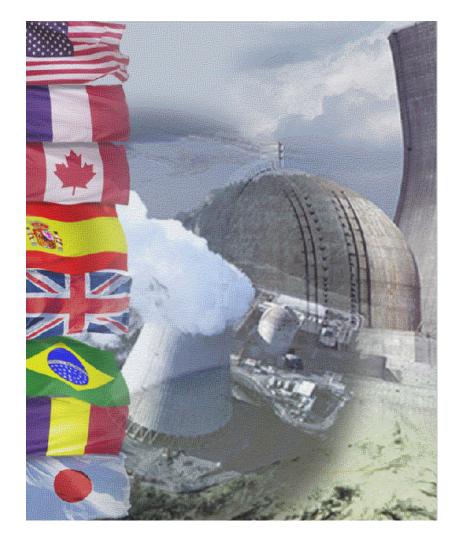
Agenda for Meeting on Thermal Fatigue Guidelines May 24, 2005

Meeting begin at 9:00 a.m.

Welcome and introductions NRC

Industry present content of thermal fatigue guidelines NEI/MRP

NRC and industry discuss thermal fatigue guidelines NEI/NRC


Public comments or questions

Summary, staff comments, and conclusion

NRC

Public

Thermal Fatigue Management Guideline For Normally Stagnant Non-Isolable Branch Lines

Les Spain – Dominion Generation Jeff Keller—Continuum Dynamics, Inc. Art Deardorff—Structural Integrity Associates MRP/NRC Meeting

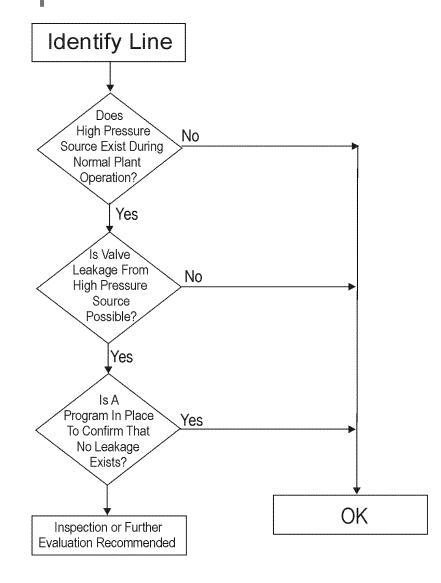
May 24, 2005

Introduction and Agenda

- Meeting Objectives
- History
- Thermal cycling screening and evaluation model
 - Test/analysis program overview
 - Model development
 - Screening criteria for industry use
 - Benchmarking results
 - Model application to generic industry assessment
- Final guide assessment approach
 - Screening
 - Evaluation/Inspection
 - Implementation
- Summary
- Completed / Ongoing MRP Fatigue ITG activities

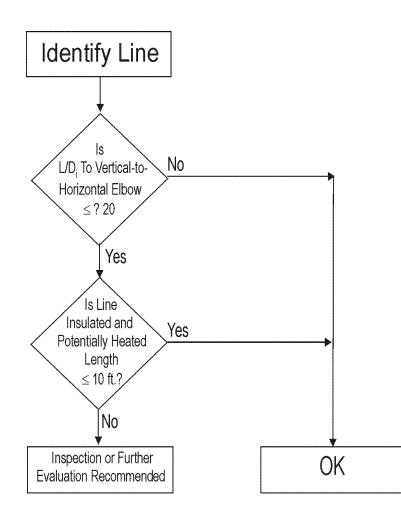
Objectives

- Present Thermal Fatigue Management Guideline (TFMG)
 - History
 - Model Development
 - Guideline
 - Implementation
- We believe the TFMG is the 'Right Stuff' to close out the issue of pipe leaks due to thermal fatigue in unisolable RCS attached piping
- Inform NRC of our progress and future plans
- Entertain comments / discussion
 - NRC approval not being requested



Fatigue ITG History & Interim Guidelines

- Fatigue ITG formed in late 1999
 - Established to proactively address concerns with pipe leaks in unisolable piping attached to the RCS
- Interim guideline issued in 2001
 - Addressed lines which had exhibited leakage in service
 - High pressure safety injection lines
 - Drain and excess letdown lines
 - Provided screening criteria
 - Rules based on operating experience and limited experimental work
 - Provided inspection recommendations
 - No recommendations provided for:
 - Inspection interval
 - Other types of potentially susceptible lines



Interim Guidelines For SI Lines

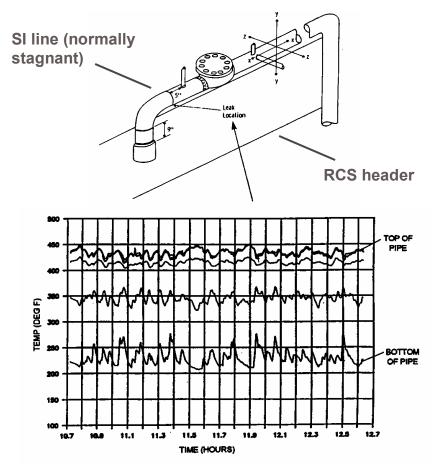
- Logic for Evaluation of SI Lines
 - Charging/make-up pumps are only high pressure source
 - Direct in-leakage from high pressure source not possible in many plants
 - Continued monitoring or in-leakage trending may confirm that in-leakage is not significant
- Inspections (if required)
 - only in horizontal piping between 5 to 20 diameters from loop pipe.

Interim Guidelines For Drain Lines

- Drain line evaluation
 - Long vertical run would prevent heating of elbow
 - Short/insulated horizontal segments would not lose heat, such that ∆T would be small
- Monitoring or inspection (if required)
 - Only at vertical to horizontal elbow.

Agenda

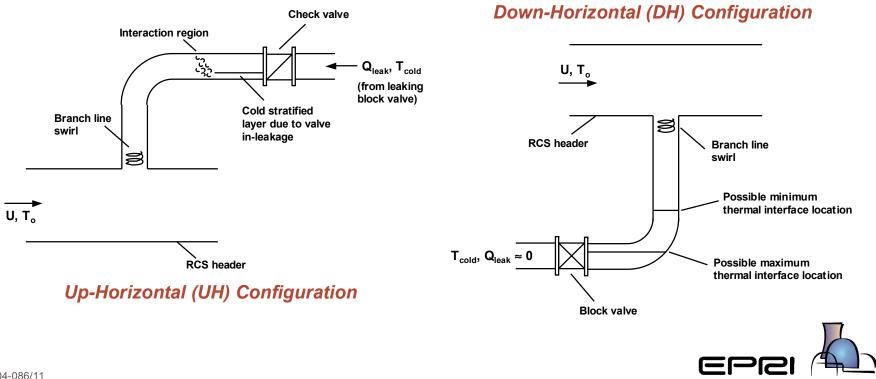
- Meeting Objectives
- History
- Thermal cycling screening and evaluation model
 - Test/analysis program overview
 - Model development
 - Screening criteria for industry use
 - Benchmarking results
 - Model application to generic industry assessment
- Final guide assessment approach
- Summary
- Completed / Ongoing MRP Fatigue ITG activities


Thermal Cycling Model Overview Motivation and Background

- Methods for thermal cycling screening/evaluation have been developed in support of Thermal Fatigue Management Guideline
 - <u>Screening</u>: Where (when) will thermal cycling occur and not occur?
 - <u>Evaluation</u>: What are the thermal loads for structural analysis (locations/heat transfer coefficients/frequency)?
- Scaled phenomenological testing significant part of model development program
- Primary outcome has been the development of a comprehensive evaluation methodology that builds upon prior work (EPRI TASCS program)

Thermal Cycling Model Overview Prior Investigations

- Previous investigations:
 - EPRI thermal stratification, cycling and striping (TASCS) program (1989-1994)
 - Experimental programs (EDF, Japan)
 - Other efforts in response to NRC 88-08 and more recent leakage events
- Current modeling effort builds upon methods from prior investigations



Farley SI Thermal Cycling Event (NRC 88-08)

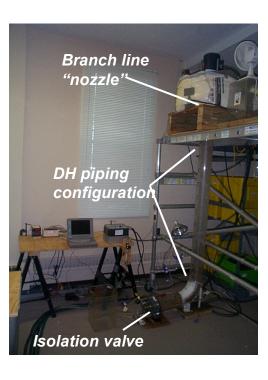
Motivation and Background Branch Line Configurations and Mechanisms

- Approach separates screening/evaluation model into two basic configurations based on:
 - Geometry
 - Physical cycling mechanisms

Motivation and Background Branch Line Configurations and Mechanisms

- Example configurations:
 - UH (valve in-leakage) -
 - SI lines (Farley, Tihange)
 - Charging/alternate charging
 - Some lines have only horizontal geometry (H configuration)
 - DH ("cold-trapped")
 - Drain/excess letdown (Mihama, Oconee, TMI)
 - RHR suction lines (Genkai)
- Model considers two basic configurations (UH/H and DH); also addresses application to more complex lines

Thermal Cycling Model Overview Scaled Phenomenological Tests


- Phenomenological testing played important role in overall model development program:
 - Identify mechanisms
 - Emphasis on qualitative and quantitative data
 - Model components given by engineering correlations
- Test program separated into several "sub-programs":
 - Low-temperature UH and H tests
 - Low-temperature DH tests
 - Swirl penetration tests (high Reynolds number)
 - Other "special effects" tests
- Test results documented in several EPRI MRP reports

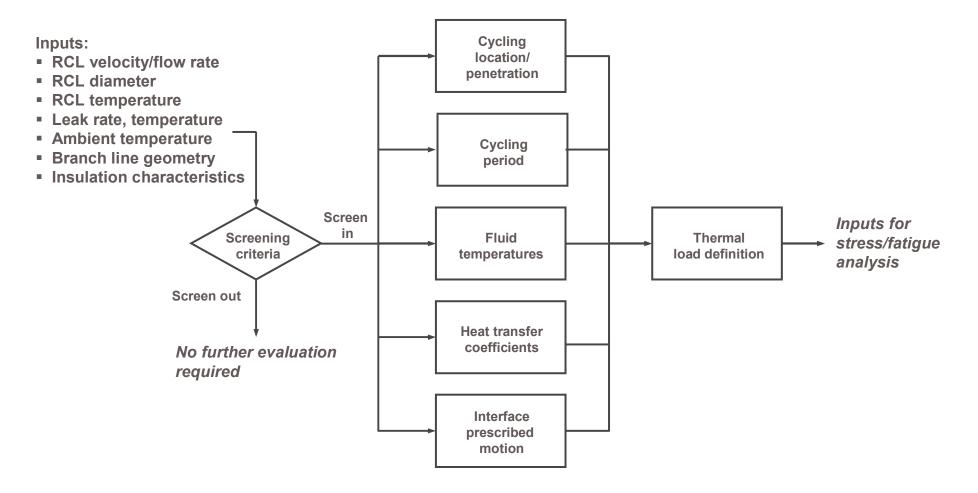


Thermal Cycling Model Overview Scaled Phenomenological Tests

- Simulate "branch line swirl" in low-temperature tests
- Characterize swirl in high Reynolds number tests

DH Configuration Low Temperature Test Setup

High Reynolds Swirl Penetration Test Setup



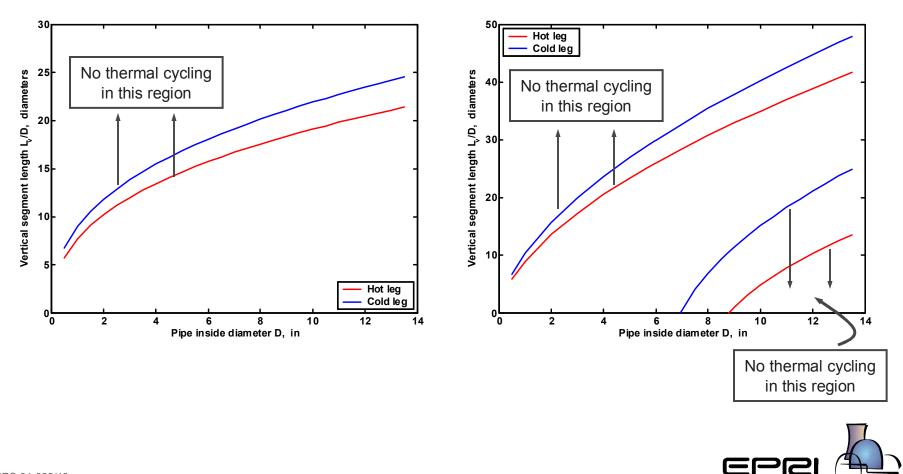
Thermal Cycling Model Overview Overview of Model Structure

- Thermal cycling screening/evaluation model developed to:
 - Extend and improve current tools/models
 - Build upon methods from earlier EPRI TASCS program
- Key components that have been extended/improved:
 - Swirl penetration/cycling location prediction
 - Correlations to predict cycling period
- Conservative thermal loading defined for structural analysis:
 - Temperature in hot/cold fluid regions (assumed uniform)
 - Heat transfer coefficients in hot/cold regions
 - Prescribed (cyclic) motion of hot-cold fluid interface

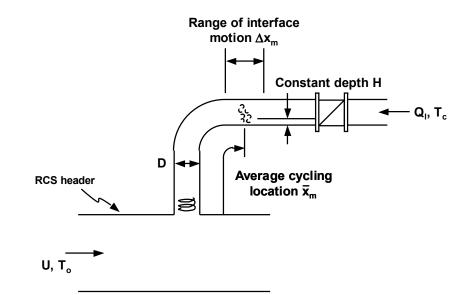
Thermal Cycling Model Overview Screening & Evaluation Model Structure

Note: Leak rate evaluated for UH/H; Insulation evaluated only for DH

Thermal Cycling Screening Criteria Development Approach


- Geometric Screening Criteria developed for use by the industry
- Derived from the Model for Conditions in which thermal cycling will not occur in susceptible region
- Screening boundary given by vertical segment length versus branch line inside diameter
- Boundaries depend on
 - Configuration (UH versus DH)
 - Attachment point (hot leg versus cold leg)
- No screening criteria for H line configurations

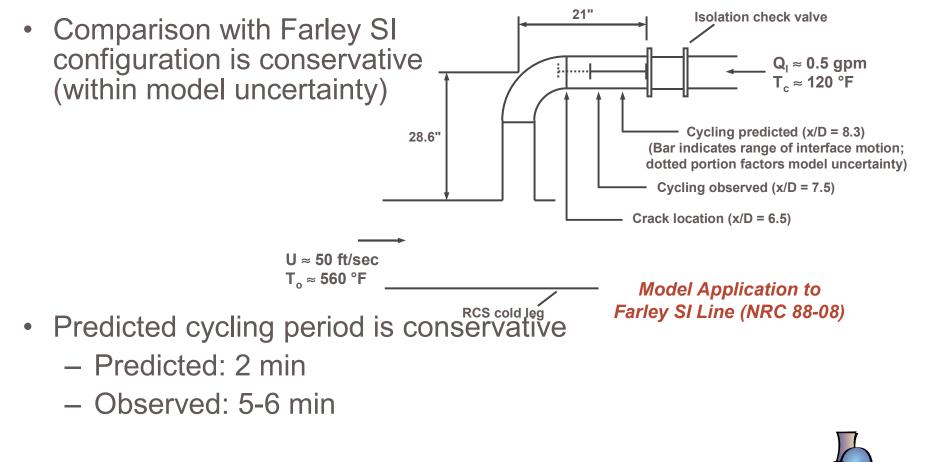
Thermal Cycling Screening Criteria UH and DH Configurations


Geometric Screening Criteria UH Configurations with Valve In-leakage

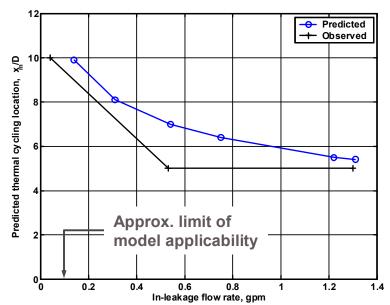
Geometric Screening Criteria DH Configurations

Thermal Cycling Model Overview Cycling Location in Lines with Valve In-leakage

- Cycling location in branch lines with valve in-leakage (UH/H) given by semi-empirical correlation; depends on
 - Branch line swirl penetration/decay
 - Valve in-leakage rate/temperature
 - Geometric configuration
- Provided prediction of x_m/D
 - Cyclic motion = ±1 D
 - Additional uncertainty in model ±1 D
- Model applicable when in-leakage rate above minimum threshold



Thermal Cycling Parameters in UH (H) Configurations


Thermal Cycling Model Overview UH Configuration Model Benchmarking

 Models for cycling location and cycling period benchmarked against Farley case

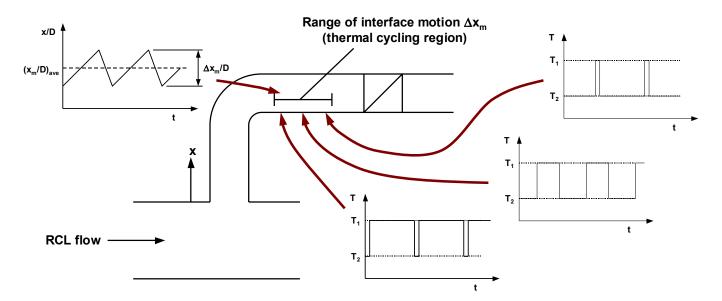
Thermal Cycling Model Overview UH Configuration Model Benchmarking

- Model benchmarked against data obtained from cold water injection tests (EDF/Blayais SI line, 2001)
- Parameters inferred from thermocouples at 5 & 10D

Thermal Cycling Location Comparison

16 -O- Predicted + Observed min Predicted thermal cycling period, + + + + 0 0.2 0.4 0.6 0.8 1 1.2 1.4 In-leakage flow rate, gpm

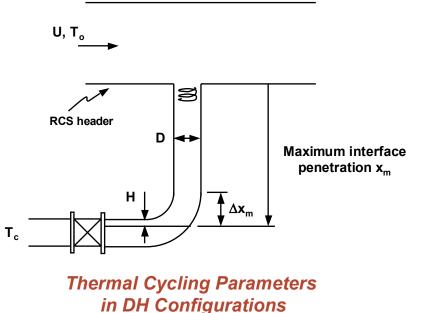
Thermal Cycling Period Comparison


Thermal Cycling Model Overview UH/H Thermal Load Definition

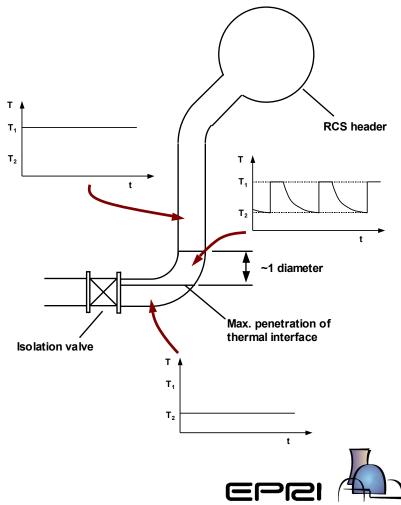
- Thermal load definition provided for stress analysis
- Defined from:
 - Temperature in hot/cold fluid regions (assumed uniform)
 - Heat transfer coefficients in hot/cold regions
 - Prescribed (cyclic) motion of hot-cold fluid interface
- Prescribed motion derived from test observations
- Period based on correlation:
 - Derived from test observations
 - Depends on valve in-leakage rate and geometry

Thermal Cycling Model Overview UH/H Thermal Load Definition

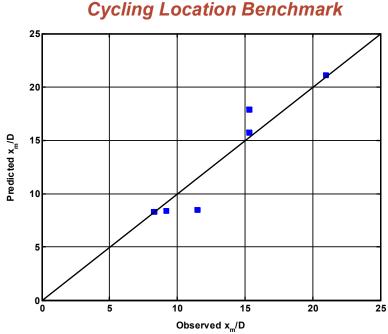
• "Fill-and-spill" load definition for UH configurations



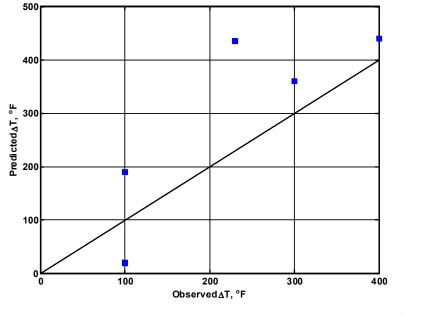
- Higher frequency component of interface motion due to turbulence
 - Superimposed on fill-and-spill in UH lines
 - Only component in H lines


Thermal Cycling Model Overview Thermal Penetration in "Cold Trapped" Lines

- Cycling location determined in cold trapped (DH) lines by penetration of thermal interface; depends on
 - Branch line swirl penetration/decay
 - Hot-cold density (temp) difference
 - Geometric configuration
- Model predictions within ±3D of test data/plant observations
 - Included as model uncertainty


Thermal Cycling Model Overview Thermal Loading in DH Configurations

- Thermal load in DH configurations determined in similar manner as UH/H configurations:
 - Fluid temperatures "lumped" heat transfer analysis
 - Cycling period determined from heat loss from line
 - Interface motion based on test observations
- Model formulated to give
 conservative load definition



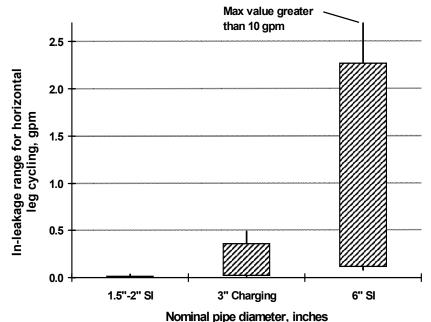
Thermal Cycling Model Overview DH Configuration Model Benchmarking

- Model benchmarking for plants with thermal cycling/fatigue:
 - 3 drain lines
 - 3 RHR lines

Generic Branch Line Application Assessment of Lines in U.S. PWR Plants

- Screening/evaluation model applied in generic assessment of normally-stagnant non-isolable lines
- Line details obtained during EPRI-sponsored Thermal Fatigue Workshops (540 lines total)
 - Approx. 35% UH configurations
 - Approx. 40% DH configurations
 - Approx. 10% H configurations
 - Remaining screened out for other reasons
- Model applied to determine thermal cycling susceptibility and representative loadings

Generic Branch Line Assessment Summary of Results for UH & H Lines


	UH Lines	H Lines	IUxH Lines
Total number	176	44	24
No valve in-leakage possible	99	18	22
Screened out based on geometry	24	0	0
No cycling for Q _I < 20 gpm	0	1	0
Potential cycling but $\Delta T < 50 \ ^\circ F$	0	0	0
Remaining lines (cycling potential)	53	25	2

- "UH Lines" include inclined (normal to RCS axis) upward lines and more complex configurations
- "IUxH Lines" (non-normal inclined up/horizontal)

Generic Branch Line Assessment In-leakage Range in Susceptible UH Lines

- Generic assessment determined range of valve in-leakage for cycling to occur
 Max value greater
- Median in-leakage range plotted versus line type
- Most common line type with cycling susceptibility is 6-inch SI lines (Farley)
- Other conclusions:
 - Small lines (< 3-inch) do not cycle
 - Swirl penetration is more significant in large lines; cold water in-leakage/swirl interface will occur right by valve

Generic Branch Line Assessment In-leakage Range in Susceptible H Lines

n-leakage range for cycling, gpm

0.0

1.5" SI

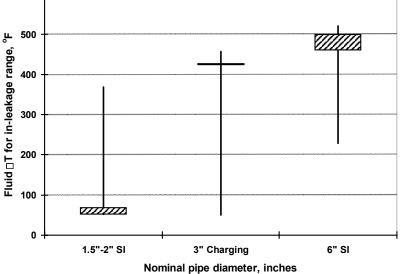
- Analogous result for H line configurations
- Valve in-leakage ranges for cycling were larger than similar UH lines in general
- Also showed that Aux Spray lines do not cycle since main spray line velocity normally very low

And the second s

2" (Bypass, SI)

Nominal pipe diameter, inches

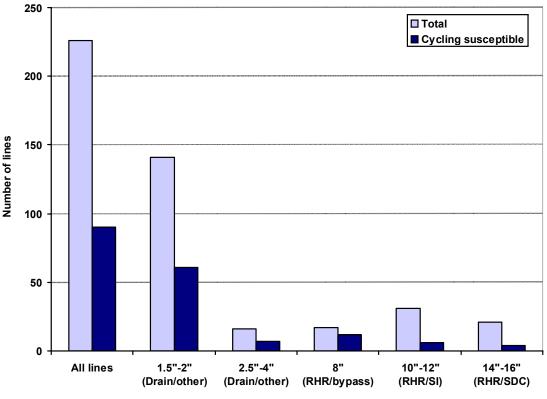
In-leakage Range for Thermal Cycling in Susceptible H Configurations


8"+ (Bypass, SI)

3"-4" Charging

Generic Branch Line Assessment Hot-Cold Temperature Ranges for UH & H Lines

- Temperature difference corresponding to calculated inleakage ranges plotted versus line type (UH & H)
- Generally smaller ΔT for smaller diameter lines

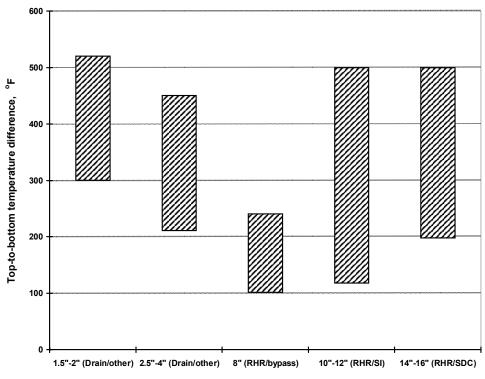


600

Generic Branch Line Assessment Cycling Susceptibility in DH Lines

- Model applied to assess cycling susceptibility in DH lines
- Susceptible lines have
 - Penetration to (or near) horizontal
 - H/D < 1
 - $\Delta T > 50$ °F
- Approx. 40% lines are susceptible

DH Branch Line Population with Potential Cycling Susceptibility


Line type/nominal diameter, inches

Generic Branch Line Assessment Top-to-Bottom Temperature Difference in DH Lines

- Top-to-bottom difference calculated
- Calculated ∆T range plotted versus line population subset

Calculated Top-Bottom Temperature Difference for Potentially Susceptible DH Lines

Line type/nominal diameter, inches

Thermal Cycling Model Summary

- Screening and evaluation model for swirl penetration thermal fatigue developed from extensive testing, analysis, and engineering modeling
- Model benchmarked against plant observations providing validation of model components
- Thermal cycling model provides technical basis for incorporation into Thermal Fatigue Management Guideline
- Generic application to lines in U.S. PWR plants performed; shows that many lines are unaffected and can be screened out
 - Additional results documented in EPRI report (MRP- 32/ 009552)

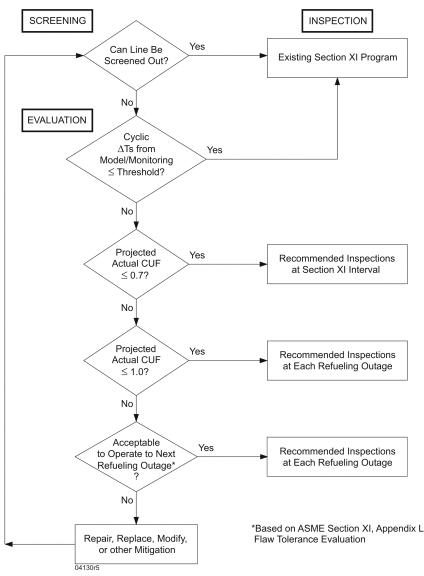
Agenda

- Meeting Objectives
- History
- Thermal cycling screening and evaluation model
- Final guide assessment approach
 - Screening
 - Evaluation/Inspection
 - Implementation
- Summary
- Completed / Ongoing MRP Fatigue ITG activities

Final Thermal Fatigue Management Guideline

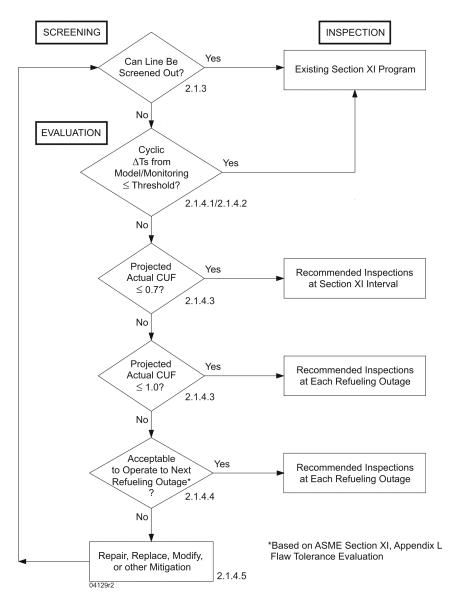
Scope:

- All nominally stagnant RCS-attached lines must be considered
 - Safety injection lines
 - Out-of-service charging lines (W plants)
 - Drain and excess letdown lines
 - Residual heat removal suction lines
 - Any other normally stagnant lines (diameter greater than 1 inch (25.4mm) nominal pipe size
- Separate but similar methods provided for two line classes
 - Up/Horizontal and Horizontal lines (UH/H)
 - Down/Horizontal lines (DH)



Final Thermal Fatigue Management Guideline

- Assessment Approach
 - Screening: Simple rules to show lines not susceptible
 - Evaluation: Predictive models to compute loading frequency, thermal transient, thermal stratification, stresses and/or fatigue usage
 - Inspection: Location and inspection interval
 - Mitigation: Reduction or elimination of thermal cycling
 - Repair/Replacement: Action if evaluation or inspection not successful
- Assessment approach also applicable to plant modifications.



Assessment of Side/Top Connected Lines (UH/H)

Assessment of Bottom Connected Lines (DH)

Screening of Top/Side Connected Lines (UH/H)

- To screen in for further evaluation
 - Must be high pressure source (e.g. charging pump)
- Lines screened out include:
 - Auxiliary spray lines (spray lines velocities very low)*
 - 2-inch UH nominal pipe size and less*
 - In-leakage path pressure less than RCS pressure
 - Certain top-connected lines with long vertical length (function of line diameter)*
 - * Revised criteria as compared to Interim Guideline

Screening of Bottom Connected Lines

- Lines screened out include*:
 - Certain lines with long vertical drop to horizontal section
 - horizontal piping always cold
 - Certain lines with very short vertical drop to horizontal section
 - horizontal piping always hot
- Lengths for both screening criteria vary with pipe diameter

* Interim Guideline screening criteria related to vertical drop, and length of insulated piping

PRS-04-086/41

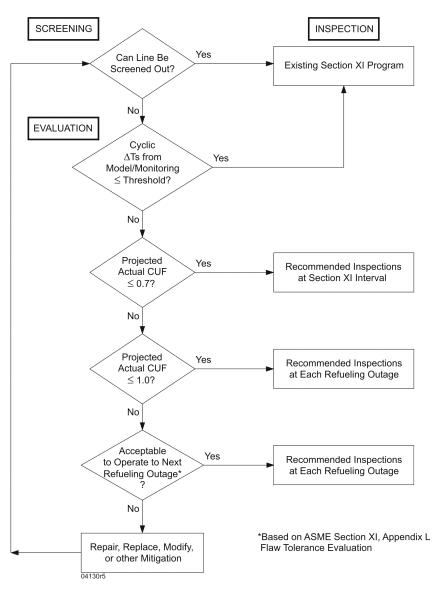
Evaluation of Lines not Screened Out

- Two approaches
 - Evaluation methodology, and/or
 - Monitoring
- An allowable fluid ΔT threshold of 86.5°F/K₃ established for stainless steel (K₃= piping component/weld stress index)
- If thermal cycling is significant, two types of evaluations can be conducted
 - Fatigue analysis
 - Flaw tolerance analysis*

*subject to NRC approval of Section XI, Appendix L

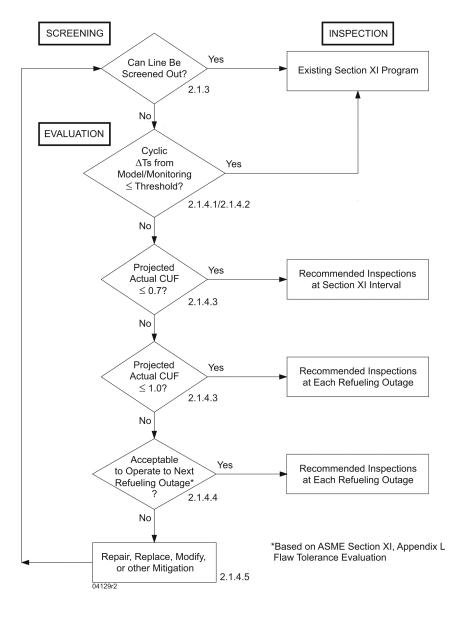
Monitoring Guideline

- For UH/H in-leakage cases, monitoring must be conducted after each heatup from cold shutdown or after each potentially leaking valve open/close cycle
- For DH cases, monitoring may be removed after one operating cycle (if no cycling) or after two operating cycles (if data used in fatigue/flaw tolerance evaluation)
- Location guidance provided for thermal monitoring
- Guidance also provided for pressure and leakage rate monitoring

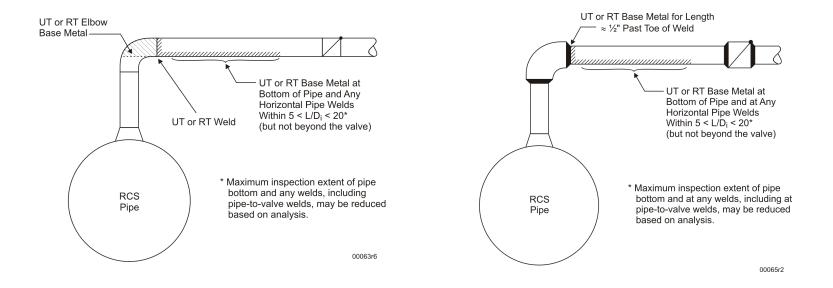


Inspection Guidelines

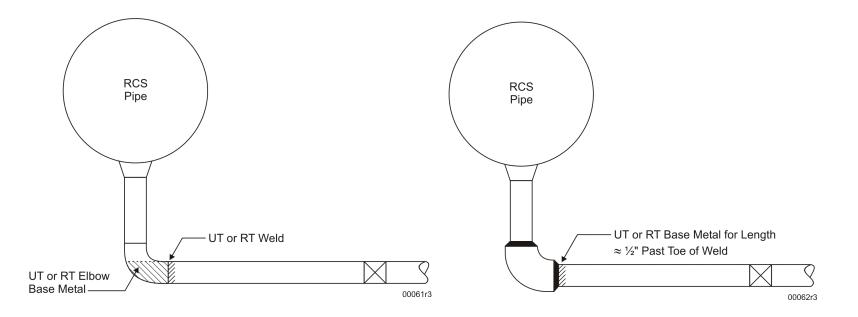
- Inspection Interval based on results of screening/evaluation/ monitoring of location
- General thermal fatigue inspection guidance provided
 - Personnel require specific training
 - Thermal fatigue training module provided by EPRI
- Regions for inspection based on experience supported by analytical modeling



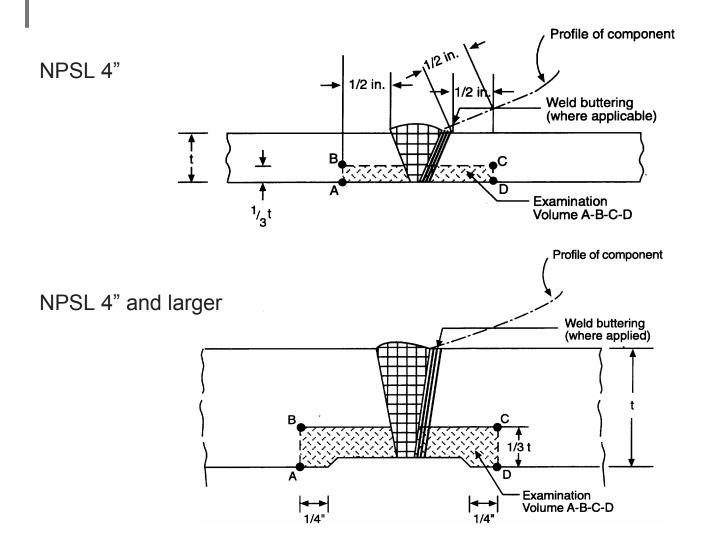
Inspection Approach for UH/H Lines



Inspection of DH Lines


Typical Inspection Regions (UH/H)

(Horizontal lines Similar)



Typical Inspection Regions (DH)

Examination Volumes

General Guidance for Mitigation/Analysis

- Mitigation discussion provided on how to eliminate or reduce potential for thermal cycling
 - Maintenance
 - Modifications
 - Changes in plant operations
- Thermal stratification analysis general guidance provided
 - Definition of Operating/Loading Condition
 - Stress Analysis
 - Comparison to Code allowable stresses

Use of Thermal Fatigue Management Guideline

- Each plant must perform assessment within two years
 - Any actions from assessment must be undertaken in a timely manner
 - Methods for screening and evaluation must be used
 - Inspection criteria must be met
- Remainder of document is a good practice guideline

Agenda

- Meeting Objectives
- History
- Thermal cycling screening and evaluation model
- Final guide assessment approach
- Summary
 - Implementation
 - Summary of Interim and Final Guideline
 - Discussion/Feedback
- Completed / Ongoing MRP Fatigue ITG Activities

Implementation

- Final guideline approved by utilities
- To be implemented per NEI 03-08 Protocol
 - Needed means utilities must comply or offer acceptable alternative (Assessment, Screening & Evaluation, and Inspection)
 - 2 years to implement from date of issuance
- MRP is providing training for all US plant sites
 - Similar to Interim Guidance Training
 - Facilitates understanding
 - Assures timely and consistent implementation

Summary – Comparison to Interim Guideline

Interim Guideline

- Scope
 - SI Lines
 - Drain Lines
- Methods
 - Experience based screening approach
 - No analytical evaluation approach provided
- For lines not screened out
 - Additional evaluation recommended no defined methods
 - Monitoring and inspection also recommended

Final Guideline

- Scope
 - All normally stagnant RCS branch lines
- Methods
 - Screening and evaluation based on extensive test program
 - Analytical load definition methods
- For lines not screened out
 - Detailed evaluation methodology provided
 - Monitoring can be used

Summary – Comparison to Interim Guideline

Interim Guideline

• No inspection interval defined

- Informally issued to utilities
- No specific commitment for plant assessment
- Training conducted for all sites
 - Interim screening conducted for essentially all sites

Final Guideline

- Inspection interval based on results of screening and analytical evaluations
- Issued per NEI 03-08 protocol
- Plant assessment is "Needed" within two years
- Training to be conducted for all sites to cover new methods
 - More participation by utilities is required
 - Evaluation software to be provided

Conclusion

- Thermal Fatigue Management Guideline (MRP-146) and supporting documents provide an effective approach to managing thermal fatigue in normally stagnant, nonisolable branch lines connected to the RCS
- MRP-146 to be implemented over a two-year period beginning in July 2005
 - Training to be provided for all PWR utilities

Comments / Discussion

PRS-04-086/57

Completed / Ongoing Fatigue ITG Activities

- Completed some highlights
 - NDE Technology for Detecting Thermal Fatigue Cracking
 - Interim Thermal Fatigue Management Guideline
 - Operating Experience Regarding Thermal Fatigue
 - Mitigation of Thermal Fatigue
 - NDE Training for Thermal Fatigue Cracking (CBT)
 - Thermal Fatigue Monitoring Guidelines
 - EdF Thermal Fatigue Monitoring Experience in RCS Auxiliary Lines
 - Lessons Learned from Thermal Fatigue Management Training
 - And of course the two documents discussed today

Completed / Ongoing Fatigue ITG Activities

- Ongoing
 - Thermal Fatigue Management Guideline Training
 - MRP Integrated Fatigue Management Guideline
 - Thermal Fatigue Licensing Basis Monitoring Guideline
 - Assessment of mixing tee susceptibility to thermal fatigue

These efforts will complete our work on thermal fatigue

- Other ongoing work:
 - Guidelines for Addressing Fatigue Environmental Effects in a License Renewal Application
 - High/Low Flow Environment Effects Testing (Stainless Steel)

Thermal Fatigue Management Guideline and Supporting Documents

- Management of Thermal Fatigue in Normally Stagnant Non-Isolable Reactor Coolant System Branch Lines, (MRP-146), EPRI 1011955
- Thermal Cycling Screening and Evaluation Model for Normally Stagnant, Non-Isolable Reactor Coolant System Branch Line Piping with a Generic Application Assessment (MRP-132), EPRI 1009552
- Mitigation of Thermal Fatigue in Unisolable Piping Connected to PWR Reactor Coolant Systems (MRP-29), EPRI 1001017
- Thermal Fatigue Monitoring Guidelines (MRP-32), EPRI 1001016
- NDE Technology for Detection of Thermal Fatigue Damage in Piping (MRP-23), EPRI 1000152
- Computer-Based NDE Training for Thermal Fatigue Cracking (MRP-138), 1001317
- Operating Experience Regarding Thermal Fatigue of Unisolable Piping Connected to PWR Reactor Coolant Systems (MRP-85), EPRI 1007761

PRS-04-086/60