U. S. Experience and Practices in Low-Level Waste Management

Michael T. Ryan Ph.D., C.H.P.
Chairman, Advisory Committee on
Nuclear Waste
Editor-in-Chief, Health Physics
HPEditor@csuniv.edu

10 CFR 61(Subparts A-G)

- general provisions
- licenses
- performance objectives
- technical requirements for land disposal
- financial assurances
- participation by States and indian tribes
- records reports tests, and inspections

Licensing concepts

- near surface (within 30 meters)
- stable wastes and a stable site
- control and monitor water
- long term maintenance
- protect against intruders

Class A, B, and C Increasing Quantities & Concentrations

- concern for long-lived mobile radionuclides and protection of the resident farmer (ICRP-2)
- protection against intruders limits the classification system
- DOE responsible for greater than Class C wastes
- some exceptions

Institutional Issues

- land must be owned by state or federal government
- formal closure monitoring period (~5 years) and post closure (>100 years) period
- Institutional Funds are not necessarily secure (South Carolina has borrowed from the fund)

Performance Objectives

- protect the general public (ICRP 2 dose standards)
- protect the inadvertent intruder (ICRP 2 dose standards)
- protect workers (ICRP 26 dose standards)
- stability of the site after closure

Site suitability

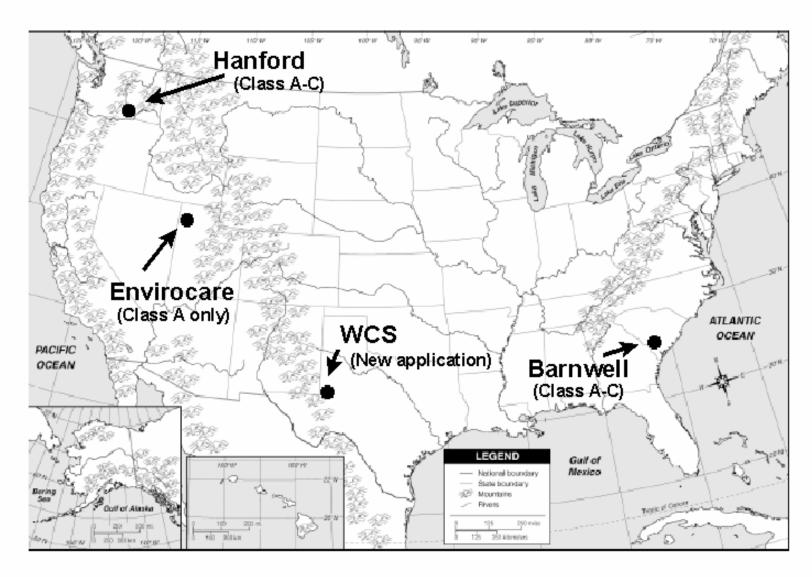
- capable of being monitored, modeled, and analyzed
- projected population growth won't affect meeting performance objectives
- avoid areas with natural resources
- not be in the 100-year flood plain
- sufficient depth to water table so that ground water intrusion will not occur
- avoid geologic areas with surface erosion, slumping, and land-sliding.

Facility Operation and Closure

- segregate Class A wastes
- Class C must be 5 meters deep and incorporate intrusion barriers
- packages integrity must be maintained during emplacement and backfill
- surface dose rates below 10 CFR 20 unrestricted limits
- boundaries and locations of waste and site proper located with land survey – include buffer zone
- close trenches as you go

Waste characteristics

- No cardboard boxes minimize voids
- no liquids (<1% by volume)
- non explosive, no toxics, nonpyrophoric, no high gas pressure (>1.5 atm and <100 Ci)
- treat hazardous biological pathogenic and infectious material to extent practicable
- survive moisture, microbes, radiation effects, chemical effects and overburden
- waste or package can provide stability


Environmental Monitoring

Environmental monitoring serves two purposes

- demonstrate compliance
- enhance knowledge of environmental modeling

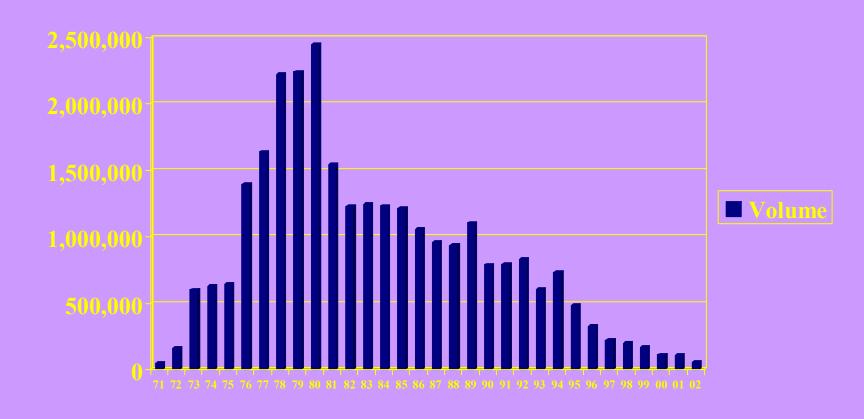
LLRW Facility Status

- Beatty NV 1962 1992
- Maxey Flats KY 1962 1977
- West Valley NY 1963 1975
- Richland WA 1965 present
- Sheffield IL 1967 1987
- Barnwell SC 1971 present
- Clive UT 1991 present
- Andrews Texas license submitted 2004

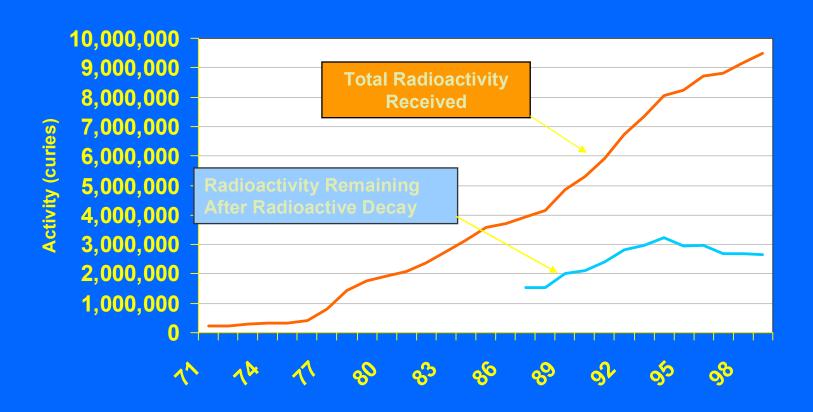
Commercial low-level waste sites in the U.S.

Low-Level Radioactive Waste Policy Act 1980 and its Amendment in 1985

- Each state responsible for its own wastes
- State can work together in Compacts
- In 1985 set 1992 deadline
- states must perform and certify
- Michigan was denied access to existing sites for non-performance


Current Conditions

- lots of capacity to manage LLRW
- political issue, not technical issue
- sources of commercial waste (volumes) are dramatically down!!
- Dilute wastes are being managed in Utah
- Some Low-activity wastes are being managed at sites authorized to take hazardous chemical wastes


Legislated Benefits for South Carolina

- \$12 million available for Barnwell County economic development when SC joined the compact
- Barnwell County receives \$2 million/year from disposal operations
- South Carolina generators get 33% rebate
- South Carolina disposal revenue goes to Children's Education Endowment Fund (30% scholarships; 70% infrastructure)

Barnwell Radioactivity

Atlantic Compact Legislation

• Members: SC, CT, NJ

 Volume Caps: <u>Volume</u> 	<u>FY</u>
160,000 cu ft	2001
80,000 cu ft	2002
70,000 cu ft	2003
60,000 cu ft	2004
50,000 cu ft	2005
45,000 cu ft	2006
40,000 cu ft	2007
35,000 cu ft	2008

- NJ and CT allowed no more than 800,000 cu ft total
- No out-of-compact generators allowed after FY 2008

Class B/C Trench

Class A Trench

Large Component Disposal

Big Rock Point Reactor Pressure Vessel (RPV)

Routine Cask and Waste Handling

Barnwell Environmental Monitoring

- On-site environmental laboratory
- Comprehensive radiological and nonradiological monitoring and analysis
- 240 groundwater monitoring wells
 - On-site, boundary and off-site
- 140 trench standpipes
- Site characterization, groundwater and contaminant modeling, and site performance evaluation

Finished Trench Cap and Monitoring Wells

Web sites for Low-Level Waste

http://www.nrc.gov/waste/low-level-waste.html

http://www.chemnuclear.com/disposal.html

http://www.doh.wa.gov/ehp/rp/waste/llw.htm

http://64.224.191.188/wcs/

http://www.radiationcontrol.utah.gov/BNC/Envirocare.htm

http://www.radiationcontrol.utah.gov/drc lows.htm