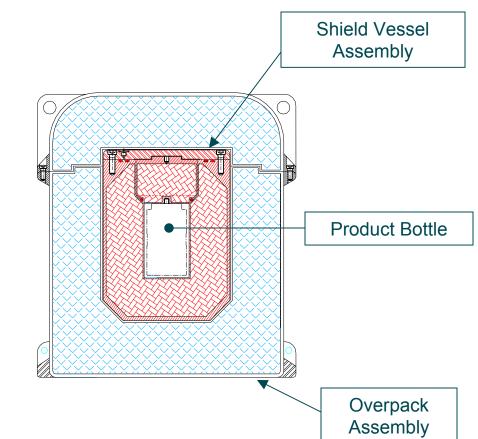
MIDUS Transportation Package NRC Pre-Submittal Meeting

Rockville, MD July 21, 2005

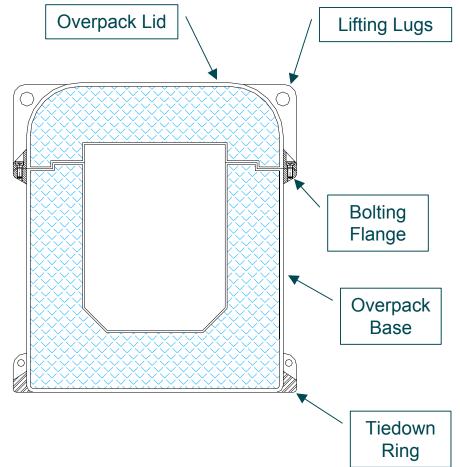
Package Overview

- Package ID:
- Package Type:
- > Contents:
- Chemical Form:
- > Maximum Activity:
- \blacktriangleright Maximum Height: ≤ 22 inches (560 mm)
- > Maximum Weight:
- > MNOP:
- Transport Mode:

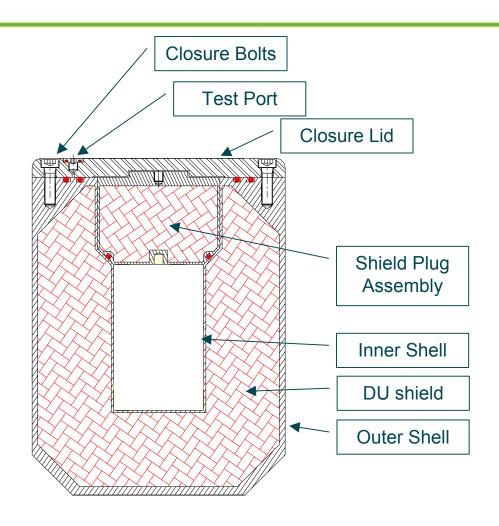

MIDUS B(U)Molybdenum-99 (Mo99) NaNO3/NaOH solution 4,500 Ci

- <550 lb. (250 kg)
 - ≤ 100 psig (700 kPa)
- Air freight and truck
- \succ Transport Index (TI): \leq 10 per 10CFR71.47(a)
 - Airlines restriction: $TI \leq 3$ (TI < 1 expected)

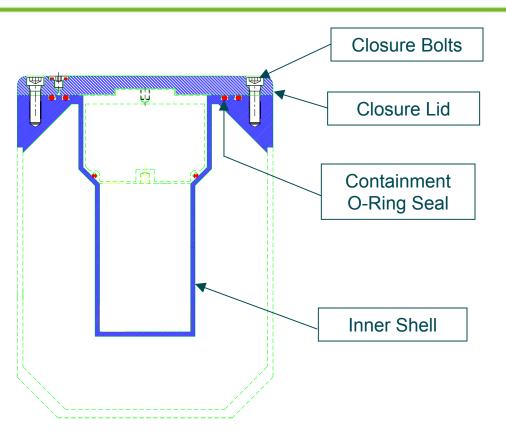
Transportation Package Concept


- Package Dimensions
 - Height: 20 in. (500 mm)
 - O.D.: 18 in. (460 mm)
- Materials of Construction
 - All exposed package surfaces are stainless steel
 - > Corrosion resistance
 - > Fracture toughness
 - DU shielding
 - Polyurethane foam overpack energy absorbing material

Overpack Assembly Concept


- Two-Piece Construction
 - Stainless steel external surfaces
 - Polyurethane foam or wood cores
- Mitigates Shield Vessel Impact Loading
- Insulates Shield Vessel during HAC Fire
- Lid bolted to base at flange
- Lifting lugs support entire package weight
- Tiedown ring adds stability

Shield Vessel Assembly Concept


- External Dimensions:
 - Height: 11.8 in. (300 mm)
 - O.D.: 8.9 in. (225 mm)
- Cavity Dimensions:
 - Length: 5.1 in. (130 mm)
 - Diameter: 3.1 in. (80 mm)
- ➢ Weight ≈ 400 lb. (180 kg)

Containment System Concept

- Containment System:
 - Inner vessel
 - Closure lid
 - Closure bolts
 - Containment O-ring seal
- No Welds on Containment Boundary
 - Shield vessel inner shell
 machined from single piece
- No Credit Taken for Containment Provided by Product Bottle

- Satisfy Requirements of 10 CFR 71, Subparts E and F
 - 71.43 General Standards for all Packages
 - 71.45 Lifting and Tiedown Standards
 - 71.47 External Radiation Standards for all Packages
 > Dose less than 2 mSv/h (200 mrem/h) on all external surfaces
 > TI ≤ 10 (design provides TI < 1)
 - 71.51 Additional Requirements for Type B Packages
 > Permitted release limits per 71.51(a)
 - 71.61 Special Requirements for Type B Packages Containing More Than 10⁵A₂

>Not applicable for content activity (4,500 Ci < 1.6x10⁶ Ci)

➤ 71.71 – Normal Conditions of Transport

- Heat
- Cold
- Reduced External Pressure
- Increased External Pressure
- Vibration
- Water Spray
- Free Drop
 - >4-feet (1.2m) onto unyielding horizontal surface in orientation expected to cause maximum damage...
- Corner Drop (not applicable, 250 kg > 50 kg criterion)
- Compression
- Penetration

> 71.73 – Hypothetical Accident Conditions

- Free drop
 - > 30-feet (9m) onto unyielding horizontal surface in orientation expected to cause maximum damage...
- Crush (not applicable, 4,500 Ci < 16,000 Ci)
- Puncture
- Thermal
- Immersion Fissile Material (not applicable, no fissile material)
- Immersion All Packages
- > 71.85(b) Internal Pressure Test (150% MNOP)

General Structural Design Criteria per RG 7.6

- Design-by-Analysis (NUREG-1609)
- Allowable stress design criteria
 Containment system: ASME Subsection WB
 Non-Containment components: ASME Subsection NF
- Structural material properties per ASME, Section II, Part D
- Load Combinations per RG 7.8
- Closure Bolts Designed per NUREG/CR-6007
 - No plastic deformation of closure bolts or closure sealing surfaces due to all NCT and HAC tests
- Buckling
 - ASME Code Case N-284-1

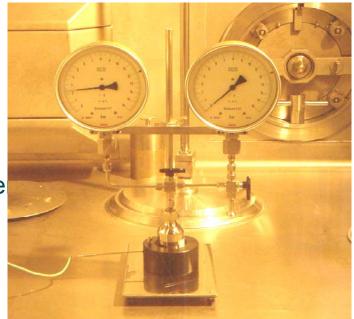
Design/Licensing Plan

Drop Loads Analysis

- Upper and lower bound force-deflection curves will be determined for each impact orientation using ANSYS
 - > Developed based on the upper and lower bound stress-strain curves for overpack energy absorbing material considering:
 - Manufacturing tolerances
 - Temperature effects
 - Dynamic effects

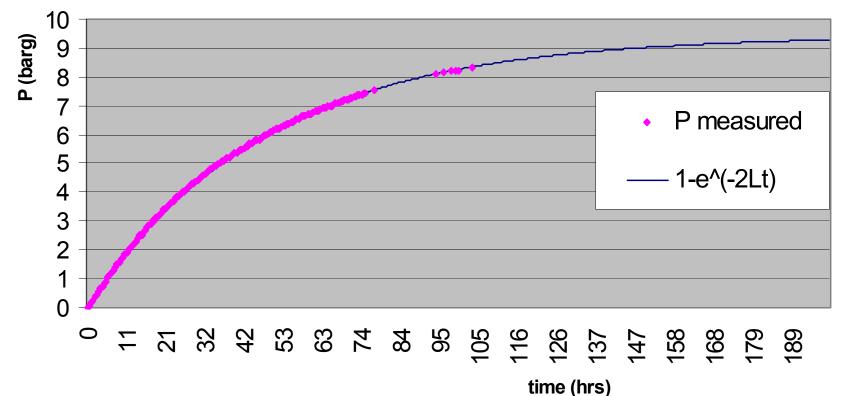
> Including contribution from stiffness of overpack shells

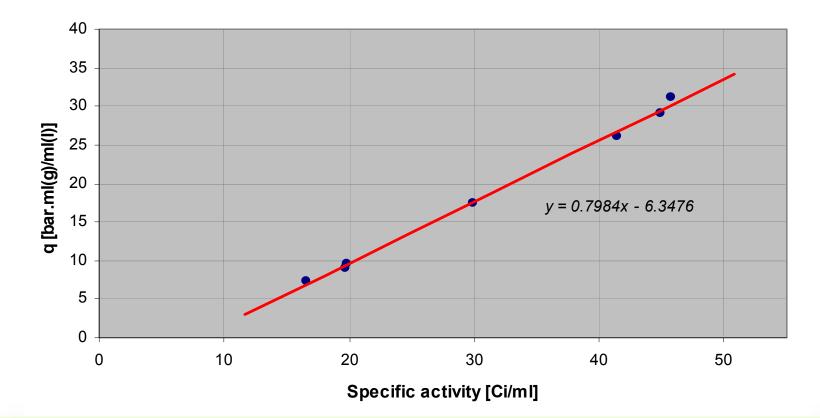
- Non-linear transient dynamic finite element analyses used to predict response of package
- Confirmatory testing performed to demonstrate adequacy of analytical tools/methods



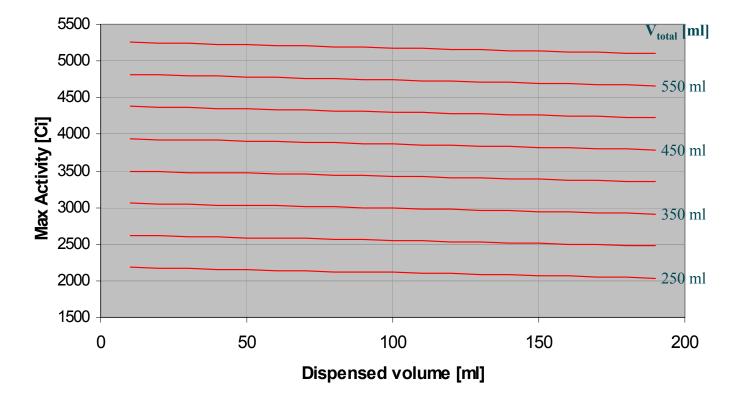
Design/Licensing Plan

- Thermal Analysis Using SINDA/FLUINT Code
 - Transient analysis for HAC fire event
 - Steady state analysis for NCT
- MCNP Used for Shielding Analysis
 - R-Z model used for NCT shielding evaluation
 - Target shielding design for TI < 1
 - Mo-99 payload for initial application


- Limiting parameter for payload activity
- Radiolytic decomposition results in pressure buildup
- Mallinckrodt has completed extensive test program to characterize pressure buildup from Mo-99 solution
 - Tested range of activities, concentrations, chemical formulations
 - Analyzed H₂, N₂, and O₂ concentrations in gas
 - Developed empirical relationship between activity and resulting pressure buildup in a closed containme
 - MNOP based on test data, not on calculation estimates
 Limited MNOP to 100 psig (700 kPa)


Pressure build-up extrapolation

Test 6: 1245 Ci (t=0) in 75 ml. V_{total} = 133.2ml (Long-term measurement)



Gas formation by Radiolysis (Mo99 in NaNo3 solution)

P = 7.0bar $V_{total} = 250 - 600ml$ K = 0.7984 C = -6.3476Max Activity at 7bar MNOP vs. dispensed volume Mo99

ID	Task Name	2005		2006			
		Q3	Q4	Q1	Q2	Q3	Q4
1	Prepare License Application (LA)						
2	Confirmatory Testing	12/05					
3	Submit License Application to NRC			♦ 2/06			
4	NRC Review (w/o RAI)					—	
5	NRC Technical Review*						
6	NRC Prepare SES and CoC*						
7	NRC Issue CoC*					♦ 8/06	
8	European Licensing						
	Current CoC Expires						10/06
10	Package Fabrication						

*Estimated NRC review schedule.

Summary

- Goal: Obtain CoC in August 2006
 - Accelerated NRC review schedule needed to ensure future continuity of Mo-99 shipments to U.S. (10/31)
- > To Achieve This:
 - Provide simple, robust design with substantial safety margins
 - > Based upon best features of current cask fleet
 - > No welds in containment boundary
 - > Dose rates ~ $1/10^{\text{th}}$ of regulatory limit
 - > Limit initial application to only Mo-99
 - Provide a high-quality license application
 - > Gas generation based on test results
 - > Compliant with SRP (NUREG-1609) and RG 7.9, R2
 - Perform confirmatory testing to confirm adequacy of analytical models
 - > HAC free drop and puncture tests
 - Detailed plans discussed at next NRC meeting
 - > Submit test results with initial application
 - Meet early and often with NRC staff
 - > 3 pre-submittal meetings planned

