This material has been copied under licence from CANCOPY. Fiesale or further copying of this material ig strictly prohibited. Le présent document a été reproduit avec l'autorisation del RAArcapyed Thermal Reactor "FUGEN" La revente ou la reproduction ultérieurg en sont strictement interdiles MIYAWAKI and Hidemasa KATO

Power Reactor and Nuclear Fuel Development Corporation

JAPAN

1 Introduction

The FUGEN project has been under development to search for effective utilization of nuclear fuels including plutonium. FUGEN is a heavy water moderated, boiling light water cooled, pressure tube type reactor designed to generate 165 MWe. Main design data are shown in Table 1... Now, the reactor is under construction and scheduled to reach criticality in 1976.

Figure 1 shows the initial core configuration of FUGEN, in which , 96 mixed oxide $(PuO_2 UO_2)$ fuel assemblies are to be loaded in the center region and 128 oxide (UO_2) fuels in the outer region. Plutonium is effective to decrease void reactivity in FUGEN type reactor ${}^{4}\tilde{a}^{6}_{3}$ shown in Fig. 2.

To reduce the local peaking factor, fissile plutonium concentration of fuel rods is selected 0.55 wt% for the outer ring and 0.8 wt% for middle and inner ring as shown in Fig. 3. Fig.4 shows the relative power distribution in the mixed oxide fuel assembly.

In this report experimental results and analyses are presented with emphasis on the void reactivity, neutron flux distribution and power distribution in the partial mixed oxide fuel core.

2 . Heavy Water Critical Experiments³⁾

A series of reactor physics experiments are in progress using Deuterium Critical Assembly (DCA) to study characteristics of the heavy water moderated, light water cooled, pressure tube type reactor, and to evaluate the reliability of nuclear codes used in the design of an advanced thermal reactor FUGEN.

As mixed oxide fuel assemblies will be used in FUGEN, critical experiments on partial mixed oxide fuel core are now being carried out at DCA, which consists of 121 fuel assemblies arranged at 22.5 cm lattice pitch. The main core parameters of DCA are shown in the appendix. Some typical results of the experiments and analyses are as follows.

2.1 Void Reactivity⁶⁾

Void reactivity was measured, using a pulsed neutron source under changing void fraction and with a progressive number of mixed oxide fuel assemblics in oxide core. This is shown in Fig. 5. Fig. 6 shows the result that the void reactivity becomes more negative as mixed oxide fuel assemblies are loaded. The calculations tend to evaluate the coolant void reactivity to the positive side.

2.2 Gross Neutron Flux Distribution⁹⁾

The copper wire activation method was adopted for measuring the gross radial flux distribution in the two region core having $37(0.54 \text{ wt\% PuO}_2\text{-}UO_2)$ and $84(1.2 \text{ wt\% UO}_2)$ fuel assemblies, and in checkerboard core having 25

 $(0.87 \text{ wt\% PuO}_2 \text{-}UO_2)$, 32 $(0.54 \text{ wt\% PuO}_2 \text{-}UO_2)$ and 64(1.2 wt%UO₂) fuel assemblies. This is shown in Fig. 7 and 8. The experimental results and calculated values are shown in Fig. 9 and 10. The accuracy of the calculated radial copper reaction rate distribution compared to the experimental values was within in 5 % for two region core, and about 10 % for the checkerboard core.

2.3 Intra-cell Neutron Density Distribution¹⁰

The dysprosium foil activation method was used for measuring the intra-cell neutron density distribution in the mixed oxide fuel lattice as shown in Fig. 11. one of the experimental results is shown compared with calculation in Fig. 12. When compared with experiments, the accuracy of calculated neutron distribution was found accetable.

2.4 Local Peaking Factor¹¹⁾

The rod scanning method was adopted for the measuring the local peaking factor of the mixed oxide fuel assembly. Fig. 13 shows the experimental results of power peaking factors, compared with calculations. These power peaking factors for mixed oxide fuel assemblies agree with experimental values within 1 % in the case of 100 % void condition, but over estimate by 3 % in the case of 0 % void condition.

Experiments on material buckling and microscopic lattice parameters in mixed oxide fuel core are now in progress. For future studies, experiments of other lattice pitches, 20 cm and 25 cm. are being considered.

Conclusion

1) Experimental confirmation of the plutonium effect on coolant void reactivity was obtained from plutonium loaded experiment using DCA.

2) The calculated thermal flux and power distributions in partial mixed oxide core were found accetable.

References

- Shima,S., Sawai,S., Heavy Water Reactor Project in Japan, Especially on Plutonium Utilization, IAEA(143), (1971)
- 2) Shima,S, Nakata,S.,Sawai,S., Development of Prototype Heavy Water Reactor (FUGEN) in Japan, 4th U.N. International Conference, A/Conf. 49/A/232 (1971)
- 3) Takeda, E., Sawai, S., Inoue, T., Miyawaki, Y., Progress of Fast Breeder Reactor and Heavy Water Reactor Development in Japan, ANS Topical Meeting Atlanta, USA (1974)
- Briggs, A, J,, Johnstone, I., et al, Further Reactor
 Physics Studies for Steam Generating Heavy Water
 Reactors(1), J. Brit. Nucl. Energy Soc. 7, 61, (1968)
- 5) Kato,H., Ohteru,S., and Matsumoto,M., Effect of Pu on Void Reactivity, Meeting on Void Coefficient of Heavy Water Moderating Boiling Light Water Cooled Reactors, Paris (1972)
- 6) Haga,T., Kato,H., Physics and Control of Pu-Fueld Heavy Water Reactor FUGEN, Meeting of Canadian Nuclear Association, Toronto(1973)
- 7) Iijima,K., Aihara,N., Hirayama,T., Yoneda,T., Fukumura,N., Miyawaki,Y., DCA Handbook, DCA-Memo 22(1974)

- 8) Muramatsu,A., Shiba,K., Iijima,K., Sakata,H., Experimental Study on Effects of Coolant Void on Zone Loaded Cores with UO_2 and PuO_2-UO_2 Fuel Clasters, DCA-Memo 15 (1974).
- 9) Yoneda, T., Asano, Y., Kowata, Y., Miyawaki, Y., Analysis of Plutonium Partially Loaded Core (I)---Criticality and Radial Copper Reaction Rate Distribution, DCA-Memo 37 (1974).
- 10) Wakabayashi,T., Iijima,K., Hachiya,Y., Fukumura,N., Nishi,A., Measurements of Intra-cell Thermal Neutron Flux Distribution for Plutonium Fuel Lattice

DCA-Memo 26 (1974).

11) Kowata, Y., Asano, Y., Yoneda, T., Miyawaki, Y., Analysis of Plutonium Partially Loaded Core (II)---Local Power Peaking Factor and Radial Power Distribution DCA-Memo 67 (1974).

Table i Design Data of FUGEN		· . ·
	. *	•
Output		•
Reactor thermal output	557 MW	
Gross electrical output	165 MW	
Core		
Core height	3,700 mm	•
Core diameter	4,060 mm	
Lattice pitch	240 mm	
Number of fuel channels	224	
l'uel inventory	36 t	
Heavy water inventory	. 86 t	• •
Fuel		
Fuel material	UO2 and PuO2-UO2	
Pellet diameter	14.5 mm	
Cladding material	Zircaloy-2	
Cladding thickness	0.84 mm	
Number of elements in cluster	28	
Nominal element spacing	2.1 mm	
Total length of fuel assembly	4.4 m	
Pressure tube		
Material	Zr-2.5% Nb	•
Inside diameter	117.8 mm	··· ·
Thickness	4.3 mm	
Calandria tube		
Material	Zircaloy-2	
	1.5 mm	
Primary cooling system		•
Coolant pressure at steam drum	68 kg/cm ²	· · · · · ·
Coolant temperature at steam drum	284 ⁰ C	
Coolant flow rate	7,600 t/h	
Steam exit quality (mean)	14 %	
Number of cooling loops	2.	
Number of recirculating pumps/loop	2	
Turbine system	-	•
Steam pressure at TSV	63. 5 kg/cm ²	
Steam temperature at TSV	279 ^o C	•
Steam flow rate to turbine	910 t/h	

Fig. 1 Core Configuration of FUGEN

•

Fig. 2 Effect of Plutonium Enrichment on Coolant Void Reactivity

. . .

Fig. 5 Loading Patterns of PuO_2-UO_2 Fuel Assemblies

Fig. 6 Void Reactivity as a Function of Coolant Void Fraction

 $\bigcirc 1.2 \text{w/o } UO_2 \text{ Fuel Assembly} :84$ $\bigcirc 0.54 \text{w/o } PuO_2 - UO_2 \text{ Fuel Assembly} :37$

Fig. 7 Two Region Core Configulation

\bigcirc	1.2w/o UO ₂ Fuel Assembly	:64
	0.54w/o PuO2-UO2 Fuel Assembly	:32
	0.87w/o PuO ₂ -UO ₂ Fuel Assembly	:25

Fig. 8 Checkerboard Core Configuration

.

Fig. 10 Radial Copper Activation Distribution in Checkerboard Core (0% Void)

Fig. 11 Foil Arrangement in Unit Cell

. ..

Fig. 12 Intra-cell Thermal Neutron Density Distribution $(0.54w/o PuO_2-UO_2, 100\% Void)$.

Appendix Core Parameter of DCA

1. Fuel Assembly

(1) 28 elements/assembly in 3 circular rings

Ring	Na of elements.	Pitch circle dia of clements centers(CR)
1	4	2.625
2	8	<u>،</u> ۵۵۵۵
3	16	9.515

(jj) Fuel Element

(1) 1.2 w/o Enriched UO₂ Fuel

	Inner dia (CM)	Outer dia (cm)	Material	Density (g/al)
Fuel pellet	-	1,480	1.203w/o enriched UOz	1036
Gap	1.4 8 0	1.5 0 3	Helium	- · `
Fuel sheath	1.5 0 3	1.673	Aluminum alloy	. 2.674

•

الربع المراجع المراجع المراجع

Comp	sition	w/o in fuel pellet	w/o in sheath	Atomic A density (10 ²⁴ /ct)
	*** U	1.057	······································	00002806
pellet	ະນຸມ	86.793		002275
•	0	12150		0.04758
C1	A 1	•	96.98	0.05788
Sheath	Mg		2.60	0.00172

(2) 0.54 w/o Enriched PuO2-UO2 Fuel (Standard Grade)

	lnner dia (cm)	Outer die (cm)	Meterial	Density (g.c.t.)
Fuel pellet		1.469	0.542 w/o enriched P uO ₂ - UO ₂	1017
Gaµ	1.4 69	1.506	lle l i um	-
Fuel sheath	1.508	1.6 68	Zry2	6523

	• • •		•
	•		
		·· :	

Comp	osition	w/o in Hu	w/o in fuel pellei	w/o in sheath	Atomic A density (10 ²⁴ /cd)
	11 sis U		0.6214		0.0001620
	"" ບ	:	86.782		002233
	238 Pu	0.021	0000102		000000026
Pellet	*** Pu	90.360	04304		00001103
	260 Pu	8640	0.04115		000001050
	241 Pu	Q.915	0,004359		0,000001108
	142 Pu	0064	0.0 0 0 3 0 5		. 0.0000000767
	0		1 2.1 2		0.04640
	Zr	•.		9822	0.04218
	Sn			. 1.4 8	0.0004897
Sheath	Fe	· · · · ·		Q.1.4 ·	0.000985
	Ċr				0000756
	Ni			006	0.000401

Date of Analysis ; 23 August 1971

· .

.

.

.

(jj) Hanger Wire

.

A in assembly	Pitch circle dia of hanger wire center (Cm)	Outer dia (Cm)	Material	Density (g/al)
4	1860	0.20	Aluminum alloy	2.674

Composition	w∕o in wire	Atomic A& density (10 ^{24'} /cd ²)
Λ١	9698	0.05788
Mg	· 2.6 0 ·	0.00172

10 Spacer

1

· ·

:.

• • • • Outer dia Density Thickness Main assembly Materiul ' (c#1) (CIII) (g/al)

Aluminum alloy i ·.. *1 - 2 2.674 11.44 0.30 ••• • • •

 Composition	w/o in Spacor.	A tomic Addensity (10 ²⁴ / cf)	
Al	9698	0.05788	
Mg	2.6 0	0.00172	

*1 The positions are 70 Cm and 140 cm from the lowest end

of fuel.

2. Fuel Channel

	Inner Dia(Cm)	Outer Dia(Cm)	Material	Density(g/tml)
Pressure tube	1 1.68	1 2.0 8	Aluminun alloy	2.6 7 4
Air gap	12.0.8	1325	Air	0.001205
Calandria tubc	1325	1365	Alumimun alloy	2.674

Composi	tion	w/o in Al	w/o in Air	Atomic Kadensity	· .
A1		96.98		0.05788	
Mg		. 2.60		0.00172	
Air	0		235204	0.0 0 0 0 10 67	
	И.	میتی و در . و هم و درمن آود و معدد .	76.4796	000003962	

3. Moderator

(1) Density of D₂O (99.50 mol/o) 1.1078

Material	w/o in moderator	Density(g/al)
D: 0	9 9.55	1.10834
H ₂ O	0.45	0.99777

•	• •	·
Composition	w/o. in D ₂ O	Atomic K density ($\hbar x + 10^{24}$)
Н	005036	0003333
D	200223	0.06632
0	79.9283	QU3333 .

4. Coolant

Simulated void	w/o in Coolant				Density (g/cd)	
fraction(#)	H ₂ ()	D20 ·	11 , BO ,	Air		
8	100	-	-		0.99777	
50	63.17	36.82	0.00921	· -	1,0 3 5 9	
20	18.07	8 1.9 1	0.0215		1.0866	
86.7	1145	9 9.5 5		-	1.1078	
1111				100	0.00001	
Density-g/ml)	(198717	1.1 0 8 3 4	1.435	0.001205		

	w.'o in Coolant						
Composition	0¢void	30%void	10%void	86.7% void	100%void		
н	11,19111	10693	2.02 5 1	405036	,		
D		7.4055	164744	200223			
0	888199	8 5.5 2 3 1	8 1.5 0 0 1	79.9285	235204		
ta B		0003158	0000737				
B(Nåtural)		0.001611	u. Ņ O 3 7 6 0	[[
N					764796		

··· ••					•	•
		tomic Aiden	sity (10 ²⁴ /	сж)	《译:11:	I
Composition	0 # void	30\$vold.	20% void	86.7%void	.1300% void :	
Н	0.06671	0.04375	0.01315	0.0003333	• ; •	
D		0.02294	005353	0.06652		
0	0.0 5 5 5 5	0.03335 .	0.03334	0.03333	0.0 0 0 0 1 0 6 7	
B Natural)		0.0000009	0.0 0 0 0 0 2 3			
N Sales G					000003962	<i>:</i> .

5. Others

(j)	Temperature	: 22℃≈295°k
(iı)	Square lattice pitch	: 22.5cm or 25.0cm
(11)	Diameter of core tank	: 300.5 <i>cm</i>
\$ Ø	Ma of fuel channel (Standard core)	: 121 for 22.5cm lattice pitch

Fig. A-1 Fuel Assembly of DCA ($1.2\% UO_2$)

.

Fig. A-3 DCA Core Configuration (Lattice Pitch :225 mm)