July 13, 2005

UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION

DOCKETED USNRC

Before the Atomic Safety and Licensing Board

July 13, 2005 (2:12pm)

In the Matter of)	OFFICE OF SECRETARY RULEMAKINGS AND ADJUDICATIONS STAFF
	j	Docket No. 50-271
ENTERGY NUCLEAR VERMONT)	
YANKEE, LLC and ENTERGY)	ASLBP No. 04-832-02-OLA
NUCLEAR OPERATIONS, INC.)	(Operating License Amendment)
(Vermont Yankee Nuclear Power Station))	, .
•)	

ENTERGY'S MOTION TO DISMISS AS MOOT, OR IN THE ALTERNATIVE, FOR SUMMARY DISPOSITION OF NEW ENGLAND COALITION CONTENTION 4

Applicants Entergy Nuclear Vermont Yankee, LLC and Entergy Nuclear Operations, Inc. (collectively "Entergy") file this motion, pursuant to 10 C.F.R. §2.323 and the Atomic Safety and Licensing Board's ("Board") Memorandum and Order, LBP-04-28 (Nov. 22, 2004), to seek dismissal of the New England Coalition's ("NEC") Contention 4 in this proceeding ("NEC Contention 4"). Dismissal of NEC Contention 4 is warranted because Entergy has completed the actions whose absence served as the basis for the contention. In the alternative, Entergy seeks summary disposition of the contention on the grounds that no genuine issue as to any material fact exists and Entergy is entitled to a decision as a matter of law. This motion is supported by a Statement of Material Facts as to which Entergy asserts there is no genuine dispute and the Declaration of George S. Thomas ("Thomas Declaration").

¹ Memorandum and Order, LBP-04-28, 60 NRC 548 (2004).

I. STATEMENT OF FACTS

One of the contentions originally proposed by NEC was NEC Contention 4, which asserted that the extended power uprate ("EPU") for the Vermont Yankee Nuclear Power Station ("VY") should not be approved because "Entergy cannot assure seismic and structural integrity of the cooling towers under uprate conditions, in particular the Alternate Cooling System cell. At present the minimum appropriate structural analyses have apparently not been done." Contrary to this assertion, appropriate analyses have now been performed.

The Vermont Yankee Alternate Cooling System ("ACS") provides an alternate means of cooling in the unlikely event that the service water pumps become unavailable. Thomas Declaration, para. 6.³ The ACS utilizes only the north end cell (CT2-1) ("Alternate Cooling System cell") of the West Cooling Tower (Cooling Tower No. 2) for service water heat removal. *Id.* The Alternate Cooling System cell, as well as the adjoining cell (CT2-2), are Seismic Class I structures. Thomas Declaration, para. 7. The remaining nine cells in the West Cooling Tower and all eleven cells in the East Cooling Tower are Seismic Class II structures. *Id.*

At the prehearing conference held on October 21, 2004, Entergy counsel represented to the Board that Entergy was in the process of conducting an updated seismic and structural analysis of the portion of the cooling towers that contains the ACS, and by doing so the deficiency alleged by NEC was already being addressed. Tr. 331-32. Notwithstanding this representation, the Board admitted NEC Contention 4 into this proceeding. The contention reads:

The license amendment should not be approved because Entergy cannot assure seismic and structural integrity of the cooling towers under uprate conditions, in particular the Alternate Cooling System

New England Coalition's Request for Hearing, Demonstration of Standing, Discussion of Scope of Proceeding and Contentions, dated August 30, 2004 at 11.

Exhibit 2 to the Thomas Declaration includes the body of the Seismic Calculation, but excludes the voluminous attachments to the calculation. The entire calculation, including all attachments, is contained in a compact disk included as Exhibit 3 to the Thomas Declaration.

cell. At present the minimum appropriate structural analyses have apparently not been done.

LBP-04-28, 60 NRC at 580.

In explaining its decision to admit the contention, the Board stated as follows:

And the fact that Entergy may intend to conduct such an analysis does not eliminate this genuine dispute, because Entergy could change its intent at any time unless, as NEC argues, it is required to perform the analysis.

Id. at 573.

Entergy has completed a new structural and seismic analysis of the cooling towers under EPU conditions that takes into account the cooling tower modifications performed as part of the upgrade for EPU operation. The new analysis is contained in the Seismic Calculation.

II. NEC CONTENTION 4 SHOULD BE DISMISSED AS MOOT

The admission of NEC Contention 4 was based solely on the fact that the seismic/structural analysis of the cooling towers had not yet been performed at the time the Board ruled on the admissibility of the contention. Such analysis has now been performed. The contention should therefore be dismissed as moot.

Dismissal of NEC Contention 4 at this point is consistent with the Board's previous actions. Subsequent to its admission of NEC Contention 4, the Board considered a request by another party, the Vermont Department of Public Service ("DPS"), to admit a proposed new contention, DPS Contention 6. DPS Contention 6 alleged that Entergy's EPU application was defective because it does not verify the assumption "that the reactor core isolation cooling (RCIC) system can be made operable in sufficient time to permit the operator to perform the required actions before core uncovery." On January 11, 2005, the Board admitted DPS Contention 6.

Memorandum and Order (Admitting Intervenor's New Contention) (Jan. 11, 2005). In admitting

⁴ Vermont Department of Public Service Request for Leave to File a New Contention (Oct. 18, 2004) at 1.

the contention, the Board analogized DPS Contention 6 to NEC Contention 4 and noted that "the contention is narrow" because the contention merely "challenges the absence of the verification, not its quality." *Id.* at 7. Thus, the Board stated that "when Entergy performs the verifications showing compliance, and duly submits them to NRC, this contention will be moot." *Id.*

Entergy performed the verification whose absence was raised as the basis for DPS Contention 6 and moved to dismiss the contention as moot or, alternatively, for summary disposition of the contention. The Board granted the motion and dismissed DPS Contention 6 as moot.

Memorandum and Order (Granting Motion to Dismiss State Contention 6) (Mar. 15, 2005). The Board described the applicable Commission law as follows:

The Commission has stated that "[w]here a contention alleges the omission of particular information or an issue from an application, and the information is later supplied by the applicant . . . the contention is moot." <u>Duke Energy Corporation</u> (McGuire Nuclear Station, Units 1 and 2; Catawba Nuclear Station, Units 1 and 2), CLI-02-28, 56 NRC 373, 383 (2002).

Id. at 4. This precedent, as applicable to DPS Contention 6, meant that "at such time when Entergy performs and submits its verification, this contention will be rendered moot. <u>Duke</u>, CLI-02-28, 56 NRC at 383." Id. at 5. Accordingly, the Board dismissed DPS Contention 6 as moot.

The same result should be reached on NEC Contention 4. Entergy has performed the structural and seismic calculation for the Alternate Cooling System cell and the adjacent cell. Thomas Declaration, para. 9 and Exhibits 2 and 3 thereto. NEC's contention is, therefore, moot, and should be dismissed.

III. ENTERGY IS ENTITLED TO SUMMARY DISPOSITION

Independently of the analysis in Section II above, summary disposition of NEC Contention 4 is appropriate pursuant to the Commission's adjudicatory rules.

A. Legal Standards for Summary Disposition

Commission regulations provide for summary disposition. Motions for summary disposition in a 10 C.F.R. Part 2, Subpart L, proceeding may be submitted up to 45 days before the

commencement of a hearing, unless the presiding officer orders otherwise. 10 C.F.R. §2.1205(a).⁵ In ruling on motions for summary disposition, the Board is to apply the standards for summary disposition set forth in subpart G of 10 C.F.R. Part 2. *Id.* §2.1205(c). The standards for summary disposition under Subpart G are set forth in 10 C.F.R. §2.710, which states that the "presiding officer shall render the decision sought if . . . there is no genuine issue as to any material fact and . . . the moving party is entitled to a decision as a matter of law." *Id.* §2.710(d)(2). Entergy satisfies the Commission's requirements for summary disposition of NEC Contention 4 because there is no genuine issue of disputed fact that would require a hearing and Entergy is entitled to a favorable decision as a matter of law.

NRC rules "long have allowed summary disposition in cases where there is no genuine issue as to any material fact and where the moving party is entitled to a decision as a matter of law." Carolina Power & Light Co. (Shearon Harris Nuclear Power Plant), CLI-01-11, 53 NRC 370, 384 (2001) (internal quotations omitted). Commission case law is clear that for there to be a genuine issue, "the factual record, considered in its entirety, must be enough in doubt so that there is a reason to hold a hearing to resolve the issue." Cleveland Electric Illuminating Co. (Perry Nuclear Power Plant, Units 1 and 2), LBP-83-46, 18 NRC 218, 223 (1983). Summary disposition "is a useful tool for resolving contentions that . . . are shown by undisputed facts to have nothing to commend them." Private Fuel Storage, L.L.C. (Independent Fuel Storage Installation), LBP-01-39, 54 NRC 497, 509 (2001). Lacking any genuine factual dispute, NEC Contention 4 clearly has "nothing to commend" it for further litigation in this proceeding.

In its Initial Scheduling Order, the Board set 30 days after the issuance by the Staff of the Safety Evaluation Report as the deadline for filing motions for summary disposition herein. Initial Scheduling Order (Feb. 1, 2005) at 3.

B. There Is No Factual Dispute Requiring Litigation

There remains no genuine issue as to any material fact relevant to NEC Contention 4.

NEC's sole factual basis for the contention was that Entergy had failed to perform the requisite structural analyses for the ACS cell located in the West Cooling Tower. LBP-04-28, 60 NRC at 580. Contrary to the contention, Entergy has now performed those analyses and has determined that there is no need for structural modifications to the Alternate Cooling System cell or to the adjoining cell, and that the Alternate Cooling Cell and the cell adjacent to it are seismically adequate for the design basis loading conditions. Thomas Declaration, para. 11; Exhibit 2 thereto, Section 7 at 179. The factual bases underpinning NEC Contention 4 no longer present a genuine factual dispute requiring further litigation to resolve.

C. Entergy is Entitled to a Favorable Decision as a Matter of Law

There is nothing left to litigate with respect to NEC Contention 4 and there are no facts in controversy regarding the contention that could result in the denial of Entergy's application. The contention claimed that the verification had not taken place; now it has. Accordingly, Entergy is entitled to summary disposition of NEC Contention 4 as a matter of law.

IV. CONCLUSION

NEC's assertion that Entergy's license amendment request should be denied because "the minimum appropriate structural analyses have apparently not been done" has no factual basis, for analyses in question have been performed. NEC Contention 4, which is based solely on that factual assertion, is therefore moot. In any event, there is no genuine dispute of material fact remaining to litigate and Entergy is entitled to a decision as a matter of law.

CERTIFICATION

In accordance with 10 C.F.R. §2.323(b), counsel for Entergy has discussed this motion with counsel for the other parties in this proceeding in an attempt to resolve this issue.

Respectfully submitted,

Jay E. Silberg

Matias F. Travieso-Diaz

Douglas J. Rosinski

PILLSBURY WINTHROP SHAW PITTMAN LLP

2300 N Street, N.W.

Washington, DC 20037-1128

Tel. (202) 663-8063

Counsel for Entergy Nuclear Vermont Yankee,

LLC and Entergy Nuclear Operations, Inc.

Dated: July 13, 2005

UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION

Before the Atomic Safety and Licensing Board

In the Matter of	
j	Docket No. 50-271
ENTERGY NUCLEAR VERMONT)	
YANKEE, LLC and ENTERGY)	ASLBP No. 04-832-02-OLA
NUCLEAR OPERATIONS, INC.)	(Operating License Amendment)
(Vermont Yankee Nuclear Power Station))	
)	

STATEMENT OF MATERIAL FACTS REGARDING NEC CONTENTION 4 ON WHICH NO GENUINE DISPUTE EXISTS

Applicants Entergy Nuclear Vermont Yankee, LLC and Entergy Nuclear Operations, Inc. (collectively "Entergy") submit, in support of their motion for summary disposition of NEC Contention 4, that there is no genuine issue to be heard with respect to the following material facts.

- 1. On August 30, 2004, the New England Coalition ("NEC") sought admission, *inter alia*, of its Contention 4 ("NEC Contention 4"). New England Coalition's Request For Hearing, Demonstration of Standing, Discussion of Scope of Proceeding and Contentions, dated August 30, 2004 at 11.
- 2. In NEC Contention 4, NEC asserted that Entergy "cannot assure seismic and structural integrity of the cooling towers under uprate conditions, in particular the Alternate Cooling System cell. At present the minimum appropriate structural analyses have apparently not been done." *Id*.
- 3. The Vermont Yankee Alternate Cooling System ("ACS") provides an alternate means of cooling in the unlikely event that the service water pumps become unavailable. Declaration of George S. Thomas (Thomas Declaration), para. 6.
- 4. The ACS utilizes the north end cell (CT2-1) ("Alternate Cooling System cell") of the West eleven-cell cooling tower (Cooling Tower No. 2) for service water heat removal. *Id*.
- 5. The Alternate Cooling System cell, as well as the adjoining cell (CT2-2), are Seismic Class I structures. *Id.*, para. 7.

- 6. The remaining cells in the West and East cooling towers are Seismic Class II structures. *Id*.
- 7. The gravamen of NEC Contention 4 is that, before the extended power uprate ("EPU") is approved, which approval is the subject of the instant proceeding, Entergy should be required to perform seismic and structural analyses of the cooling towers under uprate conditions, in particular the Alternate Cooling System cell. Memorandum and Order, LBP-04-28, 60 NRC 543, 580 (2004).
- 8. Entergy has completed a new structural and seismic analysis of the cooling tower Seismic Class I cells under EPU conditions that takes into account the cooling tower modifications performed as part of the proposed uprate. Thomas Declaration, para. 9.
- 9. The new analysis is contained in the Seismic Calculation, which is attached as Exhibits 2 and 3 to the Thomas Declaration.
- 10. The Seismic Calculation includes structural and seismic analyses for the Alternate Cooling System cell and the adjacent cell. Thomas Declaration, para. 9 and Exhibit 2 thereto.
- 11. The Seismic Calculation shows that the cooling tower cell utilized for the Alternate Cooling Systems cell and the adjacent cell are seismically adequate for the design basis loading under EPU conditions. Thomas Declaration, para. 11 and Exhibit 2 thereto, Section 7 at 179.

UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION

Before the Atomic Safety and Licensing Board

In the Matter of) }
j	Docket No. 50-271
ENTERGY NUCLEAR VERMONT	
YANKEE, LLC and ENTERGY	ASLBP No. 04-832-02-OLA
NUCLEAR OPERATIONS, INC.	(Operating License Amendment)
(Vermont Yankee Nuclear Power Station))

CERTIFICATE OF SERVICE

I hereby certify that copies of "Entergy's Motion to Dismiss as Moot, or in the Alternative, for Summary Disposition of New England Coalition Contention 4," "Statement of Material Facts Regarding NEC Contention 4 on Which no Genuine Dispute Exists," and "Declaration of George S. Thomas" were served on the persons listed below by deposit in the U.S. Mail, first class, postage prepaid, and where indicated by an asterisk by electronic mail, this 13th day of July, 2005.

*Administrative Judge
Alex S. Karlin, Chair
Atomic Safety and Licensing Board Panel
Mail Stop T-3 F23
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001
ask2@nrc.gov

*Administrative Judge Lester S. Rubenstein 4760 East Country Villa Drive Tucson AZ 85718 lesrrr@comcast.net

*Administrative Judge
Dr. Anthony J. Baratta
Atomic Safety and Licensing Board Panel
Mail Stop T-3 F23
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001
ajb5@nrc.gov

Atomic Safety and Licensing Board Mail Stop T-3 F23 U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001 *Secretary
Att'n: Rulemakings and Adjudications Staff
Mail Stop O-16 C1
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001
secy@nrc.gov, hearingdocket@nrc.gov

*Sarah Hofmann Special Counsel Department of Public Service 112 State Street – Drawer 20 Montpelier, VT 05620-2601

Sarah.Hofmann@state.vt.us

*Anthony Z. Roisman
National Legal Scholars Law Firm
84 East Thetford Rd.
Lyme, NH 03768
aroisman@valley.net

*Jonathan Rund
Atomic Safety and Licensing Board Panel
Mail Stop T-3 F23
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001
jmr3@nrc.gov

Office of Commission Appellate Adjudication
Mail Stop O-16 C1
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001

*Brooke Poole, Esq.

*Robert Weisman, Esq.

* Nathan Wildermann, Esq.
Office of the General Counsel
Mail Stop O-15 D21
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001
bdp@nrc.gov, rmw@nrc.gov,
NRW@nrc.gov

*Jonathan M. Block 94 Main Street P.O. Box 566 Putney, VT 05346-0566 jonb@sover.net

*Raymond Shadis
New England Coalition
P.O. Box 98
Shadis Road
Edgecomb ME 04556
shadis@prexar.com

Matias F. Travieso-Diaz

UNITED STATES OF AMERICA

NUCLEAR REGULATORY COMMISSION

Before the Atomic Safety and Licensing Board

)	
In the Matter of)	
)	Docket No. 50-271
ENTERGY NUCLEAR VERMONT)	
YANKEE, LLC and ENTERGY)	ASLBP No. 04-832-02-OLA
NUCLEAR OPERATIONS, INC.)	(Operating License Amendment)
(Vermont Yankee Nuclear Power Station))	,
)	

DECLARATION OF GEORGE S. THOMAS

George S. Thomas states as follows under penalties of perjury:

I. Introduction

- 1. I am currently employed as Scnior Project Manager by Entergy Nuclear Operations ("Entergy") at the Vermont Yankee Nuclear Power Station ("VY"). I am providing this declaration in support of Applicant's Motion to Dismiss as Moot, or in the Alternative, for Summary Disposition of New England Coalition's ("NEC") Contention 4 ("NEC Contention 4") in the above captioned proceeding regarding the proposed extended power uprate ("EPU") of VY.
- 2. My professional and educational experience is summarized in the *curriculum vitae* attached as Exhibit 1 to this declaration. Briefly summarized, I have 40 years of work experience in the field of nuclear energy, having held numerous management and technical positions during that period. I was involved with the design, operation and maintenance of the Vermont Yankee Cooling Towers both during the initial operation of the facility (1973-1977) and during the EPU Feasibility Study and EPU design evaluation (2002 to date).

- 3. I am the Project Manager of the VY Cooling Tower Upgrade Project and have overall responsibility for the engineering, procurement, design and testing of the cooling tower modifications, as well as for the performance of seismic and other analyses of the cooling towers.
 - 4. In NEC Contention 4, as admitted, 1 NEC asserts that:

The license amendment should not be approved because Entergy cannot assure seismic and structural integrity of the cooling towers under uprate conditions, in particular the Alternate Cooling System cell. At present the minimum appropriate structural analyses have apparently not been done.

5. In this declaration, I will address this contention and demonstrate it lacks technical or factual basis. In particular, I will 1) describe the changes that are being made to the cooling towers at VY² in support of EPU operations, and 2) demonstrate that these changes will not affect the structural and seismic integrity of the cooling towers or adversely affect the safety functions of the Alternate Cooling System ("ACS"), a system that utilizes one of the cooling towers cells.

II. The Alternate Cooling System

6. The VY ACS provides an alternate means of cooling in the unlikely event that the Service Water pumps become unavailable. The ACS consists of a cooling tower cell (the "Alternate Cooling System cell"), a cooling tower water deep basin (located under nine cells of the West Cooling Tower), Residual Heat Removal Service Water pumps and pump motor bearing coolers, Residual Heat Removal heat exchangers and pump coolers, Emergency Core Cooling System ("ECCS") room coolers (located in the Reactor Building), Emergency Diesel Generator heat exchangers (located in the Diesel Generator Rooms) and associated piping, valves and instrumentation. The ACS can also provide cooling for the Spent Fuel Pool. The Alternate Cooling System cell is the north end cell (CT2-1) of the West Cooling Tower (Cooling Tower No. 2). The NRC staff reviewed the design and performance capability of the Residual

Memorandum and Order, LBP-04-28, 60 NRC 548, 580 (2004).

There are two cooling towers at VY, the West Cooling Tower and the East Cooling Tower. Each tower is comprised of eleven sections or "cells".

Heat Removal Service Water system when operating in the ACS mode and verified that the system design bases were in accordance with the licensing commitments and regulatory requirements. NRC Inspection Report 50-271/02-03 (July 22, 2002).

III. The Cooling Towers

:

- 7. The two cooling towers are located at the south end of the VY site. Each cooling tower contains two large pipes running along its length that distribute heated water from the plant condenser equally among the cells. The water drains down through plastic fill material to a basin underneath each tower, where it is collected and piped to the plant discharge structure. As the water falls through the fill, it is broken up into small droplets and is cooled by ambient air. An induced draft fan located on the top center of each cell draws air through the fill to obtain maximum cooling of the water. The Alternate Cooling System cell (CT2-1), the adjacent cell (CT2-2) and the Cooling Water Deep Basin in the West Cooling Tower are designed as Seismic Class I structures.
- 8. The fans, motors, and gearboxes of all but one of the cooling tower cells have been increased from 125 horsepower to 200 horsepower. The only cell not being modified was the Alternate Cooling System cell, which presently has the capacity to meet EPU design requirements. In addition, the Electrical Distribution System for the cooling towers has been upgraded to handle the higher electrical current required by the larger fan motors.

IV. New Seismic and Structural Analyses

- 9. Entergy has performed a new structural and seismic analysis of the cooling tower Seismic Class I cells that takes into account the cooling tower upgrades. The new analysis is contained in Calculation No. 1356711-C-001, *Cooling Tower Seismic Calculation* (Rev. 1), performed by ABS Consulting and approved by Entergy on April 12, 2005, as VYC-2413, Rev. 0 ("Seismic Calculation"). A copy of the Seismic Calculation, minus attachments, is included as Exhibit 2 to this Declaration. A compact disk containing a copy of the entire calculation and attachments thereto is included as Exhibit 3.
- 10. The Seismic Calculation evaluates the cooling tower structure by modeling the main structural framing members as beam elements and applying the deadweight and mass of the

tower internals at member intersections (computer nodal locations). The models are analyzed for dead load, snow/ice load and seismic loading conditions. Dead load includes the weight of the cooling tower structure and equipment including the new 200 horsepower fans, motors, gearboxes and associated electrical cable. The snow/ice load is 40 pounds per square foot. The seismic loading condition is the design basis earthquake as described in Appendix A of the Vermont Yankee Updated Final Safety Analysis Report. The calculation conservatively assumes that the design snow/ice loads occur simultaneously with design summer temperature conditions, which results in a corresponding reduction in member strengths due to the high temperatures. Stresses calculated in the cooling tower structure are compared to the allowable loading of wood structures in accordance with the 1991 edition of the ANSI/NFPA "National Design Specification for Wood Construction" and the 1996 edition of the Cooling Tower Institute "Standard Specifications for the Design of Cooling Towers With Douglas Fir Lumber".

11. The Seismic Calculation demonstrates that there is no need for structural modifications to the Alternate Cooling System cell or the cell adjoining it, and that these two cells are seismically adequate for the design basis loading under EPU conditions. Also, and unrelated to NEC Contention 4, a separate calculation performed by ABS Consulting shows that the remaining cells in the West and East Cooling Towers are structurally adequate. Calculation No. 1356711- C-002, *Non Safety Cooling Tower Seismic Evaluation* (Rev. 0), performed by ABS Consulting and approved by Entergy on April 28, 2005, as VYC-2412, Rev. 0.

V. Summary

12. The claim in NEC Contention 4 is that Entergy has not performed the structural and seismic analyses necessary to assure the seismic and structural integrity of the cooling towers, and in particular the Alternate Cooling System cell, under EPU conditions. As discussed above, the Seismic Calculation contains the structural and seismic analyses sought by NEC, and demonstrates that the ACS and the Alternate Cooling System cell will retain their seismic and structural integrity under EPU conditions. Accordingly, the assertions in NEC Contention 4 are without factual basis because they have been addressed by the actions taken by Entergy.

I declare under penalty of perjury that the foregoing is true and correct.

Executed on *Fuly 10*, 2005.

George S. Thomas

EXHIBIT 1

George S. Thomas

Entergy Nuclear Operations, Inc.

PROFILE

Provided executive or line management leadership in numerous positions at nuclear-fueled electric generating facilities, all of which have demonstrated improved operating, economic and regulatory performance during his association with the facilities.

EXPERIENCE

ENTERGY NUCLEAR OPERATIONS

2000 to present

Senior Project Manager - 2002 to present

Project Manager of a Power Uprate Feasibility Study during the transition phase of the Entergy purchase of the Vermont Yankee Nuclear Power Station. Responsible for numerous projects required to implement the Vermont Yankee Extended Power Uprate (EPU) Project, including obtaining ISO New England approval of project, project management of Cooling Tower Upgrade Project and managing EPU implementation.

Director of Engineering - 2000 to 2001

Responsible for engineering at James A. FitzPatrick Power Plant following Entergy purchase of the facility. Combined all site engineering functions into one organization. Significantly improved engineering performance as evidenced by plant performance indicators, NRC evaluations, and INPO ratings.

NEW YORK POWER AUTHORITY, Lycoming, NY

1998 to 2000

Director of Engineering – 2000

Responsible for engineering at James A. FitzPatrick Plant since January 2000.

Manager, Design and Analysis Engineering - 1999 to 2000

Responsible for engineering design at James A. FitzPatrick Plant since January 1999.

Manager, Engineering Assurance - 1998

Assumed responsibility for Engineering Assurance at James A. FitzPatrick Plant during fourth quarter of 1998. Implemented Design Engineering Improvement Action Plan and assisted line management in improving engineering responsiveness and effectiveness during the Thirteenth Refueling Outage.

THOMAS CONSULTING SERVICES, Moon Township, PA

1996 to 1998

Consultant - 1996 to 1998

Provided independent management consultant services for the energy industry. Assisted New York Power Authority to improve the engineering and management performance at the Indian Point 3 and FitzPatrick Power Plants (1997-1998).

DUQUESNE LIGHT COMPANY, Shippingport, PA

1990 to 1996

Vice President, Nuclear Planning and Development - 1996

Responsible for management planning for Beaver Valley Power Station Units 1 and 2 and oversight of Duquesne Light Company's ownership interest in Perry Nuclear Power Plant. Chairman of Beaver Valley Offsite Review Committee and Member of Davis-Besse/Perry Nuclear Safety Review Committee.

Division Vice President, Nuclear Services - 1993 to 1996

Responsible for the support services for Beaver Valley Power Station Units 1 and 2 at an annual budget in excess of \$120 million. Areas of responsibility included engineering, licensing, quality assurance (1993-1994), information services, procurement, nuclear fuel, project management, training, emergency preparedness, administrative support and security. Reduced expenditures 30% over three years (1993-1995) while improving regulatory and operating performance. Member of Perry Nuclear Safety Review Committee (1994-1996).

General Manager, Corporate Nuclear Services - 1991 to 1992

Responsible for engineering, licensing, procurement, nuclear fuel, project management, construction and administrative support for Beaver Valley Power Station Units 1 and 2.

General Manager, Special Projects - 1990 to 1991

Responsible for development of a five year management plan for Beaver Valley Power Station Units 1 and 2.

THOMAS CONSULTING SERVICES, Portsmouth, NH

1989 to 1990

Consultant - 1989 to 1990

Provided independent consultant services for various contractors supporting the energy industry.

PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE, Seabrook, NH

1980 to 1989

Vice President, Nuclear Production - 1982 to 1989

Responsible for operation, startup and operational support of Seabrook Station. Assumed responsibility for all site activities in January, 1988. Managed an annual budget of approximately \$80 million.

Nuclear Production Superintendent - 1980 to 1982

Responsible for the Seabrook Station operating staff and associated corporate support. Developed plant programs, processes, budgets, accountabilities and management controls.

YANKEE ATOMIC ELECTRIC COMPANY, Westborough, MA

1977 to 1980

Manager, Startup Test Group - 1977 to 1980

Responsible for developing a new organization to manage the Seabrook Station initial startup test program. During this period, developed schedules, cost estimates, programs, plans and budgets.

VERMONT YANKEE NUCLEAR POWER CORPORATION, Vernon, VT

1973 to 1977

Assistant Plant Superintendent - 1973 to 1977

Responsible for the operation, maintenance and all on-site technical support of Vermont Yankee during both normal operation and refueling. During the period 1975 through 1977, Vermont Yankee had the highest cumulative capacity factor of any boiling water reactor in the United States. Held a Senior Operator License for Vermont Yankee.

OTHER EXPERIENCE

Other experience includes startup testing management for Vermont Yankee Power Station, project and design engineer for Babcock and Wilcox Company, and Senior Nuclear Test Engineer for submarine power plants at General Dynamics shipyards in Quincy, MA and Groton, CT.

EDUCATION/TRAINING

Masters in Business Administration, Robert Morris College (Pittsburgh, PA), 1996

Master of Science, Mechanical Engineering, Northeastern University (Boston, MA), 1982

Bachelor of Science, Mechanical Engineering, University of Massachusetts (Amherst, MA), 1965

Senior S5W Nuclear Test Engineer License, General Dynamics - Electric Boat, 1966

Senior Operator License, Vermont Yankee Nuclear Power Station, 1972

Advanced O&P Cause Analysis Training, Performance Improvement International, 1999

EXHIBIT 2

NUCLEAR	QUALITY RELATED	ENN-DC-126	REV. 4	
MANAGEMENT MANUAL	Informational Use	PAGE-2	9 OF 57	

								_	· · · · · · · · · · · · · · · · · · ·
ENN-DC-	-126 ATTACHMEN	π9.2						CALCULATIO	N COVER PAG
 			CALC	ULATION	COVER PA	AGE			
	□ IP-	2 [] IP-3		JAF	□PN	PS	⊠ vy ˈ	
	der Calculation 6711-C-001, Rev		This revision incorporates the following MERLIN DRNs or Minor Calc Changes: N/A			2745	er Sheet for pages includir chments	ng	
Title: Cod	oling Tower Seis	smic Evalı	noite					⊠QR □NO	AK .
Discipline	Discipline: Mechanical/Structural Design Engineering								
1. No. E	 This is calculation <u>supersedes</u> calculations: 1. No. EDAC-388-020.02, Rev. 0, 4/7/86, by EDAC, Title: "Dynamic Analysis of Custodis-Ecodyne Cooling Tower at the VYNPS (Cooling Tower No. E70-11960) 2. No. S7A-11960-H, Rev.0, 3/03/86, by Custodis-Ecodyne, Title: Calculations of Assessment & Modification 								
Modificat	ion No./Task No/	/ER No: EF	3 04-0705	5					
	No software used Software used an f "YES", Code: Software used an	nd filed sepa	• •		•		•	eet). Non-Linear Versid	on 7.40
Structure	No./Name: <u>Circ</u> : <u>Cooling Tow</u> ent No./Name: <u>C</u> idditional pages if	er Cells CT	T-2-1 & C -2-2	T-2-2					
	T	DDED			/Sign			45550VED	
REV#	STATUS (Prel, Pend, A, V, S)		ARER		IEWER/ I VERIFIER	OTH REVIE DESI VERII	WER/	APPROVER .	DATE
1	A (as-built)	ABS Cor	sulting	James Fitzpati	ly c.4140s rick	N/A		Allahom S.D. Goodwin	4-12-05
				·					
				·					

Vendor Calculation No. 1356711-C-001, Revision 1 by ABS Consulting VY CALCULATION DATABASE INPUT FORM

Page 1 of 4

1256711-C-001	1	N/A	N/A
Vendor Calculation/CCN Number	Revision Number	Vendor Calculation Number	Revision Number
Vendor Name: ABS Consulting	PO Number:_	4500533976 (9/8/04)	
Originating Department: Design Engine	ering - Mechanical Stru	uctural	
Critical References Impacted: UFSA	R □ DBD □ Reload.	"Check" the appropriate box if any critical d	ocument is identified in the tables below.
EMPAC Asset/Equipment ID Number(s): CT-2-1 & CT-2-2		
EMPAC Asset/System ID Number(s):_	Circulation Water Syste	m , Alternate Cooling System	
Keywords: Cooling Tower, Structural, \			•
For Revision/CCN only: Are deletions t	o General References,	Design Input Documents or Design Output D	ocuments required? 🔲 Yes† 🔯 No

Design Input Documents and General References - The following documents provide design input or supporting information to this calculation. (Refer to Appendix A, sections 3.2.7 and section 4)

Reference #	** DOC #	REV#	***Document Title (including Date, if applicable)	Significan t Differenc e Review ††	Affected Program	Critical Reference (√)
1			VY UFSAR, Updated as of 12-01-04.			
2			Cooling Tower Institute, CTI Code Tower "Standard Specifications for the Design of Cooling Towers With Douglas Fir Lumber," CTI Bulletin STD-114, October 1978.			
3			"Generic Implementation Procedure (GIP) for Seismic Verification of Nuclear Plant Equipment," Revision 3A corrected, Seismic Qualification Utility Group (SQUG), December 2001.			
4			SAP2000, Non-Linear Version 7.40, Copyright 1984 – 2000, Computers and Structures, Inc., Berkeley, California.			
5			ABS Consulting Nuclear Quality Assurance Manual (NQAM), Revision 7			
6			ABS Consulting, "NQA Procedure for Software Verification and Control", Procedure Number RCD-NQP-00-P03, Revision 1.			
7.1	5920-3326	7 .	Flour Products Dwg. Plan & Elevation 1170-1-7710			
7.2	5920-6451 Sheet 3 of 5	2	Transverse Section Additional Framing			
7.3			Longitudinal Section Framing Bent "C" Cells 1 and 2 Ecodyne Dwg. DR- 11960l3 Sheet 1 of 2, PDCR 86-02			
7.4			Longitudinal Section Framing Bent "B" Cells 1 and 2 Ecodyne DR-11960l3 Sheet 2 of 2, PDCR 86-02			
7.5	5920-4600	4	Secondary Distribution System @ Cell No. 1			

Page 2 of 4

Page 2	OI 4			 	
7.6	5920-6840 Sheet 1 of 6	0	T-Bar Fill Inst'n 2 x 8 & 4 x 8 Config. Model 1170-1-7710		
7.7	5920-6840 Sheet 2 of 6	0	T-Bar Fill Inst'n 2 x 8 & 4 x 8 Config. Model 1170-1-7710		
7.8	5920-6840 Sheet 4 of 6	0	T-Bar Fill Inst'l Details and Notes		
7.9	5920-6452 Sheet 2 of 9	0	Companion Post Installation Details		
7.10	G-191731	2	Circulating Water Piping & Misc. Steel – Sh.2		
7.11	G-200357	7	Cooling Tower No. 2 – Foundation – MAS		
7.12	5920-3324	6	Anchor Bolt Setting 1170-1-7710		
7.13	5920-13331	· · · · · · · · · · · · · · · · · · ·	New TPI drawing for ER-04-705 Plan View of Existing Fan Deck Layout	 	
7.14	5920-13330		New TPI drawing for ER-04-705 Transverse Section 1-1		
7.15	G-191374	13	Cooling Tower and Discharge Structure-Conduit, Grounding and Lighting Plan		
7.16	G191230	31	Yard Piping Plan – Sheet 1		
7.17	G191231	16	Yard Piping Plan - Sheet 2		
7.18			Material Fabrication Sketches for System #22, Service Water Yard Piping Grinnell Piping Spool Piece drawings AJ1230-1 through AJ1230-8		
8			ANSI/NFPA NDS-1991, "National Design Specification for Wood Construction," with NDS Supplement "Design Values for Wood Construction," 1991.		
9			AISC Manual of Steel Construction, 9th Edition		
10			ABS Calculation SAP2000-QA-001, "SAP2000 Version 7.4 Computer Program QA Verification," Revision 0, November 1, 2004.		
11			Cooling Tower Institute, CTI Code Tower "Standard Specifications for the Design of Cooling Towers With Douglas Fir Lumber," CTI Bulletin STD-114, Revision dated November 1996.		
12	S7A-11960-H	0	Custodis-Ecodyne Maintenance Services Division, "Vermont Yankee Nuclear Power Corporation, Job No. S7A-11960-H, Calculations of Assessment and Modification," dated January 1986.		
13	5920-4571	0	Vermont Yankee Document 5920-4571 R0, "Cooling Tower CT-2-1A Design Data 28 Sheets", dated 11-25-1969. Job No. E70-11960, Prop. No. NY-CT-7110.3, by Fluor Products Company, Inc.		
		·	Custodis-Ecodyne Maintenance Services Division, "Vermont Yankee Nuclear Power Corporation, Job No. S7A-11960-H, Calculations of Assessment and Modification," dated January 1986. Vermont Yankee Document 5920-4571 R0, "Cooling Tower CT-2-1A Design Data 28 Sheets", dated 11-25-1969. Job No. E70-11960, Prop. No. NY-CT-7110.3, by		

Vendor Calculation No. 1356711-C-001, Revision 1 by ABS Consulting VY CALCULATION DATABASE INPUT FORM

Page 3 of 4

Page 3	01 4				
14	EDAC-388- 020.02,	0	Engineering Decision Analysis Company, Inc. (EDAC), EDAC-388-020.02, "Dynamic Seismic Analysis of the Custodis-Ecodyne Cooling Tower at VYNPS, (Cooling Tower NO. E70-11960)," April 7, 1986		
15	PDCR 86-02		VY PDCR 86-02, "Cooling Tower Selsmic Modification," May 1986		
16			VY UFSAR Figures A.7-1 through A.7-14, Revision 5.		
17			Ebasco Specification 54-63, "Mechanical-Draft Cooling Tower," Revision 1, April23, 1969.		
18			American Plywood Association, "Plywood Design Specification," August 1986.		
19		-	US Army Corps of Engineers Standard ETL 1110-2-548, "Composite Materials for Civil Engineering and Design," March 31, 1997.		
20	VYC-2377	1	Entergy Calculation, "Raceway Supports for Cooling Tower Improvements,"		
21			NDS, "National Design Specification for Wood Construction Commentary," American Forest & Paper Association, 1997 Edition, with Addendum to the 1991 Commentary.		
22			NUREG/CR-0098, "Development of Criteria for Seismic Review of Selected Nuclear Power Plants," N. M. Newmark Consulting Engineering Services for the U.S. Nuclear Regulatory Commission, May 1978.		
23			USNRC, NUREG-0800, Standard Review Plan, Section 3.8.4, "Other Seismic Category I Structures," Revision 1, July 1981.		
24			Bergen-Paterson Pipe Supports Catalog No. 82R	 	
25			Entergy Nuclear Operations Contract Order No. 4500533976, September 8, 2004.		
26		•	American Concrete Institute (ACI), "Code Requirements for Nuclear Safety Related Concrete Structures," ACI-349-90, March 1990.		

Page 4 of 4

Design Output Documents - This calculation provides output to the following documents. (Refer to Appendix A, section 5)

* Reference #	** DOC #	REV #	Document Title (including Date, if applicable)	Affected Program	†††Critical Reference (✓)
	ER 04-0705	2	Cooling Tower Upgrade	N/A	
		 			
			•		

* Reference # -

Assigned by preparer to identify the reference in the body of the calculation.

** Doc # -

Identifying number on the document, if any (e.g., 5920-0264, G191172, VYC-1286)

*** Document Title -

List the specific documentation in this column. "See attached list" is not acceptable. Design Input/Output Documents should identify the specific design input document used in the calculation or the specific document affected by the calculation and not simply reference the document (e.g., VYDC, MM) that the calculation was written to support. If a DBD is used as a general reference, include the most current interim change number after the title.

**** Affected Program -

List the affected program or the program that reference is related to or part of.

† †† If "yes," attach a copy of "VY Calculation Data" marked-up to reflect deletion (See Section 3.1.8 for Revision and 5.2.3.18 for CCNs).

If the listed input is a calculation listed in the calculation database that is not a calculation of record (see definition), place a check mark in this space to indicate completion of the required significant difference review. (see Appendix A, section 4.1.4.4.3). Otherwise, enter

"N/A."

†††

If the reference is UFSAR, DBD or Reload (IASD or OPL), check Critical Reference column and check UFSAR, DBD or Reload, as appropriate, on this form (above).

...

ABS Consulting

CALCULATION COVER SHEET

Calculation No.		1356711-C-001				
Project:		Entergy Vermont Yankee				
Calculation Title:		Cooling Tower Seismic Evaluation				
						
	-	 				
						
References:		See Section 6 of this calculation				
Attachments: S		See Table of Contents				
Total Num	ber of Pages (I	ncluding Cover Sheet): Description of	2745	5	T	
Number	Date	Revision	Originator	Checker	Approver	
0	03/23/2005	Original Issue	R.D. Augustine	J.L. White	P.D. Baughman	
1	04/052005	Revised fan thrust loads. Clarified text per Entergy comments.	R.D. Augustine	JUN J.L. White	P.D. Baughman	
	·					
	 					

Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

Sheet No.

2 of 182

Ву

R.Augustine Date 04/05/2005

Checked J.L. White Date 04/05/2005

Table of Contents

T	ABLE OF REVI	\$10NS	5		
1.	INTRODUCTION	ON	6		
2.	PURPOSE		6		
3.	METHODOLO	GY	7		
4.	DESIGN INPU	Γ	10		
5.	ASSUMPTION	S	12		
6.	CALCULATIO	NS	13		
	6.1 BENT MO	DELS			
	6.2 MODEL L	OADING	13		
		ad and Mass Distribution	· · · · · · · · · · · · · · · · · · ·		
	- 4 1	BLE LOADS			
		le Compression Stress:			
		le Bending Stress:			
		le Tension Stress:			
		ne Allowable Compression and Bending Loads:			
	6.4 RESULTS		156		
		action Forces			
	6.4.2 Bracing Check for Tension Loads				
	6.4.3 Brace Connections 170				
	6.4.4 Sloped V	Vall Member Check	178		
7.		ND CONCLUSIONS			
8.	REFERENCES		180		
	ATTACHMENTS (2563 pages)				
•	Attachment A	Vermont Yankee UFSAR Cooling Tower Figures	7 pages		
	Attachment B	Cooling Tower Loading Design Input	15 pages		
	Attachment C	Vermont Yankee Ground Response Spectra	2 pages		
	'Attachment D	Base Reaction Forces	6 pages		

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 3 of 182

Ву R.Augustine Date 04/05/2005 Checked

Date 04/05/2005 J. L. White

Attachment E	Computer Models – Members, Nodes Element Descriptions, Loadings and Mode Shapes	253 pages
Attachment F	Bent A - Dead Load Model	
Attach. F-1	Computer Input Echo	42 pages
Attach. F-2	Analysis Execution Log	2 page
Attach. F-3	Computer Output	158 pages
Attachment G	Bent A – Seismic Model	
Attach. G-1	Computer Input Echo	30 pages
Attach. G-2	Analysis Execution Log	4 pages
Attach. G-3	Computer Output	96 pages i
Attachment H	Bent B - Dead Load Model	
Attach. H-1	Computer Input Echo	37 pages '
Attach. H-2	Analysis Execution Log	2 pages
Attach. H-3	Computer Output	168 pages
Attachment I	Bent B - Seismic Model	
Attach. I-1	Computer Input Echo	41 pages
Attach. I-2	Analysis Execution Log	3 pages
Attach. I-3	Computer Output	130 pages
Attachment J	Bent C – Dead Load Model	
Attach. J-1	No Triangle Load Input Echo	60 pages
Attach. J-2	No Triangle Load Execution Log	2 pages
Attach. J-3	No Triangle Load Output	197 pages
Attachment K	Bent C – Seismic Model	·
Attach. K-1	Computer Input Echo	41 pages
Attach. K-2	Analysis Execution Log	3 pages
Attach. K-3	Computer Output	107 pages

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

1 Sheet No. Rev

4 of 182

R.Augustine Date 04/05/2005 Ву J. L. White Checked

Date 04/05/2005

Attachment L	End Bent - Dead Load Model	
Attach. L-1	Computer Input Echo	38 pages
Attach. L-2	Analysis Execution Log	2 pages
Attach. L-3	Computer Output	121 pages
Attachment M	End Bent – Seismic Model	
Attach. M-1	Computer Input Echo	40 pages
Attach. M-2	Analysis Execution Log	3 pages
Attach. M-3	Computer Output	281 pages
Attachment N	Main Bent – Dead Load Model	
Attach. N-1	Computer Input Echo	40 pages
Attach. N-2	Analysis Execution Log	2 pages
Attach. N-3	Computer Output	137 pages
Attachment O	Main Bent – Seismic Model	
Attach. O-1	Computer Input Echo	41 pages
Attach. O-2	Analysis Execution Log	3 pages
Attach. O-3	Computer Output	84 pages
Attachment P	Partition Bent – Dead Load Model	
Attach. P-1	Computer Input Echo	40 pages
Attach. P-2	Analysis Execution Log	2 pages
Attach. P-3	Computer Output	133 pages
Attachment Q	Partition Bent – Seismic Model	
Attach. Q-1	Computer Input Echo	42 pages
Attach. Q-2	Analysis Execution Log	3 pages
Attach. Q-3	Computer Output .	85 pages
Attachment R	Summary of Allowable Forces and Moments for All Members	20 pages

Job No. 1356711

Job

Entergy Vermont Yankee

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

5 of 182

Ву

Checked

R.Augustine Date 04/05/2005 J. L. White

Date 04/05/2005

Attachment S	Summary of Applied Forces and Moments, Allowable Forces and Moments and Interaction Ratios for All Members	39 pages
Attachment T	Design Review Guidelines	1 page

TABLE OF REVISIONS

Revision Number	Description of Revision	Issue Date
0	Initial Issue	March 23, 2005
1	Incorporates Entergy Comments	April 4, 2005

Entergy Vermont Yankee Job **Subject Cooling Tower Seismic Evaluation**

Rev

By

1 Sheet No.

6 of 182

R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

1. INTRODUCTION

The Vermont Yankee Alternate Cooling System is a safety-related system whose safety function is to provide an alternate means of cooling in the unlikely event that the service water pumps become inoperable. The Alternate Cooling System utilizes the north end cell (CT2-1) of the west eleven-cell cooling tower (Cooling Tower No. 2) for service water heat removal. The north end cell, as well as the adjoining cell (CT2-2), are seismic Class I structures. The remaining cells 3 through 11 are non-safety-related Class II structures. Cells 3 through 11 are structurally separated from cells 1 and 2 by cut-away ties designed to isolate the safety related cells from the non-safety-related portion of the structure.

The VY cooling towers are braced wood frame structures constructed of treated wood with bolted and steel bracket type connections. The towers are of modular construction with 11 cells in the longitudinal direction. Each module is typically 42 ft. wide by 42 ft. long in plan by 42 ft. 6 in. from the top of the concrete perimeter pad to the top of the fan deck, and 56 ft. 7 in. to the top of the fan stack. The tower is constructed of timber columns, beams, girders and diagonal bracing. The wood frames support cooling fans, fan motor, circulating water distribution piping and various components at the top of the towers. A concrete cooling water basin constructed below grade supports the tower frames.

Modifications to the cooling towers are required as part of power uprate. The modifications consist of removing and replacing the existing fans, motors and gearboxes and adding new cable trays. The replacement components weigh more than the original components, and the thrust loads from the replacement fans are greater than the original thrust loads. The cooling towers require re-analysis to verify the adequacy of the modifications.

2. **PURPOSE**

The purpose of this calculation is to evaluate the main structural framing members of the modified cooling tower cells CT2-1 and CT2-2 (Cooling Tower No. 2, cells 1 and 2) for dead load and seismic loading conditions. The cooling tower cells to be seismically analyzed include additional weights and loads from the power uprate modifications.

Only cells CT2-1 and CT2-2 are evaluated in this calculation. The remaining non-safety-related cells, 3 through 11, are separated from cells 1 and 2 by break-away joints and are not addressed in this calculation. Only CT2-1 is required to be operational following an earthquake. CT2-2 is included in the analysis so its effect on CT2-1 is accounted for.

Cell CT2-1 is evaluated for the increased loads of the new fans and motors, but new fans and motors will not be installed as part of the power upgrade. The analysis envelopes the existing equipment mounted in cell CT2-1. Also, since the analysis uses a conservative loading for CT2-1 (uses bigger fan loading) any asymmetric effects from different fan ratings in CT2-1 and CT2-2 are bounded.

This work is being performed under Entergy Nuclear Operations Contract Order No. 4500533976, September 8, 2004 (Reference 25).

Job Entergy Vermont Yankee

1 Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

7 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

3. METHODOLOGY

The cooling towers are shown on the drawings listed in Reference 7. The cooling towers were originally designed and analyzed in Reference 13. Cooling tower maintenance and analysis considerations required additional analysis to be performed in 1986. Dynamic (response spectrum) seismic analysis of the cooling towers was performed in Reference 14. This analysis concluded that modifications were required. The modifications were designed and analyzed in Reference 12, and installed under PDCR 86-02 (Reference 15). A description of the dynamic analysis from Reference 14 is included in UFSAR Section A.7 (Reference 1). The computer models are shown in UFSAR Figures A.7-1 through A.7-14 (Reference 16, included in this calculation as Attachment A).

The methodology for this calculation is to perform a response spectrum seismic analysis of the cooling tower cells including the additional loads from the power uprate modifications. The models and analysis methods are consistent with those described in the UFSAR (Ref. 1 and 16), except analysis criteria have been updated where required.

Current plans (as of the date of this calculation) for power uprate include providing new fans, motors and gearboxes for all cooling tower cells except for cell CT2-1. This calculation is conservatively performed assuming the fan, motor and gearbox modifications are applicable to all cells including CT2-1. This will allow the changes to be made in the future (if required) without re-analyzing the structure.

The cooling towers are symmetrical about the longitudinal centerline (refer to page A1) except for the loading of the cable trays, secondary distribution system piping, and the fan motors. Cooling tower cells CT2-1 and CT2-2 are evaluated using three longitudinal models (Bents A, B and C) and three transverse models (Main, End and Partition).

The longitudinal and transverse bents are analyzed separately as 2-D models since the cooling tower construction lacks any horizontal floor diaphragms. The only floor diaphragm is at the top level but the cement board and plywood deck was judged inadequate to ensure diaphragm action given the large openings of the fan stacks. For each typical bent, the maximum loading applicable to any bent is used, considering the full range of fan/motor weights and operating modes (i.e., number of cells in use). Asymmetric loads from differing fan/motor weights, operating modes and dead loads will result in lower loads on individual bents and are thus bounded by this analysis.

Each cooling tower has four A bents, two B bents and two C bents in the longitudinal direction. Bent B on the west side of the tower governs since it receives fan motor and support frame loads. Bent C on the west side of the tower governs since it receives fan motor and cable tray loads. The load applied to the Bent A model envelopes the loads applied to all four A type bents. This is conservative since the dead load of the fan only applies to two of the A bents, and these bents are not actually loaded by the T-bar fill.

The transverse main bent structural model includes member sizes from the main bents in cell CT2-1. The loads on the main bents in cell CT2-1 govern because of the weight of the secondary distribution piping. Differences between the main bent members in cells CT2-1 and CT2-2 are evaluated separately. The transverse wall end of cell CT2-1 (wall no. 3) is modeled. The partition bent at wall no. 4 (wall between cells CT2-1 and CT2-2) is modeled since it receives load from both cells. The partition bent at wall no. 5 is not modeled as it is outside the zone of influence for cell CT2-1 and does not receive load from two cells.

Job No. 1356711 Job Entergy Vermont Yankee

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 8 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

This calculation evaluates the cooling towers by modeling the main structural framing members as beam elements and applying the deadweight and mass of all internals at member intersections (computer nodal locations). The models are evaluated for dead load, snow/ice load and seismic loading conditions.

This calculation is a conservative enveloping evaluation of both the summer and winter conditions occurring simultaneously. The maximum snow loads are being taken at the same time as the maximum (summer) operating temperatures. Corresponding reductions in member strengths due to high temperature are conservatively used for loading combinations that include snow loads.

The transverse bents are modeled as 2-D trusses because all loads are applied at the joints. The longitudinal bents have loads applied at intermediate points on the columns and are therefore modeled as 2-D frames. All diagonal bracing and horizontal members are modeled with pinned ends. Columns are modeled as pinended in the transverse truss models (except at selected locations in the hot basin where there are no diagonal braces) and continuous in the longitudinal frame models. All connections to the concrete foundation are modeled as pinned end supports. The longitudinal bent models include constraints between adjacent nodes where wood blocking exists (at the top just below the deck and along the length of the hot basin). The transverse truss models contain very small lateral springs for the dead load analysis to provide numerical stability in the absence of the diagonal bracing and partition wall shear panels.

The T-bar fill loads are conservatively distributed at node points located at anchor points of the T-bar fill wire mesh support grid. This is conservative since the support grid has a low horizontal frequency relative to the cooling tower structure. The T-bar fill mass includes water in transit which will not be driven by acceleration of the structure. A large portion of the mass of the T-bar fill could be de-coupled from the model due to the low support frequency and water in transit. The horizontal members at the nodal locations in the models are included only for calculating distribution of T-bar fill.

The models are analyzed using the Vermont Yankee design basis earthquake from Appendix A of the UFSAR (included as Attachment C). The curves in Attachment C have a peak ground acceleration of 0.07g, corresponding to the operating basis earthquake (OBE). Horizontal seismic input for this analysis is the maximum hypothetical earthquake (MHE) equal to two times the OBE (PGA of 0.14g). The vertical acceleration in the analysis is equal to 0.093 or 2/3 of the rigid range horizontal ground spectrum.

A damping ratio of 5 percent of critical damping is used in the analysis for the MHE. This type of wood framed structure has significant damping since the bolted connections absorb energy due to friction and slippage inherent in the connections and support points. NUREG/CR-0098 (Reference 22) provides seismic criteria for re-evaluating structures in older nuclear power plants. NUREG/CR-0098 recommends using 5 to 7 percent damping for bolted wood structures designed to a stress level of ½ yield point (i.e. OBE stress levels), and 10 to 15 percent damping for bolted wood structures designed to yield point stress levels (i.e. MHE stress levels). A damping ratio of 5 percent for the MHE is conservative since it is the lower bound value recommended for OBE in NUREG/CR-0098.

The cooling tower is evaluated using the finite element computer program SAP2000, Version 7.40 (Reference 4). The program is verified and certified for use on QA projects in accordance with the ABS Consulting Quality Assurance Manual (Reference 5) and Procedure NQP-03 (Reference 6). Documentation of the program verification is contained in Reference 10.

The models are analyzed for the vertical and horizontal earthquake in the plane of the model acting simultaneously. The vertical earthquake is evaluated statically with a seismic loading of 0.093 of the weight along the height of the columns. Structural response from the horizontal and vertical earthquake

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

9 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

components are combined using the square root of the sum of the squares (SRSS) method. Modal response is combined using the CQC method to account for closely spaced modes. Modes are calculated up to 33 Hz with residual mass correction applied for participating mass above 33 Hz. The residual mass correction option is chosen within the SAP2000 computer program (Reference 4).

The analysis considers the following loading combination based on the UFSAR (Reference 1):

D+L+E

Where:

D = the dead load of structure and equipment plus any other permanent loads

L = 40 psf snow/ice load

E = Seismic load resulting from the maximum hypothetical earthquake, with a peak ground acceleration of 0.14g.

The allowable loading for the wood structure is determined in accordance with the 1991 edition of the NDS (Reference 8) and the 1996 edition of the Cooling Tower Institute (CTI) Standard Specification for the Design of Cooling Towers With Douglas Fir Lumber (Reference 11). The tower is constructed using treated Douglas Fir lumber. The allowable load calculations account for load duration, operating moisture level, operating temperature, member size and unbraced compression lengths. The load duration factor is taken as 0.9 for dead, 1.15 for snow/ice and 1.6 for earthquake load cases per NDS Table 2.3.2 (Ref. 8). A buckling length coefficient (Ke) of 0.8 is used for columns and 1.0 for bracing per NDS Table G1 (Ref. 8), unless otherwise noted in the body of the calculation (for isolated conditions).

The 1.6 load duration factor for earthquake load combinations is based on 10-minutes duration of load. This is conservative since the duration of strong motion in large earthquakes does not exceed 30 to 40 seconds, based on seismic experience data (Reference 3). A more realistic duration factor of up to 1.9 could be used for the MHE based on NDS Appendix B, Figure B1.

Allowable loads on connections are increased by 1.33 for earthquake loads using Reference 9. This is conservative since an increase of 1.6 could be used based on SRP Section 3.8.4 (Reference 23).

The allowable loads on the base anchor bolts are calculated in accordance with Section C.4 of Reference 3. The allowable bolt stress is equal to 1.7 times the working stress design allowable stress in Part 1 of AISC (Reference 9). The 1.7 increase factor is based on the standard increase in Part 2 of AISC. Reductions for embedment and edge distance are based on shear cone theory from Appendix B of ACI 349 (Reference 26).

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

10 of 182

By R.Augustine Date 04/05/2005

Checked J. L. White Date 04/05/2005

4. DESIGN INPUT

Design input and sources of information are described below.

- The as-built details of the cooling towers are shown on the drawings listed in Reference 7.
- The bent models from the Vermont Yankee UFSAR (Reference 1) shown in Attachment A are used in this analysis. These models include all the structural members (beams, columns and bracing) that are stressed under the applied dead, ice/snow and seismic loading.
- The weight (mass) of the following items are included in the model (weights from Attachment B unless noted):
 - Top fan deck weight consists of 3/8" thick flat cement board (4.3 psf wet sheet B4), 1 1/8" thick plywood and 2 x 6 pressure treated Douglas Fir joists 2' on center (weights determined from References 9 and 18)
 - Depth of water in the hot water basin under normal operating conditions 8.75" deep (46 psf sheet B4)
 - Weight of water in transit is based on a design flow of 17.5 GPM per square foot (Sheet B3). Weight of water in transit including weight of T-bar fill and supports is taken as 1.88 pcf for 4 x 8 T-Bar Fill from Sheet B4. Weight of water in transit, T-bar fill and supports for 2 x 8 T-bar fill is calculated as 2.53 pcf based on Sheets B4, B5 and Ref. 7.8.
 - Louver Wall consisting of 3/8" thick flat Cement Asbestos Board (6'-0" long) (112 lbs sheet B4)
 - Drift Eliminators (2.5 psf wet sheet B4)
 - Partition Wall firewall with two 1/2" thick C.A.B. Flats (11.8 psf wet sheet B4)
 - End Wall firewall with one 3/8" thick Corrugated C.A.B. (5.0 psf wet sheet B4)
 - Cable Tray weight is defined as 60 lbs/ft per Reference 20.
 - Secondary distribution system piping configuration is based on Reference 7.5.
 - Wood framing member self-weight is calculated in the computer model and included in the analysis.
 - The weight of the fiberglass fan stack is calculated based on the details on sheet B15.

ABS Consulting

Job No. 1356711

Job **Entergy Vermont Yankee**

Rev

Bv

1 Sheet No. R.Augustine Date 04/05/2005

11 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked J. L. White Date 04/05/2005

The weights of the mechanical components (from sheet B7) are listed as follows. These weights include the change in weight due to power uprate modifications:

Fan Weight	2070	lbs.
Fan Thrust	2454	lbs.
Gear Reducer	2125	lbs.
Gear Adapting Steel	250	lbs.
Driveshast	75	lbs.
Motor	2000	lbs.
Motor Adapting Steel	125	lbs.

- The weight of the fan stack is calculated based on the configuration on Drawing 5920-13330 (Reference 7.14).
- The fan thrust load is from Drawing 5920-13330 (Reference 7.14).
- The circulating water distribution system piping is 60" diameter fiberglass pipe per Ebasco Specification 54-63 (Reference 17).
- The snow and ice load applied to the top deck area is 40 psf per Ebasco Specification 54-63 (Reference 17). '
- The allowable load on the wood members is determined in accordance with References 8 and 11. The modulus of elasticity (E) and allowable load is determined using Douglas Fir No. 1 lumber (sheets B2 and B7).
- The design temperatures for calculating the allowable load on the wood members are as follows (from sheet B7):

Plenum Area	100.3F
Fill Area – top third of tower	115F
Fill Area - middle third of tower	107.5F
Fill Area – bottom third near deep basin	100F

The allowable loads for connections are taken from sheet 13 of Reference 12.

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

J. L. White

Checked

12 of 182

Date 04/05/2005

By R.Augustine Date 04/05/2005

5. ASSUMPTIONS

Assumptions are as follows:

- The weight of the circulating water distribution header is calculated assuming 60" OD fiberglass pipe with a wall thickness of 1/2". The density of the fiberglass material is assumed to be 120 pcf based on Reference 19.
- The concrete strength of the cooling tower foundation basin is assumed to be 3000 psi based on the notes on Drawing. G-200357 (Ref. 7.11). This is used for determining the allowable anchor bolt loads. This assumption is conservative since the value on the drawing is the minimum design strength (actual strength at the time the concrete is placed is normally much greater than the minimum design strength) and concrete strength increases with time.
- The moisture condition of all wood members is assumed saturated. This is conservative since not all members are continuously exposed to water.
- Lumber sizes are assumed to be equal to the minimum dry dressed size in accordance with NDS Supplement (Ref. 8) Table 1A.
- It is assumed that all lumber is capable of supporting the full design capacities based on ongoing inspection and replacement regime in place at VY (see sheet B7).
- The weight of the secondary distribution pipe in cell CT2-1 does not include the weight of water since the pipe is assumed to be normally empty (see Ref. 7.5). This system has to be activated manually by opening a manual valve. The weight of the empty pipe is determined assuming STD schedule wall thickness.
- The density of Douglas fir is assumed to be a minimum of 32 pcf from Reference 9 page 6-8.
- The density of the fan stack fiberglass is assumed to be 120 pcf based on Reference 19 (included in Attachment B) and Reference 27.

There are no unsubstantiated assumptions that require additional verification.

Job No. 1356711

Calc. No. 1356711-C-001

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

13 of 182

By R.Augustine Date 04/05/2005

J. L. White

Checked

Date 04/05/2005

6. CALCULATIONS

The following sections of this calculation will determine the individual nodal weights and masses and will also document the results of the analysis. For each model, summaries are provided documenting the resulting loads from both the dead load and seismic load cases. These resulting loads are then compared with the allowable loads determined by References 8 and 11.

6.1 BENT MODELS

The bents are modeled as beam elements using the models from the Vermont Yankee UFSAR as shown in Attachment A. In addition, various modification drawings (Reference 7) are used to reflect the "as-built" cooling tower frames. Attachment E contains copies of the models with dimensions, load locations and nodal numbering shown.

6.2 MODEL LOADING

The cooling towers are subject to various dead loads that are detailed in the following sections. These include the following:

- 1. New Fans and Motors
- 2. Fan Support Steel
- 3. Top Cover Fan Deck (Including Snow Load)
- 4. New Cable Tray
- 5. Manifold Pipe
- 6. Hot Water Basin
- 7. T-Bar Fill and Water in Transit
- 8. Partition and End Wall Cladding
- 9. Triangular Wall Self Weight
- 10. Louver Wall
- 11. Drift Eliminators
- 12. Fiberglass Fan Stack
- 13. Secondary Distribution Piping

The dead loads and masses are distributed to framing member intersection points based on the spans to the next joint both in and out of the plane of the model.

Section 6.2.1 will determine the nodal loading for each joint location on the model. Section 6.2.2 will determine and combine the individual nodal loads and masses.

Job No. 1356711

Calc. No. 1356711-C-001

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

14 of 182

Ву R.Augustine Date 04/05/2005

Date 04/05/2005 Checked J. L. White

Dead Load and Mass Distribution

6.2.1.1 New Fans and Motors

The following fan and motor loads are from sheet B6.

Fan Weight 2070 lbs. Fan Thrust 2454 lbs. 2125 Gear Reducer lhs Gear Adapting Steel 250 lbs. Driveshaft 75 lbs. Motor 2000 lbs. Motor Adapting Steel 125 lbs.

Divide driveshaft weight between fan and motor.

Apply to Fan: 6,937 Apply to Motor: 2,163 lbs.

The fans are located at the centerline of the cooling towers between two A Bents and two MAIN Bents. This will spread the load to 4 Bent A and MAIN nodes on the top level.

Fan loading per node = fan wt / 4 = 1,734 lbs. Main bent nodes P5 and P6 Fan mass per node = $\frac{\text{fan loading -thrust}}{4*g} = 2.9002$ (lb*sec^2/in)

Bent A nodes P4, P5, P11 and P12

The motors are located near the centerline of the cooling towers between bents B and C and between two MAIN Bents. The motors are located approximately 2 feet from the B bent and 4 feet from the C bent resulting in 2/3 of the weight and mass on two B bents and 1/3 on two C bents.

The B-Line Main nodes will see 2/3 of the load and the C-Line Main nodes will see 1/3 of the load and

(2/3) Motor loading per node = (2/3) wt / 2 bents = 721 lbs. (2/3) Motor mass per node = (2/3) wt / (2*g) = 1.8655 (lb*sec^2/in) B bent nodes P4, P5, P11 and P12 Main bent node P8 (B-line motor)

360 (1/3) Motor loading per node = (1/3) wt / 2 bents= lbs. (1/3) Motor mass per node = (1/3) wt / (2*g) = 0.9328 (lb*sec^2/in) C bent nodes P4, P5, P11 and P12 Main bent node P9 (C-line moter)

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

1 Sheet No.

Rev

By

Checked

15 of 182

R.Augustine Date 04/05/2005 J. L. White Date 04/05/2005

6.2.1.2 Fan Support Steel

The fan and motor are bolted to W 5x16 cross members which, in turn, are bolted to steel W6x15 members which are bolted to the wooden tower. The cross members are 6 feet long (from bent to bent) and the long frame members are 24 feet long (4 bent span).

The resulting weight taken by the 4 columns under the fan is:

Cross Members:	= (2)*(6 feet)*(16 lb/ft)/(4 col) =	48	lbs.	Main bent nodes P5 and P6 (fan)
	= (2)*(6 feet)*(16 lb/ft)/(4 col)*(2/3) =	32	lbs.	Main bent node P8 (B-line motor)
	= (2)*(6 feet)*(16 lb/ft)/(4 col)*(1/3) =	16	lbs.	Main bent node P9 (C-line moter)
	= (2)*(6 fect)*(16 lb/ft)/(4 col) =	48	lbs.	A bent nodes P4, P5, P11 and P12

= (2)*(6 feet)*(16 lb/ft)/(4 col)*(2/3) =32 lbs. B bent nodes P4, P5, P11 and P12 = (2)*(6 feet)*(16 lb/ft)/(4 col)*(1/3) =lbs. C bent nodes P4, P5, P11 and P12

Long Members: The MAIN bent top nodes will support 6 feet of the long frame steel

=(6 feet)*(15 lb/ft) =	90	lbs.	Main bent nodes P5 and P6 (fan)
=(6 fcet)*(15 lb/ft) =	90	lbs.	Main bent nodes P8 and P9 (motor)
=(6 feet)*(15 lb/ft) =	90	lbs.	A bent nodes P4, P5, P11 and P12
=(6 feet)*(15 lb/ft) =	90	lbs.	B bent nodes P4, P5, P11 and P12
$=(3 \text{ feet})^{+}(15 \text{ lb/ft}) =$	45	lhs	Chent nodes P4 P5 P11 and P12

Job No. 1356711

Job

Entergy Vermont Yankee

Rev

1 Sheet No.

16 of 182

Ву

r.Augustine

R.Augustine Date 04/05/2005

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked J. L. White

Date 04/05/2005

6.2.1.3 Top Cover Fan Deck (Including Snow Load)

The load on the top deck of the towers is from the 3/8" cement board, 1-1/8" thick marine plywood, 2x6 floor joists on 24-inch centers and a 40 psf snow load.

The top cover is 3/8" thick cement board which, per sht B4, weighs

4.3

psf wet.

Per Ref. 18, 1-1/8" marine plywood weighs

3.3

psf.

Per Ref. 9, Doug Fir wood weighs 32 pcf. The floor joists result in an area weight of

Area of 2x6 =

(1.5*5.5)

8.25

in^2

located on 24-inch centers results in

4.125

in^2 per horiz. foot

Joist weight = 32 pcf * area * 1 foot =

0.917

psf

Per Ref. 1, the snow load =

40

psf

Total top cover wet weight =

48.52

psf. The weight will be applied to level P in the model.

End Bent

	In-Plane Spacing per Node (in)	Out-Of-Plane Spacing (in)	Area Supported (ft^2)	Weight (lb)	Mass per node (lb*sec^2/in)
End Node	36	36	9.0	437	1.1300
Interior Node	72	36	18.0	873	2.2601

Main and Partition Bents

	In-Plane Spacing per Node (in)	Out-Of-Plane Spacing (in)	Area Supported (ft^2)	Weight (lb)	Mass per node (lb*sec^2/in)
End Node	36	72	18.0	873	2.2601
Interior Node	72	72	36.0	1747	4.5202

Bent C

	In-Plane Spacing per Node (in)	Out-Of-Plane Spacing (in)	Area Supported (ft^2)	Weight (lb)	Mass per node (lb*sec^2/in)
End Node	36	131	32.8	1589	4.1121
Interior Node	72	131	65.5	3178	8.2242

Job No. 1356711

Calc. No. 1356711-C-001

Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

Checked

17 of 182

Date 04/05/2005

By R.Augustine Date 04/05/2005

J. L. White

Top Cover Fan Deck (Including Snow Load) (Continued)

Bents A and B

	In-Plane Spacing per Node (in)	Out-Of-Plane Spacing (in)	Area Supported (ft^2)	Weight (lb)	Mass per node (lb*sec^2/in)
End Node	36	72	18.0	873	2.2601
Interior Node	72	72	36.0	1747	4.5202

On the top level of the towers, the fan stacks are located over 31-foot diameter openings in the top deck. These openings will limit the number of nodes which will see top cover load.

Bent C

Bent C is not affected by the fan stack opening so the top cover load will apply to all P level nodes.

Bent B

For Bent B, nodes P1, P2, P7, P8, P9, P14 and P15 will see the full top cover load as they are not affected by the fan stack opening.

Nodes P3, P6, P10 and P13 will see approximately 7/8 of the top cover load as they are affected by the fan stack opening.

Nodes P4, P5, P11 and P12 will see approximately 5/8 of the top cover load as they are affected by the fan stack opening.

Node P3, P6, P10 and P13 =	1528	lbs.
Node P4, P5, P11 and P12 =	1092	lbs.

Bent A

For Bent A, nodes P1, P8 and P15 will see the full top cover load as they are not affected by the fan stack opening. P1 is an end node and P8 and P15 are interior nodes.

Nodes P2, P7, P9 and P14 will see approximately 7/8 of the top cover load as they are affected by the fan stack opening.

Nodes P3, P6, P10 and P13 will see approximately 1/4 of the top cover load as they are affected by the fan stack opening.

Node P2, P7, P9 and P14 $=$	1528	lbs.
Node P3, P6, P10 and P13 =	437	lbs.

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 18 of 182

Ву Checked

R.Augustine Date 04/05/2005 J. L. White

Date 04/05/2005

Top Cover Fan Deck (Including Snow Load) (Continued)

End Bent

The END bent is not affected by the fan stack opening so the top cover load applies to all P level nodes.

For the MAIN bent, nodes P1, P2, P9 and P10 will see the full top cover load as they are not affected by the fan stack opening.

Nodes P3 and P8 will see approximately 5/8 of the top cover load as they are affected by the fan stack opening.

Node P3 and P8 =

1092

lbs.

Partition Bent

The PARTITION bent is not affected by the fan stack opening so the top cover load will apply to all P level nodes.

Job

Entergy Vermont Yankee

Rev

1 Sheet No.

19 of 182

Subject Cooling Tower Seismic Evaluation

Ву

Checked

R.Augustine Date 04/05/2005 J. L. White

Date 04/05/2005

6.2.1.4 New Cable Tray

The tray weight is

60

lb/ft. It is routed the length of the towers 3'-10" west of

Bent C per drawing G191374 (Ref. 7.15).

BENT C

Row	In Planc Spacing per Node (in)	Cable Tray weight per node (lb)	Mass per node (lb*sec^2/in)	
End Node	36	180	0.4658	Bent C node P1
Interior Node	72	360	0.9317	Bent C nodes P2-P15

MAIN AND PARTITION BENT

Out of Plane Cable Tray Mass per node Spacing Row weight per (lb*sec^2/in) per Node (in) node (lb)

Interior Node

72

360

The cable tray is located approximately mid-way between nodes P9 and P10.

Load per node = 1/2*tray load =

180

0.4658

Nodes P9 and P10

END BENT

	Out of Plane	Cable Tray	Mass per node
Row	Spacing	weight per	(lb*sec^2/in)
	per Node (in)	node (lb)	(10 Sec 2/111)

End Node

36

90

0.2329

Nodes P9 and P10

In addition to the uniform load along bent C, the END bent along column 9 will see a point loads from the cable tray running up the end of the tower. The cable is cable tied to the tray and the tray is attach to the bent at each horizontal structural member. This results in a nodal load based on the horizontal membe spacing and a tray weight of 60 lb/ft.

387

435

483

531

564.4375

Job No. 1356711

J

K

L

M

N

Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

1 Sheet No.

20 of 182

Ву Checked

Rev

R.Augustine J. L. White

END bent node J9, MAIN Bent J1

END bent node L9, MAIN Bent L1

END bent node P9, MAIN Bent P1

END bent node M9, MAIN Bent M1

END bent node N9, MAIN Bent 5FIL1

END bent node K9, MAIN Bent 4FIL1

Date 04/05/2005 Date 04/05/2005

New Cable Tray (Continued)

Calc. No. 1356711-C-001

Row	Elevation (in)	per Level (in)	Cable Tray Load (lb)	Mass per node (lb*sec^2/in)	
End Bent - all level	ls present				
F	195				
G	243	48	240	0.6211	END bent node G9, MAIN Bent 2FIL1
Н	291	48	240	0.6211	END bent node H9, MAIN Bent H1
I	339	48	240	0.6211	END bent node 19, MAIN Bent 3FIL1

240

240

240

204

308

0.6211

0.6211

0.6211

0.5269

0.7958

0.5795

P	654	44.78125	224	
e P9 loading = tray	weight plus	riser weight =	314	lbs.
	- •	s riser also =	90	lbs.

48

48

48

40.71875

61.5

Job No. 1356711

Job

Entergy Vermont Yankee

Rev 1 Sheet No. R.Augustine Date 04/05/2005

21 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

By

J. L. White

Date 04/05/2005

6.2.1.5 Manifold Pipe

The weight of the circulating water distribution header is calculated assuming 60" OD fiberglass pipe with a wall thickness of 1/2".

The density of the fiberglass material is 120 pcf per Reference 19.

Determine pipe weight per foot:			thick =	0.5	in
OD =	60	in	1D =	59	in
pipe area/ft =	PI * (OD^2	- ID^2) / 4 =	93.46	in^2 / ft	
pipe weight =	A * (12 *in)) *fiberglass density =	78	lb / ft	
water area/ft =	PI + (ID^2)	14=	2733 97	in^2 / ft	

For the interior nodes, the support spacing for the pipe is 72 inches. For the end nodes, the support spacing for the pipe is 36 inches.

End Bent Nodal Loading:

```
Load on nodes N2 N3, N8 and N9 = (end nodal load) / 2 =
                                                           1894
                                                                   lb / node
Load on nodes N2 N3, N8 and N9 = (end nodal mass) /2 =
                                                          4.9014 lb *sec^2 / in
```

Main and Partition Bent Nodal Loading:

```
Load on nodes N2 N3, N8 and N9 = (interior nodal load) / 2 =
                                                                3788
                                                                       ·lb / node
Load on nodes N2 N3, N8 and N9 = (interior nodal mass) / 2 =
                                                               9.8028 lb *sec^2 / in
```

The manifold pipe loads Bents B and C on model level N, Elev. 564". Bent A does not support the manifold pipe.

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

1 Sheet No.

J. L. White

Rev

Ву

Checked

22 of 182

Date 04/05/2005

R.Augustine Date 04/05/2005

6.2.1.6 Hot Water Basin

Per sheet B4, the weight of the water in the Hot Basin is defined as 46 psf. This is based on a depth of 8-3/4" for normal operating conditions.

Use water weight =

46

psf

Longitudinal Direction, Loads on Bents B and C

The load is distributed in the longitudinal direction between two sets of in-plane nodes. The nodes for Bent B will see 1/4 of the of the total hot basin load and Bent C will take the other 3/4.

Bent Nodes	In-Plane Spacing per Node (in)	Out-of-Plane Spacing (in)	Area Supported (ft^2)	Weight (lb)	Mass per node (lb*sec^2/in)
Bent C					
end nodes	36	108	27.0	1242	3.2143
interior nodes	72	108	54.0	2484	6.4286
Bent B					
end nodes	36	36	9.0	414	1.0714
interior nodes	72	36	18.0	828	2.1429

Transverse Direction, Load on End, Main and Partition Bents

The load is distributed in the transverse direction between three sets of in-plane nodes. The exterior nodes will see 1/2 of the of the total hot basin load and the interior node will take the other 1/2.

	In-Plane Spacing per Node (in)	Out-Of-Plane Spacing (in)	Area Supported (ft^2)	Weight (lb)	Mass per node (lb*sec^2/in)
End Bent					
exterior node	36	36	9.0	414	1.0714
interior node	72	36	18.0	828	2.1429
Main and Partit	ion Bents				
exterior node	36	72	18.0	828	2.1429
interior node	72	72	36.0	1656	4.2857

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

23 of 182

Date 04/05/2005 Ву R.Augustine Checked J. L. White

Date 04/05/2005

6.2.1.7 T-Bar Fill and Water in Transit

This section of the calculation will determine the T-Bar fill in the tower. The fill weight wil be distributed along the horizontal members at the fill wire anchor locations. The weight will be distributed to horizontal framing members along model levels E, G, I, K and N. It is assumed the fill wires are not attached to the framing members at levels F, H, J, L or M based on the drawing details. Each wire anchor location will take 1/2 of the load from each of the next tie locations in the horizontal in-plane direction and 1/2 of the load to the next horizontal framing member out of-plane. In addition, the wire location will take 1/2 of the I to the above and below horizontal members. The T-bar installation configuration is shown in References 7.6, 7.7 and 7.8.

2x8 Fill	4x8 Fill	Center wire
Density	Density	Fill Density
(pcf)	(pcf)	
2.53	1.88	2,205

The nodes for the models are shown on the following sheets:

Bent A	. Sheets E7-E20	End Bent	Sheets E140-E152
Bent B	Sheets E42-E54	Main Bent	Sheets E180-E192
Bent C	Sheets E81-E97	Partition Bent	Sheets E226-E238

Main and Partition Bents

		37	T 11		Tributary Out-				Using
11	I aval Elav	<u>Vertical</u>	Tributary	In-Plane	of-Plane	<u>per</u>	Fill Density	<u>Fill</u>	Average
<u>Level</u>	Level Elev.	Spacing	Wire Length	Spacing	Spacing	Anchor	<u>Density</u>	Density	Density
	(in)	(in)	(in)	(in)	(in)	(ft^3)	(lbs)	(lbs)	(lbs)
E	162.25	40.375	41.72	24	72	41.72	106	78	
E outer	162.25	40.375	41.72	14	72	24.34	62		
E center	162.25	40.375	41.72	24	72	41.72			92
G	243	88.375	91.33	24	72	91.33	231	172	
G outer	243	88.375	91.33	14	72	53.27	135		
G center	243	88.375	91.33	24	72	91.33			201
I	339	96	99.21	24	72	99.21	251	187	
I outer	339	96	99.21	14	72	57.87	146		
I center	339	96	99.21	24	72	99.21			219
к	435	112.72	116.49	24	72	116.49	-295	219	
K outer	435	112.72	116.49	14	72	67.95	172		
K center	435	112.72	116.49	24	72 .	116.49			257
N	564.4375	64.72	66.88	24	72	66.88	169	126	
N outer	564.4375	64.72	66.88	14	72	39.01	99		
N center	564.4375	64.72	66.88	24	72	66.88			147

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

1 Sheet No. Rev Ву

24 of 182

R.Augustine Date 04/05/2005 J. L. White Date 04/05/2005 Checked

T-Bar Fill and Water in Transit (Continued)

End Bent

		<u>Vertical</u>	Tributary	Tributary In-Plane	Tributary Out- of-Plane		Using 2x8 Fill	Using 4x8 Fill	<u>Using</u>
Level	Level Elev.	Spacing	Wire Length	Spacing	Spacing	per Anchor	<u>Pin</u> Density	<u>Density</u>	Average Density
<u> </u>	(in)	(in)	(in)	(in)	(in)	(ft^3)	(lbs)	(lbs)	(lbs)
Е	162.25	40.375	41.72	24	36	20.86	53	39	• •
E outer	162.25	40.375	41.72	14	36	12.17	31		
E center	162.25	40.375	41.72	24	36	20.86			46
G	243	88.375	91.33	24	36	45.66	116	86	
G outer	243	88.375	91.33	14	36	26.64	67		
G center	243	88.375	91.33	24	36	45.66			101
I	339	96	99.21	24	36	49.60	125	93	1
I outer	339	96	99.21	14	36	28.94	73		
I center	339	96	99.21	24	36	49.60			109
K	435	112.72	116.49	24	. 36	58.24	147	109	:
K outer	435	112.72	116.49	14	36	33.97	86		
K center	435	112.72	116.49	24	36	58.24			128
N	564.4375	64.72	66.88	24	36	33.44	85	63	
N outer	564.4375	64.72	66.88	14	36	19.51	49		
N center	564.4375	64.72	66.88	24	36	33.44			74

Job

Entergy Vermont Yankee

Rev

1 Sheet No.

25 of 182

Subject Cooling Tower Seismic Evaluation

Ву Checked R.Augustine Date 04/05/2005 J. L. White

6.46

LENGTH =

Date 04/05/2005

T-Bar Fill and Water in Transit (Continued)

BENTS A, B and C

To determine the T-bar fill loading on the longitudinal bents A, B and C the nodal loads from the fill wire hanger locations will be accounted for.

<u>LEVEL N</u> The load from each of the transverse bent nodes N1A, N1B and N1C will be applied to the longitudinal bent C at the N level.

Loads:	NIA =	<u>END</u> 49	<u>MAIN</u> 99	PARTITION 99
	N1B =	85	169	169
	NIC =	74	147	147
Bent	 C load =	208	415	415

The load from nodes N2A, N2B and N2C will be applied to bents C and B.

		END	MAIN	PARTITION
Loads:	N2A =	74	147	147
	N2B =	63	126	126
	N2C =	63	126	126
Bent C load from	n N2A=	67	134	.134
Bent B load from	2 N2A=	7	13	13
Bent C load from	n N2B=	36	73	73
Bent B load from	n N2B=	27	53	53
Bent C load from	n N2C=	15	31	31
Bent B load from	n N2C=	48	95	95
Bent (C load =	119	237	237
Bent I	3 load =	81	162	162
Comment Book C	•	227	463	453
Summation Bent C		326	653	653
Summation Bent B	Load =	81	162	162

Long. Bent	Long. Bent	Long. Bent
Node	Node	Node
5FIL1	5FIL2-7	5FIL8
	and	and
	5FIL9-14	5FIL15

Job No. 1356711

Job Entergy Vermont Yankee

Rev By 1 Sheet No.

26 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

J. L. White

Date 04/05/2005

72

R.Augustine Date 04/05/2005

T-Bar Fill and Water in Transit (Continued)

LEVEL K The load from each of the transverse bent nodes K1A and K1B will be applied to the longitudinal bent C at the K level.

Loads:	K1A =	<u>END</u> 86	<u>MAIN</u> 172	PARTITION 172
	K1B =	147	295	295
Bent	C load =	233	467	467

The load from nodes K2A, K2B and K2C will be applied to bents C and B.

Loads: K2A = K2B = K2C =	END 128 128 109	MAIN 257 257 219	<u>PARTITION</u> 257 257 219	16.4	16 24	24 7.54 72
	107	2.7	217		LLMGIII	
Bent C load from K2A=	99	198	198			
Bent B load from K2A=	29	59	59			
Bent C load from K2B=	56	113	113			
Bent B load from K2B=	72	144	144			
Bent C load from K2C=	11	23	23			
Bent B load from K2C=	98	196	196			
Bent C load ≠	167	334	334			
Bent B load =	200	399	399			
(auth)						

The load from node K3A will be applied to bents B and A.

<u>END</u> 109	<u>MAIN</u> 219	<u>PARTITION</u> 219	16.46	55.54
				LENGTH
84	169	169		
25	50	50		
400	800	800		
25	50	50		
	84 25 400 284	84 169 25 50 400 800 284 568	84 169 169 25 50 50 400 800 800 284 568 568	84 169 169 25 50 50 400 800 800 284 568 568

Long. Bent	Long. Bent	Long. Bent	
Node	Node	Node	
4FIL1	4FIL2-7	4FIL8	
	and	and	
	4FIL9-14	4FIL15	

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

1 Sheet No. Rev

27 of 182

Ву Checked

R.Augustine Date 04/05/2005 J. L. White

Date 04/05/2005

T-Bar Fill and Water in Transit (Continued)

LEVEL I The load from the transverse bent nodes IIA will be applied to the longitudinal bent C at the I level.

Loads:	IIA =	<u>END</u> 73	<u>MAIN</u> 146	PARTITION 146
Bent C	load =	73	146	146

The load from nodes I2A, I2B and I2C will be applied to bents C and B.

	END	<u>MAIN</u>	<u>PARTITION</u>				
Loads: I2A =	125	251	251	15.49	24	24	8.5
12B =	109	219	219				
I2C =	109	219	219		LENGTH =	72	
						1	
Bent C load from I2A=	98	197	197				
Bent B load from 12A=	27	54	54				
Bent C load from 12B=	49	99	99				
Bent B load from 12B=	60	120	120				
Bent C load from 12C=	13	26	26			:	
Bent B load from I2C=	96	193	193				
Bent C load =	161	322	322				
Bent B load =	183	367	367				

Job No. 1356711

Calc. No. 1356711-C-001

Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

28 of 182

8.51

By R.Augusti

R.Augustine Date 04/05/2005

Checked J. L. White Date 04/05/2005

T-Bar Fill and Water in Transit (Continued)

The load from nodes I3A and I3B will be applied to bents B and A.

Loads: I3A = 13B =	<u>END</u> 93 93	<u>MAIN</u> 187 187	<u>PARTITION</u> 187 187	15.49	24 LENGTH =
					LENGIH -
Bent B load from I3A=	73	146	146		
Bent A load from I3A=	20	40	40		
Bent B load from I3B=	42	84	84		
Bent A load from I3B=	51	102	102		
Bent B load =	115	231	231		
Bent A load ≠	71	142	142		
Summation Bent C Load =	234	468	468		
Summation Bent B Load =	299	597	597		
Summation Bent A Load =	71	142	142		

Long. Bent Long. Bent Node Node Node SFIL1 3FIL2-7 3FIL8 and and 3FIL9-14 3FIL15

Job

Entergy Vermont Yankee

Rev

1 Sheet No.

29 of 182

9

72

Subject Cooling Tower Seismic Evaluation

Ву Checked R.Augustine Date 04/05/2005 J. L. White

15

LENGTH =

Date 04/05/2005

T-Bar Fill and Water in Transit (Continued)

<u>LEVEL G</u> The load from the transverse bent nodes G1A will be applied to the longitudinal bents at the G level.

The load from nodes G2A, G2B and G2C will be applied to bents C and B.

	END	<u>MAIN</u>	<u>PARTITION</u>			
Loads: G2A =	67	135	135	15	24	24
G2B =	116	231	231			
G2C =	101	201	201		LENGTH =	72
Bent C load from G2A=	53	107	107			
Bent B load from G2A=	14	28	28			
Bent C load from G2B=	53	106	106			
Bent B load from G2B=	63	125	125			
Bent C load from G2C=	13	25	25			
Bent B load from G2C=	88	176	176			
Bent C load =	119	238	238			
Bent B load =	165	329	329			

The load from nodes G3A, G3B and G3C will be applied to bents B and A.

	END	MAIN	PARTITION
Loads: G3A =	101	201	201
G3B =	86	172	172
G3C =	86	172	172
Bent B load from G3A=	80	159	159
Bent A load from G3A=	21	42	42
Bent B load from G3B=	39	79	79
Bent A load from G3B=	47	93	93
Bent B load from G3C=	11	21	21
Bent A load from G3C=	75	150	150
Bent B load =	130	260	260
Bent A load =	143	285	285
Summation Bent C Load =	119	238	238
Summation Bent B Load =	295	589	589
Summation Bent A Load =	143	285	285

Long. Bent	Long. Bent	Long. Bent
Node	Node	Node
2FIL1	2FIL2-7	2FIL8
	and	and
	2FIL9-14	2FIL15

Job

Entergy Vermont Yankee

Rev By 1 Sheet No.

30 of 182

Job Enter

Subject Cooling Tower Seismic Evaluation

Checked

J. L. White

Date 04/05/2005

R.Augustine Date 04/05/2005

T-Bar Fill and Water in Transit (Continued)

LEVEL E The load from the transverse bent nodes E2A and E2B will be applied to the longitudinal bents at the E level.

The load from nodes E2A and E2B will be applied to bents C and B.

62 106	62 106	36	24	10	0
106	106				
			LENGTH =	70	
30	30				
32	32				
15	15				
90	90				
				:	
45	45				
122	122			:	
	32 15 90	32 32 15 15 90 90			

The load from nodes E3A, E3B and E3C will be applied to bents B and A.

	END	<u>MAIN</u>	<u>PARTITION</u>				
Loads: E3A =	46	92	92	12	24	24	12
E3B =	46	92	92			•	
E3C =	39	78	78		LENGTH =	72	
Bent B load from E3A=	38	77	77				
Bent A load from E3A=	8	15	15				
Bent B load from E3B=	23	46	46				
Bent A load from E3B=	23	46	46				
Bent B load from E3C=	7	13	13				
Bent A load from E3C=	33	65	65				
Bent B load =	68	136	136				
Bent A load =	63	127	127				

Job No. 1356711

Calc. No. 1356711-C-001

Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

LENGTH =

31 of 182

Ву Checked R.Augustine Date 04/05/2005 J. L. White

12

Date 04/05/2005

36

72

T-Bar Fill and Water in Transit (Continued)

The load from node E4A will be applied to TWO Bent A nodes.

Loads: E4A =	<u>END</u> 39	<u>MAIN</u> 78	PARTITION 78	
Bent A load from E4A=	33 7	65 13	65 13	
Bent A load =	33	65	65	
Summation Bent C Load = Summation Bent B Load = Summation Bent A Load =	22 129 96	45 258 192	45 258 192	

Long. Bent Long. Bent Long. Bent Node Node Node 1FIL1 1FIL2-7 1FIL8 and and 1FIL9-14 1FIL15

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

Ву

32 of 182

psf.

R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

5.0

6.2.1.8 Partition and End Wall Cladding

The partition and end wall bents will take all of the wall weight in the transverse direction. There is no cladding on the Main Bents.

The end wall is constructed of 3/8" corrugated C.A.B. Per sheet B4, the wet weight is

Per sheet B4, the partition wall is constructed of 2 layers of 1/2" corrugated C.A.B. The wet weight

is defined as

11.8 psf.

	Elevation (in)	Vert Span per Level (in)	Horiz Spacing per Node (in)	End Wall square footage per node (ft^2)	End Wall weight per node (lb)	Mass per node (lb*sec^2/in)
	End Bent					
D end	146.5	7.875	36	1.969	9.8	0.0255
D interior	146.5	7.875	7 2	3.938	19.7	0.0510
E end	162.25	24.25	36	6.063	30.3	0.0784
E interior	162.25	24.25	72	12.125	60.6	0:1569
F end	195	40.375	36	10.094	50.5	0.1306
F interior	195	40.375	72	20.188	100.9	0.2612
G end	243	48	36	12.000	60.0	0.1553
G interior	243	48	72	24.000	120.0	0.3106
H end	291	48	36	12.000	60.0	0.1553
H interior	291	48	72	24.000	120.0	0.3106
I end	339	48	36	12.000	60.0	0.1553
I interior	339	48	72	24.000 °	120.0	0.3106
J end	387	48	36	12.000	60.0	0.1553
J interior	387	48	72	24.000	120.0	0.3106
K end	435	48	36	12.000	60.0	0.1553
K interior	435	48	72	24.000	120.0	0.3106
L end	483	48	36	12.000	60.0	0.1553
L interior	483	48	72	24.000	120.0	0.3106
M end	531	40.719	36	10.180	50.9	0.1317
M interior	531	40.719	72	20.359	101.8	0.2634
N end	564.4375	55	36	13.750	68.8	0.1779
N interior	564.4375	55	72	27.500	137.5	0.3558
O end	641	44.78125	36	11.195	56.0	0.1449
O interior	641	44.78125	72 ·	22.391	112.0	0.2897
P end	654	6.500	36	1.625	8.1	0.0210
P interior	654	6.500	72	3.250	16.3	0.0421

Job No. 1356711 Calc. No. 1356711-C-001 Job

Entergy Vermont Yankee Subject Cooling Tower Seismic Evaluation Rev

1 Sheet No.

33 of 182

Ву Checked

R.Augustine Date 04/05/2005 J. L. White

Date 04/05/2005

Partition and End Wall Cladding (Continued)

Row	Elevation (in)	Vert Span per Level (in)	Horiz Spacing per Node (in)	End Wall square footage per node (ft^2)	End Wall weight per node (lb)	Mass per node (lb*sec^2/in)
	End Bent	with Levels F,	H, J, L, N and (O redistributed		
D end	146.5	7.875	36	1.969	9.8	0.0255
D interior	146.5	7.875	72	3.938	19.7	0.0510
E end	162.25	48.25	36	12.063	60.3	0.1561
E interior	162.25	48.25	72	24.125	120.6	0.3122
_						•
G end	243	88.375	36	22.094	110.5	0.2859
G interior	243	88.375	72	44.188	220.9	0.5718
						•
I end	339	96	36	24.000	120.0	0.3106
I interior	339	96	72	48.000	240.0	0.6211
K end	435	96	36	24.000	120.0	0.3106
K interior	435	96	72	48.000	240.0	0.6211
M end	531	109.5	36	27.375	136.9	0.3542
M interior	531	109.500	72	54.750	273.8	0.7085
P end	654	61.500	36	15.375	76.9	0.1990
P interior	654	61.500	72	30.750	153.8	0.3979
1 micros	UJT	01.500	, 4	50.750	155.0	0.5717

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

34 of 182

R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

Partition and End Wall Cladding (Continued)

Row

Elevation (in)

Vert Span per Level (in) **Horiz Spacing** per Node (in)

Partition Wall Partition Wall square footage per weight per node node (ft^2) (lb)

Ву

Mass per node (lb*sec^2/in)

Partition Bents

E end	162.25	16.375	36	4.094	48.3	0.1250
E interior	162.25	16.375	72	8.188	96.6	0.2500
F end	195	40.375	36	10.094	119.1	0.3082
F interior	195	40.375	72	20.188	238.2	0,6165
G end	243	48	36	12.000	141.6	0.3665
G interior,	243	48	72	24.000	283.2	0.7329
H end	291	48	36	12.000	141.6	0.3665
H interior	291	48	72	24.000	283.2	0.7329
I end	339	48	36	12.000	141.6	0.3665
I interior	339	48	72	24.000	283.2	0.7329
J end	387	48	36	12.000	141.6	0.3665
J interior	387	48	72	24.000	283.2	0.7329
K end	435	48	36	12.000	141.6	0.3665
K interior	435	48	72	24.000	283.2	0.7329
L end	483	48	36	12.000	141.6	0.3665
L interior	483	48	72	24.000	283.2	0.7329
M end	531	40.719	36	10.180	120.1	0.3109
M interior	531	40.719	72	20.359	240.2	0.6217
N end (3/4 area)	564.4375	55	36	13.750	121.7	0.3149
N interior	564.4375	55	72	27.500	324.5	0.8398
O end	641	44.78125	36	11.195	132.1	0.3419
O interior	641	44.78125	72	22.391	264.2	0.6838
P end	654	6.500	36	1.625	19.2	0.0496
P interior	654	6.500	72	3.250	38.4	0.0992

Job No. 1356711 Calc. No. 1356711-C-001 Job

Entergy Vermont Yankee Subject Cooling Tower Seismic Evaluation Rev 1 Sheet No. 35 of 182

Ву Checked R.Augustine Date 04/05/2005 J. L. White

Date 04/05/2005

Partition and End Wall Cladding (Continued)

Elevation Vert Span **Horiz Spacing** Row (in) per Level (in) per Node (in)

Partition Wall Partition Wall square footage per weight per node Mass per node (lb*sec^2/in) node (ft^2) (lb)

Partition Bents with Level O redistributed

E end	162.25	16.375	36	4.094	48.3	0.1250
E interior	162.25	16.375	72	8.188	96.6	0.2500
F end	195	40.375	36	10.094	119.1	0.3082
F interior	195	40.375	72	20.188	238.2	0.6165
G end	243	48	36	12.000	141.6	0.3665
G interior	243	48	72	24.000	283.2	0.7329
H end	291	48	36	12.000	141.6	0.3665
H interior	291	48	72	24.000	283.2	0.7329
I end	339	48	36	12,000	141.6	0.3665
I interior	339	48	72	24.000	283.2	0.7329
J end	387	48	36	12.000	141.6	0.3665
J interior	387	48	72	24.000	283.2	0.7329
K end	435	48	36	12.000	141.6	0.3665
K interior	435	48	72	24.000	283.2	0.7329
L end	483	48	36	12.000	141.6	0.3665
L interior	483	48	72	24.000	283.2	0.7329
M end	531	40.719	36	10.180	120.1	0.3109
M interior	531	40.719	72	20.359	240.2	0.6217
N end	564.4375	61.5	36	15.375	181.4	0.4695
N interior	564.4375	61.5	72	30.750	362.9	0.9391
P end	654	44.781	36	11.195	132.1	0.3419
P interior	654	44.781	72	22.391	264.2	0.6838

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

36 of 182

Ву R.Augustine Date 04/05/2005 Checked J. L. White

Date 04/05/2005

Partition and End Wall Cladding (Continued)

Row

Elevation Vert Span Horiz Spacing (in) per Level (in) per Node (in)

Partition Wall Partition Wall square footage per weight per node node (ft^2) (lb)

(lb*sec^2/in)

Partition Bents with levels F, H, J, L, N, and O redistributed

						•
E end	162.25	40.375	36	10.094	119.1	0.3082
E interior	162.25	40.375	72	20.188	238.2	0.6165
						•
- .		00.000	• -		***	
G end	243	88.375	36	22.094	260.7	0.6747
G interior	243	88.375	72	44.188	521.4	1.3494
I end	339	96	36	24.000	283.2	0.7329
I interior	339	96	72	48.000	566.4	1.4658
V 1	42.5	0.6	26	24.000	202.2	0.7220
K end	435	96	36	24.000	283.2	0.7329
K interior	435	96	72	48.000	566.4	1.4658
M end	531	109.5	36	27.375	323.0	0.8360
M interior	531	109.500	72	54.750	646.1	1.6720
P end	654	61.500	36	15.375	181.4	0.4695
P interior	654	61.500	72	30.750	362.9	0.9391

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

37 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

Partition and End Wall Cladding (Continued)

Row Elevation Vert Span Horiz Spacing footage weight per hode (in) per Level (in) per Node (in) Partition Wall square footage weight per per node (ft^2) node (lb) Mass per node (lb*sec^2/in)

Partition Bents including Level O and with levels F, H, J, L, and N redistributed

E end	162.25	40.375	36	10.094	119.1	0.3082
E interior	162.25	40.375	72	20.188	238.2	0.6165
					•	•
G end	243	88.375	36	22.094	260.7	0.6747
G interior	243	88.375	72	44.188	521.4	1.3494
I end	339	96	36	24.000	283.2	0.7329
I interior	339	96	72	48.000	566.4	1.4658
K end	435	96	36	24.000	283.2	0.7329
K interior	435	96	72	48.000	566.4	1.4658
M end	531	103	36	25.750	303.9	0.7864
M interior	531	103.000	72	51.500	607.7	1.5727
O end	641	61.5	36	15.375	181.4	0.4695
O interior	641	61.500	72	30.750	362.9	0.9391
P end	654	6.500	36	1.625	19.2	0.0496
P interior	654	6.500	72	3.250	38.4	0.0992

Job No. 1356711 Calc. No. 1356711-C-001

Job

Entergy Vermont Yankee

Rev 1 Sheet No. 38 of 182

Ву R.Augustine Subject Cooling Tower Seismic Evaluation Checked J. L. White

Date 04/05/2005 Date 04/05/2005

Partition and End Wall Cladding (Continued)

BENT A

Bents A will see end and partition loads on column lines 1, 8 and 15.

BENT A	Elevation (in)	Vertical Spacing (in)	Tributary Out- of-Plane Spacing (in)	Area per Node (fî^2)	End Wall Weight Per Node (lb)	Partition Wall Weight Per Node (lb)
Α	not attached					
В	not attached					
C .	122.5	48.25	72	24.125		285
D	144	37.5	72	18.75	94	
E	not attached					
F	219	85.5	72	42.75	214	504
G	not attached					
Н	315	96	72	48	240	566
I	not attached					
J	411	96	72	48	240	566
K	not attached					
L	507	72	72	36	180	425
M	555	73.5	72	36.75	184	434
P	654	49.5	72	24.75	124	292
	note: Use Level	C for the part	ition wall but not e	nd wall.		

Job No. 1356711

Job **Entergy Vermont Yankee** Rev 1 Sheet No. R.Augustine Date 04/05/2005

39 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Ву Checked

J. L. White

Date 04/05/2005

Partition and End Wall Cladding (Continued)

BENT B

Bent B will see end and partition loads on column lines 1, 8 and 15.

	Elevation		Tributary Out-		End Wall	Partition Wall
	(in)	<u>Vertical</u>	of-Plane		Weight Per	Weight Per
BENT B	(111)	Spacing	Spacing	Area per Node	<u>Node</u>	<u>Node</u>
		(in)	(in)	(ft^2)	(lb)	(lb)
Α	not attached					
В	not attached					
С	not attached					
D	144	13.375	72	6.6875	33	79
E	170.75	37.5	72	18.75	94	221
F	219	48.125	72	24.0625	120	284
G	267	48	72	24	120	283
Н	315	48	72	24	120	283
I	363	48	72	24	120	283
J	411	48	72	24	120	283
K	459	48	72	24	120	283
L	507	48	72	24	120	283
M	555	31.5	72	15.75	79	186
N	570	49.5	72	24.75	124	292
P	654	42	72	21	105	248

Job No. 1356711

Calc. No. 1356711-C-001

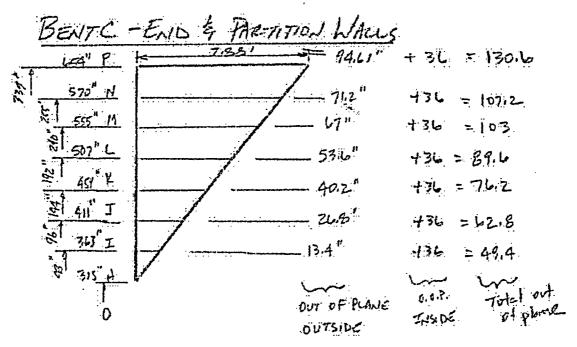
Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

1 Sheet No.

40 of 182


Ву Checked

Rev

J. L. White

R.Augustine Date 04/05/2005 Date 04/05/2005

Partition and End Wall Cladding (Continued)

BENT C	Elevation (in)	Vertical Spacing	Tributary Out- of-Plane Spacing END	Tributary Out-of- Plane Spacing PARTITION
		(in)	(in)	(in)
Α	not attached			
В	not attached			
C	not attached			
D	144	37.5	36	36
E	not attached			
F	219	61.5	36	36
G	267	48	36	36
H	315	48	36	36
I	363	48	49.4	49.4
J	411	48	62.8	62.8
K	459	48	76.2	76.2
L	507	48	89.6	89.6
M	555	31.5	103	103
N	570	49.5	107.2	
P	654	.42	130.6	· .

Job No. 1356711

Job

Entergy Vermont Yankee

Rev By 1 Sheet No.

R.Augustine Date 04/05/2005

41 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

J. L. White

Date 04/05/2005

Partition and End Wall Cladding (Continued)

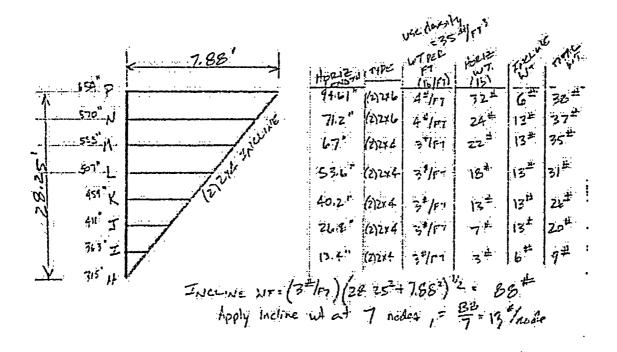
Area per Node END	Area per Node PARTITION	End Wall Weight Per Node	Partition Wall Weight Per Node
(ft^2)	(ft^2)	(lb)	(lb)
9	9	47	111
15	15	77	181
12	12	60	142
12	12	60	142
16	16	82	194
21	21	105	247
25	25	127	300
30	30	149	352
23	. 23	113	266
37		184	
38		190	
	9 15 12 16 21 25 30 23 37	Node END PARTITION (ft^2) (ft^2) 9 9 15 15 12 12 12 12 16 16 21 21 25 25 30 30 23 23 37	Area per Node Area per Node Weight Per Node (ft^2) (ft^2) (lb) 9 9 47 15 15 77 12 12 60 12 12 60 16 16 82 21 21 105 25 25 127 30 30 149 23 23 113 37 184

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

Ву


42 of 182

R.Augustine Date 04/05/2005

Checked J. L. White Date 04/05/2005

6.2.1.9 Triangular Wall Self Weight

Determine the self-weight of the framing members compromising the triangular wall section outside of Bent C.

Job No. 1356711

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

Checked

43 of 182

By R.Augustine Date 04/05/2005

J. L. White Date 04/05/2005

6.2.1.10 Louver Wall

Calc. No. 1356711-C-001

Per sheet B4, the louver blades weigh 112 lbs. each. The blades are 6'-0" long (column to column). There are 14 rows of blades covering the height of the tower. Therefore the load per square foot is determined as follows:

The louvers are mounted on the outside of the cooling tower's sloped walls.

Height of sloped wall =
$$SQRT(7'10.625"^2 + (654-291)^2) = 375.1$$
 inches

The brace angle is as follows:

$$atan \left(\frac{94.625}{654 - 291} \right) = 0.255 \text{ rad}$$

The brace is offset at 0.255 radians = 14.6 degrees

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

1 Sheet No. Rev

Ву

44 of 182 R.Augustine Date 04/05/2005

Checked J. L. White Date 04/05/2005

Louver Wall (Continued)

	Row	Elevation (in)	Vert Span per Level (in)	In Plane Spacing per Node (in)	Louver Wall square footage per node (fi^2)	Louver Wall weight per node (lb)	Mass per node (lb*sec^2/in)
١.	End Bent						
	D end	146.5	7.875	36	1.969	12	0.0307
	E end	162.25	24.25	36	6.063	37	0.0947
	F end	195	40.375	36	10.094	61	0.1577
	G end	243	48	36	12.000	72	0.1874
	H end	291	48.802	36	12.201	74	0.1906
	I end	339	49.604	36	12.401	75	0.1937
	J end	387	49.604	36	12.401	75	0.1937
	K end	435	49.604	36	12.401	75	0.1937
	L end	483	49.604	36	12.401	75	0.1937
	M end	531	42.079	36	10.520	63	0.1643
	N end	564.4375	63.555	36	15.889	96	0.2482
	P end	654	46.278	36	11.569	70	0.1807
	Row	Elevation (in)	Vert Span per Level (in)	In Plane Spacing per Node (in)	Louver Wall square footage per node (ft^2)	Louver Wall weight per node (lb)	Mass per node (lb*sec^2/in)
i	Main and Pa	artition Bents					
	D end	146.5	7.875	72	3.938	24	0.0615
	E end	162.25	24.25	72	12.125	73	0.1894
	F end	195	40.375	72	20.188	122	0.3153
	G end	243	48	.72	24.000	145	0.3748
	H end	291	68.209	72	34.105	206	0.5327
	I end	339	49.604	72	24.802	150	0.3874
	J end	387	49.604	72	24.802	150	0.3874
	K end	435	49.604	72	24.802	150	0.3874
	L end	483	49.604	72	24.802	150	0.3874
	M end	531	42.079	72	21.040	127	0.3286
	N end	564.4375	63.555	72	31.778	192	0.4963
	P end	654	46.278	72	23.139	140	0.3614

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 45 of 182

R.Augustine Date 04/05/2005 Ву Checked J. L. White

Date 04/05/2005

Louver Wall (Continued)

Row	Elevation (in)	Vert Span per Level (in)	In Plane Spacing per Node (in)	Louver Wall square footage per node (ft^2)	Louver Wall weight per node (lb)	Mass per node (lb*sec^2/in)
	Bent C					
D end	144	37.5	36	9.375	57	0.1464
D interior	144	37.5	72	18.750	113	0.2929
F end	219	61.5	36	15.375	93	0.2401
F interior	219	61.5	72	30.750	186	0.4803
G end	267	48	36	12.000	72	0.1874
G interior	267	48	72	24.000	145	0.3748
H end	315	48	36	12.000	72	0.1874
H interior	315	48	72	24.000	145	0.3748
I end	363	48	36	12.000	. 72	0.1874
I interior	363	48	72	24.000	145	0.3748
J end	411	48	36	12.000	72	0.1874
J interior	411	48	72	24.000	145	0.3748
K end	459	48	36	12.000	72	0.1874
K interior	459	48	72	24.000	145	0.3748
L end	507	48	36	12.000	72	0.1874
L interior	507	48	72	24.000	145	0.3748
M end	555	31.5	36	7.875	48	0.1230
M interior	555	31.5	72	15.750	95	0.2460
N end	570	39	36	9.750	59	0.1523
N interior	570	39	72	19.500	118	0.3046
O end	633	42	36	10.500	63	0.1640
O interior	633	42	72	21.000	127	0.3280
P end	654	10.5	36	2.625	16	0.0410
P interior	654	10.5	72	5.250	32	0.0820

Note: Slope of louver wall has negligible effect on weight of wall.

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

46 of 182

By R.Augustine Date 04/05/2005
Checked J. L. White Date 04/05/2005

Louver Wall (Continued)

Row	Elevation (in)	Vert Span per Level (in)	In Plane Spacing per Node (in)	Louver Wall square footage per node (ft^2)	Louver Wall weight per node (lb)	Mass per node (lb*sec^2/in)
Bent C w	ith level O red	listributed				
D end	144	37.5	36	9.375	57	0.1464
D interior	144	37.5	72	18.750	113	0.2929
F end	219	61.5	36	15.375	93	0.2401
F interior	219	61.5	72	30.750	186	0.4803
G end	267	48	36	12.000	72	0.18 [†] 74
G interior	267	48	72	24.000	145	0.3748
H end	315	48	36	12.000	72	0.1874
H interior	315	48	72	24.000	145	0.3748
I end	363	48	36	12.000	72	0.1874
I interior	363	48	72	24.000	145	0.3748
J end	411	48	36	12.000	72	0.1874
J interior	411	48	72	24.000	145	0.3748
K end	459	48	36	12.000	72	0.1874
K interior	459	48	72	24.000	145	0.3748
L end	507	48	36	12.000	72	0.1874
L interior	507	48	72	24.000	145	0.3748
M end	555	31.5	36	7.875	48	0.1230
M interior	555	31.5	72	15.750	95	0.2460
N end	570	49.5	36	12.375	75	0.1933
N interior	570	49.5	72	24.750	149	0.3866
P end	654	42	36	10.500	63	0.1640
P interior	654	42	72	21.000	127	0.3280

Job No. 1356711 Calc. No. 1356711-C-001 Job

Entergy Vermont Yankee Subject Cooling Tower Seismic Evaluation Rev

1 Sheet No.

47 of 182

Ву Checked

J. L. White

R.Augustine Date 04/05/2005 Date 04/05/2005

6.2.1.11 **Drift Eliminators**

The nodes for the models are shown on the following sheets:

Bent A	Sheets E7-E20	End Bent	Sheets E140-E152
Bent B	Sheets E42-E54	Main Bent	Sheets E180-E192
Bent C	Sheets E81-E97	Partition Bent	Sheets E226-E238

The drift eliminator is anchored to the cooling tower transverse bents at levels E, G, I, K and M. In Att. B the drift eliminator weight is defined as psf. Distribute the DE 2.5 weight to the bent by proportioning the weight by the area of DE near the node.

END Bent

				Tributary			
				Out-of-			
		<u>Vertical</u>	<u>Tributary</u>	Plane	FT^2 per		
Node.	Level Elev.	Spacing	DE Length	Spacing	<u>node</u>	DE Weight	
	(in)	(in)	(in)	(in)	(ft^3)	(lbs)	
E4B, E6A	162.25	40.375	41.72	36	10.43	26	
G4A, G6A	243	88.375	.91.33	36	22.83	57	
I3C, I4A,	339	96	99.21	36	24.80	62	(Note: 1/2 of load to each level I node.)
I6A, I7A							
K3B, K7A	435	112.72	116.49	36	29.12	73	
M3A, M7A	564.4375	64.72	66.88	36	16.72	42	

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

48 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

Drift Eliminators (Continued)

MAIN and PARTITION Bents

					<u>Tributary</u>				
				en !!	Out-of-	7771.0			
l			<u>Vertical</u>	Tributary	Plane	FT^2 per	DM 377. 1.14		
	<u>Level</u>	Level Elev.	Spacing (in)	DE Length	Spacing (1)	node	DE Weight		
١		(in)	(in)	(in)	(in)	(ft^3)	(lbs)		
	С	122.5	19.875	20.54					
	E4B, E6A	162,25	60.25	62.26	72	31.13	78		
l	·								:
١	G4A, G6A	243	88.375	91.33	72	45.66	114		į
								(Nama 1/2 after 1	:
	13C, 14A,	339	96	99.21	72	49.60	124	(Note: 1/2 of load to each level I node.)	
	I6A, I7A							•	
	K3B, K7A	435	112.72	116.49	72	58.24	146		
	•								
	M3A, M7A	564.4375	64.72	66.88	72	33.44	84		
1									

Job No. 1356711

Job

Entergy Vermont Yankee

Rev 1 Sheet No. 49 of 182

Subject Cooling Tower Seismic Evaluation

Ву J. L. White Checked

R.Augustine Date 04/05/2005 Date 04/05/2005

Drift Eliminators (Continued)

Calc. No. 1356711-C-001

BENTS A and B

DE locations on the transverse bents will be accounted for to determine the DE loading on longitudinal bents A and B.

At Level M (transverse model Elev. 531) the DE weight is applied to the transverse models at node M3A. This load will be divided between Bents A and B.

Dist. M3A

from A

Dist. M3A from B

48

24

Load on M3A = 84 lbs.

Load on Bent A nodes = Load on Bent B nodes = 28

56

lbs. Nodes (DE2-15). Load on DE1 is 1/2 that on DE2 lbs. Nodes (DE2-15). Load on DE1 is 1/2 that on DE2

At Level K (transverse model Elev. 435) the DE weight is applied to the transverse models at node K3B. This load will be divided between Bents A and B.

Dist. K3B

from A

Dist, K3B from B

26.5732

45.4268

Load on K3B = 146 lbs.

Load on Bent A nodes =

92

lbs. Nodes (4FIL2-15). Load on 4FIL1 is 1/2 that on 4FIL2

Load on Bent B nodes =

54

lbs. Nodes (4FIL2-15). Load on 4FIL1 is 1/2 that on 4FIL2

DE weight is applied at Level I (transverse model Elev. 339) to the transverse models at nodes I3C and I4A. This load will be applied to a single A Bent.

Load on I3C and I4A =

124 Ibs.

Load on Bent A nodes =

124

lbs. Nodes (3FIL2-15). Load on 3FIL1 is 1/2 that on 3FIL2

At Level G (transverse model Elev. 243) the DE weight is applied to the transverse models at node G4A. This load will be divided between two A bents.

Dist. G4A

from A

Dist. G4A from A

46

26

Load on K3B = 57 lbs.

Load on Bent A nodes =

21

lbs. Nodes (2FIL2-15). Load on 2FIL1 is 1/2 that on 2FIL2

lbs. Nodes (2FIL2-15). Load on 2FIL1 is 1/2 that on 2FIL2

Load on Bent A nodes =

36

Use 36 lbs. as controlling.

Job No. 1356711

Job

Entergy Vermont Yankee

By R.Augustine

Rev

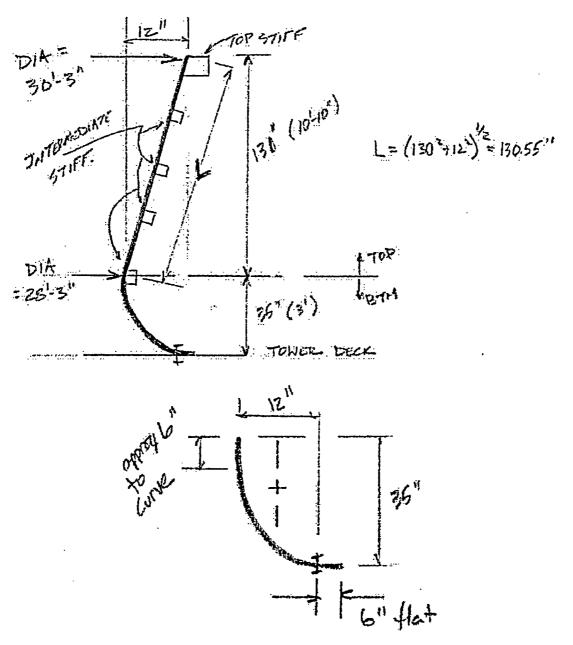
50 of 50

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked J. L. White

Date 04/05/2005


Date 04/054/2005

Sheet No.

6.2.1.12 Fiberglass Fan Stack

Determine weight of the fan stack:

The physical details and configuration of the CT2-1 fan stack were documented and are shown on sheet B15.

Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

Checked

Ву

1 Sheet No.

51 of 182

R.Augustine Date 04/05/2005

J. L. White

Date 04/05/2005

The approximate median diameter is

The approximate diameter is

Stack dia top :=
$$30 \cdot \text{ft} + 3 \cdot \text{in}$$

$$stack_thk := 0.25 \cdot in$$

TOP_length :=
$$\sqrt{(130 \cdot in)^2 + (12 \cdot in)^2}$$

BTM_curve_length :=
$$\frac{2 \cdot \pi}{4} \cdot \sqrt{\frac{(36 \cdot \text{in})^2 + (12 \cdot \text{in})^2}{2}}$$

BTM length =
$$48.149$$
 in

Determine Volume of Fiberglass in Stack:

Shell_volume:= $\pi \cdot (\text{stack_thk}) \cdot (\text{Shell_eff_length}) \cdot (\text{Stack_dia_median})$

Shell volume = 28.5 ft³

Determine Volume of Intermediate Stiffeners in Stack:

side_length :=
$$\sqrt{(1 \cdot in)^2 + (2.75 \cdot in)^2}$$

$$Int_rib_volume := [(2) \cdot (side_length) + (2.5 \cdot in)] \cdot (stack_thk) \cdot (Stack_dia_median) \cdot (\pi) \cdot (4 \cdot ribs)$$

Determine Volume of Top Stiffener in Stack:

The approximate diameter to the center of the top stiffener rib is 6 inches beyond the top diameter.

TOP_stiff_volume :=
$$[(2) \cdot (6 \cdot in) + (6.5 \cdot in)] \cdot (stack_thk) \cdot (Top_stiff_dia) \cdot (\pi) \cdot (1 \cdot ribs)$$

TOP stiff volume =
$$3.103 \text{ ft}^3$$

Job No. 1356711

Job **Entergy Vermont Yankee**

Calc. No. 1356711-C-001 **Subject Cooling Tower Seismic Evaluation** Rev 1 Sheet No.

J. L. White

Checked

52 of 182

Date 04/05/2005

R.Augustine Date 04/05/2005 By

Determine Volume of Vertical Stiffeners in Stack:

The 18 stack segments are secured together at each vertical seam by a 3-3/4"x3/8" thick plate bolted to the next segment.

$$vert_stiff_thk := 0.375 \cdot in$$

TOTAL SHELL VOLUME:

Total_stack_volume := (Shell_volume) + (Int_rib_volume) + (TOP_stiff_volume) + (vert_stiff_volume)

TOTAL SHELL WEIGHT:

Fiberglass_density := $120 \cdot \frac{lb}{c^3}$ (References 19 and 27)

Total_stack_weight := (Total_stack_volume) · (Fiberglass_density)

Total stack weight = 5061 lb

use 5100 lbs to account for nuts and bolts.

The fan stack layout is shown on drawing 5920-13331 (Ref. 7.13). From this it is seen that the fan stack loading is taken by approximately 12 columns.

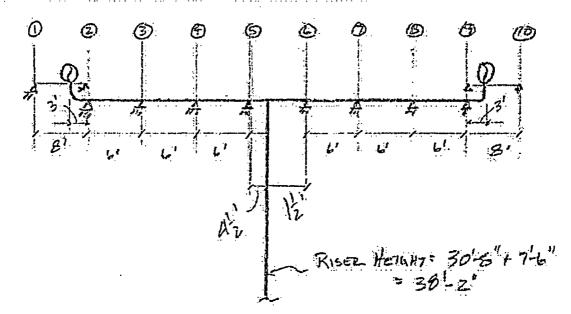
Fan stack load per column = 5100/12 = 425 lbs.

This weight will be applied to MAIN bent nodes P3 and P8 and to A bent nodes P2, P7, P9 and P14. and Bent B nodes P3 to P6 and P10 to P13.

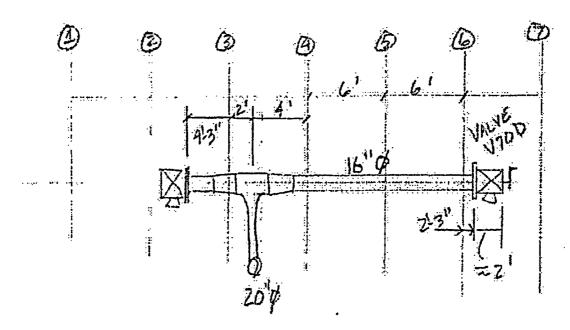
Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.


53 of 182

By R.Augustine Date 04/05/2005


Checked J. L. White Date 04/05/2005

6.2.1.13 Secondary Distribution Piping

MAINBENT - SECONDARY DIST. PIPE

BENT C - SECONDARY DIST PIPE

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

54 of 182

Ву R.Augustine Checked

J. L. White

Date 04/05/2005 Date 04/05/2005

Secondary Distribution Piping (Continued)

The routing for the Secondary Distribution System piping is shown in References 7.5, 7.16 and 7.17. It rises from the ground 14'-0" south of the north end of Cell 1 18-inches from model column line 5 and 54-inches from 6. This riser is approximately 2'-0" south of a MAIN bent. It rises 38'-2" to a tee (approximate model Elev. 514.5"). From there it splits east and west 22'-6" and 25'-6" (model dimensions 58.625" and 634.625") to another tee rises 4'-6" (approximate model Elev. 590") and runs north and south.

The pipe is 20" diameter STD SCH pipe based on References 7.16 through 7.18. This cooling system will not be in use when the cooling tower is operating using the manifold pipe. The loading condition of the manifold pipe full is worse than the secondary pipe full.

Determine loading using empty secondary distribution piping.

The weight of 20-inch dia empty pipe =

lb/ft.

Per Ref 24, wt = 78.6 lb/ft, use 80.

The weight of 16-inch dia empty pipe =

65 lb/ft. Per Ref 24, wt = 62.58 lb/ft, use 65.

MAIN BENT

The riser is supported at the bottom and by the branch piping at the top of the riser. Determine load on branch piping.

80

Riser weight on branch = 1/2*(38'-2")*(weight) =

1527

lbs. This load is taken by the supports on model column lines 5 and 6.

Load on model nodes. All load is applied to model level M.

	Pipe Run = 6'	Pipe Run = 3' (20" dia)	Transition Weight (lb)(see Bent C) 1204	Riser Weight (lb)	Nodal Weight	1/3 Nodal Weight	2/3 Nodal Weight
M1			602		602	201	401
M2		240	602		842	281	561
M3	480				480	160	320
M4	480		Ì		480	160	320
M5	480]	382	862	287	574
M6	480			1145	1625	542	1083
M7	480				480	160	320
M8	480				480	160	320
M9		240	602		842	281	561
M10			602		602	201	401

The riser and branch above is located between 2 MAIN bents. The weight will be distributed by approximately 1/3 being taken by the bent which supports the motor and 2/3 by a bent that does not support the motor.

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

55 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

Secondary Distribution Piping (Continued)

BENT C

Nodes N3 and N4 Load: The weight of pipe on Node N3 is comprised of a horiz. E-W pipe run, a horiz. N-S pipe run, a 90 degree elbow and the riser to the centerline of the N-S run.

Horiz EW Pipe Run	weight = $(6'/2)-30$ ")*pipe weight =	40	lbs
Horiz NS Pipe Run	weight = 3 ft*pipe weight =	240	lbs
	R = 30" $L = PI*D/4=$	3.93	ft
90 degree elbow	weight = length * pipe weight =	314	lbs
Vertical Run	weight = $((4.5 \text{ ft}) - 30")*$ pipe weight =	160	lbs
N-S Run	weight = $(4 \text{ ft})*(20" \text{ dia})+(2 \text{ ft})*(16" \text{ dia}) =$	450	lbs

TOTAL WEIGHT = 1204 lbs

This total weight is divided between nodes N3 and N4.

$$N3 = 2/3*total = 803$$
 lbs $N4 = 1/3*total = 401$ lbs

Node N3 will also see load due to the 16" piping between N3 and N2.

Pipe and Valve weight = 4.25 ft*16" pipe weight = 276.25 lbs

(accounts for valve V70D)

Node N4 will also see load due to the 16" piping between N4 and N5.

Node N5 Load:

Node N6 Load:

N5 Total Load = 390 lbs N6 Total Load = 471 lbs

Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 56 of 182

R.Augustine Date 04/05/2005 By J. L. White Date 04/05/2005 Checked

Secondary Distribution Piping (Continued)

BENTS A and B

The riser feeding the tower is located 14'-0" from the north end of the tower and is located 18" from the center of a column between two BENT A columns.

lbs

Riser weight on one BENT A = (4.5/6)*(1/2)*(38'-2")*(weight) + (6 ft trib)*&weight) =

1625

lbs

This load is split between BENT A nodes DE3 and DE4

BENT A node DE3 Total Load =

1083 lbs

BENT A node DE4 Total Load =

542

BENT B is loaded by the piping passing through it. BENT B will only see load from a 6 ft tributary length.

Pipe weight

weight = (6 ft)*pipe weight = 480 lbs

BENT B node DE3 Total Load =

320 lbs

BENT B node DE4 Total Load =

160 lbs

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 57 of 182

Ву R.Augustine Date 04/05/2005 Checked J. L. White

Date 04/05/2005

6.2.2 Applied Loads and Masses

6.2.2.1 Bent A Applied Loads and Masses

1	End and	End and	Secondary	Secondary		
	<u>Partition</u>	Partition Wall	Dist. Piping	Dist. Piping	Total Dead	
Bent A	Wall Weight	Mass	Weight	Mass	<u>Load</u>	Total Mass
Node	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
C8 C15	285 285	0.7367 0.7367			285 285	0.7367 0.7367

ľ		•		•				Ì
		End and	End and	Secondary	Secondary			l
ŀ		Partition	Partition Wall	Dist. Piping	Dist. Piping	Total Dead		l
ł	Bent A	Wall Weight	Mass	Weight	<u>Mass</u>	Load	Total Mass	I
l	Node	<u>(lb)</u>	(lb*sec^2/in)	<u>(IP)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	l
	D1	94	0.2426			94	0.2426	ŀ

	End and	End and	Secondary	Secondary		
•	<u>Partition</u>	Partition Wall	Dist. Piping	Dist. Piping	Total Dead	
Bent A	Wall Weight	Mass	Weight	<u>Mass</u>	Load	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
F1	214	0.5532			214	0.5532
F8	504	1.3055			504	1.3055
F15	504	1.3055			504	1.3055

	End and	End and	Secondary	Secondary		
	<u>Partition</u>	Partition Wall	Dist. Piping	Dist. Piping	Total Dead	
Bent A	Wall Weight	Mass	Weight	<u>Mass</u>	Load	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(IP)</u>	(lb*sec^2/in)
H1	240	0.6211			240	0.6211
H8	566	1.4658			566	1.4658
H15	566	1.4658			566	1.4658

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

58 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

Bent A	End and Partition Wall Weight	End and Partition Wall Mass	Secondary Dist. Piping Weight	Secondary Dist. Piping Mass	Total Dead Load	Total Mass
Node	(lb)	(lb*sec^2/in)	(<u>lb)</u>	(lb*sec^2/in)	(<u>lb)</u>	(lb*sec^2/in)
J1 J8 J15	240 566 566	0.6211 1.4658 1.4658			240 566 566	0.6211 1.4658 1.4658

	End and	End and	Secondary	Secondary		
	<u>Partition</u>	Partition Wall	Dist. Piping	Dist. Piping	Total Dead	
Bent A	Wall Weight	Mass	Weight	<u>Mass</u>	<u>Load</u>	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u> .	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
L1	180	0.4658			180	0.4658
L8	425	1.0994			425	1.0994
L15	425	1.0994			425	1.0994

						_
	End and	End and	Secondary	Secondary		
	Partition	Partition Wall	Dist. Piping	Dist. Piping	Total Dead	
Bent A	Wall Weight	Mass	Weight	Mass	Load	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
M1	184	0.4755			184	0.4755
M8	434	1.1223			434	1.1223
M15	434	1.1223			434	1.1223

Job No. 1356711

Job **Entergy Vermont Yankee** Rev Ву

1 Sheet No.

59 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

J. L. White

R.Augustine Date 04/05/2005 Date 04/05/2005

Bent A	Fan, Stack and Motor Weight	Fan, Stack and Motor Mass	End and Partition Wall Weight	End and Partition Wall Mass	Top Cover Weight	Top Cover Mass	Total Dead Load	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*scc^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*scc^2/in)
P1 P2	425	1.0999	124	0.3203	873 1528	2.2601 3.9552	997 1953	2.5804 5.0551
P3	423	1.0777			437	1.1300	437	1.1300
P4	1872	3.2573					1872	3.2573
P5	1872	3.2573					1872	3.2573
P6					437	1.1300	437	1.1300
P7	425	1.0999			1528	3.9552	1953	5.0551
P8			292	0.7558	1747	4.5202	2039	5.2760
P9	425	1.0999			1528	3.9552	1953	5.0551
P10					437	1.1300	437	1.1300
PH	1872	3.2573					1872	3.2573
P12	1872	3.2573					1872	3.2573
P13					437	1.1300	437	1.1300
P14	425	1.0999			1528	3.9552	1953	5.0551
P15	·		292	0.7558	1747	4.5202	2039	5.2760

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

60 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

pprica Load	15 and Masse	s (Continued)				
	Drift	<u>Drift</u>				
		-	m D - E'11	0 D T'11	m . 1 D . 1	
	<u>Eliminator</u>	<u>Eliminator</u>	T Bar Fill	T Bar Fill	Total Dead	
Bent A	<u>Weight</u>	Mass	<u>Weight</u>	Mass	<u>Load</u>	Total Mass
<u>Node</u>	<u>(16)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
1						
1FIL1			96	0.2485	96	0.2485
1FIL2			192	0.4971	192	0.4971
1FIL3			192	0.4971	192	0.4971
1FIL4			192	0.4971	192	0.4971
1FIL5			192	0.4971	192	0.4971
1FIL6			192	0.4971	192	0.4971
1FIL7			192	0.4971	192	0.4971
1FIL8			192	0.4971	192	0.4971
1FIL9			192	0.4971	192	0.4971
1F1L10			192	0.4971	192	0.4971
1FIL11			192	0.4971	192	0.4971
1FIL12			192	0.4971	192	0.4971
IFIL13			192	0.4971	192	0.4971
IFIL14			192	0.4971	192	0.4971
IFIL15			192	0.4971	192	0.4971
2FIL1	18	0.0472	143	0.3690	161	0.4162
2FIL2	36	0.0944	285	0.7381	322	0.8325
2FIL3	36	0.0944	285	0.7381	322	0.8325
2FIL4	36	0.0944	285	0.7381	322	0.8325
2FIL5	36	0.0944	285	0.7381	322	0.8325
2FIL6	36	0.0944	285	0.7381	322	0.8325
2FIL7	36	0.0944	285	0.7381	322	0.8325
2FIL8	36	0.0944	285	0.7381	322	0.8325
2FIL9	36	0.0944	285	0.7381	322	0.8325
2FIL10	36	0.0944	285	0.7381	322	0.8325
2FIL11	36	0.0944	285	0.7381	322	0.8325
2FIL12	36	0.0944	285	0.7381	322	0.8325
2FIL13	36	0.0944	285	0.7381	322	0.8325
2FIL14	36	0.0944	285	0.7381	322	0.8325
2FIL15	36	0.0944	285	0.7381	322	0.8325
3FIL1	62	0.1605	71	0.1843	133	0.3448
3FIL2	124	0.3209	142	0.3686	266	0.6895
3FIL3	124	0.3209	142	0.3686	266	0.6895
3FIL4	124	0.3209	142	0.3686	266	0.6895
3FIL5	124	0.3209	142	0.3686	266	0.6895
3FIL6	124	0.3209	142	0.3686	266	0.6895
3FIL7	124	0.3209	142	0.3686	266	0.6895
3FIL8	124	0.3209	142	0.3686	266	0.6895
3FIL8	124	0.3209	142	0.3686	266	0.6895
3FIL10	124	0.3209	142	0.3686	266	0.6895
3FIL10	124	0.3209	142	0.3686	266	0.6895
						0.6895
3FIL12	124	0.3209	142	0.3686	266	
3FIL13	124	0.3209	142	0.3686	266	0.6895
3FIL14 3FIL15	124 124	0.3209 0.3209	142 142	0.3686 0.3686	266 266	0.6895 0.6895
211112	124	0.3207	174	0.5000	200	0.0033

Job No. 1356711

Job **Entergy Vermont Yankee**

1 Sheet No. R.Augustine Date 04/05/2005

61 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Ву Checked

Rev

J. L. White

Date 04/05/2005

-	<u>Drift</u>	<u>Drift</u>				· · · · · · · · · · · · · · · · · · ·
	Eliminator	Eliminator	T Bar Fill	T Bar Fill	Total Dead	
Bent A	<u>Weight</u>	<u>Mass</u>	Weight	Mass	Load	Total Mass
Node	<u>(1b)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
4FIL1	46	0.1189	25	0.0648	71	0.1837
4FIL2	92	0.2378	50	0.1296	142	0.3673
4FIL3	92	0.2378	50	0.1296	142	0.3673
4FIL4	92	0.2378	50	0.1296	142	0.3673
4FIL5	92	0.2378	50	0.1296	142	0.3673
4FIL6	92	0.2378	50	0.1296	142	0.3673
4FIL7	92	0.2378	50	0.1296	142	0.3673
4FIL8	92	0.2378	50	0.1296	142	0.3673
4FIL9	92	0.2378	50	0.1296	142	0.3673
4FIL10	92	0.2378	50	0.1296	142	0.3673
4FIL11	92	0.2378	50	0.1296	142	0.3673
4FIL12	92	0.2378	50	0.1296	142	0.3673
4FIL13	92	0.2378	50	0.1296	142	0.3673
4FIL14	92	0.2378	50	0.1296	142	0.3673
4FIL15	92	0.2378	50	0.1296	142	0.3673

Bent A	Drift Eliminator Weight	<u>Drift</u> Eliminator Mass	Secondary Dist. Piping Weight	Secondary Dist. Piping Mass	Total Dead Load	Total Mass
Node	(1b)	(lb*sec^2/in)	(1b)	(1b*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
Node	(10)	(10 Sec 2711)	(10)	(10 Sec 2/11)	7101	(10 Sec 2/11)
DEI	14	0.0361			14	0.0361
DE2	28	0.0721			28	0.0721
DE3	28	0.0721	1083	2.8037	1111	2.8758
DE4	28	0.0721	542	1.4018	570	1.4739
DE5	28	0.0721			28	0.0721
DE6	28	0.0721			28	0.0721
DE7	28	0.0721			28	0.0721
DE8	28	0.0721			28	0.0721
DE9	28	0.0721			28	0.0721
DE10	28	0.0721			28	0.0721
DE11	28	0.0721			28	0.0721
DE12	28	0.0721			28	0.0721
DE13	28	0.0721			28	0.0721
DE14	28	0.0721			28	0.0721
DE15	28	0.0721			28	0.0721

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 62 of 182

Ву R.Augustine Date 04/05/2005 Checked J. L. White

Date 04/05/2005

6.2.2.2 Bent B Applied Loads and Masses

Bent B	End and Partition Wall Weight	End and Partition Wall Mass	Total Dead Load	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(Ib)</u>	(lb*sec^2/in)
D1 D8 D15	33 79 79	0.0865 0.2042 0.2042	33 79 79	0.0865 0.2042 0.2042

Γ					
		End and	End and		
ł	•	<u>Partition</u>	Partition Wall	Total Dead	
ł	Bent B	Wall Weight	Mass	Load	Total Mass
	<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
	E1	94	0.2426	94	0.2426
ı	E8	221	0.5726	221	0.5726
ı	E15	221	0.5726	221	0.5726

Bent B	End and Partition Wall Weight	End and Partition Wall Mass	Total Dead Load	Total Mass
<u>Node</u>	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
F1 F8 F15	120 284 284	0.3114 0.7348 0.7348	120 284 284	0.3114 0.7348 0.7348

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

63 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

Bent B	End and Partition Wall Weight	End and Partition Wall Mass	Total Dead Load	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	(lb)	(lb*sec^2/in)
G1 G8 G15	120 283 283	0.3106 0.7329 0.7329	120 283 283	0.3106 0.7329 0.7329

Bent B	End and Partition Wall Weight	End and Partition Wall Mass	Total Dead Load	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
H1 H8 H15	120 283 283	0.3106 0.7329 0.7329	120 283 283	0.3106 0.7329 0.7329

Bent B	End and Partition Wall Weight	End and Partition Wall Mass	Total Dead Load	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
11	120	0.3106	120	0.3106
i				
18	283	0.7329	283	0.7329
I15	283	0.7329	283	0.7329

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

64 of 182

By R.Augustine Date 04/05/2005
Checked J. L. White Date 04/05/2005

Bent B	End and Partition Wall Weight	End and Partition Wall Mass	Total Dead Load	Total Mass
Node	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
J1 J8 J15	120 283 283	0.3106 0.7329 0.7329	120 283 283	0.3106 0.7329 0.7329

	End and Partition	End and Partition Wall	Total Dead	
Bent B	Wall Weight	<u>Mass</u>	<u>Load</u>	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
K1	120	0.3106	120	0.3106
K8	283	0.7329	283	0.7329
K15	283	0.7329	283	0.7329

Bent B	End and Partition Wall Weight	End and Partition Wall Mass	Total Dead Load	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
L1 L8 L15	120 283 283	0.3106 0.7329 0.7329	120 283 283	0.3106 0.7329 0.7329

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

J. L. White

Checked

65 of 182

Date 04/05/2005

By R.Augustine Date 04/05/2005

Bent B	End and Partition Wall Weight	End and Partition Wall Mass	Total Dead Load	Total Mass
<u>Node</u>	<u>(1b)</u>	(lb*sec^2/in)	(1P)	(lb*sec^2/in)
M1	7 9	0.2038	79	0.2038
M8	186	0.4810	186	- 0.4810
M15	186	0.4810	186	0.4810

Bent B Node	End and Partition Wall Weight (1b)	End and Partition Wall Mass (Ih*sec^2/in)	Hot Basin Weight (lb)	Hot Basin Mass (lb*sec^2/in)	Manifold Pipe Weight (lb)	Manifold Pipe Mass (Ib*sec^2/in)	Total Dead Load (lh)	Total Mass (lb sec^2/in)
NI	124	0.3203	414	1.0714	1894	4.9014	2432	6.2931
N2	•••	0.02.02	828	2.1429	3788	9.8028	4616	11.9457
N3			828	2.1429	3788	9.8028	4616	11.9457
N4			828	2.1429	3788	9.8028	4616	11.9457
N5			828	2.1429	3788	9.8028	4616	11.9457
N6			828	2.1429	3788	9.8028	4616	11.9457
N7			828	2.1429	3788	9.8028	4616	11.9457
N8	292	0.7558	828	2.1429	3788	9.8028	4908	12.7015
N9			828	2.1429	3788	9.8028	4616	11.9457
N10		•	828	2.1429	3788	9.8028	4616	11.9457
NII			828	2.1429	3788	9.8028	4616	11.9457
N12			828	2.1429	3788	9.8028	4616	11.9457
N13			828	2.1429	3788	9.8028	4616	11.9457
N14			828	2.1429	3788	9.8028	4616	11.9457
N15	292	0.7558	828	2.1429	3788	9.8028	4908	12.7015

Job No. 1356711

Job

Entergy Vermont Yankee

Rev

1 Sheet No.

R.Augustine Date 04/05/2005

66 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

By Checked

J. L. White

Date 04/05/2005

Total Mass (lb*sec^2/in)
(lb*sec^2/in)
2.5318
4.5202
5.0551
6.1063
6.1063
5.0551
4.5202
5.1615
4.5202
5.0551
6.1063
6.1063
5.0551
4.5202
5.1615

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

67 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

	T Bar Fill	T Bar Fill	Total Dag	
Don't D			Total Dead	Total Mass
Bent B	Weight	Mass (lh*sec^2/in)	<u>Load</u>	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u> ·	(lb*sec^2/in)
1FIL1	129	0.3337	129	0.3337
1FIL2	258	0.6674	258	0.6674
1FIL3	258	0.6674	258	0.6674
1FIL4	258	0.6674	258	0.6674
1FIL5	258	0.6674	258	0.6674
1FIL6	258	0.6674	258	0.6674
1FIL7	258	0.6674	258	0.6674
1FIL8	258	0.6674	258	0.6674
1FIL9	258	0.6674	258	0.6674
1FIL10	258	0.6674	258	0.6674
1FIL11	258	0.6674	258	0.6674
1FIL12	258	0.6674	258	0.6674
1FIL13	258	0.6674	258	0.6674
1FIL14	258	0.6674	258	0.6674
1FIL15	258	0.6674	258	0.6674
2FIL1	295	0.7622	295	0.7622
2FIL2	589	1.5244	589	1.5244
2FIL3	589	1.5244	589	1.5244
2FIL4	589	1.5244	589	1.5244
2F1L5	589	1.5244	589	1.5244
2FIL6	589	1.5244	589	1.5244
2FIL7	589	1.5244	589	1.5244
2FIL8	589	1.5244	589	1.5244
2FIL9	589	1.5244	589	1.5244
2FIL10	589	1.5244	589	1.5244
2FIL11	589	1.5244	589	1.5244
2FIL12	589	1.5244	589	1.5244
2FIL13	589	1.5244	589	1.5244
2FIL14	589	1.5244	589	1.5244
2FIL15	589	1.5244	589	1.5244
3FIL1	299	0.7731	299	0.7731
3FIL2	597	1.5463	597	1.5463
3FIL3	597	1.5463	597	1.5463
3FIL4	597	1.5463	597	1.5463
3FIL5	597	1.5463	597	1.5463
3FIL6	597	1.5463	597	1.5463
3FIL7	597	1.5463	597	1.5463
3FIL8	597	1.5463	597	1.5463
3FIL9	597	1.5463	597	1.5463
3FIL10	597	1.5463	597	1.5463
3FIL11	597	1.5463	597	1.5463
3FIL12	597	1.5463	597	1.5463
3FIL13	597	1.5463	597	1.5463
3FIL14	597	1.5463	597	1.5463
3FIL15	597	1.5463	597	1.5463

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

By R.Augustine D

68 of 182

By R.Augustine Date 04/05/2005 Checked J.L. White Date 04/05/2005

Drift Eliminator Drift Eliminator Eliminator T Bar Fill Total Dead Bent B Weight Mass Weight Mass Load Total Mass Node (lb) (lb*sec^2/in) (lb*sec^2/in) (lb) (lb*sec^2/in) (lb) (lb*sec^2/in) (lb*	2/in) 6 2 2 2 2
Bent B Weight Mass Weight Mass Load Total Mass Node (lb) (lb*sec^2/in) (lb*sec^2/in) <td< td=""><td>2/in) 6 2 2 2 2</td></td<>	2/in) 6 2 2 2 2
Node (lb) (lb*sec^2/in) (lb*sec^2/in)	2/in) 6 2 2 2 2
4FIL1 27 0.0695 284 0.7350 311 0.804 4FIL2 54 0.1391 568 1.4701 622 1.609 4FIL3 54 0.1391 568 1.4701 622 1.609 4FIL4 54 0.1391 568 1.4701 622 1.609 4FIL5 54 0.1391 568 1.4701 622 1.609 4FIL6 54 0.1391 568 1.4701 622 1.609 4FIL7 54 0.1391 568 1.4701 622 1.609	6 2 2 2
4FIL2 54 0.1391 568 1.4701 622 1.609 4FIL3 54 0.1391 568 1.4701 622 1.609 4FIL4 54 0.1391 568 1.4701 622 1.609 4FIL5 54 0.1391 568 1.4701 622 1.609 4FIL6 54 0.1391 568 1.4701 622 1.609 4FIL7 54 0.1391 568 1.4701 622 1.609	2 2 2 2
4FIL3 54 0.1391 568 1.4701 622 1.609 4FIL4 54 0.1391 568 1.4701 622 1.609 4FIL5 54 0.1391 568 1.4701 622 1.609 4FIL6 54 0.1391 568 1.4701 622 1.609 4FIL7 54 0.1391 568 1.4701 622 1.609	2 2 2
4FIL4 54 0.1391 568 1.4701 622 1.609 4FIL5 54 0.1391 568 1.4701 622 1.609 4FIL6 54 0.1391 568 1.4701 622 1.609 4FIL7 54 0.1391 568 1.4701 622 1.609	2 2
4FIL5 54 0.1391 568 1.4701 622 1.609 4FIL6 54 0.1391 568 1.4701 622 1.609 4FIL7 54 0.1391 568 1.4701 622 1.609	2
4FIL6 54 0.1391 568 1.4701 622 1.609 4FIL7 54 0.1391 568 1.4701 622 1.609	
4FIL7 54 0.1391 568 1.4701 622 1.609	
	2
4FIL8 54 0.1391 568 1.4701 622 1.609	2
	2 :
4FIL9 54 0.1391 568 1.4701 622 1.609	2
4FIL10 54 0.1391 568 1.4701 622 1.609	
4FIL11 54 0.1391 568 1.4701 622 1.609	2 !
4FIL12 54 0.1391 568 1.4701 622 1.609	2
4FIL13 54 0.1391 568 1.4701 622 1.609	2
4FIL14 54 0.1391 568 1.4701 622 1.609	2 '
4FIL15 54 0.1391 568 1.4701 622 1.609	2
5FIL1 81 0.2090 81 0.209	0
5FIL2 162 0.4180 162 0.418	0
5FIL3 162 0.4180 162 0.418	0
5FIL4 162 0.4180 162 0.418	0
5FIL5 162 0.4180 162 0.418	0
5FIL6 162 0.4180 162 0.418	0
5FIL7 162 0.4180 162 0.418	0
5FIL8 162 0.4180 162 0.418	0
5FIL9 162 0.4180 162 0.418	0
5FIL10 162 0.4180 162 0.418	0
5FIL11 162 0.4180 162 0.418	0
5FIL12 162 0.4180 162 0.418	0
5FIL13 162 0.4180 162 0.418	0
5FIL14 162 0.4180 162 0.418	0
5FIL15 162 0.4180 162 0.418	ດ I

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

69 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

Danid D	Drift Eliminator	Drift Eliminator	Secondary Dist. Piping	Secondary Dist. Piping	Total Dead	T 1.1.
Bent B	<u>Weight</u>	<u>Mass</u>	<u>Weight</u>	<u>Mass</u>	<u>Load</u>	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
DEI	28	0.0721			28	0.0721
DE2	56	0.1442			56	0.1442
DE3	56	0.1442	320	0.8282	376	0.9724
DE4	56	0.1442	160	0.4141	216	0.5583
DE5	56	0.1442			56	0.1442
DE6	56	0.1442			56	0.1442
DE7	56	0.1442			56	0.1442
DE8	56	0.1442			56	0.1442
DE9	56	0.1442			56 .	0.1442
DE10	56	0.1442			56	0.1442
DE11	56	0.1442			56	0.1442
DE12	56	0.1442			56	0.1442
DE13	56	0.1442			56	0.1442
DE14	56	0.1442			56	0.1442
DE15	56	0.1442			56	0.1442

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

70 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

6.2.2.3 Bent C Applied Loads and Masses

	End and Partition	End and	<u>Louver</u>	7 117 11	m . 15	
Bent C	<u>Wall</u> Weight	Partition Wall Mass	<u>Wall</u> <u>Weight</u>	Louver Wall Mass	Total Dead Load	Total Mass
	·		_			
Node	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
DI	47	0.1213	57	0.1464	103	0.2677
D2			113	0.2929	113	0.2929
D3			113	0.2929	113	0.2929
D4			113	0.2929	113	0.2929
D5			113	0.2929	113	0.2929
D6			113	0.2929	113	0.2929
D7			113	0.2929	113	0.2929
D8	111	0.2863	113	0.2929	224	0.5791
D9			113	0.2929	113	0.2929
D10			113	0.2929	113	0.2929
DII			113	0.2929	113	0.2929
D12			113	0.2929	113	0.2929
D13			113	0.2929	113	0.2929
D14			113	0.2929	113	0.2929
D15	111	0.2863	113	0.2929	224	0.5791

Bent C	End and Partition Wall Weight	End and Partition Wall Mass	Louver Wall Weight	Louver Wall Mass	Total Dead Load	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
F1 F2	77	0.1990	93 186	0.2401 0.4803	170 186	0.4391 0.4803
F3			186	0.4803	186	0.4803
F4			186	0.4803	186	0.4803
F5			186	0.4803	186	0.4803
F6			186	0.4803	186	0.4803
F7			186	0.4803	186	0.4803
F8	181	0.4695	186	0.4803	367	0.9498
F9			186	0.4803	186	0.4803
F10	•		186	0.4803	186	0.4803
F11			186	0.4803	186	0.4803
F12			186	0.4803	186	0.4803
F13			186	0.4803	186	0.4803
F14			186	0.4803	186	0.4803
F15	181	0.4695	186	0.4803	367	0.9498

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

71 of 182

Ву Checked

R.Augustine Date 04/05/2005 J. L. White

Date 04/05/2005

	End and					
	<u>Partition</u>	End and	Louver			
	<u>Wall</u>	Partition Wall	<u>Wall</u>	Louver Wall	Total Dead	
Bent C	Weight	Mass	<u>Weight</u>	Mass	<u>Load</u>	Total Mass
<u>Node</u>	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
G1	60	0.1553	72	0.1874	132	0.3427
G2			145	0.3748	145	0.3748
G3			145	0.3748	145	0.3748
G4			145	0.3748	145	0.3748
G5			145	0.3748	145	0.3748
G6			145	0.3748	145	0.3748
G7			145	0.3748	145	0.3748
G8	142	0.3665	145	0.3748	286	0.7413
G9			145	0.3748	145	0.3748
G10			145	0.3748	145	0.3748
G11			145	0.3748	145	0.3748
G12			145	0.3748	145	0.3748
G13			145	0.3748	145	0.3748
G14			145	0.3748	145	0.3748
G15	142	0.3665	145	0.3748	286	0.7413

	End and Partition	End and	Louver				Total	
	Wall	Partition Wall	<u>Wall</u>	Louver Wall	Cable Tray	Cable Tray	<u>Dead</u>	
Bent C	<u>Weight</u>	Mass	<u>Weight</u>	<u>Mass</u>	Weight	<u>Mass</u>	<u>Load</u>	Total Mass
<u>Node</u>	<u>(Ib)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	(lb)	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
H1	60	0.1553	72	0.1874	240	0.6211	372	0.9638
H2			145	0.3748			145	0.3748
Н3			145	0.3748			145	0.3748
H4			145	0.3748			145	0.3748
H5			145	0.3748			145	0.3748
H6			145	0.3748			145	0.3748
H7			145	0.3748			145	0.3748
H8	142	0.3665	145	0.3748			286	0.7413
Н9			145	0.3748			145	0.3748
H10			145	0.3748			145	0.3748
H11			145	0.3748			145	0.3748
H12			145	0.3748			145	0.3748
H13			145	0.3748			145	0.3748
H14			145	0.3748			145	0.3748
H15	142	0.3665	145	0.3748			286	0.7413

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

72 of 182

Ву R.Augustine Date 04/05/2005 J. L. White Checked

Date 04/05/2005

	End and Partition	End and	Louver		Triangular	Triangular	Total	
-	Wall	Partition Wall	Wall	Louver Wall	Wall Self	Wall Self	Dead	
Bent C	Weight	Mass	Weight	Mass	Weight	Mass	Load	Total Mass
Node	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
11	82	0.2131	72	0.1874	9	0.0233	164	0.4238
12			145	0.3748	9	0.0233	154	0.3981
13			145	0.3748	9	0.0233	154	0.3981
14			145	0.3748	9	0.0233	154	0.3981
15			145	0.3748	9	0.0233	154	0.3981
16			145	0.3748	9	0.0233	154	0.3981
17			145	0.3748	9	0.0233	154	0.3981
18	194	0.5029	145	0.3748	9	0.0233	348	0.9010
19			145	0.3748	9	0.0233	154	0.3981
110			145	0.3748	9	0.0233	154	0.3981
111			145	0.3748	9	0.0233	154	0.3981
112			145	0.3748	9	0.0233	154	0.3981
113			145	0.3748	9	0.0233	154	0.3981
114			145	0.3748	9	0.0233	154	0.3981
115	194	0.5029	145	0.3748	9	0.0233	348	0.9010

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

Ву

Checked

73 of 182

R.Augustine Date 04/05/2005

J. L. White Date 04/05/2005

	End and		, = -		;
	<u>Partition</u>	End and	Louver		<u>Triangular</u>
	<u>Wall</u>	Partition Wall	<u>Wall</u>	Louver Wall	Wall Self
Bent C	Weight	<u>Mass</u>	Weight	<u>Mass</u>	Weight
<u>Node</u>	<u>(IP)</u>	(lb*sec^2/in)	(IP)	(lb*sec^2/in)	<u>(lb)</u>
J1	105	0.2709	72	0.1874	20
J2			145	0.3748	20
J3			145	0.3748	20
· J4			145	0.3748	20
J5			145	0.3748	20
J6			145	0.3748	20
J7			145	0.3748	20
J8	247	0.6393	145	0.3748	20
J9			145	0.3748	20
J10			145	0.3748	20
J11			145	0.3748	20
J12			145	0.3748	20
J13			145	0.3748	20
J14			145	0.3748	20
J15	247	0.6393	145	0.3748	20

Bent C	Triangular Wall Self Mass (lb*sec^2/in)	Cable Tray Weight (1b)	Cable Tray Mass (lb*sec^2/in)	Total Dead Load (1b)	Total Mass (lb*sec^2/in)
11000	110 Sec 27111)	(10)	(10 Sec 27111)	110)	110 SCC 2/111)
JI	0.0518	240	0.6211	437	1.1312
J2	0.0518			165	0.4266
J3	0.0518			165	0.4266
J4	0.0518			165	0.4266
J5 .	0.0518			165	0.4266
J6	0.0518			165	0.4266
J7	0.0518			165	0.4266
J8	0.0518			412	1.0659
J9	0.0518			165	0.4266
J10	0.0518			165	0.4266
J11	0.0518			165	0.4266
J12	0.0518			165	0.4266
J13	0.0518			165	0.4266
J14	0.0518			165	0.4266
J15	0.0518			412	1.0659

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

74 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

Bent C	End and Partition Wall Weight	End and Partition Wall Mass	Louver Wall Weight	Louver Wall Mass	Triangular Wall Self Weight	Triangular Wall Self Mass	Total Dead Load	Total Mass
Node	<u>(Ib)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
KI	127	0.3287	72	0.1874	26	0.0673	225	0.5834
K2			145	0.3748	26	0.0673	171	0.4421
K3			145	0.3748	26	0.0673	171	0.4421
K4			145	0.3748	26	0.0673	171	0.4421
K5			145	0.3748	26	0.0673	171	0.4421
K6			145	0.3748	26	0.0673	171	0.4421
K7			145	0.3748	26	0.0673	171	0.4421
K8	300	0.7757	145	0.3748	26	0.0673	471	1.2178
К9			145	0.3748	26	0.0673	171	0.4421
K10			145	0.3748	26	0.0673	171	0.4421
KII			145	0.3748	26	0.0673	171	0.4421
K12			145	0.3748	26	0.0673	171	0.4421
K13			145	0.3748	26	0.0673	171	0.4421
K14			145	0.3748	26	0.0673	171	0.4421
K15	300	0.7757	. 145	0.3748	26	0.0673	471	1.2178

Bent C	End and Partition Wall Weight	End and Partition Wall Mass	Louver Wall Weight	Louver Wall Mass	Triangular Wall Self Weight
Node	<u>(lb)</u>	(lb*sec^2/in)	<u>(IP)</u>	(lb*sec^2/in)	<u>(lb)</u>
Ll	149	0.3865	72	0.1874	31
L2			145	0.3748	31
L3			145	0.3748	31
L4			145	0.3748	31
L5			145	0.3748	31
L6			145	0.3748	31
L7			145	0.3748	31
L8	352	0.9121	145	0.3748	31
L9			145	0.3748	31
L10			145	0.3748	31
L11			145	0.3748	31
L12			145	0.3748	31
L13			145	0.3748	31
L14			145	0.3748	31
L15	352	0.9121	145	0.3748	31

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

1 Sheet No.

Rev

Ву

75 of 182

R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

Bent C	Triangular Wall Self Mass	Cable Tray Weight	Cable Tray Mass	Total Dead Load	Total Mass
<u>Node</u>	(lb*sec^2/in)	(lb)	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
L1 L2 L3 L4 L5 L6 L7 L8 L9	0.0802 0.0802 0.0802 0.0802 0.0802 0.0802 0.0802 0.0802	240	0.6211	493 176 176 176 176 176 176 528	1.2752 0.4551 0.4551 0.4551 0.4551 0.4551 1.3672 0.4551
L10 L11	- 0.0802 0.0802			176 176	0.4551 0.4551
L12 L13	0.0802 0.0802			176 176	0.4551 0.4551
L14 L15	0.0802 0.0802		•	176 . 528	0.4551 1.3672

Bent C	End and Partition Wall Weight	End and Partition Wall Mass	Louver Wall Weight	Louver Wall Mass
<u>Node</u>	<u>(1b)</u>	(lb*sec^2/in)	<u>(Ib)</u>	(lb*sec^2/in)
M1	113	0.2916	48	0.1230
M2			95	0.2460
M3			95	0.2460
M4			95	0.2460
M5			95	0.2460
M6			95	0.2460
M7			95	0.2460
M8	266	0.6881	95	0.2460
M9			95	0.2460
M10			95	0.2460
M11			95	0.2460
M12			95	0.2460
M13			95	0.2460
M14			95	0.2460
M15	266	0.6881	95	0.2460

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

1 Sheet No. Rev

76 of 182

R.Augustine Date 04/05/2005 Ву Date 04/05/2005 Checked J. L. White

Bent C	<u>Cable</u> <u>Tray</u> <u>Weight</u>	Cable Tray Mass	Triangular Wall Self Weight	Triangular Wall Self Mass	Total Dead Load	Total Mass
Node	(lb) 204	(lb*sec^2/in) 0.5269	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
M1	204	0.5209	35	0.0906	399	1.0320
M2			35	0.0906	130	0.3366
M3			35	0.0906	130	0.3366
M4			35	0.0906	130	0.3366
M5			35	0.0906	130	0.3366
M6			35	0.0906	130	0.3366
M7			35	0.0906	130	0.3366
M8			35	0.0906	396	1.0246
M9			35	0.0906	130	0.3366
M10			35	0.0906	130	0.3366
M11			35	0.0906	130	0.3366
M12			35	0.0906	130	0.3366
M13	•		35	0.0906	130	0.3366
M14			35	0.0906	130	0.3366
M15			35	0.0906	396	1.0246

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. Ву

Checked

77 of 182

R.Augustine Date 04/05/2005 J. L. White Date 04/05/2005

	End and							
1	<u>Partition</u>	End and			Secondary	Secondary	Manifold	
i	Wall	Partition Wall	Hot Basin	Hot Basin	Dist. Piping	Dist. Piping	<u>Pipe</u>	Manifold Pipe
Bent C	Weight	Mass	Weight	<u>Mass</u>	Weight	<u>Mass</u>	Weight	<u>Mass</u>
Node	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
NI	184	0.4768	1242	3.2143			1894	4.9014
N2			2484	6.4286			3788	9.8028
N3			2484	6.4286	1079	2.7925	3788	9.8028
N4			2484	6.4286	596	1.5434	3788	9.8028
N5			2484	6.4286	390	1.0093	3788	9.8028
N6			2484	6.4286	471	1.2196	3788	9.8028
N7			2484	6.4286			3788	9.8028
N8			2484	6.4286			3788	.9.8028
N9			2484	6.4286			3788	9.8028
N10			2484	6.4286			3788	9.8028
NII			2484	6.4286			3788	9.8028
N12			2484	6.4286			3788	9.8028
N13			2484	6.4286			3788	9.8028
N14			2484	6.4286			3788	.9.8028
N15			2484	6.4286			3788	9.8028

	Louver Wall	Louver Wall	Triangular Wall Self	Triangular Wall Self	Total Dead	
Bent C	<u>Weight</u>	<u>Mass</u>	Weight	<u>Mass</u>	<u>Load</u>	<u>Total Mass</u>
Node	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
N1	59	0.1523	37	0.0958	3416	8.8406
N2	149	0.3866	37	0.0958	6458	16.7137
N3	149	0.3866	37	0.0958	7537	19.5062
N4	149	0.3866	37	0.0958	7055	18.2572
N5	149	0.3866	37	0.0958	6848	17.7230
N6	149	0.3866	37	0.0958	6929	17.9333
N7	118	0.3046	37	0.0958	6427	16.6317
N8	149	0.3866	37	0.0958	6458	16.7137
N9	118	0.3046	37	0.0958	6427	16.6317
N10	149	0.3866	37	0.0958	6458	16.7137
N11	149	0.3866	. 37	0.0958	6458	16.7137
N12	149	0.3866	37	0.0958	6458	16.7137
N13	149	0.3866	37	0.0958	6458	16.7137
N14	149	0.3866	37	0.0958	6458	16.7137
N15	149	0.3866	37	0.0958	6458	16.7137

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

1 Sheet No.

Rev

78 of 182

Ву R.Augustine Date 04/05/2005 Checked J. L. White

Date 04/05/2005

Bent C	Louver Wall Weight	Louver Wall Mass	Total Dead Load	Total Mass
Node	<u>(lb)</u>	(lb*sec^2/in)	<u>(Ib)</u>	(lb*sec^2/in)
01 07 09 015	63 127 127 127	0.1640 0.3280 0.3280 0.3280	63 127 127 127	0.1640 0.3280 0.3280 0.3280

Bent C		Fan, Stack and Motor Mass	End and Partition Wall Weight	End and Partition Wall Mass	Top Cover Weight	Top Cover Mass	Louver Wall Weight	Louver Wall Mass
Node	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(1b*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
Pl			190	0.4929	1589	4.1121	16	0.0410
P2 P3					3178 3178	8.2242 8.2242	127	0.3280 0.3280
P4	421	1.0906			3178	8.2242 8.2242	127 127	0.3280
P5	421	1.0906			3178	8.2242	127	0.3280
P6	721	1.0700			3178	8.2242	127	0.3280
P7					3178	8.2242	32	0.0820
P8					3178	8.2242	127	0.3280
P9					3178	8.2242	32	0.0820
P10					3178	8.2242	127 -	0.3280
P11	421	1.0906			3178	8.2242	127	0.3280
P12	421	1.0906			3178	8.2242	127	0.3280
P13					3178	8.2242	127	0.3280
P14					3178	8.2242	127	0.3280
P15					3178	8.2242	16	0.0410

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. Ву

79 of 182

R.Augustine Date 04/05/2005 J. L. White Checked

Date 04/05/2005

Bent C	Cable Tray Weight	Cable Tray Mass	Triangular Wall Self Weight	Triangular Wall Self Mass	Total Dead Load	Total Mass
Node	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
P1 P2	270 360	0.6988 0.9317	38 38	0.0983 0.0983	2103 3703	5.4431 9.5822
P3	360	0.9317	38	0.0983	3703	9.5822
P4	360	0.9317	38	0.0983	4124	10.6729
P5	360	0.9317	38	0.0983	4124	10.6729
Р6	360	0.9317	38	0.0983	3703	9.5822
P7	360	0.9317	38	0.0983	3608	9.3362
Р8	360	0.9317	38	0.0983	3703	9.5822
Р9	360	0.9317	38	0.0983	3608	9.3362
P10	360	0.9317	38	0.0983	3703	9.5822
P11	360	0.9317	38	0.0983	4124	10.6729
P12	360	.0.9317	38	0.0983	4124	10.6729
P13	360	0.9317	38	0.0983	3703	9.5822
P14	360	0.9317	38	0.0983	3703	9.5822
P15	360	0.9317	38	0.0983	3592	9.2952

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 80 of 182

Ву R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

		sses (Continu				
	T Bar Fill	T Bar Fill	Cable Tray	Cable Tray	Total Dead	
Bent C	Weight	Mass	Weight	Mass	Load	Total Mass
	_		_			
Node	<u>(lb)</u>	(lb*sec^2/in)	(lb)	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
1FIL1	22	0.0582			22	0.0582
1FIL2	45	0.1164			45	0.1164
1FIL3	45	0.1164			45	0.1164
1FIL4	45	0.1164			45	0.1164
1FIL5	45	0.1164			45	0.1164
1FIL6	45	0.1164			45	0.1164
1FIL7	45	0.1164			45	0.1164
1FIL8	45	0.1164			45	0.1164
1FIL9	45	0.1164			45	0.1164
1FIL10	45	0.1164			45	0.1164
1FIL11	45	0.1164			45	0.1164
1FIL12	45	0.1164			45	0.1164
IFIL13	45	0.1164			45	0.1164
1FIL14	45	0.1164			45	0.1164
1FIL15	45	0.1164			45	0.1164
2FIL1	119	0.3077	240	0.6211	359	0.9288
2FIL2	238	0.6154			238	0.6154
2FIL3	238	0.6154			238	0.6154
2FIL4	238	0.6154			238	0.6154
2FIL5	238	0.6154			238	0.6154
2FIL6	238	0.6154			238	0.6154
2FIL7	238	0.6154			238	0.6154
2FIL8	238	0.6154			238	0.6154
2FIL9	238	0.6154			238	0.6154
2FIL10	238	0.6154			238	0.6154
2FIL11	238	0.6154			238	0.6154
2FIL12	238	0.6154			238	0.6154
2FIL13	238	0.6154			238	0.6154
2FIL14	238	0.6154			238	0.6154
2FIL15	238	0.6154			238	0.6154
3FIL1	234	0.6056	240	0.6211	474	1.2268
3FIL2	468	1.2113			468	1.2113
3FIL3	468	1.2113			468	1.2113
3FIL4	468	1.2113			468	1.2113
3FIL5	468	1.2113			468	1.2113
3FIL6	468	1.2113			468	1.2113
3FIL7	468	1.2113			468	1.2113
3FIL8	468	1.2113			468	1.2113
3FIL9	468	1.2113			468	1.2113
3FIL10	468	1.2113			468	1.2113
3FIL11	468	1.2113			468	1.2113
3FIL12	468	1.2113			468	1.2113
3FIL13	468	1.2113			468	1.2113
3FIL14	468	1.2113			468	1.2113
3FIL15	468	1.2113			468	1.2113

Job No. 1356711

Job **Entergy Vermont Yankee** Rev Ву

1 Sheet No.

81 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

J. L. White

R.Augustine Date 04/05/2005 Date 04/05/2005

i						
	T Bar Fill	T Bar Fill	Cable Tray	Cable Tray	Total Dead	
Bent C	Weight	Mass	Weight	Mass	Load	Total Mass
Node	<u>(lb)</u>	(lb*sec^2/in)	(lb)	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
4FIL1	400	1.0355	240	0.6211	640	1.6566
4FIL2	800	2.0709			800	2.0709
4FIL3	800	2.0709			800	2.0709
4FIL4	800	2.0709			800	2.0709
4FIL5	800	2.0709			800	2.0709
4FIL6	800	2.0709			800	2.0709
4FIL7	800	2.0709			800	2.0709
4FIL8	800	2.0709			800	2.0709
4FIL9	800	2.0709			800	2.0709
4FIL10	800	2.0709			800	2.0709
4FIL11	800	2.0709			800	2.0709
4FIL12	800	2.0709			800	2.0709
4FIL13	800	2.0709			800	2.0709
4FIL14	800	2.0709			800	2.0709
4FIL15	800	2.0709			800	2.0709
5FIL1	326	0.8447	308	0.7958	634	1.6405
5FIL2	653	1.6895			653	1.6895
5FIL3	653	1.6895			653	1.6895
5FIL4	653	1.6895			653	1.6895
5FIL5	653	1.6895	•		653	1.6895
5FIL6	653	1.6895			653	1.6895
5FIL7	653	1.6895			653	1.6895
5FIL8	653	1.6895			653	1.6895
5FIL9	653	1.6895			653	1.6895
5FIL10	653	1.6895			653	1.6895
5FIL11	653	1.6895			653	1.6895
5FIL12	653	1.6895			653	1.6895
5FIL13	653	1.6895			653	1.6895
5FIL14	653	1.6895			653	1.6895
5FIL15	653	1.6895			653	1.6895

Job No. 1356711

Job **Entergy Vermont Yankee** Rev 1 Sheet No. R.Augustine Date 04/05/2005 Ву

82 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked J. L. White Date 04/05/2005

6.2.2.4 Bent C Triangular Wall Redistribution

The preceding pages developed the seismic model with all sloped wall mass applied on top of a single C bent line columns. This section will revise the dead load in the sloped wall section. This load change will only apply to the dead load model and will not redistribute the mass for the seismic model.

Redistribute the dead weight of the T-bar fill, top cover loading, end walls, partition walls, hot basin, cable tray and the louver wall in the triangular area to the top of the double 4x4 members companion posts (Level G in Bent C model):

Node T-Bar Cover Basin Tray Wall		Q	riginal DI	. Model			П		Amou	it In Ang	ular Wa	:11	
Node	Bent C		Ton	Hot	Cable	Louver				Ton	Hot	Cable	Louver
3FIL1 234 3FIL2-15 468 4FIL1 400 4FIL2-15 800 5FIL2-15 653 FIL1 104 5FIL2-15 233 5FIL1 104 5FIL2-15 208 FIL1 104 5	Node	T-Bar					Н	Node	T-Bar				
3FIL2-15	1.000		00.01	********	****	21.011	H	2,1122			Parin		
4FIL1 400 4FIL2-15 800 5FIL1 326 5FIL2-15 653 P1 1589 180 P2-15 3178 360 N1 1242 P1 576 90 P2-15 3178 360 P1 576 90 P2-15 3180 P1 318 828 H1 72 180 H1 72 11 72 11 72 11 72 11 72 11 72 11 72 11 72 11 72 11 72 12-115 145 145 145 145 145 145 145 145 145 145 145 147 145 147 145 <t< td=""><td>3FIL1</td><td>234</td><td></td><td></td><td></td><td></td><td>П</td><td>3FIL1</td><td>37</td><td></td><td></td><td></td><td></td></t<>	3FIL1	234					П	3FIL1	37				
4FIL2-15 800 SFIL.1 326 FSFIL.2-15 653 PI 1589 NI 1242 N2-N15 2484 HI 72 H2-H15 145 11 72 H2-H15 145 11 72 12-15 145 11 72 12-15 145 11 72 12-15 145 11 72 12-15 145 11 72 12-15 145 11 72 12-15 145 K1 72 K2-K15 145 K1 72 K2-K15 145 K1 72 L1 72 L2-L15 145 M1 48 M2-M15 95 N1 48 M2-M15 95 N1 59 N1 59 N1 59 N2-N6 149 N1 70 N1 88 N1 N1 N9 118 N0-N15 <td>3FIL2-15</td> <td>468</td> <td></td> <td></td> <td></td> <td></td> <td>Н</td> <td>3FIL2-15</td> <td>73</td> <td></td> <td></td> <td></td> <td></td>	3FIL2-15	468					Н	3FIL2-15	73				
SFIL.1 326 SFIL.2-15 653 P1 1589 180 P2-15 3178 360 N1 1242 N.1 1242 N2-N15 2484 N.1 414 H1 72 H.1 72 H2-H15 145 145 11 72 12-115 145 145 11 72 12-115 145 12-115 145 145 11 72 12-115 145 145 11 72 12-115 145 145 11 72 11 72 145 11 72 11 72 145 11 72 11 72 145 K1 72 K1 72 K1 72 K2-K15 145 K2-K15 145 L1 72 L1 72 L1 72 L1 12-L15 145 L1	4FILI	400					H						
5FIL2-15 653 P1 1589 180 P2-15 3178 360 N1 1242 N1 N2-N15 2484 N1 N1 H1 72 H1-H15 145 H1 72 H2-H15 145 H1 72 H2-H15 145 J1 72 H2-H15 145 J1 72 J2-J15 145 J1 72 J1 72 J2-J15 145 J2-J15 145 K1 72 K1 72 K2-K15 145 K1 72 K2-K15 145 K1 72 L1 72 L1 72 L1 72 L1 72 L2-L15 145 M1 48 M2-M15 95 M2-M15 95 N1 59 N1 59 N1 N2-M6 149		800						4FIL2-15					- 1
P1 1589 180 P2-15 3178 360 P2-15 1152 180 N1 1242 N1 144 N2-N15 180 H1 72 H1 72 H1 72 H1 72 H2-H15 145 145 H1 72 11 72 12-115 145 11 72 11 72 12-115 145 145 11 72 11 72 11 72 11 72 11 72 12-115 141 142 144 144 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>ll</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							ll						
P2-15 3178 360 P2-15 1152 180 N1 1242 N1 414 N2-N15 828 H1 72 H1 72 H1 72 H2-H15 145 H1 72 H1 72 11 72 145 I1 72 145 J1 72 J1 72 J1 72 J2-J15 145 J2-J15 145 J2-J15 145 K1 72 K1 72 K1 72 K2-K15 145 K1 72 K1 72 K2-K15 145 K1 72 L1 72 L1 72 L1 72 L1 M2-M15 M1 M2-M15	5FIL2-15	653				-		t e	208				
NI													
N2-N15 2484 72 H1 72 H1 72 H2-H15 145 H1 72 H2-H15 145 11 72 11 72 11 72 12-115 145 J1 72 145 J1 72 J2-J15 145 J2-J15 145 K1 72 K1 72 K1 72 K2-K15 145 K2-K15 145 L1 72 L1 72 L1 72 L1 72 L2-L15 145 M2-K15 145 M3 M4 M1 48 M1 48 M1 48 M2-M15 95 M2-M15 95 N1 59 N1 59 N1 59 N1 59 N2-N6 149 N2-N6 149 N2-N6 149 N8 149 N8 149 N8 149 N9 118 N9 118 N9 118 N10-N15 149 N10-N15 149 01 63 07, 09, 015 127 P1 16 P2-P6 127 P9 32 P8 <td></td> <td></td> <td>3178</td> <td></td> <td>360</td> <td></td> <td>Н</td> <td></td> <td></td> <td>1152</td> <td></td> <td>180</td> <td></td>			3178		360		Н			1152		180	
H1 72 H2-H15 145 I1 72 I2-I15 145 J1 72 J2-J15 145 J1 72 J2-J15 145 K1 72 K2-K15 145 L1 72 L1 172 L1							Н						
H2-H15				2484			Н				828		
11 72 11 72 12-115 145 145 12-115 145 JI 72 JI 72 J2-J15 145 J2-J15 145 K1 72 K1 72 K2-K15 145 K2-K15 145 L1 72 L1 72 L2-L15 145 L2-L15 145 M1 48 M1 48 M2-M15 95 N1 48 M2-M15 95 N1 59 N1 59 N1 59 N2-N6 149 N2-N6 149 N7 118 N7 118 N8 149 N8 149 N9 118 N9 118 N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 P1 16 P1 16 P2-P6 127 P8 127 P8 127							H				•		
12-115							Н						
J1 72 J1 72 J2-J15 145 J2-J15 145 K1 72 K1 72 K2-K15 145 K2-K15 145 L1 72 L1 72 L2-L15 145 L2-L15 145 M1 48 M1 48 M2-M15 95 M2-M15 95 N1 59 N1 59 N2-N6 149 N2-N6 149 N7 118 N7 118 N8 149 N8 149 N9 118 N9 118 N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 P1 16 P2-P6 127 P2-P6 127 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127							Н						
J2-J15							Ιſ						
K1 72 K1 72 K2-K15 145 K2-K15 145 L1 72 L1 72 L2-L15 145 L2-L15 145 M1 48 M1 48 M2-M15 95 M2-M15 95 N1 59 N1 59 N2-N6 149 N2-N6 149 N7 118 N7 118 N8 149 N8 149 N9 118 N9 118 N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 P1 16 P2-P6 127 P2-P6 127 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127													
K2-K15 145 K2-K15 145 L1 72 L1 72 L2-L15 145 L1 72 M1 48 M1 48 M2-M15 95 M2-M15 95 N1 59 N1 59 N2-N6 149 N2-N6 149 N7 118 N7 118 N8 149 N8 149 N9 118 N9 118 N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 P1 16 P1 16 P1 16 P2-P6 127 P2-P6 127 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127													
L1 72 L1 72 L2-L15 145 L2-L15 145 M1 48 M1 48 M2-M15 95 M2-M15 95 N1 59 N1 59 N2-N6 149 N2-N6 149 N7 118 N7 118 N8 149 N8 149 N9 118 N9 118 N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 P1 16 P2-P6 127 P2-P6 127 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127													
L2-L15 145 L2-L15 145 M1 48 M1 48 M2-M15 95 M2-M15 95 N1 59 N1 59 N2-N6 149 N2-N6 149 N7 118 N7 118 N8 149 N8 149 N9 118 N9 118 N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 P1 16 P2-P6 127 P2-P6 127 P7 32 P7 32 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127													
M1 48 M1 48 M2-M15 95 M2-M15 95 N1 59 N1 59 N2-N6 149 N2-N6 149 N7 118 N7 118 N8 149 N8 149 N9 118 N9 118 N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 P1 16 P2-P6 127 P2-P6 127 P7 32 P7 32 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127													
M2-M15 95 M2-M15 95 N1 59 N1 59 N2-N6 149 N2-N6 149 N7 118 N7 118 N8 149 N8 149 N9 118 N9 118 N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 P1 16 P2-P6 127 P2-P6 127 P7 32 P7 32 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127							H						
N1 59 N1 59 N2-N6 149 N2-N6 149 N7 118 N7 118 N8 149 N8 149 N9 118 N9 118 N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 P1 16 P2-P6 127 P2-P6 127 P7 32 P7 32 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127	1							ĺ					
N2-N6 149 N2-N6 149 N7 118 N7 118 N8 149 N8 149 N9 118 N9 118 N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 P1 16 P2-P6 127 P2-P6 127 P7 32 P7 32 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127							Н						
N7 118 N7 118 N8 149 N8 149 N9 118 N9 118 N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 P1 16 P2-P6 127 P2-P6 127 P7 32 P7 32 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127							ΙI						
N8 149 N8 149 N9 118 N9 118 N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 P1 16 P2-P6 127 P2-P6 127 P7 32 P7 32 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127							11						
N9 118 N9 118 N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 P1 16 P2-P6 127 P2-P6 127 P7 32 P7 32 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127													
N10-N15 149 N10-N15 149 O1 63 O1 63 O7, O9, O15 127 O7, O9, O15 127 P1 16 P1 16 P2-P6 127 P2-P6 127 P7 32 P7 32 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127													
O1 63 O1 63 O7, O9, O15 127 O7, O9, O15 127 P1 16 P1 16 P2-P6 127 P2-P6 127 P7 32 P7 32 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127	N10-N15							N10-N15					149
P1 16 P1 16 P2-P6 127 P2-P6 127 P7 32 P7 32 P8 127 P8 127 P9 32 P9 32 P1 16 P2-P6 127 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127						63		01					63
P1 16 P1 16 P2-P6 127 P2-P6 127 P7 32 P7 32 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127	07, 09, 015					127		07, 09, 015					127
P7 32 P7 32 P8 127 P8 127 P9 32 P9 32 P10-P14 127 P10-P14 127	P1												16
P8 127 P9 32 P10-P14 127 P10-P14 127	P2-P6							P2-P6					127
P9 32 P9 32 P10-P14 127 P10-P14 127	P7					32		P7					
P10-P14 127 P10-P14 127													
	P9					32							
		•											
P15 16 P15 16	P15					16	l	P15					16

Job No. 1356711 Calc. No. 1356711-C-001

P15

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

1 Sheet No.

Rev

83 of 182

By R.Augustine Date 04/05/2005
Checked J. L. White Date 04/05/2005

Resultant New Dead Loads for Use in Bent C DL Model								
		Top	<u>Hot</u>	Cable	Louver			
<u>Node</u>	T-Bar	Cover	<u>Basin</u>	Tray	Wall			
3FIL1	197	,						
3F1L2-15	395							
4F1L1	283							
4F1L2-15	567							
5FIL1	222							
5F1L2-15	445							
Pi		1013		90				
P2-15		2026		180				
NI			828					
N2-N15			1656					
Hi								
112-H15								
11								
12-115								
JI								
J2-J15								
KI								
K2-K15								
Ll								
L2-L15								
MI								
M2-M15								
N1								
N2-N6								
N7								
N8								
N9								
N10-N15								
01								
O7, O9, O15 P1								
P1 P2-P6								
P2-P6								
P8								
P9								
P10-P14								

								
Amount to be added to Level G at the top of the								
companion posts.								
		<u>Top</u>	<u>Hot</u>	<u>Cable</u>	Louver			
<u>Node</u>	<u>T-Bar</u>	Cover	<u>Basin</u>	Tray	Wall			
3F1L1	37							
3F1L2-15	73							
4F1L1	117							
4FIL2-15	233							
5FILI	104							
5FIL2-15	208							
P1		576		90				
P2-15		1152		180				
NI			414					
N2-N15			828					
H1					72			
H2-H15					145			
11					72			
12-115					145			
J1					72			
J2-J15					145			
K1					72			
K2-K15					145			
· L1					72			
L2-L15					145			
M1					48			
M2-M15					95			
N1					59			
N2-N6					149			
N7					118			
N8					149			
N9					118			
N10-N15					149			
01					63			
07, 09, 015					127			
P1					16			
P2-P6					127			
P7					32			
P8					127			
P9					32			
P10-P14					127			
P15					16			

Node		-	Node			Node		
Hl	1885	lbs.	H7	3770	lbs.	H13	3770	lbs.
H2	3770	lbs.	H8	3770	lbs.	H14	3770	lbs.
Н3	3770	lbs.	Н9	3770	lbs.	H15	3786	lbs.
H4	3770	lbs.	H10	3770	lbs.			
H5	3770	lbs.	H11	3770	lbs.]		
H6	3770	lbs.	H12	3770	lbs.	1		

Job No. 1356711

Job Entergy Vermont Yankee

Rev By 1 Sheet No.

R.Augustine Date 04/05/2005

84 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

J. L. White

Date 04/05/2005

6.2.2.5 End Bent Applied Loads and Masses

	Drift		End and Partition	End and	T Bar		Louver			
1	Eliminator	Drift Eliminator	Wall	Partition Wall	Fill	T Bar Fill	Wall	Louver Wall	Total Dead	
End Bent	Weight	Mass	Weight	Mass	Weight	Mass	Weight	Mass	Load	Total Mass
End Den	<u>vv cigur</u>	4414.32	· · · · · ·	41433	v. cigin	41435	VI CIAIN	141033	2204Q	1 Otal 141433
<u>Node</u>	(Ip)	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
D2			10	0.0255			12	0.0307	22	0.0562
D3			20	0.0510					20	0.0510
D4			20	0.0510					20	0.0510
D5			20	0.0510					20	0.0510
D6			20	0.0510					20	0.0510
D7			20	0.0510 .					20	0.0510
D8			20	0.0510					20	0.0510
D9	*		10	0.0255			12	0.0307	22	0.0562
E2			30	0.0784			37	0.0947	67	ģ.1731
E2A					31	0.0797			31	ģ.0797
E2B					53	0.1366			53	0.1366
E3			61	0.1569					61	0.1569
E3A					46	0.1190			46	0.1190
E3B					46	0.1190			46	0.1190
E3C					39	0.1015		•	39 .	0.1015
E4			121	0.3122					121	Q.3122
E4A					39	0.1015		•	39	0.1015
E4B	26	0.0675							26	0.0675
E5			121	0.3122				•	121	0.3122
E6			121	0.3122					121	0.3122
E6A	26	0.0675							26	0.0675
E6B					39	0.1015			39	0.1015
E7			121	0.3122					121	0.3122
E7A					39	0.1015			39	0.1015
E7B					46	0.1190			46	0.1190
E7C			•		46	0.1190			46	0.1190
E8			61	0.1569					61	0.1569
E8A					53	0.1366			53	0.1366
E8B					31	0.0797			31	0.0797
E9			30	0.0784			37	0.0947	67	0.1731

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

85 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

			End and			
	Drift		Partition	End and	T_Bar	
	Eliminator	Drift Eliminator	Wall	Partition Wall	Fill	T Bar Fill
End Bent	Weight	Mass	Weight	Mass	Weight	Mass
<u>Node</u>	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
F2			50	0.1306		
F3			101	0.2612		
F8			101	0.2612		
F9			50	0.1306		
G2			60	0.1553		
G2A					67	0.1744
G2B					116	0.2990
G2C					101	0.2606
G3			120	0.3106		
G3A	•				101	0.2606
G3B					86	0.2222
G3C					86	0.2222
G4			221	0.5718		
G4A	57	0.1477				
G5			221	0.5718		
G6			221	0.5718		
G6A	57	0.1477				
G7			221	0.5718		
G7A					86	0.2222
G7B					86	0.2222
G7C					101	0.2606
G8			120	0.3106		
G8A					101	0.2606
G8B					116	0.2990
G8C					67	0.1744
G9		·	60	0.1553		

Job No. 1356711

Job Entergy Vermont Yankee

Rev By 1 Sheet No.

R.Augustine Date 04/05/2005

86 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

J. L. White

Date 04/05/2005

	Louver		0 11 m	011 5	m . 1 p . 1	
End Dans	Wall Weight	Louver Wall	Cable Tray	Cable Tray	Total Dead	Total Mass
End Bent	<u>Weight</u>	Mass	<u>Weight</u>	<u>Mass</u>	<u>Load</u>	Total Mass
Node	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
F2	61	0.1577			111	0.2883
F3					101	0.2612
F8					101	0.2612
F9	61	0.1577			111	0.2883
G2	72	0.1874			132	0.3427
G2A					67	0.1744
G2B					116	0.2990
G2C					101	0.2606
G3			•		120	0.3106
G3A					101	0.2606
G3B					86	0.2222
G3C					86	0.2222
G4					221	0.5718
G4A					57	0.1477
G5					221	0.5718
G6					221	0.5718
G6A					57	0.1477
G7					221	0.5718
G7A					· 86	0.2222
G7B					86	0.2222
G7C					101	0.2606
G8					120	0.3106
G8A					101	0.2606
G8B					116	0.2990
G8C					67	0.1744
G9	72	0.1874	240	0.6211	372	0.9638

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 87 of 182

Ву

Checked J. L. White

R.Augustine Date 04/05/2005 Date 04/05/2005

			End and			
	<u>Drift</u>		Partition	End and	T Bar	
	Eliminator	Drift Eliminator_	Wall	Partition Wall	Fill	T Bar Fill
End Bent	Weight	Mass	Weight	Mass	Weight	Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
H2			60	0.1553		
Н3			120	0.3106		
Н8			120	0.3106		
Н9			60	0.1553		
11			60	0.1553		
11A			O	0.1555	73	0.1895
12			120	0.3106	15	0.1055
12A			120	0.5100	125	0.3248
12B					109	0.2831
12C					109	0.2831
13			120	0.3106	107	0.2051
I3A			120	0.0100	93	. 0.2413
13B					93	0.2413
13C	31	0.0802			,,,	0.2
14		0.0002	240	0.6211		
I4A	31	0.0802	210	0.02		
15		0,0002	240	0.6211		•
16			240	0.6211		
16A	31	0.0802				
17			240	0.6211		
17A	31	0.0802				•
17B					93	0.2413
17C					93	0.2413
18			120	0.3106	-	
18A					109	0.2831
18B					109	0.2831
18C					125	0.3248
19			120	0.3106		
I9A					73	0.1895
I10			60	0.1553		

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 88 of 182

Ву R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

End Bent Node	Louver Wall Weight (lb)	Louver Wall Mass (lb*sec^2/in)	Cable Tray Weight (lb)	Cable Tray Mass (lb*sec^2/in)	Total Dead Load (lb)	Total Mass (lb*sec^2/in)
Н2	74	0.1906			134	0.3458
Н3					120	0.3106
Н8			•		120	0.3106
Н9	74	0.1906	240	0.6211	374	0.9670
11	75	0.1937			135	0.3490
IIA					73	0.1895
12					120	0.3106
I2A					125	0.3248
I2B					109	0.2831
I2C					109	0.2831
I3					120	0.3106
13A	•				93	0.2413
I3B					93	0.2413
I3C					31	0.0802
14					240	0.6211
I4A					31	0.0802
15					240	0.6211
16					240	0.6211
I6A					31	0.0802
17					240	0.6211
I7A					31	0.0802
I7B					93	0.2413
I7C					93	0.2413
· 18					120	0.3106
I8A					109	0.2831
I8B			•.		109	0.2831
I8C					125	0.3248
19			240	0.6211	360	0.9317
19A					73	0.1895
I10	75	0.1937			135	0.3490

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

89 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

			End and	
	<u>Drift</u>		Partition	End and
	Eliminator	Drift Eliminator	Wall	Partition Wall
End Bent	Weight	Mass	Weight	Mass
Node	(lb)	(lb*sec^2/in)	(lb)	(lb*sec^2/in)
INOGE	1101	(10 Sec 27iii)	(10)	(10 300 27111)
Ji			60	0.1553
J2			120	0.3106
J3			120	0.3106
Ј8			120	0.3106
J 9			120	0.3106
J10			60	0.1553
K1			60	0.1553
K1A				
KIB				
K2			120	0.3106
K2A				
K2B				
K2C				,
K3			120	0.3106
K3A				
K3B	73	0.1884		
K4			240	0.6211
K5			240	0.6211
K6			240	0.6211
K7			240	0.6211
K7A	73	0.1884	•	
K7B				
K8			120	0.3106
K8A				
K8B				
K8C				
К9			120	0.3106
K9A				
K9B	•			
K10			60	0.1553

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev · 1 Sheet No. 90 of 182

R.Augustine Date 04/05/2005 Ву J. L. White Checked

Date 04/05/2005

End Bent Node	T Bar Fill Weight (lb)	T Bar Fill Mass (lb*sec^2/in)	Louver Wall Weight (lb)	Louver Wall Mass (lb*sec^2/in)	Cable Tray Weight (lb)	Cable Tray Mass (lb*sec^2/in)	Total Dead Load (lb)	Total Mass
								
J1			75	0.1937			135	0.3490
J2							120	0.3106
J3							120	0.3106
J8							120	0.3106
J 9					240	0.6211	360	0.9317
J10			75	0.1937		•	135	0.3490
K1			75	0.1937			135	0.3490
KIA	86	0.2225					86	0.2225
KIB	147	0.3814					147	0.3814
K2							120	0.3106
K2A	128	0.3324					128	, 0.3324
K2B	128	0.3324					128	0.3324
K2C	109	0.2834					109	0.2834
K3						•	120	0.3106
K3A	109	0.2834					109	0.2834
K3B							73	0.1884
K4							240	0.6211
K5		•					240	0.6211
K6							240	0.6211
K7							240	0.6211
K7A							73	0.1884
K7B	109	0.2834					109	0.2834
К8							120	0.3106
K8A	109	0.2834					109	0.2834
K8B	128	0.3324		,			128	0.3324
K8C	128	0.3324					128	0.3324
К9					240	0.6211	360	0.9317
K9A	147	0.3814					147	0.3814
K9B	86	0.2225					86	0.2225
K10			75	0.1937			135	0.3490

Job No. 1356711

Calc. No. 1356711-C-001

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

91 of 182

Ву Checked

J. L. White

R.Augustine Date 04/05/2005 Date 04/05/2005

End Bent	Drift Eliminator Weight	Drift Eliminator Mass	End and Partition Wall Weight	End and Partition Wall Mass	Louver Wall Weight	Louver Wall Mass	Cable Tray Weight	Cable Tray Mass	Total Dead Load	Total Mass
Node	<u>(1b)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	(IP)	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
										
L1			60	0.1553	75	0.1937			135	0.3490
L2			120	0.3106					120	0.3106
L3			120	0.3106					120	0.3106
L8			120	0.3106					120	0.3106
L9			120	0.3106			240	0.6211	360	0.9317
L10			60	0.1553	75	0.1937			135	0.3490
M1			51	0.1317	63	0.1643			114	0.2960
M2			102	0.2634					102	0.2634
М3			102	0.2634					102	0.2634
M3A	42	0.1082						•	42	0.1082
M4			274	0.7085					274	0.7085
M5			274	0.7085					274	0.7085
M6			274	0.7085					274	0.7085
M7			274	0.7085					274	0.7085
M7A	42	0.1082							42	0.1082
M8			102	0.2634					102	0.2634
М9		•	102	0.2634			204	0.5269	305	0.7903
M10			51	0.1317	63	0.1643			114	0.2960

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 92 of 182

Ву R.Augustine Date 04/05/2005 Checked J. L. White

Date 04/05/2005

	. 	End and	End and			T Bar		Тор	
		<u>Partition</u>	Partition Wall		<u> Hot Basin</u>	<u>Fill</u>	T Bar Fill	Cover	Top Cover
E	nd Bent	Wall Weight	Mass	<u>Weight</u>	<u>Mass</u>	Weight	<u>Mass</u>	<u>Weight</u>	<u>Mass</u>
	Node	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
ı									
	NI	77	0.1990	414	1.0714				
1	NIA					49	0.1277		
	NIB					85	0.2190		
	NIC					74	0.1908		
1	N2	154	0.3979	828	2.1429				
	N2A					74	0.1908		
	N2B					63	0.1627		
1	N2C					63	0.1627		: 1
1	N3	154	0.3979	414	1.0714				
	N8	154	0.3979	414	1.0714				į
ļ	N8A					63	0.1627		!
1	N8B					63	0.1627		
	N8C				•	74	0.1908		
1	N9	154	0.3979	828	2.1429				
1	N9A					74	0.1908		1
	N9B					85	0.2190		
	N9C					49	0.1277		
1	N10	77	0.1990	414	1.0714				
	04	112	0.2897						
	07	112	0.2897						
	P1	56	0.1449					437	1.1300
1	P2	112	0.2897					873	2.2601
	P3	112	0.2897					873	2.2601
	P4	16	0.0421					873	2.2601
	P5	112	0.2897					873	2.2601
1	P6	112	0.2897					873	2.2601
1	P7	16	0.0421					873	2.2601
	P8	112	0.2897	•				873	2.2601
1	P9	112	0.2897					873	2.2601
1	P10	56	0.1449				<u></u>	437	1.1300

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

1 Sheet No.

Rev

93 of 182

R.Augustine Date 04/05/2005 Ву Checked

J. L. White Date 04/05/2005

								_
End Bent	Manifold Pipe Weight	Manifold Pipe Mass	Louver Wall Weight	Louver Wall Mass	Cable Tray Weight	Cable Tray Mass	Total Dead Load	Total Mass
Node	<u>(1b)</u>	(1b*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
NI			96	0.2482			587	1.5185
NIA							49	0.1277
NIB							85	0.2190
NIC							74	0.1908
N2	1894	4.9014					2876	7.4422
N2A							74	0.1908
N2B							63	0.1627
N2C							63	0.1627
N3	1894	4.9014					2462	6.3708
N8	1894	4.9014					2462	6.3708
N8A							63	0.1527
N8B							63	0.1627
N8C							74	0.1908
N9	1894	4.9014			308	0.7958	3183	8.2380
N9A							74	0.1908
N9B							85	0.2190
N9C							49	0.1277
N10			96	0.2482			587	1.5185
04							112	0.2897
07							112	0.2897
P1			70	0.1807			562	1.4556
P2			,,	0.1507			985	2.5498
P3							985	2.5498
P4							890	2.3021
P5							985	2.5498
P6							985	2.5498
P7							890	2.3021
P8							985	2.5498
P9					314	0.2329	1299	2.7827
P10			70	0.1807	90	0.2329	652	1.6885

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

94 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

6.2.2.6 Main Bent Applied Loads and Masses

<u>Main</u> Bent	Louver Wall Weight	Louver Wall Mass	Total Dead Load	Total Mass
<u>Node</u>	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
D2 D9	24 24	0.0615 0.0615	24 24	0.0615 0.0615

Main Bent	Drift Eliminator Weight	Drift Eliminator Mass	T Bar Fill Weight	T Bar Fill Mass	Louver Wall Weight	Louver Wall Mass	Total Dead Load	Total Mass
1								
Node	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(Ib)</u>	(lb*sec^2/in)
								i
E2					73	0.1894	73	0.1894
E2A			62	0.1594			62	0.1594
E2B			106	0.2732			106	0.2732
E3								1
E3A			92	0.2381			92	0.2381
E3B			92	0.2381			92	0.2381
E3C			78	0.2030			78	0.2030
E4								
E4A			78	0.2030		•	78	0.2030
E4B	78	0.2014					78	0.2014
E5								
E6								
E6A	78	0.2014					78	0.2014
E6B			78	0.2030			78	0.2030
E7			=0	0.0020			70	0.2030
E7A			78	0.2030			78 92	0.2030
E7B E7C			92 92	0.2381 0.2381			92 92	0.2381
E8			92	0.2361			92	0.2361
E8A			106	0.2732			106	0.2732
E8B			62	0.1594			62	0.1594
E9			. 02	0.1277	73	0.1894	73	0.1894
-					,,,	007		0,107
F2					. 122	0.3153	122	0.3153
F3								
F8								
F9					122	0.3153	122	0.3153

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

1 Sheet No.

Rev

95 of 182

Ву R.Augustine Date 04/05/2005 Checked J. L. White

Date 04/05/2005

	<u>Drift</u>	<u>Drift</u>	T Bar		Louver			
<u>Main</u>	Eliminator	Eliminator	<u>Fill</u>	T Bar Fill	Wall_	Louver Wall	Total Dead	
<u>Bent</u>	Weight	<u>Mass</u>	Weight	<u>Mass</u>	<u>Weight</u>	Mass	<u>Load</u>	Total Mass
Node	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
G2					145	0.3748	145	0.3748
G2A			135	0.3488			135	0.3488
G2B			231	0.5980			231	0.5980
G2C			201	0.5212	•		201	0.5212
G3								
G3A			201	0.5212			201	0.5212
G3B			172	0.4443			172	0.4443
G3C			172	0.4443			172	0.4443
G4								
G4A	114	0.2954					114	0.2954
G5								•
G6								·
G6A	114	0.2954					114	0.2954
G7								
G7A			172	0.4443			172	0.4443
G7B			172	0.4443			172	0.4443
G7C			201	0.5212			201	0.5212
G8								
G8A			201	0.5212			201	0.5212
G8B			231	0.5980			231	0.5980
G8C			135	0.3488			135	0.3488
G9					145	0.3748	145	0.3748
H2					206	0.5327	206	0.5327
Н3								
Н8								
Н9					206	0.5327	206	0.5327

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

1 Sheet No.

Rev

96 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

	<u>Drift</u>	<u>Drift</u>	T Bar		Louver			
	Eliminator	Eliminator	<u>Fill</u>	T Bar Fill	Wall	Louver Wall		
Bent	<u>Weight</u>	<u>Mass</u>	<u>Weight</u>	<u>Mass</u>	Weight	<u>Mass</u>	<u>Load</u>	Total Mass
Node	<u>(1b)</u> .	(lb*sec^2/in)	<u>(lb)</u>	(1b*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
1								
11					150	0.3874	150	0.3874
I1A			146	0.3789			146	0.3789
12								
I2A			251	0.6496			251	0.6496
I2B			219	0.5661			219	0.5661
I2C			219	0.5661			219	0.5661
13				•				
I3A			187	0.4827			187	0.4827
I3B			187	0.4827		•	187	0.4827
I3C	62	0.1605					62	0.1605
14								ŧ
I4A	62	0.1605					62	0.1605
15								
16								
I6A	62	0.1605					62	0.1605
17								
I7A	62	0.1605					· 62	0.1605
17B			187	0.4827			187	0.4827
17C			187	0.4827			187	0.4827
18								
I8A			219	0.5661			219	0.5661
18B			219	0.5661			219	0.5661
18C			251	0.6496			251	0.6496
19								
I9A			146	0.3789			146	0.3789
110					150	0.3874	150	0.3874
1								
J1					150	0.3874	150	0.3874
J10					150	0.3874	150	0.3874

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

1 Sheet No. Rev

97 of 182

Ву R.Augustine Date 04/05/2005 Checked J. L. White

Date 04/05/2005

Main	<u>Drift</u> Eliminator	<u>Drift</u> Eliminator	Louver Wall	Louver Wall	T Bar Fill	T Bar Fill	Total Dead	
Bent	<u>Weight</u>	Mass	Weight	Mass	Weight	Mass	Load	Total Mass
Node	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(1p)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
K1			150	0.3874			150	0.3874
KlA					172	0.4449	172	0.4449
KIB					295	0.7627	295	0.7627
K2A					257	0.6647	257	0.6647
K2B					257	0.6647	257	0.6647
K2C					219	0.5668	219	0.5668
K3A					219	0.5668	219	0.5668
K3B	146	0.3768					146	0.3768
K7A	146	0.3768					146	0.3768
K7B					219	0.5668	219	0.5668
K8A					219	0.5668	219	0.5668
K8B					257	0.6647	257	0.6647
K8C					257	0.6647	257	0.6647
K9A		•			295	0.7627	295	0.7627
K9B					172	0.4449	172	0.4449
K10			150	0.3874			150	0.3874

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

1 Sheet No.

Rev

98 of 182

 By
 R.Augustine
 Date 04/05/2005

 Checked
 J. L. White
 Date 04/05/2005

Main Bent	Louver Wall Weight	Louver Wall Mass	Total Dead Load	Total Mass
Node	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
LI LIO	150 150	0.3874 0.3874	150 150	0.3874 0.3874

· · · · · · ·					Secondary	
1	Drift	<u>Drift</u>	Hot		Dist.	Secondary
Main	Eliminator		Basin	Hot Basin	<u>Piping</u>	Dist. Piping
Bent	Weight	Mass	Weight	Mass Mass	Weight	Mass
Dent	weight	<u>191 a 5 5</u>	weight	Mass	weight	141422
<u>Node</u>	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
М1					401	1.0388
M2					561	1.4529
M3					320	0.8282
МЗА	84	0.2164	•			5,1220
M4					320	0.8282
M5					574	1.4867
M6					1083	2.8037
M7					320	0.8282
M7A	84	0.2164				
M8					320	0.8282
M9					561	1.4529
M10					401	1.0388
ł						
NI			828	2.1429		
NIA						
NIB						
NIC						
N2			1656	4.2857		
N2A						
N2B						
N2C						
N3			828	2.1429		
N8			828	2.1429		
N8A						
N8B						
N8C						
N9			1656	4.2857		
N9A						
N9B					•	
N9C						
N10			828	2.1429		
		· · · · · · · · · · · · · · · · ·				

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 99 of 182

Ву R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

<u>Main</u> <u>Bent</u>	T Bar Fill Weight	T Bar Fill Mass	Manifold Pipe Weight	<u>Manifold</u> Pipe Mass	Louver Wall Weight	Louver Wall Mass	Total Dead Load	Total Mass
<u>Node</u>	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(Ib)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
			' 					
					127	0.3286	528	1.3674
M1 M2					127	0.5260	561	1.3074
							320	0.8282
M3							320 84	0.8282
M3A							320	0.2164
M4								
M5							574	1.4867
M6							1083	2.8037
M7							320	0.8282
M7A							84	0.2164
M8							320	0.8282
M9							561	1.4529
M10					127	0.3286	528	1.3674
NI					192	0.4963	1020	2.6392
NIA	99	0.2554					99	0.2554
NIB	169	0.4379					169	0.4379
NIC	147	0.3817					147	0.3817
N2			3788	9.8028			5444	14.0886
N2A	147	0.3817		• • • • • • • • • • • • • • • • • • • •			147	0.3817
N2B	126	0.3254					126	0.3254
N2C	126	0.3254					126	0.3254
N3			3788	9.8028			4616	11.9457
N8			3788	9.8028			4616	11.9457
N8A	126	0.3254	• • • • • • • • • • • • • • • • • • • •	7.0			126	0.3254
N8B	126	0.3254					126	0.3254
N8C	147	0.3817					147	0.3817
N9	• 17	0.5017	3788	9.8028			5444	14.0886
N9A	147	0.3817	2,00	7.002 0			147	0.3817
N9B	169	0.4379					169	0.4379
N9C	99	0.2554					99	0.2554
N10	23	0.2337			192	0.4963	1020	2.6392

Job No. 1356711 Calc. No. 1356711-C-001 **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

1 Sheet No. Rev

100 of 182

Ву R.Augustine Date 04/05/2005 Checked J. L. White

Date 04/05/2005

Main Bent	Fan, Stack and Motor Weight (lb)	Fan, Stack and Motor Mass (lb*sec^2/in)	Top Cover Weight (lb)	Top Cover Mass (lb*sec^2/in)
Pl			873	2.2601
P2			1747	4.5202
Р3	425	1.0999	1092	2.8251
P4				
P5	1872	3.2573		
Р6	1872	3.2573		
P7				
P8	1268	3.2811	1092	2.8251
P9	466	1.2071	1747	4.5202
P10			873	2.2601

<u>Main</u> <u>Bent</u>	Louver Wall Weight (lb)	Louver Wall Mass (lb*sec^2/in)	Cable Tray Weight (lb)	Cable Tray Mass (lb*sec^2/in)	Total Dead Load (1b)	Total Mass (lb*sec^2/in)
P1 P2	140	0.3614			1013 1747	2.6215 4.5202
P3					1517	3.9250
P4 P5					1872	3.2573
P6 P7					1872	3.2573
P8					2359	6.1063
P9 P10	140	0.3614	180 180	0.4658 0.4658	2393 1193	6.1931 3.0873

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

101 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

6.2.2.7 Partition Bent Applied Loads and Masses

Partition Bent Node	Louver Wall Weight (lb)	Louver Wall Mass (lb*sec^2/in)	Total Dead Load (lb)	Total Mass (lb*sec^2/in)
D2	24	0.0615	24	0.0615
D9	24	0.0615	24	0.0615

PartitionEliminatorEliminatorPartition Wall PartitBentWeightMassWeightMeight	d and ion Wall
PartitionEliminatorEliminatorPartition Wall PartitBentWeightMassWeightMass	
Bent Weight Mass Weight M	IUII WATII
	<u> Mass</u>
Node (lb) (lb*sec^2/in) (lb) (lb*s	ec^2/in)
	1250
E2A	
E2B	
	2500
E3A	1
E3B	1
E3C	- 1
E4 238 0.	6165
E4A	1
E4B 78 0.2014	· ·
E5 238 0.	6165
E6 238 0.	6165
E6A 78 0.2014	
E6B	
E7 238 0.	6165
E7A	
E7B	
E7C	ļ
E8 97 0.3	2500
E8A	İ
E8B	1
E9 48 0.	1250
	-
F2 119 0.:	3082
F3 238 0.	6165
F8 238 0.	6165
F9 119 0.:	3082

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

102 of 182

By R.Augustine Checked J. L. White

R.Augustine Date 04/05/2005

J. L. White Date 04/05/2005

	T Bar Fill	T Bar Fill	Louver Wall	Louver Wall	Total Dead	
Partition Bent	<u>Weight</u>	<u>Mass</u>	<u>Weight</u>	<u>Mass</u>	<u>Load</u>	Total Mass
Node	<u>(lb)</u>	(lb*scc^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*scc^2/in)
E2			73	0.1894	121	0.3144
E2A	62	0.1594			62	0.1594
E2B	106	0.2732			106	0.2732
E3					97	0.2500
E3A	92	0.2381			92	0.2381
E3B	92	0.2381			92	0.2381
E3C	78	0.2030			7 8	0.2030
E4					238	0.6165
E4A	78	0.2030			78	0.2030
E4B					78	0.2014
E5					238	0.6165 !
E6					238	0.6165
E6A					78	0.2014
E6B	78	0.2030			78	0.2030
E7					238	0.6165
E7A	78	0.2030			78	0.2030
E7B	92	0.2381			92	0.2381
E7C	92	0.2381			92	0.2381
E8					97	0.2500
E8A	106	0.2732			106	0.2732
E8B	62	0.1594			62	0.1594
E9			73	0.1894	121	0.3144
F2			122	0.3153	241	0.6235
F3					238	0.6165
F8					238	0.6165
F9			122	0.3153	241	0.6235

Job No. 1356711 Calc. No. 1356711-C-001 Job

Entergy Vermont Yankee Subject Cooling Tower Seismic Evaluation Rev . 1 Sheet No. 103 of 182

Ву

Checked

J. L. White

R.Augustine Date 04/05/2005 Date 04/05/2005

	<u>Drift</u>	<u>Drift</u>	End and	End and	
<u>Partition</u>	Eliminator	Eliminator	Partition Wall	Partition Wall	T Bar Fill
<u>Bent</u>	Weight	<u>Mass</u>	<u>Weight</u>	<u>Mass</u>	Weight
Node	<u>(1b)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(1b)</u>
G2			142	0.3665	
G2A					135
G2B					231
G2C					201
G3			283	0.7329	
G3A					201
G3B				٠	172
G3C					172
G4			521	1.3494	
G4A	114	0.2954			
G5			521	1.3494	
G6			521	1.3494	
G6A	114	0.2954			
· G7			521	1.3494	
G7A					172
G7B					172
G7C					201
G8			283	0.7329	
G8A					201
G8B					231
G8C					135
G9			142	0.3665	
112			142	0.3665	
H3			283	0.7329	
H8			283	0.7329	
H9			142	0.3665	

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

104 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

	T D Fill	Y 377-11	T 137-11	Tatal Dand	
.	T Bar Fill	Louver Wall	Louver Wall	Total Dead	m . 134
Partition Bent	<u>Mass</u>	<u>Weight</u>	Mass	Load	Total Mass
<u>Node</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)
G2		145	0.3748	286	0.7413
G2A	0.3488			135	0.3488
G2B	0.5980			231	0.5980
G2C	0.5212			201	0.5212
G3				283	0.7329
G3A	0.5212			201	0.5212
G3B	0.4443			172	0.4443
G3C	0.4443			172	0.4443
G4				521	1.3494
G4A				114	0.2954
G5				521	1.3494
G6				521	1.3494
G6A				114	0.2954
. G 7		•		521	1.3494
G7A	0.4443			172	0.4443
G7B	0.4443			172	0.4443
G7C	0.5212			201	0.5212
G8				283	0.7329
G8A	0.5212			201	0.5212
G8B	0.5980			231	0.5980
G8C	0.3488			135	0.3488
G9		145	0.3748	286	0.7413
1					
H2	•	206	0.5327	347	0.8991
Н3				283	0.7329
H8				283	0.7329
H9		206	0.5327	347	0.8991

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

105 of 182

Ву Checked

J. L. White

R.Augustine Date 04/05/2005 Date 04/05/2005

Partition_	<u>Drift</u> Eliminator	<u>Drift</u> Eliminator	End and	End and Partition Wall	T Bar Fill
Bent	Weight	Mass	Weight	Mass Mass	Weight
Node	(1b)	(lb*sec^2/in)	(1b)	(lb*sec^2/in)	(lb)
<u> </u>	1101	1.0_500_2//	1.01	(15 555 5711)	Tiol
I1					
IIA					146
12			142	0.3665	
I2A					251
12B					219
12C			202	0.5000	219
13			283	0.7329	
I3A					187
I3B	40	0.1606			187
I3C	62	0.1605	566	1.4650	
14	(2)	0.1606	566	1.4658	
I4A	62	0.1605	F.C.C.	1.4650	
15			566	1.4658	
16	(2)	0.1606	566	1.4658	
I6A	62	0.1605	ECC	1 4650	
17	62	0.1605	566	1.4658	
I7A I7B	02	0.1605			107
					187
17C			202	0.7220	187
18			283	0.7329	219
18A 18B					219
I8C					219
19			142	0.3665	231
19 19A			142	0.000	146
19A 110					140
110					
J1					
J2			283	0.7329	:
J3			283	0.7329	
Ј8			283	0.7329	
19			283	0.7329	
J10					

Job Entergy Vermont Yankee Rev

1 Sheet No.

106 of 182

Subject Cooling Tower Seismic Evaluation

Ву Checked

J. L. White

R.Augustine Date 04/05/2005 Date 04/05/2005

	•				
	m n r:11	1 W-11	I W-11	Total Dood	
B .: B. 4	T Bar Fill		Louver Wall	Total Dead	T-4-1 Mass
Partition Bent	<u>Mass</u>	<u>Weight</u>	Mass	<u>Load</u>	Total Mass
<u>Node</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(Ib)</u>	(lb*sec^2/in)
			0.0054	1.50	0.0074
11	0.0000	150	0.3874	150	0.3874
IIA	0.3789			146	0.3789
12	0.6406			142	0.3665
I2A	0.6496			251	0.6496
12B	0.5661			219	0.5661
I2C	0.5661			219	0.5661
13				283	0.7329
I3A	0.4827			187	0.4827
I3B	0.4827			187	0.4827
13C		•		62	0.1605
14				566	1.4658
I4A				62	0.1605
15				566	1.4658
16				566	1.4658
16A				62	0.1605
17				566	1.4658
I7A				62	0.1605
17B	0.4827			187	0.4827
I7C	0.4827			187	0.4827
18				283	0.7329
I8A	0.5661			219	0.5661
18B	0.5661			219	0.5661
18C	0.6496			251	0.6496
19				142	0.3665
19A	0.3789			146	0.3789
110		150	0.3874	150	0.3874
J1		150	0.3874	150	0.3874
J2				283	0.7329
J3				283	0.7329
J8				283	0.7329
J 9				283	0.7329
J10		150	0.3874	150	0.3874

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Řev

1 Sheet No.

107 of 182

Ву Checked

J. L. White

R.Augustine Date 04/05/2005 Date 04/05/2005

	<u>Drift</u>	<u>Drift</u>	End and	End and	***
<u>Partition</u>	Eliminator	Eliminator	Partition Wall	Partition Wall	T Bar Fill
<u>Bent</u>	Weight	<u>Mass</u>	<u>Weight</u>	<u>Mass</u>	<u>Weight</u>
Node	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(1b)</u>
	*****		*****		
Kl					
KIA					172
KlB					295
K2			283	0.7329	
K2A					257
K2B					257
K2C					219
K3			283	0.7329	
K3A					219
K3B	146	0.3768			
K4			566	1.4658	-
K5			566	1.4658	•
K6			566	1.4658	
K7			566	1.4658	
K7A	146	0.3768			
K7B	•				219
K8			283	0.7329	
K8A					219
K8B					257
K8C					257
K9			283	0.7329	
K9A					295
K9B					172
K10					
)					
LI			202	0.7320	:
L2			283	0.7329	
L3			283	0.7329	
L8			283	0.7329	
L9			283	0.7329	
L10					

Job No. 1356711

Job

Entergy Vermont Yankee

1 Sheet No.

108 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

Rev

Ву

J. L. White

Date 04/05/2005

R.Augustine Date 04/05/2005

	T Bar Fill	Louver Wall	Louver Wall	Total Dead	
Partition Bent	<u>Mass</u>	<u>Weight</u>	<u>Mass</u>	<u>Load</u>	Total Mass
<u>Node</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)
K1		150	0.3874	150	0.3874
KIA	0.4449			172	0.4449
KIB	0.7627			295	0.7627
K2	•			283	0.7329
K2A	0.6647			257	0.6647
K2B	0.6647			257	0.6647
K2C	0.5668			219	0.5668
K3				283	0.7329
K3A	0.5668			219	0.5668
K3B				146	0.3768
K4				566	1.4658
K5				566	1.4658
K6				566	1.4658
K7				566	1.4658
K7A				146	0.3768
K7B	0.5668			219	0.5668
K8				283	0.7329
K8A	0.5668			219	0.5668
K8B	0.6647			257	0.6647
K8C	0.6647			257	0.6647
K9				283	0.7329
K9A	0.7627			295	0.7627
K9B	0.4449			172	0.4449
K10		150	0.3874	150	0.3874
Li		150	0.3874	150	0.3874
L2		150	0,5017	283	0.7329
L3				283	0.7329
L8				283	0.7329
L9				283	0.7329
L10		150	0.3874	150	0.3874
710		120	0.3074	120	0.3074

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

109 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

	Drift	Drift	End and	End and			
<u>Partition</u>	Eliminator	Eliminator		Partition Wall	Hot Basin	Hot Basin	T Bar Fill
Bent	<u>Weight</u>	<u>Mass</u>	Weight	<u>Mass</u>	<u>Weight</u>	<u>Mass</u>	Weight
Node	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>
M1			120	0.3109			
M2			240	0.6217			
M3			240	0.6217			
M3A	84	0.2164					
M4			646	1.6720			
M5			646	1.6720			
M6		•	646	1.6720			
M7			646	1.6720			•
M7A	84	0.2164					
M8			240	0.6217			
M9			240	0.6217			
M10			120	0.3109			
Ì							
					000	0.1.00	
N1					828	2.1429	00
NIA							99
NIB							169
NIC					1656	4.0055	147
N2					1656	4.2857	1.45
N2A							147
N2B							126
N2C			100	0 2140	000	0.1400	126
N3			122	0.3149	828	2.1429	
N8			122	0.3149	828	2.1429	126
N8A							126
N8B							147
N8C					1656	4.2857	14/
N9					1656	4.2837	147
N9A							147
N9B							169
N9C					828	2.1429	99
N10					828	2.1429	

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev Ву

1 Sheet No.

110 of 182

Checked

R.Augustine J. L. White

Date 04/05/2005 Date 04/05/2005

	T Bar Fill	Manifold Pipe	Manifold		Louver Wall		
Partition Bent	<u>Mass</u>	Weight	Pipe Mass	<u>Weight</u>	Mass	Load	Total Mass
<u>Node</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(IP)</u>	(lb*sec^2/in)	<u>(Ib)</u>	(lb*sec^2/in)
}							
M1				127	0.3286	247	0.6395
M2						240	0.6217
M3						240	0.6217
МЗА						84	0.2164
M4						646	1.6720
M5						646	1.6720
M6						646	1.6720
M7			•			646	1.6720
M7A						84	0.2164
M8						240	0.6217
M9						240	0.6217
M10				127	0.3286	247	0.6395
וא				192	0.4963	1020	2.6392
NIA	0.2554					99	0.2554
NIB	0.4379					169	0.4379
NIC	0.3817					147	0.3817
N2		3788	9.8028			5444	14.0886
N2A	0.3817			•		147	0.3817
N2B	0.3254					126	0.3254
N2C	0.3254					126	0.3254
N3		3788	9.8028			4738	12.2606
N8		3788	9.8028			4738	12.2606
N8A	0.3254					126	0.3254
N8B	0.3254					126	0.3254
N8C	0.3817					147	0.3817
N9		3788	9.8028			5444	14.0886
N9A	0.3817		•			147	0.3817
N9B	0.4379					169	0.4379
N9C	0.2554					99	0.2554
N10				192	0.4963	1020	2.6392

Job No. 1356711 Calc. No. 1356711-C-001 Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

111 of 182

Ву R.Augustine Date 04/05/2005 Checked J. L. White

Date 04/05/2005

Partition Bent	Top Cover Weight	Top Cover Mass	Louver Wall Weight	Louver Wall Mass	End and Partition Wall Weight
<u>Node</u>	<u>(1b)</u>	(lb*sec^2/in)	<u>(1b)</u>	(lb*sec^2/in)	<u>(lb)</u>
P1	873	2.2601	140	0.3614	
P2	1747	4.5202			
P3	1747	4.5202			181
P4	1747	4.5202			363
P5	1747	4.5202			363
Р6	1747	4.5202			363
P7	1747	4.5202			363
P8	1747	4.5202			181
P9	1747	4.5202			
P10	873	2.2601	140	0.3614	

Partition Bent	End and Partition Wall Mass	Cable Tray Weight	Cable Tray Mass	Total Dead Load	Total Mass
<u>Node</u>	(lb*sec^2/in)	<u>(lb)</u>	(lb*sec^2/in)	<u>(1b)</u>	$(lb*sec^2/in)$
,					
P1				1013	2.6215
P2				1747	4.5202
P3	0.4695			1928	4.9897
P4	0.9391			2109	5.4592
P5	0.9391			2109	5.4592
P6	0.9391			2109	5.4592
P7	0.9391			2109	5.4592
P8	0.4695			1928	4.9897
P9		180	0.4658	1927	4.9860
P10		180	0.4658	1193	3.0873

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

112 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

6.3 ALLOWABLE LOADS

The allowable loads for the cooling tower wooden members are determined in accordance with References 2, 8 and 11.

6.3.1 Allowable Compression Stress:

From Table 2.3.1 of Reference 8, find the allowable compressive stress is determined by applying adjustment factors to a non-factored allowable compressive stress.

$$F_c' = (F_C) * (C_D) * (C_M) * (C_I) * (C_F) * (C_P)$$

Where: $F_C' =$ factored allowable compressive stress parallel to the grain

 $F_C = \text{non-factored allowable compressive stress paralle to the grain}$

 $C_{\rm p}$ = load duration factor

 C_{M} = wet service factor

 C_{i} = temperature factor

 $C_F = \text{size factor}$

 $C_P = \text{column stability factor}$

• From page B7, find the wood allowable loads are to be based on Douglas Fir #1 grade lumber. From Table 114-A, Reference 11, find the following allowable compressive stress:

$$F_c = 1377 * psi$$
 (with $C_D = 0.9$)

Per note 3 of Table 114-A, Reference 11, the allowable compressive stress above has been adjusted for a 50 year load duration ($C_D = 0.9$).

- From Table 2.3.2, Reference 8, find the load duration factor, C_D , = 1.0 for live load and 0.9 for dead load. Therefore the unadjusted allowable compressive stress = (1377 psi)/(0.9) = 1530 psi.
- From Table 114-D, Reference 11, find the wet service factor, C_M , = 0.80 for compression parallel to the grain for saturated wood. The cooling tower wood wet service is defined as saturated on sheet B7.
- From Table 114-D, Reference 11, find the wet service factor, C_M , = 0.90 for the modulus of elasticity for saturated wood. The cooling tower wood wet service is defined as saturated on sheet B7.

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1

1 Sheet No. 113

113 of 182

By Checked R.Augustine
J. L. White

Date 04/05/2005 Date 04/05/2005

• From sheet B7, find the following temperature profile for the cooling tower structure:

Design Loads

a. Design Temperatures for calculation of wood allowable loads.

Plenum Area: 100.3F

Fill Area - top third of tower: 115.F (model Z < approx. 654" and > 380")

Fill Area - middle third of tower: 107.5F (model Z < approx. 380" and > 190")

Fill Area – bottom third near deep basin: 100.F (model Z < approx. 190")

From Table 114-C, Reference 11, find the following temperature correction factors, C_i :

	Temperature °F						
	90	100	107.5	110	115	130	
Modulus of Elasticity (Table Values)	0.96			0.93		0.91	
Modulus of Elasticity Interpolated Values		0.945	0.934		0.925		
Compression parallel to grain (Table Values)	0.87			0.76		0.64	
Compression parallel to grain, Interpolated Values		0.815	0.774		0.73		

• From Table 114-B, Reference 11, find the following size adjustment factors, C_F ,

Width	Compression Parallel to Grain (F c)
(2", 3" and 4")	1.15
5"	1.10
6	1.10
8	1.05
10	1.00
12	1.00
14	0.90

Sections 3.3.3.2 and 4.4.1.

Calc. No. 1356711-C-001

Checked

Date 04/05/2005

J. L. White

- From Section 3.3.3.1 of Reference 8, the beam stability factor, C_L , is 1.0 for the 4x4's as the depth does not exceed the breadth, and it is1.0 for the 2x8's as the member is laterally supported per
- From Section 3.7 of Reference 8, the column stability factor, C_P , is determined as follows:

$$C_{P} = \frac{1 + \left(\frac{F_{cE}}{F_{comp}}\right)}{2 \cdot c} - \sqrt{\left[\frac{1 + \left(\frac{F_{cE}}{F_{comp}}\right)^{2} - \left(\frac{F_{cE}}{F_{comp}}\right)^{2}}{c}\right]} - \left(\frac{F_{cE}}{F_{comp}}\right)}$$

Where: F_{comp} = tabulated compression design value multiplied by all applicable adjustment factors except C_P . A temperature reduction factor for each highest level is used in the tables following:

$$F_{cE} = \frac{\left(K_{cE}\right) \cdot (E)}{\left(\frac{1_{e}}{d}\right)^{2}}$$

; from Section 3.7.1.3, Reference 8, the slenderness ratio, le/d, shall be the larger of the two lateral support spans adjusted by the appropriate buckling length coefficient, Ke, from Appendix G, Reference 8.

From Table 114A, Ref. 11, $E = 1.7 \times 10^6$ psi for No. 1 Douglas Fir with a 50 year load duration and dry service conditions. This value is adjusted as follows:

 $E = 1.7 \times 10^6 \text{ psi *}(0.9) * (0.945) = 1445850 \text{ psi } (0.945 \text{ is temp. adjustment factor for the bottom third})$

(0.9 is moisture correction factor)

 $K_{cE} = 0.3$ for visually graded lumber

C = 0.8 for sawn lumber

The ratio, 1/d, will vary for the bottom compression members due to bracing locations. Determine the allowable compressive loads for various brace spacing lengths. Per Section 3.7.1.4, Reference 8, the ratio, 1/d, is limited to 50.

Job No. 1356711

Calc. No. 1356711-C-001

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

115 of 182

By R.Augustine Date 04/05/2005

Checked J. L. White Date 04/05/2005

6.3.2 Allowable Bending Stress:

From Table 2.3.1 of Reference 8, find the allowable bending stress is determined by applying adjustment factors to a non-factored allowable bending stress.

$$F_{b}' = (F_{b})*(C_{D})*(C_{M})*(C_{t})*(C_{L})*(C_{F})*(C_{fu})*(C_{r})*(C_{fu})$$

Where: $F_C' =$ factored allowable bending stress

F_b = non-factored allowable bending stress

 $C_D = load duration factor$

 C_{M} = wet service factor

 C_t = temperature factor

 C_1 = beam stability factor

 $C_r = size factor$

 $C_{fu} =$ flat use factor

 C_r = repetitive member factor

 $C_f = form factor$

• From page B7, find the wood allowable loads are to be based on Douglas Fir No. 1 grade lumber. From Table 114-A, Reference 11, find the following allowable bending stress:

$$F_b = 950 * psi$$
 (with $C_D = 0.9$)

Per note 3 of Table 114-A, Reference 11, the allowable compressive stress above has been adjusted for a 50 year load duration ($C_D = 0.9$).

- From Table 2.3.2, Reference 8, find the load duration factor, $C_D = 1.0$ for live load and 0.9 for dead load. Therefore the unadjusted allowable bending stress = (950 psi) / (0.9) = 1056 psi.
- From Table 114-D, Reference 11, find the wet service factor, $C_M = 0.85$ for bending stress for saturated wood. The cooling tower wood in-service condition is defined as saturated on sheet B7.
- From Table 114-C, Reference 11, find the following temperature correction factors for bending, Ct:

·	Temperature °F							
	90	100	107.5	110	115	130		
Bending (Table values)	0.87			0.76		0.64		
Interpolated Values		0.815	0.774		0.73			

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

116 of 182

Ву R.Augustine Date 04/05/2005 Checked J. L. White

Date 04/05/2005

From Section 3.3.3.1 of Reference 8, the beam stability factor, C_L, is 1.0 for the 4x4's as the depth does not exceed the breadth.

- From Table 114-B, Reference 11, the size adjustment factor, C_F is 1.5 for the 4x4's.
- Per Table 4A of Reference 8, the flat use factor $C_{fu} = 1.0$ as the load is applied to the normal face of the lumber. For out of plane loading (seismic) the flat use factor = 1.0 for the 4x4's.
- Per Section 4.3.4 of Reference 8, the cooling tower column and diagonal brace members are not defined as "Repetitive Members" and the factor, $C_r = 1.0$
- Per Section 2.3.8 of Reference 8, as the cooling tower members are not loaded on their diagonal (diamond section), the form factor, $C_f = 1.0$

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

117 of 182

Checked J. L. White

Ву

Date 04/05/2005

R.Augustine Date 04/05/2005

6.3.3 Allowable Tension Stress:

The allowable tension stress is required for the seismic load on the bracing. From Table 2.3.1 of Reference 8, find the allowable tension stress is determined by applying adjustment factors to a non-factored allowable tension stress.

$$F_{t}' = (F_{t})*(C_{D})*(C_{M})*(C_{t})*(C_{F})$$

Where: $F_i' =$ factored allowable tensile stress parallel to the grain

 F_t = non-factored allowable tensile stress parallel to the grain

 C_D = load duration factor

 C_{M} = wet service factor

 C_t = temperature factor

 $C_{F} = \text{size factor}$

• From page B7, find the wood allowable loads are to be based on Douglas Fir #1 grade lumber. From Table 114-A, Reference 11, find the following allowable tension stress:

$$F_C = 641 * psi$$
 (with $C_D = 0.9$)

Per note 3 of Table 114-A, Reference 11, the allowable tension stress above has been adjusted for a 50 year load duration ($C_D = 0.9$).

- From Table 2.3.2, Reference 8, find the load duration factor, $C_D = 1.0$ for live load, 0.9 for dead load, and 1.6 for earthquake loads. Therefore the unadjusted allowable tension stress = (641 psi) / (0.9) = 712 psi.
- From Table 114-D, Reference 11, find the wet service factor, $C_M = 1.0$ for tension stress for saturated wood. The cooling tower wood wet service is defined as saturated on sheet B7.
- From Table 114-C, Reference 11, find the following temperature correction factors for tension parallel to grain, C_t:

	Temperature °F						
	90	100	107.5	110	115	130	
Tension Parallel to Grain	0.96			0.93		0.91	
Interpolated Values		0.945	0.934		0.925		

From Table 114-B, Reference 11, the size adjustment factor for tension, C_F is 1.5 for the 4x4's and 4 x 6's (width taken as 3.5" max).

Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

118 of 182

Ву

Checked

R.Augustine Date 04/05/2005

J. L. White

Date 04/05/2005

Determine Value for Kce for Bracing for MHE Earthquake:

Calculate the value of Kce for bracing subjected to the MHE earthquake using Section 3.7.1.5 of Reference 21. The 1.66 FS value in equation CA3.7-1 is for OBE level earthquake. Adjust this value to 1.33 for MHE earthquake.

 $COV_E := 0.25$

Coefficient of variation for machine and visually graded

lumber from Ref. 11, Appendix F Table F-1.

FS := 1.33

Factor of safety for MHE earthquake.

$$K_{ce} := (1 - 1.645 \cdot COV_E) \cdot \left[\frac{(0.822) \cdot (1.03)}{(FS)} \right]$$

Equation CA3.7-1, Ref. 21.

 $K_{ce} = 0.375$

Job No. 1356711

Calc. No. 1356711-C-001

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

119 of 182

By R.Augustin Checked J. L. White

R.Augustine Date 04/05/2005

Date 04/05/2005

6.3.4 Determine Allowable Compression and Bending Loads:

As there are 3 different temperature areas in the fill area of the cooling tower, determine the allowable compression and bending loads for each of the three regions. The regions are defined as follows:

Compression Parallel to Grain:

- Top Third temperature correction factor for compression parallel to grain= 0.73
- Mid Third temperature correction factor compression parallel to grain = 0.774
- Bottom Third temperature correction factor compression parallel to grain = 0.815

Tension Parallel to Grain:

- Top Third temperature correction factor for tension parallel to grain= 0.925
- Mid Third temperature correction factor tension parallel to grain = 0.934
- Bottom Third temperature correction factor tension parallel to grain = 0.945

The plenum area is the same as the bottom third.

See the following sheets for the computed allowable stress values:

Job No. 1356711

Job Entergy Vermont Yankee

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

120 of 120

By R.Augustine Checked J. L. White

Date 04/05/2005 Date 04/054/2005

DEAD LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - TOP THIRD

4×4 Column Members with Ke = 0.8:

			Stress Factors	E Factors	Bending Stress Factors	Bending Stress Factors
KcE =	0.3	load duration factor =	0.9	N/A	0.9	
c ==	0.8	moisture factor =	0.80	0.90	0.85	(4x4 and
		temp. factor =	0.730	0.925	0.730	4x6)
		size factor =	1.15	N/A		1.5

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1415250 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 925 psi

d = 3.5 inches

Brace spacing length in feet:															
	3.67	4	5	6	6,67	7	7.08	<u>7.17</u>	<u>7.67</u>	<u>7,83</u>	8	8.42	<u>8.75</u>	<u>9,5</u>	<u>10</u>
1/d ratio using d = 3.5" and ke = 0.8	10.1	11.0	13.7	16.5	18.3	19.2	19.4	19.7	21.0	21.5	21.9	23.1	24.0	26.1	27.4
Fce	4198	3527	2257	1568	1270	1152	1125	1099	960	920	882	797	737	625	564
(Fce / Fcomp)	4.539	3.814	2.441	1.695	1.373	1.245	1.216	1.188	1.038	0.995	0.954	0.861	0.797	0.676.	0.610
Ср	0.950	0.939	0.896	0.837	0.788	0.761	0.754	0.747	0.704	0.689	0.674	0.637	0.608	0.545	0.506

Job

Entergy Vermont Yankee

Ву

1 Sheet No.

121 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

Rev

J. L. White Da

R.Augustine Date 04/05/2005

Date 04/05/2005

DEAD LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - TOP THIRD

4×4 Column Members with Ke = 0.8:

Allowable dead load compressive stress (psi) for members located in the upper 1/3 of the structure.

Brace spacing length in feet:															
_	<u>3.67</u>	4	<u>5</u>	<u>6</u>	<u>6.667</u>	7	<u>7.08</u>	<u>7.17</u>	<u>7.67</u>	<u>7.83</u>	<u>8</u>	<u>8.42</u>	<u>8.75</u>	<u>9.5</u>	10
Fallow_comp (psi) =	878	868	829	774	729	704	697	691	651	637	624	589	562	504	468
Allowable Dead Load	d Compre	ssive Load	d on a 4x	4 meml	er:										
P_{allow} (lbs) =	10759	10634	10151	9480	8925	8621	8542	8463	7973	7806	7639	7221	6890	6178	5736

Calc. No. 1356711-C-001

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

122 of 182

By | R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

SNOW LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - TOP THIRD

4×4 Column Members with Ke = 0.8:

			Stress Factors	E Factors
KcE =	0.3	load duration factor =	1.15	N/A
c =	0.8	moisture factor =	0.80	0.90
		temp. factor =	0.730	0.925
		size factor =	1.15	N/A

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1415250 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 1182 psi

Brace spacing length in feet:															
_	<u>3.67</u>	4	<u>5</u>	<u>6</u>	6.667	. <u>7</u>	7.08	<u>7.17</u>	<u>7.67</u>	7.83	8	8.417	<u>8.75</u>	<u>9.5</u>	<u>10</u>
1/d ratio using d = 3.5" and ke = 0.8	10.1	11.0	13.7	16.5	18.3	19.2	19.4	19.7	21.0	21.5	21.9	23.1	24.0	26.1	27.4
Fce	4198	3527	2257	1568	1270	1152	1125	1099	960	920	882	797	737	625	564
(Fce / Fcomp)	3.552	2.985	1.910	1.327	1.075	0.975	0.952	0.930	0.813	0.778	0.746	0.674	0.624	0.529	0.478
Ср	0.933	0.918	0.859	0.779	0.715	0.682	0.674	0.665	0.615	0.599	0.583	0.544	0.515	0.454	0.418

Job Entergy Vermont Yankee

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

123 of 182

By R.Augustine
Checked J. L. White

R.Augustine Date 04/05/2005

J. L. White Date 04/05/2005

SNOW LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - TOP THIRD

4×4 Column Members with Ke = 0.8:

Allowable snow load compressive stress (psi) for members located in the upper 1/3 of the structure.

	Brace spacing length in feet:														
-	<u>3.67</u>	4	<u>5</u>	<u>6</u>	<u>6.667</u>	7	<u>7.08</u>	<u>7.17</u>	<u>7.67</u>	<u>7.83</u>	<u>8</u>	<u>8.417</u>	<u>8.75</u>	9.5	<u>10</u>
Fallow_comp (psi) =	1103	1085	1016	920	845	806	796	786	727	708	689	643	608	536	494
Allowable Dead plus	Snow Lo	ad Compr	essive L	oad on a	4x4 mer	nber:									
P _{allow} (lbs) =	13512	13294	12441	11272	10354	9873	9753	9631	8909	8673	8441	7878	7450	6569	6046

Job

Entergy Vermont Yankee

Ву |

Rev

R.Augustine Date 04/05/2005

1 Sheet No.

J. L. White

Caic. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

Date 04/05/2005

124 of 182

SESIMC LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - TOP THIRD

4×4 Column Members with Ke = 0.8:

			<u>Stress</u> Factors	E Factors
KcE =	0.3	load duration factor =	1.6	N/A
c =	0.8	moisture factor =	0.80	0.90
		temp. factor =	0.730	0.925
		size factor =	1.15	N/A

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1415250 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 1644 psi

				1	Brace spa	cing lengt	th in feet:								
	3.67	4	5	6	6.67	7	7.08	7.17	7.67	7.83	8	8.417	8.75	9.5	10
<u>l/d ratio</u> using d = 3.5" and ke = 0.8	10.1	11.0	13.7	16.5	18.3	19.2	19,4	19.7	21.0	21.5	21.9	23.1	24.0	26,1	27.4
Fce	4198	3527	2257	1568	1270	1152	1125	1099	960	920	882	797	737	625	564
(Fce / Fcomp)	2.553	2.145	1.373	. 0.954	0.772	0.701	0.684	0.668	0.584	0.559	0.536	0.485	0.448	0.380	0.343
Ср	0.902	0.878	0.788	0.674	0.596	0.559	0.550	0.541	0.490	0.474	0.459	0.423	0.396	0.344	0.314

Calc. No. 1356711-C-001

Job

Entergy Vermont Yankee Subject Cooling Tower Seismic Evaluation Rev By |

1 Sheet No. 125 of 182 R.Augustine Date 04/05/2005

Checked J. L. White

Date 04/05/2005

SESIMC LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - TOP THIRD

4×4 Column Members with Ke = 0.8:

Allowable seismic compressive stress (psi) for members located in the upper 1/3 of the structure.

Brace spacing length in seet:															
_	3.67	4	<u>5</u>	6	6.67	7	7.08	7.17	<u>7.67</u>	<u>7.83</u>	<u>8</u>	<u>8.417</u>	<u>8.75</u>	<u>9.5</u>	10
F _{allow_comp (psi)} = Allowable Seismic L	1482 oad Comp	1444 oressive L	1295 oad on a	1109 4x4 me	980 mber:	919	904	889	805	779	754	695	652	566	517
P _{allow} (lbs) =	18158	17688	15867	13580	12008	11256	11074	10893	9867	9546	9237	8513	7982	6932	6332

Job

Entergy Vermont Yankee

Rev By

1 Sheet No. R.Augustine Date 04/05/2005

126 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

J. L. White Date 04/05/2005

DEAD LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - TOP THIRD

4×4 Brace Members with Ke = 1.0:

			Stress Factors	E Factors
KcE =	0.3	load duration factor =	0.9	N/A
c =	0.8	moisture factor =	0.80	0.90
		temp. factor =	0.730	0.925
		size factor =	1.15	N/A

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1415250 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 925 psi

Brace spacing length in feet:														
	<u>3.67</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>6.667</u>	<u>7</u>	<u>7.08</u>	<u>7.17</u>	<u>7.83</u>	<u>8</u>	8.417	<u>8.75</u>	9.5	<u>10</u>
1/d ratio using d = 3.5" and ke = 1.0.	12.6	13.7	17.1	20.6	22.9	24.0	24.3	24.6	26.9	27.4	28.9	30.0	32.6	34.3
Fce	2686	2257	1445	1003	813	737	720	703	589	564	510	472	400	361
(Fce / Fcomp)	2.905	2.441	1.562	1.085	0.879	0.797	0.778	0.760	0.636	0.610	0.551	0.510	0.433	0.391
Ср	0.916	0.896	0.819	0.718	0.645	0.608	0.599	0.590	0.522	0.506	0.469	0.441	0.385	0.352

Calc. No. 1356711-C-001

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

127 of 182

By | R.Augustine Date 04/05/2005 Chebked J. L. White Date 04/05/2005

DEAD LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - TOP THIRD

 4×4 Brace Members with Ke = 1.0:

Allowable dead load compressive stress (psi) for members located in the upper 1/3 of the structure.

	Brace spacing length in feet:														
_	<u>3.67</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>6.667</u>	<u>7</u>	<u>7.08</u>	7.17	<u>7.83</u>	<u>8</u>	<u>8.417</u>	<u>8.75</u>	9.5	<u>10</u>	
Fallow_comp (psi) =	847	829	758	664	596	562	554	546	483	468	433	408	356	326	
Allowable Dead Load	d Compre	ssive Load	i on a 4x	4 meml	ber:										
P _{allow} (lbs) =	10374	10151	9282	8138	7304	6890	6789	6687	5917	5736	5309	4992	4358	3990	

Job

Entergy Vermont Yankee

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation

Rev Ву |

128 of 182 1 Sheet No.

R.Augustine Date 04/05/2005

Checked J. L. White Date 04/05/2005

SEISMIC LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - TOP THIRD

4×4 Brace Members with Ke = 1.0:

			<u>Stress</u>	E England
			<u>Factors</u>	E Factors
KcE =	0.38	load duration factor =	1.6	N/A
c =	0.8	moisture factor =	0.80	0.90
		temp. factor =	0.730	0.925
		size factor =	1.15	N/A

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1415250 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 1644 psi

]	Brace spa	cing lengt	th in feet:	<u>86 in</u>	<u>94 in</u>		101 in			
	<u>3.67</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>6.667</u>	<u>7</u>	7.08	<u>7.17</u>	<u>7.83</u>	<u>8</u>	8.417	<u>8.75</u>	<u>9.5</u>	<u>10</u>
1/d ratio using d = 3.5" and ke = 1.0	12.6	13.7	17.1	20.6	22.9	24.0	24.3	24.6	26.9	27.4	28.9	30.0	32.6	34.3
Fcc	3403	2859	1830	1271	1029	934	912	891	746	715	646	598	507	457
(Fce / Fcomp)	2.070	1.739	1.113	0.773	0.626	0.568	0.555	0.542	0.453	0.435	0.393	0.363	0.308	0.278
Ср	0.873	0.842	0.727	0.597	0.516	0.480	0.471	0.462	0.400	0.386	0.354	0.331	0.286	0.260

Calc. No. 1356711-C-001

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

129 of 182

By R

R.Augustine Date 04/05/2005

Checked J. L. White Date 04/05/2005

SEISMIC LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - TOP THIRD

4×4 Brace Members with Ke = 1.0:

Allowable seismic compressive stress (psi) for members located in the upper 1/3 of the structure.

				3	Brace spa	cing lengt	h in feet:								
_	<u>3.67</u>	4	<u>5</u>	<u>6</u>	<u>6.667</u>	7	<u>7.08</u>	<u>7.17</u>	<u>7.83</u>	<u>8</u>	<u>8.417</u>	<u>8.75</u>	<u>9.5</u>	<u>10</u>	_
Fallow_comp (psi) =	1435	1384	1195	981	848	788	774	760	658	635	582	544	469	427	
Allowable seismic C	ompressiv	e Load on	a 4x4 m	ember:											
P _{allow} (lbs) =	17577	16957	14635	12015	10393	9658	9483	9311	8058	7778	7130	6662	5750	5236	

Job

Entergy Vermont Yankee

Ву

Rev

R.Augustine Date 04/05/2005

1 Sheet No.

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked J. L. White

Date 04/05/2005

130 of 182

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - TOP THIRD

4×6 Brace Members with Ke = 1.0:

SEISMIC LOAD DURATION FACTOR = 1.60

			Stress_	T. France
			<u>Factors</u>	E Factors
KcE =	0.3	load duration factor =	1.6	N/A
c =	0.8	moisture factor =	0.80	0.90
		temp. factor =	0.730	0.925
		size factor =	1.10	N/A

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1415250 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 1573 psi

]	Brace_spa	cing leng	th in feet:							
_	<u>3.67</u>	4	5	<u>6</u>	6.667	7	<u>7.08</u>	<u>7.17</u>	<u>7.83</u>	<u>8</u>	8.417	8.75	9.5	<u>10</u>
1/d ratio using d = 3.5" and ke = 1.0.	12.6	13.7	17.1	20.6	22.9	24.0	24.3	24.6	26.9	27.4	28.9	30.0	32.6	34.3
Fce	2686	2257	1445	1003	813	737	720	703	589	564	510	472	400	361
(Fce / Fcomp)	1.708	1.435	0.919	0.638	0.517	0.469	0.458	0.447	0.374	0.359	0.324	0.300	0.254	0.230
Ср	0.838	0.799	0.661	0.523	0.445	0.411	0.403	0.395	0.339	0.327	0.299	0.278	0.239	0.218

Calc. No. 1356711-C-001

Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

1 Sheet No.

Rev

Ву

131 of 182

R.Augustine Date 04/05/2005 J. L. White Date 04/05/2005 Checked

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - TOP THIRD

4×6 Brace Members with Ke = 1.0:

Allowable seismic load compressive stress (psi) for members located in the upper 1/3 of the structure.

		ė]	Brace spa	cing lengtl	h in seet:								
_	<u>3.67</u>	4	<u>5</u>	<u>6</u>	<u>6.667</u>	7	<u>7.08</u>	<u>7.17</u>	7.83	<u>8</u>	<u>8.417</u>	<u>8.75</u>	<u>9.5</u>	<u>10</u>	
·Fallow_comp (psi) =	1318	1257	1039	823	700	647	634	622	534	514	470	438	377	342	
Allowable Seismic L	oad Comp	pressive L	oad on a	4x6 me	mber:										
P _{allow} (lbs) =	25380	24194	20009	15838	13480	12450	12209	11971	10275	9901	9044	8430	7248	6586	

Calc. No. 1356711-C-001

Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

Sheet No.

132 of 132

By R.Augustine

Date 04/05/2005

Checked J. L. White Date 04/054/2005

ALLOWABLE BENDING STRESSES AND LOADS (DEAD LOAD AND SEISMIC) – TOP THIRD

All Members:

Bending Allowable Stresses:

Allowable bending is adjusted by, load duration, wet service, temperature, beam stability, size factor, flat use factor, repetitice member factor, curvature factor and form factors.

Defined allowable bending stress =

950

psi. in Table 114-A, Reference 11. This includes a

load duration factor = 0.9.

unadjusted bending stress = allowable bending stress / load duration factor of 0.9

psi

1056

1.0

unadjusted bending stress =

Beam stability factor =

Flat use factor = 1.0

Repetitive member factor = 1.0

Form factor = 1.0

Per Table 2.3.1 of Reference 8, the revised allowable bending stress =

Fb * (load duration factor)*(moisture factor)*(temp. factor)*(beam stabilityfactor)*(size factor)*(flat use factor)
(repetitive member factor)(form factor)

Dead Load Allowable Bending Stress (psi) = Seismic Allowable Bending Stress (psi) = Snow Load Allowable Bending Stress (psi) =	Members 4x4 884 1572 1130	Members 4x6 884 1572 1130	(1.60/0.9) * DL allowable (1.15/0.9) * DL allowable
Section modulus for 4x4 = Section modulus for 4x6 = Section modulus for 2x8 = Section modulus for 2x4 =	7.146 17.65 13.14 3.063	in^3 in^3 in^3 in^3	(1.13/0.9) • DL allowable

Allowable Bending Moments (lb*in)

	<u>4x4</u>	<u>4x6</u>
Dead Load =	6319	15606
Seismic Load =	11233	27745
Snow Load =	8074	19941

Rev

1 Sheet No.

133 of 133

Job No. 1356711

Job Entergy Vermont Yankee

By R.Augustine

Date 04/05/2005

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked J. L. White

Date 04/054/2005

DEAD LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - MIDDLE THIRD

4×4 Column Members with Ke = 0.8:

			Stress Factors	E Factors	Bending Stress Factors	Bending Stress Factors
KcE =	0.3	load duration factor =	0.9	N/A	0.9	
c =	8.0	moisture factor =	0.80	0.90	0.85	
		temp. factor =	0.774	0.934	0.774	(4x4 and 4x6)
		size factor =	1.15	N/A		1.5

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1429020 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 981 psi

]	Brace spa	acing leng	th in feet:	<u>86</u>	92	94					
	3.67	4	<u>5</u>	6	6.667	7	7.08	7.17	7.67	7.83	8	8.417	8.5	<u>8.75</u>	<u>10</u>
1 <u>/d ratio</u> using d = 3.5" and ke = 0.8	10.1	11.0	13.7	16.5	18.3	19.2	19.4	19.7	21.0	21.5	21.9	23.1	23.3	24.0	27.4
Fce	4238	3562	2279	1583	1282	1163	1136	1109	969	929	890	804	789	744	570
(Fce / Fcomp)	4.323	3.632	2.325	1.614	1.308	1.186	1.158	1.132	0.989	0.947	0.908	0.820	0.804	0.759	0.581
Ср	0.947	0.935	0.890	0.827	0.775	0.746	0.739	0.732	0.687	0.672	0.657	0.619	0.612	0.590	0.488

Job

Entergy Vermont Yankee

By |

Rev

134 of 182 R.Augustine Date 04/05/2005

1 Sheet No.

J. L. White

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

Date 04/05/2005

DEAD LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - MIDDLE THIRD

4×4 Column Members with Ke = 0.8:

Allowable dead load compressive stress (psi) for members located in the mid 1/3 of the structure.

				ļ	Brace spa	cing lengt	h in feet:									
-	3,67	4	<u>5</u>	<u>6</u>	<u>6.667</u>	7	7.08	<u>7.17</u>	<u>7.67</u>	7.83	<u>8</u>	<u>8.417</u>	<u>8.5</u>	<u>8.75</u>	<u>10</u>	_
F _{allow_comp} (psi) =	928	917	872	810	760	732	725	718	674	659	644	607	600	578	479	
Allowable Dead Load	d Compre	ssive Load	on a 4x4	memb	cr:											
$P_{allow}(lbs) =$	11374	11233	10686	9928	9306	8966	8879	8791	8253	8071	7889	7436	7347	7082	5863	

Calc. No. 1356711-C-001

Entergy Vermont Yankee Job

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

135 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White

Date 04/05/2005

DEAD PLUS SNOW ALLOWABLE COMPRESSION STRESSES AND LOADS - MIDDLE THIRD

4×4 Column Members with Ke = 0.8:

			<u>Stress</u>	E_Factors
			Factors	E Factors
KcE =	0.3	load duration factor =	1.15	N/A
c =	0.8	moisture factor =	0.80	0.90
		temp. factor =	0.774	0.934
		size factor =	1.15	N/A

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1429020 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 1253 psi

]	Brace spa	cing lengt	th in feet:								
	3.67	4	5	6	6.667	7	<u>7.08</u>	<u>7.17</u>	7.67	<u>7.83</u>	8	<u>8.417</u>	<u>8.5</u>	<u>8.75</u>	10
1/d ratio using d = 3.5" and ke = 0.8	10.1	11.0	13.7	16.5	18.3	19.2	19.4	19.7	21.0	21.5	21.9	23.1	23.3	24.0	27.4
Fce	4238	3562	2279	1583	1282	1163	1136	1109	969	929	890	804	789	744	570
(Fce / Fcomp)	3.383	2.843	1.819	1.263	1.023	0.928	0.907	0.886	0.774	0.741	0.711	0.642	0.630	0.594	0.455
Ср	0.930	0.913	0.851	0.765	0.699	0.665	0.656	0.648	0.597	0.581	0.564	0.526	0.518	0.496	0.401

Job Entergy Vermont Yankee

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation

Rev By 1 Sheet No.

136 of 182

By | R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

DEAD PLUS SNOW ALLOWABLE COMPRESSION STRESSES AND LOADS - MIDDLE THIRD

4×4 Column Members with Ke = 0.8:

Allowable dead plus snow load compressive stress (psi) for members located in the mid 1/3 of the structure.

-	3.67	<u>4</u>	<u>5</u>	<u>6</u>	Brace spa <u>6.667</u>	ncing lengt 7	h in feet: 7,08	<u>7.17</u>	<u>7.67</u>	7.83	<u>8</u>	<u>8.417</u>	<u>8.5</u>	<u>8.75</u>	10
Fallow_comp (psi)	1165	1145	1066	959	876	833	822	811	748	727	707	659	649	622	503
Allowable Dead plus	Snow Lo	ad Compre	essive Lo	ad on a	4x4 men	nber:									
P _{allow} (lbs) =	14267	14020	13055	11742	10727	10202	10071	9939	9162	8910	8662	8067	7952	7617	6156

Job Entergy Vermont Yankee

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

137 of 182

Ву |

R.Augustine Date 04/05/2005

Checked J. L. White Date 04/05/2005

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - M IDDLE THIRD

4×4 Column Members with Ke = 0.8:

SEISMIC LOAD DURATION FACTOR = 1.60

			Stress Factors	E Factors
KcE =	0.3	load duration factor =	1.6	N/A
c =	0.8	moisture factor =	0.80	0.90
		temp. factor =	0.774	0.934
		size factor =	1.15	N/A

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1429020 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 1743 psi

	Brace spacing length in feet:														
	3,67	4	5	6	6.667	7 -	7.08	7.17	<u>7.67</u>	7.83	8	8.417	8.5	8.75	10
1/d ratio using d = 3.5" and ke = 0.8	10.1	11.0	13.7	16.5	18.3	19.2	19.4	19.7	21.0	21.5	21.9	23.1	23.3	24.0	27.4
Fce	4238	3562	2279	1583	1282	1163	1136	1109	969	929	890	804	789	744	570
(Fce / Fcomp)	2.431	2.043	1.308	0.908	0.736	0.667	0.652	0.636	0.556	0.533	0.511	0.461	0.452	0.427	0.327
Ср	0.896	0.871	0.775	0.657	0.578	0.540	0.531	0.522	0.472	0.456	0.441	0.406	0.399	0.380	0.301

Calc. No. 1356711-C-001

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

138 of 182

By R.Augustin
Checked J. L. White

R.Augustine Date 04/05/2005

J. L. White Date 04/05/2005

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - M IDDLE THIRD

4×4 Column Members with Ke = 0.8:

Allowable seismic compressive stress (psi) for members located in the mid 1/3 of the structure.

Brace spacing length in feet:															
_	<u>3.67</u>	4	5	<u>6</u>	<u>6,667</u>	<u>7</u>	7.08	7.17	<u>7.67</u>	<u>7.83</u>	8	<u>8.417</u>	<u>8.5</u>	<u>8.75</u>	<u>10</u>
Fallow_comp (psi) =	1561	1518	1350	1145	1007	942	926	910	823	795	769	708	696	663	525
Allowable seismic C	ompressiv	e Load on	a 4x4 m	ember:											
P allow (lbs) =	19124	18592	16543	14024	12334	11535	11343	11153	10076	9742	9420	8669	8528	8121	6427

Entergy Vermont Yankee Job

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. Ву R.Augustine Date 04/05/2005

139 of 182

Checked J. L. White Date 04/05/2005

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - M IDDLE THIRD

4×4 Brace Members with Ke = 1.0:

			Stress_	E Factors
			Factors	E ractors
KcE =	0.38	load duration factor =	1.6	N/A
c =	8.0	moisture factor =	0.80	0.90
		temp. factor =	0.774	0.934
		size factor =	1.15	N/A

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1429020 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 1743 psi

> 3.5 inches

									94		101	102	105	
					Brace spa	cing leng	th in feet:							
	3.67	4	5	6	6.667	7	7.08	7.17	7.83	8	8.417	8.5	8.75	10
$\frac{1/d \text{ ratio}}{\text{using d} = 3.5"}$ and ke = 1.0	12.6	13.7	17.1	20.6	22.9	24.0	24.3	24.6	26.9	27.4	28.9	29.1	30.0	34.3
Fce	3436	2887	1848	1283	1039	943	921	899	753	722	652	639	603	462
(Fce / Fcomp)	1.971	1.656	1.060	0.736	0.596	0.541	0.528	0.516	0.432	0.414	0.374	0.367	0.346	0.265
Cp	0.865	0.832	0.711	0.578	0.498	0.462	0.453	0.445	0.384	0.370	0.339	0.333	0.317	0.249

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

By R.Augustine D

140 of 182

 By |
 R.Augustine
 Date 04/05/2005

 Cheked
 J. L. White
 Date 04/05/2005

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - M IDDLE THIRD

4×4 Brace Members with Ke = 1.0:

Allowable seismic compressive stress (psi) for members located in the mid 1/3 of the structure.

		•		Ī	Brace spa	cing lengt	h in seet:							
	<u>3.67</u>	4	<u>5</u>	<u>6</u>	6.667	7	<u>7.08</u>	<u>7.17</u>	<u>7.83</u>	<u>8</u>	8.417	<u>8.5</u>	8.75	10
Fallow_comp (psi) =	1507	1450	1239	1007	868	805	790	775	669	646	591	581	552	433
Allowable seismic C	ompressiv	e Load on	a 4x4 m	ember:										
P _{allow} (lbs) =	18467	17767	15177	12340	10627	9858	9676	9497	8200	7911	7244	7120	6764	5308

Job

Entergy Vermont Yankee

By

Rev

1 Sheet No. R.Augustine Date 04/05/2005

141 of 182

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation

Checked J. L. White

Date 04/05/2005

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - M IDDLE THIRD

4×6 Brace Members with Ke = 1.0:

			Stress	E Factors	
			<u>Factors</u>	<u>D ruotors</u>	
KcE =	0.3	load duration factor =	1.6	N/A	
c =	0.8	moisture factor =	0.80	0.90	
		temp. factor =	0.774	0.934	
		size factor =	1.10	N/A	

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1429020 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 1667 psi

> 3.5 inches

		Brace spacing length in feet:									101			
<u>3.67 4 5 6 6.667 7 7.08 7.17 7.83 8</u>										8	8.417	8.5	8.75	10
$\frac{1/d \text{ ratio}}{\text{using d} = 3.5"}$ and ke = 1.0.	12.6	13.7	17.1	20.6	22.9	24.0	24.3	24.6	26.9	27.4	28.9	29.1	30.0	34.3
Fce	2713	2279	1459	1013	821	744	727	710	594	570	515	505	476	365
(Fce / Fcomp)	1.627	1.367	0.875	0.608	0.492	0.446	0.436	0.426	0.356	0.342	0.309	0.303	0.286	0.219
Ср	0.828	0.787	0.643	0.505	0.428	0.395	0.387	0.379	0.325	0.313	0.286	0.281	0.266	0.208

Job

Entergy Vermont Yankee

Ву

Rev

1 Sheet No. R.Augustine Date 04/05/2005

142 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked J. L. White Date 04/05/2005

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - M IDDLE THIRD

4×6 Brace Members with Ke = 1.0:

Allowable seismic load compressive stress (psi) for members located in the upper 1/3 of the structure.

]	Brace spa	cing lengt	h in feet:							
_	3.67	4	<u>5</u>	<u>6</u>	6.667	7	7.08	<u>7.17</u>	7.83	8	<u>8.417</u>	<u>8.5</u>	<u>8.75</u>	10
Fallow_comp (psi) =	1381	1312	1072	842	714	658	645	633	542	522	477	468	444	347
Allowable Seismic L	oad Comp	ressive Lo	oad on a 4	1x6 men	nber:									
P_{allow} (1bs) =	26584	25251	20642	16200	13739	12674	12424	12179	10436	10053	9176	9013	8549	6670

Job

Entergy Vermont Yankee

By R.Augustine

143 of 143

y itanogustiin

Sheet No.

Date 04/05/2005 Date 04/054/2005

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation

Checked J. L. White

Rev

ALLOWABLE BENDING STRESSES AND LOADS (DEAD LOAD AND SEISMIC)- MIDDLE THIRD

All Members:

Bending Allowable Stresses:

Allowable bending is adjusted by, load duration, wet service, temperature, beam stability, size factor, flat use factor, repetitice mewmber factor, curvature factor and form factor.

Defined allowable bending stress =

950

psi. in Table 114-A, Reference 11. This includes a

load duration factor = 0.9.

unadjusted bending stress = allowable bending stress / load duration factor = 0.9

unadjusted bending stress = 1056 psi

Beam stability factor = 1.0

Flat use factor = 1.0

Repetitive member factor = 1.0

Form factor = 1.0

Per Table 2.3.1 of Reference 8, the revised allowable bending stress =

Fb * (load duration factor)*(moisture factor)*(temp. factor)*(beam stabilityfactor)*(size factor)*(flat use factor)
(repetitive member factor)(form factor)

	Members	Members	
	4x4	4x6	
Dead Load Allowable Bending Stress (psi) =	938	938	
Seismic Allowable Bending Stress (psi) =	1667	1667	(1.60/0.9) * DL allowable
Snow Load Allowable Bending Stress (psi) =	1198	1198	(1.15/0.9) * DL allowable
Section modulus for 4x4 =	7.146	in^3	
Section modulus for $4x6 =$	17.65	in^3	
Section modulus for 2x8 =	13.14	in^3	
Section modulus for $2x4 =$	3.063	in^3	

Allowable Bending Moments (lb*in)

	4×4	<u>4x6</u>
Dead Load =	6699	16547
Seismic Load =	11910	29417
Snow Load =	8560	21143

Rev

1 Sheet No.

144 of 144

Job No. 1356711

Calc. No. 1356711-C-001

Job Entergy Vermont Yankee

:

R.Augustine

Date 04/05/2005

Subject Cooling Tower Seismic Evaluation Checked J. L. White

By

Date 04/054/2005

DEAD LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - BOTTOM THIRD

4×4 Column Members with Ke = 0.8:

			Stress Factors	E Factors	Bending Stress	Bending Stress
KcE =	0.3	load duration factor =	0.9	N/A	<u>Factors</u> 0.9	<u>Factors</u>
c =	0.8	moisture factor =	0.80	0.90	0.85	
		temp. factor =	0.815	0.945	0.815	(4x4 and 4x6)
		size factor =	1.15	N/A		1.5

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1445850 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 1032 psi

]	Brace spa	cing lengt	h in feet:									İ
	3.67	4	<u>4.75</u>	<u>5</u>	<u>5.5</u>	<u>6</u>	<u>7.00</u>	<u>7,083</u>	7.67	<u>7.83</u>	<u>8</u>	<u>8.5</u>	8.75	9	10	12.5
1/d ratio using d = 3.5" and ke = 0.8	10.1	11.0	13.0	13.7	15.1	16.5	19.2	19.4	21.0	21.5	21.9	23.3	24.0	24.7	27.4	34.3
Fce	4288	3603	2555	2306	1906	1602	1177	1149	981	940	901	798	753	712	577	369
(Fce / Fcomp)	4.154	3.490	2.475	2.234	1.846	1.551	1.140	1.113	0.950	0.910	0.873	0.773	0.729	0.689	0.558	0.357
Ср	0.944	0.932	0.898	0.884	0.853	0.818	0.734	0.727	0.673	0.658	0.642	0.597	0.574	0.553	0.473	0.326

Calc. No. 1356711-C-001

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 145 of 182

By | R.Augustine Date 04/05/2005 Checked J. L. White

Date 04/05/2005

DEAD LOAD ALLOWABLE COMPRESSION STRESSES AND LOADS - BOTTOM THIRD

4×4 Column Members with Ke = 0.8:

Allowable dead load compressive stress (psi) for members located in the lower 1/3 of the structure.

				<u> </u>	Brace spa	cing lengtl	h in feet:									
_	3,67	4	4.75	<u>5</u>	<u>5.5</u>	<u>6</u>	<u>7.00</u>	<u>7.083</u>	<u>7.67</u>	<u>7.83</u>	<u>8</u>	<u>8.5</u>	<u>8,75</u>	9	<u>10</u>	12.5
Fallow_comp (psi) =	975	962	927	913	881	844	758	750	695	679	663	616	593	571	489	336
Allowable Dead Load Compressive Load on a 4x4 member:																
P_{allow} (lbs) =	11945	11789	11355	11183	10792	10342	9285	9191	8512	8316	8121	7545	7264	6991	5987	4122

Job

Entergy Vermont Yankee

Ву

Rev

1 Sheet No.

146 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

J. L. White Date 04

R.Augustine Date 04/05/2005

Date 04/05/2005

DEAD PLUS SNOW ALLOWABLE COMPRESSION STRESSES AND LOADS - BOTTOM THIRD

4×4 Column Members with Ke = 0.8:

			Factors	E Factors
KcE =	0.3	load duration factor =	1.15	N/A
c =	0.8	moisture factor =	0.80	0.90
		temp. factor =	0.815	0.945
		size factor =	1.15	N/A

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1445850 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 1319 psi

Brace spacing length in feet:																
	3.67	4	4.75	<u>5</u>	5.5	<u>6</u>	7.00	7.083	7.67	7.83	<u>8</u>	<u>8.5</u>	8.75	9	<u>10</u>	12.5
$\frac{1/d \text{ ratio}}{\text{using d} = 3.5"}$ and ke = 0.8	10.1	11.0	13.0	13.7	15.1	16.5	19.2	19.4	21.0	21.5	21.9	23.3	24.0	24.7	27.4	34.3
Fce	4288	3603	2555	2306	1906	1602	1177	1149	981	940	901	798	753	712	577	369
(Fce / Fcomp)	3.251	2.731	1.937	1.748	1.445	1.214	0.892	0.871	0.744	0.712	0.683	0.605	0.571	0.540	0.437	0.280
Ср	0.926	0.909	0.862	0.843	0.801	0.753	0.650	0.642	0.582	0.565	0.549	0.503	0.481	0.461	0.388	0.261

Calc. No. 1356711-C-001

Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

J. L. White

147 of 182

By

Checked

R.Augustine Date 04/05/2005 Date 04/05/2005

DEAD PLUS SNOW ALLOWABLE COMPRESSION STRESSES AND LOADS - BOTTOM THIRD

 4×4 Column Members with Ke = 0.8:

Allowable dead plus snow load compressive stress (psi) for members located in the lower 1/3 of the structure.

				Į	Brace spa	cing lengt	h in feet:									Ì
_	3.67	4	<u>4.75</u>	<u>5</u>	<u>5,5</u>	<u>6</u>	<u>7.00</u>	<u>7.083</u>	<u>7.67</u>	<u>7.83</u>	8	<u>8.5</u>	<u>8,75</u>	9	10	12.5
Fallow_comp (psi) =	1222	1200	1137	1112	1056	994	858 -	846	767	746	724	664	635	608	512	345
Allowable Dead plus Snow Load Compressive Load on a 4x4 member:																
P _{allow} (lbs) =	14968	14695	13928	13623	12942	12177	10508	10367	9401	9135	8874	8130	7780	7447	6268	4222

Job **Entergy Vermont Yankee**

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation

Rev Ву

1 Sheet No. R.Augustine Date 04/05/2005

148 of 182

Checked J. L. White

Date 04/05/2005

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - BOTTOM THIRD

4×4 Column Members with Ke = 0.8:

			Stress Factors	E Factors
KcE =	0.3	load duration factor =	1.6	N/A
c =	0.8	moisture factor =	0.80	0.90
		temp. factor =	0.815	0.945
		size factor =	1.15	N/A

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1445850 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 1836 psi

> d =inches

]	Brace spa	cing lengt	h in feet:									
	3.67	4	<u>4.75</u>	<u>5</u>	<u>5.5</u>	<u>6</u>	7.00	7.083	<u>7.67</u>	7.83	8	<u>8.5</u>	8.75	9	<u>10</u>	12.5
1/d ratio using d = 3.5" and ke = 0.8	10.1	11.0	13.0	13.7	15.1	16.5	19.2	19.4	21.0	21.5	21.9	23.3	24.0	24.7	27.4	34.3
Fce	4288	3603	2555	2306	1906	1602	1177	1149	981	940	901	798	753	712	577	369
(Fce / Fcomp)	2.336	1.963	1.392	1.256	1.038	0.873	0.641	0.626	0.534	0.512	0.491	0.435	0.410	0.388	0.314	0.201
Ср	0.890	0.864	0.791	0.763	0.704	0.642	0.525	0.516	0.457	0.442	0.427	0.386	0.368	0.350	- 0.290	0.192

Calc. No. 1356711-C-001

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev By

1 Sheet No. 149 of 182

R.Augustine Date 04/05/2005

Checked J. L. White Date 04/05/2005

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - BOTTOM THIRD

4×4 Column Members with Ke = 0.8:

Allowable seismic compressive stress (psi) for members located in the lower 1/3 of the structure.

Ì					1	Brace spa	cing lengt	h in feet:									- 1
	•	<u>3.67</u>	44	4.75	<u>5</u>	<u>5.5</u>	<u>6</u>	7.00	<u>7.083</u>	<u>7.67</u>	7.83	8	8.5	<u>8.75</u>	9	<u>10</u>	12.5
	Fallow_comp (psi) =	1634	1586	1453	1401	1292	1179	964	947	839	811	784	709	675	643	533	352
	Allowable seismic C	Allowable seismic Compressive Load on a 4x4 member:															
	P_{allow} (lbs) =	20020	19430	17796	17167	15826	14438	11804	11603	10283	9937	9604	8683	8264	7871	6529	4315

Job Entergy Vermont Yankee

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

150 of 182

By | R.Augustine Date 04/05/2005 Chebked J. L. White Date 04/05/2005

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - BOTTOM THIRD

4×4 Brace Members with Ke = 1.0:

		·	Stress Factors	E Factors
KcE =	0.38	load duration factor =	1.6	N/A
c =	0.8	moisture factor =	0.80	0.90
		temp. factor =	0.815	0.945
		size factor =	1.15	N/A

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1445850 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 1836 psi

				I	Brace spa	cing lengt	th in feet:								
_	3.67	4	<u>4.75</u>	<u>5</u>	<u>5.5</u>	6	<u>7.00</u>	<u>7.083</u>	<u>7.67</u>	<u>7.83</u>	8	8.417	8.75	9	10
$\frac{1/d \text{ ratio}}{\text{using d} = 3.5}$ and ke = 1.0	12.6	13.7	16.3	17.1	18.9	20.6	24.0	24.3	26.3	26.9	27.4	28.9	30.0	30.9	34.3
Fce	3476	2921	2072	1870	1545	1298	954	932	795	762	730	660	610	577	467
(Fce / Fcomp)	1.894	1.591	1.129	1.019	0.842	0.707	0.520	0.508	0.433	0.415	0.398	0.359	0.333	0.314	0.255
Ср	0.858	0.823	0.731	0.697	0.629	0.563	0.447	0.439	0.385	0.371	0.358	0.328	0.306	0.291	0.240

Job

Entergy Vermont Yankee

By

Rev

1 Sheet No.

R.Augustine Date 04/05/2005

151 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked J. L. White

Date 04/05/2005

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - BOTTOM THIRD

 4×4 Brace Members with Ke = 1.0:

Allowable seismic compressive stress (psi) for members located in the lower 1/3 of the structure.

				1	Brace spa	cing lengt	h in feet:									
	<u>3.67</u>	4	<u>4.75</u>	<u>5</u>	<u>5.5</u>	<u>6</u>	<u>7,00</u>	<u>7.083</u>	7.67	<u>7.83</u>	8	<u>8.417</u>	8.75	9	10	
Fallow_comp (psi) =	1575	1511	1342	1280	1154	1033	821	806	707	681	657	601	561	533	440	
Allowable seismic Compressive Load on a 4x4 member:																
P _{allow} (lbs) =	19290	18515	16438	15679	14138	12650	10057	9869	8657	8346	8049	7365	6873	6533	5386	

Job

Entergy Vermont Yankee

Rev By |

1 Sheet No. R.Augustine Date 04/05/2005

152 of 182

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation

Checked

J. L. White Date 04/05/2005

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - BOTTOM THIRD

4×6 Brace Members with Ke = 1.0:

			Stress Factors	E Factors
KeE =	0.3	load duration factor =	1.6	N/A
c =	0.8	moisture factor =	0.80	0.90
		temp. factor =	0.815	0.945
		size factor =	1.10	N/A

unadjusted E = 1700000 psi

adjusted E = 1.7E6 psi * moisture factor * temperature factor

adjusted E = 1445850 psi

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor

Fcomp = 1756 psi

Brace spacing length in feet:															
	<u>3.67</u>	<u>4</u>	<u>4.75</u>	5	5.5	6	7.00	7.083	7.67	7.83	8	8.417	8.75	9	10
$\frac{I/d \text{ ratio}}{\text{using d} = 3.5}$ and ke = 1.0	12.6	13.7	16.3	17.1	18.9	20.6	24.0	24.3	26.3	26.9	27.4	28.9	30.0	30.9	34.3
Fce	2745	2306	1635	1476	1220	1025	753	736	628	601	577	521	482	456	369
(Fce / Fcomp)	1.563	1.314	, 0.931	0.841	0.695	0.584	0.429	0.419	0.358	0.343	0.328	0.297	0.275	0.259	0.210
Ср	0.819	0.776	0.666	0.628	0.556	0.490	0.382	0.374	0.326	0.314	0.302	0.276	0.257	0.244	0.200

Job

Entergy Vermont Yankee

Ву

1 Sheet No.

153 of 182

Rev By

R.Augustine Date 04/05/2005

Checked J. L. White

Date 04/05/2005

SEISMIC ALLOWABLE COMPRESSION STRESSES AND LOADS - BOTTOM THIRD

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation

 4×6 Brace Members with Ke = 1.0:

Allowable seismic load compressive stress (psi) for members located in the lower 1/3 of the structure.

				Ţ	Brace spa	cing lengt	h in feet:									
-	3.67	<u>4</u>	<u>4.75</u>	_ <u>5</u>	<u>5.5</u>	<u>6</u>	7.00	<u>7.083</u>	7.67	<u>7.83</u>	<u>8</u>	8.417	<u>8.75</u>	9	<u>10</u>	_
Fallow_comp (psi) =	1439	1362	1169	1103	976	860	670	657	572	551	531	484	451	428	351	
Allowable Seismic Load Compressive Load on a 4x6 member:																
P_{allow} (lbs) =	27695	26226	22508	21234	18782	16553	12903	12646	11019	10606	10214	9318	8678	8238	6765	

Calc. No. 1356711-C-001

Job

Entergy Vermont Yankee Subject Cooling Tower Seismic Evaluation Rev Βv

Sheet No.

154 of 154

R.Augustine Checked J. L. White

Date 04/05/2005 Date 04/054/2005

ALLOWABLE BENDING STRESSES AND LOADS (DEAD LOAD AND SEISMIC)-BOTTOM **THIRD**

All Members:

Bending Allowable Stresses:

Allowable bending is adjusted by, load duration, wet service, temperature, beam stability, size factor, flat use factor, repetitice mewmber factor, curvature factor and form factor.

Defined allowable bending stress =

950

psi. in Table 114-A, Reference 11. This includes a

load duration factor = 0.9.

unadjusted bending stress = allowable bending stress / load duration factor = 0.9

unadjusted bending stress = 1056 psi

> Beam stability factor = 1.0

> > Flat use factor = 1.0

Repetitive member factor = 1.0

> Form factor = 1.0

Per Table 2.3.1 of Reference 8, the revised allowable bending stress =

Fb * (load duration factor)*(moisture factor)*(temp. factor)*(beam stability factor)*(size factor)*(flat use factor) *(repetitive member factor)*(form factor)

	Members	Members	
	4x4	4x6	
Dead Load Allowable Bending Stress (psi) =	987	987	
Seismic Allowable Bending Stress (psi) =	1755	1755	(1.60/0.9) * DL allowable
Snow Load Allowable Bending Stress (psi) =	1261	1261	(1.15/0.9) * DL allowable
Section modulus for 4x4 =	7.146	in^3	
Section modulus for $4x6 =$	17.65	in^3	
Section modulus for $2x8 =$	13.14	in^3	
Section modulus for $2x4 =$	3.063	in^3	

Allowable Bending Moments (lb*in)

	<u>4x4</u>	<u>4x6</u>
Dead Load =	7054	17424
Seismic Load =	12541	30975
Snow Load =	9014	22263

ABS Consulting

Job No. 1356711

Job

Entergy Vermont Yankee

Rev By 1 Sheet No.

R.Augustine Date 04/05/2005

155 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

J. L. White

Date 04/05/2005

TAPERED BOTTOM OF COMPANION POSTS

The installation of the companion posts required the tapering of the bottom section per sheet 35 of Reference 13. For these posts, the compression area transferring the load is 3-1/2" x 4-1/2". This section of post (only at bottom of the columns) is not subject to the column stability reduction factor. The allowable load for the columns at the base of the companion posts is as follows:

DEAD and SEISMIC LOAD (Posts are located in bottom third)

	Stress Factors
load duration factor =	0.9
moisture factor =	0.80
temp. factor =	0.815
size factor =	1.15

Fcomp = 1530 psi * load duration factor * moisture factor * temperature factor * size factor Fcomp = 1032 psi

Base area = 3.5" x 4.5" = 15.75 in^2

Allowable Dead load = A * stress allow = 16261 lbs. Allowable Seismic load = A * stress allow = 28909 lbs.

Seismic load = DL * (1.6 / 0.9)

Job **Entergy Vermont Yankee**

Calc. No. 1356711-C-001 Subject Cooling Tower Seismic Evaluation Rev

1 Sheet No.

156 of 182

Ву Checked

J. L. White

R.Augustine Date 04/05/2005 Date 04/05/2005

6.4 **RESULTS**

Computer output files in Attachments F through Q provide the analysis results including modal response and member forces for each model.

Attachment R shows the member lengths and resulting allowable loads.

Member forces for each bent are extracted from the output files and summarized in Attachment S. Member interaction ratios are also calculated and summarized in Attachment S.

From inspection of Attachment S, interaction ratios for all members are 1.0 or less, showing that the cooling tower members in the analysis meet the acceptance criteria.

6.4.1 Base Reaction Forces

Base reaction forces are summarized in the tables in Attachment D. Plots of the base reaction forces are included in Attachment E. The base anchorage is checked in the following pages.

Job Entergy Vermont Yankee

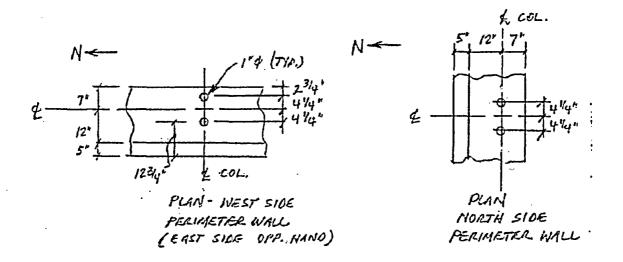
Subject Cooling Tower Seismic Evaluation

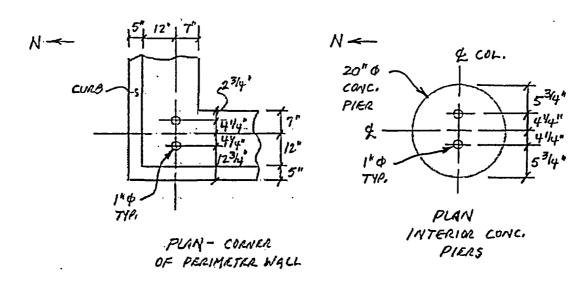
Rev 1 Sheet No.

157 of 182

By R.Augustine

J. L. White


Checked


Date 04/05/2005 Date 04/05/2005

Check Base Anchor Bolts

Calc. No. 1356711-C-001

Determine anchor bolt capacity using Appendix C of the GIP (Ref. 3). The foundation support details and base anchorage are shown in References 7.11 and 7.12. The bolts are 1" diameter cast in place J-bolts, with 21" minimum embedment and 3 1/2" leg. The concrete strength is conservatively assumed to be 3000 psi based on Ref. 7.11. Some of the bolts have shear plates to help transfer shear, as shown in the details on Ref. 7.11. These plates are conservatively neglected in the shear allowable calculations. The following configurations apply to the columns that have bracing and that will experience shear loads due to earthquake loading.

Entergy Vermont Yankee

Ву

Rev

1 Sheet No.

158 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

R.Augustine

Date 04/05/2005

J. L. White

Date 04/05/2005

Reductions for Embedment Length (GIP Section C.4.2):

A capacity reduction factor is not required for shear per GIP Section C.4.2.

Embedment length

Bolt diameter

$$RL_p := \frac{L_{actual} + 20 \cdot D}{62.5 \cdot D}$$

$$RL_p = 0.656$$

Pullout capacity reduction factor for cast-in-place J-bolt with 900 hook

Reductions for Edge Distance (GIP Section C.4.4 and C.3.4):

The east and west side perimeter walls have one bolt with 2.75" edge distance in the east or west directions. Since this is less than 4D, the bolt is assumed ineffective for E-W loading. The other bolt is fully effective for E-W loading since the edge distance in both directions is greater than 8.75". By inspection of the other details reductions are required for 7" and 5.75". All bolts are effective for N-S loading.

$$E_1 := 7 \cdot in$$

$$E_2 := 5.75 \cdot in$$

$$D := 1.0 \cdot in$$

$$RE_{s7_in} := 0.0131 \cdot \left(\frac{E_1}{D}\right)^2$$

$$RE_{s7_in} = 0.64$$

Shear capacity reduction factor for 7" edge distance.

$$RE_{s5.75_in} := 0.0131 \cdot \left(\frac{E_2}{D}\right)^2$$

$$RE_{s5.75_{in}} = 0.43$$

Shear capacity reduction factor for 5-3/4" edge distance.

Job No. 1356711 Calc. No. 1356711-C-001

Entergy Vermont Yankee

Rev 1 Sheet No. 159 of 182

Subject Cooling Tower Seismic Evaluation

Checked

Ву

R.Augustine J. L. White

Date 04/05/2005 Date 04/05/2005

The following values are obtained from GIP Table C.4-1 for 1" J-bolts in 3500 psi concrete:

$$P_{nom_1} := 26.69 \cdot kip$$

Nominal tension capacity of 1" cast-in-place

J-bolt with 900 hook.

$$V_{nom 1} := 13.35 \cdot kip$$

Nominal shear capacity of 1" cast-in-place J-bolt

with 900 hook.

$$L_{\min_1} := 54.5 \cdot in$$

Minimum embedment for 1" cast-in-place J-bolt.

$$S_{\min 1} := 3 \cdot in$$

Minimum spacing for 1" cast-in-place J-bolt.

$$E_{\min_1} := 8.75 \cdot in$$

Minimum edge distance for 1" cast-in-place

J-bolt.

By inspection of the anchor bolt details, reductions are not required for spacing. Reductions are required for concrete strength and embedment for all of the bolts, and edge distance for some of the bolts.

Reductions for Concrete Strength (GIP Section C.4.5):

$$f_c := 3000 \cdot psi$$

$$RF_p := \sqrt{\frac{f_c}{3500}}$$

$$RF_p = 0.926$$

Pullout reduction factor for J-bolts for concrete strengt

$$RF_s := RF_p$$

$$RF_{s} = 0.926$$

Shear reduction factor for J-bolts for concrete strength

Entergy Vermont Yankee

Calc. No. 1356711-C-001 **Subject Cooling Tower Seismic Evaluation** Rev

1 Sheet No.

160 of 182

Ву

Checked

R.Augustine Date 04/05/2005

J. L. White

Date 04/05/2005

 $L := L_{actual}$

$$r := \frac{2 \cdot L + D}{2}$$

$$r = 21.5 in$$

$$\Lambda_{\text{e_nom}} := 0.96 \cdot \frac{\pi}{4} \cdot (2 \cdot L + D)^2$$

$$A_{e_nom} = 1394.11 \text{ in}^2$$

$$\alpha_1 := \frac{2 \cdot E_1}{2 \cdot L + D}$$

$$\alpha_2 := \frac{2 \cdot E_2}{2 \cdot L + D}$$

$$\alpha_1 = 0.33$$

$$\alpha_2 = 0.27$$

$$\theta_1 := 2 \cdot a\cos(\alpha_1)$$

$$\theta_2 := 2 \cdot a \cos(\alpha_2)$$

$$\theta_1 = 2.48$$

$$\theta_2 = 2.6$$

$$\Lambda_{e_red_7_in} \coloneqq \pi \cdot r^2 - \frac{1}{2} \cdot \left(r^2 \cdot \theta_1 - 2 \cdot r \cdot E_1 \cdot \sin \left(\frac{\theta_1}{2} \right) \right)$$

$$A_{e_red_7_in} = 1021.69 in^2$$

$$A_{e_red_5.75_in} := \pi \cdot r^2 - \frac{1}{2} \cdot \left(r^2 \cdot \theta_2 - 2 \cdot r \cdot E_2 \cdot \sin \left(\frac{\theta_2}{2} \right) \right)$$

$$A_{e_red_5.75_in} = 970.37 in^2$$

$$RE_{p_7_in} := \frac{A_{e_red_7_in}}{A_{e_nom}}$$

$$RE_{p_5.75_in} := \frac{A_{e_red_5.75_in}}{A_{e_{nom}}}$$

Job

Entergy Vermont Yankee

Ву

Rev

1 Sheet No.

161 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

R.Augustine J. L. White Date 04/05/2005 Date 04/05/2005

$$RE_{p_7_{in}} = 0.733$$

Pullout capacity reduction factor for 7" edge

distance.

$$RE_{p_5.75_{in}} = 0.696$$

Pullout capacity reduction factor for 5.75" edge

distance.

Shear Allowables:

Determine shear allowable for the east and west side perimeter wall connections. A reduction is required for concrete strength. This connection is assumed to have one bolt fully effective in the east west direction, and two bolts fully effective in the north south direction:

$$V_{allow_EW_walls_NS_direction} \coloneqq V_{nom_1} \cdot RF_s \cdot 2 \cdot bolt$$

$$V_{allow_EW_walls_NS_direction} = 24719 lb$$

Determine shear allowable for north side perimeter wall connections. Reductions are required for concrete strength and edge distance. Each bolt has a reduction for 7" edge distance:

$$V_{allow_north_wall} := V_{nom_1} \cdot RF_s \cdot 2 \cdot bolt \cdot RE_{s7_in}$$

$$V_{allow_north_wall} = 15867 lb$$

Determine shear allowable for perimeter wall corner connections. No reductions are required for edge distance. A reduction is required for concrete strength:

$$V_{allow_corner_wall} = 24719 lb$$

Entergy Vermont Yankee

By

Rev

1 Sheet No.

162 of 182

Calc. No. 1356711-C-001 · Subject Cooling Tower Seismic Evaluation

Checked

R.Augustine J. L. White

Date 04/05/2005 Date 04/05/2005

Determine shear allowable for interior column pier connections. Reductions are required for concrete strength and edge distance. Each bolt has a reduction for 5.75" edge distance:

Pullout Allowables:

Determine pullout allowable for the east and west side perimeter wall connections. This connection is assumed to have only one bolt fully effective in tension since the other bolt has less than 4D edge distance. Reductions are required for concrete strength and embedment length:

$$P_{allow EW walls} := P_{nom 1} \cdot RF_{p} \cdot RL_{p} \cdot 1bolt$$

Determine pullout allowable for north side perimeter wall connections. Reductions are required for concrete strength, embedment length and edge distance. Each bolt has a reduction for 7" edge distance:

$$P_{allow north wall} := P_{nom 1} \cdot RF_p \cdot RL_p \cdot RE_p 7 in \cdot 2 \cdot bolt$$

Determine pullout allowable for perimeter wall corner connections. Reductions are required for concrete strength and embedment length. No reductions are required for edge distance:

$$P_{allow_corner_wall} := P_{nom_l} \cdot RF_p \cdot RL_p \cdot 2 \cdot bolt$$

$$P_{allow_corner_wall} = 32420 lb$$

Calc. No. 1356711-C-001

Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

163 of 182

Ву

R.Augustine

Date 04/05/2005

Checked J. L. White Date 04/05/2005

Determine pullout allowable for interior column pier connections. Reductions are required for concrete strength, embedment length and edge distance. Each bolt has a reduction for 5.75" edge distance:

$$P_{allow_piers} := P_{nom_1} \cdot RF_p \cdot RL_p \cdot RE_{p_5.75_{in}} \cdot 2 \cdot bolt$$

Determine Allowables for Bent B Connections Anchored with Hilti Bolts:

From review of References 7.11, 7.12, and page 37 of Reference 12, two of the Bent B columns with bracing are specified to be anchored with two 1" dia. Hilti Kwik Bolts with 4.5" minimum embedment. The shear allowable for this type of connection is calculated in Ref. 12 to be as follows:

The pullout capacity is not calculated in Ref. 12 because there is no net tension on these columns.

Summary of Base Anchorage Allowable Loads (per Connection)

Allowable Shear (per Connection):

$$V_{allow_corner_wall} = 24719 lb$$

$$V_{allow north wall} = 15867 lb$$

Allowable Pullout (per Connection):

$$P_{allow_EW_walls} = 16210 lb$$

$$P_{allow_corner_wall} = 32420 lb$$

$$P_{allow north wall} = 23759 lb$$

Job

Entergy Vermont Yankee

Rev 1 Sheet No. 164 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Ву Checked. J. L. White

R.Augustine Date 04/05/2005 Date 04/05/2005

Determine Minimum Allowable Load per Connection:

Vallow_min := Vallow_piers

 $V_{allow\ min} = 10706 lb$

Pallow min := Pallow EW walls

 $P_{allow_min} = 162101b$

Compare Reactions with Allowables:

From review of the "Reaction Summary" sheets in Attachment D, the maximum shear load is from Bent C and is 12,573 lbs in the N-S direction, and the maximum net uplift load is from Bent B. The second highest shear load is from Bent B = 8,390 lbs.

 $V_{applied max NS} := 12573 \cdot lb$

 $V_{allow_EW_walls_NS_direction} = 24719 lb$

OK

 $V_{applied_max_other} := 8390 \cdot lb$

 $V_{allow_min} = 10706 lb$

OK

P_applied_max := 6156·lb

 $P_{allow\ min} = 16210lb$

OK

Conclusion: All base anchorage connections are adequate using enveloping analysis.

Calc. No. 1356711-C-001

Job

Entergy Vermont Yankee Subject Cooling Tower Seismic Evaluation

Checked

Rev

1 Sheet No.

165 of 182

By

J. L. White

R.Augustine Date 04/05/2005 Date 04/05/2005

6.4.2 Bracing Check for Tension Loads

The loading in the bracing is reversible, thus all braces are subjected to tension and compression parallel to the grain. The following pages checks the tension allowable loads and compares them with the compression allowable loads to show that tension does not govern.

Allowable Tension Load in the Bracing

Determine the allowable tension load in the major bracing members, and compare with the allowable compression load to determine which one governs. Adjustment factors are per the previous section.

Allowable tension stress for Douglas Fir No. 1 from $F_1 := 641 \cdot psi$

Table 114-A, Ref. 11, adjusted for dead load duration

factor of 0.9.

 $C_{D_dead} := 0.9$ Load duration factor for dead load

Load duration factor for seismic load. $C_{D_seismic} := 1.6$

 $C_{M} := 1.0$ Wet service factor, tension parallel to grain.

 $C_{t \text{ top}} := 0.925$ Temperature correction factor at 115 of for top third

of structure, tension parallel to grain.

Temperature correction factor at 107.5 of for middle third $C_{t \text{ middle}} := 0.934$

of structure, tension parallel to grain.

Temperature correction factor at 100 of for bottom third of $C_{t bottom} := 0.945$

structure, tension parallel to grain.

Size adjustment factor for tension parallel to grain for bracing. $C_F := 1.5$

 $F_t \cdot C_{D_seismic} \cdot C_M \cdot C_{t_top} \cdot C_F$ Ft adjusted_top_seismic :=

F_t adjusted top seismic = 1581 psi

 $F_{t_adjusted_middle_seismic} \coloneqq \frac{F_{t} \cdot C_{D_seismic} \cdot C_{M} \cdot C_{t_middle} \cdot C_{F}}{C_{D_dead}}$

Ft adjusted middle seismic = 1597 psi

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

166 of 182

Ву Checked R.Augustine Date 04/05/2005 J. L. White

Date 04/05/2005

$$F_{t_adjusted_bottom_seismic} := \frac{F_t \cdot C_{D_seismic} \cdot C_M \cdot C_{t_bottom} \cdot C_F}{C_{D_dead}}$$

Ft adjusted bottom seismic = 1615 psi

Determine the allowable load on each brace type. Connection bolts are 1/2" diameter based on Ref. 12, Sheet 22.

Dia_bolt:= 0.5 · in

$$A_{\text{net}}_{4x4} := (3.5 \cdot \text{in}) \cdot (3.5 \cdot \text{in}) - (\text{Dia}_{\text{bol}}) \cdot (3.5 \cdot \text{in})$$

A net $4x4 = 10.5 \text{ in}^2$

Net area of 4 x 4 brace.

A_net_4x6 :=
$$(3.5 \cdot in) \cdot (4.5 \cdot in) - (Dia bolt) \cdot (3.5 \cdot in)$$

A net $4x6 = 14 \text{ in}^2$

Net area of 4 x 6 brace, with 6" dimension in plane.

Pt seismic capacity 4x4 top := Ft adjusted top seismic ·A_net_4x4

 $P_{t_seismic_capacity_4x4_top} = 16602 lb$

Pt seismic capacity 4x4 middle := Ft adjusted middle seismic ·A_net_4x4

Pt seismic capacity 4x4 middle = 16763 lb

Pt_seismic_capacity_4x4_bottom := Ft_adjusted_bottom_seismic ·A_net_4x4

Pt seismic capacity 4x4 bottom = 16961 lb

Pt_seismic_capacity_4x6_top := Ft_adjusted_top_seismic_A_net_4x6

 $P_{t_seismic_capacity_4x6_top} = 22136lb$

Calc. No. 1356711-C-001

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

167 of 182

Ву

R.Augustine Date 04/05/2005

Checked J. L. White Date 04/05/2005

Pt_seismic_capacity_4x6_middle := Ft_adjusted_middle_seismic · A_net_4x6

Pt_seismic_capacity_4x6_middle = 22351 lb

Pt seismic capacity 4x6 bottom := Ft adjusted bottom seismic ·A_net_4x6

Pt_seismic_capacity_4x6_bottom = 226141b

Summary of Allowable Seismic Load Capacity for Bracing - Tension Parallel to Grain

4x4 Braces:

4x6 Braces:

 $P_{t \text{ seismic capacity } 4x4 \text{ top}} = 16602 \text{ lb}$

Pt seismic capacity 4x6 top = 221361b

Pt seismic capacity 4x4 middle = 16763 lb

Pt seismic capacity 4x6 middle = 22351 lb

Pt_seismic_capacity_4x4_bottom = 169611b

Pt seismic capacity 4x6 bottom = 22614 lb

Summary of Allowable Seismic Load Capacity for Bracing - Compression Parallel to Grain:

From review of the "Seismic Allowable Compression Stresses and Loads" tables for the 4 x 4 and 4 x 6 braces $(K_e = 1.0)$, the following values are taken for bracing with 5' lengths:

4x4 Braces:

4x6 Braces:

PC_seismic_capacity 4x4_top := 14635·lb

PC_seismic_capacity_4x6_top := 20009·lb

PC_seismic_capacity_4x4 middle := 15177·lb

PC_seismic_capacity_4x6_middle := 20642.lb

PC_seismic_capacity_4x4_bottom := 15679·lb

PC_seismic_capacity_4x6_bottom := 21234·lb

Compare Tension Capacity to Compression Capacity:

4x4 Braces:

 P_t seismic capacity 4x4 top = 166021b

 $P_{C_{seismic_capacity_4x4_top}} = 14635 lb$

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

168 of 182

By Checked

R.Augustine
J. L. White

R.Augustine Date 04/05/2005

Date 04/05/2005

Pt_seismic_capacity_4x4_middle = 16763lb

> PC_seismic_capacity_4x4_middle = 151771b

Pt seismic capacity 4x4 bottom = 16961 lb

PC seismic capacity 4x4 bottom = 15679 lb

4x6 Braces:

 $P_{t_seismic_capacity_4x6_top} = 221361b$

> PC_seismic_capacity_4x6_top = 20009 lb

Pt_seismic_capacity_4x6_middle = 22351 lb

> PC_seismic_capacity_4x6_middle = 206421b

Pt_seismic_capacity_4x6_bottom = 22614 lb

> PC seismic capacity_4x6_bottom = 212341b

Conclusion: Tension capacity exceeds compression capacity for all 4 x 4 and 4 x 6 braces that are 5' or more in length. All 4 x 4 and 4 x 6 braces are longer than 5' based on review of the computer models. Since compression capacity decreases as member lengths increase, and tension strength does not change with member length, tension will not govern for any of the braces.

Calc. No. 1356711-C-001

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

Checked

169 of 182

By R.Augustine Date 04/05/2005

J. L. White

Date 04/05/2005

Check Bracing in Main Bents of Cell No. CT2-2:

The structural members in the main bents for cell no. CT2-2 are the same as the members in the main bents for cell no. CT2-1 except the bottom bracing members in CT2-2 are 4 x 4 instead of 4 x 6 members (based on review of Reference 13 sheets 2A and 3). This applies to members 42, 88, 182, and 218 in the main bent model (see Attachment E). Check the 4 x 4 members in the main bents in cell no. CT2-2:

Loads on Members 42, 88, 182 and 218 from Attachment S sheet S32:

Member_ $42_{\text{seismic}} := 7315 \cdot \text{lb}$

Member_88seismic := 7215·lb

Member_218 $_{\text{seismic}} := 7317 \cdot \text{lb}$

Member_182 $_{\text{seismic}} := 7229 \cdot \text{lb}$

All members are 101" long from Attachment R sheets R17 and R18. Members 88 and 182 are in the middle third temperature range, and members 42 and 218 are in the bottom third temperature range. Allowable loads for members 42 and 218 are given on sheet 140, and allowable loads for members 88 and 182 are given on sheet 151:

Allowableeismic 4x4 mid 101in:= 7244

Allowableeismic_4x4_bot_101in := 7365

Compare applied loads to allowables:

Member_42_{seismic} = 73151b < Allowable_eismic_4x4_bot_101in = 7365

Member_218_{seismic} = 7317lb < Allowable_eismic_4x4_bot_101in = 7365

Member_88_{seismic} = 7215 lb < Allowable_eismic_4x4_mid_101in= 7244

Member_182_{seismic} = 7229 lb < Allowable eismic 4x4 mid 101in = 7244

Conclusion: All members are adequate. Main bent for cell no. CT2-2 is adequate

Note: The secondary distribution piping is not on tower CT2-2, only CT2-1. The above check is conservative as the brace loads account for the secondary piping load of CT2-1.

Calc. No. 1356711-C-001

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

Checked

J. L. White

170 of 182

Date 04/05/2005

By R.Augustine Date 04/05/2005

6.4.3 Brace Connections

The type of brace end connections are identified in the following documents:

Main Bent – sheets 2A and 3 (55 and 56), Reference 12 –types #1019, 1021, 2001, 2007, 2008, 2010, 2017 and 2024

End Bent – sheet 4A (58), Reference 12 –types #1019, 1021, 2110, 2121 and 2117.

Partition Bent – sheet 6A (61), Reference 12 –types #1018, 1019, 1021, 2001, 2010, 2012, 2017, 2020, 2021 and 2024.

Bent A – sheet 7 (74), Reference 12 and sheet 7 Reference 13-types #1019, 1020, 1023, 2001, 2002, 2007, 2008, 2011, 2017, 2021 and 2024

Bent B –Reference 7.4 –types #1019, 1020, 1021, 1023, 2001, 2002, 2007, 2008, 2012, 2017, 2021, 2024, 2034 and 2236.

Bent C – sheets 9B and 19 (34), Reference 12 –The 4 x 4 braces have the following connection types: 2010, 2021, 2024, 2034, 2035 and 2236. Note that connection 2110 for the top 4 x 4 braces of the truss was removed and replaced with 2010 and 2236 per sheet 19 (34) of Ref. 12. The 4 x 6 braces have the following connection types # 1019, 1023, 2007, 2017, 2018, 2021,2024 and 2035.

The brace loads for the seismic load case are compared with the allowable loads on the following pages. Note that the governing connection is listed (i.e., the connection that has the lowest allowable capacity) for cases that have more than one connection part listed. This occurs for the connections at the base of the columns, and for the differences in the Main Bent connections between cells CT1-1 and CT1-2 (refer to sheets 2A (55) and 3 (56) of Reference 12).

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

171 of 182 R.Augustine Date 04/05/2005

Ву Checked

J. L. White

Date 04/05/2005

The allowable brace joint loads are found on sheet 13 (24) of Reference 12. The loads given in Ref. 12 for Redwood are increased by 1/3 for Douglas Fir (per the heading at the top of sheet 13 (24) of Reference 12). The allowable loads are shown below. The allowable loads are increased by 1.33 for seismic per Reference

ouglas Fir Seismic	Douglas F	Joint Type
9	Allowabl	Jonit Type
	Load (lbs	
11970 15920		1018 (Use 1019)
11970 15920	11970	1019
16226 21581	16226	1020
10161 13514	10161	1021
16598 22076	16598	1023 (Use 1022)
10108 13444	10108	2001
10108 13444	10108	2002
10108 13444	10108	2007
6052 8048	6052	2008
6052 8048	6052	2010
8698 11569	8698	2011
6052 8048	6052	2012
8698 11569	8698	2013
16226 21581	16226	2017
16226 21581	16226	2018
16226 21581	16226	2020
16226 21581	16226	2021
10108 13444	10108	2024
10108 13444	10108	2034 (Use 2024)
16226 21581	16226	2035 (Use 2021)
7022 9340	7022	2101
4203 5590	4203	2110
10534 14010	10534	2117
10534 14010	10534	2120
10534 14010	10534	2121
7022 9340	7022	2124
6052 8048	6052	2236 (Use 2010)
7022 9340	7022	2124

Job No. 1356711 Calc. No. 1356711-C-001 Job **Entergy Vermont Yankee**

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 172 of 182

R.Augustine Date 04/05/2005 Ву J. L. White Checked

Date 04/05/2005

					Seismic	Seismic	Connection
FRAME	LOAD	Axial	Connection	Connection	Allow	Allow	Adequate?
TRANCE	DOMD	Load	Type	Type	Load	Load	riacquate:
BENT A	EDAN		EMENT F	ORCES			
14	HORIZ	4531	1020	2024	21581	21581	ок
20	HORIZ	1202	2011	2024	11569	11569	OK OK
39	HORIZ	4040	2011	2024	13444	13444	OK OK
43			2024	2024	13444	13444	OK OK
	HORIZ	1342			13444	13444	OK OK
64	HORIZ	3213	2001	2002			
66	HORIZ	2525	2002	2024	13444	13444	OK.
88	HORIZ	2858	2001	2002	13444	13444	OK
90	HORIZ	2841	2002	2024	13444	13444	OK .
111	HORIZ	3391	2001	2017	13444	13444	ok :
115	HORIZ	2012	2024	2024	13444	13444	ок
134	HORIZ	2716	2017	2021	21581	21581	ok .
140	HORIZ	2360	2013	2024	11569	11569	OK
157	HORIZ	2101	1019	2002	15920	15920	ок
159	HORIZ	1970	2002	2021	13444	13444	OK
166	HORIZ	2491	2013	2024	11569	11569	OK
182	HORIZ	2259	1019	2002	15920	15920	ок
184	HORIZ	2438	2002	2021	13444	13444	ОК
190	HORIZ	2312	2024	2024	13444	13444	ок
209	HORIZ	2738	2017	2021	21581	21581	OK
213	HORIZ	2687	2001	2024	13444	13444	ок
234	HORIZ	2613	2002	2017	13444	13444	ок
236	HORIZ	2882	2001	2002	13444	13444	ок
258	HORIZ	2646	2002	2017	13444	13444	ок
260	HORIZ	2769	2001	2002	13444	13444	ок
281	HORIZ	2848	2017	2021	21581	21581	ок
285	HORIZ	2370	2001	2024	13444	13444	ок
304	HORIZ	2380	2001	2021	13444	13444	OK
310	HORIZ	1549	2001	2024	8048	8048	OK OK
327	HORIZ	2275	1019	2024	15920	15920	OK OK
335	HORIZ	1437	2008	2001	8048	8048	OK OK
333	HORIZ	173/	2000	2011	0070	טדטט	OK

Job No. 1356711

Calc. No. 1356711-C-001

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

173 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

R.Augustine

J. L. White

Ву

Checked

Date 04/05/2005
Date 04/05/2005

Seismic Seismic Connection Connection Connection Allow Allow Axial **FRAME** LOAD Adequate? Load Type Type Load Load **BENT B** FRAME ELEMENT FORCES HORIZ OK HORIZ OK **HORIZ** OK **HORIZ** OK HORIZ OK **HORIZ** OK OK HORIZ **HORIZ** OK **HORIZ** OK HORIZ OK HORIZ OK **HORIZ** OK HORIZ . 13444 OK **HORIZ** OK **HORIZ** OK HORIZ OK

Job No. 1356711 Calc. No. 1356711-C-001 Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

175 of 182

By R.Augustine Date 04/05/2005

Checked J. L. White Date 04/05/2005

					Seismic	Seismic	Connection
FRAME	LOAD	Axial	Connection	Connection	Allow	Allow	Adequate?
TRAME	LOAD	Load	Type	Type	Load	Load	Adequate:
BENT C	FDAM		EMENT F	OPCES			
12	HORIZ	9853	1019	2021	15920	15920	ок
22	HORIZ	4462	2236	2010	8048	8048	OK
36	HORIZ	10967	2021	2017	21581	21581	OK
45	HORIZ	10336	2035	2021	21581	21581	OK
62	HORIZ	11913	2017	2018	21581	21581	OK
65	HORIZ	11327	2021	2018	21581	21581	OK.
82	HORIZ	10234	2018	2017	21581	21581	OK
83	HORIZ	6797	2035	2017	21581	21581	OK
87	HORIZ	8253	2017	2018	21581	21581	OK
95	HORIZ	6860	2017	2017	21581	21581	ОК
96	HORIZ	10187	2017	2021	21581	21581	OK
109	HORIZ	8704	2017	2021	21581	21581	OK
112	HORIZ	9722	2017	2017	21581	21581	OK
117	HORIZ	9446	2021	2035	21581	21581	ОК
131	HORIZ	8254	1019	2021	15920	15920	ОК
133	HORIZ	10185	2017	2021	21581	21581	ОК
144	HORIZ	3725	2236	2010	8048	8048	OK
157	HORIZ	8971	1023	2021	22076	22076	OK
178	HORIZ	9164	1023	2021	22076	22076	ок
200	HORIZ	8469	1023	2021	22076	22076	OK
203	HORIZ	10237	2017	2021	21581	21581	ОК
214	HORIZ	3742	2236	2010	8048	8048	OK
227	HORIZ	8868	2017	2021	21581	21581	OK
230	HORIZ	11081	2017	2017	21581	21581	OK
235	HORIZ	8346	2024	2034	13444	13444	OK
249	HORIZ	8792	2017	2007	21581	21581	OK
250	HORIZ	9908	2007	2024	13444	13444	OK
254	HORIZ	7720	2017	2018	21581	21581	OK
262	HORIZ	9959	2007	2018	13444	13444	OK
263	HORIZ	8735	2007	2024	13444	13444	OK
277	HORIZ	11667	2017	2018	21581	21581	OK
280	HORIZ	9700	2018	2024	21581	21581	OK
283	HORIZ	4103	2024	2034	13444	13444	OK
299	HORIZ	11288	2017	2021	21581	21581	OK
308	HORIZ	8945	2024	2034	13444	13444	OK
322	HORIZ	9978	1019	2021	15920	15920	OK
332	HORIZ	4689	2010	2236	8048	8048	OK

Job No. 1356711

Calc. No. 1356711-C-001

Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No. 176 of 182

Ву

Checked

R.Augustine Date 04/05/2005 J. L. White

Date 04/05/2005

					Seismic	Seismic	Connection
FRAME	LOAD	Axial	Connection	Connection	Allow	Allow	Adequate?
		Load	Type	Type	Load	Load	•
END BENT	FRA	MEE	LEMENT	FORCES			
44	HORIZ	5902	1019	2117	15920	15920	ок
84	HORIZ	5599	2117	2117	14010	14010	ОК
105	HORIZ	5288	2117	2117	14010	14010	ок
108	HORIZ	1957	2110	2121	5590	5590	ок
119	HORIZ	4887	2117	2117	14010	14010	ок
120	HORIZ	4838	2117	2121	14010	14010	ок
127	HORIZ	4842	2117	2117	14010	14010	ок
128	HORIZ	4883	2117	2121	14010	14010	ок
138	HORIZ	5281	2117	2117	14010	14010	ок
141	HORIZ	1963	2110	2121	5590	5590	ok į
159	HORIZ	5616	2117	2117	14010	14010	ok '
192	HORIZ	5911	1019	2117	15920	15920	OK :
)		4 3 4 E			•		
MAIN BEN			ELEMENT			15000	077
42	HORIZ	7315	1019	2001	15920	15920	OK O''
88	HORIZ	7215	2001	2001	13444	13444	OK ·
114	HORIZ	7089	2001	2001	13444	13444	OK
117	HORIZ	2010	2010	2008	8048	8048	OK
130	HORIZ	6979	2001	2007	13444	13444	ОК
131	HORIZ	6965	2007	2008	13444	13444	ок
140	HORIZ	6967	2001	2007	13444	13444	ОК
141	HORIZ	6977	2007	2008	13444	13444	OK
155	HORIZ	7088	2001	2001	13444	13444	OK
158	HORIZ	2039	2010	2008	8048	8048	OK
182	HORIZ	7229	2001	2001	13444	13444	OK
218	HORIZ	7317	2001 .	1019	13444	13444	OK

Job No. 1356711

Calc. No. 1356711-C-001

Job

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

177 of 182

Ву Checked

R.Augustine Date 04/05/2005 J. L. White

Date-04/05/2005

					Seismic	Seismic	Connection
FRAME	LOAD	Axial	Connection	Connection	Allow	Allow	Adequate?
TRAME	LOAD	Load	Type	Type	Load	Load	Adequater
PARTITIO	N BENT		ME ELEM	IENT FOR	CES		
30	HORIZ	7757	1018	2001	15920	15920	OK
60	HORIZ	1013	1019	2024	15920	15920	OK
66	HORIZ	7464	2001	2020	13444	13444	OK
70	HORIZ	1037	2010	2012	8048	8048	OK
83	HORIZ	1378	2001	2024	13444	13444	OK
87	HORIZ	1260	2001	2020	13444	13444	ОК
89	HORIZ	8297	2017	2020	21581	21581	OK
92	HORIZ	2013	2012	2021	8048	8048	OK
102	HORIZ	1374	2007	2001	13444	13444	OK
103	HORIZ	1372	2007	2001	13444	13444	OK 1
104	HORIZ	7959	2017	2017	21581	21581	OK '
105	HORIZ	7950	2017	2021	21581	21581	ок
114	HORIZ	1374	2001	2007	13444	13444	oк
115	HORIZ	1373	2001	2007	13444	13444	OK
116	HORIZ	7954	2017	2017	21581	21581	OK
117	HORIZ	7955	2017	2021	21581	21581	ок
127	HORIZ	1378	2001	2024	13444	13444	OK.
131	HORIZ	1259	2001	2020	13444	13444	ок
133	HORIZ	8292	2017	2020	21581	21581	ок
136	HORIZ	2021	2021	2012	21581	21581	ок
148	HORIZ	1012	1019	2024	15920	15920	ок
154	HORIZ	7461	2001	2024	13444	13444	ОК
158	HORIZ	1042	2010	2012	8048	8048	ок
178	HORIZ	7758	1018	2001	15920	15920	ок

Job No. 1356711

Job

Entergy Vermont Yankee

Rev By

1 Sheet No.

R.Augustine Date 04/05/2005

178 of 182

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked

J. L. White

Date 04/05/2005

6.4.4 Sloped Wall Member Check

Evaluate the sloped 4x4 members of the transverse bents by extracting the loads and comparing to the allowable loads, which were determined previously. The longest sloped wall member is the top one and it is approximately 92-inches long and is located in the top third of the structure. Conservatively use an 8-foot unbraced length and the allowable load for a 4x4 brace in the top third of the structure.

END Bent:

Max Horiz, seismic load =	168	lbs. for Member	226
Max. Vertical Sels. = 0.093 * DL =	218	lbs. for Member	226
Max DL =	2340	lbs. for Member	226

Combined Load = SRSS Seis + DL = 2615 lbs.

MAIN Bent:

Max Horiz. seismic load =	294	lbs. for Member	252
Max. Vertical Seis. = 0.093 * DL =	385	lbs. for Member	252
Max DL =	4144	lbs. for Member	252

Combined Load = SRSS Seis + DL = 4629 lbs.

PARTITION Bent:

Max Horiz. seismic load =	295	lbs. for Member	205
Max. Vertical Seis. = 0.093 * DL =	358	lbs. for Member	205
Max DL =	3854	lbs. for Member	205

Combined Load = SRSS Seis + DL = 4318 lbs.

From Section 6.3.4 above, find the following allowable axial compressive load for a 4x4 member, 96 inches long and located in the top third of the structure with ke = 1.0,

Allowable seismic axial load = 7778 lbs.

Allowable dead axial load = 5736 lbs.

All of the sloped wall members are adequate.

Calc. No. 1356711-C-001

Job E

Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev

1 Sheet No.

179 of 182

By R.Augustine Date 04/05/2005 Checked J. L. White Date 04/05/2005

7. SUMMARY AND CONCLUSIONS

The cooling towers at Vermont Yankee are undergoing modifications for power uprate. These modifications consist of removing and replacing the existing fans and motors and adding new cable trays. Cells CT2-1 and CT2-2 of the west cooling tower are designated as Seismic Class 1 structures and require a seismic evaluation for the power uprate changes.

This calculation documents the response spectrum seismic analysis of the main structural framing members of modified cooling tower cells CT2-1 and CT2-2.

The evaluation consists of modeling the structural framing members as beam elements, determining the forces and masses distributed to the models, and evaluating the models for dead, snow/ice and seismic loadings. The tower is analyzed using three 2-D longitudinal models (Bents A, B and C), and three 2-D transverse models (Main, End and Partition).

The models are analyzed using the Vermont Yankee design basis earthquake from Appendix A of the UFSAR (Attachment C) as seismic input. Horizontal seismic input for this analysis is the maximum hypothetical earthquake (MHE) equal to two times the OBE (PGA of 0.14g). The vertical acceleration is equal to 0.093 or 2/3 of the rigid range horizontal ground spectrum. The models are analyzed using 5% damping.

The allowable loading for the wood structure is determined in accordance with the 1991 edition of the NDS (Reference 8) and the 1996 edition of the Cooling Tower Institute (CTI) Standard Specification for the Design of Cooling Towers With Douglas Fir Lumber (Reference 11).

The results of the analysis show that cooling tower cells CT2-1 and CT2-2 are seismically adequate for the applied loading conditions. All member interaction ratios are 1.0 or less, all connections have adequate capacity, and base anchorage is also adequate.

Attachment E shows the computer models and base reaction results. Computer output files in Attachments F through Q provide the analysis results including modal response and member forces for each model. Member forces for each bent are extracted from the computer output files and summarized in Attachment S. Member interaction ratios are calculated and summarized in Attachment S.

No assumptions require verification to validate the conclusions reached in this calculation.

Job

Entergy Vermont Yankee

By R.Augustine

Rev

Date 04/05/2005

Calc. No. 1356711-C-001

Subject Cooling Tower Seismic Evaluation

Checked J. L. White

1

Sheet No.

Date 04/054/2005

8. REFERENCES

1. VY UFSAR, Updated as of 12-01-04.

- 2. Cooling Tower Institute, CTI Code Tower "Standard Specifications for the Design of Cooling Towers With Douglas Fir Lumber," CTI Bulletin STD-114, October 1978.
- 3. "Generic Implementation Procedure (GIP) for Seismic Verification of Nuclear Plant Equipment," Revision 3A corrected, Scismic Qualification Utility Group (SQUG), December 2001.
- 4. SAP2000, Non-Linear Version 7.40, Copyright 1984 2000, Computers and Structures, Inc., Berkeley, California.
- 5. ABS Consulting Nuclear Quality Assurance Manual (NQAM), Revision 7.
- 6. ABS Consulting, "NQA Procedure for Software Verification and Control", Procedure Number RCD-NQP-00-P03, Revision 1.

7. Reference Drawings:

Rcf. No.	Drawing Author	Drawing Number	Rev	Drawing Title
7.1	Flour Products Company, Inc.	5920-3326	-	Plan & Elevation 1170-1-7710
7.2	Flour Products Company, Inc.	5920-6451 Sheet 3 of 5	-	Transverse Section Additional Framing
7.3	Custodis-Ecodyne	DR-1196013 Sheet 1 of 2	В	Longitudinal Section Framing Bent "C" Cells 1 and 2
7.4	Custodis-Ecodyne	DR-1196013 Sheet 2 of 2	В	Longitudinal Section Framing Bent "B" Cells 1 and 2
7.5	Flour Products Company, Inc.	5920-4600	R3	Secondary Distribution System @ Cell No. 1
7.6	Custodis-Ecodyne	5920-6840 Sheet 1 of 6	0	T-Bar Fill Inst'n 2 x 8 & 4 x 8 Config. Model 1170-1-7710
7.7	Custodis-Ecodyne	5920-6840 Sheet 2 of 6	0	T-Bar Fill Inst'n 2 x 8 & 4 x 8 Config. Model 1170-1-7710
7.8	Custodis-Ecodyne	5920-6840 Sheet 4 of 6	0	T-Bar Fill Inst'l Details and Notes
7.9	Custodis-Ecodyne	5920-6452 Sheet 2 of 9	0	Companion Post Installation Details

Job

Entergy Vermont Yankee

Ву

Rev

1 Sheet No.

181 of 181

R.Augustine Date 04/05/2005 Date 04/05/2005

Calc. No. 1356711-C-001 **Subject Cooling Tower Seismic Evaluation**

Checked J. L. White

Ref. No.	Drawing Author	Drawing Number	Rev	Drawing Title
7.10	Ebasco	G-191731	2	Circulating Water Piping & Misc. Steel – Sh.2
7.11	Ebasco	G-200357	-	Cooling Tower No. 2 – Foundation - MAS
7.12	Flour Products Company, Inc.	5920-3324	-	Anchor Bolt Setting 1170-1-7710
7.13	Tower Performance, Inc	5920-13331	-	Plan View of Existing Fan Deck Layout
7.14	Tower Performance, Inc	5920-13330	-	Transverse Section 1-1
7.15	Entergy Nuclear VY	G-191374	13	Cooling Tower and Discharge Structure-Conduit, Grounding and Lighting Plan
7.16	Entergy Nuclear VY	G191230	31	Yard Piping Plan - Sheet 1
7.17	Entergy Nuclear VY	G191231	16	Yard Piping Plan – Sheet 2
7.18	Ebasco	AJ1230-1 through AJ1230-8	4- 1970	Material Fabrication Sketches for System #22, Service Water Yard Piping

- 8. ANSI/NFPA NDS-1991, "National Design Specification for Wood Construction," with NDS Supplement "Design Values for Wood Construction," 1991.
- 9. AISC Manual of Steel Construction, 9th Edition
- 10. ABS Calculation SAP2000-QA-001, "SAP2000 Version 7.4 Computer Program QA Verification," Revision 0, November 1, 2004.
- 11. Cooling Tower Institute, CTI Code Tower "Standard Specifications for the Design of Cooling Towers With Douglas Fir Lumber," CTI Bulletin STD-114, Revision dated November 1996.
- 12. Custodis-Ecodyne Maintenance Services Division, "Vermont Yankee Nuclear Power Corporation, Job No. 57A-11960-H, Calculations of Assessment and Modification," dated January 1986.
- 13. Vermont Yankee Document 5920-4571 R0, "Cooling Tower CT-2-1A Design Data 28 Sheets", dated 11-25-1969. Job No. E70-11960, Prop. No. NY-CT-7110.3, by Fluor Products Company, Inc.

Calc. No. 1356711-C-001

Job Entergy Vermont Yankee

Subject Cooling Tower Seismic Evaluation

Rev 1 Sheet No.

182 of 182

By R.Augustine Date 04/05/2005

J. L. White

Checked

Date 04/05/2005

14. Engineering Decision Analysis Company, Inc. (EDAC), EDAC-388-020.02, "Dynamic Seismic Analysis of the Custodis-Ecodyne Cooling Tower at the Vermont Yankee Nuclear Power Station (Cooling Tower No. E70-11960)," April 7, 1986.

- 15. VY PDCR 86-02, "Cooling Tower Seismic Modification," May 1986.
- 16. VY UFSAR Figures A.7-1 through A.7-14, Revision 5.
- 17. Ebasco Specification 54-63, "Mechanical-Draft Cooling Tower," Revision 1, April 23, 1969.
- 18. American Plywood Association, "Plywood Design Specification," August 1986.
- 19. US Army Corps of Engineers Standard ETL 1110-2-548, "Composite Materials for Civil Engineering and Design," March 31, 1997.
- 20. Entergy Calculation VYC-2377, "Raceway Supports for Cooling Tower Improvements," Revision 1.
- 21. NDS, "National Design Specification for Wood Construction Commentary," American Forest & Paper Association, 1997 Edition, with Addendum to the 1991 Commentary.
- 22. NUREG/CR-0098, "Development of Criteria for Seismic Review of Selected Nuclear Power Plants," N. M. Newmark Consulting Engineering Services for the U.S. Nuclear Regulatory Commission, May 1978.
- 23. USNRC, NUREG-0800, Standard Review Plan, Section 3.8.4, "Other Seismic Category I Structures," Revision 1, July 1981.
- 24. Bergen-Paterson Pipe Supports Catalog No. 82R
- 25. Entergy Nuclear Operations Contract Order No. 4500533976, September 8, 2004.
- 26. American Concrete Institute (ACI), "Code Requirements for Nuclear Safety Related Concrete Structures," ACI-349-90, March 1990.
- 27. E-mail correspondence from Jim Fitzpatrick of Entergy Nuclear VY to Jim White of ABS Consulting, Subject: "Fiberglass Density Verification," March 22, 2005, 1:44 P.M.