

Dose Assessment for Decommissioning

Amy Snyder/AMS3@NRC.GOV Mark Thaggard/MXT3@NRC.GOV Division of Waste Management and Environmental Protection, NMSS U.S. Nuclear Regulatory Commission Washington, D.C. 20555

General Components of Dose Analyses

- Develop source term
- Define land-use scenarios and exposure pathways
- Develop conceptual model
- Develop mathematical model/select computer codes
- Define input parameter values
- Carry out analyses
- Perform sensitivity/uncertainty analyses

Develop Source-Term

- Identify the radionuclides of concern
 - Use site characterization and HSA
- Describe the physical/chemical form(s) of the contaminated media*
- Recognize there is a distinction between source-term for calculating doses vs deriving acceptable concentration limits
 - For calculating doses:
 - Delineate the spatial extent of the residual radioactivity *
 - For calculating concentration limits:
 - Assume unit concentrations or activities
 - * anticipated at the time of the Final Status Survey and site release

Define Land-Use Scenarios and Exposure Pathways

- Each exposure scenario should address the following questions:
 - how does the residual radioactivity move through the environment?
 - where can humans be exposed to the environmental concentrations?
 - what are the exposure group's habits that will determine exposure?
- The ultimate goal of dose modeling is to estimate the dose to a specific receptor
- Two example scenarios are:
 - Building occupancy
 - Resident farmer

Building Occupancy Scenario

- Used for residual radioactivity on indoor building surfaces
- Assumptions:
 - Light-industrial indoor worker
 - Passive activities
- Pathways include:
 - external exposure
 - inhalation of (re)suspended removable residual radioactivity
 - inadvertent ingestion of removable residual radioactivity

Resident Farmer Scenario

- Used for residual radioactivity in soils and sediments
- Key Assumptions:
 - Large portion of diet grown on the site
 - Individual spends portion of time both indoors and outdoors
- Pathways include:
 - external exposure from soil
 - inhalation to (re)suspended soil
 - ingestion of soil
 - ingestion of drinking water from aquifer
 - ingestion of plant products grown in contaminated soil and using aquifer to supply irrigation needs
 - ingestion of animal products grown onsite (using feed and water derived from potentially contaminated sources)
 - ingestion of fish from a pond filled with water from the aquifer

Additional Scenario Examples

- Urban construction
- Residential (subset of the residential farmer)
- Recreational User
- Maintenance Worker
- Drinking water (offsite impacts)

Develop Conceptual Models

- A conceptual model is a simplified representation of the site
 - the potential release and migration of radionuclides
 - key features and processes controlling the migration of radionuclides
- Decide among possible competing interpretations of the site data
- Determine the level of detail needed to describe the key features and processes

Additional Consideration in Developing A Conceptual Model

- The analysis need not incorporate all the physical, chemical, and biological processes
- A conceptual model can be simple if it provides satisfactory confidence in site performance
- A generic representation is acceptable if it provides a conservative assessment of the performance of the site

Develop Mathematical Model/Select Computer Codes

- The mathematical model/computer code must appropriately represent the conceptual model
- Determine whether to perform a conservative screening analysis or more realistic site-specific analysis
- Determine whether the analysis will be deterministic or probabilistic
- Determine whether existing computer codes are suitable
 - Commonly used codes:
 - DandD
 - RESRAD
 - RESRAD-Build

DandD Conceptual Model

RESRAD Conceptual Model

Define Input Parameter Values

- Behavioral parameters any parameter whose value depends on the receptor's behavior and the scenario
 - For a specific group of receptors, a parameter value could change as the scenario changes
 - Example: irrigation rate, fraction of water or food grown onsite
- Metabolic parameters any parameter that represents the metabolic characteristics of the potential receptor
 - Independent of scenario or site
 - May differ for different age groups
 - Example: breathing rate, food consumption rate
- Physical parameters parameter values related to the source or physical characteristics of the site
 - Example: porosity, density

Carrying-out the Analysis

- Screening
 - Use look-up tables
 - Perform analysis using DandD
- Site-specific
 - RESRAD
 - RESRAD-Build
 - More advanced models/codes

Derived Concentration Guideline Level (DCGL)

- The DCGL_W is the concentration of a radionuclide which, if distributed uniformly across a survey unit, would result in an estimated dose equal to the applicable dose limit.
- The DCGL_{EMC} is the concentration of a radionuclide which, if distributed uniformly across a smaller limited area within a survey unit, would result in an estimated dose equal to the applicable dose limit.

Screening DCGLs

- Simple sites with building surface and/or with surficial soil residual radioactivity
- Simple and conservative models/codes and parameters, under generic scenarios
- Screening DCGLs are expected to be more restrictive than the site-specific DCGLs.
- Screening analysis may save licensees time and effort, but it may require more remediation

Qualifications for Screening Values Building Surfaces

- The residual radioactivity on building surfaces should be surficial [less than 10 mm of penetration]
- Residual radioactivity on surfaces is mostly fixed
 - removable fraction no greater than 0.1
 - undetermined or higher than 0.1, the screening values should be decreased by a factor of 10.
- Not applicable to surfaces such as buried structures or equipment

Qualifications for Screening Values Surface Soil

- The initial residual radioactivity is contained in the top layer of the surface soil
- The unsaturated zone and the ground water are initially free of residual radioactivity
- The vertical saturated hydraulic conductivity at the specific site is greater than the infiltration rate (e.g., there is no ponding or surface run-off)

Site Specific DCGLs

- Site conditions are not consistent with screening criteria
- Screening DCGLs are unnecessarily restrictive
- Site-specific DCGLs are derived using
 - exposure pathway scenarios
 - conceptual models/computer models
 - physical (site) input parameter values
 - behavioral/metabolic input parameter values

Example

Peak dose = 2.0895; DCGL = 25/2.0895 = 11.965 pCi/g

20

What is an Uncertainty Analyses?

- There are three primary sources of uncertainty in a dose assessment
 - uncertainty in the models
 - uncertainty in scenarios
 - uncertainty in the parameters
- The primary emphasis in an uncertainty analysis should be to identify the important assumptions and parameter values that influence decisions about the site

What is a Sensitivity Analyses?

- Sensitivity analysis identifies parameters and assumptions that have the largest effect on the result
- Sensitivity analysis provides a tool for understanding and explaining the influence of these key assumptions and parameter values on the variability of the estimated dose

Key Issues in Addressing Uncertainty

- Considering alternative conceptual models and scenarios
- Determining appropriate parameter distribution and ranges, and the associated correlation between parameters
- Specifying the metric of the dose distribution to use in determining compliance with the dose limit

Approaches in Uncertainty Analysis

- Deterministic
 - single value for each parameter
 - demonstrate that the estimated dose is an overestimate
- Probabilistic
 - parameter values selected from a probability density function
 - multiple runs performed (Monte Carlo analysis)

Input Parameter Distributions

- Avoid assigning overly restrictive ranges
- Unreasonably large ranges may not account for what is known about a parameter and also may lead to "risk dilution"
- The distributions used in the analysis should characterize the degree of belief that the true but unknown value of a parameter lie within a specified range of values for that parameter

Sensitivity Analyses

- Deterministic sensitivity analysis
 - Calculates the change in the output result (peak dose) with respect to a small change in the independent variables, one at a time (dY/dX)

• Multivariable sensitivity analysis

- Sensitivity of multiple parameters are considered at the same time.
- Allows consideration of the influence of parameters that could be masked by other parameters
- Can be evaluated using scatter plots or regression analysis

Example Single Parameter Sensitivity Analysis

DOSE: Cs-137, All Pathways Summed With SA on Indoor Time fraction

30