

Page 1

ASTM E119-00a

Fire Tests of Building Construction and Materials*

APPENDIX R, ONE-HOUR FIRE RESISTIVE CONTROL CABLE TEST

Project No. 14980-119368, Revision 1

*Modified in that the test specimen was not one that is described in the standard, but the exposure was in accordance with the E119 time-temperature curve.

August 11, 2004

AREVA Framatome ANP, Inc., an AREVA and Siemens company 58-5047207-01

Prepared for: AREVA (Framatome ANP DE&S) 6100 Southwest Blvd., Suite 400 Fort Worth, Texas 76109

Abstract

This document describes the evaluation of an 8/C #12 AWG Meggitt Safety Systems electrical cable and several support systems and attachment methods, when exposed to the ASTM E119 time-temperature heating curve for a period exceeding one hour. All supports and connections remained firm and secure. Electrical testing was performed on the cable before, during and after the testing, and the minimum acceptance criteria were met.

The details, procedures and observations reported herein are correct and true within the limits of sound engineering practice. All specimens and test sample assemblies were produced, installed and tested under the surveillance of either the manufacturer's or the testing laboratory's in-house Quality Assurance Program. This report describes the analysis of a distinct assembly and includes descriptions of the test procedure followed, the assembly tested, and all results obtained. All test data are on file and remain available for review by authorized persons.

Deggary N. Priest, President

Reviewed and approved:

C. Tumphrey

QA Director

August 11, 2004 Date

Date: August 11, 2004

Omega Point Laboratories, Inc. 16015 Shady Falls Road Elmendorf, Texas 78112-9784 210-635-8100 / FAX: 210-635-8101 / 800-966-5253 www.opl.com / e-mail: dnpriest@ix.netcom.com

FINAL REPORT August 11, 2004

Page 3

TABLE OF CONTENTS

ITEM		_PAGE
		1
TEST PROCEDU IE		7 4
Horizontal Test	Furnace	т 4
Furnaça Process		т 5
Thermosounle		5
Dete Acquisitio		0
Data Acquisitio	n Systems	0
		07
nose Stream Te	st	1
Acceptance Ori	eria (Excerpted from Test Plan)	1
T SI I		ð
Test Slad		8
Meggitt Safety S	ystems, Inc. (MSSI) Cable Installation	8
TEST RESULTS		9
CONCLUSIONS		15
APPENDICES		
Appendix A:	TEST PLAN & CONSTRUCTION DRAWINGS	16
Appendix B:	MEGGERING & CONDUCTOR RESISTANCE	
	RESULTS	37
Appendix C:	TEST DATA – FIRE EXPOSURE	51
Appendix D:	QUALITY ASSURANCE	62
Appendix E:	PHOTOGRAPHS	127
LAST PAGE OF R	EPORT	132

FINAL REPORT

August 11, 2004

Page 4

INTRODUCTION

The objective of this test program was to demonstrate the performance of an 8/C #12 AWG Meggitt Safety Systems, Inc. fire resistive cable and cable support designs during a 1-hour fire exposure and following exposure to a hose stream test. The furnace temperatures, furnace thermocouples, Megger testing and hose stream testing were conducted in accordance with Generic Letter 86-10 Supplement 1.

TEST PROCEDURE

Horizontal Test Furnace

The 7' x 12' x 40" deep horizontal test furnace is designed to allow the specimen to be uniformly exposed to the specified time-temperature conditions. It is fitted with 26 symmetrically-located diffuse-flame natural gas pipe burners designed to allow an even heat flux distribution across the under surface of a horizontal test specimen. Furnace pressures may be maintained at any value from +0.03" W.C. to -0.05" W.C. The furnace has been constructed so that the front (40" x 12') wall section can be removed to allow the evaluations of wall/ceiling interfaces and other specific applications.

7' x 12' Horizontal Furnace (Plan View)

The temperature within the furnace is determined to be the mathematical average of thermocouples located symmetrically within the furnace and positioned twelve inches away from

FINAL REPORT

August 11, 2004

the horizontal face of the test specimen. The materials used in the construction of these thermocouples are those suggested in the test standard. During the performance of a fire exposure test, the furnace temperatures are recorded every 15 seconds and displayed for the furnace operator to allow control along the specified temperature curve. For report presentation purposes, the data is saved once per minute.

The fire exposure is controlled to conform with the standard time-temperature curve shown in Figure 1, as determined by the table below:

	2500	Time	Temperature
	2250 -	(min)	(°F)
Ê,	2000 - 1750 -	0	68
e (1500 -	5	1000
tu	1250 - 1/	10	1300
era	1000 -	20	1462
du	750	30	1550
Te	500 -	60	1700
	250 -	90	1792
		120	1850
	0 60 120 180 240 300 360 420 480	180	1925
	Time (min)	240	2000
		300	2075
		360	2150
		420	2225
		480	2300
	Figure 1		

Figure 1

The furnace interior temperature during a test is controlled such that the area under the timetemperature curve is within 10% of the corresponding area under the standard time-temperature curve for 1 hour or less tests, 7.5% for those less than 2 hours and 5% for those tests of 2 hours or more duration.

Furnace Pressure

The pressure differential between the inside of the furnace (as measured approximately 3/4" below the exposed surface of the test slab) and the laboratory ambient air was maintained at +0.01 inches

FINAL REPORT

August 11, 2004

Page 6

of water column for the duration of the fire exposure test (after the first five minutes, during which furnace stabilization was achieved).

Thermocouple Locations

No temperatures were monitored within the heated area except for those used to monitor and control the furnace interior temperature.

Data Acquisition Systems

The furnace control thermocouples were monitored by a 100 channel Yokogawa, Inc. Model Darwin Data Acquisition Unit and a Macintosh computer. The computer was programmed in LabVIEW 5.0 to send the commands to the data acquisition system to sample the data input lines and to convert the raw data into a usable format for display on screen and storage as an ASCII tabdelimited text file. That files were then, after the test, imported into MS Excel for conversion to user units and tabular and graphical display.

Correction Factor

When the indicated resistance period is 1/2 h or over, determined by the average or maximum temperature rise on the unexposed surface or within the test sample, or by failure under load, a correction shall be applied for variation of the furnace exposure from that prescribed, where it will affect the classification, by multiplying the indicated period by two thirds of the difference in area between the curve of average furnace temperature and the standard curve for the first three fourths of the period and dividing the product by the area between the standard curve and a base line of 68°F (20°C) for the same part of the indicated period, the latter area increased by 3240°F• min to compensate for the thermal lag of the furnace thermocouples during the first part of the test. For a fire exposure in the test higher than standard, the indicated resistance period shall be increased by the amount of the correction. For a fire exposure in the test lower than standard. The correction is accomplished by mathematically adding the correction factor, C, to the indicated resistance period.

August 11, 2004

Page 7

The correction can be expressed by the following equation:

$$C = \frac{2I(A-A_s)}{3(A_s+L)}$$

where:

C = correction in the same units as I,

I = indicated fire-resistance period,

A = area under the curve of indicated average furnace temperature for the first three fourths of the indicated period,

 $A_s =$ area under the standard furnace curve for the same part of the indicated period, and

 $L = \text{lag correction in the same units as A and A}_{s} (54^{\circ}F \cdot h \text{ or } 30^{\circ}C \cdot h (3240^{\circ}F \cdot \text{min or } 1800^{\circ}C \cdot \text{min}))$

Hose Stream Test

Immediately following the fire endurance test, a hose stream test was performed in accordance with USNRC Generic Letter 86-10, Supplement 1, Enclosure 1, Section VI. The hose stream was "applied at random to all exposed surfaces of the test specimen through a 1-1/2" fog nozzle set at a discharge angle of 30 degrees with a nozzle pressure of not less than 75 psi and a minimum discharge pressure of 75 gpm with the tip of the nozzle at a maximum of 5 feet from the test specimen. Duration of the hose stream application is 5 minutes." Prior to the hose stream application, the laboratory ensured the correct angle spray pattern, pressure and flow was achieved through calibrated gauges and other equipment as required.

Acceptance Criteria (Excerpted from Test Plan)

3.0 ACCEPTANCE CRITERIA

- 3.1 The acceptance criteria for the cable supports is that the cable supports remain attached to the test slab and that the cable remains attached to the supports, and that there is no functionally adverse physical interaction between the cable support material and the cable test specimen during the fire endurance test and the hose stream test.
- 3.2 A minimum conductor to conductor or conductor to cable sheath (shield) insulation resistance (IR) value of 5.7 megohms per foot is considered to be the test acceptance criteria. The cable IR values obtained during the fire test exposure and after application of the hose stream will be used to demonstrate the functional capability of FNP specific Appendix R control circuit applications.

FINAL REPORT

August 11, 2004

Page 8

- 3.3 The acceptance criteria for the conductor resistance is to show that conductor has continuity before the fire test and after the fire hose test.
- 3.4 The seals used for closure of the openings in the test slab will be ceramic fiber and are not being tested or considered part of the test assembly.

TEST SPECIMEN CONSTRUCTION

Test Slab

An 8' x 13' x 8" thick normal weight concrete slab (used previously) was in excellent condition and hence was utilized in this project after being turned over and any holes filled with ready-mix concrete. The slab was then cured at 350° F for one week, cooled and placed on a work stand. It was then cooled and the appropriate holes cored through to receive the cables and the all-thread rod used to attach some of the supports.

Meggitt Safety Systems, Inc. (MSSI) Cable Installation

Prior to installation in the test assembly, meggering tests were performed on all conductors in the MSSI cable in an "as received" condition. Results of this testing can be found in Appendix B.

The support slab was cored and prepared as described in the drawings supplied by AREVA (Framatome-ANP, see Appendix A Test Plan), including the installation of the required supports. A single 8/C #12 AWG Meggitt Safety Systems cable was installed, as indicated in the drawings. The length of cable exposed to the furnace heat was 24' 2" (24.167 ft).

The cable passed through a 5" diameter hole in the 8" thick concrete slab, entering the heated area of the assembly. After a series of 90° bends, the cable exited the heated area of the furnace by passing once again through a different 5" diameter hole in the concrete slab. Each cable end was identified as "in" or "out," to differentiate between ends. The "in" end was the end that entered the heated area and traveled along close to the slab. The "out" end was the end that was running horizontally 36" below the slab and then passing up and out. Once the cable installation was complete, the remaining openings were filled with ceramic fiber blanket stuffed as tightly as possible.

FINAL REPORT

August 11, 2004

Page 9

GENERAL

The cable was grounded to the slab through its metallic connections at all supports. Also the cable outer stainless steel shield was grounded to the slab and connections on the top surface of the slab. The support systems that were held in place by all-thread rods passing through the slab were all added to the ground circuit on the cold side of the slab.

A piece of plywood was mounted on top of the slab to serve as a panel for making connections when performing megger or conductor resistance testing. The actual conductors from each end of the cable were inserted from the back of the panel and stuck out several inches for the operators to make connections.

Representatives of Grubb Engineering, Inc. then arrived and performed Megger Testing and Conductor Resistance Testing in accordance with the test plan. These results are presented in Appendix B: Meggering & Conductor Resistance Results.

TEST RESULTS

The instrumented test article was placed on top of the furnace on June 17, 2004. The thermocouples were connected to the data acquisition system and their outputs verified. The furnace was fired, and heating continued for 20 minutes. Meggering was then performed between all conductors of the cable. The megger operator read his results to a representative of the OPL QA/QC Department, who noted the reading and the time at which that reading was taken.

The ambient temperature at the start of the test was 85° F, with 78% relative humidity. The furnace was fired at 10:52 AM and the standard time-temperature curve followed for 60 minutes. Then the temperature was held steady at the 60 minute E119 temperature (1700°F) from 60 minutes until test completion at 102 minutes. The pressure differential between the inside of the furnace (as measured approximately 3/4" below the exposed surface of the test slab) and the laboratory ambient air was maintained at +0.01 inches of water column for the duration of the fire exposure test (after the first five minutes, during which furnace stabilization was achieved).

FINAL REPORT

August 11, 2004

Page 10

Persons present to perform or witness the test were as follows:

Cal Banning	-	Framatome ANP
John Crowther	•	Framatome ANP
J.C. Vance	•	Southern Companies
Fred Rudek	•	Meggitt Safety Systems
Dhanesh Butani	-	Bechtel Power
Jeff Piel	•	Grubb Engineering
Deggary Priest	•	Omega Point Laboratories, Inc.
Connie Humphrey	•	Omega Point Laboratories, Inc.
Cleda Patton	•	Omega Point Laboratories, Inc.
Troy Bronstad	•	Omega Point Laboratories, Inc.
Oscar Estrada	•	Omega Point Laboratories, Inc.
Richard Beasley	•	Omega Point Laboratories, Inc.

Observations made during the test were as follows:

TIME OBSERVATIONS

0:00	Furnace ignited at 10:52 AM.
5:00	Furnace interior pressure adjusted to +0.01" WC at a point 3/4" below the slab,
	resulting in a neutral pressure plane position approximately 12" below the
	underside of the slab.
20:00	Megger testing began.
30:00	Furnace operating normally. No visual observations within the furnace.
45:00	Furnace operating normally. Still no obvious changes inside.
60:00	Meggering still not completed for the first round. The client requested that the
	furnace be kept on, but that the temperature be held steady and continuously at
	the E119 sixty-minute temperature (1700°F).
61:00	First round of meggering completed.
62:00	Second round of meggering begun.
99:12	Second round of meggering completed.

FINAL REPORT

Page 11

TIME OBSERVATIONS (continued)

- 102:00 Furnace extinguished and test article removed from the furnace to be moved to the hose stream test area. All cable supports were red hot but solidly attached to the slab and the cable. No visible damage to either supports or cable.
- 105:56 Hose stream test started. Details: 75 psi, 30° fog nozzle, 75 gpm (min) from a distance of 5 feet. Slab was slowly spun to expose all parts of the heated area.
- 110:56 Hose stream test stopped. Slight amount of concrete paste fell from the slab. The cable supports remained firmly attached to both the concrete slab and the cable. No visible damage to either supports or cable.
- 120:12 Final conductor resistance test started.
- 121:23 Final conductor resistance test completed.
- 122:36 Final meggering test started.
- 127:57 Final meggering test completed.

In accordance with the E119 test standard, a calculation for any correction to the indicated fire resistance period was done. The correction factor was then mathematically added to the indicated fire resistance period, yielding the fire resistance period achieved by this specimen:

		TEST				
ITEM	DESCRIPTION	VALUE				
С	correction factor	-0.85 min				
I	indicated fire-resistance period	102 min				
A	area under the curve of indicated average					
	furnace temperature for the first three fourths of	109 616°F•min				
	the indicated period					
As	area under the standard furnace curve for the	111 045°F•min				
	same part of the indicated period					
L	lag correction	3240°F•min				
	FIRE RESISTANCE PERIOD					
	ACHIEVED BY THIS SPECIMEN ==>	101 min				

August 11, 2004

Note: The standard specifies that the fire resistance be determined to the nearest integral minute. Consequently, if the correction factor is less than 30 seconds, and the test specimen met the criteria for the full indicated fire resistance period, no correction is deemed necessary. In this case, the area was slightly low, and so the reduction in the fire resistance period has been reduced from 102 minutes to 101 minutes. It should be realized that the furnace temperature was not allowed to exceed that required by the standard at a time of 60 minutes, which was why the integration was a little low.

Listings and a plot of the furnace interior temperature can be found in Appendix C. A photographic documentation of each test has been included in Appendix E.

ODSERVATIONS AFTER THE FIRE AND HOSE STREAM TESTS	OBSERVATIONS AFTH	ER THE FIRE AND	HOSE STREAM TESTS
---	--------------------------	-----------------	-------------------

ITEM	POST FIRE TEST	POST HOSE STREAM TEST
ITEM Meggitt Cables & Supports	POST FIRE TEST Upon removal from the furnace, the Meggitt cable cooled to below red heat immediately. The more massive steel supports remained bright red. All Meggitt cable supports remained straight and firmly attached, with no obvious effect of the	POST HOSE STREAM TEST The Meggitt cable supports remained straight and firmly attached, with no obvious effects from the heat. The Meggitt cable remained firmly in position, with insignificant sagging over even the longest horizontal run. All items below the slab were covered with wet, calcined concrete (a common occurrence when hot concrete slabs are watted). All slamps holding the
	heat. The Meggitt cable remained firmly in position.	slabs are wetted). All clamps holding the Meggitt cable to the supports remained
	with insignificant sagging.	firmly in place. Removal of the clamps
	6	from several locations showed no damage to
		the outer shield.

Following the completion of all testing, the ceramic fiber was removed from the holes in the slab and the Meggitt cable was removed in one piece, rolled into a nominally 36" coil and placed in a cardboard box for shipping back to MSSI.

FINAL REPORT

August 11, 2004

Page 13

OBSERVATIONS MADE DURING THE MEGGER AND CONDUCTOR RESISTANCE TESTS

The results indicated below do not represent a full and precise analysis of the meggering and conductor resistance data obtained. The actual test data sheets have been included in Appendix B for analysis by qualified and authorized persons.

8/C #12 AWG CABLE

Pre-Test

The cable's conductors were tested with a megger between all possible combinations of conductors and shield at a voltage of 500 VDC. The results were obtained rapidly for each reading with the resistances all above 10,000 M Ω . The conductor resistances were all around 0.096 Ω .

During Fire Test (20 minutes)

The megger readings dropped significantly, to a low of 0.8 M Ω to a high of 1.6 M Ω . The time required for equilibrium took significantly longer than the pre-test meggering did. This series of measurements was not completed until 61 minutes. No conductor resistance readings were taken during the fire tests on any cable.

During Fire Test (60 minutes)

The megger readings remained fairly steady, ranging from a minimum of 0.92 M Ω to a maximum of 1.5 M Ω . The equilibrium times were somewhat shorter than before, being completed at a test time of 99 minutes.

Post Hose Stream Test

Meggering and conductor resistance tests were repeated immediately following the fire and hose stream tests. The megger readings were mostly >10,000 M Ω , with a low reading of 8.5 M Ω . The conductor resistance results ranged from a low of 0.101 Ω to a high of 0.105 Ω .

FINAL REPORT

August 11, 2004

Page 14

DETERMINING INSULATION RESISTANCE PER FOOT

For simplification, define the combined system insulation resistance to shield or another conductor as indicated. The overall resistance (R_T) can be considered to be the sum of the resistances per each foot of cable, as shown in the circuit below.

The total resistance of an electrical circuit made up of a number of resistances in parallel is represented by:

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

Where:

RT	=	Total resistance between conductor and shield or conductor and
		another conductor.
n	=	Number of feet of cable (in fire-heated area for this case)
R_1	=	Resistance between conductor and shield or conductor and another conductor over the first foot of heated cable.
Rn	=	Resistance between conductor and shield or conductor and another conductor over the n th foot of heated cable.

Assuming that all resistance per foot values are equivalent, this equation reduces to:

$$\frac{1}{R_T} = n \left(\frac{1}{R_{fi}} \right) = \frac{n}{R_{fi}}$$

FINAL REPORT

August 11, 2004

Page 15

Rearranging and solving for the resistance per foot:

 $R_{ft} = nR_T$

where:

$$n = 24.167$$

TEST TIME	R _T (min)	R _{ft} (min)
Pre-Fire Test	>10,000 MΩ	>242 GΩ
Fire Test (20 - 61 min)	0.8 MΩ	19.3 MΩ
Fire Test (62 – 99 min)	0.92 MΩ	22.2 MΩ
Post Fire/Hose Stream Test	8.5 MΩ	205.4 MΩ

Minimum Insulation Resistance Values

CONCLUSIONS

In accordance with the acceptance criteria listed in the Test Plan, all supports were successful and met the requirements of the Test Plan. None failed to hold up its load and all remained firmly attached to the concrete slab. There was no visible interaction between any of the support materials and the MSSI cable.

The minimum acceptable insulation resistance value was 5.7 M Ω . All of the conductor insulation values remained significantly above that minimum value throughout the entire test procedure.

The conductor resistance values pre- and post-test were not significantly affected by the test.

Report No. 14980-119368, Rev.1 AREVA

FINAL REPORT August 11, 2004 APPENDICES Page 16

Appendix A

TEST PLAN & CONSTRUCTION DRAWINGS

20440 11 (2/20/2004)

A	Page 17				
AREVA					
Document Identifier 51 - <u>5045887 - 01</u>					
Title Appendix R, One-Hour Fire Resistive Control	Cable Test Plan				
PREPARED BY:	REVIEWED BY:				
Name John G. Crowther	Name Richard L_Dible				
Signature <u>(1740, G47, G48</u> Date <u>6/23/2004</u> A	Signature				
Technical Manager Statement: Initials					
Remarks:					
This test plan documents the scope of this test, the objectives, the acceptance criteria, the responsibilities of the client (Meggitt Safety Systems, Inc.), Framatome ANP and the test laboratory (Omega Point Laboratories), the prerequisites for the test, the procedure to be followed in conducting the test and the prenaration of the test report.					
This revision of the test plan is to incorporate as built conditions.					
Framatama AND Inc. on ADEVA and Sigman assures					

Page <u>1</u> of <u>13</u>

TABLE OF CONTENTS

ITEM_		PAGE
Cover S	Sheet	1
Table o	of Contents	2
1.0	Scope	3
2.0	Objective	3
3.0	Acceptance Criteria	3
4.0	Definitions	3
5.0	Responsibilities	4
6.0	Prerequisites	6
7.0	Procedure	9
8.0	Fire Test Report	11

Page 2 of 13

June 23, 2004 | Page 19

SCOPE

1.0 THIS TEST PLAN DESCRIBES THE METHODS AND GUIDELINES TO BE UTILIZED FOR THE PREPARATION OF TEST SPECIMEN, PERFORMANCE OF FIRE AND HOSE STREAM TESTS, TEMPERATURE MONITORING, MEGGER TESTING (INSULATION RESISTANCE) DATA COLLECTION, CONDUCTOR RESISTANCE DATA COLLECTION, AND ALL APPLICABLE DOCUMENTATION OF THESE TASKS AND THE TEST RESULTS. THE TEST SPECIMEN CONFIGURATION WILL BE REPRESENTATIVE OF THE PROPOSED MEGGITT SAFETY SYSTEMS, INC. (MSSI) 8 CONDUCTOR # 12 AWG APPENDIX R CONTROL CABLE INSTALLATION TO BE IMPLEMENTED BY DESIGN CHANGE PACKAGES (DCPS 03-1-9901, 03-1-9902, AND 03-2-9906) AT FARLEY NUCLEAR PLANT (FNP).

2.0 OBJECTIVE

The objective of this test program is to demonstrate the performance of the MSSI 8conductor # 12 AWG fire resistive control cable and the cable support design during a 1-hour ASTM E-119 fire exposure and subsequent exposure to a hose stream test. The furnace temperatures, furnace thermocouples, Megger testing and hose stream testing will be conducted in accordance with US NRC Generic Letter 86-10 Supplement 1. The test will also include collection of electrical characteristic data (insulation resistance, conductor resistance) for the MSSI cable test specimen.

3.0 ACCEPTANCE CRITERIA

- 3.1 The acceptance criteria for the cable supports is that the cable supports remain attached to the test slab and that the cable remains attached to the supports, and that there is no functionally adverse physical interaction between the cable support material and the cable test specimen during the fire endurance test and the hose stream test.
- 3.2 A minimum conductor to conductor or conductor to cable sheath (shield) insulation resistance (IR) value of 5.7 megohms per foot is considered to be the test acceptance criteria. The cable IR values obtained during the fire test exposure and after application of the hose stream will be used to demonstrate the functional capability of FNP specific Appendix R control circuit applications.
- 3.3 The acceptance criteria for the conductor resistance is to show that conductor has continuity before the fire test and after the fire hose test.
- 3.4 The seals used for closure of the openings in the test slab will be ceramic fiber and are not being tested or considered part of the test assembly.

4.0 DEFINITIONS

- 4.1 Test Slab / Deck An assembly designed to support the test item in position within the test furnace.
- 4.2 Test Item All materials associated with Meggitt Cable including supports.

- 4.3 Test Assembly The combination of the test item(s), thermocouples and test deck.
- 4.4 Thermocouple An electrical assembly used to measure temperature, consisting of an electrically-welded, fused junction of dissimilar metals and their respective leads to the data acquisition system. The thermocouple leads are insulated with materials capable of withstanding the moisture and heat requirements of the test environment.

5.0 **RESPONSIBILITIES**

- 5.1 Meggitt Safety Systems, Inc.
- 5.1.1 Assume, through its contractor, total management responsibility of this test program.
- 5.1.2 Coordinate with FANP to provide designs for the specific test items. MSSI, in particular to provide designs for cable supports.
- 5.1.3 Once this test procedure is approved, MSSI must approve any changes in the test methodology. MSSI will coordinate such approval with Bechtel and / or Southern Nuclear-Farley as appropriate.
- 5.1.4 Provide the 8-conductor, 12 AWG cable to be tested and other materials as indicated on the Bill of Materials (Drawing 02-5045841A). MSSI will record the IR values between conductor to conductor and each conductor to cable sheath, (data to be recorded) prior to preparation of the cable for shipment to Omega Point Laboratories, Inc. (OPL).
- 5.1.5 Provide a representative to be present to witness the fire endurance and hose stream tests.
- 5.1.6 Provide review of DRAFT test report including one set of "consolidated" comments. MSSI will coordinate any approvals / reviews / comments, etc with Bechtel and / or Southern Nuclear-Farley as appropriate.

5.2 Framatome ANP (FANP)

- 5.2.1 In coordination with MSSI, establish the criteria, guidelines, drawings, bill of materials, recommendations, etc., to govern the construction of the Test Assembly.
- 5.2.2 Provide the test item installation drawings / instructions and QC instructions.
- 5.2.3 Provide scheduling of personnel, equipment and material necessary to perform the installation.
- 5.2.4 Coordinate all phases of the fire test preparation with the testing organization including approval of any changes to the test methodology described herein.
- 5.2.5 Contract testing laboratory services.

5.3 Omega Point Laboratories, Inc. (OPL)

5.3.1 OPL shall coordinate with FANP the development of the Test Plan.

Page 4 of 13

- 5.3.2 Provide and prepare the test furnace, test slab, test items and provide required test instrumentation in accordance with the Laboratory's Quality Assurance Program and Quality Control Program.
- 5.3.3 Provide furnace thermocouples and thermocouple calibration and instrumentation.
- 5.3.4 Provide all test equipment necessary to provide Megger testing data collection and conductor resistance data collection. Megger testing shall be conducted in accordance with US NRC GL 86-10, Supplement 1 and as specified herein.
- 5.3.5 Procure the support materials as specified by FANP as required to construct the test assemblies. Such materials may include, but are not limited to, tools and equipment, fasteners, supports, structural steel, etc., as shown on FANP test assembly drawings.
- 5.3.6 Assemble, install and document the Installation of all Meggitt Cable, supports, etc. This includes installing the attachment plates sufficient to hold the test articles during the test.
- 5.3.7 Provide computer-generated drawing, showing location of furnace thermocouples.
- 5.3.8 Record and overview, using the Laboratory Event Log, the QC documentation for the installation of all test items.
- 5.3.9 Conduct the fire endurance and hose stream test including performing all Megger testing data collection, and conductor resistance data collection in accordance with this test plan.
- 5.3.10 Inspect and document the physical condition of the test item following completion of the post-hose stream insulation test.
- 5.3.11 Document the test parameters and provide a formal detailed written report of the test program and test results (provide 5 copies).
- 5.3.12 Provide photographic coverage of the test items, the fire and hose stream tests and the post-test activities. Provide VHS video coverage of the test items during the fire and hose stream test and post-test.
- 5.4 Laboratory (OPL) Quality Assurance / Quality Control
- 5.4.1 Receive, inspect, and record all materials associated with the test items. The quality control documentation for these materials provided by the Laboratory will be documented in the final test report. OPL shall follow the unpacking, inspection and storage requirements of MSSI document ER 04-033 upon receipt of the test cable from MSSI including recording the IR values between conductor to conductor and each conductor to cable sheath, (data to be recorded) of the cable as received from MSSI prior to installation of the cable at OPL..

- 5.4.2 Inspect and document that the materials used and construction of test items comply with applicable drawings. OPL shall also measure and document the installed length of the cable test specimen located within the fire test chamber as constructed for the test.
- 5.4.3 Witness the process utilized in the installation of the test assembly and suitably document observations in event logs, inspection reports, etc.
- 5.4.4 Inspect and document the instrumentation of the test items.
- 5.4.5 Provide written calibration documentation of all thermocouples, measurement devices and data acquisition systems used in this test program.
- 5.4.6 Witness the fire endurance test and hose stream test to document test performance and confirm test results.
- 5.4.7 Complete the Test Article Attribute Checklist (Drawing 02-5045842A) prior to the start of the test.

6.0 PREREQUISITES

6.1 General Test Configuration Requirements

- The test items used in this test program shall be representative of the FNP configuration or intended plant configurations and shall be specified and designed by MSSI. MSSI shall be responsible for coordinating all design / review activities with Bechtel and Southern Nuclear Operating Company, Inc. (SNC). The test items to be subjected to fire endurance and hose stream tests shall be in accordance with the FANP assembly drawings and instructions. The following are the assembly drawings and instructions (latest revision shall apply):
 - Drawing 02-5045835A
 - Drawing 02-5045836A
 - Drawing 02-5045837A
 - Drawing 02-5045838A
 - Drawing 02-5045839A
 - Drawing 02-5045841A
 - Drawing 02-5045842A
- MSSI Document ER 04-033, Unpacking, Inspection, Installation and Standard Practices for Fire Rated Cable for J.M. Farley Nuclear Power Plant.

6.2 Traceability Requirements

All thermocouples used in this test program shall be traceable to the respective thermocouple manufacturer, with calibration certification, provided by Omega Point Laboratories.

6.3 Dimensioned Drawings

- 6.3.1 The test articles shall conform to the dimensioned drawings provided by FANP. All changes to these drawings shall be implemented and controlled by FANP. Final revisions of all drawings shall be provided by FANP for inclusion into and use in preparing the final test report.
- 6.3.2 Final, dimensioned drawings depicting layout of the furnace thermocouples will be prepared by OPL, for inclusion in the final test report.

6.4 Electrical Wiring Diagrams

6.4.1 The external connections to the test cable shall conform to the Electrical Wiring Diagrams provided by OPL (See figure 1 in this test plan). All changes to the diagram shall be implemented and controlled by FANP and approved by MSSI. Final revisions of the diagram shall be implemented and controlled by FANP. Final revisions of all diagrams shall be provided by FANP in this Test Plan for inclusion into and use in preparing the final test report.

6.5 Test Configurations

6.5.1 General

- 6.5.1.1 The test specimen shall be sufficiently secured to the test deck and/or sealed by Laboratory personnel, in accordance with instructions and drawings. The test deck will consist of a concrete slab, reinforced with structural steel elements sufficient to carry the load of the test specimen and support assembly.
- 6.5.1.2 The concrete test slab is to be cured and conditioned to reduce the risk of spalling. Where an existing test slab is to be reused, it shall be inspected to ensure that it is in good condition. The slab will be conditioned to moisture equilibrium at indoor conditions or drier to ensure no spalling.
- 6.5.1.3 Penetration openings for the Meggitt cable will be sealed using ceramic fiber.

6.5.2 Test Specimen

All test items will be constructed in accordance with drawings provided by FANP, and in accordance with MSSI Document ER 04-033, Unpacking, Inspection, Installation and Standard Practice for Fire Rated Cable. Tools used for test cable bending shall be

approved by MSSI and identified by tool manufacturer and model number on the OPL QC documentation for the installation of the test items.

6.5.3 Grounding of Supports

Meggitt Cable supports will be grounded by attaching grounding cables to the through slab all thread rod located on top of the slab. This all thread rod attaches the surface mounted steel plates for each of the hangers to the slab.

6.6 Thermocouple Installation

- 6.6.1 Furnace thermocouples shall be provided and installed in accordance with US NRC GL 86-10, Supplement 1. All thermocouples used in this test program shall be provided and installed by OPL, with QC surveillance by Laboratory personnel.
- 6.6.2 The measured temperature to be compared with the standard time-temperature curve is to be the average temperature obtained from the reading of thermocouples symmetrically disposed and distributed to indicate the temperature near all parts of the specimen.
- 6.6.3 At least three thermocouples are to be used with no fewer than five thermocouples per 100 square feet of floor area. The junctions of the thermocouples are to be placed 12 inches from the exposed surface of the test assembly.
- 6.6.4 Each furnace thermocouple is to be enclosed in a sealed protection tube. The exposed combined length of protection tube and thermocouple in the furnace chamber is to be not less than 12 inches.
- 6.6.5 The time constant of the protected thermocouple assembly is to be within the range of 5.0 to 7.2 minutes. A typical thermocouple assembly complying with this time constant requirement is fabricated by fusion-welding the twisted ends of No. 18 AWG chromel-alumel wires, mounting the leads in porcelain insulators and inserting the assembly into a standard weight ½ inch (0.84 inch outside diameter) black wrought iron, black wrought steel or Inconel pipe, and sealing the end of the pipe that is inside the furnace. The thermocouple junction is to be inside the pipe, 1/2 inch from the sealed end.
- 6.6.6 The temperatures are to be read at intervals not exceeding 1 minute throughout the fire test.
- 6.6.7 The temperature of the furnace is to be controlled so that the area under the measured time-temperature curve, obtained by averaging the results from the thermocouple readings, is within 10 percent of the corresponding area under the standard time-temperature curve for a 1 hour test.
- 6.6.8 Engineering thermocouples for information only will be provided for temperature measurements of the cable sheath outside the fire test chamber. One thermocouple will

be placed on the each cable sheath as near to the cable exit from the test slab as practical, and another thermocouple will be placed on each cable sheath approximately 8 to 16 inches away from the previous measurement location on the cold side of the test slab.

6.7 Preburn Inspection

- 6.7.1 Prior to the commencement of the fire endurance test, a thorough check of the test assembly and associated equipment (including data recording equipment, megohmeter for Megger testing, and conductor resistance testing equipment) and completion of applicable Laboratory QA/QC checklists shall be performed and documented by the testing laboratory.
- 6.7.2 Written approval of the construction, assembly, installation and instrumentation will be supplied by FANP and OPL prior to performance of the fire exposure test (a sign-off sheet for this purpose will be supplied by the Laboratory).

7.0 PROCEDURE

7.1 General

- 7.1.1 The testing sequence will be as follows:
- 7.1.1.1 After construction and connection of the test assembly and prior to the start of the fire endurance test: Megger testing data collection shall be conducted in accordance with Section 7.2. Conductor resistance data collection shall be performed in accordance with Section 7.3.
- 7.1.1.2 During the 1-hour fire endurance test, Megger testing data collection shall be performed starting at 20 minutes into the fire test and will be conducted at 20 minute intervals during the test. The test may be extended past 1-hour as necessary to finalize the testing. Megger testing data collection shall be conducted in accordance with Section 7.2..
- 7.1.1.3 At the completion of the fire endurance test the test assembly shall be subjected to a hose stream test in accordance with Section 7.4.
- 7.1.1.4 After the hose stream test, the following monitoring/data collection shall be performed:
 Megger testing data collection shall be conducted in accordance with Section 7.2.
 Conductor resistance data collection shall be performed in accordance with Section 7.3.

7.2 Megger Testing Data Collection

7.2.1 Megger testing data collection is to be conducted before and during the fire test and again after the hose stream test. The first Megger testing data collection is to be

conducted after the installation of the cable into the test structure and prior to commencement of the fire endurance test. Starting at 20 minutes into the fire test, Megger testing will be conducted and repeated at 20 minute intervals during the test, with the last set of readings obtained starting at 60 minutes into the fire test. The test duration may be extended as necessary to complete the testing. The final Megger testing data collection is to be conducted following the hose stream test.

- 7.2.2 The Megger testing is to be performed with a megohmeter. The 8-conductor, #12 AWG cable shall be tested at 500 VDC.
- 7.2.3 The Megger testing is to be performed on each adjacent conductor-to-conductor path and on each conductor-to-cable sheath path.
- 7.2.4 The Megger testing data collection results shall be corrected to reflect only that portion of insulation resistance which is contributed to by the Meggitt cable.
- 7.2.5 The results from each of the Megger testing data collections along with a detailed explanation of the data correction and the final corrected results shall be documented in the final test report.

7.3 Conductor Resistance Data Collection

- 7.3.1 Conductor resistance data collection will occur prior to the start of the Fire Endurance and after the hose stream test. Conductor resistance shall be measured for each conductor in each cable. Conductor resistance will be measured utilizing an Ohmmeter.
- 7.3.2 The results from each conductor resistance data collection shall be documented in the final test report.

7.4 Water Hose Stream Test

7.4.1 Immediately following the fire endurance test, a hose stream test will be performed in accordance with USNRC Generic Letter 86-10, Supplement 1, Enclosure 1, Section VI. The hose stream will be "applied at random to all exposed surfaces of the test specimen through a 1-1/2" fog nozzle set at a discharge angle of 30 degrees with a nozzle pressure of not less than 75 psi and a minimum discharge flow of 75 gpm with the tip of the nozzle at a maximum of 5 feet from the test specimen. Duration of the hose stream application is 5 minutes." Proper safety precautions shall be exercised. Only those personnel required to perform the hose stream test shall be allowed in the immediate area, and only then with appropriate breathing apparatus. Prior to the hose stream application, the laboratory will ensure the correct angle spray pattern, pressure and flow is being achieved through calibrated gauges and other equipment as required. This is to be documented by OPL.

CAUTION: THE TERMINATIONS AND CABLE TEST LEADS EXTERNAL TO THE FIRE CHAMBER SHALL BE PROTECTED FROM THE WATER SPRAY DURING THE HOSE TEST

7.5 Fire Endurance Test

- 7.5.1 The test equipment and test assembly are to be protected from any condition of wind or weather that influences the test results. The air temperature at the beginning of the test is to be within the range of 50 to 90°F, unless otherwise approved by MSSI.
- 7.5.2 The test item shall be exposed to the standard time/temperature curve found in ASTM E-119 (88) for a minimum period of sixty (60) minutes, unless directed by FANP to conclude the test.
- 7.5.3 Furnace pressure shall be controlled to be as nearly neutral as possible with respect to the surrounding laboratory atmosphere, measured at the vertical mid-point of the test specimen.
- 7.5.4 The testing organization shall adapt their testing procedures to assure the fire test complies with the requirements established by the referenced portions of the referenced standards. Any changes, revisions, or deviations required to comply with this requirement shall be documented and properly justified and included as part of the final test report.
- 7.6 Furnace Thermocouple monitoring
- 7.6.1 During the fire exposure period, the thermocouples will be scanned at one minute intervals or less. Data storage for reporting purposes will be at one minute intervals, although the furnace thermocouples will be scanned and displayed every 15 seconds, to allow close control of the furnace. The test report will contain thermocouple data at one minute intervals.
- 7.6.2 Monitoring of all thermocouples will be terminated upon completion of the fire endurance test.

8.0 FIRE TEST REPORT

- 8.1 The Laboratory will submit a report on the results of the test including whether the acceptance criteria for fire test were met. Initially, a DRAFT report will be sent within 14 days of test completion for one set of consolidated review comments by MSSI/FANP.
- 8.2 The Laboratory will assemble the final test report, containing the collected data and required quality control documentation. Five (5) hard copy sets of the final report along with (5) CD's of test reports and 5 copies of the VHS video of the test will be provided to FANP. The CD's will contain the test report in pdf format, all test data in Excel® format and all

photographs (whether or not they were selected for use in the final report) in high resolution jpeg format.

8.3 The test report shall be prepared in sufficient detail to summarize the total testing activity.

The report shall include as a minimum:

- a) Identification of the testing laboratory and identification of the employer of the personnel who witnessed the preparation of the test samples.
- b) A description of the assembly, materials and installation of the fire resistive cable including drawings depicting the geometry and location of the fire resistive cable within the test assembly.
- c) The type of fire resistive cable including description and manufacturers part number.
- d) Complete description of the electrical circuit.
- e) A record of the test instruments used and calibration verification.
- f) The temperature of the furnace during the fire test.
- g) A description of the equipment used for the hose stream test.
- h) A record of the hose stream test.
- i) A record of the Megger test measurements and the elapsed time between the end of the hose stream test and the beginning of the Megger test.
- j) Observations on the behavior of the cable during the fire endurance test and during the hose stream test.
- k) Observations on the behavior of the supports during the fire endurance test and during the hose stream test.
- I) A record of the conductor resistance data collected.

Page 13 of 13

.

ŧ.

	<u> </u>						REVIS	IONS			
	FRAM	ATO	AE ANP	REV		DRI	SCRIPTION SU221 LANIE		DATE 6/8/6	APPR	DVAL F
HIS DAMING IS THE PROPERT OF FRANTIDE AP AND IS LOADD UPD THE CONDITION THAT IT IS HET TO DE REFORMED OF COPIED, IN MALE OF IN FART, DE USED FOR FURNISHING Dedomation to others, de for any humane estrinoming. To the induced of framming and and is to de soles. To have soles on the induced of soles of the	FRAM	GENI 1. M 2. W ar 2. W ar 2. W ar 4 be	ERAL NO cggitt Si a) Cable on a f mann STRI b) Minin c) Each one c show suppe d) Each termi e) Repe f) Any tube g) Smoo h) Goug may i) Outsi /here the nd a SST nd into th 088 SS4 of / thick pl he plates ab to ens corners of e utilized	DTES 2400 Cab e must be u recl or in f fer. DO NO ETCHING mum bend cable cont and of the o n on draw orts. cable has nations ea ated bendi smooth sur benders ar oth contou ges or cuts be cause for ide diamet Meggitt ca plate, plac c spring m clamps sho ate steel sh shall be bo ure that the of the plates	le Installat uncoiled as actory coil OT UNCO I radius is C radius as i tains a fact cable samp ing 02-504 factory ins ich have pil ing and stra rface or ap e suitable. r changes s in the cabl or rejection er for the N able is atta ce the hex s ut. The app ould be app hall be insta olted to the e plate stay e, no closer iry to ensur	ion: the cabl s, the call IL BY P o inches. ndicated ory insta le. The f 5835A a stalled te gtails app aightenin propriate In many such as d le sheath b. Wall the Meggitt co ched to t screw thr olied tory proximate alled aga test slat ys in place than 1"	e is fed ou ble must b ULLING (At least or on Drawin lled splice actory inst t approximatel g of the ca cases the ents, digs, which exc nickness is able is 0.5 he B-Line ough the c ue on all h ely 6 lbf-ft inst the ter outilizing te. ATR sh to the edge	at along the e unrolled ON THE E ne bend sha ng No. 02- located ap talled splic nately the r s at each en ly 3' long. able should ay be used cable can b ripples, or ceed 10% of s nominally 592" strut using clamp then nex screws t. st slab to si 1/2" ATR en all be plac e of the plan	routing p in a tanger ND AND all be insta 5045835A proximate e shall be i nidpoint b d of the ca be avoide to form the be hand for wrinkles a f cable wa .015". B-Line 20 through the for attache mulate em ktending the ed at least te. Additionce.	ath. When tial (circ HELICA illed with between the ocated as between the ocated as between the oble. The action of the action of the set of the set of the cable. Her med. are accepted ing the Base of the SST pl ing the Base of the SST pl ing the Base of the set of the or ough the at each of the onal ATR	ther ular) LLLY a om s he EMT table. ess clamp ate -Line es. e test of the t may
1924 In 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 - 1/2 1/2 -	N BY K C	5ROSZEK (27, 6< DI&LE)ib-lu	ATROVED ET	CLOWTHER CRANTEL CABANNING	MSSI	FIRE RES GENE	SISTIVE CAB	LE TEST	SCALE N.T. BVG NL CAD FILE 02	S. DATE D2-5045839 A -4	6/8/04 -00 20

.

1 1		REVISIONS						
			REV DESCRIPTION DA 0 ORIGINAL ISSUE 6/E	TE APPROVAL				
			1 INCORPORATE AS BUILT CONDITIONS 6/2	3/04 CABupaing				
			BILL OF MATERIAL					
	SUPPLIED	BY MEG	ITT SAFETY SYSTEMS INC	IT SAFETY SYSTEMS INC				
	QUANTITY	UNIT	DESCRIPTION					
	40	LF	8C #12 AWG SI2400 FIRE CABLE, PN: 300283-5	(
			NOTE: FACTORY INSTALLED CABLE SPLICE AT APPROX 12' FROM OF	NE END				
1		FA	CLAND P. 2088 SSA	JS				
	3	FA	316 SST HEX SCREW B-LINE 1/4" X 1 1/4" SHHWS					
	3	EA	316 SST SPRING NUT B-LINE N224 SS6					
	1	EA	2" X 1 5/8" X 10 GA THK 304 SST PLATE					
	3	LF	B-LINE B22 SS4 STRUT					
	1	LF	B-LINE B22 DURA GREEN STRUT B22 GRN					
	1	EA	B-LINE ZINC ELECTROPLATED SPRING NUT 1/4-20 N224ZN					
	1	EA	B-LINE ZINC ELECTROPLATED HEX SCREW 1/4"x (1") SHHMS					
	SUPPLIED	BY OME	A POINT LABORATORIES					
	QUANIIIY							
	5		3 X 3 X 3/16 IHK SIEEL IUBING, ASIM ADUU GR B					
	1	FA	5" X 5" X 1/2" THK STEEL PLATE A36					
	1	EA	CONCRETE SLAB 96"X156"					
	AR		PENETRATION SEAL MATERIAL (CERAMIC FIBER)					
	20	LF	1/2" ATR					
	32	EA	1/2" STEEL WASHER					
	32	EA	1/2" A-307 STEEL NUT					
JY	DE M	D BY						
	RESZEK	74.A	autiter The					
D NRLT	18LE NPPRO	MUKel	SCALE SCALE					
		$\neg c$	MSSI FIRE RESISTIVE CABLE TEST	6/8/U				

JEST ARTICLE ATTRIBUTE CHECKLIST PROJECT NUMBER: PROJECT TITLE: MEGGITT FIRE RESISTIVE CABLE TESTING Interst colspan="2">SAT UNSAT I TEST DECK A TEST deck configuration and dimensions per approved drawings B Condition of test deck C Test deck confliguration and dimensions per approved drawings B Condition of test deck C Test deck confliguration and dimensions per approved drawings I SUPPORTS/STEEL PLATES A. Correct materials used B. Installed per approved drawings C. Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings D. Supports for Meggit cable are properly grounded E. Applied torque values for strut clamps per approved drawings D. Welds per approved drawings B. Minimum bend radius installed where shown on approved drawings D. Factory installed splices installed as shown on approved drawings D. Factory installed splices installed as shown on approved drawings D. Factory installed splices installed as shown on approved drawings D. Factory installed splices installed as show	UMBER: ITLE: MEG DECK est deck con ondition of t est deck con RTS/STEEI	GITT FIRE RESIS ATTRI ATTRI figuration and dime test deck ditioned to moisture	TTRIBUTE CHEC TIVE CABLE TEST IBUTE	CKLIST TING drawings	SAT	UNSAT
JEST ATTRIBUTE CHECKLIST PROJECT NUMBER: TOJECT TITLE: MEGGITT FIRE RESISTIVE CABLE TESTING ITTRIE MEGGITT FIRE RESISTIVE CABLE TESTING ITEST DECK A TEST DECK A Test deck configuration and dimensions per approved drawings B Condition of test deck C Test deck conditioned to moisture equilibrium at indoor conditions II SUPPORTS/STEEL PLATES A Correct materials used B Installed per approved drawings C Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings D Supports for Meggitt cable are properly grounded E Welds per approved drawings III MEGGITT CABLE B Minimum bend radius installed where shown on approved drawings B Minimum bend radius installed where shown on approved drawings D Factory installed splices installed as shown on approved drawings D Factory installed splices installed as shown on approved drawings D Factory installed splices installed as shown on approved drawings D Factory installed splices installed as shown on appr	UMBER: ITLE: MEG DECK est deck con ondition of t est deck con RTS/STEEI	FEST ARTICLE A GGITT FIRE RESIS ATTRI afiguration and dime test deck aditioned to moisture	TTRIBUTE CHEC TIVE CABLE TEST IBUTE	CKLIST TING drawings	SAT	UNSAT
TEST ARTICLE ATTRIBUTE CHECKLIST PROJECT NUMBER: TROJECT TITLE: MEGGITT FIRE RESISTIVE CABLE TESTING	UMBER: ITLE: MEG DECK est deck con ondition of t est deck con RTS/STEEI	GITT FIRE RESIS ATTR figuration and dime test deck ditioned to moisture	TTRIBUTE CHEC TIVE CABLE TEST IBUTE	CKLIST ING drawings	SAT	UNSAT
TEST ARTICLE ATTRIBUTE CHECKLIST PROJECT NUMBER: TROJECT TITLE: MEGGITT FIRE RESISTIVE CABLE TESTING 1 TEST DECK A Test deck configuration and dimensions per approved drawings B Condition of test deck C Test deck conditioned to moisture equilibrium at indoor conditions II SUPPORTS/STEEL PLATES A. Correct materials used B Installed per approved drawings C Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings D. Supports for Meggitt cable are properly grounded E Meldis per approved drawings B Installed per approved drawings B Meldis per approved drawings B Minimum bend radius installed where shown on approved drawings C Factory installed splices installed as shown on approved drawings <	UMBER: ITLE: MEG DECK est deck con ondition of t est deck con RTS/STEEI	GITT FIRE RESIS ATTR figuration and dime test deck ditioned to moisture	TTRIBUTE CHEC TIVE CABLE TEST IBUTE	CKLIST TING drawings	SAT	UNSAT
TEST ARTICLE ATTRIBUTE CHECKLIST PROJECT NUMBER: PROJECT TITLE: MEGGITT FIRE RESISTIVE CABLE TESTING ATTRIBUTE SAT UNSAT 1 TEST DECK A Test deck configuration and dimensions per approved drawings B Condition of test deck Condition of test deck C Test deck conditioned to moisture equilibrium at indoor conditions II II SUPPORTS/STEEL PLATES Concert materials used B. Installed per approved drawings Concert materials used C Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings Concert materials used D. Supports for Meggitt cable are properly grounded E. F. Welds per approved drawings E III MEGGITT CABLE MEGGIT colspan="2">Colspan="2">Colspan="2">Factory installed splices installed where shown on approved drawings B. Minimum bend radius installed where shown on approved drawings D. C. Factory installed splices installed as shown on approved drawings D.	UMBER: ITLE: MEG DECK est deck con ondition of t est deck con RTS/STEEI	GITT FIRE RESIS ATTRI figuration and dime test deck ditioned to moisture	TTRIBUTE CHEC TIVE CABLE TEST IBUTE	CKLIST TING drawings	SAT	UNSAT
PROJECT NUMBER: PROJECT TITLE: MEGGITT FIRE RESISTIVE CABLE TESTING I TEST DECK A Test deck configuration and dimensions per approved drawings B Condition of test deck C Test deck conditioned to moisture equilibrium at indoor conditions II SUPPORTS/STEEL PLATES A. Correct materials used B. Installed per approved drawings C. Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings D. Supports for Meggitt cable are properly grounded E. Applied torque values for strut clamps per approved drawings F. Welds per approved drawings B. Minimum bend radius installed where shown on approved drawings B. Minimum bend radius installed where shown on approved drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed splices onform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment <td>UMBER: ITLE: MEG DECK est deck con ondition of t est deck con RTS/STEEI</td> <td>GITT FIRE RESIS ATTR figuration and dime test deck aditioned to moisture</td> <td>TIVE CABLE TEST IBUTE</td> <td>ſING drawings</td> <td>SAT</td> <td>UNSAT</td>	UMBER: ITLE: MEG DECK est deck con ondition of t est deck con RTS/STEEI	GITT FIRE RESIS ATTR figuration and dime test deck aditioned to moisture	TIVE CABLE TEST IBUTE	ſING drawings	SAT	UNSAT
PROJECT NUMBER: PROJECT TITLE: MEGGITT FIRE RESISTIVE CABLE TESTING I TEST DECK SAT UNSAT I TEST DECK Image: Condition of test deck C Test deck configuration and dimensions per approved drawings Image: Condition of test deck B Condition of test deck Image: Condition of test deck C Test deck conditioned to moisture equilibrium at indoor conditions Image: Condition of test deck B. Installed per approved drawings Image: Condition of test deck C. Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings Image: Condition of test for strut clamps per approved drawings D. Supports for Meggitt cable are properly grounded Image: Condition of test for strut clamps per approved drawings F. Welds per approved drawings Image: Condition for test installed and there shown on approved drawings B. Minimum bend radius installed where shown on approved drawings Image: Condition for test and the cable shown on approved drawings D. Factory installed splices installed as shown on approved drawings Image: Condition for the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, sh	UMBER: ITLE: MEG DECK est deck con ondition of t est deck con RTS/STEEI	GITT FIRE RESIS ATTR figuration and dime test deck aditioned to moisture	TIVE CABLE TEST	[ING drawings	SAT	UNSAT
PROJECT TITLE: MEGGITT FIRE RESISTIVE CABLE TESTING I TEST DECK A Test deck configuration and dimensions per approved drawings B Condition of test deck C Test deck conditioned to moisture equilibrium at indoor conditions II SUPPORTS/STEEL PLATES A. Correct materials used B. Installed per approved drawings C Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings D. Supports for Meggitt cable are properly grounded E. Applied torque values for strut clamps per approved drawings F. Welds per approved drawings B. Minimum bend radius installed where shown on approved drawings B. Minimum bend radius installed as shown on approved drawings D. Factory installed splices installed as shown on approved drawings D. Factory installed splices conform to the Figure 1 in the Test Plan A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment. C. Furnace thermocouples a	DECK est deck con ondition of t est deck con RTS/STEEI	GITT FIRE RESIS ATTR figuration and dime test deck aditioned to moisture	TIVE CABLE TEST IBUTE	[ING drawings	SAT	UNSAT
PROJECT TITLE: MEGGITT FIRE RESISTIVE CABLE TESTING 1 TEST DECK SAT UNSAT 1 TEST DECK UNSAT A Test deck configuration and dimensions per approved drawings UNSAT B Condition of test deck UNSAT C Test deck conditioned to moisture equilibrium at indoor conditions UNSAT II SUPPORTS/STEEL PLATES UNSAT A Correct materials used UNSAT B. Installed per approved drawings UNSAT C. Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings UNSAT D. Supports for Meggitt cable are properly grounded UNSAT E. Applied torque values for strut clamps per approved drawings UNSAT III MEGGITT CABLE UNSAT A. Cable installed per approved drawings UNSAT B. Minimum bend radius installed where shown on approved drawings UNSAT C. Factory installed splices installed as shown on approved drawings UNSAT D. Factory installed splices conform to the Figure 1 in the Test Plan UNSAT B. All elec	DECK est deck con ondition of t est deck con RTS/STEEI	ATTRI ATTRI ATTRI Afiguration and dime test deck aditioned to moisture	TIVE CABLE TEST	ring drawings	SAT	UNSAT
ATTRIBUTE SAT UNSAT 1 TEST DECK	DECK est deck con ondition of t est deck con RTS/STEEI	ATTR figuration and dime test deck aditioned to moisture	IBUTE	drawings	SAT	UNSAT
ATTRIBUTE SAT UNSAT 1 TEST DECK	DECK est deck con ondition of t est deck con RTS/STEEI	ATTR figuration and dime test deck aditioned to moisture	IBUTE	drawings	SAT	UNSAT
1 TEST DECK A Test deck configuration and dimensions per approved drawings B Condition of test deck C Test deck conditioned to moisture equilibrium at indoor conditions II SUPPORTS/STEEL PLATES A Correct materials used B Installed per approved drawings C Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings D. Supports for Meggitt cable are properly grounded E Applied torque values for strut clamps per approved drawings F Welds per approved drawings B. Minimum bend radius installed where shown on approved drawings B. Minimum bend radius installed as shown on approved drawings D. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on da	DECK est deck con ondition of t est deck con RTS/STEEL	figuration and dime test deck aditioned to moisture	nsions per approved	drawings		there is the second second
A Test deck configuration and dimensions per approved drawings B Condition of test deck C Test deck conditioned to moisture equilibrium at indoor conditions II SUPPORTS/STEEL PLATES A Correct materials used B. Installed per approved drawings C. Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings D. Supports for Meggitt cable are properly grounded E. Applied torque values for strut clamps per approved drawings F. Welds per approved drawings B. Minimum bend radius installed where shown on approved drawings B. Minimum bend radius installed as shown on approved drawings D. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment <t< td=""><td>est deck con ondition of t est deck con RTS/STEEI</td><td>figuration and dime test deck aditioned to moisture</td><td>nsions per approved</td><td>drawings</td><td></td><td></td></t<>	est deck con ondition of t est deck con RTS/STEEI	figuration and dime test deck aditioned to moisture	nsions per approved	drawings		
B Condition of test deck C Test deck conditioned to moisture equilibrium at indoor conditions II SUPPORTS/STEEL PLATES A. Correct materials used B. Installed per approved drawings C. Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings D. Supports for Meggitt cable are properly grounded E. Applied torque values for strut clamps per approved drawings F. Welds per approved drawings B. Minimum bend radius installed where shown on approved drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	ondition of t est deck con RTS/STEEI	test deck ditioned to moisture				
C Test deck conditioned to moisture equilibrium at indoor conditions II SUPPORTS/STEEL PLATES A. Correct materials used B. Installed per approved drawings C. Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings D. Supports for Meggitt cable are properly grounded E. Applied torque values for strut clamps per approved drawings F. Welds per approved drawings III MEGGITT CABLE A. Cable installed per approved drawings B. Minimum bend radius installed where shown on approved drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable wall thickness V V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per th	est deck con RTS/STEEI	ditioned to moisture				
II SUPPORTS/STEEL PLATES A. Correct materials used B. Installed per approved drawings C. Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings D. Supports for Meggitt cable are properly grounded E. Applied torque values for strut clamps per approved drawings F. Welds per approved drawings III MEGGITT CABLE A. Cable installed per approved drawings B. Minimum bend radius installed where shown on approved drawings B. Minimum bend radius installed as shown on approved drawings D. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	RTS/STEEL		e equilibrium at indo	or conditions		
A. Correct materials used B. Installed per approved drawings C. Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings D. Supports for Meggitt cable are properly grounded E. Applied torque values for strut clamps per approved drawings F. Welds per approved drawings III MEGGITT CABLE A. Cable installed per approved drawings B. Minimum bend radius installed where shown on approved drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable wall thickness W V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan		L PLATES		<u></u>	1.1 (A) (A)	
B. Installed per approved drawings C. Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings D. Supports for Meggitt cable are properly grounded E. Applied torque values for strut clamps per approved drawings F. Welds per approved drawings III MEGGITT CABLE A. Cable installed per approved drawings B. Minimum bend radius installed where shown on approved drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable wall thickness V V TEST EQUIPMENT A. Wring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	orrect mater	rials used	<u></u>			
C. Spacing between the two Section A-A supports is equal to or greater than shown on approved drawings D. Supports for Meggitt cable are properly grounded E. Applied torque values for strut clamps per approved drawings F. Welds per approved drawings MI MEGGITT CABLE A. Cable installed per approved drawings B. Minimum bend radius installed where shown on approved drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	stalled per a	approved drawings				
greater than shown on approved drawings D. Supports for Meggitt cable are properly grounded E. Applied torque values for strut clamps per approved drawings F. Welds per approved drawings III MEGGITT CABLE A. Cable installed per approved drawings B. Minimum bend radius installed where shown on approved drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	pacing betwe	een the two Section	A-A supports is equ	al to or		······································
D. Supports for Meggitt cable are properly grounded E. Applied torque values for strut clamps per approved drawings F. Welds per approved drawings III MEGGITT CABLE A. Cable installed per approved drawings B. Minimum bend radius installed where shown on approved drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	reater than s	hown on approved d	Irawings			I
E. Applied torque values for strut clamps per approved drawings F. Welds per approved drawings III MEGGITT CABLE A. Cable installed per approved drawings B. Minimum bend radius installed where shown on approved drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable wall thickness wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	upports for I	Meggitt cable are pro	operly grounded			
F. Welds per approved drawings III MEGGITT CABLE A. Cable installed per approved drawings B. Minimum bend radius installed where shown on approved drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	pplied torqu	e values for strut cla	amps per approved d	lrawings		
III MEGGITT CABLE A. Cable installed per approved drawings B. Minimum bend radius installed where shown on approved drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	velds per app	proved drawings				
A. Cable installed per approved drawings B. Minimum bend radius installed where shown on approved drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	ITT CABLE	國家的合同				
B. Minimum bend radius installed where shown on approved drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	able installe	d per approved drav	vings	_ <u></u>	<u> </u>	
drawings C. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	linimum ber	nd radius installed w	here shown on appro	oved		i
C. Factory installed splices installed as shown on approved drawings D. Factory installed terminations provided at each end of cable E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	rawings					
D. Factory installed terminations provided at each end of cable E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	actory instal	lled splices installed	as shown on approv	ed drawings		
E. No gouges or cuts in the cable sheath which exceed 10% of cable wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	actory instal	led terminations pro	ovided at each end of	cable		
Wall thickness V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	lo gouges or	cuts in the cable she	eath which exceed 10	0% of cable		l
V TEST EQUIPMENT A. Wiring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	all thickness	<u>s</u>	·····			
A. Wring of test articles conform to the Figure 1 in the Test Plan B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	QUIPMEN					
B. All electrical devices and equipment have been tested prior to the start of the test to ensure that they are properly connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	viring of test	t articles conform to	the Figure 1 in the 1	lest Plan	 	
start of the test to ensure that they are property connected and functioning as required, showing proper readings on data acquisition equipment C. Furnace thermocouples are the correct type and are installed per the Test Plan	an cicumcal	acvices and equipm	ent nave been tested	prior to the		
C. Furnace thermocouples are the correct type and are installed per the Test Plan	inctioning a	s to clisuic that they showing	noner readings on d	lata	1 1	1
C. Furnace thermocouples are the correct type and are installed per the Test Plan	couisition en	uinment	proper readings on 0			
the Test Plan	urnace thern	nocouples are the co	prrect type and are in	stalled per		
	ne Test Plan		in the second second	otuniou por		1
NOTE: Verification to be made using initials of OPL Quality Assurance Personnel		e made using initial	s of OPL Quality As	surance Perco	nnel	
	ification to b					
	ification to b					
	ification to b					
	ification to b					
	ification to b					
	ification to b					
K GROSZEK JOHN & CROWTHER	ification to b	BR				
K GRUSZEK JOHN G. CROWTHER Durnic GITHNG GROUTHER	ification to b	62 1469			LE NT.S	DATE 6/1
			XED IY	NG. CROWTHER WHAP GRATHER	MG. CROWTHER MAD GROUTHER WED AT CABUNNING MSSI FIRE RESISTIVE CABLE TEST	MAG CROWTHER WHAT GRATHER MED AT CARAMENTE NEST FIRE DESISTIVE CARLE TEST SCALE N.T.S.

.
Report No. 14980-119368, Rev.1 AREVA FINAL REPORTAugust 11, 2004 APPENDICES Page 37

.....

Appendix B

.

MEGGERING AND CONDUCTOR RESISTANCE RESULTS

MEGGERING DATA SHEET

Client:	AREVA	Date:	6-14-	04
Project No:	14980-119368			
	Receipting	ection	า	
Test Condition:	(Pre Test) During Test	Post Ho	se Stream	Post Test Cold (circle one)
Megger Operato Megger ID:	r: Jeff Piel	-	Scribe: Calibration	Due: 1-7-2005

8/C #12 - CABLE #2

FR	ROM	1	O	RESISTANCE	
COND.#	COLOR	COND.#	COLOR	(Megohms)	TIME
1	Red	2	Black	IDK+	1:52
1	Red	3	Orange	IDK+	·
1	Red	4	White	10K+	
1	Red	5	Blue	lokt	1:53
1	Red	6	Green	LDK+	·
1	Red	7	Yellow	1014	
1	Red	8	Brown	IDK+	1:54
1	Red	Shield	-	10K+	1:58
2	Black	3	Orange	IDK+	· ·
2	Black	4	White	lok+	
2	Black	5	Blue	IDK+	1:59
2	Black	6	Green	IOKt	
2	Black	7	Yellow	JOK+	2:00
2	Black	8	Brown	LOK+	2:01
2	Black	Shield	.=	10K+	· ·
3	Orange	4	White	lokt	
3	Orange	5	Blue	lok+	
3	Orange	6	Green	lok+	
3	Orange	7	Yellow	IOK+	2:02
3	Orange	8	Brown	lokt	
3	Orange	Shield	-	10K+	
4	White	5	Blue	10K+	
4	White	6	Green	10K+	2:02
4	White	7	Yellow	IDK+	
4	White	8	Brown	lokt	
4	White	Shield	-	IDK+	2:03
5	Blue	6	Green	10Kt	
5	Blue	7	Yellow	10K+	
5	Blue	8	Brown	IDK+	<u> </u>
5	Blue	Shield	-	105+	2:03

GAty D. P.P

Page lof 2

$0/C \pi I = (commutu)$	8/C #	#12- ((continued)
-------------------------	-------	--------	-------------

FR	ОМ	T	0	RESISTANCE	
COND.#	COLOR	COND. #	COLOR	(Megohms)	TIME
6	Green	7	Yellow	IDK+	2:04
6	Green	8 .	Brown	IDKt	
6	Green	Shield	-	IDK+	
7	Yellow	8	Brown	lokt	
7	Yellow	Shield	· -	IOK+	
8	Brown	Shield	• • •	2500	2:05

CONDUCTOR RESISTANCE

FR	OM	Т	0	RESISTANCE	
COND. #	COLOR	COND.#	COLOR	(Ohms)	TIME
1	Ded	1	Dod	10	2110
1	Keu	1	Red		<u></u>
2	Black	2	Black	.092	2:15
3	Orange	3	Orange	.091	2:16
4	White	4	White	192	2:16
5	Blue	5	Blue	.094	2:16
6	Green	6	Green	. 095	2:17
7	Yellow	7	Yellow	.095	2:17
8	Brown	8	Brown	.094	2:17

Afthy D. P.O

6-14-04 g Pase 2082

MEGGERING DATA SHEET

MEGGERING DATA SHEET						
Client: Project No:	AREVA 14980-119368	Date: <u>6</u> ~	17-04			
Test Condition	n: Pre Test During Te	est Post Hose Stream	Post Test Cold (circle one)			
Megger Opera Megger ID:	itor: Jeffery Pi 720	ol Scribe: Calibrat	ion Due: <u>1 - 7 - 2005</u>			

8/C #12 - CABLE #2 500 volto DC

FR	ROM	7	0	RESISTANCE	
COND.#	COLOR	COND.#	COLOR	(Megohms)	TIME
1	Red	2	Black	IOK+	9:43
1	Red	3	Orange	IOKT	
1	Red	4	White	IOK+	9:44
1	Red	5	Blue	1012+	, , , , , , , , , , , , , , , , , , , ,
1	Red	6	Green	IOK+	
1	Red	7	Yellow	IDK+	
1	Red	8	Brown	IDK+	· · · · · · · · · · · · · · · · · · ·
1	Red	Shield	-	IOK+	9:44
2	Black	3	Orange	IDK+	•
2	Black	4	White	InKt	
2	Black	5	Blue	IOK+	
2	Black	6	Green	IOK+	
2	Black	7	Yellow	JOK+	
2	Black	8	Brown	IOK+	
2	Black	Shield	-	IOK+	
3	Orange	4	White	10K+_6000	9:48
3	Orange	5	Blue	IDKT	9:49
3	Orange	6	Green	IOK+	
3	Orange	7	Yellow	10K+	
3	Orange	8	Brown	10K+	
3	Orange	Shield	-	IDK+	
4	White	5 :	Blue	IDK+	9:49
4	White	6	Green	IORT	•
4	White	7 .	Yellow	IOK+	
4	White	8	Brown	10K+	
4	White	Shield	-	10K+	
5	Blue	6	Green	10K+	9:50
5	Blue	7	Yellow	IDK+	
5	Blue	8	Brown	IOK+	
5	Blue	Shield	-	IDK+	

Jeffey D. P.I

Page 1 of 2

8/C #12 - (continued)

FR	OM	ТО		RESISTANCE	
COND.#	COLOR	COND.#	COLOR	(Megolims)	TIME
6	Green	7	Yellow	10K+	9:50
6	Green	8	Brown	IOK+	
6	Green	Shield	• • • •	IDK+	
7	Yellow	8	Brown	IOK+	9:50
7	Yellow	Shield	_	10K+	
8	Brown	Shield		10K+	9:51

CONDUCTOR RESISTANCE

FR	OM	Г	0	RESISTANCE	
COND. #	COLOR	COND.#	COLOR	(Ohms)	TIME
1	Red	1	Red	.096	9:41
2	Black	2	Black	.095	
3	Orange	3	Orange	1093	
4	White	4	White	.095	9:42
5	Blue	5	Blue	.096	
6	Green	6	Green	.09%	
7	Yellow	7	Yellow	.097	
8	Brown	8	Brown	.095	9:42

Afty D.P.P

6-17-04 Page 20f2

MEGGERING DATA SHEET

Client:	AREVA	;	Date:	6-17	-04
Project No:	14980-119368	min.	•		•
Test Condition:	Pre Test During 7	rest 1	Post Hos	e Stream	Post Test Cold (circle one)
Megger Operato Megger ID:	r: Jeff Pie	l	-	Scribe:(Calibration	Due: 1-7-2005

8/C #12 - CABLE #2

FR	ROM	I	°O .	RESISTANCE	
COND.#	COLOR	COND. #	COLOR	(Megohms)	TIME
1	Red	2	Black	1.5	11:17
1	Red	3	Orange	1.5	EI:17
1	Red	4	White	1.55	
1	Red	5	Blue	1.6	
1	Red	6	Green	1.6	
1	Red	7	Yellow	1.10	
1	Red	8	Brown	1.6	11:18
1	Red	Shield	_	1.10	11:18
2	Black	3	Orange	127.8.8	11:22
2	Black	4	White	127 .8	
2	Black	5	Blue	10 .82	
2	Black	6	Green	.82	
2	Black	7	Yellow	.91	11:23
2	Black	8	Brown	+ 91	
2	Black	Shield	· –	.94	11:23
3	Orange	4	White	18	11.'29
3	Orange	5	Blue	. 5	
3	Orange	6	Green	.82	
3	Orange	7	Yellow	182	
3	Orange	8	Brown	,82	
3	Orange	Shield	-	.85	1:29
4	White	5	Blue	.8	11:33
4	White	6	Green	, 8	11:34
4	White	7	Yellow	.82	
4	White	8	Brown	.82	
4	White	Shield	 `	185	11:34
5	Blue	6	Green	1.18	11:40
5	Blue	7	Yellow	1,18	
5	Blue	8	Brown	1.18	
5	Blue	Shield	-	1,18	11:40

gtto D. P. P.

Page lof 2

14980-119368

Page 43

8/C #12 – (continued)

FR	OM	ТО		RESISTANCE	
COND. #	COLOR	COND.#	COLOR	(Megohms)	TIME
6	Green	7	Yellow	1.0	11:45
6	Green	8	Brown	1.02	11:46
6	Green	Shield	-	402	11:46
7	Yellow	8 .	Brown	,9	11:49
7	Yellow	Shield		, 9	11:49
8	Brown	Shield		185	11:53

CONDUCTOR RESISTANCE

FR	OM	ТО		RESISTANCE	
COND.#	COLOR	COND.#	COLOR	(Ohms)	TIME
1	Red	1	Red		
2	Black	2	Black		
3	Orange	3	Orange		
4	White	4	White		
5	Blue	5	Blue		
6	Green	6	Green		
7	Yellow	.7	Yellow		
8	Brown	. 8	Brown		

JHgD. P.D

Drin. Duringtest 6-17-04 Page 20f2

MEGGERING DATA SHEET

Client:	AREVA	Date:	6-17	1-04
Project No:	14980-119368 Win	t1 ∿		(
Test Condition:	Pre Test During Tést	Post Hos	e Stream	Post Test Cold (circle one)
Megger Operato Megger ID:	r: <u>Leff Pie</u> 720ff Pie	L .	Scribe: Calibration	Due: 1-7-2005

8/C #12 - CABLE #2

FR	OM	ТО		RESISTANCE	
COND.#	COLOR	COND.#	COLOR	(Megohms)	TIME
1	Red	2	Black	1,4	11:58
1	Red	3	Orange	1,4	
1	Red	4	White	1.4	
1	Red	5	Blue	1,43	
1	Red	6	Green	1.43	
1	Red	7	Yellow	1.43	
1	Red	8	Brown	1.5	
1	Red	Shield	-	1.5	11:59
.2	Black	3	Orange	492	12:03
2	Black	4	White	.95	
.2	Black	5	Blue	• 95	
2	Black	6	Green	, 98	
2	Black	7	Yellow	.98	
2	Black	8	• Brown	1.00	
2	Black	Shield	. –	1.60	12:03
3	Orange	4	White	1.15	12:09
3	Orange	5	Blue	1.18	
3	Orange	6	Green	1,18	
3	Orange	7	Yellow	1,18	
3	Orange	8	Brown	1.18	
3	Orange	Shield	-	1.18	12:09
4	White	5	Blue	1,2	12:45
4	White	6	Green	1.2	
4	White	7	Yellow	1.2	
4	White	8	Brown	1.21	12:16
4	White	Shield	•	1.21	12:16
5	Blue	6	Green	1,15	12:21
5	Blue	7	Yellow	1.15	
5	Blue	8	Brown	1.17	
5	Blue	Shield	-	1.17	12:21

Afty D. P.-

lase lof 2

14980-119363

8/C #12 - (e	continued)		· . ·		Ŭ
FR	OM	T	0	RESISTANCE	
COND.#	COLOR	COND.#	COLOR	(Megohms)	TIME
6	Green	7	Yellow	1.2	12:25
6	Green	8	Brown	1.21	
6	Green	Shield	-	1.21	12:25
7	Yellow	8	Brown	1.21	12:29
7	Yellow	Shield	· -	1.21	12:29
8	Brown	Shield	<u> </u>	1.2	12:32

CONDUCTOR RESISTANCE

FR	OM	Т	0	RESISTANCE	
COND. #	COLOR	COND.#	COLOR	(Ohms)	TIME
1	Red	1	Red		
2 -	Black	2	Black		
3	Orange	3	Orange		
4	White	4	White		
5	Blue	5	Blue		
6	Green	6	Green		
7	Yellow	7	Yellow		
8	Brown	8	Brown		

AftyD. P.-D

1:

60. Durningtest 6-17-04 Page 2082

MEGGERING DATA SHEET

Client: Project No:	AREVA 14980-119368	Date: <u>6-1</u>	1-04
Test Condition:	Pre Test During Test	Post Hose Stream	Post Test Cold (circle one)
Megger Operato Megger ID:	1. Jeff Piel	Scribe:	C Patton Duc: 1-7-2005

8/C #12 - CABLE #2

FR	ROM	ТО		RESISTANCE	
COND.#	COLOR	COND. #	COLOR	(Megohms)	TIME
1	Red	2	Black	10/6+	1,2:56
1	Red	3	Orange	10K+	C .
1	Red	4	White	LOKT	
1	Red	5	Blue	10K+	
1	Red	6	Green	IDK+	
1	Red	7	Yellow	I IOK+	
1	Red	8	Brown	IDK+	
1	Red	Shield	-	IDKT	· .
2	Black	3	Orange	IDK+	
2	Black	4	White	IOK+	
2	Black	5	Blue	IOKT	
2	Black	6	Green	10K+	12:565
2	Black	7	Yellow	IDKT	
2	Black	8	Brown	lokt	
2	Black	Shield	•	IOK+	
3	Orange	4	White	IDK+	
3	Orange	5	Blue	16K+	
3	Orange	6.	Green	10K+	
3	Orange	7	Yellow	10K+	
3	Orange	8	Brown	10K+	
3	Orange	Shield	-	10 K+	
4	White	5	Blue	10Kt	
4	White	б	Green	10K+	
4	White	7	Yellow	16K+	
4	White	8	Brown	10K+	
4	White	Shield	-	10K+	12:57
5	Blue	6	Green	8.5	12:58-20
5	Blue	7	Yellow	8.5	1:00
5	Blue	8	Brown	8.8	
5	Blue	Shield	-	8.9	1:00

12:59

GHz D. Pil

lase lafa

8/C #12 - (continued)

FR	.OM	T	° 0	RESISTANCE	
COND.#	COLOR	COND.#	COLOR	(Megohms)	TIME
6	Green	7	Yellow	IDK+	1:00
6	Green	8	Brown	IOKT	
6	Green	Shield	-	101-	
7	Yellow	8	Brown	IOKY	1:02
7	Yellow	Shield	-	1014	
8	Brown	Shield		IDK+	1:01
			· ·		

CONDUCTOR RESISTANCE

FR	OM	T	0	RESISTANCE	
COND. #	COLOR	COND.#	COLOR	(Ohms)	TIME
1	Red	1	Red	.104	12:53
2	Black	2	Black	.101	
3	Orange	3	Orange	,100	
4	White	4	White	,103	12:54
5	Blue	5	Blue	.104	
6	Green	6	Green	,105	
7	Yellow	7	Yellow	. 105	
8	Brown	8	Brown	,104	12:54

Gutty D. P.C

Post Hose Stream 6-17-04 Page 204 2

MEGGITT			MEGGITT SAFETY SYSTEMS INC
FILE 58391R-1	ACCEPTANCE TEST D	ATA SHEET	Page, 480F 2
$QA: \frac{1}{0E + 12} \frac{SED}{0E}$	• FOR		
05-12-04	FIRE CABLE ASSI	EMBLY	
PART NUMBER: <u>300.283</u>	E0040B28J	SERIAL NUMBER:	002
TEST PROGRAM NUMBER	5181	REVISON <u>C</u>	
	•		
1.0 Dielectric Strength at 1	oom temperature per STP	2191, Revision <u>C</u>	
1.1 3200 VDC between co	nductor and sheath for 60 so	conds. No indication o	breakdown 2001
	. · ·	Pass Fail (3)	
		<u> </u>	'ech Stamp/Date
1.2 3200 VDC conductor t	o conductor for 60 seconds.	No indication of break Pass Fail	^{down} JUN 0 4 2004
		Te	rch Stamp/Date
2.0 Insulation Resistance at a (All unused pins connect	room temperature per STP ed to sheath. Record value 12	2190, Revision <u>C</u> . s.)	0
1	_x 10 ohms	7 <u> </u>	ohms
21.0	12 _ x 10 ohms	8 <u>1.0</u> x 10	ohins
31.0	_ x 10 ¹² ohms	9 <u>N/A</u> x 10	ohms
41.0	2 _ x 10 ohms	10 <u>N/A</u> x 10	ohms
5 <u>1.0</u>	_ x 10 ohms	11 <u>N/A</u> x 10	ohms

6 <u>1.0</u> x 10 ohms

- 11 <u>N/A</u> x 10 ohms
 - 12 <u>N/A</u> x 10 ohms

JUN 0 4 2004

ĺ

- [550 Tech Stamp/Date

4.0 Test Equipment List

Nomenclature	Manufacturer <u>& Model No.</u>	Identification No.	Calibration Due_Date
High Resistance Bridge	6R 1644 A	A 14672	6-2-05
Hi-Pot	AR 5205 A	A 14600	7-18-05
Digital Multimeter	FUIKE 73	B 131	2-18-05

350 6-4-04 MSSI QA REVIEW:

DATE: 550 6-4-04

MEGGITT SAFETY

Ship To:

.

SYSTEMS INC 1915 VOYAGER AVE. SIMI VALLEY, CA. 93063 805-584-4100 FAX 805-584-9157

Packing Slip

Pickslip	81945
Page	1
Date	6/04/04
Customer No.	69444
Order Number	260500-005 SO
Related P.O.	
Bri/Pit	200
······································	

INSP	Priority				
DT	E				

OMEGA POINT LABORATORIES ATTN: CONSTANCE HUMPHREY		
210-635-8120		
1/ALE CITLEDIT DATE OF OF OF		
10015 SHADY FALLS ROAD		
TI MENDODD DI BULGOLIO		
ELMENDORF TX 78112		

IN-HOUSE/MEGGITT SAFETY SYSTEMS **1915 VOYAGER AVENUE** SIMI VALLEY CA 93063

Invoice To:

			61 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۱ <u> </u>				!:		
Ord Date	Promised	Customer	P.O.	F.O.B.	1		Co	ontract A	dministrator	
10/15/03	11/15/03	Fred Rudek		Destination		DIANA COX, EXT 8127			•	
Line	Item Number/L	ocation,Lot	T	Description	Shipped	Tag	Avail.	UM	Due Date	Schedule B
TN HOUSE SAL TESTS TO BE MSSI WILL HA TO TEST RESI	LES ORDER TO PRO PRESENTED TO NK AVE JOINT RIGIITS ULTS	DVIDE TEST CABL C. SHARING THE QU	ES FOR LAB ALIFICATIO	DRATORY DN					.	-
TEST FACILI	TY WILL BE READY	END OF NOVEMB	ĒR							
SPLICE REQU	IRED AT MIDPÓIN	T IN CABLE								
31.000 FG Rev.	3002	83E0040B28J	FIRE CABL	E	ł			EÁ	11/15/03	Blank - Sales R
-										
	26-01-01-									⁵ age 50
Ouality As		<u>/</u>	ok oz	<u></u>			Weig	ght: Not Pr	CT WINDOW	NON 91
CERT P 200 CHAILEY VIS	mu all C	La	UNCT'		Track/Airbill #		Sub A	a: BE	SI WAY PREPA	YUNLY ~ day

Report No. 14980-119368, Rev.1 AREVA

Appendix C

TEST DATA - FURNACE INTERIOR TEMPERATURES

Project No. 14980-119368 AREVA - Meggitt Cable Test Furnace Interior Temperature 2000 1800 Γ 1600 Furnace temperature held at 1700°F 1400 1200 E119 Std Furnace Avg 1000 800 600 400 200 0 Т Т . 30 . 60 . 90 0 120

Time (min)

Temperature (°F)

Page 52

AREVA Test of Meggitt Cable

June 17, 2004

• •

							Pag	e 53
			Integration	Integration		Furnace	Furnace	Furnace
	E119 Std	Furnace	of Furnace	of E119 Std		Probe	Probe	Probe
Time	Average	Average	Average	Average	Error	#1	#2	#3
(min)	(°F)	(°F)	(°F∙min)	(°F∙min)	(%)	(°F)	(°F)	(°F)
0	68	85	0	0	0.00%	84	84	84
1	254	133	41	466	-91.2%	143	126	113
2	441	305	192	932	-79.4%	281	287	bad TC
3	627	575	564	1398	-59.7%	553	538	bad TC
4	814	856	1211	1864	-35.0%	838	809	bad TC
5	1000	1002	2072	2330	-11.1%	989	948	993
6	1060	1073	3042	3412	-10.9%	1087	1029	1080
7	1120	1121	4071	4494	-9.42%	1172	1094	1148
8	1180	1169	5148	5576	-7.68%	1259	1164	1214
9	1240	1214	6271	6658	-5.81%	1343	1235	1279
10	1300	1223	7422	7740	-4.11%	1390	1282	1318
11	1328	1250	8590	9022	-4.78%	1408	1301	1334
12	1347	1278	9786	10304	-5.03%	1435	1322	1354
13	1364	1311	11013	11586	-4.95%	1483	1357	1388
14	1381	1343	12272	12868	-4.64%	1519	1393	1425
15	1396	1369	13559	14150	-4.17%	1550	1425	1454
16	1410	1393	14873	15514	-4.13%	1573	1453	1482
17	1424	1415	16209	16878	-3.97%	1589	1476	1504
18	1436	1434	17565	18242	-3.71%	1607	1495	1524
19	1448	1453	18940	19606	-3.40%	1625	1512	1545
20	1459	1467	20332	20970	-3.04%	1643	1527	1561
21	1470	1487	21741	22386	-2.88%	1657	1542	1577
22	1480	1498	23166	23802	-2.67%	1659	1550	1591
23	1490	1509	24601	25218	-2.45%	1656	1550	1603
24	1499	1510	26043	26634	-2.22%	1652	1544	1601
25	1508	1514	27487	28050	-2.01%	1648	1543	1599
26	1517	1521	28936	29512	-1.95%	1649	1545	1605
27	1525	1526	30392	30974	-1.88%	1654	1547	1606
28	1533	1535	31855	32436	-1.79%	1666	1553	1618
29	1541	1546	33327	33898	-1.68%	1681	1564	1630
30	1549	1555	34809	35360	-1.56%	1688	1575	1644
31	1556	1566	36302	36875	-1.55%	1696	1583	1651
32	1563	1573	37803	38390	-1.53%	1700	1589	1658
33	1570	1582	39313	39905	-1.48%	1711	1596	1665
34	1576	1589	40830	41420	-1.42%	1713	1601	1670
35	1583	1592	42353	42935	-1.36%	1716	1605	1673
36	1589	1600	43881	44450	-1.28%	1728	1615	1685
37	1595	1605	45415	45965	-1.20%	1728	1619	1690
38	1601	1612	46956	47480	-1.10%	1738	1625	1695
39	1606	1616	48502	48995	-1.01%	1740	1627	1699
40	1612	1620	50051	50510	-0.91%	1742	1632	1701
41	1617	1623	51605	52111	-0.97%	1743	1635	1704
42	1623	1627	53162	53712	-1.03%	1744	1638	1709
43	1628	1632	54724	55314	-1.07%	1751	1643	1717

AREVA Test of Meggitt Cable

June 17, 2004

							Page 54			
			Integration	Integration		Furnace	Furnace	Furnace		
	E119 Std	Furnace	of Furnace	of E119 Std		Probe	Probe	Probe		
Time	Average	Average	Average	Average	Error	#1	#2	#3		
(min)	(°F)	(°F)	(°F∙min)	(°F∙min)	(%)	(°F)	(°F)	(°F)		
44	1633	1637	56290	56915	-1.10%	1756	1646	1721		
45	1638	1636	57858	58516	-1.12%	1748	1643	1716		
46	1643	1629	59422	60117	-1.16%	1720	1632	1707		
47	1648	1630	60983	61718	-1.19%	1710	1631	1710		
48	1652	1631	62546	63320	-1.22%	1704	1630	1721		
49	1657	1641	64114	64921	-1.24%	1713	1642	1730		
50	1661	1650	65691	66522	-1.25%	1721	1649	1741		
51	1666	1658	67277	68123	-1.24%	1726	1657	1748		
52	1670	1668	68871	69724	-1.22%	1730	1664	1761		
53	1674	1674	70474	71326	-1.19%	1736	1671	1764		
54	1678	1678	72082	72927	-1.16%	1741	1677	1766		
55	1682	1679	73693	74528	-1.12%	1752	1672	1766		
56	1686	1683	75306	76129	-1.08%	1764	1674	1767		
57	1690	1688	76923	77730	-1.04%	1762	1678	1772		
58	1694	1694	78546	79332	-0.99%	1760	1688	1777		
59	1698	1697	80173	80933	-0.94%	1762	1693	1784		
60	1701	1701	81805	82534	-0.88%	1761	1697	1790		
61	1705	1702	83438	84135	-0.83%	1761	1698	1786		
62	1709	1704	85073	85736	-0.77%	1763	1700	1785		
63	1712	1703	86708	87338	-0.72%	1764	1698	1779		
64	1716	1699	88341	88939	-0.67%	1761	1694	1774		
65	1719	1697	89971	90540	-0.63%	1762	1689	1775		
66	1722	1700	91602	92249	-0.70%	1771	1690	1771		
67	1726	1704	93236	93957	-0.77%	1777	1695	1773		
68	1729	1704	94872	95666	-0.83%	1779	1693	1775		
69	1732	1706	96509	97375	-0.89%	1777	1698	1779		
70	1735	1708	98148	99084	-0.94%	1770	1703	1783		
71	1738	1708	99788	100793	-1.00%	1777	1700	1777		
/2	1/42	1/0/	101428	102501	-1.05%	1773	1699	1776		
/3	1745	1705	103066	104210	-1.10%	1769	1695	1773		
74	1748	1705	104/03	105919	-1.15%	1774	1691	1769		
75	1/51	1705	106340	107628	-1.20%	1783	1688	1768		
70	1/53	1706	10/9//	109336	-1.24%	1780	1689	1770		
77	1756	1709	109616	111045	-1.29%	1778	1697	1772		
78	1759	1709	111257	112754	-1.33%	1773	1700	1774		
/9	1762	1707	112897	114463	-1.37%	1769	1698	1771		
80	1705	1706	114536	116171	-1.41%	1769	1696	1768		
01	1708	1707	116174	117880	-1.45%	1768	1696	1767		
82	1770	1706	11/812	119589	-1.49%	1766	1693	1769		
01 01	1//3	1705	119451	121298	-1.52%	1765	1694	1770		
84 85	1//0	1705	121088	123006	-1.56%	1763	1691	1769		
80	1//8	1/03	122/24	124715	-1.60%	1762	1688	1757		
80	1/81	1/02	124358	126424	-1.63%	1753	1687	1749		
87	1/83	1/03	125992	128133	-1.67%	1748	1687	1743		

AREVA Test of Meggitt Cable

June 17, 2004

				55			Paq	e 55
	E119 Std	Furnace	Integration of Furnace	Integration of E119 Std		Furnace Probe	Furnace Probe	Furnace Probe
Time	Average	Average	Average	Average	Error	#1	#2	#3
(min)	(°F)	(°F)	(°F∙min)	(°F∙min)	(%)	(°F)	(°F)	(°F)
88	1786	1705	127628	129841	-1.70%	1755	1689	1746
89	1788	1705	129265	131550	-1.74%	1754	1689	1743
90	1791	1707	130903	133259	-1.77%	1752	1690	1747
91	1793	1710	132543	134968	-1.80%	1758	1694	1762
92	1796	1706	134183	136676	-1.82%	1757	1690	1751
93	1798	1705	135821	138385	-1.85%	1753	1688	1746
94	1800	1703	137456	140094	-1.88%	1743	1686	1743
95	1803	1704	139092	141803	-1.91%	1746	1687	1741
96	1805	1708	140730	143511	-1.94%	1755	1689	1746
97	1807	1704	142367	145220	-1.96%	1752	1686	1741
98	1809	1699	144001	146929	-1.99%	1740	1682	1733
99	1812	1698	145632	148638	-2.02%	1738	1680	1730
100	1814	1699	147262	150346	-2.05%	1739	1681	1733
101	1816	1707	148897	152055	-2.08%	1743	1689	1743
102	1818	1711	150539	153764	-2.10%	1747	1693	1743

AREVA Test of Meggitt Cable

June 17, 2004

				rest of me	ggitt Cable	:	Pa	ao 56
	Furnace	Furnace	Furnace	Furnace	Furnace	Lab	"In" Cable at	ye 50
	Probe	Probe	Probe	Probe	Probe	Ambient	Top Surface	
Time	#4	#5	#6	#7	#8	Temp.	of Slab	
(min)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	
. ,						C - J	X - 7	
0	84	85	91	84	84	87	86	
1	124	142	bad TC	136	147	88	88	
2	297	338	bad TC	298	330	88	88	
3	608	649	bad TC	529	571	88	89	
4	905	965	bad TC	793	825	87	92	
5	1043	1098	bad TC	973	970	87	97	
6	1084	1124	bad TC	1074	1034	87	105	
7	1115	1133	bad TC	1120	1066	87	114	
8	1158	1151	bad TC	1149	1087	87	122	
9	1215	1173	bad TC	1158	1097	87	127	
10	1257	1197	1048	1176	1115	87	137	
11	1273	1217	1115	1208	1143	87	145	
12	1292	1242	1168	1237	1170	87	153	
13	1323	1272	1211	1263	1194	87	160	
14	1354	1299	1246	1288	1217	87	167	
15	1382	1322	1274	1309	1238	88	168	
16	1409	1342	1299	1330	1257	88	177	
17	1435	1363	1321	1352	1277	88	181	
18	1456	1381	1341	1371	1294	88	185	
19	1478	1401	1360	1391	1312	89	190	
20	1494	1400	1377	1408	1328	89	188	
21	1511	1447	1392	1424	1344	89	199	
22	1524	1454	1410	1440	1359	89	202	
23	1526	1486	1424	1456	1372	89	197	
24	1523	1469	1436	1469	1385	89	199	
25	1522	1471	1445	1485	1399	89	211	
26	1524	1479	1456	1498	1413	89	213	
27	1526	1484	1463	1505	1422	89	215	
28	1531	1492	1472	1518	1433	90	221	
29	1541	1500	1482	1524	1443	90	220	
30	1550	1509	1491	1532	1452	90	230	
31	1559	1519	1502	1550	1465	91	229	
32	1565	1527	1512	1559	1476	91	216	
33	1573	1536	1521	1570	1484	91	229	
34	1579	1544	1530	1580	1494	91	223	
35	1584	1547	1535	1578	1497	90	235	
36	1593	1554	1542	1581	1503	90	234	
37	1598	1560	1550	1587	1509	90	234	
38	1605	1567	1557	1594	1516	90	229	
39	1608	15/0	1562	1597	1521	91	236	
40	1614	15/5	1567	1601	1527	91	235	
41	1618	15/8	15/1	1603	1530	91	240	
42	1622	1585	1576	1609	1536	91	241	
43	1627	1587	1580	1612	1540	91	236	

AREVA Test of Meggitt Cable

June 17, 2004

	Test of Meggitt Cable						Page 57		
	Furnace	Furnace	Furnace	Furnace	Furnace	Lab	"In" Cable at	9001	
	Probe	Probe	Probe	Probe	Probe	Ambient	Top Surface		
Time	#4	#5	#6	#7	#8	Temp.	of Slab		
(min)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)		
. ,			. ,	. ,					
44	1630	1592	1585	1618	1544	90	251		
45	1630	1595	1588	1621	1547	91	246		
46	1628	1589	1588	1620	1544	91	246		
47	1630	1592	1592	1624	1547	91	239		
48	1630	1594	1595	1627	1550	91	236		
49	1640	1603	1604	1636	1558	91	235		
50	1648	1614	1614	1645	1567	91	249		
51	1658	1621	1622	1653	1575	91	248		
52	1671	1632	1633	1664	1585	91	259		
53	1678	1640	1640	1670	1593	92	265		
54	1680	1642	1644	1676	1598	91	256		
55	1676	1642	1645	1677	1601	92	261		
56	1678	1646	1649	1682	1605	92	264		
57	1684	1653	1655	1687	1611	92	260		
58	1692	1661	1663	1693	1616	92	268		
59	1697	1663	1665	1695	1620	92	267		
60	1701	1668	1670	1700	1624	93	276		
61	1701	1669	1672	1701	1627	93	272		
62	1701	1671	1674	1705	1631	91	273		
63	1698	1670	1673	1706	1632	91	278		
64	1690	1667	1671	1704	1630	91	274		
65	1687	1664	1669	1703	1629	92	272		
66	1687	1669	1673	1708	1634	92	276		
67	1693	1671	1675	1709	1636	92	270		
68	1691	1672	1676	1709	1637	92	276		
69	1696	1673	1677	1711	1638	93	272		
70	1700	1675	1679	1714	1641	92	277		
71	1698	1675	1680	1715	1642	92	272		
72	1697	1675	1680	1716	1643	92	279		
73	1694	16/3	16/8	1/15	1642	92	276		
74	1690	1675	1680	1/1/	1645	92	281		
75	1686	1674	1679	1/1/	1645	93	2//		
76	1686	1675	1680	1/18	1647	93	281		
77	1694	1678	1683	1721	1649	93	2//		
78	1698	1676	1082	1719	1649	93	207		
/9	1697	1673	1001	1710	1040	93	209		
8U 04	1606	10/4	1000	1/10	1040	94	209		
07 01	1004	1075	1001	1720	1649	94	202		
82 87	1605	1677	1001	1720	1654	94	208		
03	1500	10//	1200	1721	1021	94	2/4		
04	1605	1674	1601	1720	16230	54	209		
05 05	1601	1675	1601	1777	1657	22 22	200		
87 87	1681	1679	1688	1722	1667	93 Q4	207		
U/	TOOT	10/0	1000	2100	1002	57	2,0		

AREVA Test of Meggitt Cable

June 17, 2004

				1050 01 110	ggitt cubic	•	Page	e 58
	Furnace	Furnace	Furnace	Furnace	Furnace	Lab	"In" Cable at	
Time	Probe #4	Probe #5	#6	#7	#8	Tomn	of Slab	
(min)	(°E)	(°E)	(°E)	(°E)	(°E)	(°E)	(°E)	
()	()	(1)				(-)		
88	1682	1678	1689	1733	1664	93	277	
89	1683	1680	1691	1736	1666	93	276	
90	1684	1683	1694	1740	1668	94	279	
91	1690	1682	1690	1735	1665	94	282	
92	1685	1679	1689	1734	1664	94	274	
93	1682	1679	1689	1736	1665	94	274	
94	1679	1679	1690	1736	1666	93	279	
95	1680	1680	1692	1738	1667	93	279	
96	1682	1683	1694	1742	1670	93	274	
97	1679	1679	1691	1738	1667	92	274	
98	1675	1676	1688	1735	1664	92	275	
99	1674	1676	1688	1736	1665	92	275	
100	1674	1677	1688	1734	1664	93	278	
101	1682	1688	1698	1742	1674	93	276	
102	1687	1691	1702	1746	1679	93	275	

•

	"In" Cable	"Out" Cable	"Out" Cable
	12" Above	Top Surface	12" Above
Time	Top of Slab	of Slab	Top of Slab
(min)	(°F)	(°F)	(°F)
0	86	86	86
1	86	87	86
2	87	89	86
3	87	93	86
4	87	99	86
5	87	100	86
6	87	108	86
7	87	114	87
8	88	117	88
9	88	128	88
10	89	133	89
11	90	142	89
12	90	150	90
13	92	153	91
14	93	163	92
15	94	159	93
16	95	171	94
17	96	173	95
18	97	177	96
19	98	182	97
20	97	1/8	96
21	99	183	98
22	99	191	99
23	99	18/	97
24	100	1/4	97
20	101	190	100
20	102	192	100
28	102	203	101
29	102	198	102
30	102	214	103
31	105	215	104
32	104	198	102
33	106	220	103
34	106	208	102
35	106	220	103
36	107	220	105
37	107	226	106
38	105	226	103
39	106	226	104
40	104	218	101
41	104	225	101
42	103	210	100
43	103	225	101

June 17, 2004 Page 59

.

•

AREVA Test of Meggitt Cable

•

June 17, 2004 Page 60

--- -

	"In" Cable	"Out" Cable	"Out" Cable
	12" Above	Top Surface	12" Above
Time	Top of Slab	of Slab	Top of Slab
(min)	(°F)	(°F)	(°F)
44	104	224	100
45	104	235	100
46	104	234	100
47	102	225	100
48	103	236	99
49	103	226	100
50	103	241	99
51	105	248	102
52	106	236	102
53	106	264	103
54	107	242	104
55	106	241	102
56	109	233	103
57	108	248	104
58	110	239	105
59	107	260	104
60	109	246	105
61	109	239	105
62	110	239	106
63	112	248	107
64	110	261	105
65	111	233	106
66	112	240	106
67	110	255	105
60	109	240	105
70	110	239	105
70	111	23/	107
71	111	230	105
72	114	204	107
73	114	220	107
74	114	233	109
75	113	240	100
70	115	240	107
78	109	254	104
79	110	230	105
80	110	253	105
81	108	200	103
82	108	248	103
83	109	247	104
84	108	245	103
85	110	240	105
86	112	252	107
87	111	248	105

_

AREVA Test of Meggitt Cable

•••••

Time (min)	"In" Cable 12" Above Top of Slab (°F)	"Out" Cable Top Surface of Slab (°F)	"Out" Cable 12" Above Top of Slab (°F)
88	111	244	106
89	113	249	107
90	112	254	106
91	111	253	106
92	111	254	105
93	114	234	107
94	113	249	107
95	116	258	109
96	114	245	108
97	116	250	110
98	115	246	110
99	113	254	110
100	113	248	107
101	112	261	106
102	113	269	108

Report No. 14980-119368, Rev.1 AREVA FINAL REPORTAugust 11, 2004 APPENDICES Page 62

Appendix D

QUALITY ASSURANCE

.

Report No. 14980-119368, Rev.1 AREVA

FINAL REPORT August 11, 2004 APPENDICES Page 63

Quality Assurance Statement

Omega Point Laboratories, Inc. is an independent, wholly owned company incorporated in the state of Texas, devoted to engineering, inspection, quality assurance and testing of building materials, products and assemblies. The company has developed and implemented a Quality Assurance Program designed to provide its clients with a planned procedure of order and document processing for inspection and testing services it provides to assure conformity to requirements, codes, standards and specifications. The Program is designed to meet the intent of ANSI 45.2 Quality Assurance Program Requirements for Nuclear Power Plants, and complies with the requirements of the ASME Code, SPPE, Military Standards and other less stringent programs. It is the Laboratory's intention to adhere strictly to this Program, to assure that the services offered to its clients remains of the highest quality and accuracy possible.

The overall responsibility of the supervision, operation and coordination of this Quality Assurance Program is that of the Quality Assurance Manager, a person not involved with the performance of the inspection or testing services, and who is under the full time employ of the Laboratory. This individual is responsible for implementing and enforcing all procedures presented in the Quality Assurance Manual and the Procedures Manual. All personnel involved with activities which fall under the scope of this Program are required to cooperate with the letter and intent of this Program.

All QA Surveillance documents remain on file at the Laboratory, and are available for inspection by authorized personnel in the performance of an on-site QA Audit. All materials, services and supplies utilized herein were obtained with appropriate QA Certifications of Compliance, and the inclusion of these in this report would not be practical nor useful to the reader.

ACCEPTABILITY DOCUMENTATION

PROJECT NO. 14980-119368

AREVA

The following signatures attest to the review and acceptance of each attribute listed regarding the above-noted project:

I. TEST ARTICLE ASSEMBLY

ś. Inc.

Date Glindo

II. CABLE INSTALLATION

Omega F

Date

Date

Omega Point Laboratories, Inc. 16015 Shady Falls Road Elmendorf, Texas 78112-9784 USA 210-635-8100 / FAX: 210-635-8101 / 800-966-5253 www.opl.com moreinfo@opl.com Areva Project 14980-119368

Page 65

ACCEPTANCE OF: Ш.

> PRETEST MEGGERING RESULTS PRETEST CONDUCTOR RESISTANCE MEASUREMENT

Omega Point Laboratories, Inc.

6/17/04 Date

IV. **FINAL PRE-BURN INSPECTION**

une Omega Point Laboratories, Inc.

<u>6/17/04</u> Date Date

EVENT LOG

Fire Resistance Test of Horizontal Concrete Slab Supporting a Meggitt Safety System Cable

PROJECT NUMBER:

14980-119368

AREVA

EVENT LOG

AREVA Client # 14980

NOTE:

This Log is used to document the date and note the significant events during the completion of test project #119368 for AREVA. The following is a brief description of this project:

Project No. 119368

Fire Resistance Test of Horizontal Concrete Slab Supporting a Fire-Rated Electrical Cable

	Page 1	of 3
ITEM	DATE	INIT'L
Heg Priest, President of OPL, issues	6/1/04	CA
Proposal No. PO4060P-01 to John		
Crowther, Project Manager of areva		
(Framatance ANP).		
Framatome AND-areva Purchase	6/4	CH
Order no. 149126 is received by OPC		
buy fare.		
Of technicians order project	617	CH
steel.	ļ	
arc receives the project test plan	6/9	CH
and drawings from the crowther	γ <u>·</u>	
My email, also received is Meggitt	· · · · · · · · · · · · · · · · · · ·	
Shety Septema Edcument ER-04-033.		
unparking inspection and installate	<u>ha</u>	
practices for the fire-rated Cable,		17
OPC OH OC personal receive The	69	C74_
SICHI 2 Cable and project support		
hardware (shut, claships, spring	·	
nup worth from meggitt	110	ATL
Holes of San Unionio Work Moles	6/10	CA
In the test and concrete state,		
OPC WHICE personnel very in		<u> </u>
planent of the plans	1 111	Col
the fit of the	left-	
My less article supported	1111	CIL
Think engineering all michan	GIP_	<u></u>
ille operties) made de la contraction de la con	[
Detter Dal na Da X		
Deline Marine Avere Pari Man	115	
tarticles at OOL ADI The line and	- KAIL-	<u>}</u>
install electrical Asilo Martalla-	F	
tion a which ind the DDI OA DO		
Alana Ci holing (1 Author Honort- API	16/15	hin
province que comme caquellas la	-01-31	FY CH
		<u>y</u>

	EVENT LOG	P	age 68	•
	AREVA Client # 14980			
NOTE: This Log is used to docum	ent the date and note the significant events during the co	ompletion of	f test projec	t #119368
or AREVA. The following i	is a brief description of this project:	•	•••	
Project No. 119368	Fire Resistance Test of Horizontal Concrete Slab S Electrical Cable	upporting	a Fire-Rate	d
			Page 2	<u>of 3</u>
IEM ·			DATE	UNIT'L
the foctor	t X the start allow of	que	<u>6/16/04</u>	194
to wasper	worke an angement	ap		
Dhanes	Butani, Bechtel	¥ '		
Q.C. Va	nce Southern Nu	clear	1	
All Piel,	Trubb Engineering at	rive	6/17	C7+-
to do the	acond opetest and	gen	hg	
with OPL	DA/QC personnel.	00	O live	art
on oite I	a withen the fire	est_	6/11	CN_
of project	119368 are i U			
	A Handrad	<u> </u>		
John	youther areva			
<u> </u>	Dial & the de C			
	Pres Butani Balta	g		}
Q	Vanao lou tuena	nuel	eas_	1
Fied	Buden meritt	Salor	F F	alon
Dee	Prient Oneal Pai	nt	7.07	
Com	ie Humphree On			
Cleda	Patton 11 1	1		
Rich	and Beasley "	11		
Dace	ar Estradad "	()		
- nor	Browstad "	"		
				ant
acceptan	ce was abre on	a	G/1	1.24
Volt Th	at was the they The	h.		<u> </u>
Butani a	and the vance the	0		
is a ging	electro-plated No	$\overline{\sigma}_{\cdot}$	1.0	1000
the atta	article is mounting	m	6/11	<u>K</u>
the test	unase my one the	une-		<u> </u>
lans us	ing the overhead cha	nes.	110	1-51
the one no	unfire Test vegan a		<i>@</i>][']	$\vdash \checkmark$
10 i Dd am	the meggint am	ing the		
Me left	to an an inserver, Me	mul	1 linta	101
mis the	lest my khiller, the	wo	01110	r U

. :

ļ

EVENT LOG Page 69 AREVA **Client # 14980** NOTE: This Log is used to document the date and note the significant events during the completion of test project #119368 for AREVA. The following is a brief description of this project: Fire Resistance Test of Horizontal Concrete Slab Supporting a Fire-Rated Project No. 119368 **Electrical Cable** Page ITEM D ODT MIG CH 7 7-04 4 6-6-17-04 82 0C en

<u>A</u>			RE	VISIONS	DATE 1	Page
RAMAT	DHE ANP		DESCRIPTION DRIGINAL ISSU	£	6/8/04	CAPANAINCA S
		TEST	ARTICLE ATTRIBUTE (CHECKLIST		
PROJ	ECT NUMBE	k: MEGGITT	FIRE RESISTIVE CABLE	TESTING		
			ATTRIBUTE		SAT	UNSAT
┝┯┯╇╸	TEST DECK			<u> </u>	VILLAN MARKA	STATES OF
<u> </u>	A Test deck	configura	tion and dimensions per app	roved drawings		
-	B Condition	n of test de	ick			1
	C Test deck	condition	ed to moisture equilibrium a	t indoor conditions	V	1
II	SUPPORTS/ST	EEL PLA	TES		State State and	- Harris
	A. Correct n	naterials us	sed		V.	·
	B. Installed	per approv	ved drawings			
	C. Spacing l	between th	e two Section A-A supports	is equal to or		
	greater th	an shown	on approved drawings			
	D. Supports	for Meggi	it cable are properly grounde	d		<u> </u>
	E. Applied t	orque valu	ies for strut clamps per appro	ved drawings		. <u> </u>
	F. Welds pc	r approved	d drawings			
	MEGGITT CA	BLE				
	A. Cable ins	talled per	approved drawings			
	B. Minimun	n bend rad	ius installed where snown on	approved		
	C. Factory i	nstalled sn	lices installed as shown on a	pproved drawings		
	D. Factory i	nstalled te	rminations provided at each of	and of cable		
	E. No gouge	es or cuts i	n the cable sheath which exc	eed 10% of cable	- <u>-</u>	
	wall thicl	kness	· · · · · · · · · · · · · · · · · · ·		V.	
V	TEST EQUIPM	1ENT	······································		Souther and	PHYSELE
	A. Wiring o	f test articl	les conform to the Figure 1 in	the Test Plan		
	B. All electr	rical device	es and equipment have been t	lested prior to the		
	start of th	ne test to e	nsure that they are properly c	onnected and		ł
	Iunctioni	ng as requ	ired, snowing proper reading	s on data		ł
┟╍╼╂╴	C Europe	hermosou	cill nlac are the correct time and	nre installed mar	- - <u>`</u>	
	the Test 1	Plan	pres are the context type and a	are instance per		
	Verification	to he med	a using initials of ODL Qual	ty Accurance Deser		J
K GROSZ	EX JOHN G. CRO	JTHER 170.148	GA- 6-	ac 17-04 Ball	AR A	lizia WGCa

.

:

TROORATORIES	CLIEN CLIEN RECE PROJ	T/PR(IT/PR(EIVED	DJEC DJEC FRO	Q/ T NAM T NUI M_ <u>P</u> TION	A RECEIV MEAMD SAL MBER_OPL_E MC Omega Poir	Po Po gui	A RE	EPOR Labo Labo	T REPOR DATE DATE INSPE	RT NU RECEI INSPE CTED	MBER VED_ CTED	232	03 1-02 11-02 2110	- Df	<u>ک</u>	-	
ITEM DESCRIPTION	P.O . NO.	QU Order	ANTIT Rec't	Y BO	I.D. NO.	CONID MATL Ÿ/N	Dent. Necid Y/N	CONTAINER INTEGRITY	EXCEPTION	ACCE	PTANC Hold			REM	ARKS		
Chromel TC Wire	134540	10歩	11#	Q	KKP-16 Spol-00395248	4	У	6000	Nme	K							
, 																	
Alumel TClire	134540	10#	11#	ð	KKN-16 Sped-00395246	y	· y	6000	None	X							
		· 			;			<u> </u>		<u>· ·</u>	<u> </u>			11			
								 								-	
						· · ·											
											 -					age	
													1			71	
۰ •							L						<u> </u>				

.

				•			
THE CA POLITIC SHADY FALLS ELMENDORF, TEXAS PH. (210) 635-810 FAX (210) 635-810		16015 SHADY FALLS RD. ELMENDORF, TEXAS 78112 PH. (210) 635-8100 FAX (210) 635-8101		PUF	RCHASE (13454	ORDER Page Q	72
					Date: 1/ Page: 1	31/2002 of 1	
	Order From:	PMC 680 Hayward Street Manchester NH 03103 603-622-3500		Deliver	to: Omega F 16015 SI Elmendor TX (210) 63	Point Laborator hady Falls Roa f 78112 5-8100	ies, Inc Id
۰V	endor No: 0024				······································		
Y	our Item Number Item De	scription	Our Reference	Qty Ordered	Units	Unit Cost	Extension
к	P-16 Chromel TC	Wire	. 001	10.00	Pounds	\$23.20	\$232.00
к	N-16 Alumel TC V	Vire	002	10.00	Pounds	\$27.00	\$270.00
с	alibration Services	\$	003	2.00	Each	.\$8.50	\$17.00

'See Special	Institucions Regarding
Purchasing S	vectications for Quality
Assurance Re	ovirements
OA Approvai_	Challon
Date	1-31-2002

Please Quote Purchase Order Number on all correspondence.

Special Instructions: Please include Certificate of Conformance to attached Specification Sheet and Calibration Data traceable to NIST

Subtotal:	\$519.00
Freight:	0.00
Tax Amount:	0.00
Total Value:	\$519.00
OMEGA POINT LABORATORIES MATERIAL PURCHASING SPECIFICATIONS

SPECIFICATION NUMBER:	MS-04-13454Q-OPL
VENDOR:	PMC Corporation
VENDOR PRODUCT NUMBER	PRODUCT DESCRIPTION
<u>KP-16</u> KN-16	Bare Chromel Thermocouple Wire (16 gauge) Bare Alumel Thermocouple Wire (16 gauge)

Material as defined above shall be provided in accordance with the Critical Characteristics as listed below:

TEST	DESCRIPTION	TEMPERATURE RANGES MIN MAX
ASTM E220-96	Std. Test Method for Calibration of Thermocouples by Comparison	32°F - 2300°F
Thermocouple Type K	Table 2 "Calibration Uncertainties in	Calibrating Thermocouples

by Comparison Method – Temperatures in Degrees Fahrenheit

Note: Temperature deviations above 2000°F are for reference only when using 16 gauge wire.

QUALITY ASSURANCE REQUIREMENTS

1.0 QUALITY PROGRAM

Seller shall furnish this item in accordance with Quality Program approved by Omega Point Laboratories. Material specified herein is to be produced and tested in accordance with vendor quality standards, methods, guidelines and manufacturing instructions as defined in that Quality Program.

2.0 QUALITY VERIFICATION

<u>Receiving Inspection</u> - Buyer shall inspect items upon receipt to verify compliance with purchase order requirements. Rejected items shall be returned at seller's expense.

<u>Document Review</u> - Final acceptance shall be based on satisfactory review of required certifications and/or supporting documents.

3.0 CERTIFICATIONS

- 3.1 Certification that supplied materials comply with this material specification and listing Critical Characteristics shall be provided. This certificates shall reference Omega Point Labs purchase order number and specification number for all material furnished under this specification. This Certification shall be signed by the appropriate vendor representative.
- 3.2 The material furnished under this specification shall be a product that complies with the following:
 - 3.2.1 Has been tested and passed all tests specified herein.
 - 3.2.2 Manufacturing methods for this material have not changed. Vendor will advise Omega Point in writing of any changes in the manufacturing prior to material manufacture.
 - 3.2.3 Raw materials used in the manufacture of this material meet Vendor specifications.

4.0 AUDITS/RIGHTS OF ACCESS

Omega Point Labs reserves the right to audit your facility to verify compliance with the purchase order and specification requirements with a minimum ten (10) day notice.

5.0 IDENTIFICATION

Seller shall identify each item with a unique traceability number by physical marking or tagging. These identification numbers shall be traceable to certifications and packing lists.

6.0 PACKING/SHIPPING

All materials shall be packaged in air tight, moisture free containers and shall be free of foreign substances such as dirt, oil, grease or other deleterious materials.

All materials shall be suitably crated, boxed or otherwise prepared for shipment to prevent damage during handling and shipping.

QUALITY ASSURANCE APPROVAL:

Title Date

AVL Verification

Class:

DATA SHEET 400

PMC is continuously committed to meet the specific needs of the industry and it's customers. In order to meet this committment, PMC has become a full service company. Therefore along with insulated wire product capabilities, PMC operates high speed stranders and spooling equipment to provide a full line of bare wire items.

Customers may select from the items listed below as matched pairs to meet standard limits of error. On most items, variations are available to meet particular applications, including special limits of error or extension grade tolerances.

You will find our qualified sales and engineering staff eager to assist you in these selections.

),

	- <u>-</u> ·	· · · · · ·	<u> </u>	SOLI	D BARE THE	RMOCOUPI	E WIRE PAR	TNUMBER	S-CONTRACTOR			
ſ		TYI	PE J 🛁	🗇 ТҮР	EK	- ETYP	ET	TYP	EE	TYP	EN	STANDARD
WIRE GA	WIRE	Iron JP	Constantan JN	Chromel	Alumel	Copper	Constantan	Chromel	Constantan.	Nicrosil ?	Nisil 25	PACKAGE
BAS	DIA.	•	-	+	•		5.5	**************************************		+	1	LBS
8	.128	JP-8	JN-8	KP-8	KN-8		<u> </u>	EP-8	EN-8	NP-8	NN-B	COIL 50#
14	.064	JP-14	JN-14	KP-14	KN-14	TP-14	TN-14	EP-14	EN-14	NP-14	NN-14	REEL 50#
16	.050	JP-16	JN-16	KP-16	KN-16	TP-16	TN-16	EP-16	EN-16	NP-16	NN-16	REEL 25#
18	.040	JP-18	JN-18	KP-18	KN-18	TP-18	TN-18	EP-18	EN-18	NP-18	NN-18	REEL-10#
20	.032	JP-20	JN-20	KP-20	KN-20	TP-20	TN-20	EP-20	EN-20	NP-20	NN-20	REEL 10#
24	.020	JP-24	JN-24	KP-24	KN-24	TP-24	TN-24	EP-24	EN-24	NP-24	NN-24	REEL 5#
26	.015	JP-26	JN-26	KP-26	<u>KN-26</u>	TP-26	TN-26	EP-26	EN-26	NP-26	NN-26	REEL 5#
28	.012	JP-28	JN-28	KP-28	KN-28	TP-28	TN-28	EP-28	EN-28	ŇP-28	NN-28	REEL 1#
30	.010	JP-30	JN-30	KP-30	KN-30	TP-30	TN-30	EP-30	EN-30	NP-30	NN-30	REEL 1#
				-STRAN	IDED BARE	THERMOCO	UPLE WIRE I	PART NUMB	ERS —			
16 7/24	.060	JP-16F	JN-16F	KP-16F	KN-16F	TP-16F	TN-16F	EP-16F	EN-16F	NP-16F	NN-16F	REEL 40#
18 19/30	.050	JP-1819	JN-1819	KP-1819	KN-1819	TP-1819	TN-1819	EP-1819	EN-1819	NP-1819	NN-1819	REEL 30#
18 7/26	.048	JP-18F	JN-18F	KP-18F	KN-18F	TP-18F	TN-18F	EP-18F	EN-18F	NP-18F	NN-18F	REEL 30#
20 7/28	.037	JP-20F	JN-20F	KP-20F	KN-20F	TP-20F	TN-20F	EP-20F	EN-20F	NP-20F	NN-20F	REEL 15#
24 7/32	.024	JP-24F	JN-24F	KP-24F	KN-24F	TP-24F	TN-24F	EP-24F	EN-24F	NP-24F	NN-24F	REEL 5#

The above part numbers represent the more popular constructions. However, other designs are available upon request.

PMC CORPORATION

57 Harvey Road Londonderry, NH 03053

● 1995 PMC Corporation
 ■

• 1995 PMC Corporation

Upper > temperature limits for bare thermocouple wire

UI UI	PPER TEMP	PERATURE LI	MITS FOR BA	RE THERMO	COUPLE WIBE	ane 7	6		
THERMOCOUPLE TYPE	ANSI = SYMBOL	WIRE GAUGE (A.W.G.)							
· · ·		8 GA.	14 GA.	16 GA	20 GA.	24 GA.	28 GA.		
IRON-CONSTANTANT	J	1400°F (760°C)	1100°F (600°C)	900°F (500°C)	900°F (500°C)	700°F (370°C)	700°F (370°C)		
	ĸ	2300°F (1260°C)	2000°F (1100°C)	2000°F (1100°C)	1800°F (1000°C)	1600°F (870°C)	1600°F (870°C)		
COPPER-CONSTANTAN™	Т	_	700°F (370°C)	500°F (260°C)	500°F (260°C)	400°F (200°C)	400°F (200°C)		
CHROMEL™ CONSTANTAN™	E	1600°F (870°C)	1200°F (650°C)	1000°F (550°C)	1000°F (550°C)	800°F (430°C)	800°F (430°C)		
NICROSIL ⁷⁴ NISIL ⁷⁴	N	2300°F (1260°C)	2000*F (1100*C)	2000°F (1100°C)	1800°F (1000°C)	1600°F (870°C)	1600°F (870°C)		

¹ Trademark, Hoskins Mfg. Co.

Approximate > yields for bare solid thermocouple wire

			E	BARE SOLID THERMOCOUPLE WIRE FEET/LB										
		TYPE J			PEK	TY	PET	TY	PEE	TY	PEN			
Wire GA 812	Wins Size DIA.	tron JP +	Refretancia IV	Chromet ICP +	Alumel KN	Copper TP +	Constantan TN -	Chromel EP	Constantan EN	Nicrosil NP +	Nisit NN			
δ	,162	14.2	12.6	13	13	12.6	12.6	13	12.6	13	13			
8	.128	:22.8	20.2	21	21	19.8	20.2	21	20.2	-21	21			
14	.064	91.2	80.9	83	83	80.5	80.9	83	80.9	83	83			
16	.050	144	127	130	130	128	128	130	127	130	130			
18	.040	233	207	212	-212	203	203	212	207	212	212			
20	.032	365	324	331	331	324	324	331	324	331	331			
24	.020	925	821	838	838	820	820	838	821	838	838			
26	.015	1478	1312	1340	1340	1299	1299	1340	1312	1340	1340			
28	.012	2353	2089	2130	2130	2062	2062	2130	2089	2130	2130			
30	.010	3735	3316	3370	3370	3294	3294	3370	3316	3370	3370			
36	.005	14940	13260	13500	13500	13250	13250	13500	13260	13500	13500			

Approximate > yields for bare stranded thermocouple wire

			- BAI	RE STRAN	DED THEF	MOCOUP	LE WIRE F	EET/LB -	-		
		Т	YPE J	TYPE K		TYPE T		TYPE E		TYPE N	
BE2 CY Mille	Wire Size DIA.	fron JP +	Constantan JN	Chromel KP +	Alumei XN	Copper TP +	Constantan TN	Chromat EP	Constantan EN	Nicrosil NP	Nisil NN
14 7/22	.073	83	74	75	76	74	74	75	74	75	76
16 7/24	.060	132	- 117	-119	121	117	117	119	117	119	121
18 19:30	.050	197	175	177	180	173	175	177	175	177	180
18 7/26	.048	211	187	190	193	185	187	190	187	190	193
20 7/28	.037	336	298	303	307	295	298	303	298	303	307
22 7/30	.030	534	474	480	488	471	474	480	474	480	488
24 7/32	.024	952	833	833	833	737	833	833	833	833	833

PRICING POLICY > Shipments will be involced at PMC's prices in effect at time of shipment. Oubtations are given with an escatation clause and prices, terms, and conditions are subject to change without prior notice. PMC will, however, make every attempt to hold to current quoted prices. All prices quoted are in United States currency, and sha't be subject to correction for errors. Unless otherwise stated in writing to PMC

REELS, SPOOLS & COILS > All shipments, unless specified otherwise by PMC, are made on non-returnable reets, spools or coils in one continuous length.

SHORTAGES & RETURNS > All claims for shorage or incorrect material must be made within 10 days after receipt of the goods to which such claim pertains. Goods may only be returned for credit within 1 month of the date of authorization. Goods that are special in any way shall not be returned to PMC. Material returned for any reason, without, written authorization will be returned and returned at shipper's expense. A return request must be processed through our Londonderry, N.H. sales citice.

TOLERANCES > Due to allowances in manufacturing processes for wire, cable and similar products, PMC reserves the right to ship a variation of ± 10% from the quantity of such goods ordered. Physical tolerances shown are nominal. Shipping weights are an average of all types of conductors and are listed for estimating only. These weights can vary substantially due to different types of spools, reels and/or conductors.

The material contained in this document is presented in good taith and believed to be reliable and accurate. However, because testing conditions may vary and material quality or information that may be provided in whole or part by others may be beyond our control, no warranty expressed or implied, is given and PMC Corporation can assume no tability for

PMC A DIVISION OF ROCKBESTOS-SURPRENANT CABLE CORPORAGEN77 680 HAYWARD STREET, MANCHESTER, NH 03103 (603) 622-3500 SPECIALIZING IN WIRE & CABLE FOR THE SENSOR INDUSTRY FAX (800) 639-5701 CERTIFICATE OF CALIBRATION

TO: OMEGA POINT LABS 16015 SHADY FALLS ROAD ELMENDORF, TX 78112
 Date:
 02/11/02

 Cust PO#:
 13454Q

 Job #:
 PSO055960-1+2

CALIBRATION RESULTS ARE TRACEABLE TO THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) AND MEET SPECIAL LIMITS DEVIATION TOLERANCES AS DEFINED IN ISA MC96.1 (FORMERLY ANSI) AND ASTM E 230-93, IPTS90, AND AMS 2750 REV C.

TEST RESULTS FOR	R: SPOOLS	PMC P/N: K K	KP-16 S KN-16 S	Spool 00395248 Spool 00395246	TOTAL:	11 LBS. 11 LBS
Test Temperature (°F)	Inside End	Outside	End	Test Temperature (°F)	Inside End	d Outside End
800	-1.9	-2.0) :	2000	-5.6	-5.2
1000	-0.5	-0.5	;	2300	-6.4	-5.8
1500	-2.0	-1.9)			

REPORTED RESULTS ARE DEVIATIONS FROM TEST TEMPERATURES. FOR CORRECTION FACTORS REVERSE THE SIGNS.

THE MATERIAL REFERENCED ABOVE HAS BEEN CALIBRATED UTILIZING TECHNIQUES CONSISTENT WITH THE GUIDELINES SET FORTH IN ANSI Z540-1 AND ASTM E-220. THIS IS TO CERTIFY THE MATERIAL FURNISHED ON THIS SHIPMENT ARE IN CONFORMANCE WITH THE REQUIREMENTS, SPECIFICATIONS, AND DRAWINGS OF THE ABOVE REFERENCED CUSTOMER PURCHASE ORDER. INSPECTION AND TEST RECORDS ARE ON FILE AND AVAILABLE FOR CUSTOMER REVIEW.

SECONDARY STANDARD THERMOO REEL # POS LEG: 00291335 REEL # NEG LEG: 00291346 CALIBRATION DATE: 3/17/00	DUPLE: TYPE K NIST #:263094C&A 263094B&D (SINGLE USE THERMOCOUPLE FROM CALIBRATED REEL)
DIGITAL VOLT METER MODEL: KAYE INSTRUMENTS: X1525 SERIAL #: 306172 CALIBRATION DUE DATE: 07/25/02	EDC 100RC SERIAL# 15075 C CERTIFICATE # 01-020 DUE 07/10/02
ICE POINT THERMOCOUPLE REFERE MODEL, KAYE INSTRUMENTS: K-170 SERIAL #: 306179 CALIBRATION DUE DATE: 07/25/02	ENCE HART DIGITAL THERMOMETER Calibration Certificate Acter Habted 5448 Item Allimet 4 (1), Mmet 5448 Item Allimet 4 (1), Mmet 5448 SN Sprala 0039 5 2 48 4 0039 5/044 SN Sprala 0039 5 2 48 4 0039 5/044 NIST Traceability Adequate 1000 from the former of the

A member of the Marmon Group of companies

OPL

Eng

ot. Mgr.

PMC Division of RSCC

680 Hayward Street Manchester, NH 03103 Phone: (603) 622-3500 Fax: (603) 622-7023 Delivery Note 35607

Ship To: OMEGA POINT LABS 16015 SHADY FALLS ROAD ELMENDORF, TX 78112

Attention: CLEDA

Ship Date	Customer P.O.	Ship Via		Due Date		
Feb 11 2002	13454Q	UPS GROUND		FEB 05 2	2002	Page:1
Item and Descript	ion	<u> </u>	Qty	Ordered	Back ordered	Qty Shipped
1. KP-16 Spool#: 0039!	5248-CAR			10	Ó	11
2. KN-16 Spool#: 0039!	5246-CAR			10	0	11
3. CALIBRA CALIBRATION 1000, 1500, 20	TION CHARGE I CHARGE. Item 1 & 2 to be 000 & 2300°F I/O to ASTME	calibrated at 800, E220-96		1	0	1
1		· · · ·				
i						

			······································
PROPATORIE	OMEGA POINT LAN 16015 Shad Elmendorf, Texa (210) 635-8100 / F	BORATORIE y Falls Roa as 78112 AX (210)	ES, INC. Page_79 ad
	Fax Transn	nittal Shee	et
То:	Janice Welch	From:	Cleda Patton
Phone:	603-622-3500	Date:	1/31/2002
Fax:	800-639-5701		
Comments	s: Janice,		
	P.O. 13454Q and OPL Ma	aterial Purc	hasing Specifications.
	Best regards,		
	Cleda		

Pages Transmitted, Including This Sheet: _4

Original Sent Via: _____ U.S. Mail

_____ Overnight Delivery Service

____X FAX only; Originals Not Sent

NOTICE

THIS COMMUNICATION IS INTENDED ONLY FOR THE USE OF THE INDIVIDUAL OR ENTITY TO WHICH IT IS ADDRESSED AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, CONFIDENTIAL, AND EXEMPT FROM DISCLOSURE UNDER APPLICABLE LAW. If the reader of this communication is not the intended recipient or the employee or agent responsible for delivering the communication to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please destroy it immediately and notify the sender at 1-800-966-5253.

TROORATORING	CLIEN CLIEN RECE PRO.	it/Pro it/Pro Eived I Iect L	JECT JECT FROM OCAT	Q/ NAM NUM 1 1	A RECEIV E Omesor Po IBER OPL Eq MC Omega Point	INC int uij	à RE - La sme	POR Les Les Les	T REPOF DATE F DATE II INSPEC	RT NUN IECEIV NSPEC	ABER_ ED TED 3Y:	239 10- 11-	8 - 3 - 0 Tall	0PL)3 3
ITEM DESCRIPTION	P.O . NO.	<u>OU</u> Ordei	ANTIT Rec'd	<u>ү</u> В.О.	1.D. NO.	COPRID MATL Y/N	CENT, FIECD Y/N	SAFETY RELATED Y/N	CONTAINER	ACCE	PTANC	Beleci		REMARKS
Diverglass TC Wire					KK-FB/FB-24	<u>у</u>	у 						Po complete.	Spool #'S 00485975,00484377 00484378 7 00484379 Page 80

.

16015 SHADY FALLS RD. ELMENDORF, TEXAS 78112 PH. (210) 635-8100 FAX (210) 635-8101		PUR	CHASE	ORDER Page	81
VOTARO**			_14149	Q	
			Date: 10 Page: 1	0/17/2003 of 1	
Order From: PMC 680 Hayward Street Manchester		Deliver to	: Omega F 16015 SI Elmendo	Point Laborator nady Falls Roa rf	ries, Inc d
NH 03103 603-622-3500	· · · · · · · · · · · · · · · · · · ·	<u></u>	1X (210) 63	78112 5-8100	
Vendor No: 0024					
Your Item Number Item Description	Our Reference	Qty Ordered	Units	Unit Cost	Extension
Fiberglass TC Wire KK-FB/FB-24	001	16,400	Feet	S182.00	\$2984.0
Calibration Services	002	1.00	Each	\$207.00	\$207.03
	"See S Purch: Assura QA Aj Datc_	pecial Instruction asing Specification ance Requirement pproval 10-17-03	ons Regard lons for Q nts."	ding µality	
$\mathbf{\lambda}$					
CH					

NTOT

C80625 11 (

OMEGA POINT LABORATORIES MATERIAL PURCHASING SPECIFICATIONS

SPECIFICATIO	N NUMBER: <u>MS-1414</u>	19Q-0PL
VENDOR:	PMC_Cor	poration
ITEM NO.	VENDOR PRODUCT NUMBER	PRODUCT DESCRIPTION
- <u></u> `	<u>KK-TA/TA-24</u>	Teflon Coated Thermocouple Wire
<u> </u>	KK-FB/FB-24	Fiberalas Braided Thermocouple Wire
<u></u>	KK-TE/TE-24	FEP Insulated Thermocouple Wire

Material as defined above shall be provided in accordance with the Critical Characteristics as listed below:

TEST	DESCRIPTION	SPECIFICATION RANGES MIN MAX.
ASTM E220-96	Std. Test Method for Calibration of Thermocouples by Comparison (Chromel/Alumel wire alloy)	Temp. Range +32°F to +545°F Special Limits of Error $\pm 2\%$ °F Temp. Range +545°F to +2300°F Special Limits of Error $\pm .4\%$
ASTM E220-96	Std. Test Method for Calibration of Thermocouples by Comparison (Copper/Constantan wire alloy)	Temp. Range -85°F to +270°F Special Limits of Error ±9%°F Temp. Range +270°F to +660°F Special Limits of Error ±4%

QUALITY ASSURANCE REQUIREMENTS

1.0 QUALITY PROGRAM

Seller shall furnish this item in accordance with Quality Program approved by Ornega Point Laboratories. Material specified herein is to be produced and tested in accordance with vendor quality standards, methods, guidelines and manufacturing instructions as defined in that Quality Program.

2.0 QUALITY VERIFICATION

<u>Receiving Inspection</u> - Buyer shall inspect items upon receipt to verify compliance with purchase order requirements. Rejected items shall be returned at seller's expense.

<u>Document Review</u> - Final acceptance shall be based on satisfactory review of required certifications and/or supporting documents.

3.0 CERTIFICATIONS

- 3.1 Certification that supplied materials comply with this material specification and listing Critical Characteristics shall be provided. This certificates shall reference Omega Point Labs purchase order number and specification number for all
 material furnished under this specification. This Certification shall be signed by the appropriate vendor representative.
- 3.2 The material furnished under this specification shall be a product that complies with the following:
 - 3.2.1 Has been tested and passed all tests specified herein.
 - 3.2.2 Manufacturing methods for this material have not changed. Vendor will advise Omega Point in writing of any changes in the manufacturing prior to material manufacture.
 - 3.2.3 Raw materials used in the manufacture of this material meet Vendor specifications.

4.0 AUDITS/RIGHTS OF ACCESS

Omega Point Labs reserves the right to audit your facility to verify compliance with the purchase order and specification requirements with a minimum ten (10) day notice.

5.0 IDENTIFICATION

Seller shall identify each item with a unique traceability number by physical marking or tagging. These identification numbers shall be traceable to certifications and packing lists.

6.0 PACKING/SHIPPING

All materials shall be packaged in air tight, moisture free containers and shall be free of foreign substances such as dirt, oil, grease or other deleterious materials.

All materials shall be suitably crated, boxed or otherwise prepared for shipment to prevent damage during handling and shipping.

QUALITY ASSURANCE APPROVAL:

Title Date

Class: A

PRODUCT CODE: FB/FB

Our customers have grown to expect only the highest quality products from PMC.

This construction is one of the earliest insulations used and is perhaps still the most widely used. It consists of the single conductors insulated with a fiberglass braid then impregnated with a special binder to improve moisture and abrasion resistance. The singles are then laid parallel and a braided jacket of the same material is applied and impregnated.

While wire gauge size, calibration and atmosphere will affect maximum useful temperature in applications. This insulation is designed to withstand a maximum continuous (482°C) and a single exposure us (537°C). (Note: Impregnations re 400°F (204°C)).

You will find our qualified sales and engineering staff eager to assist in selecting a design to meet the requirements of your specific application. Variations of this construction including protective metal coverings for

l

FIBERGLASS Braided Thermocouple and **Extension Wire**

Calibrated conductors for high system accuracy

900°F (482°C) Braided fiberglass insulation for abrasion resistance at high temperatures

900°F (482°C) Braided

continuous use xposure use at gnations retain	at 900° 1000°F ed to	F	fiberglass additional and abrasi at high tem	jacket for Nexibility on resistance peratures				
GRADE OF	GAUGE	WIRE	• •		PART N	UMBERS		
WIRE	SIZE	TYPE	TYPE J	TYPE K	ТҮРЕ Т	TYPE E	TYPE N	TYPE RSX
THERMOCOUPLE	16	SOLID	J-FB/FB-16	K-FB/F8-16	T-FB/FB-16	E-FB/FB-16	N-FB/F8-16	
THERMOCOUPLE	20	SOLID	J-FB/FB-20	K-F8/F8-20	T-FB/FB-20	E-FB/FB-20	N-FB/FB-20	
THERMOCOUPLE	20 7/28	STRANDED	J-FB/FB-20F	K-FB/F8-20F	T-FB/FB-20F	E-FB/FB-20F	N-FB/F8-20F	
THERMOCOUPLE	24	SOLID	J-FB/FB-24	K-FB/FB-24	T-FE/FB-24	E-FB/FB-24	N-FB/FB-24	
EXTENSION	16	SOLID	JX-FB/FB-16	KX-FB/FB-16	.~ TX-FB/FB-16	EX-FB/FB-16	NX-FB/FB-16	RSX-F3/FB-16
EXTENSION	20	SOLID	JX-FB/FB-20	KX-FB/FB-20	TX-FB/FB-20	EX-FB/FB-20	NX-FB/FB-20	RSX-F3 F8-20

improved abrasion resistance are available upon request.

Typical applications include aerospace, aluminum mills, foundries, ovens, furnaces, heat treating, plastics industry, sensor leads as well as others.

The above part numbers represent the more popular constructions. However, other designs are available upon request.

PMC CORPORATION 57 Harvey Road Londonderry, NH 03053

Tel. (603) 432-9473 FAX (603) 432-0435

.....

ŕ

Color code > & initial calibration tolerances for thermocouple wire THERMOCOUPLE TYPE COLOR CODE INITIAL CALIBRATION TOLERANCES VME ALLOYS SWIRD SWIRD SWIRD Market SWIRD SWIRD SWIRD J WHEREAL SWIRD SWIRD SWIRD SWIRD SWIRD J WHEREAL SWIRD SWIR SWIRD SWIRD SWIRD SWIRD SWIRD SWI					·						J PMU	corporation
& Initial calibration tolerances for thermocouple wire VME ALLOYS AMSOL MOVIGAL Constraints" J ANSOL WOTCH, JACKET TEMPERATURE RANGE STANDARD FUNCTION (12000) SECTION (12000) SECTION (1200	Color code >	THERMOCOUPL	ЕТҮРЕ	COLOR	I CODE INITIA		IAL CALIBRATION TOLERANCES					
Column and the state of easing	& initial	WIRE ALLOYS	ANSI SYMBOL	INDIVIDUAL	JACKET		TEMPERATU	RE RANGE	r		ARD	SPECIAL
Construction X YELLOW/RED BBOWN WELLOW/RED Construction (1) = 257 (1) = 100 = 257 (1) = 000 = 257 (1) = 000 = 257 (1) = 000 = 257 (1) = 257 (1) = 000 = 257 (1) = 257 (1) = 000 = 257 (1) = 257 (1) = 000 = 257 (1) = 257 (1) = 000 = 257 (1) = 257 (1) = 000 = 257 (1) =	tolerances for	*Iron (+) vs. Constantan™(-)	J	WHITE/RED	BROWN w/ BLACI TRACER	K +54	+ 32°F (D°C) 10 5°F (+285°C) 10) +545°F (+28 +1400°F (+7	5°C) 50°C)	2.ag	e.č	55
Color code Torner NUMERO Purplement State (C) St	wire	Chromel™ (+) vs. *Alumel™ (-)	ĸ	YELLOW/RED	BROWN w/YELLO TRACER	-33 W -16 +545	0°F (-200°C) to 5°F (-110°C) to +32°F (0°C) to 5°F (+285°C) to	-165°F (-110 +32°F (0°C) +545°F (+28 +2300°F (+1	1°C) S°C) 250°C)	±2 ±4°F(±4°F(=./	7. 2.2°C) 2.2°C) (5%	±2°F (1.1°C) ±.4%
Choose 1**(-) v: Constantan**(-) E PURPLE/RED (F) BBOWN (F) -327F (F) ±1% Constantan ±1% Constan<		Copper (+) vs. Constantan™ (-)	Т	BLUE/RED	BROWN w/ BLUE TRACER	- 33 +270	0°F (-200°C) to 85°F (-65°C) to 0°F (+130°C) to	-85°F (-65°C +270°F (+130 +660°F (+35))°C))°C)	±1.± ±1.8°F ±7	5% (1°C) 5%	± .8% ± .9°F (.5°C) ±.4%
FB/FB INSULATION Properties NOTE - Presented (Institution) NOTE - Presented (Institution) <		Chromel ™ (+) vs. Constantan ™ (-)	E	PURPLE/RED	BROWN w/ PURP TRACER	-33 -27 +480 +640	0°F (-200°C) to 0°F (-170°C) to 0°F (+250°C) to 0°F (+340°C) to	-270°F (-170 +480°F (+250 +640°F (+340 +1600°F (+90	°C))°C))°C))°C))°C)	±1 ±3°F(1 ±3°F(1 ±3°F(1 ±.5	/• .7°C) .7°C) %	±1.8°F (1°C; ±1.8°F (1°C; ±.4% ±.4%
Color code Tron vs. Constantain** JX WHITE/RED BLACK + 32*f (0*C) to 400*f (+200*C) ± 4*f (2.2*C) ± 2*f (1.1*C) Chrometir vs.: "Alumetir* ixx YELLOW/RED YELLOW -32*f (0*C) to 400*f (+200*C) ± 4*f (2.2*C) ± 2*f (1.1*C) Chrometir* vs.: Constantant** ixx YELLOW/RED PLUE -75*f (+6*C) to 400*f (+200*C) ± 4*f (2.2*C) ± 2*f (1.1*C) Coper vs.: Constantant** ixx PLIPE/RED PLUE -75*f (+20*C) to 400*f (+200*C) ± 2*f (1.1*C) Coper vs.: Constantant* NX ORANGE/RED PLRPLE +32*f (0*C) to +400*f (+200*C) ± 2*f (1.1*C) Norest** NX ORANGE/RED GAREE +32*f (0*C) to +400*f (+200*C) ± 2*f (1.1*C) Coper vs.: Copper Alloy SX BLACK/RED GREEN +75*f (+25*C) to +400*f (+200*C) ± 2*f (1.1*C) ***: Statistical NOT NOT NOT * 10**F (***TO*T) to 40**f (+200*C) ± 12*f (**C) to 40* f (+20*C) ± 12*f (1.1*C) ***: Statistical NOT NOT Statistica		Nicrosil™ (+) vs. Nisil™ (-)	N	ORANGE/RED	BROWN w/ORAN TRACER	GE +54	+ 32°F (0°C) to 5°F (+285°C) to	+545°F (+28 +2300°F (+1	5°C) 250°C)	±4°F () ±.7	2.2°C) 5%	±2° F(1.1°C) ±.4%
Bit is downame Init is dow	Color codo	*iron vs. Constantan™		WHITERED	IBLACK		2295 (090) 10			+ 4.5 12	2001	- 20E /1 1001
Calibration Coper vs. Constantan** TX BLUE/RED BLUE -75*F (-60°C) to +210°F (+100°C) 22*F (1.1°C) ±1*F (-5°C) extension wire Corper vs. Constantan** EX PURPLERED PURPLE +32*F (0°C) to +400°F (+200°C) ±2*F (1.1°C)	& initial	Chromel™vs.*Alumel™	<u>кх</u>	YELLOW/RED	YELLOW		+32°F (0°C) to	+400°F (+20	0°C)	±4•F (2	.2°C)	±2°F (1.1°C)
tolerances for extension wire Chromet ^{Imviss} . Constantan ¹ EX PURPLE/RED PURPLE +32*f (0*C) to +400*f (+20*C) ± 3*f (1.7*C) ± 2*f (1.1*C) Nicrosil ^{Tmviss} . Nisil ^{Tmviss} NX ORANGE/RED ORANGE +32*f (0*C) to +400*f (+20*C) ± 4*f (2.2*C) ± 2*f (1.1*C) Copper vs. Copper Alloy SX BLACK/RED ORANGE +75*f (*25*C) to +400*f (+20*C) ± 12*f (1.1*C) **Market Microsil ^{Tmviss} . Nisil ^{Tmviss} NX ORANGE/RED OREM +75*f (*25*C) to +400*f (+20*C) ± 12*f (1.1*C) **Market Microsil ^{Tmviss} . Nisil ^{Tmviss} NX ORANGE/RED OREM +75*f (*25*C) to +400*f (+20*C) ± 12*f (1.1*C) **Market Missil ^{Tmviss} . Missil ^{Tmviss} NX ORANGE/RED OREM +75*f (*25*C) to +400*f (+20*C) ± 12*f (1.1*C) **Market Missil ^{Tmviss} . Missil ^{Tmviss} . NX ORANGE Tormosode wet cancel to bee more (+2*f) Point Missil ^{Tmviss} .	calibration	Copper vs. Constantan	TX	BLUE/RED	BLUE		75°F (-60°C) to	+210°F (+10	0°C)	±2°F (1	.1°C)	± 1°F (.5°C)
Extension wire Nicrosit™ vs. Nisit™ NX ORANGE/RED ORANGE/RED ORANGE -32*F (0*C) to +400*F (+20*C) ± 4*F (2.2*C) ± 2*F (1.1*C) Copper vs. Copper Alloy SX BLACK/RED GREEN +75*F (+25*C) to +400*F (+20*C) ± 12*F (7*C) *Manesc Microsit™ vs. Nisit™ NX ORANGE/RED GREEN +75*F (+25*C) to +400*F (+20*C) ± 12*F (7*C) *Manesc Microsit™ vs. Nisit™ NX ORANGE/RED GREEN +75*F (+25*C) to +400*F (+20*C) ± 12*F (7*C) *Manesc Microsit™ vs. Nisit™ NX DIAMESCAL NX DIAMESCAL Termosude we cannot be coefficient to the moment of the point (+2*F). Termosude we cannot be coefficient to the moment of the point (+2*F). Termosude we cannot be coefficient to the moment of the point (+2*F). Thermosude we cannot be coefficient to the moment of the point (+2*F). Thermosude we cannot be coefficient to the moment of the point (+2*F). Thermosude we cannot be coefficient to the moment of the point (+2*F). Thermosude we cannot be coefficient to the point (+2*F). Thermosude we cannot be coefficient to the point (+2*F). Thermosude we cannot be coefficient to the point (+2*F). Thermosude we cannot be coefficient to the point (+2*F). Thermosude we cannot be coefficient to the point (+2*F). Thermosude we cannot be coefficient to the point (+2*F). Thermosude w	tolerances for	Chromel TM vs. Constanta	n™ EX	PURPLE/RED	PURPLE	1	+32°F (0°C) to	+400°F (+200	0°C)	±3°F (1	.7°C)	±2°F (1.1°C)
Copper vs. Copper Alloy SX RX BLACK/RED GREEN +75°F (+25°C) to +400°F (+20°C) ±12°F (7°C) *Machine *fract Main, Hoskins Mig Co NOTE - Present limes appropriate to the mumor bird states on the second to the properties To mumor bird states appropriate to the mumor bird states on the second to the properties The monocular with the mumor bird states appropriate to the properties The monocular with the mumor bird states are append to the mumor bird states appropriate to the mumor bird states are append to the mumor bird states appropriate to the mumor bird states are append to the mumor bird states appropriate to the mumor bird states are append to the mumor bird states appropriate to the mumor bird states are append to the mumor bird states appropriate to the mumor bird states are append to the mumor bird states appropriate to the mumor bird states are append to the mumor bird states appropriate to the mumor bird states are append to the mumor bird states appropriate to the mumor bird states approprised to th	extension wire	Nicrosil TM vs. Nisil TM	NX	ORANGE/RED	ORANGE		+32°F (0°C) to	+400°F (+200	J°C)	±4°F (2	.2°C)	±2°F (1.1°C)
Magnetic Program lime Lawy birch to transmitter and birch to transmitter and bir and to transmitter and birch and the care of the transmitter and birch and the care of the transmitter and birch and the care of the care of the transmitter and birch and the care of the care of the transmitter and the care of the care of the transmitter and the care of the care of the transmitter and the care of the care of the care of the transmitter and the care of the		Copper vs. Copper Alloy	SX RX	BLACK/RED	GREEN	+	75°F (+25°C) to	+400°F (+200	0°C)	± 12°F (7°C)	
FB/FB > INSULATION INSULATION JACKET GAUGE INDMINAL NDMINAL APPROX.SHIP. properties CHARACTERISTICS INSULATION JACKET GAUGE INDMINAL NDMINAL DIAMETER DIAMETER MPRIDX.SHIP. properties SPECIFIC GRAVITY 2.54 2.54 16 .006 .006 .080 X .144 22 IENSILE_STRENGTH 250.000 at 1000°F (537°C) 1000°F (537°C) 1000°F (537°C) 1000°F (537°C) .006 .006 .066 X .118 11 MINIMUM BEND RADIUS 5 X 0.D. 10 X 0.D. 10 X 0.D. .006 .006 .060 X .106 10 QUT THROUGH RESISTANCE GOOD GOOD GOOD 20 .006 .006 .060 X .106 10 QUT THROUGH RESISTANCE EXCELLENT EXCELLENT EXCELLENT .006 .006 .048 X .082 6 SERVICE TEMPERATURE 900°F(482° C) SINGLE 900°F(482° C) SINGLE 900°F(482° C) SINGLE 900°F(482° C) SINGLE 900°F(482° C) SINGLE 000F (537°C) SINGLE 10 FLAME TEST NON- FLAME TEST NON- FLAMMABLE NON- FLAMMABLE		Maçnenc Traze Mark, Hoskins Mig. Co	NOTE - Percan are app 11 e., Li	t limits apply directly med to the numbers mit ("F) = (Temp "F	of "F above of - J2"F) X Pe	ires in "C i r below the rcentage)	ints, but for "Fecur ice point (+32°F).	valents	Thermoc the limit point un	ouple wire s of error at less specifi	tannot be tempera to at time	e expected to meet tures below the ice of purchase.
properties SPECIFIC GRAVITY 2.54 2.54 16 .006 .006 .080 X .144 22 TENSILE STRENGTH 250.000 at 1000°F (537°C) 250.000 at 1000°F (537°C) 16 .006 .006 .080 X .144 22 ELONGATION%(min.) 4.8% 4.8% 20 7/28 .006 .006 .066 X .118 11 MINIMUM BEND RADIUS 5 X 0.D. 10 X 0.D. 20 .006 .006 .060 X .106 10 ABRASION RESISTANCE GOOD GOOD 20 .006 .006 .060 X .106 10 CUT THROUGH RESISTANCE EXCELLENT EXCELLENT EXCELLENT 24 .006 .006 .048 X .082 6 SOLDER IRON RESISTANCE EXCELLENT EXCELLENT RESISTANCE EXCELLENT CONTINUOUS 1000°F (537°C) SINGLE .006 .006 .048 X .082 6 SERVICE TEMPERATURE 900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE .100°F (537°C) SINGLE .100°F (537°C) SINGLE .100°F (537°C) SINGLE .100°F (537°C) SINGLE .100°F (537°C) SINGLE .100°F (537°C) SINGLE .100°F (53	FB/FB > physical	INSULATION CHARACTERISTICS	INSULATION	JACKET		GAUGE SIZE	NDMINAL INSULATION WALL(INCHES)	NOMINAL JACKET WALLINCHES)	NDMI DIAM (INCHES	NAL ETER S)	APPR WT.L PER 1	DX. SHIP. BS. 1000 FT
TENSILE_STRENGTH 250.000 at 1000°F (537°C) 250.000 at 1000°F (537°C) ELONGATION%(min.) 4.8% 4.8% MINIMUM BEND RADIUS 5 X 0.D. 10 X 0.D. ABRASION RESISTANCE GOOD GOOD CUT THROUGH RESISTANCE EXCELLENT EXCELLENT MOISTURE RESISTANCE GOOD GOOD SOLDER IRON RESISTANCE EXCELLENT EXCELLENT SOLDER IRON RESISTANCE EXCELLENT EXCELLENT SOLDER IRON RESISTANCE EXCELLENT EXCELLENT SOLDER IRON RESISTANCE EXCELLENT EXCELLENT SERVICE TEMPERATURE 900°F(482° C) SINGLE 900°F(482° C) SINGLE 900°F(482° C) SINGLE FLAME TEST NON- FLAMMABLE NON- FLAMMABLE NON- FLAMMABLE	properties	SPECIFIC GRAVITY	2.54	2.54		16	.006	.006	.080	X .144		22
ELDNGATION%(min.) 4.8% 4.8% 20 7728 .006 .006 .066 X .118 11 MINIMUM BEND RADIUS 5 X 0.D. 10 X 0.D. 20 .006 .006 .066 X .118 11 ABRASION RESISTANCE GOOD GOOD GOOD 20 .006 .006 .066 X .106 10 CUT THROUGH RESISTANCE EXCELLENT EXCELLENT EXCELLENT EXCELLENT 24 .006 .006 .048 X .082 6 MOISTURE RESISTANCE GOOD GOOD GOOD 24 .006 .006 .048 X .082 6 SOLDER IRON RESISTANCE EXCELLENT EXCELLENT EXCELLENT 24 .006 .048 X .082 6 SERVICE TEMPERATURE 900°F(482° C) CONTINUOUS INGOF (537°C) SINGLE EXPOSURE 900°F(482° C) CONTINUOUS INGOF (537°C) SINGLE 900°F(537°C) SINGLE SINGLE Indianal and		TENSILE STRENGTH p.s.i. (min.)	250.000 at 1000°F (537	°C) 250.000 °C) 1000°F (at 537°C)							
MINIMUM BEND RADIUS5 X 0.D.10 X 0.D.ABRASION RESISTANCEGOODGOOD20.006.006.060 X .10610CUT THROUGH RESISTANCEEXCELLENTEXCELLENTEXCELLENT24.006.006.048 X .0826MOISTURE RESISTANCEGOODGOODGOOD24.006.006.048 X .0826SOLDER IRON RESISTANCEEXCELLENTEXCELLENT CONTINUOUS 1000°F (482° C) CONTINUOUS SINGLE900°F(482° C) CONTINUOUS <br< th=""><th></th><th>ELONGATION%(min.)</th><th>4.8%</th><th>4.8%</th><th></th><th>20 7/28</th><th>.006</th><th>.006</th><th>.066 :</th><th>X .118</th><th></th><th>11</th></br<>		ELONGATION%(min.)	4.8%	4.8%		20 7/28	.006	.006	.066 :	X .118		11
ABRASION RESISTANCEGOODGOODGOOD20.006.005.060 X .10610CUT THROUGH RESISTANCEEXCELLENTEXCELLENTEXCELLENT24.006.006.048 X .0826MOISTURE RESISTANCEGOODGOOD24.006.006.048 X .0826SOLDER IRON RESISTANCEEXCELLENTEXCELLENTEXCELLENT24.006.048 X .0826SOLDER IRON RESISTANCEEXCELLENT CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) FLAMMABLE900°F(482° C) CONTINUOUS 1000°F (537°C)900°F(482° C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS SINGLE EXPOSURE900°F(482° C) CONTINUOUS SINGLE EXPOSURE900°F(482° C) CONTINUOUS SINGLE EXPOSURE.006.048 X .0826FLAME TESTNON- FLAMMABLENON- FLAMMABLENON- FLAMMABLE.006.048 X .082.006		MINIMUM BEND RADIUS	5 X O.D.	10 X 0.0).							
CUT THROUGH RESISTANCEEXCELLENTEXCELLENTEXCELLENTMOISTURE RESISTANCEGOODGOOD24.006.048 X .0826SOLDER IRON RESISTANCEEXCELLENTEXCELLENTEXCELLENT24.006.048 X .0826SOLDER IRON RESISTANCEEXCELLENT SOLDER IRON RESISTANCE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE.006.048 X .0826FLAME TESTNON- FLAMMABLENON- FLAMMABLENON- FLAMMABLENON- FLAMMABLENON- FLAMMABLENON- FLAMMABLE		ABRASION RESISTANCE	GOOD	GOOD		20	.006	.006	.060	X .106		10
MOISTURE RESISTANCEGOODGOOD24.006.048 X .0826SOLDER IRON RESISTANCEEXCELLENTEXCELLENTEXCELLENT666SERVICE TEMPERATURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE.048 X .0826FLAME TESTNON- FLAMMABLENON- FLAMMABLENON- FLAMMABLE.006.048 X .0826		CUT THROUGH RESISTANCE	EXCELLENT	EXCELL	ENT							ļ
SOLDER IRON RESISTANCEEXCELLENTEXCELLENTSERVICE TEMPERATURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS CONTINUOUS SINGLE EXPOSUREFLAME TESTNON- FLAMMABLENON- FLAMMABLE		MOISTURE RESISTANCE	GOOD	GOOD		24	.006	.006	.048	X .082		6
SERVICE TEMPERATURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSURE900°F(482° C) CONTINUOUS 1000°F (537°C) SINGLE EXPOSUREFLAME TESTNON- FLAMMABLENON- FLAMMABLE		SOLDER IRON RESISTANCE	EXCELLENT	EXCELLE	INT							
FLAME TEST NON- FLAMMABLE FLAMMABLE		SERVICE TEMPERATURE	900°F(482° I CONTINUOU 1000°F (537 SINGLE EXPOSURE	C) 900°F(41 S CONTINI °C) 1000°F (SINGLE EXPOSU	82° C) UOUS 537°C) RE							
	į	FLAME TEST	NON- FLAMMABLE	NON- FLAMMA	ABLE							

. . .

PRICING POLICY > Supreme will be invoiced at PMC3 prices in effect all time of shormeric Quotations are given with an escalation chase and prices, attins, and companies are subject to change without price intervent of the prices of the subject to change without prices. All prices quoted are in United States currency, and shall be subject to change of the invest stated in writing to PMC n, ens,

REELS, SPOOLS & COILS > At strongents, unless specified otherwise by PMC, are made on non-returnable nets, spools or colds in one communits length.

SHORTAGES & RETURNS > All sams for shortage or incomed material exist be made within 10 days aller receipt of the goods to which such dam pertains. Goods may only be returned for credit which 1 month of the date of automation Goods and returned by shortage on any way shall not be returned to PMC, Material returned for any reason, without written automation will be returned at shopper's exposes. A return request must be processed alroady our Londonderry, N.H. sales office.

TOLERANCES > Due to advances an manufacturing processes for write, cable and similar products. PMC reserves the next to sho a variation of ± 10% from the quantity of such goods protected. Physical followards shown are non-mail. Shooing weights are an average of all types of conductors and are based for estimating only. These weights can vary sucstantially due to otherest types of spoots, next and/or conductors.

The material contained in this document is presented in good faint and betweed to be reliable and accurate, however, because testing conditions may viery and insternal quality or information mat may be provided in a row or part by others may be beyond our control, no werranty, indirected in worked, is given and PAC Carporation can assume no liablety for results obtained or damages incurred through the approach of me startests presented, NOTE, PAIC reserves the right to substitute an equal production all trademark error.

PACE. 02.

भार

PMC A DIVISION OF ROCKBESTOS-SURPRENANT CABLE CORPORATION 680 HAYWARD STREET, MANCHESTER, NH 03103 (603) 622-3500 SPECIALIZING IN WIRE & CABLE FOR THE SENSOR INDUSTRY FAX (800) 639-5701

CERTIFICATE OF CALIBRATION SPOOL # 00484379 REVISED

TO: OMEGA POINT LABS, INC. 16015 SHADY FALLS ROAD ELMENDORF,TX 78112 USA

5

Date: 10/23/2003 Cust PO#: MS1419Q-OPL JOB # PS0063934-1

CALIBRATION RESULTS ARE TRACEABLE TO THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) AND MEET SPECIAL LIMITS DEVIATION TOLERANCES AS DEFINED IN ISA MC96.1 (FORMERLY ANSI) AND ASTM E 230-03. MS1419Q-OPL.

TEST RESULTS FOR: PMC P/N: KK-FB/FB-24 Total Footage: 2400'

Test Temperature (*F)	Inside End	Outside End
200°	-0.2	-0.2
400°	-0.8	-0.4
600°	-1.5	-1.4
.800°	· -2.7	-1.9
1000°	-1.4	-0.6

REPORTED RESULTS ARE DEVIATIONS FROM TEST TEMPERATURES. FOR CORRECTION FACTORS REVERSE THE SIGNS.

THE MATERIAL REFERENCED ABOVE HAS BEEN CALIBRATED UTILIZING TECHNIQUES CONSISTENT WITH THE GUIDELINES SET FORTH IN ANSI 2540-1 AND ASTM E-220-02. THIS IS TO CERTIFY THE MATERIAL FURNISHED ON THIS SHIPMENT ARE IN CONFORMANCE WITH THE REQUIREMENTS, SPECIFICATIONS, AND DRAWINGS OF THE ABOVE REFERENCED CUSTOMER PURCHASE ORDER. INSPECTION AND TEST RECORDS ARE ON FILE AND AVAILABLE FOR CUSTOMER REVIEW.

SECONDARY STANDARD THERMOCOUPLE: TYPE K REEL # POS LEG: 291335 REEL # NEG LEG: 291346 CALIBRATION DATE: 3/17/00

DIGITAL VOLT METER MODEL: KAYE INSTRUMENTS: X1525S SERIAL # 306172 CALIBRATION DUE DATE: 01/20/2004

ICE POINT THERMOCOUPLE REFERENCE MODEL, KAYE INSTRUMENTS: K-170-SP SERIAL #: 306179 CALIBRATION DUE DATE: 01/27/2004 NIST #: 263094C&A 263094B&D (SINGLE USE THERMOCOUPLE FROM CALIBRATED REEL)

EDC 100RC SERIAL # 15075 NIST # 811/267966-03 DUE : 12/17/2005

TYPE T STANDARD REEL # 25926 & 26369 NIST # 258779B

QUALITY ASSURANCE TECHNICIAN

A member of the Marmon Group of companies

65:51 40, 91 22:23

PAGE.03

Page 87

PMC A DIVISION OF ROCKBESTOS-SURPRENANT CABLE CORPORATION 680 HAYWARD STREET MANCHESTER, NH 03103 (603) 622-3500 SPECIALIZING IN WIRE & CABLE FOR THE SENSOR INDUSTRY FAX (800) 639-5701

CERTIFICATE OF CALIBRATION SPOOL # 00484378 REVISED

TO: OMEGA POINT LABS, INC. 16015 SHADY FALLS ROAD ELMENDORF,TX 78112 USA Date: 10/23/2003 Cust PO#: MS1419Q-OPL JOB # PS0063934-1

CALIBRATION RESULTS ARE TRACEABLE TO THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) AND MEET SPECIAL LIMITS DEVIATION TOLERANCES AS DEFINED IN ISA MC96.1 (FORMERLY ANSI) AND ASTM E 230-03. MS1419Q-OPL.

TEST RESULTS FOR: PMC P/N: KK-FB/FB-24 Total Footage: 5000;

Test Temperature (*F)	Inside End	Outside End
200°	+0.1	+0.5
400°	-0.4	+0.1
600°	+0.5	+0.2
-800°	-1.9	-1.5
1000°	-0.9	-0.6

REPORTED RESULTS ARE DEVIATIONS FROM TEST TEMPERATURES. FOR CORRECTION FACTORS REVERSE THE SIGNS.

THE MATERIAL REFERENCED ABOVE HAS BEEN CALIBRATED UTILIZING TECHNIQUES CONSISTENT WITH THE GUIDELINES SET FORTH IN ANSI 2540-1 AND ASTM E-220-02. THIS IS TO CERTIFY THE MATERIAL FURNISHED ON THIS SHIPMENT ARE IN CONFORMANCE WITH THE REQUIREMENTS, SPECIFICATIONS, AND DRAWINGS OF THE ABOVE REFERENCED CUSTOMER PURCHASE ORDER. INSPECTION AND TEST RECORDS ARE ON FILE AND AVAILABLE FOR CUSTOMER REVIEW.

SECONDARY STANDARD THERMOCOUPLE: TYPE K REEL # POS LEG: 291335 REEL # NEG LEG: 291346 CALIBRATION DATE: 3/17/00

DIGITAL VOLT METER MODEL: KAYE INSTRUMENTS: X1525S SERIAL # 306172 CALIBRATION DUE DATE: 01/20/2004

ICE POINT THERMOCOUPLE REFERENCE MODEL, KAYE INSTRUMENTS: K-170-SP SERIAL #: 306179 CALIBRATION DUE DATE: 01/27/2004 NIST #: 263094C&A 263094B&D (SINGLE USE THERMOCOUPLE FROM CALIBRATED REEL)

EDC 100RC SERIAL # 15075 NIST # 811/267966-03 DUE : 12/17/2005

TYPE T STANDARD REEL # 25926 & 26369 NIST # 258779B

QUALITY ASSURANCE TECHNICIAN

A member of the Marmon Group of companies

PAGE.04

PMC A DIVISION OF ROCKBESTOS-SURPRENANT CABLE CORPORATION 680 HAYWARD STREET. MANCHESTER. NH 03103 (603) 622-3500 SPECIALIZING IN WIRE & CABLE FOR THE SENSOR INDUSTRY FAX (800) 639-5701

CERTIFICATE OF CALIBRATION SPOOL # 00484377 REVISED

TO: OMEGA POINT LABS, INC. 16015 SHADY FALLS ROAD ELMENDORF,TX 78112 USA Date: 10/23/2003 Cust PO#: MS1419Q-OPL JOB # PS0063934-1

CALIBRATION RESULTS ARE TRACEABLE TO THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) AND MEET SPECIAL LIMITS DEVIATION TOLERANCES AS DEFINED IN ISA MC96.1 (FORMERLY ANSI) AND ASTM E 230-03. MS1419Q-OPL.

TEST RESULTS FOR: PMC P/N: KK-FB/FB-24 Total Footage: 5000'

Test Temperature (°F)	Inside End	Outside End
200°	-0.1	-0.4
400°	-1.0	-0.8
600°	-1.1	-1.9
800°	-2.4	-2.3
1000°	-0.9	-0.9

REPORTED RESULTS ARE DEVIATIONS FROM TEST TEMPERATURES. FOR CORRECTION FACTORS REVERSE THE SIGNS.

THE MATERIAL REFERENCED ABOVE HAS BEEN CALIBRATED UTILIZING TECHNIQUES CONSISTENT WITH THE GUIDELINES SET FORTH IN ANSI 2540-1 AND ASTM E-220-02. THIS IS TO CERTIFY THE MATERIAL FURNISHED ON THIS SHIPMENT ARE IN CONFORMANCE WITH THE REQUIREMENTS, SPECIFICATIONS, AND DRAWINGS OF THE ABOVE REFERENCED CUSTOMER PURCHASE ORDER. INSPECTION AND TEST RECORDS ARE ON FILE AND AVAILABLE FOR CUSTOMER REVIEW.

SECONDARY STANDARD THERMOCOUPLE: TYPE K REEL # POS LEG: 291335 REEL # NEG LEG: 291348 CALIBRATION DATE: 3/17/00

DIGITAL VOLT METER MODEL: KAYE INSTRUMENTS: X1525S SERIAL # 306172 CALIBRATION DUE DATE: 01/20/2004

ICE POINT THERMOCOUPLE REFERENCE MODEL, KAYE INSTRUMENTS: K-170-SP SERIAL #: 306179 CALIBRATION DUE DATE: 01/27/2004 NIST #: 263094C&A 263094B&D (SINGLE USE THERMOCOUPLE FROM CALIBRATED REEL)

EDC 100RC SERIAL # 15075 NIST # 811/267966-03 DUE : 12/17/2005

TYPE T STANDARD REEL # 25926 & 26369 NIST # 258779B

111 QUALITY ASSURANCE TECHNICIAN Í Ì Ì

YOU VU.I

PACE. 05

Page 89

PMC A DIVISION OF ROCKBESTOS-SURPRENANT CABLE CORPORATION 680 HAYWARD STREET MANCHESTER, NH 03103 (603) 622-3500 SPECIALIZING IN WIRE & CABLE FOR THE SENSOR INDUSTRY FAX (800) 639-5701

CERTIFICATE OF CALIBRATION SPOOL # 00485975 REVISED

TO: OMEGA POINT LABS, INC. 16015 SHADY FALLS ROAD ELMENDORF,TX 78112 USA

Date: 10/23/2003 Cust PO#: MS1419Q-OPL JOB # PS0063934-1

CALIBRATION RESULTS ARE TRACEABLE TO THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) AND MEET SPECIAL LIMITS DEVIATION TOLERANCES AS DEFINED IN ISA MC96.1 (FORMERLY ANSI) AND ASTM E 230-03. MS1419Q-OPL.

TEST RESULTS FOR: PMC P/N: KK-FB/FB-24 Total Footage: 4000'

(°F)	Inside End	Outside End
200°	+0.6	+0.3
400°	+0.6	+0.3
600°	-0.8	-0.9
800°	+0.8	+0.7
1000°	+1.0	+1.5

REPORTED RESULTS ARE DEVIATIONS FROM TEST TEMPERATURES. FOR CORRECTION FACTORS REVERSE THE SIGNS.

THE MATERIAL REFERENCED ABOVE HAS BEEN CALIBRATED UTILIZING TECHNIQUES CONSISTENT WITH THE GUIDELINES SET FORTH IN ANSI Z540-1 AND ASTM E-220-02. THIS IS TO CERTIFY THE MATERIAL FURNISHED ON THIS SHIPMENT ARE IN CONFORMANCE WITH THE REQUIREMENTS, SPECIFICATIONS, AND DRAWINGS OF THE ABOVE REFERENCED CUSTOMER PURCHASE ORDER. INSPECTION AND TEST RECORDS ARE ON FILE AND AVAILABLE FOR CUSTOMER REVIEW.

SECONDARY STANDARD THERMOCOUPLE: TYPE K REEL # POS LEG: 291335 REEL # NEG LEG: 291346 CALIBRATION DATE: 3/17/00

DIGITAL VOLT METER MODEL: KAYE INSTRUMENTS: X1525S SERIAL # 306172 CALIBRATION DUE DATE: 01/20/2004

ICE POINT THERMOCOUPLE REFERENCE MODEL, KAYE INSTRUMENTS: K-170-SP SERIAL #: 306179 CALIBRATION DUE DATE: 01/27/2004 NIST #: 263094C&A 263094B&D (SINGLE USE THERMOCOUPLE FROM CALIBRATED REEL)

EDC 100RC SERIAL # 15075 NIST # 811/267966-03 DUE : 12/17/2005

TYPE T STANDARD REEL # 25926 & 26369 NIST # 258779B

QUALITY ASSURANCE TECHNIDIA DATE A member of the Marmon Group of companies

HPR-16-2004 FKI 04:53 FR

PMC A DIVISION OF ROCKBESTOS-SURPRENANT CABLE COR Rage 90 680 HAYWARD STREET, MANCHESTER, NH 03103 (603) 622-3500 SPECIALIZING IN WIRE & CABLE FOR THE SENSOR INDUSTRY FAX (800) 639-5701

CERTIFICATE OF CALIBRATION SPOOL # 00485975

TO: OMEGA POINT LABS, INC. 16015 SHADY FALLS ROAD ELMENDORF,TX 78112 USA Date: 10/23/2003 Cust PO#: MS1419Q-OPL JOB # PS0063934-1

CALIBRATION RESULTS ARE TRACEABLE TO THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) AND MEET SPECIAL LIMITS DEVIATION TOLERANCES AS DEFINED IN ISA MC96.1 (FORMERLY ANSI) AND ASTM E 230-03. MS12985Q-OPL.

TEST RESULTS FOR	र:	PMC P/N: KK-FB/FB-24	Total Footage: 4000'
Test Temperature (°F)	Inside End	Outside End	Calibration Certificate Acceptance
200°	+0.6	+0.3	Item Selleglass TC Wire
400°	+0.6	+0.3	NIST Traceability Adequate 1 10 1 M
600°	-0.8	-0.9	As Found/As Left Values Calibration Data Sufficient
.800°	+0.8	+0.7	Date of Reviews 11/3/03 11/3/0
1000°	+1.0	+1.5	OPL QA/QC Dept EnglDept Mgr.

REPORTED RESULTS ARE DEVIATIONS FROM TEST TEMPERATURES. FOR CORRECTION FACTORS REVERSE THE SIGNS.

THE MATERIAL REFERENCED ABOVE HAS BEEN CALIBRATED UTILIZING TECHNIQUES CONSISTENT WITH THE GUIDELINES SET FORTH IN ANSI 2540-1 AND ASTM E-220-02. THIS IS TO CERTIFY THE MATERIAL FURNISHED ON THIS SHIPMENT ARE IN CONFORMANCE WITH THE REQUIREMENTS, SPECIFICATIONS, AND DRAWINGS OF THE ABOVE REFERENCED CUSTOMER PURCHASE ORDER. INSPECTION AND TEST RECORDS ARE ON FILE AND AVAILABLE FOR CUSTOMER REVIEW.

SECONDARY STANDARD THERMOCOUPLE: TYPE K REEL # POS LEG: 291335 REEL # NEG LEG: 291346 CALIBRATION DATE: 3/17/00

DIGITAL VOLT METER MODEL: KAYE INSTRUMENTS: X1525S SERIAL # 306172 CALIBRATION DUE DATE: 01/20/2004

ICE POINT THERMOCOUPLE REFERENCE MODEL, KAYE INSTRUMENTS: K-170-SP SERIAL #: 306179 CALIBRATION DUE DATE: 01/27/2004 NIST #: 263094C&A 263094B&D (SINGLE USE THERMOCOUPLE FROM CALIBRATED REEL)

EDC 100RC SERIAL # 15075 NIST # 811/267966-03 DUE : 12/17/2005

TYPE T STANDARD REEL # 25926 & 26369 NIST # 258779B

ררר

PMC A DIVISION OF ROCKBESTOS-SURPRENANT CABLE COR PAGE 91 680 HAYWARD STREET. MANCHESTER. NH 03103 (603) 622-3500 SPECIALIZING IN WIRE & CABLE FOR THE SENSOR INDUSTRY FAX (800) 639-5701

CERTIFICATE OF CALIBRATION SPOOL # 00484377

TO: OMEGA POINT LABS, INC. 16015 SHADY FALLS ROAD ELMENDORF,TX 78112 USA Date: 10/23/2003 Cust PO#: MS1419Q-OPL JOB # PSO063934-1

CALIBRATION RESULTS ARE TRACEABLE TO THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) AND MEET SPECIAL LIMITS DEVIATION TOLERANCES AS DEFINED IN ISA MC96.1 (FORMERLY ANSI) AND ASTM E 230-03. MS12985Q-OPL.

₹:	PMC P/N: KK-FB/FB-24	Total Footage: 5000'
Inside End	Outside End	Calibration Certificate Acceptance
-0.1	-0.4	Item Giber class TCWire
-1.0	-0.8	SN_00484377
-1.1	-1.9	As Found/As Left Values
-2.4	-2.3	Tolerance Range Adequate Date of Reviews 11-3-23 11171'
-0.9	-0.9	OFL QA/QC Dept. Eng/ Dept. Mgr.
	R: Inside End -0.1 -1.0 -1.1 -2.4 -0.9	PMC P/N: KK-FB/FB-24 Inside End Outside End -0.1 -0.4 -1.0 -0.8 -1.1 -1.9 -2.4 -2.3 -0.9 -0.9

REPORTED RESULTS ARE DEVIATIONS FROM TEST TEMPERATURES. FOR CORRECTION FACTORS REVERSE THE SIGNS.

THE MATERIAL REFERENCED ABOVE HAS BEEN CALIBRATED UTILIZING TECHNIQUES CONSISTENT WITH THE GUIDELINES SET FORTH IN ANSI Z540-1 AND ASTM E-220-02. THIS IS TO CERTIFY THE MATERIAL FURNISHED ON THIS SHIPMENT ARE IN CONFORMANCE WITH THE REQUIREMENTS, SPECIFICATIONS, AND DRAWINGS OF THE ABOVE REFERENCED CUSTOMER PURCHASE ORDER. INSPECTION AND TEST RECORDS ARE ON FILE AND AVAILABLE FOR CUSTOMER REVIEW.

SECONDARY STANDARD THERMOCOUPLE: TYPE K REEL # POS LEG: 291335 REEL # NEG LEG: 291346 CALIBRATION DATE: 3/17/00

DIGITAL VOLT METER MODEL: KAYE INSTRUMENTS: X1525S SERIAL # 306172 CALIBRATION DUE DATE: 01/20/2004

ICE POINT THERMOCOUPLE REFERENCE MODEL, KAYE INSTRUMENTS: K-170-SP SERIAL #: 306179 CALIBRATION DUE DATE: 01/27/2004 NIST #: 263094C&A 263094B&D (SINGLE USE THERMOCOUPLE FROM CALIBRATED REEL)

EDC 100RC SERIAL # 15075 NIST # 811/267966-03 DUE : 12/17/2005

TYPE T STANDARD REEL # 25926 & 26369 NIST # 258779B

ALITY ASSURANCE TECHNIC

A member of the Marmon Group of companies

PMC A DIVISION OF ROCKBESTOS-SURPRENANT CABLE COR CAGEN92 680 HAYWARD STREET. MANCHESTER. NH 03103 (603) 622-3500 SPECIALIZING IN WIRE & CABLE FOR THE SENSOR INDUSTRY FAX (800) 639-5701

CERTIFICATE OF CALIBRATION SPOOL # 00484378

TO: OMEGA POINT LABS, INC. 16015 SHADY FALLS ROAD ELMENDORF,TX 78112 USA Date: 10/23/2003 Cust PO#: MS1419Q-OPL JOB # PS0063934-1

CALIBRATION RESULTS ARE TRACEABLE TO THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) AND MEET SPECIAL LIMITS DEVIATION TOLERANCES AS DEFINED IN ISA MC96.1 (FORMERLY ANSI) AND ASTM E 230-03. MS12985Q-OPL.

TEST RESULTS FOR	र:	PMC P/N: KK-FB/FB-24	Total Footage: 5000'
Test Temperature (°F)	Inside End	Outside End	
200°	+0.1	+0.5	Laubration Certificate Acceptance Item Other slass TOU)150
400°	-0.4	+0.1	SN_00484378
600°	+0.5	+0.2	NIST Traceability Adequate As Found/As Left Values
800°	-1.9	-1.5	Tolerance Range Adequate 11-3.03 11/3/03
1000°	-0.9	-0.6	- Outto

REPORTED RESULTS ARE DEVIATIONS FROM TEST TEMPERATURES. FOR CORRECTION FACTORS REVERSE THE SIGNS.

THE MATERIAL REFERENCED ABOVE HAS BEEN CALIBRATED UTILIZING TECHNIQUES CONSISTENT WITH THE GUIDELINES SET FORTH IN ANSI Z540-1 AND ASTM E-220-02. THIS IS TO CERTIFY THE MATERIAL FURNISHED ON THIS SHIPMENT ARE IN CONFORMANCE WITH THE REQUIREMENTS, SPECIFICATIONS, AND DRAWINGS OF THE ABOVE REFERENCED CUSTOMER PURCHASE ORDER. INSPECTION AND TEST RECORDS ARE ON FILE AND AVAILABLE FOR CUSTOMER REVIEW.

A member of the Marmon Group of companies

SECONDARY STANDARD THERMOCOUPLE: TYPE K REEL # POS LEG: 291335 REEL # NEG LEG: 291346 CALIBRATION DATE: 3/17/00

DIGITAL VOLT METER MODEL: KAYE INSTRUMENTS: X1525S SERIAL # 306172 CALIBRATION DUE DATE: 01/20/2004

ICE POINT THERMOCOUPLE REFERENCE MODEL, KAYE INSTRUMENTS: K-170-SP SERIAL #: 306179 CALIBRATION DUE DATE: 01/27/2004 NIST #: 263094C&A 263094B&D (SINGLE USE THERMOCOUPLE FROM CALIBRATED REEL)

Eng+Dept. Mgr.

EDC 100RC SERIAL # 15075 NIST # 811/267966-03 DUE : 12/17/2005

OPL QA/QC Dept

TYPE T STANDARD REEL # 25926 & 26369 NIST # 258779B

ASSURANCE TECHNICIAN DATE

TEST RESULTS FOR:

PMC A DIVISION OF ROCKBESTOS-SURPRENANT CABLE CORFORD STREET, MANCHESTER, NH 03103 (603) 622-3500 SPECIALIZING IN WIRE & CABLE FOR THE SENSOR INDUSTRY FAX (800) 639-5701

CERTIFICATE OF CALIBRATION SPOOL # 00484379

TO: OMEGA POINT LABS, INC. 16015 SHADY FALLS ROAD ELMENDORF,TX 78112 USA Date: 10/23/2003 Cust PO#: MS1419Q-OPL JOB # PSO063934-1

Total Footage:

CALIBRATION RESULTS ARE TRACEABLE TO THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) AND MEET SPECIAL LIMITS DEVIATION TOLERANCES AS DEFINED IN ISA MC96.1 (FORMERLY ANSI) AND ASTM E 230-03. MS12985Q-OPL.

PMC P/N: KK-FB/FB-24

Test Temperature Inside End **Outside End** (°F) 200° -0.2 -0.2 400° -0.8 -0.4 600° -1:5 -1.4 800° -2.7 -1.9 -1.4 -0.6 1000°

Calibration Certificate Accep Item Huliglass TCU)NC
SN_00484.577 NIST Traceability Adequate As Found/As Left Values Calibration Data Sufficient Tolevance Parts Advance	
Date of Reviews 11-5	P-031.13/02 2005

2400'

REPORTED RESULTS ARE DEVIATIONS FROM TEST TEMPERATURES. FOR CORRECTION FACTORS REVERSE THE SIGNS.

THE MATERIAL REFERENCED ABOVE HAS BEEN CALIBRATED UTILIZING TECHNIQUES CONSISTENT WITH THE GUIDELINES SET FORTH IN ANSI Z540-1 AND ASTM E-220-02. THIS IS TO CERTIFY THE MATERIAL FURNISHED ON THIS SHIPMENT ARE IN CONFORMANCE WITH THE REQUIREMENTS, SPECIFICATIONS, AND DRAWINGS OF THE ABOVE REFERENCED CUSTOMER PURCHASE ORDER. INSPECTION AND TEST RECORDS ARE ON FILE AND AVAILABLE FOR CUSTOMER REVIEW.

SECONDARY STANDARD THERMOCOUPLE: TYPE K REEL # POS LEG: 291335 REEL # NEG LEG: 291346 CALIBRATION DATE: 3/17/00

DIGITAL VOLT METER MODEL: KAYE INSTRUMENTS: X1525S SERIAL # 306172 CALIBRATION DUE DATE: 01/20/2004

ICE POINT THERMOCOUPLE REFERENCE MODEL, KAYE INSTRUMENTS: K-170-SP SERIAL #: 306179 CALIBRATION DUE DATE: 01/27/2004 NIST #: 263094C&A 263094B&D (SINGLE USE THERMOCOUPLE FROM CALIBRATED REEL)

EDC 100RC SERIAL # 15075 NIST # 811/267966-03 DUE : 12/17/2005

TYPE T STANDARD REEL # 25926 & 26369 NIST # 258779B

PMC Division of RSCC

680 Hayward Street Manchester, NH 03103 Tel : (603) 622-3500 Fax : (603) 622-7023

0000105577 Page 94

SPECIALIZING IN WIRE & CABLE FOR THE SENSOR INDUSTRY

DELIVERY NOTE

DELIVERY TO

OMEGA POINT LABS 16015 SHADY FALLS ROAD ELMENDORF, TX 78112 USA

Attention: CLEDA

SHIPME	ENT (:)	OUR ORDER	DATE		CUSTON	IER PO:	CONTAC	ज्ञाः
000010	5577 NT	PSO063934	Oct 23	2003	MS14190	R#	PAGE	
OMEGO	1	Manchester, NH	UPS G	ROUND			1	<u></u>
LINE	ITEM			UOM	Ω ΤΥ	QTY SHIPPE	:D	QTY B/O
001	KK-FB/FB-24 Spool #: 00484	4377 00484378 00484379	9	MFT	16,400	1	6,400	0
002	CALIBRATION Spool #:	CHARGE		EACH	1		1	0
•	-							
							•	

.

.

•

Omega Point Laboratories, Inc. 16015 Shady Falls Road Elmendorf, Texas 78112 800-966-5253 FAX 210-635-8101

v Page 95

Certificate of Calibration

	Certification	No.:	92125						
	Calibration 1	Date:	3/10/04						
	Recalibratio	n Date:	9/10/2004						
Manufacturer:			Yokogawa						
Model No.:			100 Channe	el DAU					
	Serial No.:		99LE004			•			
Equipment Description:			100 Channel Data Acquisition System with YOKOGAWA Darwin Series						
	Calibration a	Sources:	TEGAM Mo Calibration	odel 840-A, S due 06-04-2004	N: T-207318.				
	PERFORM	ANCE:							
	Temperature: (75°F) +0.7/-0.2	Temperature: (150°F) +0.8/-0.3	Temperature: (300°F) +07/-0.5	Temperature: (400°F) +0.8/-0.4	Temperature: (1000°F) +0.9/-0.3	Temperatur (2000°F) +1/-0.2			
			\$ 3-10-04						
	Calibration 1	Performed by		Calil	oration Appro	ved by:			
	Mike Dey Manager of I	Fire Resistan	ice	Javie Man	r Trevino ager of Specia	al Project			

Channel Verification for Yokogawa 100 Channel

. . . .

Serial No.: 99-LE-004

Calibrator Used: Tegam T-207318

Temperature Setting (*F): 75.0

				• •	
Channel No.	Reading (*F)	+/-	Channel No.	Reading (*F)	+/-
1	75.7	0.7	51	74.8	-0.2
2	75.4	0.4	52	75.0	0.0
3	75.6	0.6	53	74.8	-0.2
4	75.6	0.6	54	74.8	-0.2
5	75.6	0.6	55	75.2	0.2
6	75.6	0.6	56	75.0	0.0
7	75.6	0.6	57	75.0	0.0
8	75.6	0.6	58	75.2	0.2
. 9	75.7	0.7	59	75.2	0.2
10	75.7	0.7	60	75.2	0.2
11	75.2	0.2	61	75.6	0.6
12	75.0	0.0	62	75.2	0.2
13	75.0	0.0	63	75.2	0.2
14	75.2	0.2	64	75.2	0.2
15	75.0	0.0	65	75.2	0.2
16	75.0	0.0	66	75.2	0.2
17	75.0	0.0	67	75.2	0.2
18	75.2	0.2	68	75.4	0.4
19	75.2	0.2	69	75.4	0.4
20	75.4	0.4	70	. 75.7	0.7
21	75.2	0.2	71	75.2	0.2
22	75.2	0.2	72	75.2	0.2
23	75.2	0.2	73	75.0	0.0
24	75.2	0.2	74	75.0	0.0
25	75.2	0.2	75	75.2	0.2
26	75.2	0.2	76	75.0	0.0
27	75.2	0.2	77	75.0	0.0
28	75.2	0.2	78	75.2	0.2
29	75.6	0.6	79	75.2	0.2
30	75.7	0.7	80	75.4	0.4
31	75.2	0.2	81	75.4	0.4
32	75.2	0.2	82	75.2	0.2
33	75.2	0.2	83	75.2	0.2
34	75.0	0.0	84	75.2	0.2
35	75.0	0.0	85	75.2	0.2
36	75.2	0.2	86	75.2	0.2
37	75.2	0.2	87	75.4	0.4
38	75.2	0.2	<u> </u>	75.4	0.4
39	75.2	0.2	89	75.4	0.4
40	75.6	0.6	90	75.7	0.7
41	75.2	0.2	91	∃74.8	-0.2
42	75.2	.0.2	92	74.8	-0.2
43	75.2	0.2	93	74.8	-0.2
44	75.2	0.2	94	75.0	0.0
45	75.2	0.2	95	75.2	0.2
46	75.2	0.2	96	75.2	0.2
47	75.2	0.2	97	75.0	0.0
48	75.2	0.2	98	75.2	0.2
49	75.4	0.4	99	75.2	0.2
50	75.6	0.6	100	75.2	0.2

Within specs?	Yes/No
---------------	--------

Performed by: <u>Mike Dey</u> Title: <u>Mgr. Dept. 2</u> Approved by: 💆 Title: MG S RECIVE PIOS Date: 3/10/04

Range of 75°F Readings:

+0.7/-0.2

Allowable limits

Lower Upper 73.2 76.8 (±1.8)

Channel Verification for Yokogawa 100 Channel

Serial No.: 99-LE-004

Calibrator Used: Tegam T-207318

Within specs? ____Yes/No__

Temperature Setting ("F): 150.0

	Channel No.	Reading (°F)	+/-	Channel No.	Reading (*F)	+/-
1	1	150.4	0.4	51	149.7	-0.3
	2	150.4	0.4	52	149.7	-0.3
į	3	150.4	0.4	53	149.7	-0.3
	4	150.4	0.4	54	149.7	-0.3
i	5	150.4	0.4	55	149.7	-0.3
i	6	150.4	0.4	56	149.7	-0.3
Ì	7	150.4	0.4	57	149.9	-0.1
		150.4	0.4	58 :	149.9	-0.1
	9	150.8	0.8	59 \cdots	150.1	0.1
ļ	10	150.8	0.8	60	150.3	0.3
l	11	150.1	0.1	61	150.4	0.4
	12	150.1	0.1	62	150.1	0.1
	13	150.1	0.1	63	150.1	0.1
ł	14	150.1	0.1	64	149.9	-0.1
1	15	150.1	0.1	65	149.9	-0.1
1	16	150.1	0.1	66	150.1	0.1
1	17	150.1	0.1	67	150.1	0.1
Ì	18	150.1	D.1	68	150.1	0.1
	19	150.3	0.3	69	150.3	0.3
	20	150.4	0.4	70	150.6	0.6
ļ	21	150.3	0.3	71	- 150.3	0.3
1	22	150.1	0.1	72	149.9	-0.1
ļ	23	150,1	0.1	73	150.1	0.1
	24	150.1	0.1	74	150.1	0.1
	25	150.1	0.1	75	149.9	-0.1
	26	150.1	0.1	76	150.1	0.1
ļ	27	150.1	0,1	77	150.1	0.1
	28	150.3	0.3	78	150.1	0.1
ł	29	150.3	0.3	<u>79</u>	150.3	0.3
	30	150.6	0.6	80	150.3	0.3
	31	150.4	0.4	81	149.7	-0.3
	32	150.3	0.3	82	149.9	-0.1
	33	150.1	0.1	63	149.9	
	34	150.1	0.1	84	149.9	-0.1
1	35	150.5	0.5	03	149.9	-0.1
	30	150.1	0.1	60	149.9	-0.1
		150.1	0.1	07	149.9	-0.1
1	30	150.5	0.3	00	149.9	-0.1
I	39	150.5	0.5	63	150.5	0.5
	40	150.0	0.0	90	130.4	
1	42	150.3	0.3	07	149.7	-0.3
1	42	150.3	0.3	03	149.7	-0.3
	44	150.3	0.3	04	1497	-0.3
	45	150.5	03	20	1497	-0.3
	46	150.3	0.3	96	1497	-03
	47	150.3	03	07	150.1	01
1	48	150.3	0.3	97	149.9	-01
	40	150.3	0.3	90	150 1	01
	50	150.6	0.5	100	150.3	03
	~ ~ ~					

Performed by: <u>Mike Dey</u> Title: <u>Mgr. Dept. 2</u> Approved by: Title: MS 04

Date: 3/10/04

Range of 150°F Readings:

Allowable limits

Lower 148.2 Upper 151.8 (±1.8)

Channel Verification for Yokogawa 100 Channel

Serial No.: 99-LE-004

Calibrator Used: Tegam T-207318

Within specs? Yes/No

Temperature Setting (*F): 300.0

Performed by: <u>Mike Dey</u> Title: <u>Mgr. Dept. 2</u> Approved by: <u>High Of</u>

Date: 3/10/04

Channel No.	Reading (*F)	.+/-	Channel No.	Reading (*F)	• +/-
1	300.6	0.6	51	299.7	-0.3
2	300.2	0.2	52	299.7	•0.3
3	300.4	0.4	53	299.7	-0.3
4	300.2	0.2	54	299.7	-0.3
5	300.2	0.2	.55	299.B	-0.2
6	300.4	0.4	56	299.8	-0.2
7	300.4	0.4	57	299.8	-0.2
8	300.6	0,6	58	299.8	-0.2
. 9	300.6	0.6	59	300.2	0.2
10	300.7	0.7	60	300.2	0.2
11	300.0	0.0	61	300.4	0.4
12	299.7	~0.3	62	300.2	0.2
13	299.8	-0.2	63	300.2	0.2
14	299.8	-0.2	64	300.2	0.2
15	299.7	-0.3	65	300.2	0.2
16	299.7	-0.3	66	300.2	0.2
17	299.7	-0.3	67	300.2	0.2
18	299.8	-0.2	68	-300.2	0.2
19	300.2	0.2	69	300.2	0.2
20	300.2	0.2	70	300.6	0.6
21	300.2	0.2	71	300.2	0.2
22	300.0	0.0	72	300.2	0.2
23	300.0	0.0	73	300.0	0.0
24	300.0	0.0	74	300.0	0.0
25	300.0	0.0	75	300.2	0.2
26	300.0	0.0	76	300.2	0.2
27	300.2	0.2	77	300.0	0.0
28	300.2	0.2	78	.300.2	0.2
29	300.2	0.2	79	300.2	0.2
	300.6	0.6	80	300.4	0.4
31	300.2	0.2	81	300.0	0.0
32	300.2	0.2	82	300.0	0.0
33	300.2	0.2	83	299.8	-0.2
34	300.2	0.2	84	299.8	-0.2
35	300.2	0.2	85	300.2	0.2
36	300.2	0.2	86	300.0	0.0
37	300.2	0.2	87	300.0	0.0
38	300.2	0.2	88	300.2	0.2
39	300.2	0.2	89	300.2	0.2
40	300.4	0.4	90	300.4	0.4
41	300.2	0.2	91	299.5	-0.5
42	300.0	0.0	92	299.5	-0.5
43	300.0	0.0	93	299.5	-0.5
44	300.0	0.0	94	299.5	-0.5
45	300.0	0.0	95	299.7	-0.3
46	300.2	0.2	96	299.7	-0.3
47	300.2	0.2	97	299.7	-0.3
48	300.2	0.2	98	299.8	-0.2
49	300.4	0.4	99 · ·	300.0	0.0
50] 300.6	0.6	100	300.2	0.2

Allowable limits 298.1

Upper 301.9 (±1.9)

Range of 300°F Readings: +0.7/-0.5

Channel Verification for Yokogawa 100 Channel

Serial No.: 99-LE-004

Calibrator Used: Tegam T-207318

Within specs7 Yes/No

Temperature Setting ("F): 400.0

Channel No. Reading (*F) Reading (*F) +/-Channel No. +/-400.5 399.9 1 0.5 51 -0.1 -2 400.3 0.3 52 399.9 -0.1 400.3 3 0.3 53 399.7 -0.3 400.3 4 0.3 54 399.9 -0.1 5 400.5 0.5 55 399.9 -0.1 6 56 400.3 0.3 -0.1 399.9 7 400.3 0.3 57 399.9 -0.1 8 400.5 0.5 58 400.1 0.1 9 400.6 0.6 59 400.1 0.1 10 400.8 0.8 60 400.3 0.3 400.5 11 399.9 -0.1 61 0.5 12 399.9 -0.1 62 400.3 0.3 13 399.9 -0.1 63 400.1 0.1 14 399.9 -0.1 64 400.1 0.1 15 399.9 400.1 -0.1 65 0.1 16 399.9 -0.1 66 400.1 0.1 17 399.7 -0.3 67 400.1 0.1 18 399.9 -0.1 68 400.3 0.3 19 400.1 0.1 69 400.3 0.3 20 400.3 0.3 70 400.6 0.6 21 400.1 71 0.3 0.1 400.3 22 399.9 .72 -0.1 400.3 0.3 23 400.1 0.1 73 400.1 0.1 24 399.9 74 400.1 -0.1 0.1 25 399.9 -0.1 75 400.3 0.3 26 400.1 0.1 76 400.1 0.1 27 400.1 0.1 77 400.3 0.3 28 400.1 0,1 78 400.3 0.3 29 400.3 0.3 79 400.3 0.3 30 400.5 0.5 80 400.5 0.5 31 400.3 0.3 400.3 81 0.3 32 400.1 399.9 0.1 82 -0.1 33 400.3 0.3 83 399.9 -0.1 34 400.1 0.1 84 399.9 -0.1 35 400.1 0.1 85 399.9 -0.1 36 400.1 0.1 86 399.9 -0.1 400.3 37 87 0.3 400.1 0.1 400.1 38 400.1 0.1 88 0.1 39 400.3 89 400.3 0.3 0.3 40 400.5 0.5 90 400.5 0.5 400.3 91 41 0.3 399.6 -0.4 400.3 92 42 0.3 399.6 -0.4 43 399.9 -0.1 93 399.6 -0.4 44 400.1 0.1 94 399.6 -0.4 400.3 95 45 399.7 0.3 -0.3 46 400.3 0.3 96 399.6 -0.4 47 400.3 0.3 97 399.6 -0.4 48 400.3 0.3 98 399.9 -0.1 49 400.3 0.3 99 399.9 0.1 50 400.6 0.6 100 400.1 0.1

Performed by: _ Mike Dey Title: Mgr. Dept. 2 Approved by: Title: <u>9009</u> \mathcal{M}

Date: 3/10/04

Range of 400°F Readings: +

Allowable limits

Upper 402.0 (±2.0)

Lower

^{+0.8/-0.4}

Channel Verification for Yokogawa 100 Channel

Serial No.: 99-LE-004

Calibrator Used: Tegam T-207318

Temperature Setting (°F): 1000.0

Channel No.	Reading (*F)	+/-	Channel No.	Reading (*F)	- +/-
1	1000.6	0.6	51	999.7	-0.3
2	1000.6	0.6	52	999.7	-0.3
3	1000.4	0.4	53	999.7	-0.3
4	1000.6	0.6	54	- 9 99.9	-0.1
5	1000.6	0.6	55	999.7	-0.3
6	1000.4	0.4	56	999.7	-0.3
7	1000.6	0.6	57	1000.0	0.0
8	1000.6	0.6	58	999.9	-0.1
9	1000.6	0.6	59	999.9	-0.1
10	1000.9	0.9	60	1000.0	0.0
11	1000.0	0.0	61	1000.6	0.6
12	1000.0	0.0	62	1000.4	0.4
13	1000.0	0.0	63	1000.4	0.4
14	1000.0	0.0	64	1000.2	0.2
15	1000.0	0.0	65	1000.2	0.2
16	1000.0	0.0	66	1000.4	0.4
17	1000.0	0.0	67	1000.4	0.4
18	1000.0	0.0	68	1000.4	0.4
19	1000.0	0.0	69	1000.4	0.4
20	1000.4	0.4	70	1000.8	0.8
21	1000.4	0.4	71	1000.2	0.2
22	1000.2	0.2	72	1000.0	0.0
23	1000.0	0.0	73	1000.2	0.2
24	1000.2	0.2	74	1000.0	0.0
25	1000.2	0.2	75	1000.0	0.0
26	1000.2	0.2	76	1000.2	0.2
27	1000.4	0.4	77	1000.2	0.2
28	1000.4	0.4	78	1000.0	0.0
29	1000.4	0.4	79	1000.4	0.4
30	1000.8	0.8	80	1000.6	0.6
31	1000.4	0,4	81	1000.0	0.0
32	1000.0	0.0	82	1000.0	0.0
33	1000.0	0.0	83	1000.0	0.0
34		0.0		1000.0	0.0
35	1000.0	0.0	<u> </u>	1000.0	0.0
30	1000.0	0.0	00	1000.0	0.0
	1000.0	0.0	07	1000.0	0.0
	1000.0	0.0	80	1000.0	0.0
39	1000.0	0.0	00	1000.2	0.2
40	1000.0	0.0	90	1000.4	0.4
47		-0.0	91	000.0	-0.3
43	10000	0.1		0000	-0.3
44	1000.0	0.0	94	999.9	-0.1
45	1000.0	0.0	95	999.9	-01
46	1000.0	0.0	96	1000.0	0.0
47	1000.0	0.0	97	1000.0	0.0
48	1000.2	0.0	98	1000.0	0.0
49	1 1000.0	0.0	99	1000.0	0.0
50	1000.6	0.6	100	1000.4	0.4

Within s	pecs?	Yes/No
	heent	103/110

Performed by:

Approved by: Marcan

ed by: <u>Mike Dey</u> Title: <u>Mgr. Dept. 2</u>

Date: 3/10/04

Range of 2000°F Readings: +0.9/-0.3

Allowable limits

Upper 1002.3 (±2.3)

Lower

Channel Verification for Yokogawa 100 Channel

Serial No.: 99-LE-004

Calibrator Used: Tegam T-207318

Temperature Setting (*F): 2000.0

Channel No.	Reading (*F)	+/-	Channel No.	Reading (*F)	+/-
1	2000.5	0.5	51	1999.9	-0.1
2	2000.5	0.5	52	1999.9	-0.1
3	2000.5	0.5	53	1999.9	-0.1
4	2000.5	0.5	54	1999.9	-0.1
5	2000.7	0.7	55	1999.9	-0.1
6	2000.7	0.7	56	. 1999.9	-0.1
7	2000.5	0.5	57	1999.9	-0.1
.8	2000.7	0.7	58	2000.1	0.1
9	2000.7	0.7	59	Z000.3	0.3
10	2001.0	1.0	60	2000.3	0.3
	2000.1	0.1	61	2000.7	. 0.7
12	2000.1		62	2000.5	0.5
13	2000.1	0.1	63	2000.3	0.3
14	1999.9	-0.1	64	2000.3	0.3
15	2000.1	0.1	65	2000.3	0.3
16	2000.1	0.1	66	2000.5	0.5
17	1999.9	-0.1	67	2000.3	0.3
18	2000.1	0.1	68	2000.7	0.7
.19	2000.3	0.3	69	2000.7	0.7
20	2000.5	0.5	70	2000.7	0.7
21	1999.9	-0.1	71	2000.7	0.7
22	1999.9	-0.1	72	2000.7	0.7
23	1999.9	-0.1	73	2000.7	0.7
24	1999.9	-0.1	74	2000.5	0.5
25	1999.9	-0.1	75	2000.7	0.7
26	2000.1	0.1	76	2000.7	0.7
27	2000.1	0.1	77	2000.5	0.5
28	2000.1	0.1	78	2000.7	0.7
29	2000.3	0.3	79	2000.7	0.7
30	2000.7	0.7	80	2000.8	0.8
31	2000.5	0.5	81	1 1999.9	-0.1
32	2000.3	0.3	82	1999.9	-0.1
33	2000.3	0.3	83	1999.8	-0.2
34	2000.3	0.3	84	1999.9	
35	2000.3	0.3	85	1999.9	-0.1
36	2000.3	0.3	86	1999.8	-0.2
37	2000.3	0.3	87	1 1999 9	
	2000.3	0.3	88	1 1999.9	
39	2000.5	0.5	89	1999.9	
40	2000.7	0.7	90	2000.3	0.5
41	1999.9	-0.1	91	1999.9	-0.1
42	1999.9	-0.1	<u>97</u>	1999.9	
43	1999.9	<u>-0.1</u>	93	1 1999.9	
44	1999.9	<u>-0.1</u>	94	1 1999.9	-0.1
45	1999.9	<u> -0.1</u>	95	1 1999.9	
46	1999.9	<u> -0.1</u>	96	1 1999'9	-0.1
47	1999.9	<u>-0.1</u>	<u>- 97</u>	1 .1999.9	
48	2000.3	0.3		1999.9	
49	2000.3	0.3	99	2000.1	
1 50	1 2000.5	0.5	100	:2000.3	0.5

Within specs?	Yes/	No
Performed by:	Mike	Dey
Title:	Mgr. De	pt. 2
Approved by:		
Title:		Ma104

Date: 3/10/04

Range of 2000°F Readings: +1/-0.2

.

Allowable limits

Úpper 2002.8 (±2.8)

Lower

. •

NEGA DOIN				Q/	A RECEIV	INC	RE	POR	Т	••					•	
TUORATORIN	CLIEN CLIEN RECE PROJ	T/PRC IT/PRC EIVED IECT L	DJECT DJECT FROM	NAM NUN M <u>S</u>	E Q MO (A V IBER OPLEQ S C ZADI Omega Point	Labs	l Al	lis und	REPOF DATE R DATE II INSPEC	IT NUM ECEIV NSPEC CTED E	IBER_ ED TÉD_ BY:	243 5-5 5-6	5-04 -04 -04	0		
ITEM DESCRIPTION	P.O . NO.	<u>Ol</u> Ordoi	ANTIT Rec'd	ү В.О.	I.D. NO.	CONID MATL Y/N	CERT. RECD Y/N	SAFETY RELATED Y/N	CONTAINER INTEGRITY	ACCE	PTANC	CE Relect		RE	MARKS	
2003 Weight	143579	۱	1	Ø	23137	Ý	у	N	6000	X	 			Å	E	F.
														B		Ð
200 g Weight	143579	<u>\</u>	1	Q	23138	<u>y</u>	<u>У</u>	N	6000	X					De	M.
								· · · · · · · · · · · · · · · · · · ·						Å.	5	5
0-100psi gage	143570	<u>\</u>	<u> </u>	X	991E001	У	<u>Y</u>	N	6000	X					de la	DA
															S.	8
0-100psi gaige	14357Q	1		A	98LE001	<u> </u>	<u>y</u>	N	6000	X					2	
	· · · · · · · · · · · · · · · · · · ·														B	-
5" dial indicator	143570	1	1	8	013021466	<u>y</u>	<u>у</u>	N	6000	X				ļ	Ę.	5
															Ĩ.	F.
0-1000lb. Frad Cell	14357Q)	Q	343765	У_	<u> </u>	N	6000	X					P	013
															P.	2
6" disital caliper	143570	<u> </u>		Q	60246504	X	<u> </u>	N	6000	Χ.					Dat	P A
											 				9æ	Ħ
digital Multimeter	143570	<u> </u>	<u> </u>	Δ	5700109	<u>Y</u>	<u> </u>	N	600	X					210	
			}	ł	1		ļ	}	1						支	

09-016-11/02

16015 SHADY FALLS RD ELMENDORF, TEXAS 781 PH. (210) 635-8100 FAX (210) 635-8101	12		PU	RCHASE	අඩුවුවි 10	3
CRAIO.	•			14357	Q	
		• .		Date: 0 Page: 1	4/19/2004 of 1	
Order From: SSC Lab Divisio 7715 Distributio Little Rock AR 7 501-562-2900/8	on n Dr. 2209 888-278-9292		Deliver to:	Omega I 16015 S Elmendo TX (210) 63	Point Laborator hady Falls Roa rf 78112 5-8100	ries, Inc d
Vendor No:						
Your Item Number Item Description	Our Refe	erence	Qty Ordered	Units	Unit Cost	Extension
0-100psi Pressure Gage SN:99LE001		001	1.00	Each	\$45.00	\$45.00
0-100psi Pressure Gage SN: 98LE001	n k t t	002	1.00	Each	\$75.00	\$75.00
Dial Indicator SN: 013021466	•	003	1.00	Each	\$20.00	\$20.00
Dial Indicator SN: 013232851 Calibration&Repair	r ;	004	1.00	Each	\$120.00	\$120.00
Load Cell 1k pound SN: 343765 Calibration & Repair		005	1.00	Each	\$175.00	\$175.00
Digital Multimeter SN: 5700109 Calibration & Repair		006	1.00	Each	\$100.00	\$100.00
Digital Caliper SN:6Q-2465-04		007	1.00	Each	\$70.00	\$70.00
200g Weight-SN: 23137	•	800	1.00	Each	\$10.00	\$10.00
200g Weight-SN: 23138		009	1.00	Each	\$10.00	\$10.00
CALIBRATION CERT. REQUIREMENTS 1. Statement of NIST traceability 2. NIST test or I.D. number 3. As Found 4. As Left Values	5. Uncertainties c calibration measurements 8. Calibrati	f ion data	7. Calibration certificates must show accreditation to ISO/IEC 17025	"See Specia Purchasing Assurance F QA Approve	l instructions Specifications teouirements al $0+70$	Regarding for Quality
Please Quote Purchase Order Number Special Instructions: Please inc attached Specification Sheet an NIST	r on all correspo lude Certifica d Calibration	ondence ite of (Data i	9. Conformance raccable to	to Tax A Tota	ubtotal: Freight: mount: I Value:	\$620.00 0.00 0.00 \$620.00

٠,

VENDOR PURCHASING SPECIFICATION AND

QUALITY ASSURANCE REQUIREMENTS

Vendor: <u>SSC</u> Ha Purchase Order No.

Any of the following Quality Assurance requirements shall be incorporated as conditions to this procurement when corresponding box is marked. Failure to comply with any requirement specified may result in rejection and/or return of shipment at seller's expense.

1.0 QUALITY PROGRAM

Seller shall furnish all items on this Purchase Order in accordance with Quality Program approved by Buyer.

2.0 Quality Verification

When additional quality verification activities are required as a condition to this procurement, invoices will not be paid until satisfactory completion of such activities.

Receiving Inspection- Buyer shall inspect items upon receipt to verify compliance with purchase order requirements. Rejected items shall be returned at seller's expense.

Independent Laboratory Tests- Samples of materials furnished shall be tested independently for conformance to specification requirements prior to final acceptance. Rejected materials shall be returned at seller's expense.

Document Review- Final acceptance shall be based on satisfactory review or required certifications and other supporting documents.

3.0 CERTIFICATIONS

When certifications are required as a condition to this procurement, the seller shall furnish one reproducible copy either with or prior to each shipment. Shipments will not be accepted and invoices will not be paid until certifications are in buyer's possession.

Certificate of Compliance/Conformance Required – Certification that materials and /or services comply with purchase order requirements. Certification shall reference purchase order number and traceability numbers (when applicable).

Certified Test Report Required – Certification that material complies with applicable material specification (s) and the purchase order. Include actual results of required tests.

Vendor Purchasing Specifications & Quality Assurance Requirements

Vendor: 550 Alt DWLSLOV Purchase Order Not 1435 70

Certificate of Calibration Required - Certification shall be traceable to National Bureau of Standards. (NIST, Nat'l Inst. of Science & Technology).

- 4.0 AUDITS/RIGHT OF ACCESS
 - The buyer reserves the right to audit your facility to verify compliance with purchase order, code and specification requirements with (10) days notice,
 - Shipments shall only originate form facilities approved by the buyer.
 - Buyer reserves the right to inspect any or all work included in this order at seller's facility with as early notice as practicable.

5.0 IDENTIFICATION

- Seller shall identify each item with a unique traceability number by physical marking or tagging. Traceability numbers shall be traceable to certifications and packing lists.
- Seller shall identify each container with a unique identification number. The identification number shall be traceable to certifications and packing lists.

6.0 10CFR, PART 21

- The material, equipment and/or services to be furnished under this purchase order are involved in the testing of basic components of a Nuclear Regulatory Commission (NRC) licensed facility. Accordingly, the seller is subject to the provisions of 10 CFR, Part 21 (Reporting of Defects and Noncompliance)
- 7.0 PACKING/SHIPPING
 - All materials shall be packaged in air tight, moisture free containers and shall be free from all foreign substance such as dirt, oil, grease or other deleterious material.
 - All materials and equipment shall be suitable crated, boxed or otherwise prepared for shipment to prevent damage during handling and shipping. Wherever practical, equipment shall be palletized for ease of unloading and storage at destination. Each container shall be clearly marked with buyer's purchase order number.

DATE 4/19/04 QUALITY ASSURANCE APPROV

CERTIFICATE NO:

36283-0003

CERTIFICATE OF CALIBRATION

Page 1 of 1

SSC LAB DIVISION certifies that this instrument conforms to original manufacturers specifications or to tolerances indicated below and has been calibrated using standards with accuracies traceable to a National Measurement Institute, or to accepted values of natural physical constants, or have been derived by ratio techniques. This certificate complies with ISO/IEC 17025 & ANSI Z540. Unless otherwise stated, the M & T E for which this certificate is issued, based on interpretation of data, was found to meet the required specification. Reported uncertainty represents expanded uncertainty at approximately 95% confidence level, coverage factor of k=2.

Calibration Data			Temp 68°F Humi	idity 38%				
Range:	0-100 PSI	· ·	Equipment ID:	99LE001				
Nomenclature:	omenclature: GAGE-PRESSURE		Serial Number:	99LE001				
Manufacturer:	McDANIEL CONTROLS INC.		Model:	316SS				
1.0. #.	, , , , , , , , , , , , , , , , , , ,		Metrologist:	Sean Rainey				
PO #-	143570	: •	Next Calibration Duc:	04/22/2005				
Location:	16015 SHADY FALLS RD.	· · ·	Date of Issue/Calibration: 04/22/2004					
Customer:	OMEGA POINT LAB.		Date Received:	4/21/04				

Calibration Accuracy: ± 2.5% FULL SCALE

Note: if the AS LEFT column is blank, no adjustments were required.

Note: Many factors may cause out of calibration condition prior to due date. The Calibration interval has been specified by the Customer. Current procedures and methods utilized by SSC Lab Division are approved by the Customer.

APPLIED 25 LBS	<u>AS FOUND</u> 25.78	<u>AS LEFT</u> 25.78	UNCERTAINTY 2.9	<u>PROCEDURE #</u> NA17-20MP-06
50 LBS	51.24	51.24	2.9	
75 LBS	76.38	76.38	2.9	
100 LBS	101.72	101.72	2.9	

STANDARDS(S) USED Identification Calibration Traceability Expiration Number Date Number Description Date SSC30LD029 **CALIBRATOR- PRESSURE** 7/30/2003 7/30/2004 33426-0044 **TRANSDUCER- PRESSURE** 8/11/2003 8/11/2004 SSC30LD048 1000154760

	·	
	Calibration Certificate Acceptance	
	Item D-100 psi Tressure gar	2
	SN 99LEDDI	•••
	NIST Traceability Adequate As Found/As Left Values Calibration Data Sufficient Tolerance Range Adequate Date of Review: S-6-D451461	
	COULD	
Comments	OPL QA/QC Dept. Eng. Dept. Mgr.	

acy M' Court

Gary McCourt Chief Metrology Engineer

This certificate may not be reproduced, except in full, without the writen consent of SSC Lab Division. SSC Lab Division, 7715 Distribution Dr., Little Rock, AR. 72209

JUNE 16, 2004 Page 107 The three 1/4"×1" ZINC PLATED HEXAGONAL HEAD MACHINE SCREWS WERE OBTAINED FROM B-LINE ZN PLATED RIGID CONDUIT CLAMP; PART# B2010, (SUMMIT ELECTRIC, SAN ANTONIO, TX) Shansh filman D. G. BUTANI BECHTEL J.C. VANCE e auch NOTE THESE SCREWS WERE DELIVERED TO OMEGAPOINT LAB (CREDA PATTON) FOR INSTALLATION @ SECTION C-C DETAIL OF AREVA'S TEST PLAN DOC# 51-5045887-00. Approved for use FRED P. RUDEK 61/ 7/04 MEGGITT SAFEGY SYATE US APPROVED FOR USE 6/17/04 YOZA G RONTER JOLL & CROWTHER ALEVA

Q/A RECEIVING REPORT

FURORATORIU	CLIENT/PROJECT NAME Areva REPORT NUMBER CLIENT/PROJECT NUMBER 14980 - 119368 DATE RECEIVED RECEIVED FROM Meggint Labs DATE INSPECTED PROJECT LOCATION Omega Point Labs INSPECTED BY:							240 6-0 6-0	17 1-09 7-09	140 1 1 1 1	<u>}80</u>					
ITEM DESCRIPTION	P.O . NO.	<u>OL</u> Ordei	IANTIT Rec'd	ү В.О.	I.D. NO.	CONID MATL Y/N	CERT. RECD Y/N	SAFETY RELATED Y/N	Container Integrity	ACCE	PTANC Hold	E Belect		REM	IARKS .	_
Spring Nuts	NA	Ø	3	R	Naz42N	у	N	N	600)	X						
Spring Nuts	NA	Q	b	0_	N224	Y	N	N	6000	x					Pr.	· [
clampo	NA	8	2	Ò	B2088554	У	N	N	6000	8					4	
Plates	NA	R	7	Q	2"X 15/8"	Y	N	N	6000	X					A H	
Bolto	NA	8	7	8	1/4"x11/4"	Y	N	N	6000	X					3	
Street - B-fine 54	*NA	8	}	8	822 554	.y :	N	N	6000	X	• • • •				q.	
Strict - Green	NA	Ø	ι	x	BZZ GREEN	У	N	N	6000	K					Fo	
															Z	
															A	
4															K	·
					•										PL I	.
															4	•
					· · · ·										_ 5	
															a 🖉	•
															Je h	
															n n n n n n n n n n n n n n n n n n n	
					أيغده بمتيادين الأقالي البريبة الشاقي والمحار			the second s					and the second second			

09-016-11/02
	Meggitt Safety Sy 1915 Voyager Avenue •	GITT /stems, Inc. Simi Valley, CA 93063 • (805) 584-4100	мемо Рад	ie 109					
TO:	Omega Point Laboratories 5109								
	Elm	endorf, TX 78112	DATE						
ATTENTIC	Constr	ance Humphrey (210)635-8120	DEPARTMENT						
PURCHAS	SE ORDER NO	UPS - Red or Fredpl	FOB						
YOUR RE	F			PARTIAL					
ITEM	QUANTITY .	PART NO /DESCRIPTION		VALUE					
3	7 e g	clamp - \$ 2088							
2	7 eu	Bolt - 1/4×1/4 SHHMS		V					
3	6 eu	nzzy nut w/ spring		V					
4	7 eu	plate - 2" x 15g"							
5	3 ec	N2242N 14-20 nut							
6	s fr	BZZ SSU Strut							
7	3 FL	B22 Green strut							

COMMENTS OR SPECIAL INSTRUCTIONS

WEIGHT - LBS	NO CARTONS	DATE SHIPPED	BY	IDATE
HIPPED VIA		WEIGHT BILL NO	COMPANY	
STOCK PULLED BY		SHIPPING CLERK	ABOVE DESCRIB	ED ITEMS RECEIVED IN DD ORDER
		· · ·	AUTHORIZATION	
		·		
		•		

.

WHITE-VENDOR / GREEN-VENDOR ACKNOWLEDGEMENT / CANARY-ACCOUNTING / PINK-SHIPPING / GOLDENROD-EXTRA

Page 110

:

			BILL OF MATERIAL	
	SUPPLIED	BY MEG	CITT SAFETY SYSTEMS INC	
Γ	QUANTITY	UNIT	DESCRIPTION	_
	40	LF	8C 12 AWG 512400 FIRE CABLE, PN: 300283-5	
			NOTE: FACTORY INSTALLED CABLE SPLICE AT APPROX 12' FROM ONE END AND FACTORY INSTALLED CABLE TERMINATIONS AT EACH ENDS	
/ †	*7	EA	CLAMP B 2088 SS4	
۰ſ	₩7	EA	316 SST HEX SCREW B-LINE 1/4" X 1 1/4" SHHMS	
/[¥ 6	EA	316 SST SPRING NUT B-LINE N224 SS6	
1	87	EA	2" X 1 5/8" X 10 GA THK 304 SST PLATE	
ſ	¥St	LF	B-LINE B22 SSA STRUT (SPT) - In Machine	
ſ	1	LF	B-LINE B22 DURA GREEN STRUT B22 GRN 3 F	
ſ	73	EA	B-LINE ZANC ELECTROPLATED SPRING NUT 1/4-20 N224ZN	

TROORATORIN	CLIÈN CLIEN RECE PRO.	IT/PRO IT/PRO EIVED JECT I	DJECT DJEC FROM LOCA	Q/ NAM NUM A_VA	A RE E_Arl IBER_14 Le Sost		INC - L 2 L Labs	à RE 93 ety	EPOR	REPOR DATE F DATE I INSPE	RT NUN RECEIV NSPEC CTED L	ABER_ ED TED_ 3Y:	24 6- 6	48- 7-00 9-00		280)
ITEM DESCRIPTION	P.O . NO.	<u>Q</u> Order	JANTIT Rec'd	ү В.О.	Í.D. N	Ø.	CONID MATL Y/N	CERT. RECID Y/N	SAFETY RELATED YN	CONTAINER	ACCE	PTAN(CE Reinci		REM	ARKS	
Stainless Steel	NA	8	Itall	8	300283	ЕФ- 8)	У	У	N	GOOD	X						h~
00000																	6
<u> </u>																	è
												 -					F.
			ļ									<u> </u>					7
						· · ·		· .				· · · ·					£.'
•		, ⁷	1														F. :
			1						- ;								k
•								 				[L'À
							<u> </u>					 					2.
																	F
•																	¢.
					•												R
																}	ЪT,
					·											}	ß
·										<u> </u>						סי	0
						···=		·		 						ag	Z
				· ·			1					Į				0	E
																	1
00-018-11/02	<u> </u>	L	L	L	l		<u> </u>		l	L	<u>l_:</u>	L	L				┣───

	• •		
			MEGGITT SAFETY SYSTEMS INC
FILE 58391R-1			$Page_{G}112_{F_{2}}$
ACC	EPTANCE TEST I	DATA SHEET	
	• FOR		
05-12-04			
	FIKE CABLE ASS	DEMIST, Y	
PART NUMBER: 300283E004	10B28J	_ SERIAL NUMBER:	002
TEST PROGRAM NUMBER:	5181	REVISON	
	•••		
1.0 Dielectric Strength at room t	mperature per STI	2191, Revision C	
	· · · · · · · · · · · · · · · · · · ·		C to any lot a second
1.1 5200 VIC between conducto	r and sneath for 60	seconds. No indication o	JUN 0 4 2004
·		(Pass A:ail 150)	'ech Stamp/Date
1.2 .3200 VDC conductor to cond	uctor for 60 second	s. No indication of break Pass Fail $\frac{1}{T_{0}}$	down.JUN 0 4 2004
2.0 Insulation Resistance at room t (All unused pins connected to s	emperature per STI heath. Record valu 2	2190, Revision <u>C</u> . es.)	2
$1 \underline{1 0 \times 10}$	ohms 2	7 <u>1.0</u> x 10	ohms 2
2 <u>1.0</u> x 10	ohms	$8 \underline{1.0} x 10^{\circ}$	ohms
3 <u>1.0</u> x 10	2 ohms	9 <u>N/A</u> x 10	ohms
4 <u>1.0</u> x 10	2 ohms	10 <u>N/A</u> x 10	ohms
$5 - 1.0 \times 10^{10}$	2 ohms	11 N/A x 10	ohms
6 <u>1.0</u> x 10	2. ohms	12 N/A x 10	ohnis
			JUN 0 4 2004
			ech Stamp/Date
		-	

•

. .

4.0 Test Equipment List

Nomenclature	Manufacturer <u>& Model No.</u>	_Identification No	Calibration <u>Due Date</u> .
High Resistance Bridge	6R 1644 A	A 14672	6-2-05
Hi-Pot	AR 5205 A	A 14600	7-18-05
Digital Multimeter	FUKE 73	B 131	2-18-05

AF 6-4-04 MSSI QA REVIEW:

DATE: 550 6-4-04

MEGGITT SAFETY

MEGO SYST 1915 VO 805-584	AITT SAFETY EMS INC DYAGER AVE. SIMI V -4100 FAX 805-584-91	• АLLEY, СА. 93063 57	Pac	king	Slip		Pag Da Customer N	ge 1 fe 6/04/04 o. 69444
Ship To):		Invoice To:				Order Numbe	er 260500-005 SO
OMEG ATTN 210-63 16015 S ELME	A POINT LABORA : CONSTANCE HUN 5-8120 SHADY FALLS ROANDORF TX 78112	TORIES MPHREY AD	IN-HOUSE/MEGG 1915 VOYAGER A SIMI VALLEY CA	ITT SAFETY VENUE 93063	SYSTEMS	Ire in 2001. The state of the s	Related P.C Brn/T INSP DT	D. 711 200 Priority E
Ord Date	e Promised	Customer P.C	D. F.O.B.			Contract	Administrator	<u></u>
10/15/03	11/15/03	Fred Rudek	Destination		DIAN	A COX,	EXT 8127	· · · · · · · · · · · · · · · · · · ·
Line	Item Number/I	.ocation,Lot	Description	Shipped	Tag Avai	. UM	Due Date	Schedule B
IN THOUSE'S TESTS TO B MSSI WILL TO TEST RE TEST FACTI SPLICE REG 31.000 FG Rev. Serial # 002	SALES ORDER TO PR REPRESENTED TO NI HAVE JOINT RIGHTS SSULTS LITY WILL BE READY QUIRED AT MIDPOIN 3002	OVIDE TEST CABLES RC S SHARING THE QUAL P END OF NOVEMBER TT IN CABLE 283E0040B28J F	FOR LABORATORY LIFICATION IRE CABLE	3		EA	11/15/03	Blank - Sales R Page 114
M	06-04-04	· ·			۲. ۲	Veight:	1	
PICKELE AND QUALITY	Assurance	Packer	τ 7	Frack/Airbill #	Shi	p Via:	BEST WAY PREPA	YONLY 2 day

7

ļ

Pickslip

81945

<u></u>						-		Page 1	16
	REV.	DATE	DE	SCRIPTIO	N		APPR	OVALS	
	A	640604	INITIAL RELEAS	SE			AN	AL	R
			: :					• •	
			• • • •						
			: : : : : : : : : : : : : : : :					·	,
• • •••••• ••••••						;;			<u>* :::::</u>
			•				·	-	
								·	
	•								•
			•						
			:						
			· · · ·					•	
			•						
					•			•	
			· · · · · · · · · · · · · · · · · · ·						
ć,						•			
				•					
			•. • •						
			•	•					
				·					
				SIZE A	CAG 2569	E CODE 3	.	ER 04-03	3
					<u></u>	REV	1	CUEET 0 O	

.

2

			· · · · · · · · · · · · · · · · · · ·
		TABLE OF CONTENTS	Page 117
1.0	PURPOSE		
2.0	INSTALLATION AND S	TANDARD PRACTICES	
3.0	UNPACKING AND INSI	PECTION	
4.0	ROUTING AND INSTAL	LATION	
5.0	POST INSTALLATION	INSPECTION OF SI 2400 FIRE CABLE.	
6.0	TERMINATIONS	· · · · · · · · · · · · · · · · · · ·	
			· · · ·
			· · · · ·
•			
	•		
	• .		
			· .
•			
	•		•
			,
ž			

_.....

SIZE A CAGE CODE 25693 ER 04-033 REV SHEET 3 OF 8 •

•

1.0 PURPOSE

Page 118

The purpose of this document is to provide guidelines for installation and field handling of MSSI Fire Cable.

2.0 INSTALLATION AND STANDARD PRACTICES

- A Si 2400 cable is designed for use in Class 1, Division 1, Group A, B, C and D locations. When properly installed, it easily withstands extreme temperatures and high humidity. In fire danger applications, it continues to perform at temperatures in excess of 2000°F. Cable construction consists of a thin-wall, stainless steel outer sheath, silicon dioxide dielectric, and nickel or nickel coated copper conductors. Other types of sheaths and conductors are also available if specified in the purchase order. When installed in areas where chemicals corrosive to stainless steel are present, an outer covering of a crosslinked polyethylene or similar PVC material can be provided. Cables may be cut to length and terminated in the field, using ordinary tools and equipment.
- b. Meggitt is staffed to provide formal training in the handling and Installation of Si 2400 cables, tailored to specific customer needs. Supervision during actual installation can be provided to augment classroom instruction and offers the customer's craftsmen the advantage of on-the-job training (OJT).
- c. This document provides basic guidelines for handling and installing Si 2400 cables, from receipt to completion of installation. Field terminations are described in an accompanying document, FTP-9234.

3.0 UNPACKING AND INSPECTION

- a. Do not remove cable from reels or factory coils until ready to install.
- b. Visually inspect cables for evidence of shipping damage, such as dents, gouges, or kinks. Small superficial scratches in the cable sheath will not degrade performance.
- c. Do not unroll the cable from its shipping container to perform electrical tests. IMMEDIATELY FOLLOWING ELECTRICAL TESTING, RESEAL CABLE ENDS. The dielectric must be protected from prolonged exposure to the atmosphere or direct exposure to water. Cable ends may be resealed with epoxies provided in the termination kits or with heat shrink boots. Use of electrical tape for sealing cable ends for extended periods is not recommended.

SIZE	CA0	SE CODE	ER 04-033
A	256	93	
		REV A	SHEET 4 OF 8

4.0 ROUTING AND INSTALLATION

Page 119

NOTE: EMPHASIS SHOULD BE ON "PLACING" AND "FORMING" RATHER THAN "PULLING" AND BENDING" THROUGHOUT THE INSTALLATION PROCESS.

- a. Visually inspect the routing path of the cable and note areas that pose a hazard for the cable. Hazards may include:
 - 1. Sharp metal edges, which the cable might be dragged across.
 - 2. Moving machinery or equipment along or adjacent to the planned cable route.
 - 3. Extremely sharp or restrictive bends along the cable path.
 - 4. Live electrical circuits near the planned routing path.
- b. Station a person at each routing hazard noted and at all locations where a change of direction occurs. As a rule of thumb, the cable should be manned about every 20 feet during initial installation.
- c. Structural interferences, which the cable must pass over or around, should be padded. Bell rollers may be used, but are seldom needed.
- d. Cables must be uncoiled as the cable is fed out along the routing path. Whether on a reel or in factory coils, the cable must be unrolled in a tangential (circular) manner. DO NOT UNCOIL BY PULLING ON THE END AND HELICALLY STRETCHING.
- e. Si 2400 can withstand a high pull force as noted in Table 1. In virtually all Installations, only a fraction of the allowable pull tension is utilized. Pushing the cable from one manning point to the next is by far the easiest technique and has added advantages when negotiating restricted areas and interferences.
- f. When changing direction or bypassing a routing hazard, use large sweeping loops, rather than tight radii turns. This loose or excess cable will be dressed after the cable is in place at both ends.
- g. Ensure sufficient length is available to install field terminations prior to final forming. A minimum of two feet of wrinkle free, round cable is required for the termination, so ensure the cable end was not bent, twisted, or flattened during cable installation. If this occurs, the deformed cable segment must be removed prior to final cable positioning.

	SIZE	CA0 256	GE CODE 93	ER 04-033
:			REV A	SHEET 5 OF 8

h. See Table 1 for minimum advisable bend radius of Si 2400, but be awhage 120 bending/straightening in the same location is potentially more harmful than a tight bend that is left in position. The stainless steel sheath may become weakened or work hardened during repeated bending, resulting in severe wrinkles, kinks or stress cracks.

CABLE	WALL	MINIMUM	MAXIMUM
DIAMETER	THICKNESS	BEND RADIUS	PULL FORCE
0.592 in.	0.015 in.	6 in. (nom)	500 lbs.

Any smooth surface or appropriate radius may be used to form the cable. EMT tube benders modified to eliminate sharp edges are suitable and are normally readily available. In many cases, the cable can be hand formed.

- I. Cable runs should be supported at least every eighty-one inches and within approximately three feet of the beginning or end of a bend or \geq 45°. See Table 2 for recommended cable mounting and support options for cable runs.
- j. Si 2400 Fire Cable may be routed in cable trays; Stainless steel trays are recommended.
 Cable should not be installed in galvanized trays and should NOT be in direct contact with galvanized or aluminum trays or structures.

TABLE 2 - Cable Mounting and Attachment

1.	B-line stainless steel strut.	
2.	B-Line Part No B2088SS4 clamps for a 0.592 inch dia. Cable.	
З.	Standard hardware for single hole clamp.	
		-

4. Panduit stainless steel ty-wraps or equivalent.

5.0 POST INSTALLATION INSPECTION OF SI 2400 FIRE CABLE

i

- a. Smooth, contour changes such as dents, dings, ripples, or wrinkles are acceptable except in areas where termination kits must be installed. See Figure 1.
- b. Kinks or wrinkles whose upper radii are extremely pronounced or touching Indicate a potential problem area, as straightening may result in cracking the sheath. See Figure 1.
- c. Gouges or cuts in the cable sheath which exceed 10% of cable wall thickness may be cause for rejection. Wall thickness is normally .015*. The depth of gouges or cuts should be calculated based on a measurement of the distance from the root point of the gouge or

SIZE A	CA0 256	SE CODE 93	ER 04-033
		REV A	SHEET 6 OF 8

cut to the direct opposite point on the cable O.D. and known O.D. of the ege 121 Recommend measuring instrument; blade or point micrometer.

d. Electrical continuity and installation resistance should remain essentially the same as preinstallation test results. Any significant difference, even if within acceptable limits, should be investigated.

6.0 <u>TERMINATIONS</u>

ε

- a. SI 2400 Fire Cable may be purchased with factory terminating pigtails on one or both ends, or terminating kits are available for field use.
- b. <u>Terminations</u>, whether factory or field installed, are designed for attachment to junction or terminal boxes such as Hoffman's. Standard fittings such as Myer hubs or lock nuts and bushings are acceptable.

SIZ A	E	CA0 256	SE CODE 93	ER 04-033
			REV A	SHEET 7 OF 8

Q/A RECEIVING REPORT

FRORATORIN	CLIEN CLIEN RECE PRO.	IT/PR(IT/PR(EIVED JECT	DJECT DJEC FROM LOCA	TNAM TNUN AA	E Areva IBER 14980- Lamo I Omega Point	119 20y Labs	368 1 W	- orks	REPOR DATE F DATE I INSPE	RT NUN RECEIV NSPEC CTED I	/BER_ /ED /TED_ 3Y:	24 6- 6-	19 7-0 9-0		980	-	
ITEM DESCRIPTION	P.O . NO.	<u>QL</u> Ordei	JANTIT Rec'd	ү В.О.	I.D. NO.	COND MATL Y/N	CERT, RECD Y/N	SAFETY RELATED YN	CONTAINER INTEGRITY	ACCE	PTANC	CE Relect		REN	IARKS	•	
A36 steel Plate	144270	1	1	8	90802- Flat, 1x8"x20' 27.2#	У	Y	N	6000	X]			
1"x8"x 20'																	
															k		ŀ
									•								
	· · · · · · · · · · · · · · · · · · ·		•			•	· .	· · · · ·		··· .					 		
					4		· · · ·	······································	• •• •••		·						
•								· ·			·	1		}		· ·	•••••
														ļ			
														}			
•		-												ļ	: .	ĺ	
· · · · · · · · · · · · · · · · · · ·											· · ·						
																	1
		•													Pa	1	
															ge		
															12;		1
			_	State of the local division of the local div						ليسيبين سنعها							1

09-016-11/02

AIW TRANS PACKLIST 200211_HP

PACKING TICKET

DATE
06-08-04
ORDER #
T353415
SHIP TO:

Alamo Iron Works 943 SBC CENTER PRKWY San Antonio, Texas 78219 Phone: (210) 223-6161 Fax: (210) 704-8351 HAZMAT RESPONSE 1-800-322-5085

F	Page	125	
12345	999	PAGE]
		1 ·	16:05

OMEGA POINT LABORATORIES, INC. 16015 SHADY FALL ROAD

3

BILL TO: OMEGA POINT LAB., INC.

16015 SHADY FALLS RD. ELMENDORF

TX 78112

13801 TRUCK UOM QUANTI SHIPPED/ LG 1. 1.	TY QUANTITY OO O OO FLAT 1	PO / BUYE 8/0 / "X8 "2	I4427Q ER TROY ANWITEM NUMBER DESCRIPTION 908020 X201 27.20#1	PRICE	HAZ	TERR # WRITER # PKG	012 161 TYPE LG	2 B2
TRUCK UOM QUANTTI SHIPPED/ LG 1. 1.	TY QUANTITY PCS 0 0 00 FLAT 1	8/0 1 X 8 1 2	ER TROY AWTEM NUMBER 908020 X201 27.20#1	PRICE	HAZ MAT	WRITER #	161 TYPE LG	ZON
UOM QUANTI SHIPPED/ LG 1. 1.	TY QUANTITY	вю * 00 "X8 " 2	AW ITEM NUMBER <u>DESCRIPTION</u> 908020 X201 27.20#1	PRICE	HAZ	РКG 1 0	TYPE	282
LG 1. 1.	00 0 00 FLAT 1	- 00 "X8"2	908020 X201 27.20#1	218.10		10	LG	282
							· · · · · · · · · · · · · · · · · · ·	
:								
								•
		, .					·	
44.00 F	RECEIVED BY:			D	ATE:	<u> </u>		- <u></u>
	<u> </u>			ï.	OADI	ED BY: _		نو
	44.00	44.00 RECEIVED BY:	44.00 RECEIVED BY:	44.00 RECEIVED BY: ON OF SHORTAGES MUST BE MADE TO CUSTOMER SERV THANK YOU.	44.00 RECEIVED BY: D	44.00 RECEIVED BY: DATE: LOAD	44.00 RECEIVED BY: DATE: 44.00 RECEIVED BY: DATE: Image: Constraint of the service dept within 7 days of the service dept within 8 days of the service de	A4.00 RECEIVED BY: DATE: LOADED BY: DATE:

B/LN 295376 Date 3/22/04			BAF JEWE		L GR	R			·		CERTIF	IBD HILL	, test ru	PORT
Sold To: ALLIG IRON Accounts P.O. Box San Anton	13003 V WORKS Payable #66365 231 10 TX 78291+03	Post Office Box 126	A Div 5 Jewett, Texas 1	ision of NU 75846 T SO 9002 R SRI	ICOR Cor clephone (egistered t Avaiky System Begistra	poration (903) 62/ yy	i-4461 Si	nles (800) Shlp: TO	527-644 92 A1 94 .8J	5 Jamo If (3 SBC Alf Anty	RON WOR PARKWA DNIO TX	K3 Y		
SIZE GRADE	heat Number	CUSTOMER Po number	C M	n Si	S	P	∨ иъ	Cu	ĊŦ	Ni	Но	Bend Sn Tes	L	
1 X G Л36-03Л/Л709-03А/S	345-3014 2436-98	\$P-83556	.14 . Tensile 1 Tensile 2	67 .24 : 70700 : 73100	.033 Yjeld 1 Yjeld 2	.008 . 1 4700 1 4920	005 .00 0 Blong¶ 0 Blong¶	7 .60 1: 21 2: 21	.24	.19	.060	.011	· ·	
1 X 6 A36+03A/A709+03A/S	343-0985 8436-98	SP-83556	.20 . Tensile 1 Tensile 2	80 .22 : 72300 : 76800	.031 Yield 1 Yield 2	,007 1 473(1 493(004 .00 00 Blong 00 Blong	7 .52 1: 20 2: 20	.10	,13	.044	.011		
1 X 8 136-037/7709-037/	343+0579 Sa36-98	SP-83556	.10 Tensile : Tensile :	.66 .20 L: 59200 2: 61700	.035 Yield I Yield :	.011 1: 400 2: 415	.004 .01 00 Blong 00 Elong)4 ,39 6]: 25 6 2: 24	.10	. 13	.036	.013	·	
1 X-8 336-038/2709-032/	345-0597 Sk36-98	SP+83556	.19 Tensile Tensile	.73 .22 1: 60700 2: 62700	.043 Yield Yield	.022 1; 416 2; 417	.006 .0 00 Elong 00 Elong	04 .49 %]: 21 % 2: 21	. 17	.12	.034	.016		
• 1/4 × 10 און אין אין אין אין אין אין אין אין אין אי	345 0836 5836-98	SP-81725	,12 Tensile Tensile	.66 .10 1: 64100 2: 64100) .050) Yield) Yield	.014 1: 459 2: 448	.003 .0 600 Rlong 800 Elong	04 .45 11:28 18:27	.13	.14	.035	.014		ס
1/4 X 12 A36-037/A709-03A	345-0911 /SA36-98	6P-79509	.15 Tensile Tensile	.63 .1]: 70400 2: 68800	7 .038 D Yield D Yiéld	.006 1: 50 2: 47	.003 .(100 Blong 500 Blong	004 .45 18 1: 26 18 2: 25	сс. ;	. 15	.038	.013		age 12

ELONGATION IN & INCH SCALE HELTED AND HANUFACTURED IN U.S.A.

ALL MATERIAL STRAND CAST

CHIEF RETALLURGIST

06-10-'04 13:32

FROM-Alamo Iron Works SSC 210-704-8241

T-530

P02/02

U-951

FINAL REPORTAugust 11, 2004 APPENDICE Page 127

Appendix E

PHOTOGRAPHS

#1: Cables in and out of heat.

#3: 3" x 3" vertical cable support system.

#5: Upper support with clamp.

#2: Cables mounted under slab.

#4: Supports against slab.

#6: Lower support showing clamp.

August 11, 2004 APPENDICES Page 129

#7: Lower support showing clamp & spring.

#9: Under side of slab.

#11: Cables exiting slab on top.

#8: Upper support clamp.

#10: Loading test article on furnace.

#12: Cable ends for megger testing.

Report No. 14980-119368, Rev.1 AREVA

#13: Start of test.

#15: Specimen immediately after fire test.

#17: Hose stream test.

#14: Meggering the cable conductors.

#16: Hose stream test.

#18: Hose stream test.

#19: Vertical support after hose stream.

#21: Upper support after hose stream.

#20: Upper support after hose stream.

#22: Upper support after hose stream.

#23: Spring clamp on upper support remains intact.