evaluate potential fall &	trip haza	ards, confined spaces, etc.)	X		
	13. Have photo	graphs b	een taken s	howing the	overall condition of the area?			X		
	14. Have all ur	satisfacto	ory condition	s been res	olved?				X	
	NOTE: If a "No" answer is obtained above, the inspector should immediately correct the problem or initiate corrective actions through the responsible site department, as applicable. Document actions taken and/or justifications in the "Comments" section below. Attach additional sheets as necessary.									
	Comments: Items # 3 and 4 - Shonka surveyed dirt piles cover the majority of the CV and SSGS footprint areas; also there are materials, tools and equipment stored within the survey unit south of the SSGS and line building that will require relocation. Lou Shamenek notified.									
	ltem # 12 - S hazard.	everal	grids and	grid port	ions are located inside t	he swi	tchyard fence presenti	ng poten	itial_elec	ctrical
	Item # 13 - Photographs of the survey unit were taken to show present existing conditions.									
							Attachn E900-0		-1	
	Survey Unit I	nspecto	or (print/si	gn) R. 1	Shepherd Rike	she	1 /	Date	4/19	/05
	Survey Desi	gner (pi	int/sign)	W. Coo		5		Date	4/201	105-
									-í	

۰.

Appendix B

-- -

Open Land Survey Design Revision 1

ORIGINAL

	CALCU	JLATION DESCRI	PTION			
Calculation Number	· · · · · · · · · · · ·	Revision Number	Effective Date	F	Page Number	r
E900-05-014		1	5/19/05	-	1 of	
Subject				I		
SNEC Plant Area Open L	and – OL1 - Survey	Design				
Question 1 - Is this calculatio	n defined as "In QA Sco	ope"? Refer to definition	3.5. Yes 🛛 No			
Question 2 - Is this calculatio	n defined as a *Design	Calculation"? Refer to d	efinitions 3.2 and 3.3.	Yes 🛛	No 🗖	
NOTES: If a "Yes" answer is obt Assurance Plan. If a "Yes" ar calculation as the Technical Revi	nswer is obtained for Que	alculation must meet the re estion 2, the Calculation (quirements of the SNEC Originator's immediate s	Facility De supervisor :	commissioni should not r	ng Q eviev
	DESC	RIPTION OF REV	ISION			
1 – Revision 1 adds the revised text is provided,						
	but only those atta		been added or rev		included	her
	but only those atta	ROVAL SIGNATU	been added or rev		included	
revised text is provided,	but only those atta	ROVAL SIGNATU	been added or rev	ised are	included 5/14/c 5/14/c	
revised text is provided,	but only those atta APPF W. J. Cooper	ROVAL SIGNATU	been added or rev	ised are Date	included	

i

:

:

FratEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-014	1	Page 2 of 11
Subject		

SNEC plant area open land – OL1 - Survey Design

1.0 PURPOSE

- 1.1 The purpose of this calculation is to develop a survey design for the Saxton Nuclear Experimental Corporation "OL1 SNEC and SSGS open land" areas that are located in the original SNEC facility site and the site of the Saxton Steam Generating Station (SSGS). The area (OL1) is approximately <u>11600 square meters</u>, including the 1018 square meters in the existing east yard tank excavation. The area is a Class 1 survey area for the soils. Because the survey area exceeds the 2000 square meter limitation in Table 5-5 of the SNEC LTP (Reference 3.5) for maximum class 1 open land survey unit area, this survey area is subdivided into multiple survey units.
- 1.2 Multiple survey units of exposed concrete or macadam: MA8, DB1, PF1, SS12, SS24, and DB5 will be covered in a separate survey design (E900-05-015). This includes small concrete pads and monoliths, macadam driveways and parking areas, and the remaining pad footprints from the DSF building and the SSGS.
- 1.3 The Yard Storage Tank Excavation OL1-7 is covered in a separate design (E900-05-012).
- 1.4 This survey design includes six survey units:
 - 1.4.1 OL1-8, about 1448 square meters consisting of the soil and building debris filled areas in and around the SSGS (Attachment 1-2). The northwest portion of the area, about 4 grids, may have concrete under a soil layer. Sampling done in this area should go down to the concrete layer and stop if shallower than 1 meter.
 - 1.4.2 OL1-9, consisting of the 1290 square meter area around and including the CV footprint between the SSGS footprint and the east yard excavation (Attachment 1-3).
 - 1.4.2.1 This area has some exposed concrete NW of the CV.
 - 1.4.2.2 A driveway/parking area west of the CV (145 m²) has a thin (about 4 to 6 inches) soil cover. The soil will be surveyed under this design, then removed to expose the pavement, which will then be separately surveyed under design E900-05-015.
 - 1.4.2.3 A portion of OL1 in this vicinity is inside the switchyard (e.g. grid AZ131 and portions of others) and will be surveyed with the switchyard under another design.
 - 1.4.3 OL1-10 which consists of about 1200 square meters of the SNEC yard (RWST, RWDF, east yard excavation). This area must be surveyed after the east yard excavation is backfilled (Attachment 1-4) so that the as-left soil surface is surveyed.
 - 1.4.4 OL1-11 the barrel bunker area about 1200 square meters (Attachment 1-5).
 - 1.4.5 OL1-12, the line shack surrounding area of about 1575 square meters (Attachment 1-6) not including the line shack itself, which was previously surveyed.
 - 1.4.5.1 Portions of this survey unit are gravel road.
 - 1.4.5.2 There are a number of small concrete or macadam ramps and sidewalks around the line shack. These paved surfaces will be separately surveyed under design E900-05-015.

FratEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number

E900-05-014

1

Page 3 of 11

Subject

SNEC plant area open land – OL1 - Survey Design

- 1.4.6 OL1-13, an odd shaped perimeter of soil of approximately 1480 square meters around the barrel bunker area and the DSB slab and pavement (Attachment 1-7).
- 1.5 The general layout of these survey units is shown in **Attachment 1-1**.
- 1.6 Fences in and/or bordering the area will be surveyed using a separate design E900-05-023.

2.0 SUMMARY OF RESULTS

The following information should be used to develop a survey request for this survey unit. The effective DCGLw value is listed below. The US NRC has reviewed and concurred with the methodology used to derive these values. See Attachment 2-1 to 2-4. These are copied from **Reference 3.10** which was previously approved.

Table 1, DCGLw Values

Volumetric DCGLw (pCl/g – Cs-137) 5.73 (4.3 A.L.)

NOTE: A.L. is the site Administrative Limit (75% of effective DCGLw)

- 2.1 Survey Design
 - 2.1.1 Scanning of soil (and fill materials) shall be performed using a <u>2" D by 2" L Nal</u> <u>detector</u> with a Cs-137 window setting (Reference 3.1). The window will straddle the Cs-137 662 keV full energy peak width (see typical calibration information on Attachment 3-1).
 - 2.1.2 The instrument conversion factor/efficiency shall not be less than that assumed on **Attachment 4-1** as <u>205.6 cpm/uR/h Cs-137</u>.
 - 2.1.3 Other instruments of the type specified in Section 2.1.1 above may be used during the final status survey (FSS), but must demonstrate detection efficiencies at or above the value listed in Section 2.1.2 above.

MDCscan (pCi/g) – Cs-137*	Scan Speed (cm/sec)	Maximum Distance from Surface	Action Level	% Coverage
6.2	25	4" (gap between detector face & soil surface)	> 175 ncpm	100%

Table 2, Soil Scanning Parameters

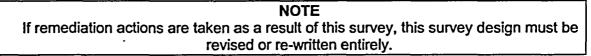
See Attachment 4-1 *

- 2.1.4 The action level specified is based on the MDCscan at a 300 cpm background. This is adequate since the MDCscan is expected to be less than the DCGLw times the area factor. Typical observed backgrounds are about 100 to 200 cpm (Attachment 8-3).
- 2.1.5 If a net count rate greater than the action level of Table 2 is encountered during the scanning process, the surveyor should stop and locate the boundary of the elevated area. The surveyor should then mark the elevated area with stakes or other appropriate marking methods. Continue the scan survey. <u>Sample the elevated areas(s)</u> IAW SNEC procedure E900-IMP-4520.04 (Reference 3.2), and Section 2.2 of this document following evaluation and investigation survey planning.

FratEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-014	1	Page 4 of 11
Subject		· · · · · · · · · · · · · · · · · · ·

SNEC plant area open land – OL1 - Survey Design

- 2.1.5.1 <u>Class 1</u> soil should be scanned using a serpentine pattern that is ~0.5 meters wide.
- 2.1.5.2 This is a class 1 survey area. All accessible soil surfaces are required to be 100% scanned.
- 2.1.5.3 There is a large pile of 'PRI' soil in the south-central portion of OL1-9 on the CV cap and in the central portion of OL1-8 in the area of the SSGS turbine hall. These piles should be removed prior to completion of the survey, so that the soils under the piles are subjected to the survey requirements of this design. No significant areas of residual concrete surfaces are expected to be exposed by removal of the PRI soil piles.
- 2.1.5.4 The soil piles are established PRI areas, and were previously 100% scan surveyed and sampled during an automated conveyor measurement campaign in the summer of 2003 as SR186 and 190 (References 3.15 and 3.16). The results of this survey indicate that the soil piles meet LTP residual activity release requirements and the thoroughness of the survey is adequate to meet FSS measurement needs. One hundred and fifty-seven composite samples were collected of the scanned soil, all of which are less than 25 percent of the AL in this design. Additionally, the automated scanning (see Reference 3.17 for data on a previous scanning campaign) typically achieved an alarm setpoint less than 70% of the AL and detection limits substantially below the alarm setpoints. The soil piles are expected to be used as backfill elsewhere around the plant.
- 2.1.5.5 Areas that cannot be accessed should be clearly noted along with the reason for not completing the scan in that area.
- 2.1.6 The minimum number of soil sampling points indicated by the COMPASS computer program (Reference 3.3) is <u>11</u> for most of the survey units (see COMPASS output on Attachment 7-3 to 7-8). However, the number of samples is increased to 16 in OL1-13 and 18 in OL1-8 to provide a more widely distributed layout of sample points in the unusual shapes.
 - 2.1.6.1 Sampling depth should be IAW Section 2.2.
 - 2.1.6.2 The MDCscan (soil) exceeds the effective administrative DCGLw for Cs137 (6.2 pCi/g MDCscan @300cpm bkg > 4.3 pCi/g AL) but given the area factor for the assumed 1 meter squared elevated area (AF 28.7) and for the effective sample area (AF > 3), the scan MDC meets MARSSIM requirements.
- 2.1.7 VSP (Reference 3.4) is used to plot all sampling points on the included diagrams. The actual number of random start systematically spaced measurement points may be greater than that required by the Compass computer code because of any or all of the following:
 - placement of the initial random starting point (edge effects),
 - odd shaped diagrams, and/or


FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-014	1	Page 5 of 11
Subject		

SNEC plant area open land - OL1 - Survey Design

• coverage concerns

(see Attachment 6-1 to 6-12 for VSP sampling point locations)

- 2.1.8 The starting points for physically locating sample sites in the survey unit are based on measurements from site grid pins or other evident markers (see diagrams on **Attachment 6-1, 6-3, 6-5, 6-7, 6-9,** and **6-11**). Soil sampling points are positioned using coordinates developed from these markers and listed on **Attachments 6-2, 6-4, 6-6, 6-8, 6-10,** and **6-12**.
- 2.1.9 Because of the proximity to the RWDF and drum bunker, a biased sample location (BP-01) is placed in OL1-12 west of the line shack between the line shack wall and the fence.
- 2.1.10 Because of the potential for residual activity transfer through vehicle movement and post-shutdown topfill on the gravel, two biased samples locations (BP-02 and BP-03) are defined in the gravel areas north and south of the line shack in OL1-12. See note below for sampling process for gravel areas.
- 2.1.11 A portion of the area of OL1-9 has a layer of old pavement underneath of a thin (4-6 inch) layer of soils. This area is indicated by the darker color on Attachment 6-3. The soil sample in this area should only be collected from the soils on top of the pavement. Cutting down through the pavement to obtain a deeper sample is not required. The soil will be removed after FSS of the soil so that the pavement can be separately surveyed under design E900-05-015.
- 2.1.12 Some sampling points may need to be adjusted to accommodate obstructions within the survey area. Contact the SR coordinator to report any difficulties encountered when laying out systematic grid sampling points.
- 2.1.13 When an obstruction is encountered that will not allow collection of a sample, contact the cognizant SR coordinator for permission to delete the sampling point.

2.2 Sample the biased and random fixed points and any elevated areas(s) IAW SNEC procedure E900-IMP-4520.04 (Reference 3.2) and the following.

FretEnergy

SNEC CALCULATION SHEET

Calculation Number E900-05-014

Revision Number 1

Page 6 of 11

Page Number

Subject

SNEC plant area open land – OL1 - Survey Design

NOTE

Since the site surface dose model is 1 meter in depth, samples representative of the entire one meter thick dose model layer must be collected to satisfy the sampling requirements of Section 2.1.5 (of this document). This should be done by obtaining a well mixed sample of an entire 1 meter deep core. Section 4.2.3, 4.2.6 or 4.2.7 of site procedure E900-IMP-4520.04 are applicable when satisfying Section 2.1.5. Sampling due to an instrument alarm condition should also be of the entire 1 meter of soil/material.

The gravel samples in OL1-12 (including the two biased samples BP-02 and BP-03) should be sampled by collecting two well mixed samples of the layers, one of the gravel overburden layer, and a second of the underlying soil down to a total of 1 meter in depth. This same process should be used whenever a random point lies on a gravel road or gravel parking area.

For the fixed point soil samples in OL1-9 over the pavement (FP-11) and OL1-8 in the northwest (FP-13, 14, 16, 17, and 18), only the soil layer on top of the pavement (if pavement is present) is to be sampled under this design.

- 2.2.1 Clearly mark, identify and document all sample locations.
- 2.2.2 Sample any location that is above the action level cited is Table 2 based on specific investigation plan.
- 2.2.3 Maintain chain-of custody requirements on all design fixed point and action level samples (Reference 3.14).

3.0 REFERENCES

- 3.1 SNEC Calculation No. E900-03-018, "Optimize Window and Threshold Settings for the Detection of Cs-137 Using the Ludlum 2350-1 and a 44/10 Nal Detector", 8/7/03.
- 3.2 SNEC Procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".
- 3.3 COMPASS Computer Program, Version 1.0.0, Oak Ridge Institute for Science and Education.
- 3.4 Visual Sample Plan, Version 3.0, Copyright 2004, Battelle Memorial Institute.
- 3.5 SNEC Facility License Termination Plan.
- 3.6 SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA".
- 3.7 SNEC survey Nal measurements in OL1 & OL2 3/8/05
- 3.8 GPU Nuclear, SNEC Facility, "Site Area Grid Map", SNECRM-020, Sheet 1, Rev 4, 1/18/05.
- 3.9 SNEC Calculation No. E900-03-012, Effective DCGL Worksheet Verification.
- 3.10 SNEC Calculation No. E900-04-005 "CV Yard Survey Design North West Side of CV"
- 3.11 SNEC Procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design".
- 3.12 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number

E900-05-014

1

Subject

SNEC plant area open land – OL1 - Survey Design

- 3.13 Microsoft Excel 97, Microsoft Corporation Inc., SR-1 and SR-2, 1985-1997.
- 3.14 SNEC Procedure E900-ADM-4500.39 "Chain of Custody for Samples"
- 3.15 SNEC survey SR0186
- 3.16 SNEC survey SR0190
- 3.17 "Final Report for Survey of Debris Pile", Revision 3 1/4/05 Shonka Research Associates

4.0 ASSUMPTIONS AND BASIC DATA

- 4.1 The COMPASS computer program is used to calculate the required number of random start systematic samples to be taken in the survey unit (**Reference 3.3**).
- 4.2 Scoping and post-remediation soil samples from this area are used as the initial estimate of variability. These results are shown on Attachment 8-1 and 8-2. The grid locations where these samples were taken are shown on Attachment 1-1.
- 4.3 The MARSSIM Sign Test (Reference 3.12) will be applicable for this survey design. No background subtraction will be performed under this criteria during the DQA phase. Normal environmental background of Cs137 will (conservatively) not be subtracted.
- 4.4 The required number of fixed survey points as determined by COMPASS are then located on the survey map for the survey unit by the Visual Sample Plan (VSP) computer code (Reference 3.4).
- 4.5 **Reference 3.5** and **3.6** were used as guidance during the survey design development phase.
- 4.6 Background has been measured in the area, and ranges from about 100 cpm to about 200 cpm (Reference 3.7). See Attachment 8-3.
- 4.7 The determination of the physical extent of this area is based on the drawing **Reference 3.8** and numerous walkdowns and measurements.
- 4.8 Remediation History: OL1 is an open land area. Portions contained the original SNEC site facility and the Saxton Steam Generating Station. Extensive remediation has occurred in the survey area.
 - 4.8.1 The SNEC Radwaste building (RWDF), Control and Auxiliary (C&A) building, Containment Vessel (CV), the SSGS, various buried pipe tunnels and underground tanks were all extensively remediated by removal, various decon methods and extensive concrete removal. The buildings were then demolished to grade or below. The residual building portions have been previously surveyed and the release surveys have been accepted.
 - 4.8.2 Extensive soil remediation (removal) was performed.
 - 4.8.3 The SSGS was backfilled when it was permanently shut down. Subsequently, activity was found using core bores. The SSGS backfill was removed and surveyed through an automated conveyor system. Additional concrete surfaces in the SSGS basement were remediated and then the scanned backfill was replaced.

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-014	1	Page 8 of 11
Subject	······································	······································

SNEC plant area open land – OL1 - Survey Design

- 4.8.4 The underground tank excavation was backfilled after the tanks were removed early in the project. This backfill was removed. Portions were disposed of as radioactive waste, while the remainder was scanned using a automated conveyor scanning system and is currently stored for re-use.
- 4.8.5 The barrel bunker was removed to below grade.
- 4.8.6 Underground drainage and sewerage systems have been removed.
- 4.9 This survey design uses Cs-137 as a surrogate for all SNEC facility related radionuclides in the survey unit. The effective DCGLw is the Cs-137 DCGLw from the SNEC LTP (6.6 pCi/g) adjusted (lowered) to compensate for the presence (or potential presence) of other SNEC related radionuclides. In addition, an administrative limit (75%) has been set that further lowers the permissible Cs-137 concentration to an effective surrogate DCGLw for this survey area.
- 4.10 The sample database used to determine the effective radionuclide mix for the OL1 area has been drawn from samples that were assayed at off-site laboratories. This list is shown on Attachment 2-1 through 2-3, and includes twenty-one analysis results. Review of the data shows several radionuclides were not positively identified at any significant concentration. These radionuclides have been removed from the data set and are not considered further as any minor contribution is accounted for by the administrative reduction of the surrogate DCGLw to 75% of the surrogate DCGLw based on the identified nuclide ratios. Radionuclides remaining include H-3, Co-60, Sr-90, and Cs-137. Additionally, the data shows Cs-137 to be the predominant radioactive contaminant (based on activity) found in the area.
- 4.11 The decayed set of sample results were input to the spreadsheet titled "Effective DCGL Calculator for Cs-137" (Reference 3.9) to determine the effective volumetric DCGLw values for the OL1 area. The output of this spreadsheet is shown on Attachment 2-4. This data is copied from Reference 3.10.
- 4.12 The Nal detector scan MDC calculation is determined based on a 25 cm/sec scan rate, a 1.38 index of sensitivity (95% correct detection probability and 60% false positive) and a detector sensitivity of 205.6 cpm/uR/h for Cs-137. Additionally, the detection system incorporates a Cs-137 window that lowers sensitivity to background in the survey unit. The resulting range of background values varies from about 100 to 200 cpm (Attachment 8-3).
- 4.13 The survey unit described in this survey design was inspected after remediation efforts were shown effective. A copy of the OL1 specific portion of the SNEC facility post-remediation inspection report (Reference 3.11) is included as Attachment 9-1.
- 4.14 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in this survey area.
- 4.15 The decision error for this survey design is 0.05 for the α value and 0.1 for the β value.
- 4.16 "Special measurements" (as described in the SNEC LTP sec 5.5.3.4) are included in this survey design. Section 5.5.3.4.4 discusses re-fill materials. Portions of this survey will include areas that consist of crushed structural materials and backfill. These will be treated as soil for scanning and sampling.

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-014	1	Page 9 of 11
Subject		

SNEC plant area open land – OL1 - Survey Design

- 4.17 No additional sampling will be performed IAW this survey design beyond that described herein.
- 4.18 SNEC site radionuclides and their individual DCGLw values are listed on Exhibit 1 of this calculation based on Table 5-1 of Reference 3.5.
- 4.19 The survey design checklist is listed in Exhibit 2.
- 4.20 Area factors are shown as part of COMPASS output (see Attachment 7-1) and are based on the Cs-137 area factors from the SNEC LTP.

5.0 CALCULATIONS

5.1 All calculations are performed internal to applicable computer codes or within an Excel (Reference 3.13) spreadsheet.

6.0 APPENDICES

- 6.1 Attachment 1-1, is a diagram of survey unit OL1. Attachment 1-2 through 1-7 are the grid layouts for the six OL1 open land survey units included in this design.
- 6.2 Attachment 2-1 to 2-4 is the DCGLw calculation logic and sample results from the OL1 and OL2 areas in addition to the DCGL calculation sheets (decayed to January 15, 2004).
- 6.3 **Attachment 3-1**, is a copy of the calibration data from typical Nal radiation detection instrumentation that will be used in this survey area.
- 6.4 Attachment 4-1, is the MDCscan calculation sheet for volumetric materials in pCi/g.
- 6.5 Attachment 5-1, is the MicroShield dose rate calculation results for 6" thick soil used to determine the exposure rate from a 1 pCi/cm³ Cs-137 source term in a end-cylinder geometry.
- 6.6 Attachment 6-1 to 6-12, show the randomly picked scan locations (from VSP) and reference coordinates for the six OL1 open land survey units included in this design.
- 6.7 Attachment 7-1 is a COMPASS output showing the area factors used. Attachment 7-2 shows the variability used for all six survey units. Attachments 7-3 through 7-8, are the COMPASS output for the six OL1 open land survey units included in this design, showing the number of sampling points in the survey unit, area factors, and prospective power.
- 6.8 Attachment 8-1 and 8-2, is the soil variability results from selected recent soil samples from the OL1 area. Attachment 8-3 is the general area Nal detector backgrounds measured on 3/8/05.
- 6.9 Attachment 9-1, is the results of the inspection report for the OL1 area.

FirstEnergy	_
FirstEnergy	_

SNEC CALCULATION SHEET

Page Number

Calculation Number E900-05-014

Subject

SNEC plant area open land – OL1 - Survey Design

Exhibit 1

SNEC Facility Individual Radionuclide DCGL Values ^(a)

Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm ²)	25 mrem/y Limit (All Pathways) Open Land Areas (Surface & Subsurface) (pCl/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	1.9E+04
Pu-238	3.0E+01	1.8	0.41
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	· 0.61

NOTES:

(a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

(b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

FirstEnergy

SNEC CALCULATION SHEET

Calculation Number E900-05-014

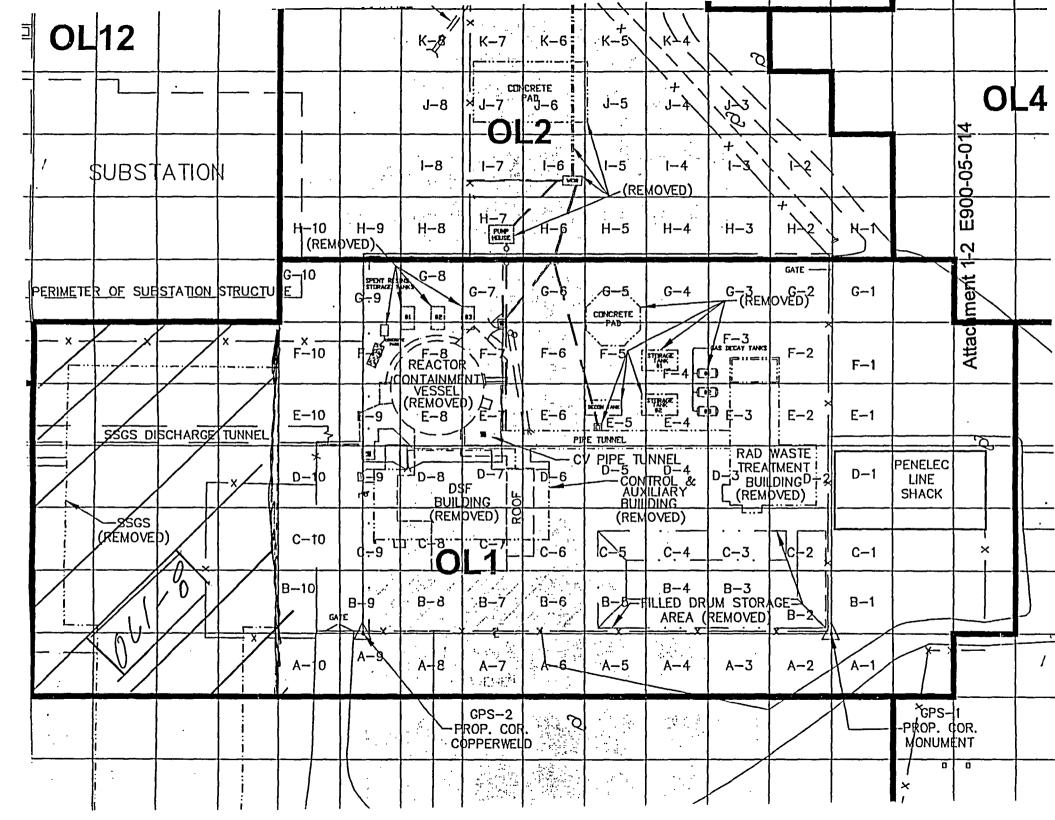
Revision Number

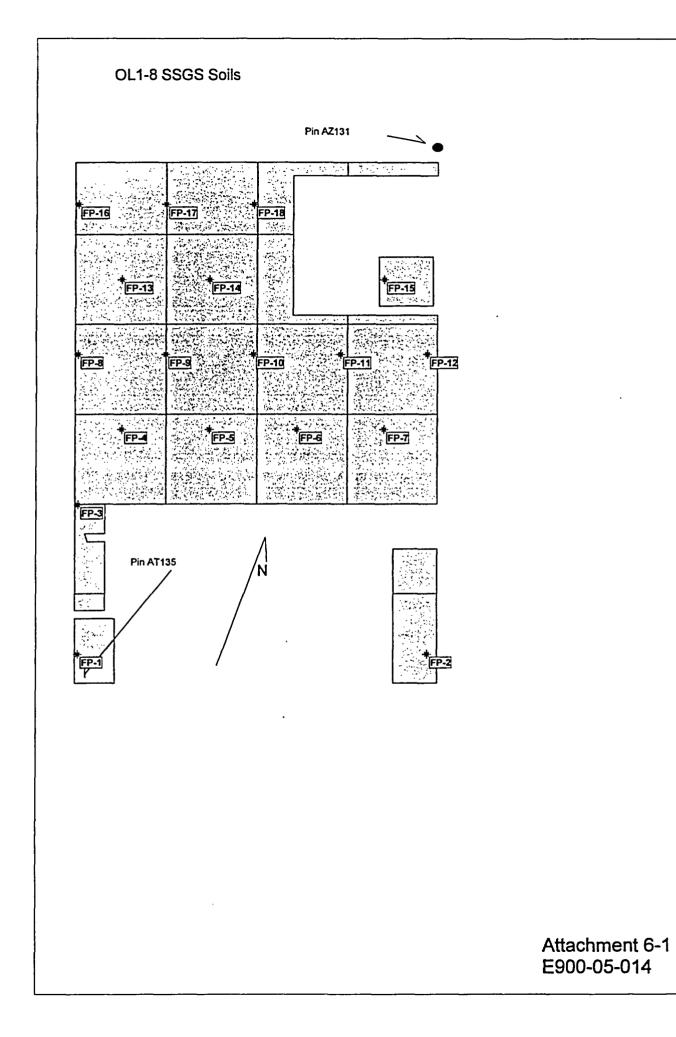
1

Page 11 of 11

Page Number

Subject


SNEC plant area open land – OL1 - Survey Design


Exhibit 2

Survey Design Checklist

Calcul	ation No. Location Codes E900-05-014 SNEC plant area open land - OL1 - Survey D	esign	
ITEM	REVIEW FOCUS	Status (Circle One)	Reviewer Initials & Date
1	Has a survey design calculation number been assigned and is a survey design summary description provided?	Yes, N/A	ANT. clzzla
2	Are drawings/diagrams adequate for the subject area (drawings should have compass headings)?	(es) N/A	TMT. 6/22/CE
3	Are boundaries properly identified and is the survey area classification clearly indicated?	Yes N/A	TMT. 4220
4	Has the survey area(s) been properly divided into survey units IAW EXHIBIT 10	Yes N/A	TAT. 4 200
5	Are physical characteristics of the area/location or system documented?	(res) N/A	MT. 4270
6	Is a remediation effectiveness discussion included?	(res) N/A ·	TMT 6/22/C
7	Have characterization survey and/or sampling results been converted to units that are comparable to applicable DCGL values?	Yes N/A .	IMT. Wak
8	Is survey and/or sampling data that was used for determining survey unit variance included?	Yes N/A	TMT. Ldz-20
9	Is a description of the background reference areas (or materials) and their survey and/or sampling results included along with a justification for their selection?	Yes, N/A	TML 6/22
10	Are applicable survey and/or sampling data that was used to determine variability included?	(Yes,) N/A -	TMT. Work
11	Will the condition of the survey area have an impact on the survey design, and has the probable impact been considered in the design?	Yes, N/A	TMT. 422/2
12	Has any special area characteristic including any additional residual radioactivity (not previously noted during characterization) been identified along with its impact on survey design?	Yes,N/A	TMT. chale
13	Are all necessary supporting calculations and/or site procedures referenced or included?	Yes N/A	TMIGIZZO
14	Has an effective DCGLw been identified for the survey unit(s)?	Yes N/A	TMT. chizic
15	Was the appropriate DCGL _{ENC} included in the survey design calculation?	Yes, N/A	m dist
16	Has the statistical tests that will be used to evaluate the data been identified?	Yes N/A	TMT UZZA
17	Has an elevated measurement comparison been performed (Class 1 Area)?	Yes, N/A)	THIT Wak
18	Has the decision error levels been identified and are the necessary justifications provided?	Yes N/A	THI Was
19	Has scan instrumentation been identified along with the assigned scanning methodology?	Yes, N/A	TWIT chile
20	Has the scan rate been identified, and is the MDCscan adequate for the survey design?	Yes) N/A	TMT. 4224
21	Are special measurements e.g., in-situ gamma-ray spectroscopy required under this design, and is the survey methodology, and evaluation methods described?	Yes N/A -	IMT. child
22	Is survey instrumentation calibration data included and are detection sensitivities adequate?	Yes N/A	TMT chist
23	Have the assigned sample and/or measurement locations been clearly identified on a diagram or CAD drawing of the survey area(s) along with their coordinates?	Yes N/A -	TMT. dak
24	Are investigation levels and administrative limits adequate, and are any associated actions clearly indicated?	Yes N/A	THT. drak
25	For sample analysis, have the required MDA values been determined.?	Yes, N/A	TMT. 6/22/
26	Has any special sampling methodology been identified other than provided in Reference 6.3?	Yes, (N/A)	TMT. C/22

NOTE: a copy of this completed form or equivalent, shall be included within the survey design calculation. Calculation arrainally reviewed slights, but did not complete this checklist-

OL1-8 Fixed point Dimensions in METERS

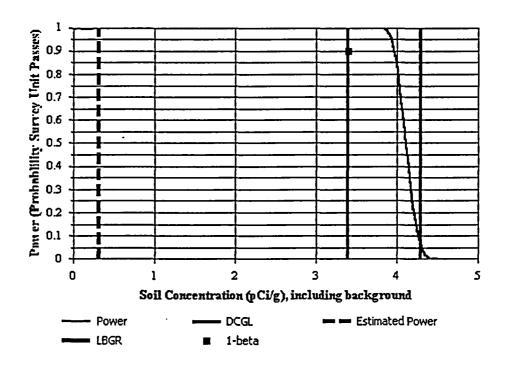
X Coord	Y Coord	Label	Grid	Туре	East	North
0.36	3.22	FP-1	AT135	Systematic	0.4	3.2
38.92	3.22	FP-2	AT132	Systematic	8.9	3.2
0.36	19.92	FP-3	AU135	Systematic	0.4	9.9
5.18	28.26	FP-4	AV135	Systematic	5.2	8.3
14.82	28.26	FP-5	AV134	Systematic	4.8	8.3
24.46	28.26	FP-6	AV133	Systematic	4.5	8.3
34.10	28.26	FP-7	AV132	Systematic	4.1	8.3
0.36	36.61	FP-8	AW135	Systematic	0.4	6.6
10.00	36.61	FP-9	AW135	Systematic	9.999	6.6
19.64	36.61	FP-10	AW134	Systematic	9.6	6.6
29.28	36.61	FP-11	AW133	Systematic	9.3	6.6
38.92	36.61	FP-12	AW132	Systematic	8.9	6.6
5.18	44.96	FP-13	AX135	Systematic	5.2	5.0
14.82	44.96	FP-14	AX134	Systematic	4.8	5.0
34.10	44.96	FP-15	AX132	Systematic	4.1	5.0
0.36	53.31	FP-16	AY135	Systematic	0.4	3.3
10.00	53.31	FP-17	AY135	Systematic	9.999	3.3
19.64	53.31	FP-18	AY134	Systematic	9.6	3.3

OL1-8 Fixed point Dimensions in FEET

X Coord	Y Coord	Label	Grid	Туре	East	North
1.18	10.56	FP-1	AT135	Systematic	1.2	10.6
127.65	10.56	FP-2	AT132	Systematic	29.2	10.6
1.18	65.32	FP-3	AU135	Systematic	1.2	32.5
16.99	92.70	FP-4	AV135	Systematic	17.0	27.1
48.61	92.70	FP-5	AV134	Systematic	15.8	27.1
80.22	92.70	FP-6	AV133	Systematic	14.6	27.1
111.84	92.70	FP-7	AV132	Systematic	13.4	27.1
1.18	120.08	FP-8	AW135	Systematic	1.2	21.7
32.80	120.08	FP-9	AW135	Systematic	32.8	21.7
64.41	120.08	FP-10	AW134	Systematic	31.6	21.7
96.03	120.08	FP-11	AW133	Systematic	30.4	21.7 .
127.65	120.08	FP-12	AW132	Systematic	29.2	21.7
16.99	147.47	FP-13	AX135	Systematic	17.0	16.3
48.61	147.47	FP-14	AX134	Systematic	15.8	16.3
111.84	147.47	FP-15	AX132	Systematic	13.4	16.3
1.18	174.85	FP-16	AY135	Systematic	1.2	10.8
32.80	174.85	FP-17	AY135	Systematic	32.8	10.8
64.41	174.85	FP-18	AY134	Systematic	31.6	10.8

Xcoord and Ycoord values are from the origin pin AT135 East and North are from each grid ID pin

> Attachment 6-2 E900-05-014


Survey Plan Summary OLI - 8

,

i

Site:	SSGS and SNEC Open land	t	
Planner(s):	WJCooper		
Survey Unit Name:	Backfilled Land Area SSGS		
Comments:	area appoximate after deleti	ion of concrete area	
Area (m²):	2,000 222	Classification:	1
Selected Test:	Sign	Estimated Sigma (pCi/g):	0.3
DCGL (pCi/g):	4.30	Sample Size (N):	11
LBGR (pCi/g):	3.4	Estimated Conc. (pCi/g):	0.3
Alpha:	0.050	Estimated Power:	1
Beta:	0.100	EMC Sample Size (N):	11
Scanning Instrumentation: Nal			

Prospective Power Curve

Attachment 7-3 E900-05-014

Appendix C

Open Land Survey Design Revision 2

				ORI	GINAL
FirstEnergy					
	CALCUL	ATION DESCI	RIPTION		· ·
Calculation Number	5	Revision Number	Effective Date	1	Page Number
E900-05-014		2	6/16/05	-	1 of 11
Subject			, ,		
SNEC Plant Area Open La	Ind – OL1 - Survey D	esign			
Question 1 - Is this calculation	defined as "In QA Scope	? Refer to definition	on 3.5. Yes 🕅 No		
Question 2 - Is this calculation	•			—	No 🗖
NOTES: If a "Yes" answer is obtain Assurance Plan. If a "Yes" ans calculation as the Technical Review	ned for Question 1, the calc wer is obtained for Questi	ulation must meet the	requirements of the SNEC	Facility De	commissioning Quality
	DESCRI	PTION OF RE	VISION		
 1 – Revision 1 adds the s revised text is provided, t 2- Revision 2 adds a new 14. Only the revised page 	out only those attach version of the fixed	ments that have point sample lay	been added or rev yout for OL1-11 as	vised are	included here.
	APPRO	VAL SIGNATI	JRES		
Calculation Originator	W. J. Cooper C	HP/ 7	E_	Date	6/16/05
Technical Reviewer	B. Brosey/	B. Brow	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Date	6/16/05
Additional Review	A. Paynter/	Inth.		Date	16 June Zaig
Additional Review			\bigcirc	Date	_

ŧ	
•	
:	
3	

Fistenergy	SNEC CALCU	JLATION SHEET	
Calculation Number		Revision Number	Page Number
E900-05-014		2	Page 5 of 11
Cubin at			

Subject

SNEC plant area open land - OL1 - Survey Design

• coverage concerns

(see Attachment 6-1 to 6-12 for VSP sampling point locations)

- 2.1.8 The starting points for physically locating sample sites in the survey unit are based on measurements from site grid pins or other evident markers (see diagrams on Attachment 6-1, 6-3, 6-5, 6-7, 6-9, 6-11 and 6-13). Soil sampling points are positioned using coordinates developed from these markers and listed on Attachments 6-2, 6-4, 6-6, 6-8, 6-10, 6-12, and 6-14. Attachments 6-13 and 6-14 are to be used for OL1-11 in lieu of 6-7 and 6-8.
- 2.1.9 Because of the proximity to the RWDF and drum bunker, a biased sample location (BP-01) is placed in OL1-12 west of the line shack between the line shack wall and the fence.
- 2.1.10 Because of the potential for residual activity transfer through vehicle movement and post-shutdown topfill on the gravel, two biased samples locations (BP-02 and BP-03) are defined in the gravel areas north and south of the line shack in OL1-12. See note below for sampling process for gravel areas.
- 2.1.11 A portion of the area of OL1-9 has a layer of old pavement underneath of a thin (4-6 inch) layer of soils. This area is indicated by the darker color on Attachment 6-3. The soil sample in this area should only be collected from the soils on top of the pavement. Cutting down through the pavement to obtain a deeper sample is not required. The soil will be removed after FSS of the soil so that the pavement can be separately surveyed under design E900-05-015.
- 2.1.12 Some sampling points may need to be adjusted to accommodate obstructions within the survey area. Contact the SR coordinator to report any difficulties encountered when laying out systematic grid sampling points.
- 2.1.13 When an obstruction is encountered that will not allow collection of a sample, contact the cognizant SR coordinator for permission to delete the sampling point.

NOTE
If remediation actions are taken as a result of this survey, this survey design must be
revised or re-written entirely.

2.2 Sample the biased and random fixed points and any elevated areas(s) IAW SNEC procedure E900-IMP-4520.04 (Reference 3.2) and the following.

FirstEnergy	SNEC CALCULATION SHEET		
Calculation Number	Revision Number	Page Number	
E900-05-014	2	Page 9 of 11	
Subject			

SNEC plant area open land – OL1 - Survey Design

- 4.17 No additional sampling will be performed IAW this survey design beyond that described herein.
- 4.18 SNEC site radionuclides and their individual DCGLw values are listed on Exhibit 1 of this calculation based on Table 5-1 of Reference 3.5.
- 4.19 The survey design checklist is listed in Exhibit 2.
- 4.20 Area factors are shown as part of COMPASS output (see Attachment 7-1) and are based on the Cs-137 area factors from the SNEC LTP.

5.0 CALCULATIONS

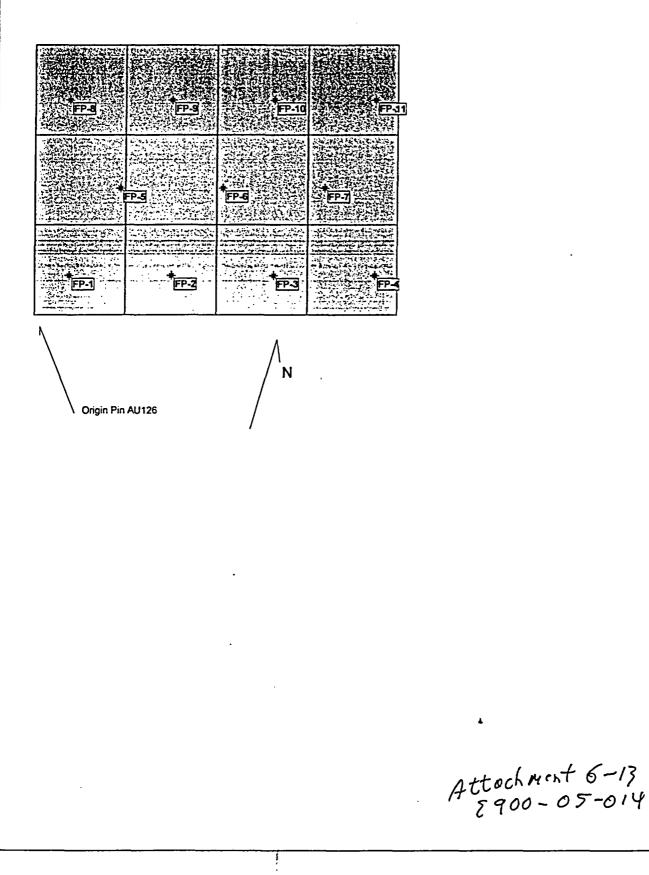
5.1 All calculations are performed internal to applicable computer codes or within an Excel (Reference 3.13) spreadsheet.

6.0 APPENDICES

- 6.1 Attachment 1-1, is a diagram of survey unit OL1. Attachment 1-2 through 1-7 are the grid layouts for the six OL1 open land survey units included in this design.
- 6.2 Attachment 2-1 to 2-4 is the DCGLw calculation logic and sample results from the OL1 and OL2 areas in addition to the DCGL calculation sheets (decayed to January 15, 2004).
- 6.3 Attachment 3-1, is a copy of the calibration data from typical Nal radiation detection instrumentation that will be used in this survey area.
- 6.4 Attachment 4-1, is the MDCscan calculation sheet for volumetric materials in pCi/g.
- 6.5 Attachment 5-1, is the MicroShield dose rate calculation results for 6" thick soil used to determine the exposure rate from a 1 pCi/cm³ Cs-137 source term in a end-cylinder geometry.
- 6.6 Attachment 6-1 to 6-14, show the randomly picked scan locations (from VSP) and reference coordinates for the six OL1 open land survey units included in this design.

7

- 6.7 Attachment 7-1 is a COMPASS output showing the area factors used. Attachment 7-2 shows the variability used for all six survey units. Attachments 7-3 through 7-8, are the COMPASS output for the six OL1 open land survey units included in this design, showing the number of sampling points in the survey unit, area factors, and prospective power.
- 6.8 Attachment 8-1 and 8-2, is the soil variability results from selected recent soil samples from the OL1 area. Attachment 8-3 is the general area Nal detector backgrounds measured on 3/8/05.


ļ

i

6.9 Attachment 9-1, is the results of the inspection report for the OL1 area.

OL1-11 Barrel Bunker Area

Revision 6/16/05

i

OL1-11 sample dimensions in METERS 6/16/05

• • •						
X Coord	Y Coord	Label	Grid	Туре	East	North
3.89	4.41	FP-1	AU126	Systematic	3.9	4.4
15.11	4.41	FP-2	AU125	Systematic	5.1	4.4
26.33	4.41	FP-3	AU124	Systematic	6.3	4.4
37.56	4.41	FP-4	AU123	Systematic	7.6	4.4
9.50	14.13	FP-5	AV126	Systematic	9.5	4.1
20.72	14.13	FP-6	AV125	Systematic	0.7	4.1
31.94	14.13	FP-7	AV123	Systematic	1.9	4.1
3.89	23.85	FP-8	AW126	Systematic	3.9	3.9
15.11	23.85	FP-9	AW125	Systematic	5.1	3.9
26.33	23.85	FP-10	AW124	Systematic	6.3	3.9
37.56	23.85	FP-11	AW123	Systematic	7.6	3.9

OL1-11 Fixed point Dimensions in FEET 6/16/05

X Coord	Y Coord	Label	Grid	Туре	East	North
12.74	14.47	FP-1	AU126	Systematic	12.7	14.5
49.56	14.47	FP-2	AU125	Systematic	16.8	14.5
86.37	14.47	FP-3	AU124	Systematic	20.8	14.5
123.18	14.47	FP-4	AU123	Systematic	24.8	14.5
31.15	46.35	FP-5	AV126	Systematic	31.2	13.5
67.96	46.35	FP-6	AV125	Systematic	2.4	13.5
104.78	46.35	FP-7	AV123	Systematic	6.4	13.5
12.74	78.23	FP-8	AW126	Systematic	12.7	12.6
49.56	78.23	FP-9	AW125	Systematic	16.8	12.6
86.37	78.23	FP-10	AW124	Systematic	20.8	12.6
123.18	78.23	FP-11	AW123	Systematic	24.8	12.6

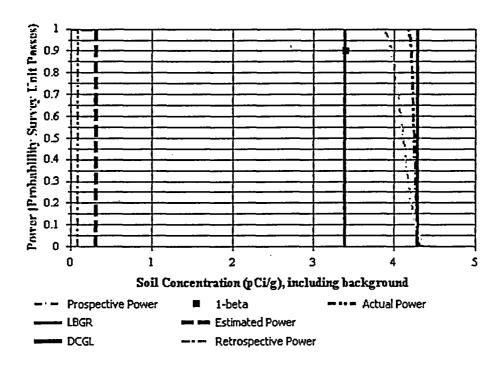
Xcoord and Ycoord values are from the origin pin AU126 East and North are from each grid ID pin

.....

.

Attachment 6-14 E900-05-014

â.


Appendix D

COMPASS DQA Report Survey Unit OL1-8

Site:	SSGS and SNEC Open lar	nd	
Planner(s):	WJCooper		
Survey Unit Name:	Backfilled Land Area SSGS		
Report Number:	2		
Survey Unit Samples:	18		
Reference Area Samples:	0		
Test Performed:	Sign	Test Result:	Not Performed
Judgmental Samples:	0	EMC Result:	Not Performed
Assessment Conclusion:	Reject Null Hypothesis (S	Survey Unit PASSES	S)

Retrospective Power Curve

Appendix D OL1-8

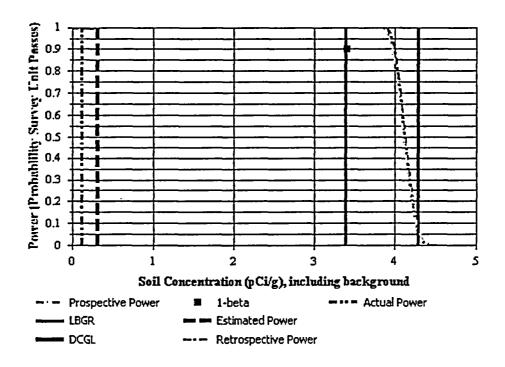
NOTE: Type = "S" indicates survey unit sample. Type = "R" indicates reference area sample.

Sample Number	Туре	Cs-137 (pCi/g)	
1	S	0.1	
2	S	0.15	
3	S	0.09	
4	S	0.08	
5	S	0.19	
6	S	0.5	
7	S	0.06	
8	S	0.07	
9	S	0.16	
10	S	0.07	
11	S	0.1	
12	S	0.09	
13	S	0.09	
14	S	0.07	
15	S	0.11	
16	S	0.12	
17	S	0.09	
18	S	0.06	

Basic Statistical Quantities Summary

Statistic	Survey Unit	Background	DQO Results
Sample Number	18	N/A	N=11
Mean (pCi/g)	0.12	N/A	0.32
Median (pCi/g)	0.09	N/A	N/A
Std Dev (pCi/g)	0.10	N/A	0.3
High Value (pCi/g)	· 0.50	N/A	N/A
Low Value (pCi/g)	0.06	N/A	N/A

Appendix D OL1-8 Appendix E


COMPASS DQA Report Survey Unit OL1-9

.

Site:	SSGS and SNEC Open la	ind	
Planner(s):	WJCooper		
Survey Unit Name:	Open Land ARea CV OL1	-9	
Report Number:	3		
Survey Unit Samples:	11		
Reference Area Samples:	0		
Test Performed:	Sign	Test Result:	Not Performed
Judgmental Samples:	0	EMC Result:	Not Performed
Assessment Conclusion:	Reject Null Hypothesis (Survey Unit PASSE	:S)

Retrospective Power Curve

Appendix E OL1-9

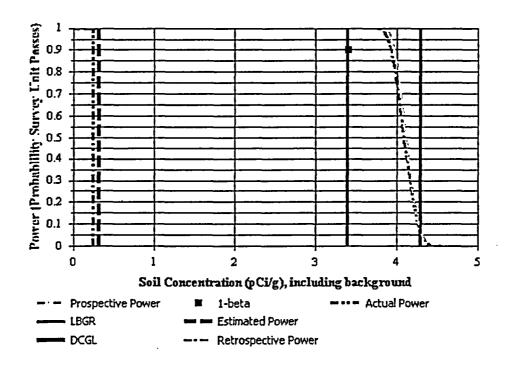
NOTE: Type = "S" indicates survey unit sample. Type = "R" indicates reference area sample.

Sample Number	Туре	Cs-137 (pCl/g)	
1	S	0.07	
2	S	0.08	
3	S	0.09	
4	S	1	
5	S	0.11	
6	S	0.14	
7	S	0.26	
8	S	0.13	
9	S	0.12	
10	S	0.11	
11	S	0.45	

Basic Statistical Quantities Summary

		Background	DQO Results
Sample Number	11	N/A	N=11
Mean (pCi/g)	0.23	N/A	0.32
Median (pCi/g)	0.12	N/A	N/A
Std Dev (pCi/g)	0.28	N/A	0.3
High Value (pCi/g)	1.00	N/A	N/A
Low Value (pCi/g)	0.07	N/A	N/A

Appendix E OL1-9 Appendix F


.

.

Site:	SSGS and SNEC Open land		
Planner(s):	WJCooper		
Survey Unit Name:	SNEC Yard Excavation Af	ter Backfill OL1-10	
Report Number:	2		
Survey Unit Samples:	11		
Reference Area Samples:	0		
Test Performed:	Sign	Test Result:	Not Performed
Judgmental Samples:	0	EMC Result:	Not Performed
Assessment Conclusion:	Reject Null Hypothesis (Survey Unit PASSE	S)

Retrospective Power Curve

Appendix F OL1-10

NOTE: Type = "S" indicates survey unit sample. Type = "R" indicates reference area sample.

Sample Number	Туре	Cs-137 (pCi/g)	
1	S	0.33	
2	S	0.17	
3	S	0.17	
4	S	0.31	
5	S	0.25	
6	S	0.26	
7	S	- 0.12	
8	S	0.21	
9	S	0.25	
10	S	0.06	
11	S	1.3	

Basic Statistical Quantities Summary

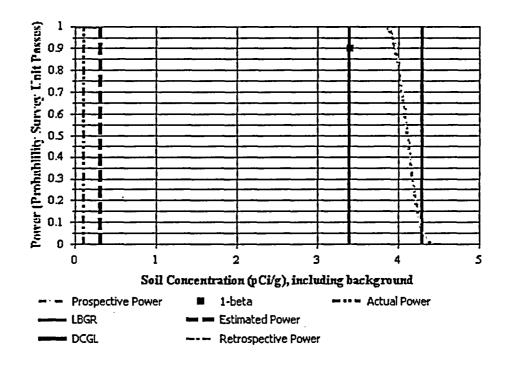
Statistic	Survey Unit	Background	DQO Results
Sample Number	11	N/A	N=11
Mean (pCi/g)	0.31	N/A	0.32
Median (pCi/g)	0.25	N/A	N/A
Std Dev (pCi/g)	0.34	N/A	0.3
High Value (pCi/g)	1.30	N/A	N/A
Low Value (pCi/g)	0.06	N/A	N/A

Appendix F OL1-10

.

Appendix G

.


•

COMPASS DQA Report Survey Unit OL1-11

Site:	SSGS and SNEC Open la	and	
Planner(s):	WJCooper		
Survey Unit Name:	Barrrel Bunker Area OL1-	11	
Report Number:	2		
Survey Unit Samples:	11		
Reference Area Samples:	0		
Test Performed:	Sign	Test Result:	Not Performed
Judgmental Samples:	0	EMC Result:	Not Performed
Assessment Conclusion:	Reject Null Hypothesis (Survey Unit PASSE	ES)

Retrospective Power Curve

Appendix G OL1-11

NOTE: Type = "S" indicates survey unit sample. Type = "R" indicates reference area sample.

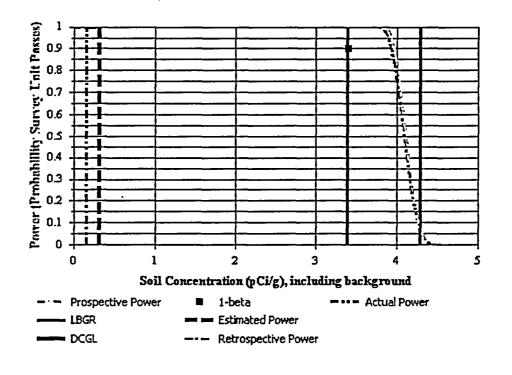
Sample Number	Туре	Cs-137 (pCl/g)	
1	S	0.06	
2	S	0.06	
3	S	0.12	
4	S	0.08	
5	S	0.1	
6	S	0.11	
7	S	0.11	
8	S	1.1	
9	S	0.3	
10	S	0.08	
11	S	0.37	

Basic Statistical Quantities Summary

Statistic	Survey Unit	Background	DQO Results
Sample Number	11	N/A	N=11
Mean (pCi/g)	0.23	N/A	0.32
Median (pCi/g)	0.11	N/A	N/A
Std Dev (pCi/g)	0.31	N/A	0.3
High Value (pCi/g)	1.10	N/A	N/A
Low Value (pCi/g)	0.06	N/A	N/A

Appendix G OL1-11

Appendix H


٠

.

Site:	SSGS and SNEC Open lan	d	
Planner(s):	WJCooper		
Survey Unit Name:	Line Shack Surrounding Area OL1-12		
Report Number:	1		
Survey Unit Samples:	11		
Reference Area Samples:	0		
Test Performed:	Sign	Test Result:	Not Performed
Judgmental Samples:	0	EMC Result:	Not Performed
Assessment Conclusion:	Reject Null Hypothesis (S	urvey Unit PASSES	5)

Retrospective Power Curve

Appendix H OL1-12

NOTE: Type = "S" indicates survey unit sample. Type = "R" indicates reference area sample.

Sample Number	Туре	Cs-137 (pCl/g)	
1	S	0.16	
2	S	0.11	
3	S	1.19	
4	S	0.08	
5	S	0.15	
5	S	0.25	
7	S	0.21	
3	S	0.19	
Ð	S	0.09	
10	S	0.62	
11	S	0.11	

Basic Statistical Quantities Summary

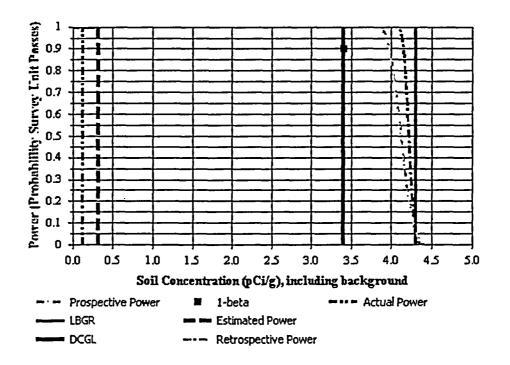
Statistic	Survey Unit	Background	DQO Results
Sample Number	11	N/A	N=11
Mean (pCi/g)	0.29	N/A	0.32
Median (pCi/g)	0.16	N/A	N/A
Std Dev (pCi/g)	0.33	N/A	0.3
High Value (pCi/g)	1.19	N/A	N/A
Low Value (pCi/g)	0.08	N/A	. N/A

Appendix H OL1-12

Appendix I

COMPASS DQA Report Survey Unit OL1-13

.


.

.... ...

Site:	SSGS and SNEC Open la	and	
Planner(s):	WJCooper		
Survey Unit Name:	South and West SNEC Ya	ard Perimeter OL1-1	3
Report Number:	1		
Survey Unit Samples:	16		
Reference Area Samples:	0		
Test Performed:	Sign	Test Result:	Not Performed
Judgmental Samples:	0	EMC Result:	Not Performed
Assessment Conclusion:	Reject Null Hypothesis (Survey Unit PASSE	ES)

Retrospective Power Curve

Appendix I OL1-13

NOTE: Type = "S" indicates survey unit sample. Type = "R" indicates reference area sample.

Sample Number	Туре	Cs-137 (pCl/g)	
1	S	0.25	
2	S	0.09	
3	S	0.08	
4	S	0.3 .	
5	S	0.4	
6	S	0.55	
7	S	0.54	
8	S	0.36	
9	S	0.19	
10	S	0.12	
11	S	0.12	
12	S	0.08	
13	S	0.12	
14	S	0.11	
15	S	0.08	
16	S	0.08	

Basic Statistical Quantities Summary

Survey Unit	Background	DQO Results
16	N/A	N=11
0.22	N/A	0.32
0.12	N/A	N/A
0.17	. N/A	0.3
0.55	N/A	N/A
. 0.08	N/A	N/A
	16 0.22 0.12 0.17 0.55	16 N/A 0.22 N/A 0.12 N/A 0.17 N/A 0.55 N/A

Appendix I OL1-13

.