FirstEnergy	SNEC CALC	ULATION CO	VER SHEET			
	CALCU	ILATION DESCRIP	PTION			
Calculation Number		Revision Number	Effective Date	Pag	ge Number	
E900-05-004		0	30 March 2005	1	of	9
Subject						
PENELEC Switch Yard	Class 3 Control E	Building – Survey D	esign			
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
Question 1 - Is this calculation	defined as "In QA Sco	ppe"? Refer to definition	3.5. Yes 🛛 No 🗌			
Question 2 - Is this calculation	defined as a "Design (Calculation"? Refer to de	efinitions 3.2 and 3.3. Yes	\boxtimes	No 🗌	
NOTES: If a "Yes" answer is obtai Assurance Plan. If a "Yes" ans calculation as the Technical Revie	swer is obtained for Que	alculation must meet the req estion 2, the Calculation O	uirements of the SNEC Facility originator's immediate supervise	Deco or she	mmissioning ould not revi	Quality ew the
	DESC	RIPTION OF REVI	SION			
	· · · · · · · · · · · · · · · · · · ·					
	APP	ROVAL SIGNATU	RES			
Calculation Originator	···	B. Bray	Da	te	3/17/1	5
		<u></u>			~///	
Technical Reviewer	R. Holmes/	PLAdure	Da Da	te	3/11/0 3/24/0	5
Additional Review	A. Paynter/	WHITE	Da		30 Mm	t
			Da	to		
Additional Review		-				
Additional Review						

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-004	0	Page 2 of 9
Subject		
PENELEC Switch Yard 	Class 3 Control Building – Survey Design	

1.0 PURPOSE

- 1.1 The purpose of this calculation is to develop a survey design for the PENELEC Switch Yard Control Building. This section of the Switch Yard is shown on Attachment 1-1 through 1-3 and is composed of a Class 3 building structure housing electrical switching and control equipment. The following site designations apply (PS1 = building interior; PS2 = building exterior):
 - 1.1.1 PS1-1 Painted concrete surfaces (floor) ~45.3 m²
 - 1.1.2 PS1-2 Painted steel surfaces (deck plate and doors) ~19 m²
 - 1.1.3 PS1-3 Aluminum siding and ceiling materials (ceiling & wall covering) ~130.6 m²
 - 1.1.4 PS2-1 Concrete block (exterior base wall) ~40.5 m²
 - 1.1.5 PS2-2 Unpainted concrete (exterior base wall, side walk and steps) ~24.3 m²
 - 1.1.6 PS2-3 Unpainted steel (roofing materials) ~67.7 m²
 - 1.1.7 PS2-4 Aluminum siding (exterior upper walls) ~63.4 m²

<u>Items not included in this survey:</u> handrails, window glass, awnings covering door entrance areas, switch gear/electrical cabinets, battery banks, desk/chair, file and equipment storage cabinets, spare parts, and interior of cable chase areas.

1.2 The PENELEC Switch Yard is an operational electrical distribution facility. The western portion of the Switch Yard (west of grid line 131), lies mainly in site area <u>OL12</u>. Transformers, switching devices and cabling carry extremely dangerous levels of electricity up to <u>~115,000 volts</u>. Therefore, SNEC management has designated only select items/areas to be the subject of a Final Status Survey. A detailed justification and basic safety considerations for a limited survey approach is provided in Attachment 2-1. The Switch Yard building is on the perimeter of the Switch Yard "Hazard Area". See Attachment 1-1.

2.0 SUMMARY OF RESULTS

The following information should be used to develop a survey request for these survey units.

2.1 The effective DCGLw value is listed below. The US NRC has reviewed and concurred with the methodology used to derive these values. See **Reference 3.1**. In this case, the area is assumed to contain a radionuclide mix similar to OL1 and OL2 which should be a conservative estimate of contaminant concentrations that could be present in the Switch Yard Control building.

Table	1,	DCGLw	Values
-------	----	-------	--------

Gross Activity DCGLw (dpm/100 cm ²)	DCGLw (cpm - Painted Surface)	DCGLw (cpm – Unpainted Surface)
44,317 (33,238 A.L.)	4,607 (A.L.)	5,863 (A.L.)

NOTE 1: A.L. is the site Administrative Limit (75% of effective DCGLw). NOTE 2: Decay date is December 15, 2004.

2.2 All building surfaces shall be scanned with a GFPC survey instrument. The detection efficiency for Cs-137 beta radiation shall be no less than 23.9% (ct).

FirstEnergy	SNEC CALCULATION SHEET	
Calculation Number	Revision Number	Page Number
E900-05-004	0	Page 3 of 9
Subject		
PENELEC Switch Yard	Class 3 Control Building – Survey Design	

2.3 GFPC Surface Measurements – All Survey Areas

2.3.1 The fraction of Cs-137 in this sample mix is presented in Table 2 as 0.599. Since this building is in good condition, no additional efficiency loss from structural defects is assumed for building surfaces. However, a paint thickness evaluation has been performed and beta radiation detection efficiency loss from a painted surface has been estimated (see Attachment 3-1 to 3-3 and Reference 3.2).

2.3.2 Table 2, GFPC Detection Efficiency Data – Unpainted Surfaces

Ej	£s	% Cs-137	Efficiency Loss Factor	counts/disintegration ϵ_t
0.478	0.5	59.9*	1	0.143

*Data from Reference 3.1.

Table 3, GFPC Detection Efficiency Data – Painted Surfaces

εi	Es	% Cs-137	Efficiency Loss Factor - Paint	counts/disintegration ϵ_{t}
0.478	0.5	59.9*	0.8*	0.115

*Data from Reference 3.1 and 3.2.

2.3.3 The calculated MDCscan results are shown below for each type of structural material.

Material Type (1)	MDCscan (dpm/100 cm ²) (2)	Action Level - Phase 1 Scanning* (3)
Painted Concrete, PS1-1	1,154	700 gcpm
Painted Steel, PS1-2	1,052	600 gcpm
Interior Aluminum Siding & Ceiling, PS1-3	907	700 gcpm
Concrete Block, PS2-1	975	800 gcpm
Unpainted Concrete, PS2-2	924	700 gcpm
Unpainted Steet, PS2-3	841	600 gcpm
Exterior Aluminum Siding, PS2-4	907	700 gcpm

Table 4, GFPC MDCscan Data

*Surveyor may use the lowest value from column 3 above as an action level for all material types (600 gcpm). See Attachments 4-1 through 4-8.

2.3.4 The Compass computer program (Reference 3.3) was used to calculate the minimum number of static measurement points shown below for each type of structural material.

First	Energ	y

SNEC CALCULATION SHEET

Calculation Number E900-05-004

Revision Number

0

Page 4 of 9

Page Number

Subject

PENELEC Switch Yard Class 3 Control Building – Survey Design

Table 5, GFPC Random Start – Systematic Measurement Points

Material Type	Minimum No. of Static Measurements
Painted Concrete, PS1-1	8 (10 points provided)
Painted Steel, PS1-2	9 (10 points provided)
Interior Aluminum Siding & Ceiling, PS1-3	8 (10 points provided)
Concrete Block, PS2-1	8 (10 points provided)
Unpainted Concrete, PS2-2	8 (9 points provided)
Unpainted Steel, PS2-3	9 (18 points provided)
Exterior Aluminum Siding, PS2-4	8 (10 points provided)

*See Attachment 5-1 through 5-7 also Attachment 7-1 through Attachment 7-14.

2.3.5 Class 3 scan coverage is typically judgmental or random to ~10% of the accessible surface area IAW **Reference 3.4**. The following Table indicates the minimum degree of coverage expected for these survey units.

Table 6, Scan Coverage

Material Type	Minimum Scan Coverage/Area
Painted Concrete, PS1-1	Painted Concrete Floor @ Doors & Floor Around Desk Area (see Attachment 5-1)
Painted Steel, PS1-2	Steel Door Surfaces (both inside & outside surfaces, see Attachment 5-2)
Interior Aluminum Siding & Ceiling, PS1-3	Aluminum Wall & Ceiling Coverings (see Attachment 6-1 for Approximate locations)*
Concrete Block, PS2-1	Block Wall Areas (see Attachment 6-2 for Approximate locations)*
Unpainted Concrete, PS2-2	Unpainted Tops of Side Walk & Concrete Steps (see Attachment 5-5)
Unpainted Steel, PS2-3	Lower 20" of Unpainted Steel Roof - West & East Sides (see Attachment 5-6)
Exterior Aluminum Siding, PS2-4	Aluminum Wall Covering (see Attachment 6-3 for Approximate locations)*

*Note: Approximate locations are identified on the indicated diagrams as $1 m^2$ areas. These locations were selected using a random selection process. Surveyor should survey the approximate locations indicated and cover about $1 m^2$ of area at each location.

NOTE

If the > 10% of the DCGLw values (Table 1) is discovered in this Class 3 area, the survey unit should be re-classified and re-surveyed IAW Reference 3.4, Table 5-7. To ensure that an elevated count rate is the result of Cs-137 contamination, sample (if possible) any surface location above the action levels of Table 4, and gamma scan the sampled materials (core or scrape the surface to collect the sample IAW Reference 3.5).

3.0 <u>REFERENCES</u>

- 3.1 SNEC Calculation No. E900-05-002, PENELEC Switch Yard, Class 1 Area Survey Design.
- 3.2 SNEC Calculation No. 6900-02-028, GFPC Instrument Efficiency Loss Study.
- 3.3 Compass Computer Program, Version 1.0.0, Oak Ridge Institute for Science and Education.
- 3.4 SNEC Facility License Termination Plan.
- 3.5 SNEC Procedure E900-IMP-4520.04, "Survey Methodology to Support SNEC License Termination".

FirstEnergy	SNEC CALCULATION SHEET		
Calculation Number	Revision Number	Page Number	

Calculation Number E900-05-004

Revision Number

0

Page 5 of 9

Subject

PENELEC Switch Yard Class 3 Control Building – Survey Design

- 3.6 Visual Sample Plan, Version 2.0 (or greater), Copyright 2002, Battelle Memorial Institute.
- SNEC Procedure E900-IMP-4500.59, "Final Site Survey Planning and DQA". 3.7
- 3.8 GPU Nuclear, SNEC Facility, "Site Area Grid Map", SNECRM-020, Sheet 1, Rev 2, 1/29/03.
- 3.9 GPU Nuclear, SNEC Facility, "Switch Yard Control Building", SNECRM-017, Sheet 1 & 2, Rev 0, 12/03/99.
- 3.10 SNEC Procedure E900-IMP-4520.06, "Survey Unit Inspection in Support of FSS Design".
- 3.11 NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual", August, 2000.
- 3.12 Microsoft Excel 97, Microsoft Corporation Inc., SR-2, 1985-1997.
- 3.13 SNEC Calculation No. E900-03-018, "Optimize Window and Threshold Settings for the Detection of Cs-137 Using the Ludlum 2350-1 and a 44/10 Nal Detector", 8/7/03.
- 3.14 ISO 7503-1, Evaluation of Surface Contamination, Part 1: Beta-emitters (maximum beta energy greater than 0.15 MeV) and alpha-emitters, 1988.

4.0 ASSUMPTIONS AND BASIC DATA

- 4.1 The Compass computer program is used to calculate the required number of random start systematic measurements to be taken in these survey units (Reference 3.3).
- 4.2 Background values are taken from like materials shown in Attachment 8-1 to 8-4.
- 4.3 Switch Yard Control Building (SYCB) surface variability measurements are shown in Attachment 9-1 to 9-5.
- 4.4 Structural surface area survey designs require the WRS statistical testing criteria.
- The number of points chosen by Compass are located on the survey maps for the 4.5 respective survey units by the Visual Sample Plan (VSP) computer code (Reference 3.6). Additional points may have been added as deemed appropriate or as an internal operation of the VSP computer code.
- 4.6 Reference 3.4 and 3.7 was used as guidance during the survey design development phase.
- 4.7 The site area drawings used to determine the physical extent of this area are listed as Reference 3.8, and 3.9.
- 4.8 **Remediation History**

No remediation has been performed in these survey units.

- 4.9 The western portion of the PENELEC Switch Yard resides within the OL12 site area. The sample mix is assumed to be the same as that currently assigned to the OL1 and OL2 areas (CV yard). The sample list was decayed to December 15th, 2004. In all, twenty three (23) sample results were used to determine the best representative mix.
- 4.10 The sample database used to determine the effective radionuclide mix has been drawn from previous samples that were assayed at off-site laboratories. This list is shown in Reference 3.1, and includes (23) analysis results. Review of the data shows several radionuclides have not been positively identified at any significant concentration. These

FirstEnergy SNEC CALCULATION SHEET				
Calculation Number	Revision Number	Pag	e Number	
E900-05-004	0		Page 6 of 9	

Subject

PENELEC Switch Yard Class 3 Control Building – Survey Design

radionuclides have been removed from the data set and will not be considered further. Radionuclides removed include Am-241, C-14, Eu-152, Ni-63, Pu-238, Pu-239 and Pu-41. Additionally, the data shows Cs-137 to be the predominant radioactive contaminant found in the area. Sr-90 on the other hand, was positively identified in only one (1) sample. H-3 was identified as a positive contaminant in six (6) samples, and Co-60 was identified in three (3) samples.

The decayed sample results were input to the spreadsheet titled "Effective DCGL Calculator for Cs-137" to determine both the effective volumetric DCGLw and gross activity DCGLw values for this area. The output of this spreadsheet is shown in **Reference 3.1**.

- 4.11 The survey units described in this survey design were inspected by SNEC personnel. A copy of portions of the SNEC facility inspection report (Reference 3.10), is included as Attachment 10-1.
- 4.12 No special area characteristics including any additional residual radioactivity (not previously noted during characterization) have been identified in this survey area.
- 4.13 The decision error for this survey design is 0.05 for the α value and 0.1 for the β value.
- 4.14 "Special measurements" (as described in the SNEC LTP) are not included in this survey design.
- 4.15 No additional sampling will be performed IAW this survey design beyond that described herein.
- 4.16 SNEC site radionuclides and their individual DCGLw values are listed on **Exhibit 1** of this calculation.
- 4.17 The survey design checklist is listed in Exhibit 2.
- 4.18 Area factors are not applicable in Class 3 areas.

5.0 CALCULATIONS

5.1 All calculations are performed internal to applicable computer codes or within an Excel spreadsheet.

6.0 APPENDICES

- 6.1 Attachment 1-1, is a diagram of the PENELEC Switch yard area.
- 6.2 Attachment 1-2 and 1-3, are GPU Nuclear drawings of the PENELEC switch Yard Control Building.
- 6.3 Attachment 2-1, is the justification for a limited survey of the Switch Yard and some basic safety concerns for this area.
- 6.4 Attachment 3-1 to 3-3, are basic data showing first the thickness of paint on concrete surfaces in the SYCB, and then the impact of painted surfaces on beta radiation detection efficiency.
- 6.5 Attachment 4-1 to 4-8, are the MDCscan calculation sheets for these survey units.
- 6.6 Attachment 5-1 to 5-5, are the Compass indicated and VSP plotted static measurement points for these survey units. Judgmental scan areas are also located on select diagrams.
- 6.7 Attachment 6-1 to 6-3, are randomly located scan locations for three survey units.

SNEC CALCULATION SHEET					
Calculation Number	Revision Number	Page Number			
E900-05-004	0	Page 7 of 9			
Subject PENELEC Switch Yard C	ass 3 Control Building – Survey Design	I			

- 6.8 Attachment 7-1 to 7-14, are Compass computer code output for these survey units.
- 6.9 Attachment 8-1 to 8-4, are generic background values for material types present in these survey units.
- 6.10 Attachment 9-1 to 9-5, are typical survey unit variability measurements for the SYCB.
- 6.11 Attachment 10-1, is a copy of the survey unit inspection report for the SYCB.

FirstE	nergy

SNEC CALCULATION SHEET

Revision Number

Calculation Number E900-05-004

0

Page Number

Subject

PENELEC Switch Yard Class 3 Control Building – Survey Design

Exhibit 1

SNEC Facility Individual Radionuclide DCGL Values (a)

Radionuclide	25 mrem/y Limit Surface Area (dpm/100cm²)	25 mrem/y Limit (All Pathways) Open Land Areas (Surface & Subsurface) (pCi/g)	4 mrem/y Goal (Drinking Water) Open Land Areas ^(b) (Surface & Subsurface) (pCi/g)
Am-241	2.7E+01	9.9	2.3
C-14	3.7E+06	2	5.4
Co-60	7.1E+03	3.5	67
Cs-137	2.8E+04	6.6	397
Eu-152	1.3E+04	10.1	1440
H-3	1.2E+08	132	31.1
Ni-63	1.8E+06	747	1.9E+04
Pu-238	3.0E+01	1.8	0.41
Pu-239	2.8E+01	1.6	0.37
Pu-241	8.8E+02	86	19.8
Sr-90	8.7E+03	1.2	0.61

NOTES:

(a) While drinking water DCGLs will be used by SNEC to meet the drinking water 4 mrem/y goal, only the DCGL values that constitute the 25 mrem/y regulatory limit will be controlled under this LTP and the NRC's approving license amendment.

(b) Listed values are from the subsurface model. These values are the most conservative values between the two models (i.e., surface & subsurface).

FirstEnergy

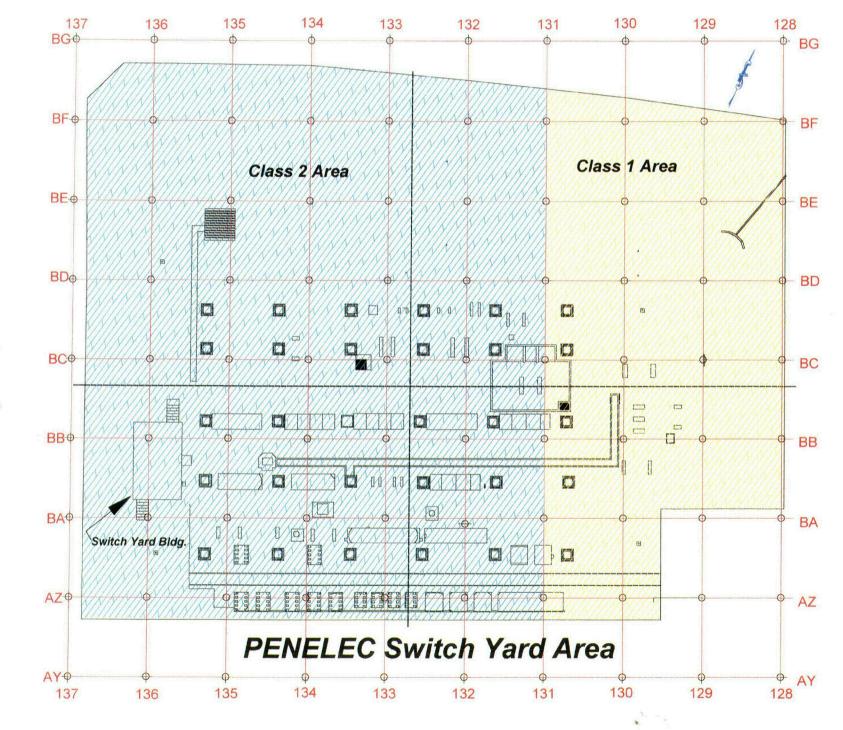
SNEC CALCULATION SHEET

Calculation Number E900-05-004 Revision Number

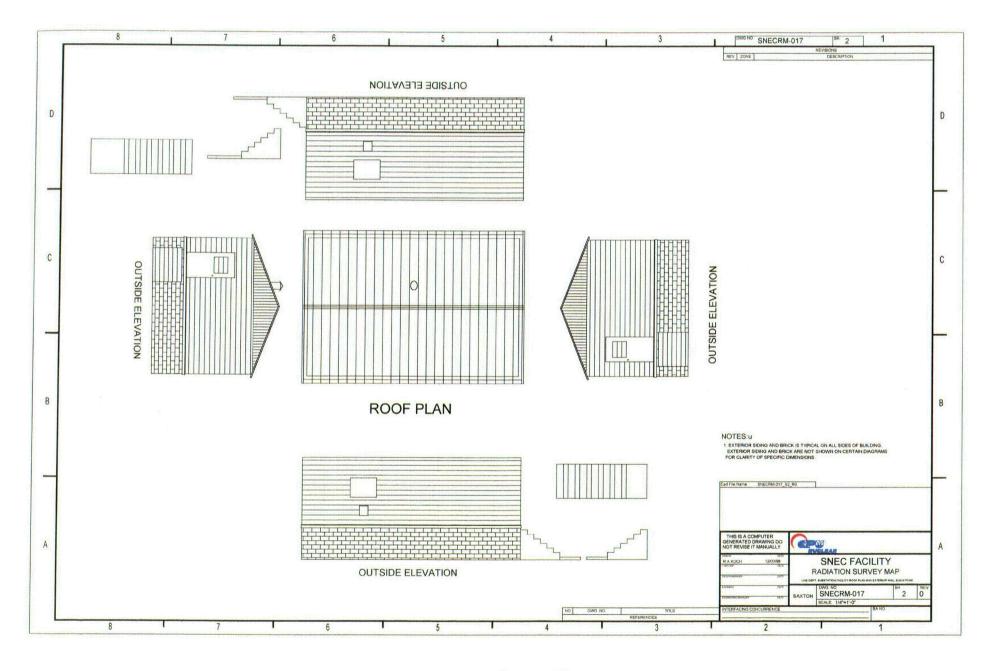
0

Page 9 of 9

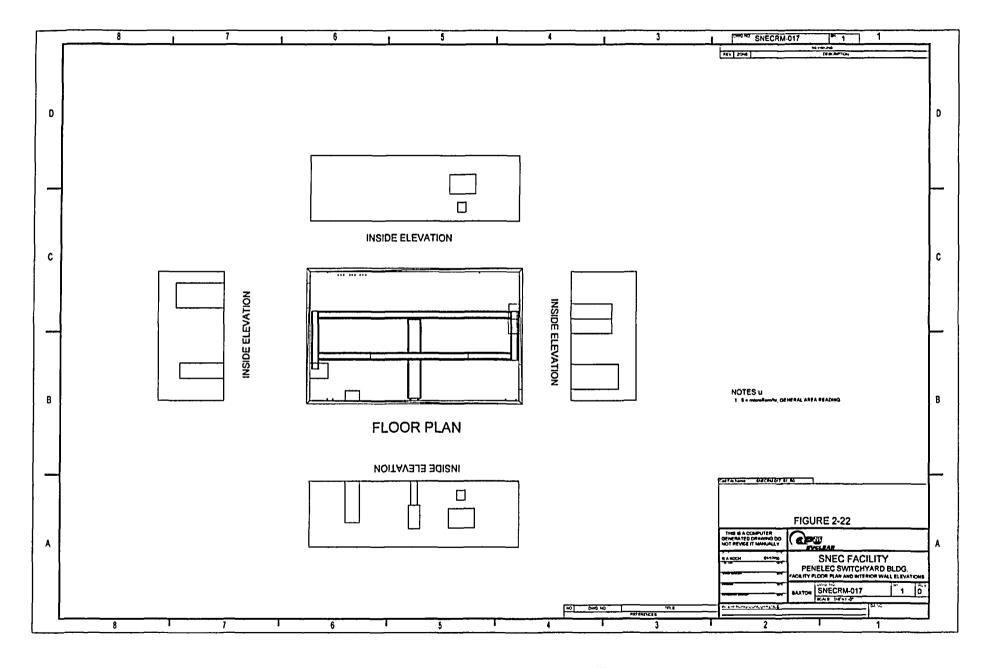
Page Number


Subject

PENELEC Switch Yard Class 3 Control Building – Survey Design


Exhibit 2 Survey Design Checklist

Calcula		Location Codes PS1-1, PS1-2, PS1-3. PS2-1, PS2-2, PS2-3 & P	S2-4 (SYCB)	
ITEM	REVIEW	Status (Circle One)	Reviewer Initials & Date	
1	Has a survey design calculation number been assigned and is a survey design summary description provided?		Yes, N/A	Right 3/2/05
2	Are drawings/diagrams adequate for the sut heading		Yes, N/A	ax 3/24/05
3	Are boundaries properly identified and is the	survey area classification clearly indicated?	Yes, N/A	Boy \$12405
4	Has the survey area(s) been properly div	ided into survey units IAW EXHIBIT 10	Yes, N/A	204 hold
5	Are physical characteristics of the an	ea/location or system documented?	Ves N/A	124 de
6	Is a remediation effectiven	ess discussion included?	Yes, N/A	AX 3/240
7	Have characterization survey and/or sampli comparable to applic		Yes N/A	AS ibilos
8	Is survey and/or sampling data that was used f	or determining survey unit variance included?	Yes N/A	ACX 7/240
9	Is a description of the background reference sampling results included along wit		Yes N/A	PALA TEVO
10	Are applicable survey and/or sampling data the		Yes, N/A	Q.XA 7/240
11	Will the condition of the survey area have an probable impact been co		Yes, N/A	Roy 3/20
12	Has any special area characteristic includir previously noted during characterization) be design	en identified along with its impact on survey	YesN/A	an tilos
13	Are all necessary supporting calculations and	I/or site procedures referenced or included?	Yer, N/A	204 124
14	Has an effective DCGLw been i	dentified for the survey unit(s)?	Yes N/A	lix4 120
15	Was the appropriate DCGLENC includ	ed in the survey design calculation?	Yes, N/A	20x 3/24/0
16	Has the statistical tests that will be use	d to evaluate the data been identified?	Yes N/A	ery Hado
17	Has an elevated measurement compa	rison been performed (Class 1 Area)?	Yes, N/A	ACA 12 1/0
18	Has the decision error levels been identified a	nd are the necessary justifications provided?	Yes N/A	ast trelo
19	Has scan instrumentation been identified alor	ng with the assigned scanning methodology?	Yes, N/A	ANA Tay
20	Has the scan rate been identified, and is the	MDCscan adequate for the survey design?	Yes, N/A	Car hy
21	Are special measurements e.g., in-situ gamma and is the survey methodology, an		Yes N/A	ast Finda
22	Is survey instrumentation calibration data inclu	ded and are detection sensitivities adequate?	Yes N/A	Port Fish
23	Have the assigned sample and/or measuremen or CAD drawing of the survey area		Yes, N/A	lift 3/24/a
24	Are investigation levels and administrative lim clearly in		Yes, N/A	104 3/24
25	For sample analysis, have the requi		Yes, N/A	Aut 1240
26	Has any special sampling methodology been id	entified other than provided in Reference 6.3?	Yes N/A	Art 3/24/


NOTE: a copy of this completed form or equivalent, shall be included within the survey design calculation.

ATTACHMENT_1_2

ATTACHMENT 1.3

The following are the FirstEnergy specific requirements applicable to entry and work in substations. Please note that other routine safety requirements such as use of PPE, switching & tagging, confined space, etc., are not covered here

From subsection 411 "Substations" of section 400 "Electrical Safety" of the FirstEnergy "Energy Delivery Accident Prevention Handbook" the following precautions are to be observed when working in or near Company substations that may be applicable to your question:

411.1 Employees assigned to work in substations or perform switching must be:

- (a) Properly qualified through training or work experience.
- (b) Familiar with the equipment being operated and knowledgeable of the "Manual of Operations".

411.5 When handling material and equipment, care must be taken to maintain minimum approach distances. (*Approach distances are covered in section 412*)

411.6 before driving into a substation, radio antennas on vehicles must be lowered and secured in place.

411.8 A qualified person must escort all unqualified personnel when entering a substation. (*Qualified persons are defined in OSHA 29 CFR 1910.269*)

412 Minimum Safe Working Distances from Energized Conductors or Equipment

412.1 Unless properly protected, qualified personnel must maintain minimum working distances and clear hot-stick distances from uninsulated and energized equipment as outlined in the following:

A table follows showing the minimum clearances. The shortest applicable is 2'-1" from 1.1 kV to 3'-2" for 115 kV. *Please note however that these distances only apply to "Qualified Personnel"*.

412.3 Employees/contracted personnel *not* electrically qualified per the requirements of 29 CFR 1910.269 must maintain a minimum approach of at least 10 feet from energized conductors and equipment.

Note that except for some Company specific terminology, these requirements come from OSHA 29 CFR 1910.

For Final Status Survey (FSS) work in the Saxton Penelec Substation, Radiological Controls technicians who are not electrically qualified per the requirements of 29 CFR 1910.269 must maintain a minimum approach of at least 10 feet from energized conductors and equipment. Much of the lattice support structure and almost all of the components in the substation are inaccessible to personnel not so qualified. In addition, the ground surface within 10 feet of un-insulated energized equipment would be inaccessible for FSS.

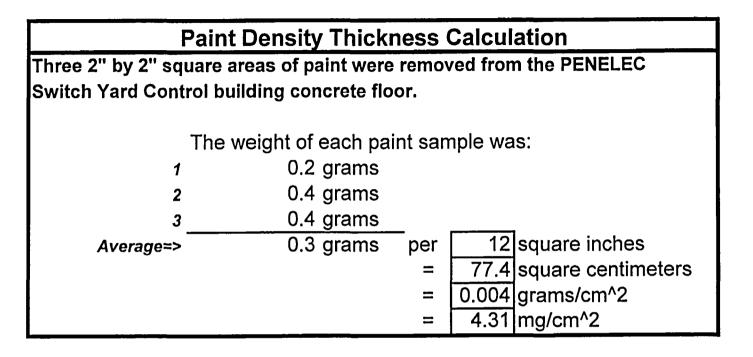
ATTACHMENT 2.1

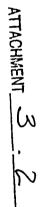
Barry Brosey

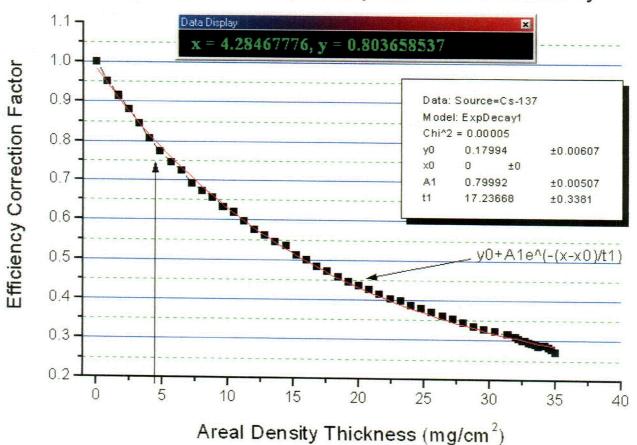
"robby marquette" <onemanuke@yahoo.com></onemanuke@yahoo.com>
"Barry Brosey" <bbrosey@msn.com></bbrosey@msn.com>
Monday, March 07, 2005 2:27 PM
Paint test from SY bldg

Barry,

Mr. Lewis performed three (3) paint removal efforts on 2"X2" sections of the floor in the switch yard building. The results are as follows:


#1 0.2g #2 0.4g


#3 0.4g


Hope this is sufficient

Rob

ATTACHMENT_3.1

Impact of Increasing Density Thickness On Efficiency

ATTACHMENT 3 3

Painted Concrete Criteria - 2350/43-68

$$\varepsilon_{i} := .478 \qquad \varepsilon_{s} := .5 \cdot .599 \cdot 8 \qquad b := 306 \qquad p := 0.5 \qquad W_{d} := 8.8 \qquad S_{r} := 2.2 \qquad d := 1.38 \qquad A := 100$$

$$\frac{W_{d}}{S_{r}} = 4 \qquad Observation Interval (seconds) \qquad O_{i} := \frac{W_{d}}{S_{r}} \qquad Observation Interval (seconds)$$

$$b_{i} := \frac{(b \cdot O_{i})}{60} \qquad \varepsilon_{i} := \varepsilon_{i} \cdot \varepsilon_{s}$$

$$\varepsilon_{i} := 0.1145$$

b_i = 20.4 Counts in observation Interval

$$C := \frac{I}{\left(\varepsilon_{i} \cdot \varepsilon_{s} \cdot \frac{A}{100}\right) \sqrt{p}}$$

C = 12.348

$$MDCR_{i} := \left(d \cdot \sqrt{b_{i}} \right) \cdot \frac{60}{O_{i}}$$

MDCR_i+b=399.494 gross counts per minute

$$\frac{MDCR_{i}}{O_{i}} = 23.4$$
 net counts per minute in observation interval

MDC_{scan} := C·MDCR_i

$$MDC_{scan} = 1.154 \cdot 10^3$$
 dpm per 100 cm²

MARSSIN, Pages 6-38 to 6-43 Equations 6-9 & 6-10; and NUREG-1507, Pages 6-15 to 6-17

ATTACHMENT 4.1

3/15/2005

.

where:

b = background counts per minute

 b_i = background counts in observation interval

p = human performance factor

 W_d = detector width in centimeters

 $S_r = scan rate in centimeters per second$

d = index of sensitivity (Table 6.5 MARSSIM), 1.38 = 95% of correct detection's, 60% false positives $MDC_{scan} = Minimum$ Detectable Concentration for scanning (dpm/100 square centimeters)

C = constant used to convert MDCR to MDC

 $\varepsilon_i = instrument \ efficiency \ (counts/emission)$

 $\varepsilon_s = source \ efficiency \ (emissions/disintegration)$

A = instrument physical probe area (in square centimeters)

ATTACHMENT 4.2

3/15/2005

4

Painted Steel Criteria - 2350/43-68

$$\varepsilon_{i} := .478 \qquad \varepsilon_{s} := .5 \cdot .599 \cdot 8 \qquad b := 254 \qquad p := 0.5 \qquad W_{d} := 8.8 \qquad S_{r} := 2.2 \qquad d := 1.38 \qquad A := 100$$

$$\frac{W_{d}}{S_{r}} = 4 \qquad Observation Interval (seconds) \qquad O_{i} := \frac{W_{d}}{S_{r}} \qquad Observation Interval (seconds)$$

$$b_{i} := \frac{(b \cdot O_{i})}{60} \qquad \varepsilon_{i} := \varepsilon_{i} \cdot \varepsilon_{s}$$

$$\varepsilon_{i} := 0.1145$$

$$C := \frac{I}{\left(\varepsilon_{i} \cdot \varepsilon_{s} \cdot \frac{A}{100}\right) \sqrt{p}}$$

C = 12.348

$$MDCR_{i} := \left(d \cdot \sqrt{b_{i}} \right) \cdot \frac{60}{O_{i}}$$

 $MDCR_{i}+b=339.181$ gross counts per minute

$$\frac{MDCR_{i}}{O_{i}} = 21.3 \qquad \underline{net\ counts\ per\ minute\ in\ observation\ interval}$$

MDC_{scan} := C·MDCR_i

$$MDC_{scan} = 1.052 \cdot 10^3$$
 dpm per 100 cm²

MARSSIM, Pages 6-38 to 6-43 Equations 6-9 & 6-10; and NUREG-1507, Pages 6-15 to 6-17

4	~	3/15/2005
ATTACHMENT	3	

Aluminum Siding & Ceiling Materials Criteria - 2350/43-68

$$\varepsilon_{i} := .478 \quad \varepsilon_{s} := .5 \cdot .599 \quad b := 295 \quad p := 0.5 \quad W_{d} := 8.8 \quad S_{r} := 2.2 \quad d := 1.38 \quad A := 100$$

$$\frac{W_{d}}{S_{r}} = 4 \quad Observation Interval (seconds) \quad O_{i} := \frac{W_{d}}{S_{r}} \quad Observation Interval (seconds)$$

$$b_{i} := \frac{(b \cdot O_{i})}{60} \quad \varepsilon_{i} := 0.1432$$

$$C := \frac{1}{\left|\varepsilon_i \cdot \varepsilon_s \cdot \frac{A}{100}\right| \sqrt{p}}$$

C = 9.878

$$MDCR_{i} := \left(d \sqrt{b_{i}} \right) \frac{60}{O_{i}}$$
$$MDCR_{i} = 91.8$$

 $MDCR_{i} + b = 386.799 \qquad gross \ counts \ per \ minute$

$$\frac{MDCR_{i}}{O_{i}} = 22.9 \qquad \underline{net \ counts \ per \ minute \ in \ observation \ interval}$$

MDC_{scan} := C·MDCR_i

MARSSIM, Pages 6-38 to 6-43 Equations 6-9 & 6-10, and NUREG-1507, Pages 6-15 to 6-17

3/15/2005 ATTACHMENT 4.4

Concrete Block Criteria - 2350/43-68

$$\varepsilon_{i} := .478 \qquad \varepsilon_{s} := .5 .599 \qquad b := 341 \qquad p := 0.5 \qquad W_{d} := 8.8 \qquad S_{r} := 2.2 \qquad d := 1.38 \qquad A := 100$$

$$\frac{W_{d}}{S_{r}} = 4 \qquad Observation Interval (seconds) \qquad O_{i} := \frac{W_{d}}{S_{r}} \qquad Observation Interval (seconds)$$

$$b_{i} := \frac{(b \cdot O_{i})}{60} \qquad \varepsilon_{i} := \varepsilon_{i} \cdot \varepsilon_{s}$$

$$\varepsilon_t = 0.1432$$

$$C := \frac{1}{\left|\varepsilon_{i} \cdot \varepsilon_{s} \frac{A}{100}\right| \sqrt{p}}$$

C = 9.878

۲

$$MDCR_{i} := \left(d \cdot \sqrt{b_{i}} \right) \cdot \frac{60}{O_{i}}$$

MDCR_i+b=439.697 gross counts per minute

$$\frac{MDCR_{i}}{O_{i}} = 24.7$$
net counts per minute in observation interval

MDC_{scan} := C·MDCR_i

$$MDC_{scan} = 974.972 \qquad dpm \ per \ 100 \ cm^2$$

ATTACHMENT 4.5 3/15/2005

Unpainted Concrete Criteria - 2350/43-68

$$\varepsilon_{i} := .478 \quad \varepsilon_{s} := .5 .599 \quad b := 306 \quad p := 0.5 \quad W_{d} := 8.8 \quad S_{r} := 2.2 \quad d := 1.38 \quad A := 100$$

$$\frac{W_{d}}{S_{r}} = 4 \quad Observation Interval (seconds) \quad O_{i} := \frac{W_{d}}{S_{r}} \quad Observation Interval (seconds)$$

$$\varepsilon_{i} := \varepsilon_{i} \cdot \varepsilon_{s}$$

$$C := \frac{1}{\left(\varepsilon_i \cdot \varepsilon_s, \frac{A}{100}\right) \sqrt{p}}$$

C = 9.878

$$MDCR_{i} := \left(d \cdot \sqrt{b_{i}} \right) \cdot \frac{60}{O_{i}}$$

MDCR_i+b=399.494 gross counts per minute

$$\frac{MDCR_{i}}{O_{i}} = 23.4$$
 net counts per minute in observation interval

MDC_{scan} := C·MDCR_i

$$MDC_{scan} = 923.583 \qquad dpm \ per \ 100 \ cm^2$$

ATTACHMENT 4 - 6

3/15/2005

 $\varepsilon_t = 0.1432$

3

Unpainted Steel Criteria - 2350/43-68

 $\varepsilon_{i} := .478 \qquad \varepsilon_{s} := .5 \cdot .599 \qquad b := 254 \qquad p := 0.5 \qquad W_{d} := 8.8 \qquad S_{r} := 2.2 \qquad d := 1.38 \qquad A := 100$ $\frac{W_{d}}{S_{r}} = 4 \qquad Observation Interval (seconds) \qquad O_{i} := \frac{W_{d}}{S_{r}} \qquad Observation Interval (seconds)$ $b_{i} := \frac{(b \cdot O_{i})}{60} \qquad \varepsilon_{t} := \varepsilon_{i} \cdot \varepsilon_{s}$ $\varepsilon_{t} := 0.1432$

$$C := \frac{I}{\left(\varepsilon_{i} \cdot \varepsilon_{s} \cdot \frac{A}{100}\right) \sqrt{p}}$$

C = 9.878

$$MDCR_{i} := \left(d \cdot \sqrt{b_{i}} \right) \cdot \frac{60}{O_{i}}$$

MDCR_i+b=339.181 gross counts per minute

$$\frac{MDCR_{i}}{O_{i}} = 21.3$$
 net counts per minute in observation interval

MDC_{scan} := C·MDCR_i

$$MDC_{scan} = 841.457$$
 dpm per 100 cm²

ATTACHMENT 4.7

3

Aluminum Siding Criteria - 2350/43-68

$$\varepsilon_{i} := .478 \qquad \varepsilon_{s} := .5 .599 \qquad b := 295 \qquad p := 0.5 \qquad W_{d} := 8.8 \qquad S_{r} := 2.2 \qquad d := 1.38 \qquad A := 100$$

$$\frac{W_{d}}{S_{r}} = 4 \qquad Observation Interval (seconds) \qquad O_{i} := \frac{W_{d}}{S_{r}} \qquad Observation Interval (seconds)$$

$$b_{i} := \frac{(b \cdot O_{i})}{60} \qquad \varepsilon_{i} := 0.1432$$

$$C := \frac{1}{\left(\varepsilon_i \cdot \varepsilon_s \cdot \frac{A}{100}\right) \sqrt{p}}$$

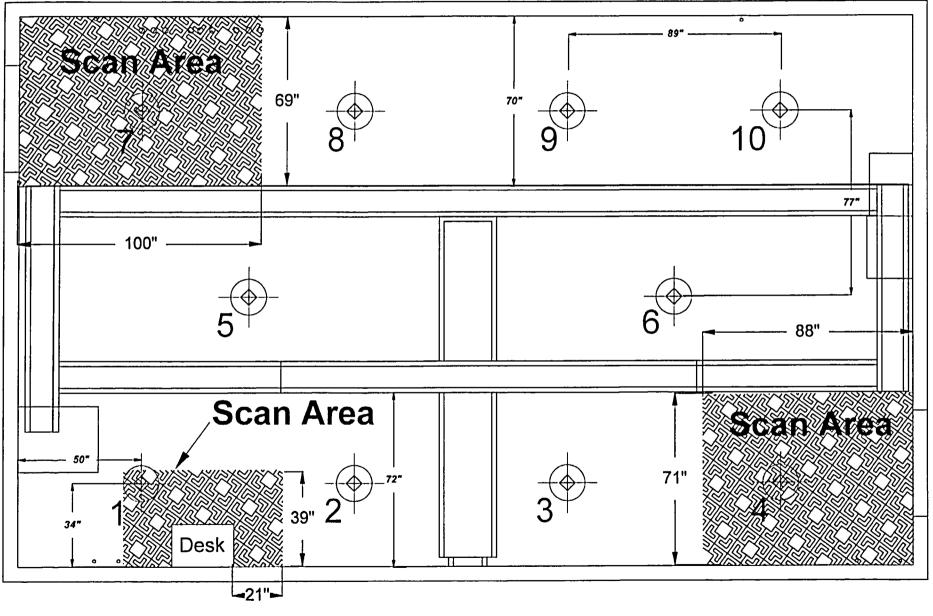
C = 9.878

$$MDCR_{i} := \left(d \cdot \sqrt{b_{i}} \right) \cdot \frac{60}{O_{i}}$$

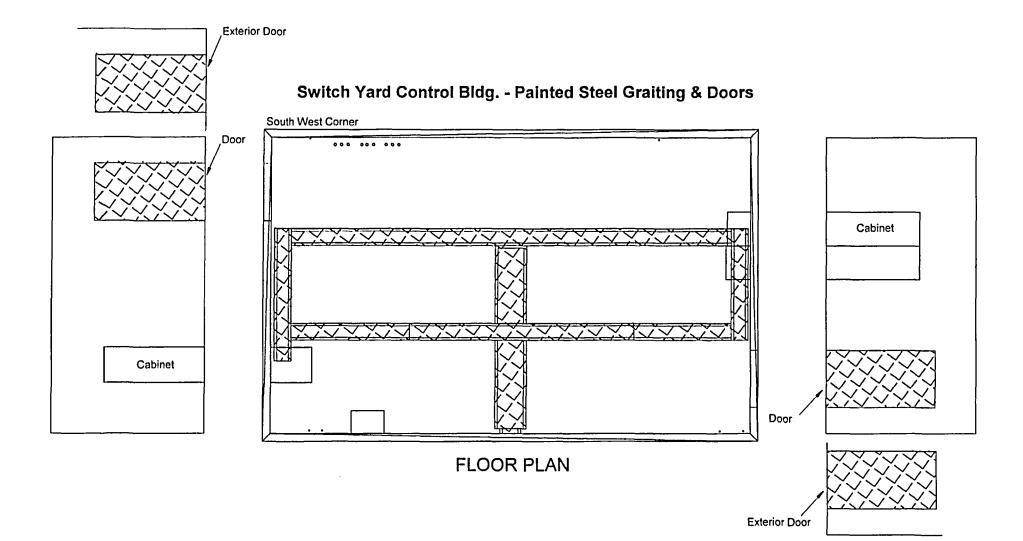
MDCR_i+b=386.799 gross counts per minute

$$\frac{MDCR_{i}}{O_{i}} = 22.9$$
 net counts per minute in observation interval

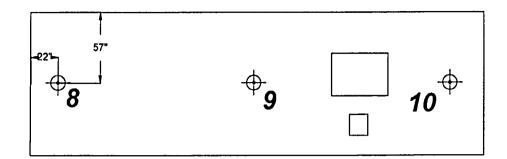
MDC_{scan} := C·MDCR_i

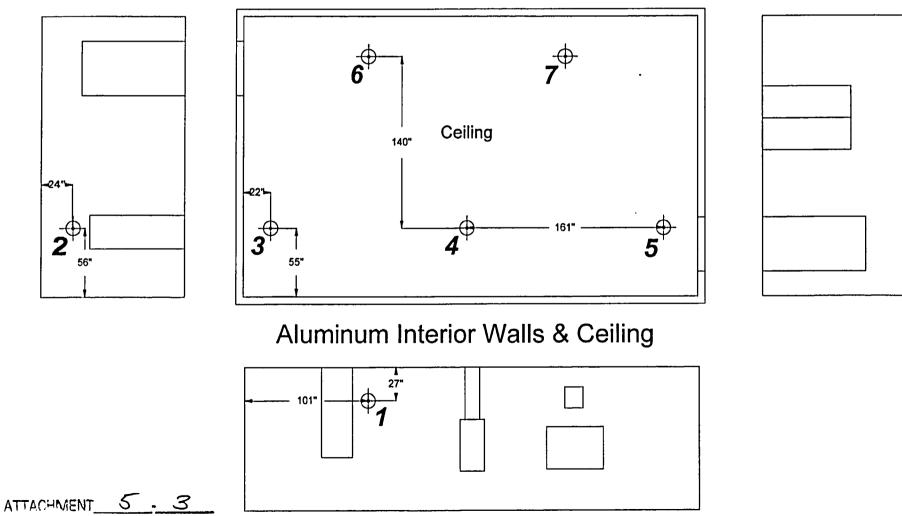

$$MDC_{scan} = 906.83 \qquad dpm \ per \ 100 \ cm^2$$

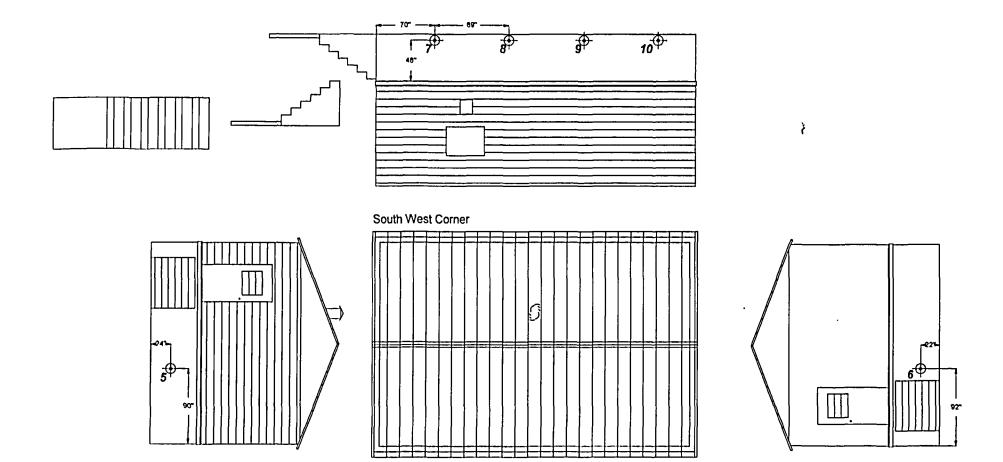
ATTACHMENT 4 . B

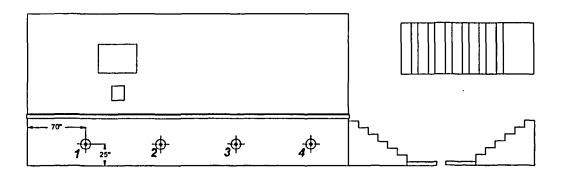

3/15/2005

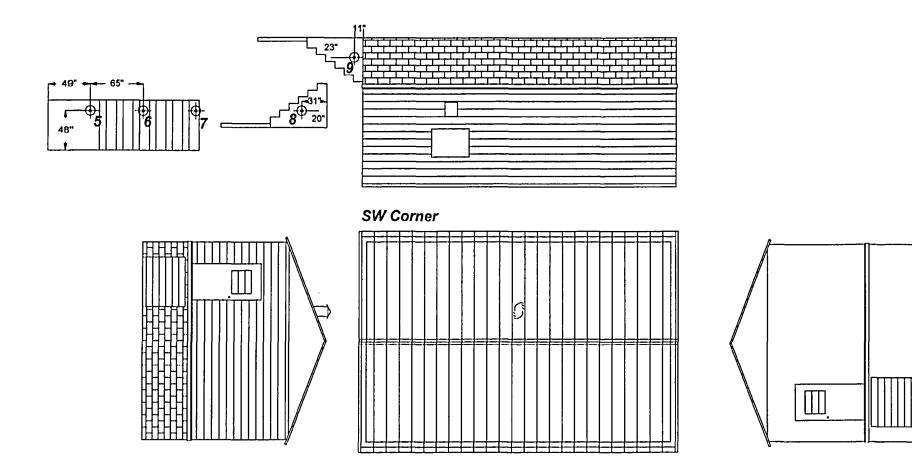
Switch Yard Control Bldg. - Painted Concrete Floor

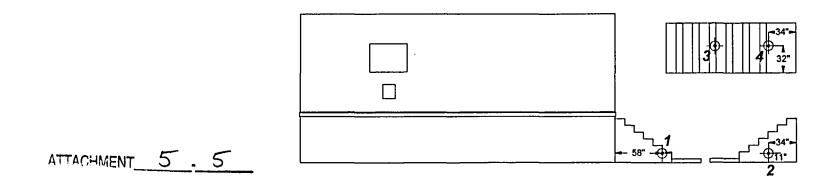

South West Corner

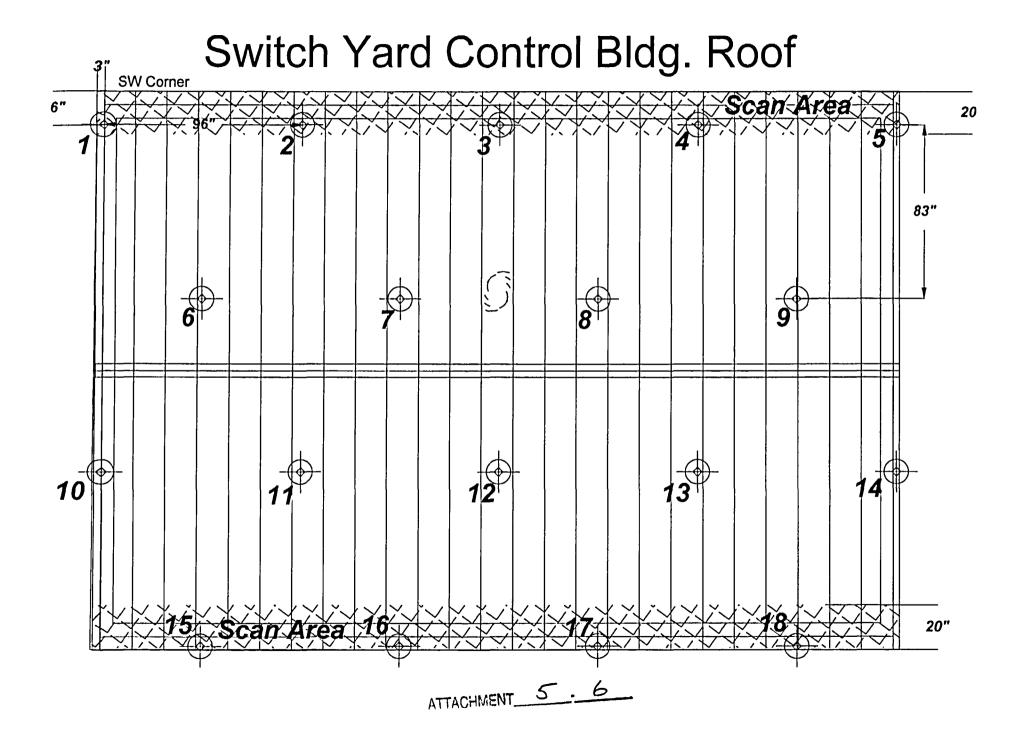

ATTACHMENT 5 . 1

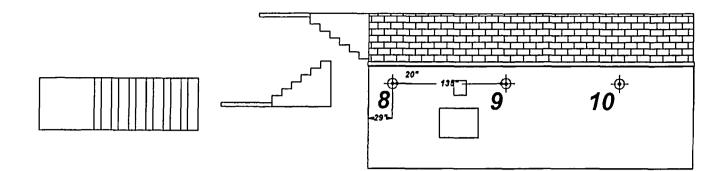

ATTACHMENT 5.2

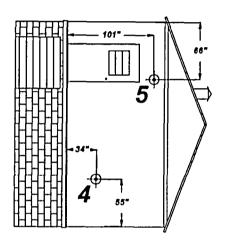

South West Corner

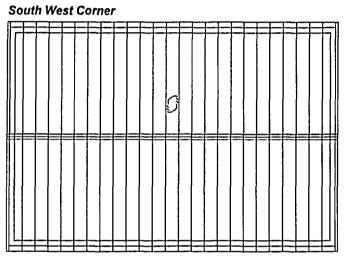

٠

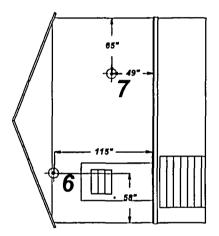

Switch Yard Control Bldg. - Concrete Block SD

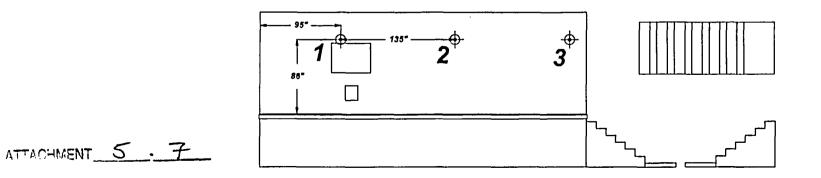


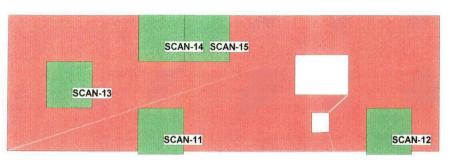

ATTACHMENT 5.4

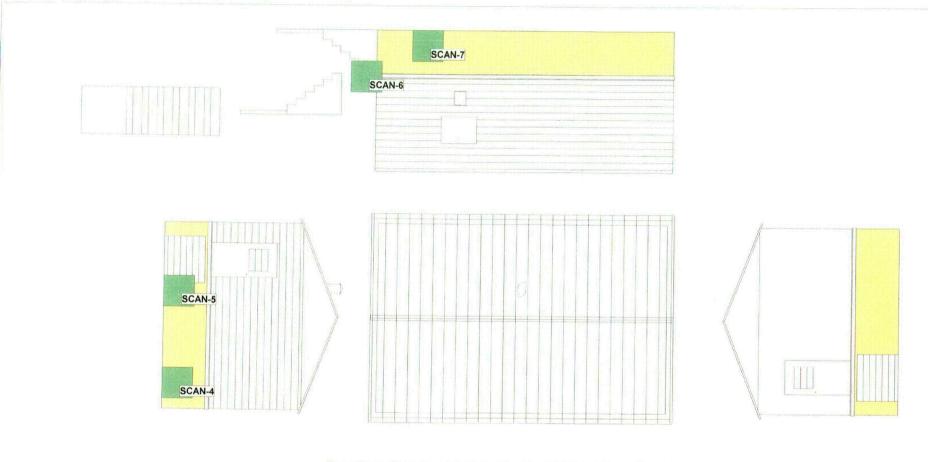


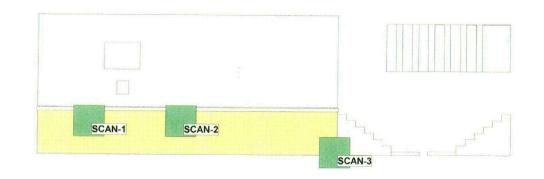

Switch Yard Control Bldg. - Unpainted Concrete



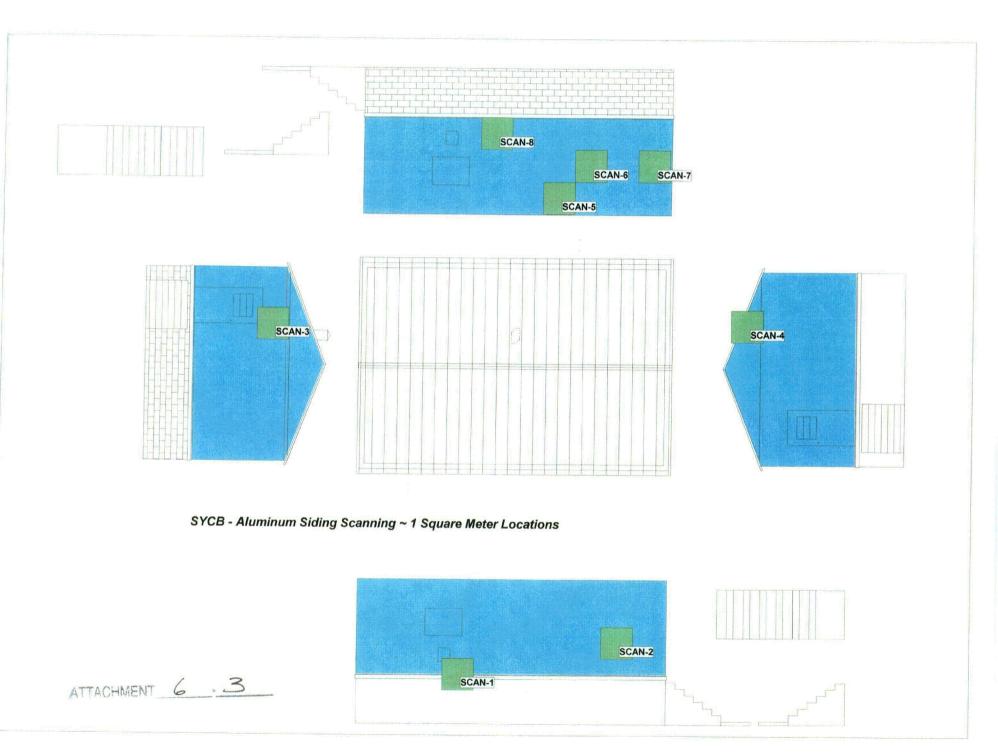





Switch Yard Control Building

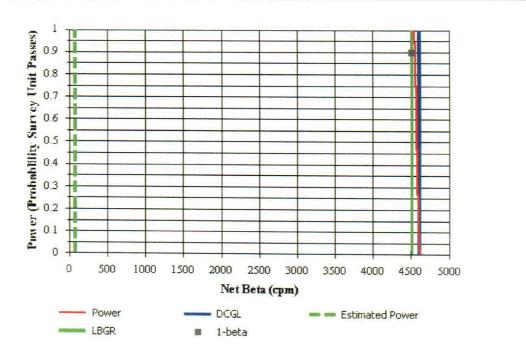


Approximate Scan Locations - 15 by ~1 Square Meter Areas



Scan Locations for Concrete Block - SYCB ~1 Meter Square ea

ATTACHMENT 6 - 2



Survey Plan Summary

Site:	PENELEC SY - Western Sect	or	
Planner(s):	BHB		
Survey Unit Name:	Painted Concrete PS1-1		
Comments:	Switch Yard Control Building		
Area (m²):	45	Classification:	3 2/0
Selected Test:	WRS	Estimated Sigma (cpm):	34.5 (Z·B)
DCGL (cpm):	4,607	Sample Size (N/2):	8
LBGR (cpm):	4,510	Estimated Conc. (cpm):	74
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100		

Prospective Power Curve

Page 1

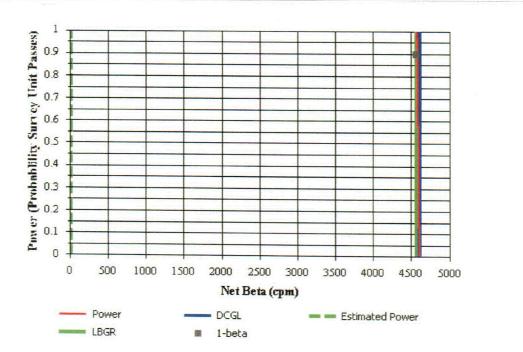
M

ATTACHMENT

Contaminant Summary

	DCGLw
Contaminant	(dpm/100 cm ²)
Gross Activity	33,238

Beta Instrumentation Summary


Gross Beta DCGLw (dpm/1 Total Efficiency:	100 cm²):	33,238 0,11			
Gross Beta DCGLw (cpm):		4,607			
D Type		4,001	Mode		Area (cm²)
31 GFPC			Beta		126
Contaminant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Gross Activity	187.87	1.0000	0.48	0.24	0.1145
Gross Activity ¹ Average beta energy (ke\ ² Activity fraction			0.48	0.24	0.11

Material	Number of	Average	Standard	MDC
	BKG Counts	(cpm)	Deviation (cpm)	(dpm/100 cm ²)
Concrete	31	306	34.5	609

Site:	PENELEC SY - Western Sector	or	
Planner(s):	BHB		
Survey Unit Name:	Painted Steel Surfaces PS1-2		
Comments:	Switch Yard Control Building		
Area (m²):	19	Classification:	3 4/5
Selected Test:	WRS	Estimated Sigma (cpm):	17.8 (2.2)
DCGL (cpm):	4,607	Sample Size (N/2):	9
LBGR (cpm):	4,560	Estimated Conc. (cpm):	21.6
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100		

Prospective Power Curve

Page 1

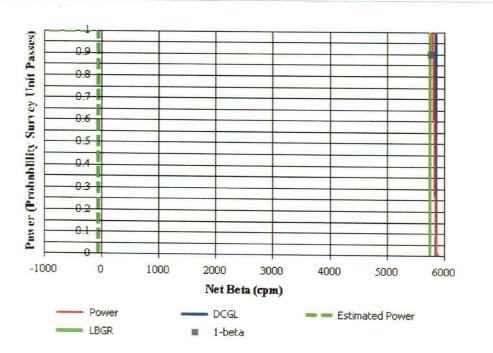
m

ATTACHMENT 7

	DCGLw
Contaminant	(dpm/100 cm ²)
Gross Activity	33,238

Beta Instrumentation Summary

Gross Beta DCGLw (dpm/1	00 cm²):	33,238			
Total Efficiency:		0.11			
Gross Beta DCGLw (cpm):		4,607			
1D Type			Mode		Area (cm²)
31 GFPC			Beta		126
Contaminant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Gross Activity	187.87	1.0000	0.48	0.24	0.1145
¹ Average beta energy (keV ² Activity fraction) [N/A indicates alpha	emission]			
Gross Survey Unit Mean (q Count Time (min): 1	pm): 276 ± 12 (1-sign	na)			
Material		Number of BKG Counts	Average (com)	Standard Deviation (com)	MDC (dom/100 cm ³


BKG Counts	(cpm)	Deviation (cpm)	(dpm/100 cm ²)
20	254.4	17.8	557
20	254.4	17.8	557
		BKG Counts (cpm)	BKG Counts (cpm) Deviation (cpm)

ATTACHMENT 7.4

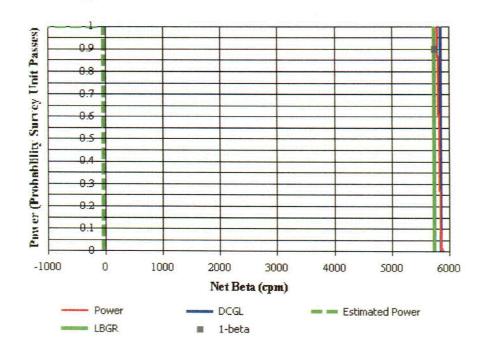
Site:	PENELEC SY - Western Sect	or	
Planner(s):	BHB		
Survey Unit Name:	Aluminum Siding & Ceiling Ma	aterials PS1-3	
Comments:	Switch Yard Control Building		
Area (m²):	131	Classification:	3 /0
Selected Test:	WRS	Estimated Sigma (cpm):	36.8 (7.8)
DCGL (cpm):	5,863	Sample Size (N/2):	8
LBGR (cpm):	5,760	Estimated Conc. (cpm):	-56.8
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100		

Prospective Power Curve

3/15/2005

ATTACHMENT 7

	DCGLw
Contaminant	(dpm/100 cm²)
Gross Activity	33,238


Beta Instrumentation Summary

Gross Beta DCGLw (dpm/100 c	m²):	33,238			
Total Efficiency:		0.14			
Gross Beta DCGLw (cpm):		5,863			
ID Туре			Mode		Area (cm²)
31 GFPC			Beta		126
Contaminant	Energy'	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Gross Activity	187.87	1.0000	0.48	0.29	0.1379
¹ Average beta energy (keV) [N/ ² Activity fraction	A indicates alpha	emission]			
Gross Survey Unit Mean (cpm): Count Time (min): 1	238 ± 13 (1-sigr	na)			
		Number of	Average	Standard	MDC
Material		BKG Counts	(cpm)	Deviation (cpm)	(dpm/100 cm ²)
Aluminum 2		16	294.8	36.8	470

Site:	PENELEC SY - Western Sector	or	
Planner(s):	ВНВ		
Survey Unit Name:	Concrete Block PS2-1		
Comments:	Switch yard Control Building		
Area (m²):	41	Classification:	3 A/0
Selected Test:	WRS	Estimated Sigma (cpm):	37.7 (2.99)
DCGL (cpm):	5,863	Sample Size (N/2):	8
LBGR (cpm):	5,750	Estimated Conc. (cpm):	-34.5
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100		

Prospective Power Curve

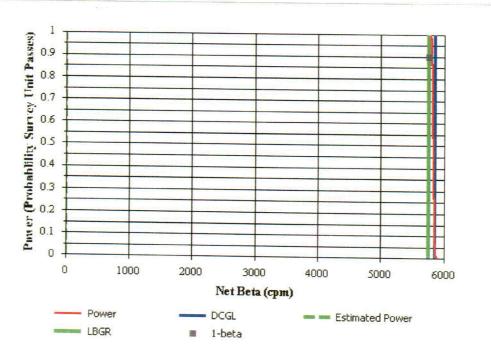
COMPASS v1.0.0

ATTACHMENT 7

	DCGLw
Contaminant	(dpm/100 cm²)
Gross Activity	33,238

Beta Instrumentation Summary

Total	s Beta DCGLw (dpm/100 cr Efficiency: s Beta DCGLw (cpm):		0.14 5,863			
D	Туре			Mode		Area (cm²)
31	GFPC			Beta		126
Cont	aminant	Energy'	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Crock	s Activity	187.87	1.0000	0.48	0.30	0,1432


Gross Survey Unit Mean (cpm): 306 ± 35 (1-sigma) Count Time (min): 1

Material	Number of	Average	Standard	MDC
	BKG Counts	(cpm)	Deviation (cpm)	(dpm/100 cm²)
Concrete Block	20	340.5	37.7	503

Site:	PENELEC SY - Western Sect	or	
Planner(s):	BHB		
Survey Unit Name:	Unpainted Concrete PS2-2		
Comments:	Switch Yard Control Building		
Area (m²):	24	Classification:	3 A/O
Selected Test:	WRS	Estimated Sigma (cpm):	34.5 (2.99)
DCGL (cpm):	5,863	Sample Size (N/2):	8
LBGR (cpm):	5,760	Estimated Conc. (cpm):	0
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100		

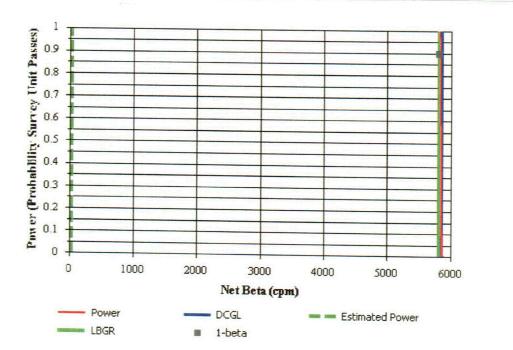
Prospective Power Curve

3/15/2005

ATTACHMENT 7

	DCGLw
Contaminant	(dpm/100 cm²)
Gross Activity	33,238

Beta Instrumentation Summary


Gross Beta DCGLw (dpm. Total Efficiency: Gross Beta DCGLw (cpm)	·	33,238 0.14 5,863			
ID Type			Mode		Area (cm²)
ID Type 31 GFPC		<u> </u>	Beta		126
Contaminant	Energy'	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Gross Activity	187.87	1.0000	0.48	0.30	0.1432
¹ Average beta energy (ke ² Activity fraction	V) [N/A indicates alph	a emission]			
Gross Survey Unit Mean (Count Time (min): 1	(cpm): 306 ± 35 (1-sig	ma)			

Material	Number of	Average	Standard	MDC
	BKG Counts	(cpm)	Deviation (cpm)	(dpm/100 cm ²)
Concrete	31	306	34.5	478

Site:	PENELEC SY - Western Sect	or	
Planner(s):	BHB		
Survey Unit Name:	Unpainted Steel PS2-3		
Comments:	Switch Yard Control Building		
Area (m²):	68	Classification:	3 /0
Selected Test:	WRS	Estimated Sigma (cpm):	20.3 (2.6)
DCGL (cpm):	5,863	Sample Size (N/2):	9
LBGR (cpm):	5,810	Estimated Conc. (cpm):	40.6
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100		

Prospective Power Curve

3/15/2005

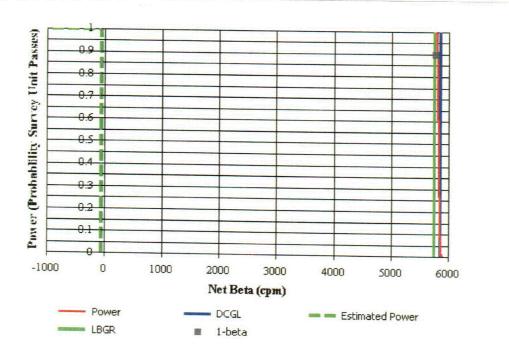
ATTACHMENT_7

Contaminant	
Gross Activity	

DCGLw (dpm/100 cm²) 33,238

Beta Instrumentation Summary

Gross Beta DCGLw (dpm/100 cm ²)):	33,238			
Total Efficiency:		0.14			
Gross Beta DCGLw (cpm):		5,863			
ID Type			Mode		Area (cm²)
31 GFPC			Beta		126
Contaminant	Energy'	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Gross Activity	187.87	1.0000	0.48	0.30	0.1432
¹ Average beta energy (keV) [N/A i ² Activity fraction	ndicates alph	a emission]			
Gross Survey Unit Mean (cpm): 29 Count Time (min): 1	95 ± 20 (1-sig	ma)			


Material	Number of	Average	Standard	MDC
	BKG Counts	(cpm)	Deviation (cpm)	(dpm/100 cm²)
Steel	20	254.4	17.8	437

ATACHMENT 7.12

Site:	PENELEC SY - Western Sect	or	
Planner(s):	BHB		
Survey Unit Name:	Aluminum Siding Exterior \neg	252-4	
Comments:	Switch Yard Control Building		
Area (m²):	63	Classification:	3 0/0
Selected Test:	WRS	Estimated Sigma (cpm):	36.8 (2.8)
DCGL (cpm):	5,863	Sample Size (N/2):	8
LBGR (cpm):	5,760	Estimated Conc. (cpm):	-56.8
Alpha:	0.050	Estimated Power:	1.00
Beta:	0.100		

Prospective Power Curve

Page 1

ATTACHMENT 7.13

Contaminant	DCGLw (dpm/100 cm ²)
Gross Activity	33,238

Beta Instrumentation Summary

Total E	Beta DCGLw (dpm/100 c Efficiency:	лп-):	33,238 0.14			
Gross	Beta DCGLw (cpm):		5,863			
D	Туре			Mode		Area (cm²)
31	GFPC			Beta		126
Conta	minant	Energy ¹	Fraction ²	Inst. Eff.	Surf. Eff.	Total Eff.
Groce	Activity	187.87	1.0000	0.48	0.30	0.1432

Gross Survey Unit Mean (cpm): 238 ± 13 (1-sigma) Count Time (min): 1

Material	Number o BKG Count		Standard Deviation (cpm)	MDC (dpm/100 cm ²)
Aluminum 2	16	294.8	36.8	470

ATTACHNENT 7 - 13 ONB

						te Backgroun					
37122N21	Instrument 95348 BKGND	RLM6220 1/4/2002	1ime 8:52		Counts 7.26E+03	Count Time (sec) 1800	Mode SCL	Designator	- <u>e</u>	FSS-001	ВНВ
0 1	Source Check	1/4/2002	8:52 9:07	1	1.79E+05	60	SCL	Inital Background Source	ρ β		
2	BKGND	1/4/2002		2	4.40E+01	1800	SCL	Inital Background	•	ete CF(com) ⇒	0.00E+00
14	Source Check	1/4/2002		2	1.51E+05	60	SCL	Source	a	Shielded	Unshielde
15	CON A1S	1/4/2002		1	2.78E+02	60	SCL	Shielded	ß	2.78E+02	1
16	CON A1U	1/4/2002		i	3.88E+02	60	SCL	Unshielded	B		3.88E+02
17	CON A2S	1/4/2002	13:20	1	2.39E+02	60	SCL	Shielded	B	2.39E+02	
18	CON A2U	1/4/2002		1	2.22E+02	60	SCL	Unshielded	ß		2.22E+02
19	CON A3S	1/4/2002	13:28	1	2.39E+02	60	SCL	Shielded	β	2.39E+02	
20	CON A3U	1/4/2002	13:30	1	2.62E+02	60	SCL	Unshielded	ß		2.62E+02
21	CON A4S	1/4/2002	13:36	1	2.45E+02	60	SCL	Shielded	B	2.45E+02	
22	CON A4U	1/4/2002		1	2.71E+02	60	SCL	Unshielded	B		2.71E+02
23	CON A5S	1/4/2002		1	2.00E+02	60	SCL	Shielded	B	2.00E+02	
<u>24</u> 	CON A5U CON A6S	1/4/2002		<u>1</u> 1	2.82E+02 1.84E+02	<u> </u>	SCL SCL	Unshielded Shielded	β	1.84E+02	2.82E+02
26	CON A6U	1/4/2002		1	3.10E+02	60	SCL	Unshielded	B B	1.042+02	3.10E+02
27	CON A7S	1/4/2002		<u></u>	1.98E+02	60	SCL	Shielded	В	1.98E+02	3.102.02
28	CON A7U	1/4/2002		i	3.15E+02	60	SCL	Unshielded	B	1.002.02	3.15E+02
29	CON A8S	1/4/2002		1	2.34E+02	60	SCL	Shielded	B	2.34E+02	
30	CON A8S	1/4/2002			2.31E+02	60	SCL	Shielded	B	2.31E+02	
31	CON A8U	1/4/2002	14:24	1	2.88E+02	60	SCL	Unshielded	B		2.88E+02
32	CON A9S	1/4/2002		1	2.65E+02	60	SCL	Shielded	B	2.65E+02	
33	CON A9U	1/4/2002		1	2.89E+02	60	SCL	Unshielded	β		2.89E+02
34	CON A10S	1/4/2002			2.46E+02	60	SCL	Shielded	β	2.46E+02	
35	CON A10U	1/4/2002		1	3.16E+02	60	SCL	Unshielded	В	L	3.16E+02
36	CON A11S	1/4/2002			1.95E+02	60	SCL	Shielded	B	1.95E+02	<u> </u>
<u>37</u> 38	CON A11U	1/4/2002		1	2.94E+02	60	SCL	Unshielded	B	0.015.00	2.94E+02
39	CON A12S CON A12U	1/4/2002 1/4/2002		1 1	2.21E+02 2.84E+02	60 60	SCL	Shielded	B	2.21E+02	0.045+0
40	CON A13S	1/4/2002		<u> </u>	1.74E+02	60	SCL SCL	Unshielded Shielded	B	1.74E+02	2.84E+02
41	CON A13U	1/4/2002		1	2.94E+02	60	SCL	Unshielded	B	1./46+02	2.94E+02
42	CON A14S	1/4/2002			1.96E+02	60	SCL	Shielded	B	1.96E+02	2.94210
43	CON A14U	1/4/2002		1	3.33E+02	60	SCL	Unshielded	B	1.002.02	3.33E+02
44	CON A15S	1/4/2002		1	2.16E+02	60	SCL	Shielded	B	2.16E+02	0.001_01
45	CON A15U	1/4/2002		1	3.45E+02	60	SCL	Unshielded	B		3.45E+02
46	CON A16S	1/4/2002	15:30	1	1.83E+02	60	SCL	Shielded	B	1.83E+02	1
47	CON A16U	1/4/2002		1	3.13E+02	60	SCL	Unshielded	ß		3.13E+02
48	CON A17S			1	1.82E+02	60	SCL	Shielded	B	1.82E+02	
49	CON A17U	1/4/2002		1	3.22E+02	60	SCL	Unshielded	β		3.22E+02
50	CON A18S	1/4/2002		1	1.84E+02	60	SCL	Shielded	B	1.84E+02	l
51	CON A18U	1/4/2002		1	3.24E+02	60	SCL	Unshielded	β		3.24E+02
52 53	CON A19S	1/4/2002		1	1.91E+02	60	SCL	Shielded	B	1.91E+02	
<u> </u>	CON A19U CON A20S	1/4/2002		<u>1</u>	3.07E+02	60	SCL	Unshielded	B	1.015.00	3.07E+0
55	CON A200	1/4/2002			1.94E+02 3.33E+02	60 60	SCL SCL	Shielded	ß	1.94E+02	3.33E+02
56	CON A21S	1/4/2002		<u> </u>	2.23E+02	60	SCL	Unshielded Shielded	<u>β</u> β	2.23E+02	3.33570
57	CON A21U	1/4/2002		-	2.92E+02	60	SCL	Unshielded		2.230.02	2.92E+02
58	CON A22S	1/4/2002			1.72E+02	60	SCL	Shielded	β	1.72E+02	2.022.0
59	CON A22U	1/4/2002	16:00	1	2.80E+02	60	SCL	Unshielded	B		2.80E+0
60	CON A23S	1/4/2002	16:01	1	1.94E+02	60	SCL	Shielded	ß	1.94E+02	
61	CON A23U	1/4/2002			3.29E+02	60	SCL	Unshielded	ß		3.29E+02
62	CON A24S	1/4/2002		1	1.87E+02	60	SCL	Shielded	ß	1.87E+02	
63	CON A24U	1/4/2002	16:05	1	3.48E+02	60	SCL	Unshielded	ß		3.48E+02
64 65	CON A25S	1/4/2002	16:06		2.07E+02	60	SCL	Shielded	B	2.07E+02	
<u>65</u> 66	CON A25U	1/4/2002		1	3.72E+02	60	SCL	Unshielded	B	L	3.72E+0
67	CON A26S CON A26U	1/4/2002		1	2.09E+02	· 60	SCL	Shielded	L <u>P</u>	2.09E+02	
68	CON A260 CON A27S	1/4/2002 1/4/2002		<u>1</u> 1	3.26E+02 2.07E+02	60	SCL	Unshielded	B	0.075.00	3.26E+0
69	CON A273	1/4/2002			2.07E+02 3.30E+02	60 60	SCL	Shielded	ß	2.07E+02	
70	CON A28S	1/4/2002			2.30E+02	60	SCL SCL	Unshielded Shielded	β	2 205+02	3.30E+0
71	CON A28U	1/4/2002		1	3.06E+02	60	SCL	Unshielded	B	2.30E+02	3.06E+0
72	CON A29S	1/4/2002	16:20		2.13E+02	60	SCL	Shielded	B	2.13E+02	J.00E70
73	CON A29U	1/4/2002		1	2.58E+02	60	SCL	Unshielded	B		2.58E+0
74	CON A30S	1/4/2002	16:24	1	2.33E+02	60	SCL	Shielded	β	2.33E+02	1
75	CON A30U	1/4/2002	16:25	1	2.89E+02	60	SCL	Unshielded	B		2.89E+0
76	CON A31S	1/4/2002		1	1.84E+02	60	SCL	Shielded	B	1.84E+02	1
77	CON A31U	1/4/2002		1	2.63E+02	60	SCL	Unshielded	ß		2.63E+0
	Source Check	1/4/2002	17:27	1	1.70E+05	60	SCL		ß		
									است		
									Minimum =	1.72E+02	2.22E+0
								1	Maximum =	2.78E+02	3.88E+0
											1 0.000 .01
									Меап =		3.06E+0

ATTACHMENT 8.1

	P	ENELEC	LIN	E SHA	CK - B	ACKGROUN	D ST	EEL SIDI	NG		
LS6	126188	DH5959								SR-138	BHB
No.	Location	Date	Time	Detector	Counts	Count Time (sec)	Mode	Designator		Shielded	Unshielded
86	SIDE FP1S	6/15/2004	12:57	1	232	60	SCL		β		291
87	SIDE FP1U	6/15/2004		1	291_	60	SCL	Unshielded	ß	232	
88	SIDE FP2S	6/15/2004	13:01	1	228	60	SCL	Shielded	β		260
89	SIDE FP2U	6/15/2004	13:03	1	260	60	SCL	Unshielded	ß	228	· · · · · · ·
90	SIDE FP3S	6/15/2004	13:05	1	248	60	SCL	Shielded	ß		291
91	SIDE FP3U	6/15/2004	13:07	1	291	60	SCL	Unshielded	β	248	· · · ·
92	SIDE FP1S	6/15/2004	13:08	1	213	60	SCL		β		234
<u>9</u> 3	SIDE FP4U	6/15/2004		1	234	60	SCL	Unshielded	ß	213	
94	SIDE FP5S	6/15/2004	13:11	1	245	60	SCL		ß		246
95	SIDE FP5U	6/15/2004	13:13	1	246	60	SCL	Unshielded	ß	245	· · · · ·
96	SIDE FP6S	6/15/2004	13:15	1	243	60	SCL		ß		220
97	SIDE FP6U	6/15/2004	13:16	1	220_	60	SCL	Unshielded	ß	243	
98	SIDE FP7S	6/15/2004	13:19	1	239	60	SCL	Shielded	ß		240
<u> </u>	SIDE FP7U	6/15/2004		1	240	60	SCL	Unshielded		239	
100	SIDE FP8S	6/15/2004		1	190	60	SCL		β		237
101	SIDE FP8U	6/15/2004	13:24	1	237	60	SCL		ß	190	
102	SIDE FP9S	6/15/2004		1	239	60	SCL		B		259
103	SIDE FP9U	6/15/2004		1	259_	60	SCL		ß	239	
104	SIDE FP10S	6/15/2004		1	278	60	SCL		ß		249
105	SIDE FP10U	6/15/2004		1	249_	60	SCL		ß	278	
106	SIDE FP11S	6/15/2004		1	. 185	60	SCL		β		282
107	SIDE FP11U	6/15/2004		1	282	60	SCL		ß	185	11 <u>.</u> .
108	SIDE FP12S	6/15/2004		1	236	60	SCL		ß		252
109	SIDE FP12U	6/15/2004	and the second second second	1	252	60	SCL		ß	236	
110	SIDE FP13S	6/15/2004		1	245	60	SCL	Shielded	ß		247
111	SIDE FP13U	6/15/2004		1	247	60	SCL	Unshielded	β	245	
112	SIDE FP14S	6/15/2004		1	211	60	SCL	Shielded	ß		255
113	SIDE FP14U	6/15/2004			255	60	SCL		-	211	
114	SIDE FP15S	6/15/2004			223	60	SCL	Shielded	ß		247
115	SIDE FP15U	6/15/2004			247	60		Unshielded	ß	223	
116	SIDE FP16S	6/15/2004			258	60	SCL	Shielded	ß		252
117	SIDE FP16U	6/15/2004		_	252	60	SCL			258	
118	SIDE FP17S	6/15/2004			259	60	SCL	Shielded	ß		<u>26</u> 0
119	SIDE FP17U	6/15/2004			260	60	SCL		ß	259	
120	SIDE FP18S	6/15/2004			262	60	SCL	Shielded	B	L	260
121	SIDE FP18U	6/15/2004		_	260	60	SCL			262	
122	SIDE FP19S	6/15/2004		1	235	60	SCL	Shielded	ß		246
123	SIDE FP19U	6/15/2004			246	60	SCL			235	
124	SIDE FP20S	6/15/2004			201	60 60	SCL	Shielded	ß		<u>26</u> 1
125	SIDE FP20U	6/15/2004	14:05	1	261	60	SCL	Unshielded	цы П	201	I
								Adda to a		4 955+00	2 205.02
										1.85E+02	
1										2.78E+02	
										2.38E+02	
										2.34E+02	
L				_				<u> </u>	ma ≍	2.41E+01	1.78E+01

.

ATTACHMENT 8.2

BACKGROUNDS FOR ALUMINUM SIDING										
	126218	RS9041				37122N21		095080	FSS-1316	BHB
No.	Location	Date	Time	Detector	Counts	Count Time (sec)	Mode	Designator	Shielded	Unshielded
2	NWALL FP1S	2/22/05	13:49	1	241	60	SCL	Shielded B		267
3	NWALL FP1U	2/22/05	13:50	1	267	60	SCL	Unshielded B	241	
4	NWALL FP2S	2/22/05	13:52	1	244	60	SCL	Shielded B		235
5	NWALL FP2U	2/22/05	13:54	1	235	60	SCL	Unshielded B	244	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6	NWALL FP3S	2/22/05	13:56	1	262	60	SCL	Shielded B	1.1.1.1	263
7	NWALL FP3U	2/22/05	13:57	1	263	60	SCL	Unshielded B	262	11 A.
8	EWALL FP4S	2/22/05	13:59	1	276	60	SCL	Shielded B	•••	271
9	EWALL FP4U	2/22/05	14:01	1	271	60	SCL	Unshielded B	276	
10	EWALL FP5S	2/22/05	14:02	1	265	60	SCL	Shielded B		290
11	EWALL FP5U	2/22/05		1	290	60	SCL	Unshielded B	265	and the second second
12	EWALL FP6S	2/22/05		1	275	60	SCL	Shielded B		317
13	EWALL FP6U	2/22/05		1	317	60 ,	SCL	Unshielded B	275	
14	EWALL FP7S	2/22/05		1	286	60	SCL	Shielded ß	14. A	296
15	EWALL FP7U	2/22/05		1	296	60	SCL	Unshielded B	286	-
16	EWALL FP8S	2/22/05	14:10	1	263	60	SCL	Shielded B	· · ·	257
17	EWALL FP8U	2/22/05		1	257	60	SCL	Unshielded B	263	•
18	EWALL FP9S	2/22/05		1	266	60	SCL	Shielded B		271
19	EWALL FP9U	2/22/05		1	271	60	SCL	Unshielded B	266	• • • •
28	SWALL FP14S			1	282	60	SCL	Shielded [ß]		282
29	SWALL FP14U			1	282	60	SCL	Unshielded B	282	<i>2</i>
30	SWALL FP15S			1	281	60	SCL	Shielded B		320
<u>31</u>	SWALL FP15U			1	320	60	SCL	Unshielded B	281	
32	SWALL FP16S			1	326	60	SCL	Shielded B	1.1.1.1.1.7	304
33				1	304	60	SCL	Unshielded B	326	
	WWALL FP17S			1	340	60	SCL	Shielded B		325
	WWALL FP17U			1	325	60		Unshielded B	340	
	WWALL FP18S			1	349	60	SCL	Shielded B		325
	WWALL FP18U			1	325	60		Unshielded B	349	
	WWALL FP19S			1	319	60	SCL			304
	WWALL FP19U			1	304	60		Unshielded B	319	
	WWALL FP20S			1	307	60		Shielded B	S. 1997	390
41	WWALL FP20U	2/22/05	14:46		390	·60	SCL	Unshielded B	307	
							.]	.Minimum ⇒	2.41E+02	2.35E+02
								Maximum ⇒		3.90E+02
								Median ⇒	2.79E+02	2.93E+02
								Mean ⇒	2.86E+02	2.95E+02
								Siqma ⇒	3.27E+01	3.68E+01

	BACKGROUNDS FOR CONCRETE BLOCK										
LS6	126188	DH5959				<u> </u>				SR-138	BHB
No.	Location	Date	Time	Detector	Counts	Count Time (sec)	Mode	Designator		Shielded	Unshielded
2	CONC FP1S	6/15/2004	8:40	1	244	60	SCL	Shielded	β		272
3	CONC FP1U	6/15/2004	8:42	1	272	60	SCL	Unshielded	ß	244	
4	CONC FP2S	6/15/2004	8:44	1	207	60	SCL	Shielded	β		319
5	CONC FP2U	6/15/2004	8:45	1	319	60	SCL	Unshielded	ß	207	
6	CONC FP3S	6/15/2004	8:58	1	281	60	SCL		ß		337
7	CONC FP3U	6/15/2004	9:00	1	337	60	SCL	Unshielded	ß	281	-
8	CONC FP4S	6/15/2004	9:01	1	264	60	SCL	Shielded	ß		314
9	CONC FP4U	6/15/2004	9:03	1	314	60	SCL	Unshielded		264	
10	CONC FP5S	6/15/2004	9:04	1	267	60	SCL	Shielded	ß		348
11	CONC FP5U	6/15/2004	9:06	1	348	60	SCL	Unshielded		267	
12	CONC FP6S	6/15/2004	9:09	1	224	60	SCL	Shielded	ß		366
13	CONC FP6U	6/15/2004	9:10	1	366	60	SCL	Unshielded		224	
14	CONC FP7S	6/15/2004	9:12	1	268	60	SCL	Shielded	ß		388
15	CONC FP7U	6/15/2004	9:13	1	388	60	SCL	Unshielded		268	
16	CONC FP8S	6/15/2004	9:15	1	252	60	SCL	Shielded	B		248
17	CONC FP8U		9:16	1	248	60	SCL	Unshielded	B	252	
18	CONC FP9S	6/15/2004	9:18	1	266	60	SCL	Shielded	ß		337
19	CONC FP9U	6/15/2004	9:20	1	337	60	SCL	Unshielded		266	0.17
20	CONC FP10S	6/15/2004	9:21	1	258	60	SCL	Shielded	B	050	347
21 22	CONC FP10U CONC FP11S	6/15/2004	9:22	1	<u>347</u> 256	60	SCL	Unshielded		258	
22	CONC FP11S	6/15/2004 6/15/2004	9:24 9:25	1 1	200 328	60 60	SCL SCL	Shielded	ß		328
23	CONC FP110	6/15/2004		1	270	60	SCL	Unshielded Shielded		256	381
25	CONC FP123	6/15/2004		1	381	60	SCL	Unshielded	ß	270	
26	CONC FP13S	6/15/2004		1	232	60	SCL	Shielded	B		363
27	CONC FP13U	6/15/2004		1	363	60	SCL	Unshielded	ß	232	
28	CONC FP14S	6/15/2004		1	279	60	SCL	Shielded	B	2.52	368
29	CONC FP14U	6/15/2004		1	368	60	SCL	Unshielded	B	279	500
30	CONC FP15S	6/15/2004		1	270	60	SCL	Shielded	B		334
31	CONC FP15U	6/15/2004		1	334	60	SCL	Unshielded	B	270	
32	CONC FP16S	6/15/2004		1	293	60	SCL	Shielded	ß		371
33	CONC FP16U	6/15/2004		1	371	60	SCL		B -	293	
34	CONC FP17S	6/15/2004		1	240	60	SCL	Shielded	B		344
35	CONC FP17U	6/15/2004		1	344	60	SCL	Unshielded	ß	240	
36	CONC FP18S	6/15/2004		1	267	60	SCL	Shielded	B		.355
37	CONC FP18U	6/15/2004		1	355	60	SCL	Unshielded		267	
38	CONC FP19S	6/15/2004		1	224	60	SCL	Shielded	ß		294
39	CONC FP19U	6/15/2004		1	294	60	SCL	Unshielded		224	
40	CONC FP20S			1	-333	60	SCL	Shielded			-396
41	CONC FP20U	6/15/2004	10:38	1	396	60	SCL	Unshielded		333	
1											
										2.07E+02	2.48E+02
1										3.33E+02	3.96E+02
										2.65E+02	3.46E+02
										2.60E+02	3.41E+02
L								Siq.	ma ≓	2.77E+01	3.77E+01

ATTACHMENT 8 - 4

.

BB	126188	99186		DUILD		AINTED CON			FSS-1060	BHB
No.	Location	Date	Time	Detector	Counts	Count Time (sec)	Mode	Designator	Shielded	Unshielded
10	CF FP 5S	11/17/2004	12:44	1	286	60	SCL	Shielded B		373
11	CF FP 5U	11/17/2004	12:46	1	373	60	SCL	Unshielded B	286	
12	CF FP 6S	11/17/2004	12:48	1	317	60	SCL	Shielded B		422
13	CF FP 6U	11/17/2004	12:50	1	422	60	SCL	Unshielded B	317	
14	CF FP 7S	11/17/2004	12:52	1	309	60	SCL	Shielded B	· .	358
15	CF FP 7U	11/17/2004	12:53	1	358	60	SCL	Unshielded B	309	
16	CF FP 8S	11/17/2004	12:55	1	282	60	SCL	Shielded B		368
17	CF FP 8U	11/17/2004	12:57	1	368	60	SCL	Unshielded B	282	
								Minimum ⇒	2.82E+02	3.58E+02
								Maximum ⇒	3.17E+02	4.22E+02
								Median ⇒	2.98E+02	3.71E+02
								Mean ⇒	2.99E+02	3.80E+02
								Siama ⇒	1.71E+01	2.85E+01

ATTACHMENT 9.1

		SY CON	TRO	L BUIL	DING	PAINTED ST	EEL	GRATING		
BB	126188	99186							FSS-1060	BHB
No.	Location	Date	Time	Detector	Counts	Count Time (sec)	Mode	Designator	Shielded	Unshielded
2	ST GR FP 1S	11/17/2004	12:29	1	243	60	SCL	Shielded [ß	· · ·	287
3	ST GR FP 1U	11/17/2004	12:30	1	287	60	SCL	Unshielded B	243	
4	ST GR FP 2S	11/17/2004	12:32	1	258	60	SCL	Shielded B	·	264
5	ST GR FP 2U	11/17/2004	12:34	1	264	60	SCL	Unshielded B	258	:
6	ST GR FP 3S	11/17/2004	12:36	1	251	60	SCL	Shielded ß		286
7	ST GR FP 3U	11/17/2004	12:38	1	286	60	SCL	Unshielded B	251	
8	ST GR FP 4S	11/17/2004	12:40	1	273	60	SCL	Shielded B		267
9	ST GR FP 4U	11/17/2004	12:41	1	267	60	SCL	Unshielded B	273	
								Minimum =	2.43E+02	2.64E+02
		•						Maximum =	> 2.73E+02	2.87E+02
								Median 😅	2.55E+02	2.77E+02
								Mean =	2.56E+02	2.76E+02
								Sigma =	1.27E+01	1.22E+01

_____· · ·

ATTACHMENT 9 . 2

BB	126188	99186							FSS-1060	BHB
No.	Location	Date	Time	Detector	Counts	Count Time (sec)	Mode	Designator	Shielded	Unshielded
18	NWALL FP 9S	11/17/2004	12:59	1	233	60	SCL	Shielded B	·· •	243
19	NWALL FP 9U	11/17/2004	13:03	1	243	60	SCL	Unshielded B	233	
20	NWALL FP 10S	11/17/2004	13:05	1	228	60	SCL	Shielded B		220
21	NWALL FP 10U	11/17/2004	13:07	1	220	60	SCL	Unshielded B	228	· • · ·····
22	NWALL FP 11S	11/17/2004	13:09	1	243	60	SCL	Shielded B		250
23	NWALL FP 11U	11/17/2004	13:11	1	250	60	SCL	Unshielded B	243	
24	NWALL FP 12S	11/17/2004	13:13	1	218	60	SCL	Shielded B		240
25	NWALL FP 12U	11/17/2004	13:15	1	240	60	SCL	Unshielded B	218	
								Minimum ⇒	2.18E+02	2.20E+02
								Maximum ⇒	2.43E+02	2.50E+02
								Median ⇒	2.31E+02	2.42E+02
								Mean ⇒	2.31E+02	2.38E+02
								Siama 😅	1.04E+01	1.29E+01

----- ----

ATTACHMENT 9.3

122N21	Instrument 05240			GFPC SWIII tector Counts	Count Time (sec		leasurements Designator		FSS-1131	внв
0	Instrument 95348 BKGND	1/4/2002	8:52	1 7,26E+03		SCL	Inital Background	ß	F33-1131	ono
1	Source Check	1/4/2002	9:07	1 1.79E+05		SCL	Source	ß		
2	BKGND	1/4/2002		2 4.40E+01			Inital Background	•	Concrete CF(com) ⇒	0.00E+0
-	DIGITD								Shielded	Unshield
15	CON A1S	1/4/2002	13:00	1 2.78E+02	60	SCL	Shielded	β	2.78E+02	1
16	CON A1U	1/4/2002		1 3.88E+02		SCL	Unshielded	β		3.88E+
17	CON A2S	1/4/2002	13:20	1 2.39E+02	60	SCL	Shielded	ß	2.39E+02	
18	CON A2U	1/4/2002	13:21	1 2.22E+02	60	SCL	Unshielded	β		2.22E+
19	CON A3S	1/4/2002	13:28	1 2.39E+02		SCL	Shielded	β	2 39E+02	
20	CON A3U	1/4/2002		1 2.62E+02		SCL	Unshielded	β	L	2.62E+
21	CON A4S	1/4/2002		1 2.45E+02		SCL	Shielded	ß	2.45E+02	
22	CON A4U	1/4/2002		1 2.71E+02		SCL	Unshielded	β		2.71E+
23	CON A5S	1/4/2002		1 2.00E+02		SCL	Shielded	ß	2.00E+02	
24	CON A5U	1/4/2002		1 2.82E+02		SCL	Unshielded	ß	1.84E+02	2.82E+
25	CON A6S	1/4/2002		1 1.84E+02 1 3.10E+02		SCL	Shielded Unshielded	B	1.84E+02	3.10E+
26 27	CON A6U CON A7S	1/4/2002		1 3.10E+02 1 1.98E+02		SCL	Shielded	B	1.98E+02	3.10E+
28	CON A73	1/4/2002		1 3.15E+02		SCL	Unshielded	ß	1.802102	3.15E+
29	CON A8S	1/4/2002		1 2.34E+02		SCL	Shielded	ß	2.34E+02	0.102
30	CON A8S	1/4/2002		1 2.31E+02		SCL	Shielded	ß	2.31E+02	
31	CON A8U	1/4/2002		1 2.88E+02		SCL	Unshielded	B		2.88E+
32	CON A9S	1/4/2002		1 2.65E+02		SCL	Shielded	ß	2.65E+02	
33	CON A9U	1/4/2002		1 2.89E+02		SCL	Unshielded	B		2.89E+
34	CON A10S	1/4/2002	14:42	1 2.46E+02	60	SCL	Shielded	ß	2.46E+02	
35	CON A10U	1/4/2002	14:43	1 3.16E+02	60	SCL	Unshielded	ß		3.16E+
36	CON A11S	1/4/2002	15:10	1 1.95E+02	60	SCL	Shielded	β	1.95E+02	
37	CON A11U	1/4/2002		1 2.94E+02		SCL	Unshielded	ß		2.94E
38	CON A12S	1/4/2002		1 2.21E+02		SCL	Shielded	ß	2.21E+02	
39	CON A12U	1/4/2002		1 2.84E+02		SCL	Unshielded	ß		2.84E4
40	CON A13S	1/4/2002		1 1.74E+02		SCL	Shielded	B	1.74E+02	
41	CON A13U	1/4/2002		1 2.94E+02		SCL	Unshielded	B		2.94E+
42	CON A14S	1/4/2002		1 1.96E+02		SCL	Shielded	B	1.96E+02	
43 44	CON A14U CON A15S	1/4/2002		1 3.33E+02		SCL	Unshielded	ß	2 405 100	3.33E+
45	CON A155 CON A15U	1/4/2002		1 2.16E+02 1 3.45E+02		SCL SCL	Shielded Unshielded	B	2.16E+02	3.45E4
46	CON A16S	1/4/2002		1 1.83E+02		SCL	Shielded	β β	1.83E+02	
47	CON A16U	1/4/2002		1 3.13E+02		SCL	Unshielded	間	1.032+02	3.13E4
48	CON A17S	1/4/2002		1 1.82E+02		SCL	Shielded	ß	1.82E+02	
49	CON A17U	1/4/2002		1 3.22E+02		SCL	Unshielded	ß		3.22E+
50	CON A18S	1/4/2002		1 1.84E+02		SCL	Shielded	ß	1 84E+02	
51	CON A18U	1/4/2002		1 3.24E+02		SCL	Unshielded	ß		3.24E-
52	CON A19S	1/4/2002	15:37	1 1.91E+02	2 60	SCL	Shielded	ß	1.91E+02	
53	CON A19U	1/4/2002	15:39	1 3.07E+02	2 60	SCL	Unshielded	β		3.07E-
54	CON A20S	1/4/2002		1 1.94E+02		SCL	Shielded	β.	1.94E+02	
55	CON A20U	1/4/2002		1 3.33E+02		SCL	Unshielded	β		3.33E
56	CON A21S	1/4/2002		1 2.23E+02		SCL	Shielded	β	2.23E+02	
57	CON A21U	1/4/2002		_ <u>12.92E+02</u>		SCL	Unshielded	β		2.92E+
58 50	CON A22S	1/4/2002		1 1.72E+02		SCL	Shielded	ß	1.72E+02	_
59 60	CON A22U	1/4/2002		1 2.80E+02		SCL	Unshielded	ß		2.80E
60 61	CON A23S	1/4/2002		1 1.94E+02		SCL	Shielded	B	1.94E+02	
62	CON A23U CON A24S	1/4/2002		<u>1 3.29E+02</u> 1 1.87E+02		SCL SCL	Unshielded Shielded	B	1.87E+02	3 29E-
62 63	CON A245 CON A24U	1/4/2002		1 1.8/E+04		SCL	Unshielded	B	1.8/E+02	
64	CON A255	1/4/2002		1 2.07E+02		SCL SCL	Shielded	ß	2.07E+02	3 48E
65	CON A250	1/4/2002		1 3.72E+02		SCL	Unshielded	B	2.07 2+02	3.72E
66	CON A26S	1/4/2002		1 2.09E+02		SCL	Shielded	ß	2.09E+02	
67	CON A26U	1/4/2002		1 3.26E+02		SCL	Unshielded	В	1.000.002	3.26E
68	CON A27S	1/4/2002		1 2.07E+02		SCL	Shielded	ß	2.07E+02	
69	CON A27U	1/4/2002		1 3.30E+02		SCL	Unshielded	B		3.30E
70	CON A28S	1/4/2002		1 2.30E+02	2 60	SCL		B	2.30E+02	
71	CON A28U	1/4/2002		1 3.06E+02	260	SCL	Unshielded	ß		3.06E
72	CON A29S	1/4/2002		1 2.13E+02		SCL	Shielded	B	2.13E+02	
73	CON A29U	1/4/2002		1 2.58E+02		· SCL	Unshielded	ß		2.58E
74	CON A30S	1/4/2002		1 2.33E+02		SCL	Shielded	B	2.33E+02	
75	CON A30U	1/4/2002		1 2.89E+02		SCL	Unshielded	β		2.89E
76	CON A31S	1/4/2002		1 1.84E+02		SCL	Shielded	ß	1.84E+02	
77	CON A31U	1/4/2002		1 2.63E+02		SCL	Unshielded	β		2.63E
	Source Check	1/4/2002	17:27	1 1.70E+05	5 60	SCL		β		
								Ulinir	num ⇒ 1.72E+02	2.22E
								laxir	num ⇒ 2.78E+02 fean ⇒ 2.11E+02	3.88E

ATTACHMENT 9 - 4

SY CONTROL BUILDING EXTERIOR STEEL ROOFING										
BB	126188	99186							FSS-106	
No.	Location	Date	Time	Detector	Counts	Count Time (sec)	Mode	Designator	Shielded	Unshielded
30	WROOF FP 15S	11/17/2004	12:59	1	287	60	SCL	Shielded [ß		306
31	WROOF FP 15U	11/17/2004	13:03	1	306	60	SCL	Unshielded B		
32	WROOF FP 16S	11/17/2004	13:05	1	298	60	SCL	Shielded B		302
33	WROOF FP 16U	11/17/2004	13:07	1	302	60	SCL	Unshielded B		
34	WROOF FP 17S	11/17/2004	13:05	1	303	60	SCL	Shielded ß		327
35	WROOF FP 17U	11/17/2004	13:07	1	327	60	SCL	Unshielded B	303	
36	WROOF FP 18S	11/17/2004	13:05	1	260	60	SCL	Shielded B]	285
37	WROOF FP 18U	11/17/2004	13:07	1	285	60	SCL	Unshielded B		
38	WROOF FP 19S	11/17/2004	13:05	1	255	60	SCL	Shielded B		280
39	WROOF FP 19U	11/17/2004	13:07	1	280	60	SCL	Unshielded B	255	
40	WROOF FP 20S	11/17/2004	13:05	1	306	60	SCL	Shielded B	1	329
41	WROOF FP 20U	11/17/2004	13:07	1	329	60	SCL	Unshielded B	306	·
42	EROOF FP 21S	11/17/2004	13:05	1	264	60	SCL	Shielded ß		279
43	EROOF FP 21U	11/17/2004	13:07	1	279	60	SCL	Unshielded B	264	
44	EROOF FP 22S	11/17/2004	13:05	1	268	60	SCL	Shielded B	1	284
45	EROOF FP 22U	11/17/2004	13:07	1	284	60	SCL	Unshielded B	268	
46	EROOF FP 23S	11/17/2004	13:09	1	294	60	SCL	Shielded ß		277
47	EROOF FP 23U	11/17/2004	13:11	1	277	60	SCL	Unshielded B	294	
48	EROOF FP 24S	11/17/2004	13:13	1	245	60	SCL	Shielded B		277
49	EROOF FP 24U	11/17/2004	13:15	1	277	60	SCL	Unshielded ß	245	
									n⇒ 2.45E+0	
									n⇒ 3.06E+0	
									1⇒ 2.78E+0	
									n⇒ 2.78E+0	
								Sigm	a ⇒ 2.21E+0	2.03E+01

.

ATTACHMENT 9.5

Survey Unit #	SECTION		Sheet					
L		- BURVEY UNIT INSPECT						
Date 11/22/	PS1, PS2	Survey Unit Location	Penelec Switchyard Co	ontrol Bu	illding			
Date 11/22/04 Time 1400 Inspection Team Members D. Sarge								
	SECT	ON 24 BURVEY UNIT INSPE	GTION SCOPE	1	,			
		s (Check the appropriate Yes		Yes	No	N/A		
1. Have sufficient	surveys (i.e., post remedia	tion, characterization, etc.) been obt	ained for the survey unit?	X				
2. Do the surveys	(lium Question 1) demons	trate that the survey unit will most lik	ely pass the FSS7	X				
3. Is the physical	work (i.e., remediation & ho	usekeeping) in or around the survey	unt completa?	X				
4. Have all tools,	non-permanent equipment,	and material not needed to perform	the FSS been removed?	1	X			
5. Are the survey	surfaces relatively free of le	pose debris (i e., dirt, concrete dust, i	metal filings, etc.)?		X			
5. Are the survey	surfaces relatively free of h	guids (I e , weter, moisture, oil, elc.):	······································	X				
7. Are the survey	surfaces free of all paint, w	hich has the potential to shiald radia	tion7	X				
B Have the Surta	ce Measurement Test Area	s (3MTA) been established? (Refer	to Exhibit 2 for instructions }	X				
9. Heve the Surfa	ce Measurement Test Area	s (SMTA) data been collected? (Rei	er to Exhibit 2 for instructions.)	X				
10. Are the survey	surfaces easily accessible?	(No scatfolding, high reach, etc. is i	needed to penarm the FSS)	x				
11. is lighting adeq	uate to perform the FS87			×				
12. Is the area indu	istrially eafe to perform the	FSS7 (Evaluate potential fall & trip h	azards, confined spaces, etc.)	X				
		s overall condition of the erea?		x				
	sfactory conditions been ra:			•	x			
NOTE: If a "No" and responsible alte dep sheets as necessary	artment, as applicable. Do	e inspector should immediately con current actions taken and/or justific:	rect the problem or initiate come itions in the "Comments" section	tive actin below. A	throu tach ad	l Joh thi Id:bona		
Comments:			·					
Response to Qu Misc. equil		ent inside the building. Notific	dt Shamonek					
miser eduit	anenningrougets hres	en nonce are somunig. Noune	w m. whaijidiidh.					
Response to Qu								
ricor need	s to be swept prior to I	FSS. Notified L. Shamenek.						

ATTACHMENT 10 - 1

SURVEY REQUEST CONTINUATION SHEET

SR NUMBER	0195	AREA/LOCATION	PS1-1, 2, 3						
SDECIEIC SAMPI ING/SUDVEY INSTRUCTIONS OF COMMENTS									

SPECIFIC SAMPLING/SURVEY INSTRUCTIONS OR COMMENTS

RESULTS SUMMARY FOR SR-0195

SR-0195 was issued to obtain radiological survey and sampling data to ensure Final Site Survey activities are complete. The survey unit covered under this SR is PS1-1, 2, 3. The SR required the following radiological measurements.

- Surface scan measurements using a 43-68 gas flow proportional counter (GFPC) or equivalent. Survey techniques will be IAW the SR.
- Surface static measurements using a 43-68 gas flow proportional counter (GFPC) or equivalent. Survey techniques will be IAW the SR.
- For PS1-1 a total of 10 Static Measurement locations were provided for measurements to be taken. SNEC Calculation Sheet using "COMPASS" program required 8 samples to be taken. For PS1-2 a total of 10 Static Measurement locations were provided for measurements to be taken. SNEC Calculation Sheet using "COMPASS" program required 9 samples to be taken. For PS1-3 a total of 10 Static Measurement locations were provided for measurements to be taken. SNEC Calculation Sheet using "COMPASS" program required 9 samples to be taken. SNEC Calculation Sheet using "COMPASS" program required 8 samples to be taken.
- QC Repeat Measurements: A minimum of 5% of all surface scan and static measurements were reperformed using identical methodology.
- Additional sampling/surveys were not performed.

1. Summary of Results

A. Surface Scan Measurements (GFPC Detector)

A 100% surface scan was required of all accessible areas in certain locations, IAW the SR. A total of 18.89% of this Class 3 area was surveyed, which is well within design basis.

<u>Results</u>: No areas indicated activity above the action level of >600 GCPM (gross counts per minute)

B. Surface Static Measurements

For PS1-1, ten (10) static measurements were obtained. For PS1-2, ten (10) static measurements were obtained. For PS1-3, ten (10) static measurements were obtained. These locations were statistically spaced based on a random starting point due to the lack of noticeable elevated activity during final post remediation scan/static surveys.

Results: No areas indicated activity above the action level of >600 GCPM (gross counts per minute).

SURVEY REQUEST CONTINUATION SHEET								
SR NUMBER	0195	AREA/LOCATION	PS1-1, 2, 3					
SPECI	FIC SAMPLING	SURVEY INSTRUCTIONS OR CO	OMMENTS					

- 2. Quality Control (QC) Measurements and Comparisons
 - Repeat Scan measurements and Repeat Static measurements were performed and met the applicable acceptance criteria established in Section 4.6 of E900-IMP-4520.04. QC scan measurements were repeated for 18.55% of the area scanned. QC static measurements were repeated for 10.00% of static measurements.
- 3. Exceptions and Discrepancies
 - None.
- 4. Special Note(s)
 - As stated previously, as this is a Class 3 area, scan coverage of approximately 10% in addition to the thirty (30) static measurement point readings will suffice to show due diligence in survey technique for release of the site for unrestricted use.

ARTHALLER MAN Print/Signature

SURVEY REQUEST CONTINUATION SHEET								
SR NUMBER	0203	AREA/LOCATION	PS2-1 2 3 4					

SPECIFIC SAMPLING/SURVEY INSTRUCTIONS OR COMMENTS

RESULTS SUMMARY FOR SR-0203

SR-0203 was issued to obtain radiological survey and sampling data to ensure Final Site Survey activities are complete. The survey unit covered under this SR is PS2-1, 2, 3, 4. The SR required the following radiological measurements.

- Surface scan measurements using a 43-68 gas flow proportional counter (GFPC) or equivalent. Survey techniques will be IAW the SR.
- Surface static measurements using a 43-68 gas flow proportional counter (GFPC) or equivalent. Survey techniques will be IAW the SR.
- For PS2-1 a total of 10 Static Measurement locations were provided for measurements to be taken. SNEC Calculation Sheet using "COMPASS" program required 8 samples to be taken. For PS2-2 a total of 9 Static Measurement locations were provided for measurements to be taken. SNEC Calculation Sheet using "COMPASS" program required 8 samples to be taken. For PS2-3 a total of 18 Static Measurement locations were provided for measurements. SNEC Calculation Sheet using "COMPASS" program required 8 samples to be taken. SNEC Calculation Sheet using "COMPASS" program required 9 samples to be taken. SNEC Calculation Sheet using "COMPASS" program required 9 samples to be taken. SNEC Calculation Sheet using "COMPASS" program required 9 samples to be taken. SNEC Calculation Sheet using "COMPASS" program required 9 samples to be taken. SNEC Calculation Sheet using "COMPASS" program required 8 samples to be taken. SNEC Calculation Sheet using "COMPASS" program required 8 samples to be taken. SNEC Calculation Sheet using "COMPASS" program required 8 samples to be taken. SNEC Calculation Sheet using "COMPASS" program required 8 samples to be taken.
- QC Repeat Measurements: A minimum of 5% of all surface scan and static measurements were reperformed using identical methodology.
- Additional sampling/surveys were not performed.

1. Summary of Results

A. Surface Scan Measurements (GFPC Detector)

A 100% surface scan was required of all accessible areas in certain locations, IAW the SR. A total of 14.27% of this Class 3 area was surveyed, which is well within design basis.

<u>Results</u>: No areas indicated activity above the action level of > 700 GCPM (gross counts per minute). In the survey area PS2-3 (unpainted steel roof) the action level is > 600 GCPM. No areas exceeding this level found.

SURVEY REQUEST CONTINUATION SHEET			
SR NUMBER	0203	AREA/LOCATION	PS2-1, 2, 3, 4
SPECI	FIC SAMPLING/S	SURVEY INSTRUCTIONS OR C	OMMENTS

B. Surface Static Measurements

For PS2-1, ten (10) static measurements were obtained. For PS2-2, nine (9) static measurements were obtained. For PS2-3, eighteen (18) static measurements were obtained. For PS2-4, ten (10) static measurements were obtained. These locations were statistically spaced based on a random starting point due to the lack of noticeable elevated activity during final post remediation scan/static surveys.

- Results: No areas in area PS2-3 indicated activity above the action level of > 600 GCPM (gross counts per minute). No areas in area PS2-1, PS2-2, or PS2-4 indicated activity above the action level of > 700 GCPM
- 2. Quality Control (QC) Measurements and Comparisons
 - Repeat Scan measurements and Repeat Static measurements were performed and met the applicable acceptance criteria established in Section 4.6 of E900-IMP-4520.04. QC scan measurements were repeated for 6.70% of the area scanned. QC static measurements were repeated for 8.51% of static measurements.
- 3. Exceptions and Discrepancies
 - Total of 0.65 meters of the roof grid to be surveyed inaccessible due to safety concerns..
- 4. Special Note(s)
 - As stated previously, as this is a Class 3 area, scan coverage of approximately 10% will suffice to show due diligence in survey technique for release of the site for unrestricted use.

CHMAN us A. MARTHALLER

Print/Signature