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Nuclear Design and Its Devleopment for FUGEN

1. Introductlon .
The purpose of thlS study is to- conflrm the valldlty of
the nuclear design for a heavy water moderated b0111ng light
water cooled, pressure tube type reactor, FUGENl, which is
now under construction 1n Japan. , .
The reactor, FUGEN w111 use Pu mixed- ox1de fuel and
'interest'centerslon'the effectiveness of such fuel. This
type of reactor can be efficiently operated on mixed oxide
fuel'or'slightly.aniqhg&‘U_pxide fuel, using the §ame lattice
and the same shaped fuel assemblies. The use of Pu fuel is
expected to have a favorable effect also on fhe.coolanf“voia
coefficient, thus raigingvthq level of reactor safety and

1

stability.

II. FUGEN Nuclear De51gn

The core conflguratlon of FUGEN 1is shown in Flg. 1. In
the initial core of FUGEN nlnety six mlxed oxide fuel assem-
blies wlll,bellgadpd;}pﬁthe center region and one hundred
twenty .eight slightlf:aniched (1.5 %) U oxide fuel assemblies
in the su;rounding regiop. The amount of Pu in the initial
core is almost the,sgmetaﬁ in the equilibrium core, with the
result that the void‘éoefficient will change little throughout
the reactor life. | .’

A cross-sectiona} view of a FUGEN fuel assembly is shown

in Fig. 2. 1In order to reduce the local power peaking in fhe



fuel assembly, the fissile Pu content of the mixed oxide is
set at 0.55 wt % for sixteen rods of the outer ring and 0.8 wt
$ for twelve rods of the middle and the innermost rings.

Figure 3 shows calculated coolant void reactivities for
the Fugen design. The zero point of the reactivity is set at
35 $ of coolant void on the normal operating condition. Two
solid line curves show the void reactivities of 1.5 % enriched
UO2 and th? mixed oxide cores, respectively. For the initial
core of FUGEN, the dotted line curves are expected, In the
initial core, some control rods will be inserted. Thus, the
void coefficient will be slightly more negative side, with the
effect of control rods, as explained later.

Figure 4 shows calculated local ﬁower peaking factors of
FUGEN fuel assemblies. The local power peaking factor is
improved 5 % lower in the mixed oxide fuel assembly than that
in the 1.5 % enriched UO, fuel assembly.

The principai criteria of FUGEN nuclear design are briefly
as follows:

1) The power coefficient should be negative.
2) The maximum power peéking should be below 2.1.
3) The minimum critical heat flux ratio should be above 1.9.

In order to meet these criteria, the control rod sequence
has been designed, on the basis of a three dimensional thermo-
nuclear code LAYMON, an improved version of the FLARE codez,
which was developed for thi; type of reactors. An adequate
control rod sequence for the initial fuel cycle has been de-
termined on Hailing's prinqiples. In this sequence, at the

change-over‘from the initial core, all control rods will be



withdrawn except the power ‘regulating rods for operation, .
maintaining the gross:peaking factor within the 1imit of the
criteria, allowing for the design margin.

.Figure 5 shows aftypical example of the calculated channel
“power, burn up, and channel flow distributions, and minimum
critical heat flux ratio. by channel for the FUGEN reactor.

In this control rod sequence, two kinds of control rod patterns
were used, as shown number @ and @ , with various depth

of insertions. The'nﬁmber‘méans depth of control rod insertion.
(16 is full out and 0-is full in.) 1In this figure, MCHFR is
greater than 2.6, atithe full power condition. Figure 6
illustrates the calculated radial power distribution at ap-
proximately 6,000 MWD/TU of the exposure. Figure 7 shows the
axial power distribution at-the same exposure as before.

Figure 8 shows the:chénge‘ofvthe radial power distribution
with exposure.  ,h
. The nuclear de$ign%f6.of FUGEN has been checked, using
qur;ﬁuclear design codes, by experiments7'11.with our
Deuterium Critical Aﬁsembly (DCA). In order to evaluate the
details of the Pu fueied core, a CLUSTER-codel? has been |
developed, based on the collision probability method. The

LAYMON code was also ‘checked -in DCA'éiperiments.,

III. Pu Efféct on Void. Coefficient
'The physical ‘meaning of Pu effect on the void coefficient
' 4,6

has been investigated; previously. In the study, two kinds

of fuels, mixed Oxideiand,slightly enriched UO2 fuels, for a



28 rod cluster were selected for a comparison case. Table 1
shows the fuel composition of the comparison case. Details of
the comparison case are given in the appendix. Weight fraction
of the fissile Pu in this mixed oxide fuel is 0.54 %. Thus,
the weight fraction of total fissile isotopes is 1.25 % in the
Pu fuel and 1.5 % in the U fuel. Therefore, the fissile con-
tent in the Pu fuel is less fhan that in the U‘fuel..

Figure 9 illustrates the calculated‘Keff.and Koo on the
comparison case: The calculations with METHUSELAH and MINI-
WIMS codes have been carried out in the United Kingdom following
our input specification. The calculation with CLUSTER-code
was performed in Japan. These three calculations show that the
increase of Koo and Keff with coolant void fraction is less in
the mixed oxide core, than in the UO2 core.

Table 2 shows the variation of the effective absorption
-.cross section of each isotope with void fraction for the com-
parison case. In this table, we notice that the changes of

zsg'and Pu241 are.

the effective absorption cross sections of Pu
negative at the full void, while the changes on the other
isotopes are positive.

To study the reason why the effective absorption cross

239 and‘PuZ41

section of Pu is lower at large void fraction,
spectral indices were defined. S1 is the ratio of fast and
thermal fluxes. S2 is the ratio of higher and lower energy
component in the thermal flux. From Fig. 10, it is found that
S2 in fuel region becomes lower as coolant void fraction in-
creases, in both the UO2 and the mixed oxide cores. This means

that the thermal neutron spectrum in the fuel region becomes
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softer as coolant void fraction increases; It is also found -
that S2 in fuel is two.times greater than that in DZO at the
lower coolant void fraction. 'This means that thermal neutron
spectrum in the fuel channel is harder than that in DZO in
reactor operating condition.

Figure 11 illustréteé the thermal neutron spectrum in the

mixed oxide lattice..:It is found that thermal neutron spectrum

in fuel region is harder. than in moderator'fegion, and the:

' spectrum in fuel at full void is softer than that at 35 % void

fraction. This spectrum shift results in the larger contri-

‘bution of the neutron?current-from-DZO region in the larger

~.void condition. This neutron spectrum shift contributes to

239 241

the decrease of the reaction rates of Pu and Pu”"", since

. they both have a largé resonance at 0.3 eV in thermal energy

region.
Here is .one reason ‘why .Pu suppresses coolant void coef-

ficient, which results :in the larger Pu cross-section, compared

‘with U cross-section. : Table 3 shows a comparison of macro-

scopic-absorption corss:section of fuel and coolant. In the
mixed oxide lattice, .the contribution ‘of coolant is less than

in the UO, lattice. .:

2
. The 'two effects ‘mainly contribute -to .the.coolant void

coefficient in the mixed oxide core, and:almost the same magni-

.tude in this comparison:case.



IV. DCA Experiment

First, we describe the experimental verification of Pu
effect on the void coefficient. Figure 12 shows experiment
on coolant void reactivity'of DCA. The upper solid curve
shows experiment on 1.2 % enriched UO, core. And, the lower
solid curve shows experiment on mixed oxide fuel loaded core,
in which twenty five mixed oxide fuel assemblies are loaded,
surrounded by ninety six UO2 fuel assemblies as shown in Fig.
13. Total Pu content in the mixed oxide fuel is 0.54 % (the
fissile Pu isotope content is 0.49 %). Therefore, the contents
of fissile isotopes in both the UO2 fuel and the mixed oxide
fuel are almost equal. Dotted line curves show calculation by
METHUSELAH and try angular marks at the full void show calcu-
lation by CLUSTER-code. From these results, it is -found that
Pu is effective in reducing the void coefficient.

Now, we describe control rod worth of mixed oxide fuel
loaded core. Table 4 shows a typical experiment result of
control rod worth in the two region core of DCA with twenty
five mixed oxide fuel assemblies surrounded by ninety six UO2
fuel assémblies. The calculation of control rod worth was
performed with the absorption area method. In 0 % void, calcu-
lation agrees with experiment satisfactorily. In full void,
control rod worth is underestimated. Especially, the dis-
crepancy is larger in the case of many control rod insertions
at full void in mixed oxide core, the discrepancy in such case

is almost 20 %.

Table S shows another experiment on control rod worth in

DCA with 1.2 % enriched U0, core. In this experiment, changes



of control rod reactivity worth with coolant void fraction

~ were studied. We notice that the control rod reactivity worth
increases in the large coolant void fraction of 70 % and 106 %.
Figure 14 illustrateéitheAcoolant void dependency on the control
rod reactivity. Fro@,this result, it is found that'control[rod
effect also contributes to the suppression of vqid_coefficiént.
This effect results from the reason that neutron migrétion

area becomes laréevin\theAlarge void fraction, and the neutfon
absorption by control.rods becomes large.

Now, we describgé;he accuracy of estimation of power dis-
tribution. Figure IS:Shows a typical example of the core cén-
figuration of DCA experiment, with checkerboard core, using
three kinds of fuels, 0.54 % (0.49 % of fissile Pu) and 0.87 §
(0.79 % of fissile Pu) mixed oxide fuels, and 1.2 % enriched
UO2 fﬁel, for simulating refueling core. Figure 16 shows a
typical example of the experiment result and the calculatioﬁ.
This shows the radialif;ux distribution of the checkerboard
- core, with four control rod insertions. This shows a quarter
sgction. This calculation was performed using the LAYMON code.
The discrepancy between the experiment and the calculation on
the radial flux distribution was evaluated as approximately 5 %
at peak channel by root mean square, through the analysis of
three kinds of cores (mixed oxide core, UO2 core, and checker-
board core). A

The accuracy of the calculation on the local power peaking
factor was evaluated by expériments in DCA. Discrepancy between
the experiment and‘thé calculation was found to be. almost 1 %
on the peaking factor for both the mixed oxide and U'dxide fuel

assemblies.



V. Conclusion

FUGEN nuclear design with Pu fuel loading has been checked,
by DCA experiment, using various nuclear design codes. Es-
pecially, both by experiment and calculation, it has been shown
that Pu is effective in reducing the void coefficient. Neutron
absorption effect by control rods also contributes to reduce
the void coefficient.

And, further experiment are now in progress with mixed
oxide fuel cores in DCA in preparation for refueling and for
the evaluation of future plants. FUGEN is expected to be in
operation in 1978. And, more information will be presented in

the near future.
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Table 2

Isotope

235

U..
U-238

| Pu-239 |
Pu-240

.Pu-242

Tab1¢ 1§f;Fue1 Cqmﬁosifion

Variation of
with Void -Fraction

©.:0.00705 .

Weight Fraction in Fuel

Pu

0.98544
~fb.oo435
© 0.00180
. 0.00105
" 0.00029

0.625ev

0.

E.U
0.

015
985

of effective absorption cross section

~1

u625;v . .
Jo rsisagsfo  ¢dE (with CLUSTER code)

Fuel U'OE2 - Pqu - U02.

Void : Dif- Dif-
Fract. X 0% 1190 ? ference 0 3 100 % ference
235 | 1.222(-1) | 1.270(-1)]4.8(-3) | 5.824(-2) | 6.187(-2)| 3.6(-3)

238 | 3.479(-2) | 3.597(-2)|1.2(-3) | 3.530(-2) | 3.722(-2)| 1.9(-3)

pu?3? | - --o-- ) IS [ 1.003(-1) | 9.304(-2)| -7.3(-3)
YL IR [ 7.692(=3) | 8.028(-3)| 3.4(-4)
) s T 2.395(-2) | 2.353(-2)| -4.2(-4)
Cpu?t? | ol-- T B 7.310(-5) | 7.691(-5)] 3.8(-6)
. Table 3 Macroscopic.Absorption Cross. Section and Thermal

S Flux in 0% Void Lattice (with CLUSTER-code) '

‘UOé”Létticg | - Pu0, + UO, Lattice
- T . |Total Ab- | | ~L. | Total Ab-
P Fa(cm ~) {sorption. % Ya(cm ~) | sorption
T oy . (Ratio) . (Ratio)
Fuel .~ |'1:363 [1.570<1:'| - .7482 | 1.511 | 2.256-1 .7840
: o o s i @ 00) (1.00)
" coolant | 1.618 |9.707-3 7| .0565- |.1.992 |9.756-3 .0443
: - (.0755) : ' (.0565)
Lattice | ,° g Py _
hoerage | 2-463 | 9.687:3 1.00 | 3.298 |1.100-2 1.00
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Table 4 Control Rod Worth of U-Pu 2 Region Core (DCA)

Void Expenmentcl Control Rod Calculational Volue Exp, Value C/E-|
(%) Core No. |Number| . Position In the Core 4(5/: ;( B(f,}:)f Roc(igl)orth Ro?%orth (%)
A-0-4| 0 | 0.0 0560 |
A~ I {(5B7) 0.21 (0558 038 [0.37+003| +2.70
A-2 I |(1B5) 0.74 10562 | 1.32 |1.34*007| —149
o [A-3 I J(18l) 1.43 0573 250 [265x0.12| —5.66
A-4 2 | (1B5), (1D5) .74 10564 | 3.09 |2.94+0.14| +5.10
A-5-3| 4 | (5A1),(1B5), (5C1),(1D5) . 490(0.567| 6.88 |729+033| —-562
A6 | 8 ((:;’2;}'((;3?,)’ ((f;gg)),((égg; 497 0550 | 904 |si5t041]| —1.20
B-0-5| O 0.0 (0582 7
B~-3 | | (1BI) .51 (0591 ] 256 |3.29%0I0]| —2.19
100 |B-4 2 |(1B5),(1D5) 2.03/0584 | 348 [4.26*0I3| —8.3
B-5-2| 4 |(5Al),(18B5),(5Cl), (105) 44210588 | 752 |9.65%029|—22.07
8-6 | 8 %?:5';((;%3’)'2353 e 606 |056¢| 10.65 |13.16:040| - 1907




Table 5 Control Rod Reactivity Worth for DCA Core

Void .7 7| Control Rods Worth (%) :

(%) Control Rods Position . Fi?sExperiment | £52'5Calculation C/E
IBI . 1.094 l. 190 1.08s
587 0.244 0.266 1.06s
0 | BS 0.652 0.797 1.084
- IBS +1D5 - 1.565 |.66s l.06s
| 5AI4IB5+5CI41D5 . 3.59¢ 3.694 1.026
1Bl - .05, 1.23s L:l 79
‘ 587 0.24¢ 0.27s 1.163
{30 IB5 0.622 0.73s 1. 186
IBS +1D5 1.501 . 736 . 157
5A1+1B5+5C!1 +1D5 '3.450 3.836 . 122
iBl 1236 - 1339 1.08s3
- 587 ' 0.29: ©0.306 .044
01 1BS - 0.74, - -0.803 1.083
IBS +1D5 - . - .78 1.879 .05y
5AI+1B5+5CI+ID5. | . .3.967 - 4,13 .04,

[BI 1.6 lo 1.5l 0.942
- 5B7 1 0.42 10.36: 0.860
00| ~ IB5 it 0.99 0.92s 0.93s
) IB5 +1D05 . ... .| 233 2. 132 0.91s
| 5AI+1B5+5CI+ID5 . 5.174 4,624 0.89,
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Appendix

Input Data of Comparison Cases (from reference (4))

Two kinds of'fue}, Pu mixed oxide and slightly enriched

U fuel, for 28-rods cluster are selected in order to estimate

contribution of Pu on void reactivity.

Input data of comparison cases are as follows.

INPUT DATA of COMPARISON CASES

FUEL CLUSTER

(i) 28 Fuel Rods/cluster in 3 circular rings
Pitch Circle Radius of .

Ring No. of Elements Fuel Rod Centres (cm)

1 4 1.32

2 8 2.96

3 16 4.76

(ii) Element Description
Temper-
Zone I.D. 0.D. Material Density ature
(cm) (cm) . (g/cc) °C)
Fuel Rod --- 1.447 UOZ—PuO2 10.271 600
Void Space 1.447 1.478 Void --- ---
Sheath 1.478  1.646 Iry-2 7.57 300
(iii) Fuel Composition
P
Isotope Weight Fraction in Fuel
Pu E.U

U-235 0.006221 0.013222

U-238 0.868695 0.868266

Oxygen 0.118467 0.118512

Pu-239 0.003838 ---

Pu-240 0.001588 ---

Pu-241 0.000926 ---

Pu-242 0.000255 ---



" radial ‘buckling

0

Note: coolant material, H,0 ‘

(iv) Structural Tie Rod
Four tubes of Zircaloy-2 (6.57 g/cms) with innér
radius of 0.28 ¢m and outer radius of 0.3$’cm are located
on the ring with fédiﬁs of 3.44 cm.
CHANNEL
: femper—
Zone I1.D. .0.D. Material Density ature
_ -_f_- :TEfT i I?ﬁT'. ___——__f (g/cc) (°C)
Pressure Tube 11.78 12.64 Zr-2.5w/o Nb 6.57 285
€0,-Gap 12.64 ”114.94 co, --- 170
Calandria Tube 14.94 15.24  Zry-2 6.57 60
MODERATOR ‘ .
DZO (99.65 moi\%}, 60°C, 1.090 g/cc
OTHER
(i) Channels on‘squarg'lattice pitch of 24.0 cm
(ii) Coolant temperature of 285 °C ‘
(iii) Assume bare core, axial buckling = 0.587 x 10~ % cm™2
= 1.166 x 10™% cm™?2
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