FINAL REPORT

RESULTS OF GEOTECHNICAL EXPLORATION AND TESTING NORTH ANNA ESP PROJECT LOUISA COUNTY, VIRGINIA

February 11, 2003

Prepared By

MACTEC ENGINEERING AND CONSULTING RALEIGH NORTH CAROLINA

MACTEC PROJECT NUMBER 30720-2-5400

Submitted To

BECHTEL POWER CORPORATION FREDERICK, MD

BECHTEL SUBCONTRACT NUMBER 24830-006-HC4-CY00-00001

24830-006-VOA-CY00-00004-002

BECHTEL SUPPLIER DOCUMENT REVIEW STATUS STATUS NO. 1 Work may proceed. 2 Revise and resubmit. Work may proceed subject to incorporation of changes indicated. 3 Revise and resubmit. Work may not proceed. 4 Review not required. Work may proceed. Permission to proceed does not constitute acceptance or approval of design details, calculations, analyses, test methods or materials developed or selected by the supplier and does not relieve supplier from full compliance with contractual obligations. Plant Design M&QS QS GO HES Elec./CS Reviewed Dehail Baker GA-41258SM Rev. 10/95 2.5.4B-1

TABLE OF CONTENTS

Section 1	Intro	duction		1
Section 2	Test l	Methods		3
	2.1	Surve	ying	3
	2.2	Utility	Location	3
	2.3	Drillir	ng Equipment/Methods	4
	2.4	Sampl	ling in Geotechnical Borings	5
	2.5	Obser	vation Wells	6
		2.5.1	Well Installation	6
		2.5.2	Well Development	7
		2.5.3	Field Permeability Tests	8
		2.5.4	Water Level Measurements	8
	2.6	Cone	Penetrometer Testing	8
	2.7	Cross	-Hole Testing	9
Section 3	Samp	ole Stora	ge	12
Section 4	Labo	ratory T	esting	13
Index of Ap	pendice	S		15

SECTION 1 INTRODUCTION

MACTEC Engineering and Consulting (MACTEC) was retained by Bechtel Power Corporation (BECHTEL) to conduct a geotechnical exploration and associated laboratory testing at the North Anna Power Station in Louisa County, Virginia. MACTEC executed its services per BECHTEL Subcontract Number 24830-006-HC4-CY00-00001.

The geotechnical services were completed as part of the Early Site Permitting (ESP) project for Dominion Power. The field work commenced on November 18, 2002 and was completed on December 18, 2002. Surveying activities to locate the actual test locations were completed on January 8, 2003.

The Scope of Work was defined in Exhibit D of the Subcontract which included BECHTEL Technical Specification 24830-006-SR9-CY00-00001-000, and is briefly described below.

- Locate exploration points by survey.
- Coordinate the location of underground utilities with plant personnel prior to advancing any exploratory activities.
- Drill geotechnical exploratory borings at locations specified by BECHTEL, adjusting as necessary to accommodate access and utility conflicts. Geotechnical borings were completed at seven locations identified as B-801 through B-807.
- Conduct Standard Penetration Testing (SPT) to obtain samples of soil, undisturbed sampling of soil as directed by BECHTEL field representatives, and rock coring to obtain samples of rock.
- Prepare field logs for all drilling and sampling and transfer all samples to a secure, on-site sample storage facility.
- Seal all boreholes by grouting.
- Complete drilling, with selective soil sampling, for the installation of water level observation wells at nine locations identified as OW-841 through OW-849. Soil sampling was not included in the technical specifications but was requested by BECHTEL's field representatives.
- Develop observation wells and conduct field permeability testing using slug testing methods.
- Install locking well covers and concrete well pads at observation well locations.
- Conduct cone penetrometer testing (CPT) at specified locations. The project specifications called for CPT testing at seven locations. However, due to site access issues and shallow refusal, the CPT testing program was modified to include testing at eight locations (not including offset tests). Test numbers for completed CPT locations are as follows: CPT-821 to CPT-825, CPT-827, CPT-828, and CPT-830.

- Conduct cross-hole seismic tests at one location (B-802) using a three hole array. Due to subsurface conditions encountered at the B-802 location, BECHTEL approved additional cross-hole testing at a second location (B-805).
- Conduct laboratory testing on soil and rock samples as assigned by Bechtel.
- Provide a summary report for all testing.
- Provide daily reports of all field activities.
- The Technical Specifications included provisions for test pits. However, no test pits were assigned or completed.

Sampling and testing related to the geotechnical exploration was designated as "Safety-Related" by BECHTEL. As such, the work was completed under a Quality Assurance Program meeting the Code of Federal Regulations 10CFR50, Appendix B and conforming to the provisions of ANSI/ASME N45.2-1977.

This data report describes the field and laboratory testing methods and presents the results.

SECTION 2 TEST METHODS

2.1 Surveying

The surveying for the project was conducted in two phases. The initial phase was to complete preliminary boring layout based on initial coordinates for test locations provided by BECHTEL. After completing an initial assessment of test locations and potential utility and access conflicts, it was determined that the test points in the central plant area would be identified by MACTEC and BECHTEL personnel by locating them relative to existing site features and structures. Preliminary test locations away from the central plant area and in wooded areas were located by the surveyor (Stantec Consulting, a MACTEC subcontractor) using conventional survey methods.

The second phase was done after completion of all testing. The surveyor returned to the site and determined locations and elevations of the actual test points. Elevations were referenced to NAVD 88. BECHTEL requested that all horizontal locations be provided in Commonwealth of Virginia Grid coordinates. During project startup, it was found that the grid coordinates shown on original plant drawings were referenced to the 1927 plane grid. Since the plant construction, Virginia has adopted a revised grid (the 1983 grid). No drawings were located which linked plant features to the 1983 grid, and the plant itself has its own coordinate grid. Available current Virginia reference monuments are tied to the 1983 grid system; however, it is possible to convert 1983 grid points to the older 1927 grid system. BECHTEL requested that the survey use the 1983 grid references and that a table for all points be prepared showing both the 1983 and the 1927 In addition, two existing plant monuments were located by survey to provide a link to previous surveys and coordinates. Survey reference points linked to the current 1983 Virginia grid could not be identified on the plant site. Therefore, the surveyors ran a traverse into the plant from Louisa County Monuments TR 2001 and TR 22 to establish control points.

Prior to the completion of the survey, several markers identifying test locations were removed or damaged. The test locations impacted included: CPT-821, CPT-821A, CPT-821B, B-802 (geotechnical boring only), and CPT-823. Approximate locations for each of these test points were reestablished by MACTEC personnel and located by the surveyors. The locations for these subject points are noted as approximate in the Survey Results Table included in Appendix B. A plan showing the locations of all test locations is also included in Appendix B.

2.2 Utility Location

Representatives of MACTEC and BECHTEL used preliminary survey locations and physical features to mark planned locations of borings, wells, cross-hole test sites, and CPT probes. These preliminary locations were provided to Dominion Power plant personnel for utility clearance.

Dominion personnel used electromagnetic and ground penetrating radar methods to check the planned test locations for the presence of underground utilities. The planned locations were adjusted as required by Dominion Power to provide the necessary utility clearances.

A Digging, Drilling, and Cutting (DD&C) permit for the boring and testing operations was written by Dominion Power and provided to MACTEC for field use. The DD&C was appended to include each new test location as utility clearance was provided. A representative of Dominion Power was present at each test location until the drilling had advanced to a depth of at least ten feet.

2.3 Drilling Equipment/Methods

Drilling equipment mobilized to the site included the following:

- CME 550 Drill Rig mounted on an ATV carrier
- CME 45 Drill Rig mounted on a trailer
- Deitrich D-50 Drill Rig mounted on a tracked carrier
- Ingersoll Rand Model T3W truck mounted air-rotary rig

In addition, a rubber tired ATV with a 300-gallon water tank was mobilized to the site and used to haul materials and supply water to the drill rigs.

Borings were advanced in soil using rotary wash drilling techniques until SPT refusal (defined as the physical inability to advance the hole using wash drilling procedures or 50 blows for one inch or less of penetration, whichever occurred first) was encountered. Once SPT refusal was encountered, a steel casing was set, and the holes were advanced using wire-line rock coring equipment and procedures described in ASTM D 2113. A five foot long "NQ" core barrel with a split inner barrel was use for all rock coring. Fresh water obtained from Lake Anna was used for all drilling and coring operations. In Boring B-805, a slurry formed by mixing bentonite with fresh water was used. Four inch diameter casing was used to stabilize the upper portions of each boring as necessary.

Hollow stem augers, with a 4.25-inch inside diameter and a nominal 8-inch outside diameter, were used to advance all observation well holes except for OW-845. Soil samples were obtained at 2.5-foot and 5-foot intervals in the augered holes as described in Section 2.4. OW-845 was drilled using the rotary air percussion rig in order to advance into rock. No soil samples were obtained in OW-845.

The holes required for cross-hole testing in rock, B-802A, B-802B and B-802C, were advanced using the rotary air percussion drill rig. A 10-inch diameter bit was used through soil and weathered rock zones and a 6-inch diameter bit was used in rock. No sampling was done in these holes.

The holes for the cross-hole testing in soil, B-805A, B-805B and B-805C, were advanced using rotary wash techniques. A 6-inch diameter bit was used to advance these holes to the top of rock. No sampling was done in these holes.

Specific equipment used at each borehole is included on the borehole logs included in Appendix C.

All boreholes and the cross-hole casings were filled prior to demobilizing from the site using a cement-bentonite grout. The cross-hole casing at B-802B was left open for possible additional testing. As required in specification section 4.1.2, the grout was placed by pumping through a tremie pipe inserted to the bottom of the borehole. The grout mixture specified in 4.1.2 (7 gallons of water and 5 pounds of bentonite per 94-pound sack of cement) proved too thick to pump with conventional pumps. MACTEC proposed and BECHTEL's field representative approved use of the same grout mix used for observation well installation for sealing the boreholes.

2.4 Sampling in Geotechnical Borings

Soil sampling in the geotechnical borings (B-801 through B-807) was conducted at intervals ranging from 2.5 feet to 5 feet using equipment and methods described in ASTM D 1586. The sampler was typically driven a minimum of 18 inches in soil with blows recorded for each six inch interval of penetration. In very hard soils and weathered rock, driving was terminated at 100 blows and the actual penetration recorded, (e.g., 100 blows / 3 inches).

The split spoon sampler was opened at the drill site and the recovered materials were visually described and classified by MACTEC's rig geologist. A selected portion of the sample (typically the material for the lower portion of the sample) was placed in a glass sample jar with a moisture proof lid. Sample jars were labeled, placed in cardboard boxes, and transported to an on-site storage area.

The technical specifications defined SPT refusal as 50 blows for 6 inches or less of penetration. For the purposes of determining the depth at which to begin rock coring procedures, BECHTEL agreed that refusal to soil drilling would be defined as physical inability to advance the hole using wash drilling procedures or 50 blows for one inch or less of penetration, whichever occured first. In practice, the sampler was typically struck with 100 blows and the actual penetration measured and recorded on the boring logs.

Rock recovered by the coring process was carefully removed from the split inner barrel and placed in wooden core boxes with wooden blocks used to mark ends of runs. When core recovery was less than 100%, the rig geologist placed foam spacers in the core box to mark the estimated locations for the missing material. Filled core boxes were taken to the on-site sample storage facility. Photographs of the cores were taken at the sample storage facility. Core Photographs are included in Appendix C.

The rig geologist visually described the core and noted the presence of joints and fractures, distinguishing mechanical breaks from natural breaks where possible. The rig geologist also calculated percent recovery and Rock Quality Designation, (RQD) prior to moving the core from the drill site. Core descriptions as well as drilling data, recovery data and RQD are shown on the Core Boring Report for each borehole included in Appendix C.

2.5 Observation Wells

2.5.1 Well Installation

Nine observation wells were installed on the site as part of this project – eight screened in the soil/weathered rock zone and one screened in the rock. The wells were installed per section 5.3 of the specification.

Boreholes for all observation wells except OW-845 were advanced using hollow stem augers with a 4.25-inch inside diameter and a nominal 8-inch outside diameter. The holes were advanced to depths specified by BECHTEL's field representative. Although not required in the specifications, BECHTEL requested that samples be obtained at approximately 5-foot intervals during the drilling for soil classification purposes (except at well OW-845). A split spoon sampler was driven by an automatic hammer for sampling purposes. The driving resistances obtained with automatic hammers are known to be typically lower than those obtained with manually operated hammers due to differences in energy delivered to the drill rods. Manually operated hammers using rope and cathead were used in the geotechnical borings, and are believed to have been used in previous explorations done at the site in the 1970's.

As agreed with BECHTEL representatives, the driving resistances for the samples obtained using the automatic hammer in the observation well boreholes are not to be relied upon for use in correlations based on standard penetration test values or for comparisons with data obtained using manually operated hammers. Therefore, driving resistance data has not been included on the borehole logs for the observation wells which are included in Appendix D. The driving data was recorded, however, and is included on the field logs maintained by the rig geologist.

Borehole depths shown on the borehole logs indicate the total depth drilled and sampled. Due to small amounts of drill spoil at the base of the augers, or due to the sampler advancing beyond the augered depth, the total depth shown on the borehole log may be slightly greater than the well depth reported on the companion well installation record.

Soil samples obtained from the split spoon sampler in the observation well boreholes were placed in glass sample jars with moisture-proof lids. The jars were labeled and placed in cardboard boxes and transported to the on-site sample storage facility.

One observation well, OW-845, extended into rock. The hole for this well was advanced using the rotary air percussion drill rig. No samples of soil or rock were obtained from this borehole.

Upon reaching the designated depth for a well, slotted PVC casing connected to solid sections was set. A sand pack and bentonite seal were then placed. A grout plug was placed from the top of the bentonite seal to the ground surface in each borehole. The grout mix specified in specifications was found too thick to pump with the equipment on site. A modified grout mix consisting of one bag of Portland Cement (94 pounds), 2.5 pounds of bentonite and 7 gallons of water was proposed by MACTEC and accepted by BECHTEL's field representative. The modified mix was used for all well installations.

The depth of the screened interval, length of the screen and general well configuration were designated in the field for each well by BECHTEL's field representative. Since the ground surface elevations at the well sites were not determined until after the well pads were placed, the top of the PVC casing elevation, less the casing stickup above ground surface as measured at the time of installation, was used to back-calculate the ground surface elevation shown on well installation records and the well borehole logs. All water depth measurements are referenced to the top of the PVC casing. The elevation of the top of the casing was also used along with measurements of the well sections to calculate elevations for the well monitoring interval. Well installation logs showing the details of the construction for all wells are included in Appendix D. A summary table with pertinent observation well information is shown in the Summary Table in Appendix A.

All wells were capped with a locked steel well cover extending approximately two feet above grade. A concrete pad, two feet square and six inches thick, was also placed around each well cover per the specification.

2.5.2 Well Development

After well installation was completed, wells were developed by pumping. The development procedure agreed to with BECHTEL was to remove 2 to 3 standing well volumes of water initially by pumping, cycling the pump on and off to create a surging effect. After initial pumping, the procedure called for removal of 6 standing well volumes while monitoring pH and conductivity with a field meter and visually observing the turbidity. The wells were considered developed when the pH and conductivity stabilized and the pumped water was reasonably free of suspended sediment.

Well development records are attached in Appendix D. These records indicate most wells produced moderate to high inflows of water. All wells were developed satisfactorily using the planned procedure.

2.5.3 Field Permeability Tests

Field permeability testing was conducted in each observation well using procedures described in Section 8 of ASTM D 4044. This procedure is commonly termed the slug test method. Slug testing involves establishing a static water level, lowering a solid cylinder into the well to cause an increase of water level in the well and monitoring the time rate for the well water level to return to the pre-test static level. This method is commonly called the "slug-in" method. After that stabilization, the slug is rapidly removed to create a lowering of the water level in the well, and the time rate for water to recover to the pre-test static level is recorded. This method is commonly called the "slug-out" method. Electronic transducers and data loggers are used for measuring the water levels and times during the test. Due to the rates of recovery and adverse weather conditions at the time of testing, the slug-in and slug-out tests were conducted at different times in some wells.

A summary sheet with the calculated coefficients of permeability from the slug tests is included in Appendix A. The field records, data logger output sheets, and analysis/calculations are attached as Appendix E.

2.5.4 Water Level Measurements

On December 17, 2002, after completion of the field permeability testing, MACTEC representatives checked water levels in all wells installed plus additional wells designated by BECHTEL. Measurements were made using an electric water level meter and referenced to the top of the casing. Some of the previously-existing wells had no reference mark at the top of the casing; in these cases, the higher side of the casing, if applicable, was used as the reference point. The water levels recorded are shown on the table in Appendix A. For two of the wells - WP-3 and WP-4 – no elevations of the tops of the casings were available from Dominion. These two wells are not part of the normal network monitored by Dominion personnel.

2.6 Cone Penetometer Testing

Locations for seven Cone Penetrometer Tests, (CPT) were included in the original scope of work for this project. Specified probe depths ranged from 30 to 40 feet below ground surface. MACTEC personnel staked the probes at the specified locations; however, due to soft, wet ground conditions, several of the probes were relocated to more accessible locations. All test locations were approved by the BECHTEL field representative and cleared by plant utility personnel prior to pushing.

CPT testing was completed by Applied Research Associates, Inc. (ARA), a subcontractor to MACTEC. ARA utilized a 30-ton self-contained truck rig to complete the work. Each probe was advanced to cone refusal, (the limit of the pushing capacity of the rig). Seismic testing was completed at intervals of five feet in CPT-822 and CPT-825. Pore pressure dissipation tests were completed in CPT-827 and 823. All testing was done in accordance with project specifications and ASTM-5778

Refusal was encountered at a depth of less than 10 feet at three test locations, CPT-821, CPT-824 and CPT-828. At CPT-821, two offset probes were attempted which also refused at a shallow depth. Utility conflicts prevented an offset test location at CPT-824.

CPT tests were numbered from CPT-821 to CPT-830; however, CPT-826 and CPT-829 were not completed due to utility and site access issues. Results for all CPT testing are included in Appendix F

2.7 Cross-Hole Testing

Cross-hole testing was conducted at two locations - B-802 and B-805. The methods of ASTM D 4438/D 4428M were specified in section 8.1 of the specifications. Section 8.1 called for one borehole in each cross-hole array to be sampled in accordance with section 4.8.2 of the specifications. After reviewing the planned depth of the cross-hole testing (90 feet) and based on the anticipated presence of rock above the assigned depth, MACTEC proposed and Bechtel approved drilling and sampling to be done in an offset boring. The drilled and sampled borings are identified as B-802 and B-805. The cross-hole test holes are identified as B-802A, B-802B and B-802C and B-805A, B-805B and B805C.

The provisions of ASTM D 4428/D 4428M call for a maximum borehole size of six inches for cross-hole testing. The cross-hole equipment needs a minimum diameter of 2-7/8 inches to accommodate the geophones. These considerations require an outside casing diameter of about 4 inches maximum to assure adequate space for grout placement; thus the 6-inch diameter hole is also practically the minimum hole size. Standard rock coring bits used in geotechnical exploratory work do not produce a 6-inch diameter borehole. In order to advance a borehole through soil and into rock, the soil portion of the hole must be larger than the desired hole in the rock to prevent collapse of the soil. Thus, it was concluded that cross-hole testing in soil and in rock could not be accomplished in the same set of casings.

MACTEC proposed that two sets of cross-hole casings be installed at location B-802 with one set for testing below the soil-rock interface and one set for testing above the soil-rock interface. However, it was found that the depth to rock at location B-802 was very shallow, approximately 8 to 10 feet. Discussions with Grumman Exploration, MACTEC's subcontract geophysicist, indicated that with such a shallow depth to rock, cross-hole testing in the soil would yield limited, if any, reasonable results due to refraction of the seismic waves off the rock surface causing interference. Options considered were to reduce the spacing between the casings or to relocate the soil test casings to another spot where the depth to rock was greater. Because geotechnical boring B-805, located in the general vicinity of B-802 and at a similar elevation, had indicated a depth to rock of about 30 feet, BECHTEL approved conducting the soil cross-hole testing at location B-805.

For location B-802, the air percussion drill was used to advance boreholes for the cross-hole tests. A 10-inch diameter borehole was advanced slightly into rock and an 8-inch diameter PVC casing set to stabilize the soil portion of the hole. A 6-1/8 inch diameter bit was used to extend the boreholes to the assigned termination depths of 90 feet.

For location B-805, rotary wash drilling with one of the geotechnical drill rigs using a 6-inch diameter bit was used to advance the boreholes to approximately 30 feet.

Because the specification required a deviation survey of the cross-hole casings, inclinometer casing as manufactured by The Slope Indicator Company was installed in each borehole. Centralizers were placed on the casing, and the annular space between the casing and the borehole was filled with Portland cement grout.

Installation of the cross-hole casings encountered minor difficulties during the grout placement at B-802A. Excessive grout take was noted. During the drilling of B-802A, a relatively large inflow of water had been noted. MACTEC concluded the large grout take was due to grout flowing into open fractures in the rock. Grouting was suspended and resumed the following day with successful completion. Grout losses were not noted in the other two boreholes at the B-802 location.

ASTM D 4428/4428M calls for a grout unit weight in rock of 140 pounds per cubic foot (pcf). To achieve this unit weight, a cement-water mix with a water-reducing admixture was planned due to concerns about the ability to pump the mix. Field work found that a unit weight of about 128 pcf was the maximum that could be achieved and still maintain a mix fluid enough to pump. Since the primary concern with the grout was to achieve a continuous fill of the annular space, the lower unit weight was considered acceptable. Discussions with Grumman indicated the difference in unit weight considered over an approximate 1-inch layer would not affect the seismic velocity measurements.

After setting the casings, and after the cross-hole testing, a deviation survey was conducted in each of the inclinometer casings. The survey was done with a Slope Indicator Digitilt probe, and the data was recorded by a Slope Indicator DataMate recorder. The surveyor later established the grid coordinates for the center of each casing as well as the bearing of the inclinometer reference groove. Horizontal distances between each pair of cross-hole receiver casings were computed at 2-foot increments from the top down using the deviation survey results. These distances were furnished to Grumman for their use in analyzing the cross-hole velocity data. Appendix G contains a drawing showing the orientation of the cross-hole casings, the results of the deviation survey and the computed distances.

The cross-hole velocity measurements were performed on December 12, 2002 by Grumman. MACTEC, in consultation with Grumman, reviewed the available borehole data to select one end of each array as the energy source hole with the other two casings used for the receiver geophones. Due to the large amount of grout used in B-802A, this casing was used for the energy source. Casings for the energy source were pumped/bailed prior to testing to remove water.

The cross-hole measurements were made using a manually-actuated, reversible polarity, shear wave impulse source to create a shock wave at each test depth. Triaxial geophones were lowered into each receiver casing and positioned such that for each test, the impulse source and the geophones were at the same depth relative to the ground surface. Tests were conducted at 5-foot intervals in the rock test location (B-802) as required by the specifications. At location B-805, due to the relatively short length of the casings, tests were conducted at 2.5-foot intervals to 21 feet, then at 5-foot intervals to obtain more data points.

The cross-hole testing was conducted in accordance with ASTM D4428/D4428M ("preferred method") with the following minor deviations:

- A timing accuracy test was not performed at the site as the system had been calibrated within two weeks prior to the filed testing.
- Separate tests for P-wave and S-wave were not conducted as the equipment used has an adequate sampling rate to allow proper interpretation.
- Arrival times were visually observed at the site on the computer monitor, but arrival times were not determined in the field as it is more accurate to evaluate the data and determine arrival times using computer assistance later.

The signals produced by the impulse sources and received by the geophones were recorded by a Geometrics Model S12 signal enhancement seismograph. The data were analyzed by Grumman to produce estimated values for Vp (compression wave velocity) and Vs (shear wave velocity) at the test depths. The results are presented in the figures and tables in Appendix H.

During the analysis, it was found that a background high frequency noise signal was present at the B-802 location. The source of the noise was judged as external to the test equipment. As a result of the interference, estimated values for Vp could not be obtained, and Vs values could not be interpreted at test depths below 45 feet. Grumman believes that downhole testing using one of the casings may have a potential for improved data quality in light of the interference signal. One casing (B-802B) was left open to allow for possible future testing.

Subsequent to the original field work, downhole seismic testing was conducted in Boring B-802B. Reasonable data were obtained for Vp. The shear wave was reasonably well-defined to a depth of 45 feet, but less well-defined to 65 feet. Below approximately 65 feet, the shear wave appeared to be absent. The results of the test are presented in the report, figures and tables in Appendix J.

SECTION 3 SAMPLE STORAGE

3.1 On-Site Sample Storage Facility

At the request of BECHTEL and consistent with MACTEC's quality requirements, an on-site sample storage facility was established. The sample storage facility was located within the "A Level" area of the plant's warehouse facility. The "A Level" has limited access and is climate controlled. MACTEC personnel erected sections of chain link fence, six feet high, to form the approximately 12-foot square area. A locking gate was included in one of the side sections.

Upon sample transport to the warehouse facility, MACTEC personnel first logged each sample container, (boxes of glass jars or rock core boxes) into the plant's "Non-Stock" inventory system. The non-stock inventory number was then placed on the sample container. The sample containers were then placed into the secured sample storage area and logged into the project sample inventory log book.

Any samples removed from the facility were noted in the sample inventory log book. A chain of custody form was also completed for all samples removed from the facility.

SECTION 4 LABORATORY TESTING

Laboratory testing of soil and rock samples was completed based on the BECHTEL Geotechnical Laboratory Test Assignment sheet dated December 18, 2002. Laboratory testing of soil included moisture content, Atterberg Limits, grain size and chemical analysis. Nineteen pieces of rock core were tested for unconfined compressive strength. Six of the test specimens were instrumented with strain gages to allow measurement of stress-strain curves and calculation of modulus of elasticity.

All testing of soil samples except for chemical analysis, was completed in MACTEC's Raleigh, NC laboratory. All rock testing was completed at MACTEC's Atlanta, GA laboratory. Testing was completed in accordance with Section 10.0 – Laboratory Testing, of the project specifications.

For the rock testing, MACTEC's field geologist obtained intact sections of core from the depth intervals designated on the assignment sheet in all but one case. Core pieces were longer than would be required for testing to allow for preparation. Due to insufficient intact length of rock in one assigned interval (B-804, 35-38'), MACTEC's field geologist selected a piece of rock of the same type from the next core run for testing. The substitute piece was from 38.9 to 39.9 feet. Mr. John Davie of Bechtel was advised of the substitution and concurred.

Chemical testing for pH, sulfates and chlorides in selected soil samples as assigned by Bechtel was conducted using EPA methods SW9045 and 9056/300.0. The testing was done by Severn Trent Laboratory (STL) of Savannah, Georgia, a subcontractor to MACTEC.

All soil and rock samples were shipped under Chain-of-Custody from the site storage area to MACTEC's Raleigh, North Carolina laboratory. If required, samples were further divided and/or shipped to the appropriate testing laboratory under Chain-of Custody.

The rock core specimens were prepared in accordance with ASTM D 4543-01. The testing was done at the "as-received" moisture content. The unconfined compressive strength tests were conducted in accordance with ASTM D 2938—95 with minor modifications as noted on the summary sheet. The testing with stress-strain measurements was conducted in accordance with ASTM D 3148-96. Two of the test specimens had length to diameter ratios that were less than the 2.0 minimum recommended by ASTM. The actual ratios were 1.8 and 1.9. In addition, two samples had diameters that were very slightly less (.006") than the minimum recommended in the ASTM standard. The diameter deviation is not significant relative to the test results.

Modulus of elasticity values for the rock cores tested with stress-strain measurements were calculated using the average slope method, with the Poisson's ratios computed over

the same interval used for the modulus. For one sample, this method yielded a value of Poisson's ratio of 0.54, which suggests the core was deforming plastically over the interval chosen. The stress-strain curve for this test also exhibited two distinct slope portions. The modulus value and Poisson's ratio for the portion of the curve in the initial stress range were calculated and resulted in a more reasonable value for Poisson's ratio. For completeness, both results are included in Appendix I.

Summary sheets for the laboratory testing results are included in Appendix A. Copies of the Laboratory Assignment sheets and the results of all soil and rock testing are included in Appendix I.

A summary sheet showing the unconfined compressive strengths and moduli of elasticity is attached in Appendix A. Full reports for the tests are included in Appendix I.

LIST OF APPENDICIES

Appendix A	Tables of Summary Test Data
Annendiv A	Lables of Silmmary Lest Llata
ADDUMINA	Tables of Buildia v Test Bala

Appendix B Survey Data and Test Location Plan

Appendix C Geotechnical Borings Logs, Core Boring Reports, and Photographs

Appendix D Observation Well Logs and Development Records

Appendix E Well Permeability Test Results

Appendix F Cone Pentrometer Test Results

Appendix G Deviation Survey Data

Appendix H Cross-Hole Test Data

Appendix I Laboratory Testing Data

Appendix J Downhole Seismic Test Data

APPENDIX A TABLES OF SUMMARY TEST DATA

OBSERVATION WELL SUMMARY NORTH ANNA ESP PROJECT BECHTEL SUBCONTRACT NO. 24830-006-HC4-CY00-00001 MACTEC JOB NO. 30720-2-5400

		_ IIIICI LO G	JD 110. 30/20 % 5100	
Well	Total	Top of Casing	Measurement Interval	Water Level
Number	Depth, ft *	Elevation, ft**	Elevations, ft ***	Elevation, ft (Date) ****
OW-841	34.3	251.6	215.8 - 230.0	249.2 (12-13-02)
OW-842	49.6	336.7	285.6 - 299.9	307.4 (12-12-02)
OW-843	49.2	320.6	269.9 - 282.7	284.9 (12-12-02)
OW-844	24.6	273.5	247.4 - 259.3	265.0 (12-13-02)
OW-845	55.0	297.3	240.8 - 256.1	272.6 (12-12-02)
OW-846	32.7	297.3	263.1 - 275.5	272.5(12-12-02)
OW-847	49.8	319.7	268.4 - 283.2	285.3 (12-12-02)
OW-848	47.3	284.5	235.7 – 243.9	241.9 (12-13-02)
OW-849	49.8	298.5	247.2 – 261.4	265.4 (12-13-02)

- * Measured relative to ground surface.
- ** Casing is 1.5 ft above ground surface at time of drilling.
- *** Includes interval from bottom of well casing to top of sand pack.
- **** Water level measured immediately prior to slug testing, after well development.

Prepared by: 143 Date: 2-4-03
Checked by: 141 Date: 2-4-03

First Quarterly Water Level Summary (12-17-02) North Anna ESP Project Observation Depth to Water Remarks: Time, Weather Conditions Elevation (ft) below Ref. Pt. (ft) Ref. Pt. Point Water Observation Point Condition, etc. Partly Cloudy, low 40's OW-841 251.6 2.7 248.9 No cap on PVC casing inside locking cover OW-842 29.2 336.7 307.5 OW-843 35.5 320.6 285.1 OW-844 8.0 273.5 265.5 OW-845 24.6 297.3 272.7 OW-846 24.8 297.3 272.5 OW-847 34.3 319.7 285.4 OW-848 42.8 284.5 241.7 OW-849 33.0 298.5 265.5 No cap on PVC casing inside locking cover P-10 286.4 274.4 12.0 Ref Pt. mark is fading P-14 55.5 327.1 271.6 No mark for Ref Pt. P-18 43.3 329.0 285.7 No mark for Ref Pt. P-19 38.0 322.3 284.3 P-20 45.7 320.6 274.9 P-21 Dry to 58 319.2 No mark for Ref Pt. P-22 43.7 320.5 276.8 P-23 35.3 296.4 261.1 P-24 17.0 293.4 276.4 WP-3 18.2 Sediment in bottom at 43.4'; No mark for Ref Pt. WP-4 NA Water level is below pump; No mark for Ref Pt.

Service Water Reservoir Elevation 314.6 ft. Lake Level Elevation 248.1 ft.

Wells labeled OW were installed by MACTEC in November and December, 2002. All other wells listed were installed by others at unknown times.

Elevations for OW points obtained by Stantec as part of current project. Elevations for other points furnished by Domínion.

Field Measurements by M. Ho	owe	Date:
Sheet Prepared by:	_	_Date:
Checked by:	_Date:_	1/3-103

^{*} No elevation available for top of casing

North Anna ESP Project Summary Table of Hydraulic Conductivity (K) Results MACTEC Job Number: 30720-2-5400

	DATE OF		K VALUE	RESULTS		
WELL ID		SLU	G IN	SLUC	OUT	COMMENTS
	TEST	FT/DAY	CM/SEC	FT/DAY	CM/SEC	
OW-841	12/13/2002	2.2E+00	7.8E-04	2.3E+00	8.2E-04	
OM/ 040	12/12/2002		er en euse property sugarnes e e	9.3E-01	3.3E-04	
OW-842	12/17/2002	9.3E-01	3.3E-04			
OW-843	12/12/2002	<u> </u>		1.4E+00	4.9E-04	
	12/17/2002	1.3E+00	4.5E-04			
OW-844	12/13/2002	2.5E-01	8.9E-05	2.8E-01	9.9E-05	
OW-845	12/12/2002	1.8E+00	6.3E-04	3.1E+00	1.1E-03	K values are questionable (see graph)
OVV-643	12/17/2002	NA	NA NA			Recovery to;quick to calculate K values (see graph)
OW-846	12/12/2002	1.9E+00	6.8E-04	3.4E+00	1.2E-03	
OW 047	12/13/2002	5.8E-01	2.1E-04	British Commence Commence of the Commence of t		
OW-847	12/17/2002			6.6E-01	2.3E-04	
OW-848	12/13/2002	3.4E+00	1.2E-03	2.8E+00	9.9E-04	K value may be overestimated due to H2O level below top of screen
OW-849	12/13/2002	2.0E+00	7.0E-04	3.2E+00	1.1E-03	
Notes:						

Notes:

Prepared by / date: BWJ / 12-20-02 GWJ
Checked by / date: WG / 12-27-07

MACTEC ENGINEERING AND CONSULTING, INC. RALEIGH, NORTH CAROLINA

REPORT OF STANDARD TEST METHOD FOR

LABORATORY DETERMINATION OF WATER CONTENT OF SOIL AND ROCK BY MASS

(ASTM D 2216)

PROJECT NAME: North Anna ESP MACTEC PROJECT NUMBER: 30720-2-5400 BECHTEL JOB NO: 24830 DATE: 2/11/03

SAMPL	E IDENTIF	ICATION	NATURAL	LIQUID	& PLASTIC	LIMITS	% FINER				USCS
BORING	TYPE	DEPTH (feet)	MOISTURE (%)	LL	PL	PI	#200 SIEVE	pН	CHLORIDES mg/kg	SULFATES mg/kg	CLASSIFICATION
B-801	SS-1	0-1.5	22.2	39	29	10		6.3	130.0	< 27	
B-801	SS-5	8.5-10					39.9				
B-801	SS-6	13.5-15					55.1				
B-802	SS-2	3.7-5.2					19.5				
B-803	SS-3	6.1-7.6	18.9	30	26	4					
B-803	SS-4	8.6-10.1	23.2				24.4				
B-803	SS-6	13.7-15.3					20.9	5.7	100.0	< 23	
B-803	SS-8	23.6-25.1					18.5				
B-804	SS-3	3.5-5					54.2				
B-804	SS-6	11-12.5					46.1			-	
B-804	SS-8	18.5-20					22.1				
B-805	SS-4	7.5-9	27.2	NP	NP	NP	27.5				SM
B-805	SS-7	18.5-20					25.1				
B-806	SS-3	5.6-7.1					27.1	6.7	920.0	< 24	
B-807	SS-3	4.5-6	40.1	49	45	4					
B-807	SS-6	12.3-13.8	42.8	46	40	6		5.7	170.0	< 28	
B-807	SS-8	21.8-23.3	28.9	41	34	7	42.6				SM-SC
B-807	SS-10	31.5-33	26.7				37.7				
B-807	SS-12	41.4-42.9	21.8				44.2				

PREPARED BY: Andy A Miller

TESTING EQUIPMENT:

SCALES: 3.1.99 OVEN: 5.1.10 WASH SIEVE: 5.4.39

TECHNICIAN: JLB CALCULATIONS: JLB CHECKED BY: TLM Trudy L. Mulfins, Laboratory Manager

REVIEWED BY:

Stephen J. Criscenzo Principal Professional

APPROVED BY:

J. Allan Tice, P.E.

Principal Engineer/Project Manager Registered Virginia, 5264

Summary of Laboratory Rock Core Tests on Intact Specimens Unconfined Compressive Strength and Modulus of Elasticity

Project No.: 30720-2-5400

Project Name: North Anna ESP

Boring	Depth	MACTEC	Unconfined	Modulus of	Poisson's
No.		Lab ID #	Compressive	Elasticity, psi	Ratio
			Strength		
	(ft)		(psi)		
B-805	41.3-41.9	001639	3,400	336,000*	0.15*
B-804	38.9-39.9	001640	27,150		
B-804	43.5-44.9	001641	25,200		
B-805	80.8-81.6	001642	4,430		
B-801	48.7-49.7	001644	28,420	8,670,000	0.27
B-804	49.9-50.5	001645	12,300	3,190,000	0.43
B-801	24.1-24.8	001646	27,210		
B-806	42.6-43.2	001648	2,720		
B-802	20.4-21.0	001649	8,640		
B-802	66.0-66.7	001650	14,710	4,613,000	0.24
B-806	25.1-25.8	001651	610		
B-803	54.1-54.7	001652	13,010		
B-803	129.4-130.1	001653	26,730		
B-802	85.3-85.9	001654	9,370		
B-803	70.4-71.1	001655	23,210	7,133,000	0.34
B-803	90.3-91.0	001656	27,590		
B-803	155.6-156.4	001657	22,030	7,173,000	0.33
B-802	44.9-45.6	001658	11,760		
B-806	64.1-64.5	001659	27,360		

Modulus of Elasticity and Poisson's ratio computed using average slope method.

* These values represent low-stress portion of stress-strain curve. Values computed over middle portion of curve indicate E = 522,000 and Poisson's Ratio of 0.54. A value of .54 suggests plastic behavour of the core at the higher stress levels.

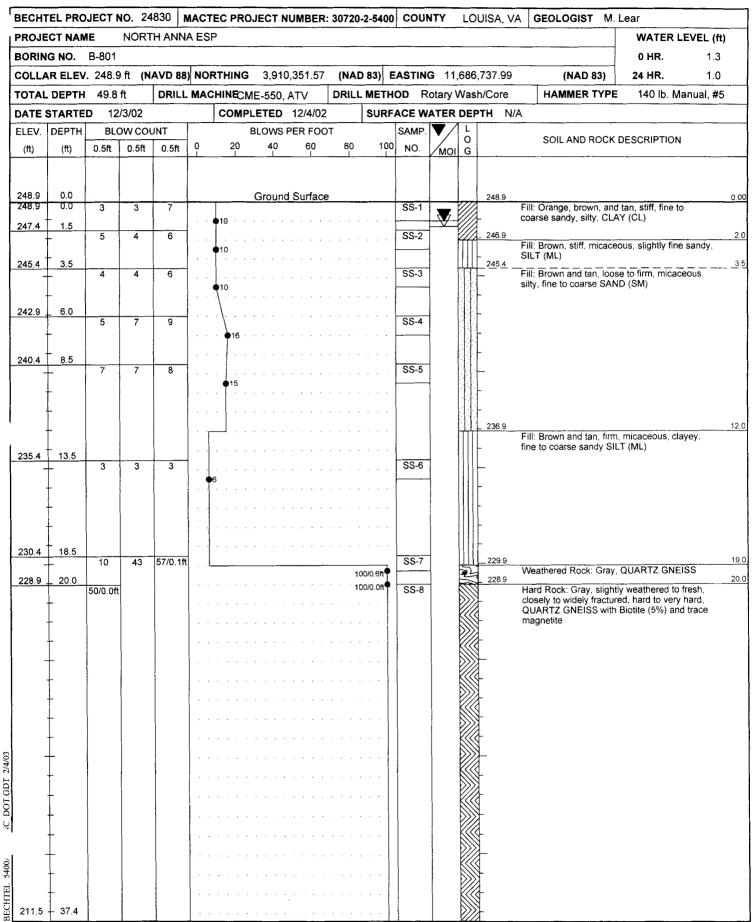
Prepared by: Checked by:

APPENDIX B SURVEY DATA AND TEST LOCATION PLAN

		L	8 DATUM		STATE PLANE COORDINA	TES (NAD83) SOUTH ZONE	STATE PLANE COORDINA	TES (NAD27) NORTH ZONE
BORING	DONE	ELEV. TO TOP OF BLUE CAP	GROUND ELEVATION	BEARING (TO A END)	NORTHING	EASTING	NORTHING	EASTING
B-801	V		248.9		3910351.5739	11686737.9892	144033.5657	2203739.9220
B-802	V		271.5		3909956.9016	11686380.8110	143638.8229	2203382.8334
B-802A	V	271.222	271.1	N 71°36'22" W	3909943.5519	11686399.2814	143625.4774	2203401.3062
B-802B	V	271.356	271.2	N 3911'34" W	3909945.4028	11686389.7511	143627.3262	2203391.7756
B-802C	V	271.446	271.4	S 80°00'35" E	3909947.3175	11686379.7512	143629.2387	2203381.7756
B-803	V		292.4		3909921.5113	11685763.7633	143603.3008	2202765.8066
B-804	V		320.0		3909497.2390	11685134.7547	143178.9007	2202136.8990
B-805	V		271.1		3910361.5788	11686246.9595	144043.4649	2203248.9012
B-805A	V	271.028	271.2	S 5919'30" E	3910364.0260	11686236.6888	144045.9099	2203238.6302
B-805B	V	271.126	271.4	N 73'02'24" E	3910354.9867	11686240.7396	144036.8716	2203242.6828
B-805C	V	271.016	271.3	N 77'19'54" E	3910345.9275	11686244.7671	144027.8134	2203246.7121
B-806	V		299.2		3909416.2434	11683977.2831	143097.6599	2200979.4688
B-807	V		310.6		3909849.0828	11683980.4378	143530.4933	2200982.5350
CPT			GROUND ELEVATION					
CPT-821 *	V		271		3909965	11686353	143647	2203355
CPT-821A *	V		271		3909957	11686348	143639	2203350
CPT-821B *	V		271		3909966	11686367	143648	2203369
CPT-822	V		271.1		3910375.4066	11686237.2013	144057.2904	2203239.1404
CPT-823 **	V		296.3		3909850.0235	11685756.1761	143531.8125	2202758.2343
CPT-824	V		276.1		3910054.2670	11686009.5911	143736.1071	2203011.6016
CPT-825	V		332.5		3909477.9442	11685267.2998	143159.6345	2202269.4452
CPT-827	V		277.1		3910688.2442	11683569.4372	144369.5540	2200571.3722
CPT-828	V		270.0		3910652.8241	11683066.3705	144334.0281	2200068.3241
CPT-830	V		307.5		3909848.9822	11686000.3856	143530.8236	2203002.4386
OBS. WELL		ELEV. TOP OF PVC CASING						
OW-841	V	251.622			3910556.1514	11686804.1141	144238.1541	2203806.0030
OW-842	V	336.740			3909034.7635	11685149.1315	142716.4352	2202151.3705
OW-843	V	320.580			3909725.1724	11685056.8319	143406.8139	2202058.9310
OW-844	V	273.507			3909908.8159	11686589.6454	143590.7828	2203591.6732
OW-845	V	297.309			3909858.6642	11685741.1107	143540.4499	2202743.1674
OW-846	V	297.270			3909845.0918	11685721.8162	143526.8736	2202723.8761
OW-847	V	319.720			3908945.4511	11686447.6923	142627.4022	2203449.9225
OW-848	V	284.512			3910853.3688	11686272.7632	144535.2523	2203274.6027
OW-849	V	298.536			3910786.2446	11684731.0221	144467.7996	2201732.9106

^{*} These points were not field located but placed by MACTEC's estimated location, the elevations were established from a field survey of the surrounding area.
** This is a field located point of the estimated location of CPT 823.
*** Virginia State Plane NAD83 (South Zone) coordinates converted to State Plane NAD27 (North Zone) using Corpscon for Windows version 5.11.08

I hereby certify that field surveys were performed in accordance with applicable project specifications (11/22/02 - 12/30/02) under my supervision to determine the values listed in this table except where noted. All data was collected directly from Louisa County Survey Control Monuments (pair # 14, monuments 2001 to 22) using the coordinates provided in Virginia State Plane, NAD83 - South Zone (U.S. Survey Foot) and the reference datum of NAVD 88. The NAD27 coordinates were derived via office computations as noted.


APPENDIX C GEOTECHNICAL BORING LOGS, CORE BORING REPORTS, AND PHOTOGRAPHS

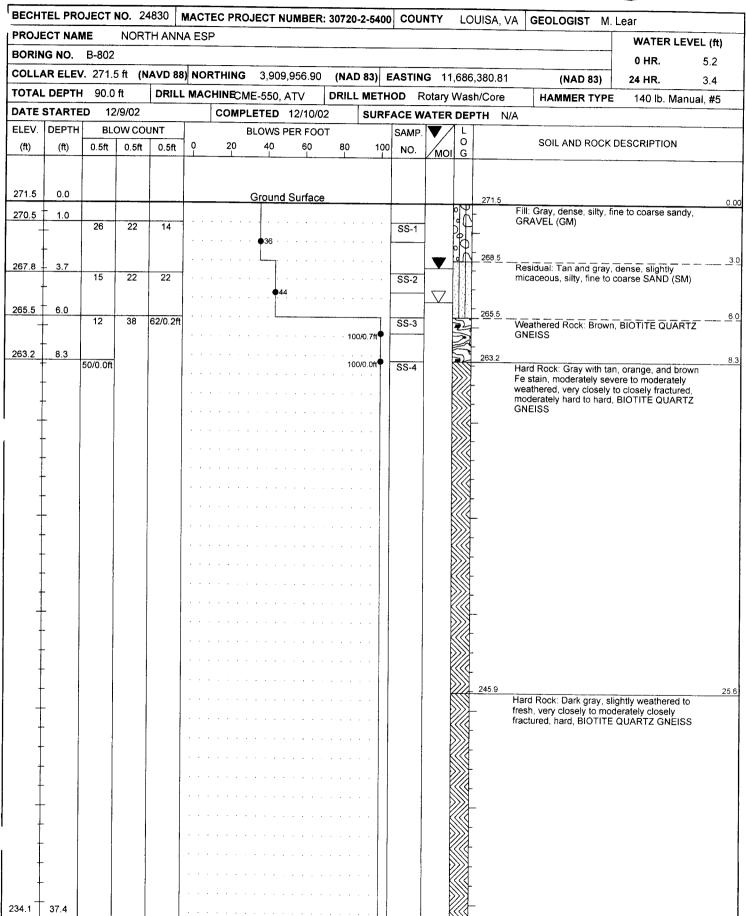
М	AJOR DIVISION	NS		OUP BOLS	TYPICAL NAMES				OUP IBOLS		TYPICA	L NAMES
		CLEAN	X	GW	Well graded gravels, gravel - sand mixtures, little or no fines.		DOCK		WR	We	athered Rock	
	GRAVELS (More than 50% of coarse fraction is	GRAVELS (Little or no fines)		GP	Poorly graded gravels or grave - sand mixtures, little or no fines.		ROCK		HR	Har	d Rock	
COARSE	LARGER than the No. 4 sieve size)	GRAVELS WITH FINES		GM	Silty gravels, gravel - sand - silt mixtures.					_		
GRAINED SOILS		(Appreciable amount of fines)		GC	Clayey gravels, gravel - sand - clay mixtures.							
(More than 50% of material is LARGER than		CLEAN		sw	Well graded sands, gravelly sands, little or no fines.	Δ	Water Table	at time of	drilling	, T	Water Table a	fter 24 hours
No. 200 sieve size)	SANDS (More than 50% of coarse fraction is	SANDS (Little or no fines)		SP	Poorly graded sands or gravelly sands, little or no fines.							
	SMALLER than the No. 4 Sieve Size)	SANDS WITH FINES		SM	Silty sands, sand - silt mixtures							
	,	(Appreciable amount of fines)		SC	Clayey sands, sand - clay mixtures.							
				ML	Inorganic silts and very fine sands, rock flour, silty of clayey fine sands or clayey silts and with slight plasticity.						ation Resistance and Consistency	(
	SILTS AN			CL	Inorganic lays of low to medium plasticity, gravelly clays, sandy clays, silty	L		GRAVE			SILT &	
FINE	(Liquid limit I	LESS than 50)			clays, lean clays.	<u> </u>	No. of Blows	Relative		y 1	No. of Blows	Consistency
GRAINED SOILS				OL	Organic silts and organic silty clays of low plasticity.	-	0 - 4 5 - 10	Very I			0 - 1 2 - 4	Very Soft
(More than 50% of					Inorganic silts, micaceous or		11 - 20	Loo		+-	5 - 8	Soft Firm
material is SMALLER than				MH	diatomaceous fine sandy or silty soils, elastic silts.	-	21 - 30	Very		+	9 - 15	Stiff
No. 200 sieve size)	SILTS AN	D CLAYS				+	31 - 50	Den		+-	16 - 30	Very Stiff
	(Liquid limit GR)			CH	Inorganic clays of high plasticity, fat clays		Over 50	Very [1	Over 31	Hard
				ОН	Organic clays of medium to high plasticity, organic silts.						<u>_</u>	
HIGH	LY ORGANIC S	OILS	77 7	РТ	Peat and other highly organic soils.							
BOUNDARY C	LASSIFICATION	NS: Soils possess combinations			ristics of two groups are designated by mbols.							
		SANI)		GRAVEL		KEY	TO	SY	M	BOLS A	AND
SILT	OR CLAY	L		Coarse	Fine Coarse Cobbles Boulders						TIONS	t
	No.	200 No.40 U.S. STANDA		.10 No.		\vdash						
		U.S. STANDA	משוי	71.10 V I.5		1100-						
	Unified Soil Clas o. 3-357, Vol. 1, I				ngineers, U.S. Army Technical 1960)				ΛA	C	TEC	

GEOTECHNICAL BORING LOG SHEET 1 OF 2

GEOTECHNICAL BORING LOG SHEET 2 OF 2

BECH1	TEL PRO	JECT I	NO. 24	830	MACT	EC PROJ	ECT N	UMBER	30720	-2-5400	COU	W 1 Y	LO	UISA, VA	GEOLOGIST	IVI. I	Lear	
PROJE	CT NAM	E	NORT	H ANN	A ESI	5										П	WATER L	EVEL (ft)
BORIN	IG NO.	B-801															0 HR.	1.3
COLLA	AR ELEV.	248.9	ft (N	AVD 88	NOF	RTHING	3,910	,351.57	(NAE	83) E	ASTIN	G 11	,686.	737.99	(NAD 8	3)	24 HR.	1.0
	. DEPTH					HINECME					OD R				HAMMER T			lanual, #5
	STARTE		/3/02	1		COMPLI			L					TH N/A				
	DEPTH		OW COL	INT				ER FOO		OOIG	SAMP.		1	111 14//				
(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	20	40	60	. 80	100		моі	0		SOIL AND R	OCK (DESCRIPTION	I
(19	(19	0.011		-	1							VIVIOI	6					
211.5	37.4					Continu	ed from	n previo	us page)								
	+														Hard Rock: Gray, s closely to widely fr	acture	d, hard to very	hard,
-	+													(QUARTZ GNEISS magnetite (continu	with (Biotite (5%) and	d trace
	+												}	-	J	,		
	+													-				
-	 													-				
	+ 1												$\parallel \parallel$	-				
_																		
													 	-				
														-				
														-				
	↓													-				
_	1													_				
	<u> </u>				ļ						-			199.1	Boring and Coring	termir	nated at AQ & #	in Hard
-														- - :	Gneiss with biotite Bits Used: 3" Rolle discharge, diamon Drilling Fluid: Wate Borehole filled by g	er cone d impi	e; N-size core t regnated)	
174.1	74.8				The state of the s									- -				

CORE BORING REPORT SHEET 1 OF 1


BECHT	TEL PRO	JECT	NO. 248	30 M	IACTE	C PROJE	CT N	JMBER	R: 307	20-2-5400 COUNTY LOUISA, VA GEOLOGIST M. Lear
PROJE	CT NAM	ΛE:	NORTH	ANNA F	A ESP					WATER LEVEL (ft)
BORIN	G NO.	B-801					·			0 HR. 1.3
COLLA	AR ELEV	. 248.	9 ft (NA	VD 88)	NOR	THING	3,910	,351.5	7	(NAD 83) EASTING 11,686,737.99 (NAD 83) 24 HR. 1.0
TOTAL	DEPTH	49.8	3 ft	DRILL	MACH	INE CM	E-550,	ATV	DRI	ILL METHOD Rotary Wash/Core HAMMER TYPE 140 lb. Manual, #5
DATE	STARTE	D 1	2/3/02			COMPLE	TED	12/4/02		SURFACE WATER DEPTH N/A
CORE	SIZE N	1Q		······ · · · · · · · · · · · · · · · ·		TOTAL R	UN 2	29.8 ft		DRILLER K. Pendley
ELEV.	DEPTH	RUN	DRILL	RI	UN	SAMP.	REC.	RATA	L	
(ft)	(ft)	(ft)	RATE (Min/ft)	REC. (ft) %	RQD (ft) %	NO.	(ft) %	RQD (ft) %	O G	DESCRIPTION AND REMARKS
										Pagin Casing @ 20.04
228.9	20.0	4.8	3:36	(4.8)	(4.8)	RUN 1				Begin Coring @ 20.0 ft 228.9 Hard Rock: Gray, slightly weathered to fresh, closely to widely fractured, hard to very 20.0
			4:19	100%	100%					hard, QUARTZ GNEISS with Biotite (5%) and trace magnetite (2 joints at 30-35° with trace clay; 1 joint at 70° with trace clay; 2 coarse quartz and
			5:54							potassic feldspar veins at 60° with gradational margins from 20.9ft to 21.3ft and 22.2ft to 22.8ft)
			5:17							
224.1	24.8		2:51/0.8						>>>>	
447.1	24.0	5.0	3:19	(5.0)	(5.0)	RUN 2	1			(4 joints at 70° with clay and orange Fe stain; 1 joint at 30° with orange Fe stain)
			3:18	100%	100%					
			3:31						}	
			3:35							
			3:40						>>>>	
219.1	29.8	5.0	3:55	(5.0)	(5.0)	RUN 3				(5 joints at 40-50° with trace clay; 1 joint at 20° with trace clay)
			4:01	100%	100%					
			5:50			ļ			>>>	
			5:51							
			8:26						} }}	
214.1	34.8	5.0	13:12	(5.0)	(5.0)	RUN 4	 			(2 joints at 40° with clay, quartz, and orange Fe stain; 2 joints at 60-70° with trace clay)
			9:34	100%						(2) since at 10 marsias, quarte, and oronge 10 stain, 2 jointo at 00 70 mar table oray,
			3:26							
			3:29							
			5:25						/// _	
209.1	39.8	5.0	4:26	(5.0)	(5.0)	RUN 5				(1 joint at 40° with trace clay)
		0.0	3:50		100%					(1 John at 40 With trace day)
			3:58				<u> </u>		}	
			3:40							
			3:55							
204.1	44.8	5.0	3:49	(5.0)	(5.0)	RUN 6				(2 joints at 30-40° with trace clay and orange Fe stain)
		0.5	4:51	100%		1.0140				(2 Jointo at 50-40 With trace clay and crange re stail)
			4:23			}	ţ		}	
			_		1					
			5:00							_
199.1	49.8		6:14	ļ						199.1 49.8
									-	Boring and Coring terminated at 49.8 ft in Hard Rock: Very slightly weathered to fresh, moderately closely fractured, very hard, Quartz Gneiss with biotite (5%) and trace magnetite
					Ì					Bits Used: 3" Roller cone; N-size core bit (Face discharge, diamond impregnated)
			1							Drilling Fluid: Water
									-	Borehole filled by grouting 12/13/02
										•
				1	1					İ
	1				1					2.7.45

GEOTECHNICAL BORING LOG SHEET 1 OF 3

GEOTECHNICAL BORING LOG SHEET 2 OF 3

SECH	TEL PRO	JECT I	NO. 24	830	MACTE	C PROJ	ECT NU	JMBER:	30720	2-5400	COU	NTY	LOU	ISA, VA	GEOLOGIST M. L	ear	
PROJE	ECT NAM	ΛE	NORT	H ANN	IA ESP											WATER	LEVEL (ft)
BORIN	IG NO.	B-802														0 HR.	5.2
OLLA	AR ELEV	. 271.	ft (N	AVD 88) NOR	THING	3,909,	956.90	(NAC	83) E	ASTIN	G 11	,686,3	880.81	(NAD 83)	24 HR.	3.4
	. DEPTH					HINECME				METH					HAMMER TYPE	140 lb. M	lanual, #5
	STARTE		/9/02			COMPL								H N/A			,
LEV.	DEPTH		OW COL	JNT	<u> </u>		LOWS PI				SAMP.		L				
(ft)	(ft)	0.5ft	0.5ft	0.5ft	ļ	20	40	60	80	100		MOI	0		SOIL AND ROCK D	ESCRIPTION	1
					1							14.01					
234.1	37.4				-	Continu	ed from	previou	is page	· ·		-	-	На	rd Rock: Dark gray, sli	ahtly weather	ed to
	1													fre	sh, very closely to mod	lerately closel	У
	ļ									* -					ctured, hard, BIOTITE intinued)	QUARTZ GN	EIOO
-	1																
_	ļ																
	1																
	_]													
-																	
	1																
_	1																
	1																
	Ĺ																
•																	
	Ī																
-	†													-			
•	Ť																
•	<u> </u>																
	†																
	Ť													215.5	rd Rock: Gray and pink	C locally with	orange
-	†													Fe	stain, slightly weathers	ed, verv close	lv to
	†													mo GN	derately closely fracture (5%)	ied, nard, QU/)	AKIZ
	†										ļ						
,	t																
	†																
-	†											1	>>>	-			
	+																
	†												///				
	+																
	+	-			1												
_	+									* *			}	-			
	+																
	+				' ' '								}				
	1																
	+		İ								l	1					
_	_													200.2	rd Rock: Dark gray, ve	ny eliahtly was	athered
													>>>	to	fresh, closely to moder ctured, hard, BIOTITE	ately closely	EICC
	l													tra	ctured, nard, BIOTITE	QUARTZ GN	EISS
196.7	74.8																

GEOTECHNICAL BORING LOG SHEET 3 OF 3

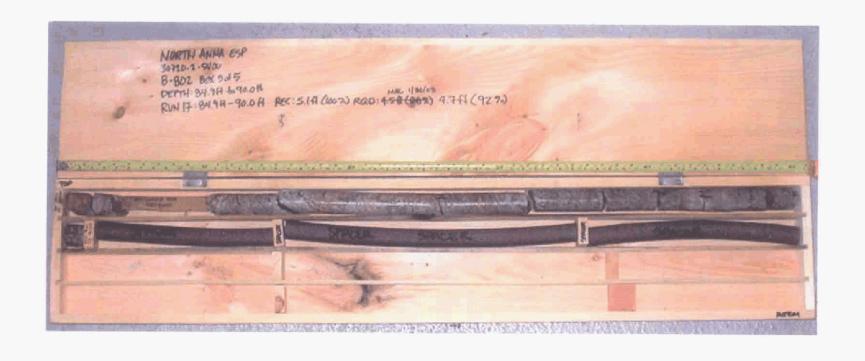
BECHT	TEL PRO	JECT	NO. 24	4830	MAC	CTEC PROJ	ECT NUME	BER: 3072	0-2-5400	COU	NTY	LO	UISA, VA	GEOLOGIST M.L	ear	
PROJE	ECT NAM	1E	NOR	TH ANN	IA E	SP									WATER	LEVEL (ft)
ORIN	IG NO.	B-802													0 HR.	5.2
OLLA	AR ELEV	. 271.	5 ft (N	AVD 8	B) N	ORTHING	3,909,956	.90 (N	AD 83)	EASTIN	IG 11	,686	,380.81	(NAD 83)	24 HR.	3.4
												HAMMER TYPE	140 lb .l	Vianual, #5		
	STARTE		2/9/02				ETED 12/						TH N/A		17015.1	Tandai, "O
LEV.	 		OW CO	LIMIT	т				JUKI			1 L	10 10//			
		0.5ft	0.5ft	0.5ft	SOIL AND ROCK D									ESCRIPTIO	N	
(ft)	(ft)	บ.ธณ	0.51	0.511	ļĬ			<u></u>		NO.	MOI	G				
196.7	74.8					Continue	ed from pre	evious pa	ge							
	<u> </u>				1									Hard Rock: Dark gray, ve	ry slightly we	eathered
					1						1		f	to fresh, closely to moder fractured, hard, BIOTITE	QUARTZ GI	NEISS
	Γ												((continued)		
	T				.											
•	Ť												- 1			
	†		1		1.											
	†												<u> </u>			
-	+												-			
	+												_			
	+															
	+												186.6			
	1				.								1	Hard Rock: Gray, slightly	to very sligh	tly
_													L_ f	weathered, closely to mo fractured, hard, QUARTZ	GNEISS wit	eiy th Biotite
													((5%)		
	Ť															
	†												-			
					_								181.5			
	†												I	Boring and Coring terminations Rock: Slightly to very slig	htly weather	ed,
-	+												(closely to moderately clos Quartz Gneiss with biotite	sely fractured	d, hard,
	ļ.											1	-			hit /Face
	1													Bits Used: 3" Roller cone discharge, diamond impre		on (race
	1												- 1	Drilling Fluid: Water		
														Borehole filled by grouting	12/12/02	
													<u>_</u> '	boreriole filled by grouting	g 12/13/02	
-																
	Ť															
	†												ļ			
	†												-			
	+												-			
-	+												H			
	+												-			
	1			•									-			
	1												<u> </u>			
	T															
-	†		1													
	+												}			
	+												ļ-			
	+												-			
	1												L			
													L			
159.3	112.2		1	1								1	1			

CORE BORING REPORT SHEET 1 OF 3

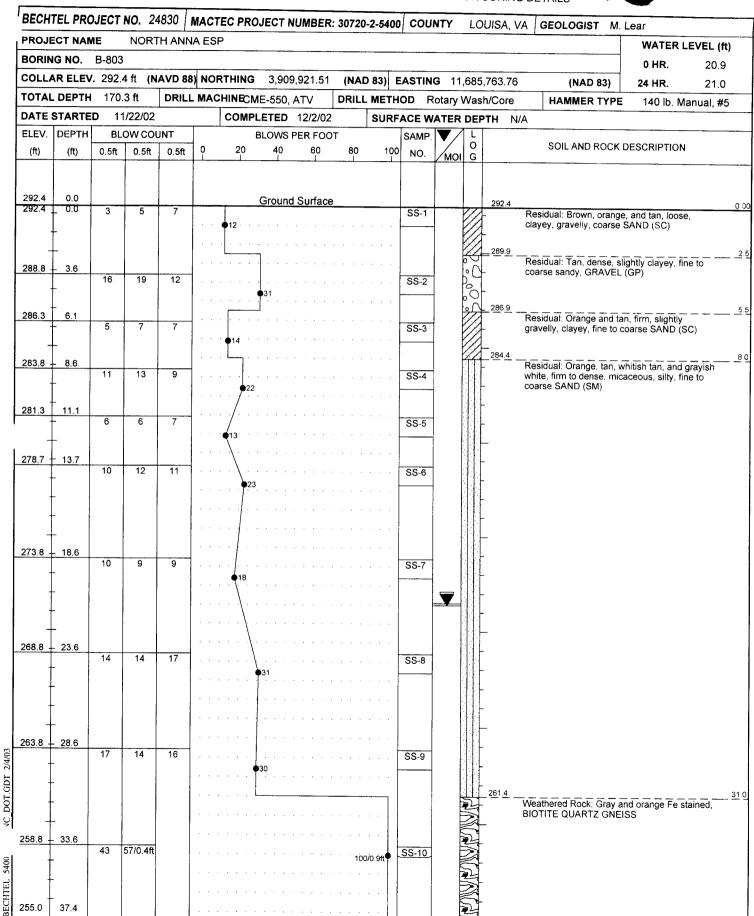
	RALEIG		NO. 248	30 M	ACTE	C PROJE	CT NI	IMRES	2: 307	0-2-5400 COU	NTY	יייטו	SA, VA	GF	OLOGI	ST M	l l ea	or		
	CT NAN		NORTH					MOEL	. 507	.0-2-0400 000	IN I I	LOUI	SA, VA	GE				WATER	R LEV	'EL (ft)
	G NO.			- THINA								 -					1	O HR.	٧	5.2
				(5.00)	NOD	TUNG	2 000	056.0		(NAD 00)	FACTING	2 11	606.20	20.01	/N/	ND 021	┨.	24 HR.		3.4
			5 ft (NA		1			,956.9		(NAD 83)						AD 83)				
	DEPTH			DRILL		INE CM				LL METHOD					AMMER	ITPE	140) lb. Ma	nuai,	#5
	STARTE		2/9/02			COMPLE			J2	SURFACE			H N/A	·						
CORE	SIZE N	IQ	DBILL	RU		TOTAL R		31.7 ft RATA	L	DRILLER	C. Pendie	ey				 .				
ELEV. (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft)	RQD (ft) %	SAMP. NO.	REC. (ft) %	RQD (ft) %	Ö G			D	ESCRIP	TION	AND RE	MARKS	·			
			_										Begir	Cori	ng @ 8.	3 ft				
263.2	8.3	1.6	2:29	(1.6) 100%	(0.5) 31%	RUN 1				263.2 Hard Ro moderat	mode . mode	rately se erately h	vere to	o ⁸ hard.						
261.6	261.6 9.9	F 0	1:19/0.6 1:43			RUN 2	-			BIOTITE	QUARTZ at 50-60°	Z GNE	ISS	-			,	,		
		5.0		(4.3) 86%	(2.1) 42%	RUN 2	}]	>>>	(11 joints	at 50-60°	o with	clay and	orang	e Fe stai	n: 5 ioin	nts at (0-10° witl	h clay	and
			1:40							orange i 12.0ft)	orange Fe stain; Severely weather 12.0ft)	erea tr	acture zo	one with	n no re	ecovery r	rom 1	.3π to		
			2:03			Ē	1		}											
			1:53			ĺ	ļ													
256.6	14.9		1:48		<u></u>															
		5.0	1:15	(4.0) 80%	(2.3) 46%	RUN 3			 		at 50-60° [,] ecovery fr				Fe stain	; Severe	ely we	eathered	fractu	e zone
			1:22	3578	,570							17		. 21.7						
			1:05						}											
			1:17																	
			1:15	1		1														
251.6	19.9	5.0	1:04	(4.5)	(3.6)	RUN 4	1				at 50-60°								stain;	Severely
			1:00	90%	72%					weather	ed fracture	e zone	with no	recove	ery from	24.4ft to	24.91	ft)		
			1:11																	
			1:20																	
			1:45					1												
246.6	24.9	5.0	2:11	(4.8)	(3.9)	RUN 5	-			(5 ioints	at 50-60°	with h	rown an	d oran	ne Fe sta	ain: 1 ini	int at 7	70-80° wi	ith ora	nge Fe 2
		3.0	1:32	96%	78%	11011				\stain)	ck: Dark g									-
			Ì							fracture	i, hard, Bi	IOTITE	QUAR	TZ GN	EISS	311, 1 01 y	0.000	,, 10 1110	30 1410	, 0,000,
			1:24		ļ															
		1	1:24			1														
241.6	29.9		1:30	1			1		>>>	(40::1		.0		-	4-:>					
		5.0	1:31	(5.0) 100%	(4.4) 88%	RUN 6		1		(10 joint	s at 40-50	י with	trace ora	ange F	e stain)					
			1:38						}	-										
			1:33																	
			1:53																	
236.6	34.9		1:56						>>>											
	3-1.0	5.0	1:17	(4.4) 88%	(4.2) 84%	RUN 7	7			(1 joint a	at 68° with 9ft to 38.5	clay a	ind quar	tz; Sev	erely we	athered	fracti	ure zone	with n	o recovery
			1:19	00%	3470				}		J. 10 00.c	-11								
			1:34																	
			1:50		1															
			1:33		1															
231.6	39.9	5.0	1:27	(5.0)	(3.3)	RUN 8	+			(11 joint	s at 0-10°	with t	ace clay	and b	rown Fe	stain; 4	i joints	s at 50-6	o° with	trace clay
		1	1:55	(5.0) 100%	66%					1 joint a	t 70° with	clay a	nd chlori	ite)						
			1:45							-										
			2:01																	
			\																	
226.6	44.9		1:53	<u> </u>	1,000	DI 111 C	4			(0 t-t s	-1 40 50°	، الله ا		, <u>a</u> l-1.	المستعددة	ا اممه		no E	nín)	
	<u> </u>	5.0	1:54	(5.0)	(4.8)	RUN 9	1		1111	(3 joints	at 40-50°	with t	ace clay	y, cnio	ite, and	reu and	orano	je re sta	att1)	2.5

CORE BORING REPORT SHEET 2 OF 3

PROJ	TEL PRO ECT NAM IG NO.	IE:	NO. 248			C PROJE	> I NU	JWIBER	(, 307,	20-2-5400 COL	JNTY LOUISA,	VA OLO	DLOGIST M.	WATER L	EVEL (ft) 5.2
	AR ELEV		ft (NA	VD 88)	NOR	THING	3.909	,956.9	0	(NAD 83)	EASTING 11,686	5,380.81	(NAD 83)	24 HR.	3.4
	L DEPTH					INE CME					Rotary Wash/Core	e HAI	MMER TYPE	140 lb. Manua	al, #5
	STARTE		2/9/02			COMPLET			02	SURFACE	WATER DEPTH	N/A			, , , , , , , , , , , , , , , , , , , ,
	SIZE					TOTAL R				DRILLER	K. Pendley				
			DRILL	RL	JN	SAMP.	STF	RATA	L						
ELEV. (ft)	DEPTH (ft)	RUN (ft)	RATE (Min/ft)	REC. (ft) %	RQD (ft) %	NO.	REC. (ft) %	RQD (ft) %	0 G		DESC	RIPTION AI	ND REMARKS		
			_ <u>``</u>	1							Contin	ued from i	previous page	<u>,</u>	
			1:42	100%	96%	-			111	Hard R	ock: Dark gray, slightl	y weathered	d to fresh, very	closely to modera	itely closely
			1:43							- fracture	d, hard, BIOTITE QU	ARIZ GNE	155 (continuea)		
			1:48												
			1:56												
221.	6 49.9	5.0	1:32	(5.0)	(5.0)	RUN 10			>>>	(1 joint	at 60°)				
		3.0	1:34	100%						Ç: y =::::	•				
	1		1:39				ı			-					
			1:36												
			1:43					f							
216.	6 54.9	5.0	1:14	(5.0)	(4.0)	RUN 11				(4 joint	s at 50-60° with brown	n Fe stain; 4	joints at 30-40°	with brown Fe s	tain)
		3.0	1:42	100%						215.5 Hard R	ock: Gray and pink, lo	ocally with o	range Fe stain,	slightly weathers	ed, very closel
			1:58							to mod	erately closely fractur	ed, hard, QI	UARTZ GNEIS	S with Biotite (5%	o)
			2:17												
			2:15												
211.	6 59.9	5.0	1:37	(5.0)	(3.6)	RUN 12				(6 joint	s at 30-40° with trace	clay; 2 joint	ts at 50-60° with	brown Fe stain;	1 joint at 70°
			1:43	100%						with cla	ay, quartz, and red Fe	e stain)			
			1:40												
			2:20							_					
			2:51							_					
206	.6 64.	9 5.0	2:40	(5.0)	(4.0) RUN 13				(5 join	s at 30-40° with orang	ge Fe stain;	4 joints at 0-10	with trace clay;	1 joint at 60°
			2:45	100%	80%	ć l				with cl	ay, quartz, and orang	e re stain)			
1			2:43							_					
			2:36							-					
	ļ		2:55							_					
201	.6 69.	5.0	2:35	(5.0)) RUN 14	+			_ (3 join	ts at 40-50° with trace	clay)			
			2:52	100%	96%	6				200.2	Rock: Dark gray, very	slightly wes	athered to fresh	closely to mode	rately closely
			2:43					ĺ		fractui	ed, hard, BIOTITE Q	UARTZ GN	EISS		,
			2:45							_					
			2:15					-		_					
196	6.6 74	9 5.0	1:23	(5.0)		3) RUN 15	-			(11 jo	nts at 30-40° with bro	wn Fe stain	; 2 joints at 50-6	60° with trace clay	()
			1:27	100%	729	%				<u> </u>					
}			1:21			1				_					
			1:18					1		<u> </u>					
1			1:05												
19*	1.6 79	5.0	1:13	(5.0)	(4.					(4 joir	its at 30-40° with trace	e clay and o	orange Fe stain;	2 joints at 60-70°	with trace
			1:18	100%						Clay a	nd chlorite)				
l			1	-		I	1	- 1	D>>>	Γ					


CORE BORING REPORT SHEET 3 OF 3

	RALEIG		NO. 248	30 84	ACTE	C PPO IE	CT NI	IMBER	30720	-2-5400 COUNTY LOUISA, VA GEOLOGIST M. Lear
	CT NAM		NORTH					MOER	. 50720	-2-5400 COUNTY LOUISA, VA GEOLOGIST M. Lear WATER LEVEL (ft)
	IG NO.				, <u>L</u> UF					0 HR. 5.2
				VD 99)	NOE	THING	2 000	056.00		(NAD 83) EASTING 11,686,380.81 (NAD 83) 24 HR. 3.4
	DEPTH					HINE CME				- METHOD Rotary Wash/Core HAMMER TYPE 140 lb. Manual, #5
		-	2/9/02	DRILL		COMPLE			<u> </u>	SURFACE WATER DEPTH N/A
	STARTE		2/9/02			TOTAL R				DRILLER K. Pendley
	SIZE N		DRILL	RU	JN		STR	ATA	L	DRILLER A. Felidley
ELEV. (ft)	DEPTH (ft)	RUN (ft)	RATE (Min/ft)	REC. (ft) %	RQD (ft) %	SAMP. NO.	REC. (ft) %	RQD (ft) %	Ö G	DESCRIPTION AND REMARKS
										Continued from previous page
			1:20						<u> </u>	Hard Rock: Dark gray, very slightly weathered to fresh, closely to moderately closely
186.6	84.9		1:20						/// ₁	fractured, hard, BIOTITE QUARTZ GNEISS (continued) 86.6 84.9
		5.1	1:24	(5.1) 100%	(4.7) 92%	RUN 17				Hard Rock: Gray, slightly to very slightly weathered, closely to moderately closely fractured, hard, QUARTZ GNEISS with Biotite (5%)
			1:21		,					(4 joints at 30-40°; 1 joint at 70° with chlorite)
			1:23						}}}	
			1:30							
104 5	90.0		1:57/1.1						///.	31.5 90.0
181.5	90.0									Boring and Coring terminated at 90.0 ft in Hard Rock: Slightly to very slightly weathered, closely to moderately closely fractured, hard, Quartz Gneiss with biotite (5%)
										Bits Used: 3" Roller cone; N-size core bit (Face discharge, diamond impregnated)
										Drilling Fluid: Water
							ĺ]		Borehole filled by grouting 12/13/02
			t					1		Borefide filled by grouning 12/15/02
		,				1				
						1			L	
							[<u></u>	
				Ì						
			1				İ	1		
				ŀ						
									-	
									-	
									-	
									-	
									-	
									}	
									-	
		ŀ							-	
									-	
									-	
									-	
			<u> </u>				<u> </u>	<u> </u>		2.5.4B



														JISA, VA	GEOLOGIST M. L		
	CT NAI			H ANN	IA ESP											WATER	LEVEL (ft)
		B-803														0 HR.	20.9
COLLA	R ELE	V. 292.4	ft_(N	AVD 88	NOR	THING	3,909,	,921.51	(NAC	83)	EASTIN	G 11	,685,	763.76	(NAD 83)	24 HR.	21.0
TOTAL	DEPTH	H 170.	3 ft	DRIL	L MAC	HINECME	Ξ-550, <i>A</i>	ATV -	DRILL	METH	IOD R	otary \	Wash	n/Core	HAMMER TYPE	140 lb. M	lanual, #5
DATE S	STARTE	ED 11	/22/02	-		COMPL	ETED	12/2/02						TH N/A			
ELEV.	DEPTH	BLO	ow co	JNT	T	В	LOWS P	ER FOO	T		SAMP.	1	L				
(ft)	(ft)	0.5ft	0.5ft	0.5ft	o P	20	40	60	80	100	NO.	MOI	0		SOIL AND ROCK D	ESCRIPTION	ı
													Ť				
255.0																	
255.0	37.4	ļ				Continu	ed from	previou	s page				5	10/6	eathered Rock: Gray ar	d oronge Fe	-4-:
253.8	- 38.6	50/0.5ft]	00.11		3	BIG	OTITE QUARTZ GNER	SS (continued	stained, ()
+	_	30/0.510							100	0/0.5ft♥	SS-11	1	5				
+	_																
+	_												5				
4	_													_			
248.8													5				
1	_	50/0.2ft							100	0/0.2ft♥	SS-12/						
1	_												24				
1	_																
1	_												2				
040.0	- 40.0													-			
243.6	48.8	50/0.0ft							- 100	0/0.0ft	SS-13		3	243.6 Hai	rd Rock: Grayish white,	slightly to ye	n/
													}	slig	htly weathered, closely sely fractured, hard, QL	to moderatel	v.
T	-												M		tite (5%)	JAKIZ GNER	SS WITH
1	-																
T	-												$\parallel \parallel$	-			
	-																
†	-												}				
†	-																
†	-																
+	-												}}}	-			
+	-													233.9	rd Rock: Gray, very slig	hthrusathara	
t	-												}	clos	sely to moderately close	ely fractured,	very
+												į.	\mathbb{W}	232.0	d, QUARTZITE d Rock: Gray and pink	locally with -	, tongo
+	.												}	Fe	stain, verv slightly weat	thered to frest	1 verv
+	-													- har	sely to very widely fract d, QUARTZ GNEISS w	ith Biotite (5%	6) and
+	.												///	Ma	gnetite (trace to 1%) an	d trace pyrite	
1																	
1	.											k					
1													}				
1	_																
1													///				
T																	
Ţ													}				
†												(
+											ļ		}}}	-			
1			1									- 6	1//				

GEOTECHNICAL BORING LOG

SHEET 3 OF 5

	EL PRO		10. ~	000		ILUFAC	JOECT N	UMBER:	30720	-2-3400	COO	NII	LUU	ISA, VA GEOLOGIST M	LCai	
PROJE	CT NAM	1E	NORT	H ANN	A ES	SP									WATER	LEVEL (ft)
BORIN	G NO.	B-803													0 HR.	20.9
COLLA	R ELEV	. 292.4	ft (N	AVD 88) NO	RTHING	3,909	,921.51	(NAC	83) E	ASTIN	G 11,	,685,7	(NAD 83)	24 HR.	21.0
TOTAL	DEPTH	170.3	3 ft	DRILL	MA	CHINECK	лЕ-550, <i>А</i>	ATV	DRILL	. METH	OD R	otary \	Wash/	Core HAMMER TYPI	140 lb. N	lanual, #5
DATES	STARTE	D 11	/22/02			COMP	LETED	12/2/02		SURF	ACE W	ATER	DEPT	'H N/A		
ELEV.	DEPTH	BLC	ow cor	JNT			BLOWS P	ER FOO	Γ		SAMP.	\mathbf{V}	L	CON AND DOOR	DECORIDATION	
(ft)	(ft)	0.5ft	0.5ft	0.5ft	O	20	40	60 	80	100	NO.	MOI	O G	SOIL AND ROCK	DESCRIPTION	
217.6	74.9					Contin	ued from	nreviou	e nage							
Continued from previous page Hard Rock: Gray and pink, locally with orang Fe stain, very slightly weathered to fresh, very closely to very widely fractured, hard to very hard, QUARTZ GNEISS with Biotite (5%) and Magnetite (trace to 1%) and trace pyrite (continued)								orange								
										closely to very widely f	eathered to free actured, hard to	sn, very o very				
					٠.									. Magnetite (trace to 1%	S with Biotite (5 and trace pyrit	i%) and e
														(continued)		
	L															
]																
]								, .								
											1					
-																
1				1												
-																
•																
_														-		
•	Ţ															
-																
•				ĺ												
•																
_	<u> </u>													-		
-	<u> </u>															
-	†															
•	t															
	†															
-	+			1										-		
-	†															
•	<u> </u>												}			
	†															
	+															
-	+												 	_		
	+									l						
	+												>>>			
	+						* * * *									
				1												

PROJECT NAME NORTH ANNA ESP WATER LE BORING NO. B-803 0 HR. COLLAR ELEV. 292.4 ft (NAVD 88) NORTHING 3,909,921.51 (NAD 83) EASTING 11,685,763.76 (NAD 83) 24 HR.	BECHTE	EL PRO	JECT	NO. 24	4830	MAC	TEC PRO	JECT N	UMBER:	30720	-2-5400	cou	NTY	LOUIS	SA, VA	GEOLOGIS	ST M. L	ear	
COLLAR ELEV. 292.4 ft (NAV 88) NORTHING 3,909,921.51 (NAD 83) EASTING 11,685,763.76 (NAD 83) 24 Hr.	PROJEC	CT NAM	/E	NOR1	TH ANN	IA E	SP					J							LEVEL (ft)
170.3 DRILL MACHINECME-550, ATV	BORING	G NO.	B-803																20.9
TOTAL DEPTH 170.3 ft DRILL MACHINECME-550, ATV DRILL METHOD Rotary Wash/Core HAMMER TYPE 140 lb. Ma	COLLAR	R ELEV	. 292.	4 ft (N	AVD 88	B) NO	ORTHING	3,909	,921.51	(NAE	93) E	ASTIN	G 11	,685,76	3.76	(NA	D 83)	24 HR.	21.0
DATE STARTED 11/22/02 COMPLETED 12/2/02 SURFACE WATER DEPTH N/A	OTAL	DEPTH	170.	3 ft	DRILL	L MA	CHINECK	1E-550.	ATV	DRILL	METH	OD F	Rotary \	/Vash/C	ore	HAMME	R TYPE	140 lb.	Manual, #5
(ft) (ft) 0.5ft 0.	OATE S	TARTE	D 11	/22/02							SURF	ACE W	ATER	DEPTH	I N/A	<u> </u>			
(ii) (ii) 0.5it 0.	ELEV. [DEPTH	BL	ow co	UNT	T		BLOWS F	PER FOO	Т	·	SAMP	V /	L		COU AND		ESCRIPTIC	
Fastan crys glighty weatherest to fresh charcose to consider the consideration of the status and the consideration of the consideration	(ft)	(ft)	0.5ft	0.5ft	0.5ft	P	20	40	60 L	80	100	NO.	MOI			SOIL AND	ROCKD	ESCRIPTIC	·N
Fe stain, very slightly weathers to fresh orders to stain orders to stain orders to stain orders to stain orders to stain orders to stain orders to stain orders to stain orders to stain orders to stain orders to stain orders to stain orders to stain orders to stain orders to stain orders and the stain orders to stain orders and the stain orders are printered to stain orders and the stain orders are printered to stain orders and the stain orders are stained to stain orders and the stain orders are stained to stain orders are stai					Ì							l							
Fe stain, very slightly weathers to fresh calcally with of Fe stain, very slightly weathers to fresh calcally to usery wide lytter and the stain calcally the stain of the stain calcally the stain of the stain calcally the stain of the stain calcally the stain of the stain calcally the stain of the stain calcally the stain of the	180 2	112.2	F		1		Contin	ued fron	n previou	ıs paqe	•								
closely to very widely fractured, hard to via hard, QUARTZ ON ISS with Bottle (SV) Magnetite trace to 1%) and trace pyrite (certificial).	-	-				1									Ha	rd Rock: Gra	ay and pink	c, locally with	n orange
Magnetic (trace to 1%) and trace pyrite (continued)	†	-													clo	sely to very	widely frac	tured, hard	to very
	t	-													Ma	agnetite (trac	e to 1%) a	nd trace pyr	ite
	+	-													(CC	ontinuea)			
	t	_																	
	+	_				.						ļ							
	+	-										1							
	+	-												 					
	ł	-																	
	+	_	}																
	+					'						}							
	+	-											-						
	+	_																	
	+	-																	
	+	-				1													
	+	_												>>>					
	+	_																	
	+	-				'													
	+	-																	
	+	-				1													
	+	-																	
	+	_				,													
	+	-				1													
	1	-																	
	1	_	•																
	1	_				1.													
	1	_																	
		-																	
		<u> </u>										1							
		_				-													
au	Ī																		
	Ť					.					,	1							
	†	T										1							
	+	Ţ											}						
142.8 149.6	1428	140 6				1.													

JECH1	EL PRO	JECT N	10. 2	4830	MAC	TEC PROJ	JECT NUI	MBER:	30720-2	-5400	cou	NTY	LOI	UISA, VA GEOLO	GIST M. L	.ear	
PROJE	CT NAN	tΕ	NOR:	INA HT	NA ES	SP										WATER	EVEL (ft)
BORIN	G NO.	B-803														0 HR.	20.9
COLLA	R ELEV	. 292.4	ft (N	NAVD 8	8) NC	ORTHING	3,909,9	21.51	(NAD	33) E	ASTIN	G 11	,685,	,763.76 (1	NAD 83)	24 HR.	21.0
OTAL	DEPTH	170.	3 ft	DRIL	L MA	CHINECME	E-550, A1	rv	DRILL I	METH	DD R	otary \	Vasi		MER TYPE	140 lb. M	anual, #5
DATE S	STARTE	D 11.	/22/02				ETED 1		$\overline{}$					TH N/A			
ELEV.	DEPTH	BLC	ow co	UNT	T		LOWS PE				SAMP.		L				
(ft)	(ft)	0.5ft	0.5ft	0.5ft	7 0	20	40	60	80	100	NO.	MOI	O G	SOIL A	ND ROCK D	ESCRIPTION	
					T												
440.0	4.50					0 4'											
142.8	149.6			-	+ -	Continu	ed from p	oreviou	s page	- 1-			100	Hard Rock:	Grav and pink	k, locally with	range
	-								,				>>>>	 Fe stain, ve 	y slightly wea	athered to fres	h, very
_														− hard, QUAR	TZ GNEISS	with Biotite (59	%) and
-	-													(continued)	ace to 1%) a	nd trace pyrite	•
1	-]	M	-			
1	-	ŀ												-			
-	<u> </u>	į								.			 	-			
-	-													-			
-	-									.				_			
	-				' '					1			\gg	-			
-	-	ſ			' '					1				-			
1	-	ļ								.			} }}	_			
-	-									.				=			
-	_									.				_			
-	-									-			\gg	_			
4	-	ĺ								-				-			
-	-									.				_			
4	<u> </u>													_			
_	_									.				_			
	_									.			\gg	_			
		i		ĺ										-			
					<u> </u>									122.1			
														Boring and 0 Hard Rock:	Coring termina	ated at 170.3 fidely fractured	t in
1	-	l												hard, Quartz	Gneiss with %) and trace	biotite (5%),	,,
1		ļ															i4 /5
1	[]	j													iamond impre	; N-size core b egnated)	it (Face
1	- 													Drilling Fluid	: Water		
t	-													Borehole fille	ed by grouting	12/9/03	
1	- 1													· · · · · · · · · · · · · · · ·	, 5. 20		
+	-													_			
+	-													-			
ł	- 1													-			
+														-			
+	-													-			
4	-													_			
														-			
4												1		-			
												'		_			
												1					

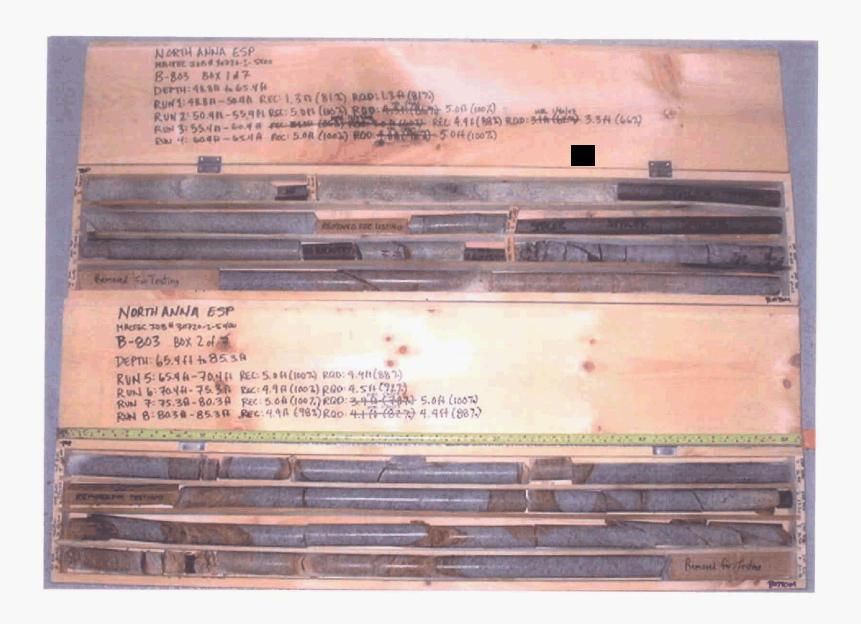
CORE BORING REPORT SHEET 1 OF 4

PROJE	CT NAM	E:	NORTH	ANNA	ESP					WATER LEVEL (ft)
	G NO.									0 HR. 20.9
			·	/D 88)	NOF	RTHING	3.909	921.51	1	(NAD 83) EASTING 11,685,763.76 (NAD 83) 24 HR. 21.0
	DEPTH				L	HINE CME				RILL METHOD Rotary Wash/Core HAMMER TYPE 140 lb. Manual, #5
	STARTE		1/22/02			COMPLE			٠	SURFACE WATER DEPTH N/A
	SIZE N					TOTAL R				DRILLER K. Pendley
	DEPTH	RUN	DRILL		JN		STR	ATA	L	
ELEV. (ft)	(ft)	(ft)	RATE (Min/ft)	REC. (ft) %	RQD RQE%	NO.	REC. (ft) %	RQD (ft) %	O G	DESCRIPTION AND REMARKS
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					79		D O O
243.6	48.8	1.6	2:38	(1.3)	(1.3)	RUN 1				Begin Coring @ 48.8 ft 243.8 Hard Rock: Grayish white, slightly to very slightly weathered, closely to moderately 48
242.0			1:08/0.6	81%	81%					closely fractured, hard, QUARTZ GNEISS with Biotite (5%) (2 joints at 45° with trace clay and white mica)
272.0	5.5. 1	5.0	2:12	(5.0) 100%	(5.0) 100%					(2 joints at 20° with trace clay; 1 joint at 50° with clay and orange Fe stain; 1 joint at 70° with clay and brown Fe stain)
			1:48	100 /6	1007	`				- To William Stown To Stanly
			2:12						\gg	-
			2:21							-
237.0	55.4		2:44							-
201.0	55.4	5.0	3:02	(4.4)	(3.3) 66%					(1 joint at 50° with clay and brown Fe stain; Severely weathered fracture zones with no recovery from 56,9ft to 57,3ft and 58,3ft to 58,5ft - Severe water loss in these
]		2:24	00%	3076					zones for duration of drilling)
			1:10	ŀ						233.9
			3:18							Hard Rock: Gray, very slightly weathered, closely to moderately closely fractured, very
232.0	60.4		6:17							hard, QUARTZITE 232.0 60
_232.0	00.4	5.0	1:53	(5.0)	(5.0)	RUN 4				Hard Rock: Gray and pink, locally with orange Fe stain, very slightly weathered to fresh, very closely to very widely fractured, hard to very hard, QUARTZ GNEISS with
			2:40	100%	100%	•				Biotite (5%) and Magnetite (trace to 1%) and trace pyrite
			3:52							(1 joint at 60° with trace clay, white mica, and brown Fe stain; 2 joints at 30-35° with white mica and orange Fe stain)
			4:25							
	05.4		5:00							
227.0	65.4	5.0	4:13	(5.0)	(4.4)					(7 joints at 0-10° with white mica and orange Fe stain; 1 joint at 30° with white mica)
			4:33	100%	88%	'				
			5:16							
			4:56							
			5:59							
222.0	70.4	4.9	6:27	(4.9)	(4.5)					(3 joints at 0-10° with white mica and grange Fe stain; 2 joints at 30-35° with white
			5:40	100%	92%	·				mica and orange Fe stain; 1 joint at 60° with clay and brown Fe stain)
			5:44							
			6:02							
247			8:21/0.9							
217.1	75.3	5.0	6:36	(5.0)	(5.0)	RUN 7				(1 joint at 40° with clay and orange Fe stain; 2 joints at 70° with clay, orange Fe stain,
			7:43	100%	1009	6				and Mn oxide; 1 joint at 80-85° with orange Fe stain)
			7:55)	
212.1			10:05							}
			12:53	}						1
212.1	80.3	5.0	1:45	(4.9)	(4.4) RUN 8	-			(3 joints at 0-10° with white mica, clay, and brown Fe stain; 1 joint at 45° with brown
			1:53	98%						Fe stain; 1 joint at 75° orange Fe stain; Severely weathered fracture zone from 81.0ft to 81.3ft)
			3:00							
			2:56							1
207.1			2:25			-				-
207.1	85.3	5.0	2:41	(5.0)	(5.0) RUN 9	-			(1 joint at 70° with trace clay)
L	<u> </u>	1 0.0		(0.0)	1,5.0	/ / // //			KKK	1 (1) June 2017 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

CORE BORING REPORT SHEET 2 OF 4

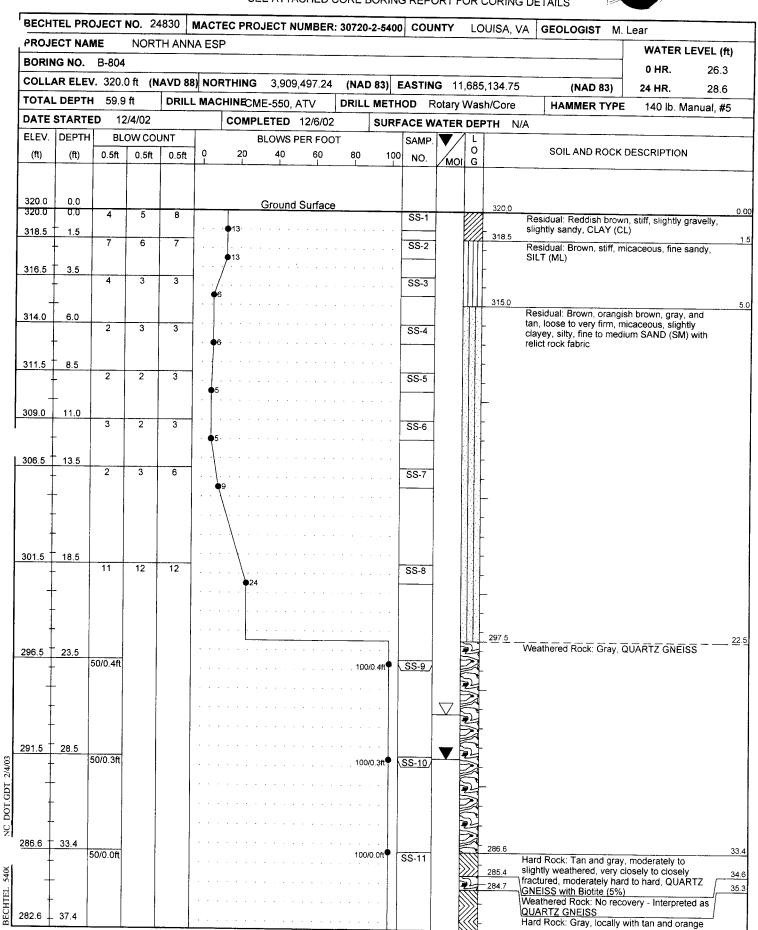
	RALEIG			20 ==	40==	O BBO 15	OT 111	IMPES	20=-	0.2.5400 COUNTY LOUISA VA CECLOCICE M. I.
			NO. 248				CINU	MREK	3072	0-2-5400 COUNTY LOUISA, VA GEOLOGIST M. Lear
	CT NAM		NORTH	ANNA	ESP					WATER LEVEL (ft)
	IG NO.				T			004.54		0 HR. 20.9
			4 ft (NA		L			,921.51	т	(NAD 83) EASTING 11,685,763.76 (NAD 83) 24 HR. 21.0
	DEPTH			DRILL		HINE CME			ــــــــــــــــــــــــــــــــــــــ	L METHOD Rotary Wash/Core HAMMER TYPE 140 lb. Manual, #5
	STARTE		1/22/02			COMPLE				SURFACE WATER DEPTH N/A
CORE	SIZE N		DRILL	RU		TOTAL R	STF	121.5 π RATA	T	DRILLER K. Pendley
ELEV. (ft)	DEPTH (ft)	RUN (ft)	RATE (Min/ft)	REC. (ft) %	RQD (ft) %	SAMP. NO.	REC. (ft) %	RQD (ft) %	O G	DESCRIPTION AND REMARKS
										Continued from previous page
			2:58	100%	100%	,				Hard Rock: Gray and pink, locally with orange Fe stain, very slightly weathered to fresh, very closely to very widely fractured, hard to very hard. QUARTZ GNEISS with
			2:21							Biotite (5%) and Magnetite (trace to 1%) and trace pyrite (continued)
			3:35						}	
202.1	90.3		3:53							
202.	33.5	5.0	3:04	(5.0) 100%	(5.0) 100%	RUN 10				(1 joint at 75° with clay and chlorite)
			3:47	100%	100%				}	
			7:56						$\langle\!\langle\!\langle$	
			6:05						}	
197.1	95.3		6:26							
197.1	95.3	5.0	7:13	(5.0)	(5.0)					(1 joint at 80-90° with trace clay and brown Fe stain; 1 joint at 50° with brown Fe stain)
			8:11	100%	100%	`			}	
			8:09							
)	9:45				Ì		<i>}}</i>	
400.4	100.0		15:22							
192.1		1.0	29.20	(1.0)	(1.0)	RUN 12				(No joints)
191.1	101.3	4.0	3:07	(4.0)	(4.0)	RUN 13			}	(1 joint at 50°)
			2:08	100%	100%					
			2:07							
407	405.2		2:08						}	
187.1	105.3	5.0	2:05	(5.0)	(5.0)					(No joints)
			2:10	100%	100%	0	;			
			2:22						}	
			2:34							
182.1	110.3	-	2:31						}	
102.	110.3	5.0	2:55	(5.0)	(5.0)					(1 joint at 30° with coarse white mica)
			3:05	100%	100%	0				
			3:06						}}	
			3:50							
477 -	1450		4:28							
177.	115.3	5.0	3:49	(5.0)	(5.0)	RUN 16	1		 	(Coarse quartz and potassium feldspar vein/zone from 115.3ft to 116.3ft at 65°)
			7:09	100%	100%	Ö				
			11:48						}	
			22:34							
			7:35							
172.	1 120.3	5.0	3:45	(5.0)	(5.0)	RUN 17	1		 	(1 joint at 55° with chlorite mineralization)
			2:03	100%	100%	6				
			2:06						}	
		<u> </u>	<u></u>	Ш.				<u></u>		2.5.4E

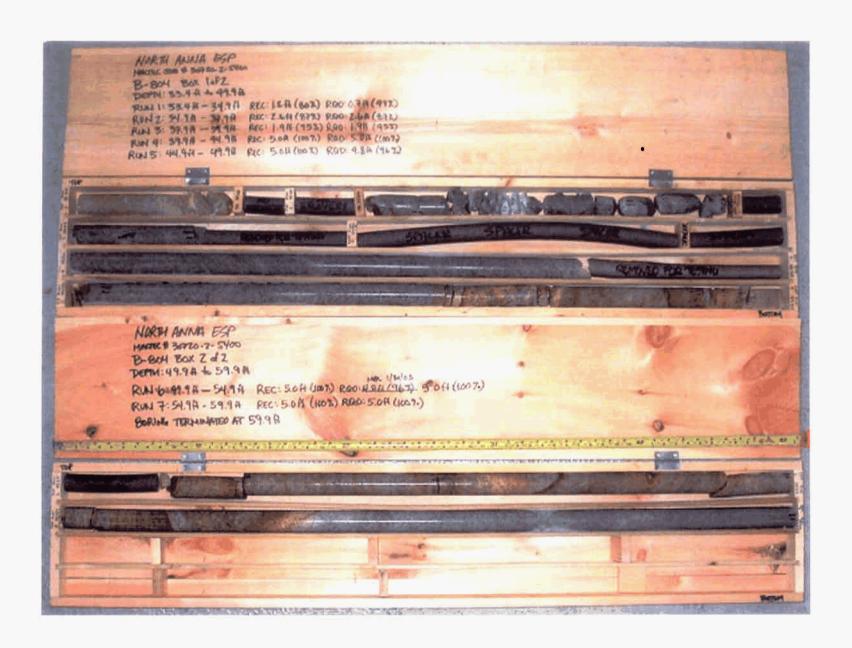
CORE BORING REPORT SHEET 3 OF 4


	RALEIG			200	16==	0.000:-	OT		- 00==	0.0.00									
			NO. 248			C PROJE	CT NUI	MBER	: 3072	0-2-5400 CO	YTAC	LOUISA,	VA	GEOL	OGIST	M, L			
	CT NAM		NORTH	H ANNA	ESP											\dashv			VEL (ft)
	IG NO.				τ												0 H		20.9
			4 ft (NA		٠		3,909,			(NAD 83)		3 11,685			(NAD 8		24 H		21.0
TOTAL	. DEPTH			DRILL		IINE CME				L METHOD	<u>-</u>	Vash/Core		HAM	MER TY	PE	140 lb.	Manual	, #5
DATE	STARTE	D 1	1/22/02			COMPLE				SURFACE			N/A						
CORE	SIZE N	1Q		DI	JN .	TOTAL R	UN 12			DRILLER	K. Pendl	еу	<u></u> .						,
ELEV. (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC.	RQD (ft)	SAMP. NO.	REC. (ft) %	RQD (ft) %	LOG			DESC	RIPTIC	N AND	REMAR	RKS			
]										Contin	ued fr	om pre	evious p	age			
			2:38							Hard R	ock: Gray a	and pink, lo	cally w	ith orar	ge Fe sta	ain, ve	ery slight	ly weath	ered to NEISS with
167.1	125.3		3:04	<u> </u>	,					Biotite	5%) and M	lagnetite (ti	race to	1%) ar	d trace p	yrite (continue	d)	VEICO WILL
		5.0	3:32	(5.0) 100%	(5.0) 100%	RUN 18				(No joir	its)								
			4:07																
			5:04																
			7:35																
162.1	130.3		13:00																
		5.0	3:15	(5.0)	(5.0) 100%	RUN 19				(No joir	ıts)								
			3:45																
			3:57																
			4:25																
157.1	135.3		4:15																
		5.0	4:30	(5.0) 100%	(5.0) 100%	RUN 20]					otassium fe al margins)		and w	nite mica	vein/z	zone fror	n 137.8f	t to 138.3ft a
			5:51	1,0070	10070						. 3	······································							
			7:19																
			10:29																
152.1	140.3		17:14																
	1	5.0	14:21	(5.0) 100%	(5.0) 100%	RUN 21						otassium fe al margins		, and w	hite mica	vein/z	zone fror	n 144.3f	t to 144.8ft a
			18:42	10070	100%						9.0000	.aa. ga,	,						
			9:26																
			2:18		1	1													
147.1	145.3		2:22																
	140.0	5.0	2:03	(5.0) 100%	(5.0) 100%	RUN 22]					otassium fe ial margins		, and w	hite mica	vein/	zone frot	n 147.01	ft to 147.1ft a
			2:34	100%	100%	`}				00 WIL	gradation	ior margins	,						
			2:36																
			2:40																
142.1	150.3		2:47																
174.1	100.0	5.0	3:31	(5.0)	(5.0) 100%	RUN 23	1			(No joi	nts)								
			3:39	100%	100%	<u>'</u>													
			4:14																
			4:45																
197 4	1 455 6		6:16						****										
137.1	1 155.3	3.0	3:20	(3.0)	(3.0)	RUN 24	1			(No joi	nts)								
			7:56	100%	100%)			>>>										
			10:54																
134	1 158.3	2.0	3:53	(2.0)	(2.0)	RUN 25	1			(No joi	nts)								
400	1 450		2:55	100%	100%)			 										
132.1	1 160.3	5.0	2:47	(5.0)	(5.0)	RUN 26	1			(No jo	nts)								
134.1		-1					·												2.5.4

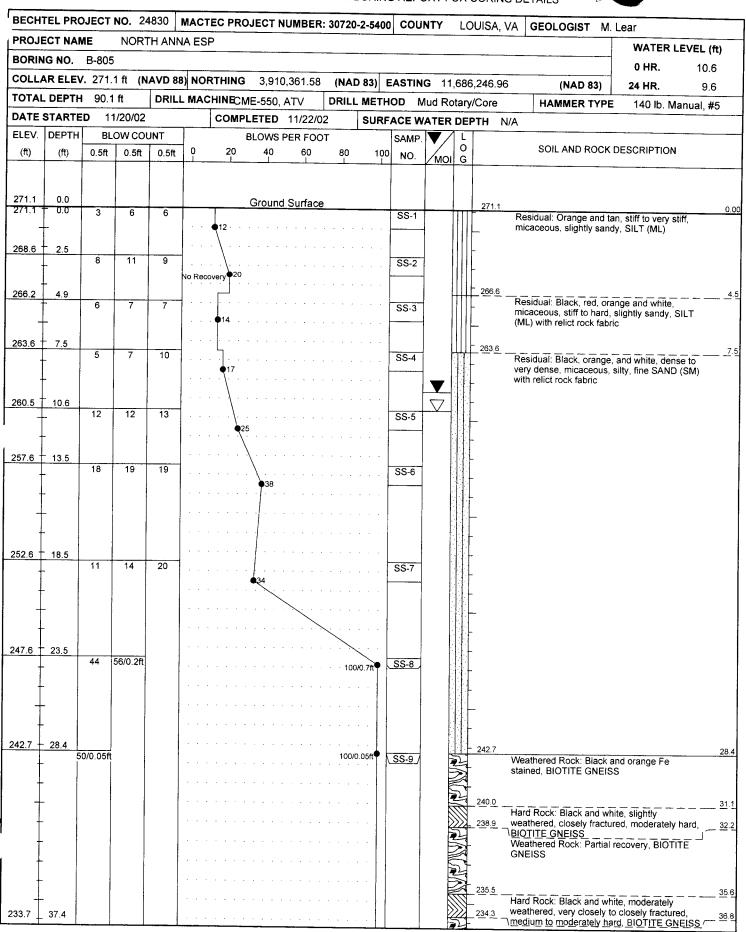
CORE BORING REPORT SHEET 4 OF 4

							CT N	JMBER	: 3072	0-2-5400 COUNTY LOUISA, VA GEOLOGIST M. Lear
				H ANN	A ESP					WATER LEVEL (ft)
										0 HR . 20.9
COLLA	NORTH ANNA ESP WATER LEVEL (ft) O HR. 20.9									
TOTAL	DEPTH			DRILL	MAC	HINE CM	E-550,	ATV	DRIL	L METHOD Rotary Wash/Core HAMMER TYPE 140 lb. Manual, #5
			1/22/02			COMPLE	TED	12/2/02	2	SURFACE WATER DEPTH N/A
CORE	SIZE N	1Q	,			TOTAL R				DRILLER K. Pendley
ELEV. (ft)	DEPTH (ft)		RATE	REC.	RQD	SAMP. NO.	REC. (ft)	RQD (ft)	0	DESCRIPTION AND REMARKS
										Continued from previous page
			2:22	100%	100%					Hard Rock: Gray and pink, locally with orange Fe stain, very slightly weathered to
		ŀ	2:19							Biotite (5%) and Magnetite (trace to 1%) and trace pyrite (continued)
			2:41						}	
127.1	165.3			(5.0)	(5.0)	RIIN 27			}	(No joints)
		J. U		100%	100%					(110 Johns)
					-					
122.1	170.3		3:31)))]_1	
										Boring and Coring terminated at 170.3 ft in Hard Rock: Fresh, very widely fractured, very hard. Quartz Gneiss with biotite (5%), magnetite (1%) and trace pyrite.
					1					
										-
		ļ							-	Borehole filled by grouting 12/9/03
						ļ			-	
									-	
									-	
					ļ				-	
		ĺ							-	
									_	
					}				t	
						1			f	
									-	
						E			-	
									F	
									-	
									-	
					1				-	
						Į.				
									-	
									-	
									+	
	<u> </u>	L	L		<u> </u>	<u> </u>				




CHI	TEL PRO	JEUI	NO. 2	+030	INI	CTEC PROJ			30720	_ 0-00		•••		ISA, VA	GEOLOGIST M. I	_Cai	
ROJE	CT NAM	1E	NOR	TH ANN	NA I	ESP										WATER	LEVEL (ft)
ORIN	G NO.	B-804														0 HR.	26.3
OLLA	R ELEV	320.	Oft (N	IAVD 8	8) N	NORTHING	3,909	497.24	(NAD	83) E	ASTIN	G 11.	685.1	34.75	(NAD 83)	24 HR.	28.6
	DEPTH					ACHINECME				METH					HAMMER TYPE		Manual, #5
	STARTE		2/4/02			COMPLE								H N/A	TITAMINE TITLE	170 15. 14	naridai, #0
	DEPTH		ow co	IINT	T			PER FOO	l	301(17	SAMP.		L	n IVA			
(ft)	(ft)	0.5ft	0.5ft	0.5ft	ا ر		40	60	80	100			0		SOIL AND ROCK [DESCRIPTION	N
(10)	(10)	0.01	10.00	1 0.011	╫	L						MOI	G				
82.6	37.4		<u> </u>		_	Continu	ed from	n previou	s page								
-					-									mo	estain, very slightly we oderately closely to wid	tely fractured.	hard to
-	-				.									ve	ry hard, QUARTZ GNI d Magnetite (trace to 1	EISS with Biot	ite (5%)
-	-												>>>	Ha	ard Rock: Gray, locally stain, very slightly we	with tan and o	orange
	-	ı												me	oderately closely to wid	tely fractured.	hard to
										. ,				ve an	ry hard, QUARTZ GNI d Magnetite (trace to 1	=100 with Biot %) <i>(continued</i>	ле (5%) <i>f)</i>
					.												
_	_))) <u></u>				
_													\mathbb{M}				
					\ .												
-	<u> </u>																
•																	
-	† i							,		.			>>>				
_					'					* *							
-					'												
	 				.												
•	-																
	-																
-					-												
-	-												}				
	- 1											,					
-																	
-	-																
_			-		+									260.1 Bo	oring and Coring termin	nated at 59 9 f	t in Hard
	<u></u>												-	Ro fra	ock: Very slightly weath actured, very hard, Qua %) and magnetite (1%	nered to fresh, artz Gneiss wit	widely
														Bi dis	ts Used: 3" Roller cone scharge, diamond impr	e; N-size core regnated)	bit (Face
	T													Dr	illing Fluid: Water		
-														Во	orehole filled by grouting	ng 12/17/02	
	†																
	†											1					
•	+												-				
	+																
-	+												-				
	+												-				
	+																
	1																
	1			1							Į.	1	1 1				

CORE BORING REPORT SHEET 1 OF 1



	G NO.		NORTH	ANNA	SESP									WATER LEVEL (ft) 0 HR. 26.3
COLLA	R ELEV	. 320.	Oft (NA	(88 DV	NOF	RTHING	3,909	,497.24	1	(NAD 83	EASTING	11,685,134	.75 (NAD 83)	24 HR. 28.6
TOTAL	DEPTH	59.9	ft I	DRILL	MAC	HINE CM	E-550,	ATV	DR	ILL METHOD	Rotary W	ash/Core	HAMMER TYPE	140 lb. Manual, #5
DATE	STARTE	D 1	2/4/02			COMPLE			<u> </u>	SURFAC	E WATER D	EPTH N/A		
CORE	SIZE N	IQ		DI DI	UN	TOTAL R	UN 2			DRILLER	R K. Pendle	<u> </u>		
ELEV. (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %	RQD (ft)	SAMP. NO.	REC. (ft)	RQD (ft) %	L O G			DESCRIPTI	ON AND REMARKS	
													oring @ 33.4 ft	
286.6	33.4	1.5	1:43	(1.2) 80%	(0.7) 47%	RUN 1			M	286.6 Hard 285.4 fractu	Rock: Tan and ired, moderate	gray, moderately hard to hard,	ely to slightly weathe QUARTZ GNEISS w	red, very closely to closely 35 vith Biotite (5%) 34
285.1	34.9	3.0	0:50/0.5 2:50	(2.6)	(2.6)	RUN 2			51	-284.7 Weat	hered Rock: N	o recovery - Int	erpreted as QUARTZ	GNEISS 35
			2:53	87%	87%				\gg	mode	erately closely	to widely fractu	red, hard to very hard	rery slightly weathered to fresh I, QUARTZ GNEISS with
			3:01				İ		₩	Biotit	e (5%) and Ma	ignetite (trace to	0 1%)	
282.1	37.9	2.0	2:19	(1.9)	(1.9)	RUN 3			}	(No J	loints)			
			2:37	95%	95%					(,			
280.1	39.9	5.0	1:25	(5.0)	(5.0)	RUN 4				- (2 joi	nts at 40-50° w	ith trace clav v	white mica, and orang	e Fe stain)
		5.5	1:25		100%				}	(2)01				,
			1:29						<u> </u>					
			1:44						///					
			1:40											
275.1	44.9	5.0	2:07	(5.0)	(4.8)	RUN 5				- (5 ioi	nts at 0-10° wit	th trace clay an	d orange Fe stain)	
		0.0	2:31	100%					}	(0)01	ino at o 10 mil	ar adoc day are	a orange i e otamy	
			2:14						$\langle\!\langle\!\langle\!\langle$					
			1:43	ĺ										
			1:33						\gg					
270.1	49.9			(5.0)	(5.0)	RUN 6				- (2 ioi	nto at EE° with	orange Fe stair	2)	
		5.0	1:21	(5.0) 100%	(5.0) 100%				}	(2)01	ins at 55 with	orange re stan	')	
			1:35											
			1:34											
			1:52						\gg					
265.1	54.9		1:54	(F.O)	(5.0)	DUNZ					nt nt 10°ith t	(0),()		
		5.0	1:45	(5.0) 100%	(5.0) 100%	RUN 7			///	(1)0	nt at 10° with t	iace clay)		
			2:04											
			1:54											
			2:00						\gg					
260.1	59.9		2:14	ļ	-			-		260.1	a and Carin	lorminated -4 F	0.0 ft in Hard Dank V	5
										wide	ly fractured, ve	ery hard, Quartz	e.e it in mare Rock: V : Gneiss with biotite (ery slightly weathered to fresh (5%) and magnetite (1%)
									[Bits	Used: 3" Rolle	r cone; N-size o	core bit (Face dischar	ge, diamond impregnated)
										. Drilli	ng Fluid: Wate	r		
											-	routing 12/17/0	2	
										_		,	_	
									[
										-				
					-				1	_				

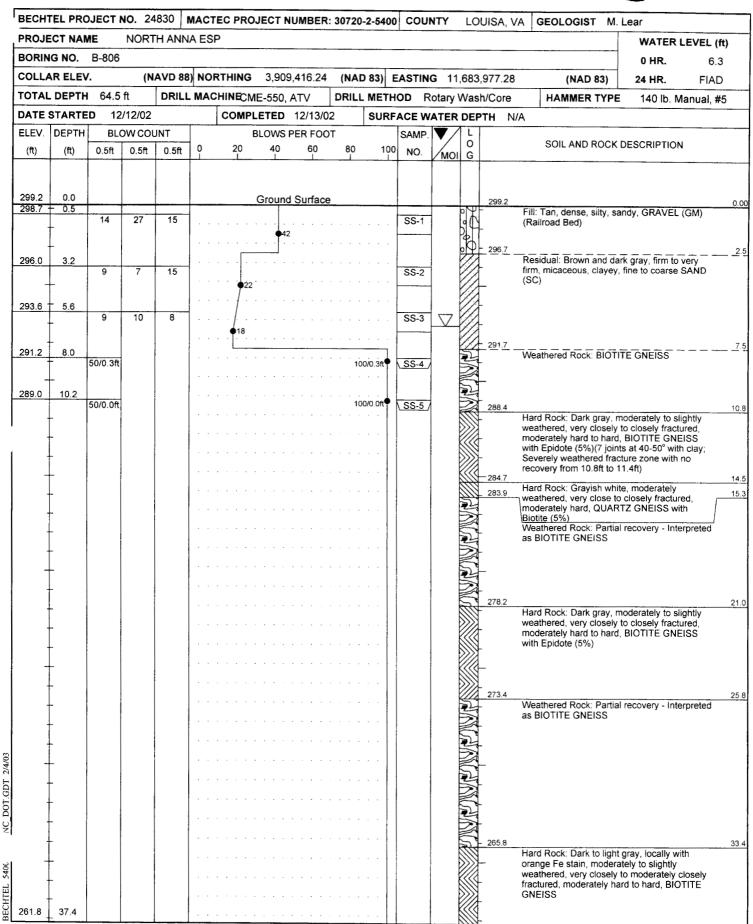
BECH	TEL PRO	JECT I	NO. 24	1830	MACT	EC PRO	JECT N	UMBER:	30720	-2-5400	COU	NTY	LOU	SA, VA GEOLOGIST M.	Lear		
PROJE	ECT NAM	AE.	NORT	H ANN	IA ESF	-									WATER	LEVEL (ft))
BORIN	IG NO.	B-805													0 HR.	10.6	
COLLA	AR ELEV	. 271.1	1 ft (N	AVD 88	B) NOF	RTHING	3,910,	361.58	(NAE	83) E	ASTIN	G 11	,686,2	46.96 (NAD 83)	24 HR.	9.6	
TOTAL	DEPTH	90.1	ft	DRILI	L MAC	HINECM	E-550. A	ATV		METH						lanual, #5	_
DATE :	STARTE	D 11	/20/02	L		COMPL								H N/A	140 15. 10	ianuai, #3	<u>_</u>
			ow col	JNT	T			ER FOO			SAMP.	T	L	11/1/			_
(ft)	(ft)	0.5ft	0.5ft	0.5ft	ļ	20	40	60	80	100	l	MOI	0	SOIL AND ROCK I	DESCRIPTION	1	
					-							IVIOI					-
233.7	37.4			-	-	Continu	ed from	previou	s page	1			5	Washered Back, No	avea. Inter-	-4	_
-	-													Weathered Rock: No rec BIOTITE GNEISS (contil	overy - interpr nued)	eted as	_ ;
-				1										Hard Rock: Gray, black, to very slightly weathered	and white, mo	derately	
_	<u> </u>											ĺ		moderately closely fractu	red, moderate	ly bard	
-	-												>>>-	to hard, locally slightly so GNEISS	inistose, BIOT	116	
-	+																
-													}				
-	-																
-]							
_		·											>>>				
_																	
1													}				
1										· ·							
1													}				
1										.							
1													}				
1																	
1																	
+													}				
+	-												-				
-													}				
+																	
+	-																
+										[]			}				
4										[]							
]													}				
	<u> </u>																
1																	
1													}				
†																	
t	-												}}}				
196.3	74.8												₩.	196.5			

BECHT	EL PRO	JECT N	10. 2	24830	MAC		JECT NU							JISA, VA		/I. Lear	
PROJE	CT NAM	E	NOF	RTH AN	NA ES	P					L				<u> </u>	-	R LEVEL (ft)
BORING			······································													0 HR.	10.6
			ft 1	NAVD 8	38) NO	RTHING	3,910,	361.58	(NAI) 83) F	ASTIN	G 11	.686	246.96	(NAD 83)	-	9.6
	DEPTH						/IE-550, A			METH					HAMMER TY		Manual, #5
	TARTE		/20/0:				LETED		·					TH N/A			ivialidal, #0
	DEPTH			OUNT			BLOWS P			JOK	SAMP.	_		111 11/2			
(ft)	(ft)	0.5ft	0.5f		- 0	20	40	60	80	100	l		O G		SOIL AND ROC	K DESCRIPTION	NC
(19	(11)	0.011	0.01	0.01							110.	MOI	G				
i																	
196.3	74.8					Contir	nued from	previo	us page	9							
t	-											ļ	2	195.4	Weathered Rock: No BIOTITE GNEISS (co	intinued)	
†	-													- I	Hard Rock: Gray, bla veathered to fresh, v	ck, and white, n	noderately
t	.													- f	ractured, moderately schistose, BIOTITE (hard to hard, s	lightly
t	- [-	schistose, bio iii e	INLIGO	
+	-	ĺ			1									-			
+	-													-			
+	-				1									_			
+	-													•			
1	-													-			
+	-										1			-			
1	-													-			
1	_]			_			
1	-													-			
1	_													_			
	_																
1							<u> </u>							181.0			90
_	-														Boring and Coring ter Rock: Slightly weather	ered to fresh, clo	sely to
+	-													_	moderately closely fra schistose, Biotite Gne	eiss	
1	-		!											- f	Bits Used: 3" Roller o discharge, diamond i	one; N-size cor npregnated)	e bit (Face
+	-				Î						į				Drilling Fluid: Water/f unknown)	Bentonite (weigh	nt
	-													— (Borehole filled by gro	uting 12/6/02	
1	-													-			
-	-																
+	-													_			
7	_													_			
1	-													=			
1	- 													-			
+	-													Γ			
1	-																
-	-													_			
+	-													<u>-</u>			
-	-													-			
-	-													-			
-																	
-	_													_			
158.9	112.2				1						}						

CORE BORING REPORT SHEET 1 OF 2

	CT NA		NO. 248:							20-2-5400 COUNTY LOUISA, VA GEOLOGIST M. Lear WATER LEVEL (ft)
	IG NO.		5							0 HR. 10.6
COLLA	AR ELEV	/. 271	.1 ft (NA	VD 88)	NOR	THING	3.910	.361.58	 8	(NAD 83) EASTING 11,686,246.96 (NAD 83) 24 HR. 9.6
	DEPTH		``		┸	IINE CM				ILL METHOD Mud Rotary/Core HAMMER TYPE 140 lb. Manual, #5
DATE :	STARTE	D 1	1/20/02		(COMPLE	TED	11/22/0	02	SURFACE WATER DEPTH N/A
CORE	SIZE	1Q				TOTAL R	UN 6	31.6 ft		DRILLER K. Pendley
ELEV.	DEPTH	RUN	DRILL	REC	JN RQD	SAMP.	STF	ROD	L	DECORPORATION AND DETAILBUT
(ft)	(ft)	(ft)	RATE (Min/ft)	REC. (ft) %	(ft) %	NO.	REC. (ft) %	RQD (ft) %	G	DESCRIPTION AND REMARKS
			}	İ						Begin Coring @ 28.5 ft
242.6	28.5	1.6	1:25	(0.0)	(N/A)	RUN 1			2	Weathered Rock: No recovery - Interpreted as BIOTITE GNEISS
241.0	30.1		0:52/0.6	0%		0.000				
		5.0	1:45	(2.9) 58%	(1.1) 22%	RUN 2		_	2	240.0
			1:08			ĺ				Hard Rock: Black and white, slightly weathered, closely fractured, moderately hard, 238.9 BIOTITE GNEISS
			1:06	}	}					Weathered Rock: Partial recovery, BIOTITE GNEISS
			1:09							
236.0	35.1		0:41						對	
		5.0	1:40	(2.6) 52%	(0.4) 8%	RUN 3	-	-		235.5 (2 joints at 0-10° with trace clay; 2 joints at 30-35° with trace clay; 1 joint at 20° with 3 Quartz and Biotite; 1 joint at 50° with Quartz and Biotite)
			1:22		•			 		234.3 Hard Rock: Black and white, moderately weathered, very closely to closely fractured medium to moderately hard, BIOTITE GNEISS
			1:37	Ì					5	Weathered Rock: No recovery - Interpreted as BIOTITE GNEISS
			1:31					-		Hard Rock: Gray, black, and white, moderately to very slightly weathered, very closel
231.0	40.1	ļ	2:10							to moderately closely fractured, moderately hard to hard, locally slightly schistose, BIOTITE GNEISS
		5.0	1:12	(5.0) 100%	(2.8) 56%	RUN 4				(14 joints at 30-35° with trace clay and Fe stain; 2 joints at 0-10°)
	ļ	ļ	1:28		ļ					
			1:37						M	
			1:45							
226.0	45.1		1:49				1			
		5.0	1:25	(4.0) 80%	(2.1) 42%	RUN 5				(7 joints at 30-35° with trace clay and Fe stain; 5 joints at 10-20°; Severely weathered fracture zone with no recovery from 48.1ft to 49.1ft)
			1:21							
			1:22							
			1:18							
221.0	50.1	5.0	1:31	(4.5)	(4.1)	RUN 6				(5 joints at 30-35° with trace clay; Severely weathered fracture zone with no recovery
		5.0	1:35	90%	(4.1) 82%	KONO				(5 Joints at 30-35) with trace clay, Severely weathered fracture zone with no recovery from 53.ft to 53.6ft)
			0:57							
	1		1:16					1		
			1:37						>>>	
216.0	55.1	5.0	1:12	(4.5)	(3.6)	RUN 7	-			(1 joint at 30°; 3 joints at 15-20° with trace clay and Fe stain; 0.2ft wide Quartz vein a
		5.0	1:00	90%	72%	1.014 /				56.2ft; Severely weathered fracture zone with no recovery from 56.8ft to 57.3ft)
			1:10						 	
			1:39							
			1:53							
211.0	60.1	5.0	1:45	(4.1)	(3.7)	RUN 8	-			(5 joints at 30° with trace clay and Fe stain; 0.2ft wide coarse Quartz and Hornblende
	}	3.0	2:11	82%	74%	1,014 0		-		vein at 60°; Severely weathered fracture zone with no recovery from 62.9ft to 63.8ft)
			1:33						>>>	
			1:53	1						
		}	2:06	1						
206.0	65.1	5.0	1:56	(5.0)	(3.5)	RUN 9	1			(11 joints of 10.15° with plantand Familia, 4 joint -1.00°)
	1	1 0.0	1.30	(0.0)	(3.3)	L/Old a	<u></u>		V//A	(11 joints at 10-15° with clay and Fe stain; 1 joint at 60°)

CORE BORING REPORT SHEET 2 OF 2


BECH	TEL PRO	JECT	NO. 248	330 M	ACTE	C PROJE	CT N	JMBEF	R: 3072	20-2-5400 COUNTY LOUISA, VA GEOLOGIST M. Lear
PROJ	ECT NAM	ΛE:	NORTH	H ANNA	A ESP					WATER LEVEL (ft)
BORIN	IG NO.	B-805	5							0 HR. 10.6
COLL	AR ELEV	. 271.	1ft (NA	VD 88)	NOF	RTHING	3,910	,361.5	8	(NAD 83) EASTING 11,686,246.96 (NAD 83) 24 HR. 9.6
TOTA	L DEPTH	90.1	1 ft	DRILL	MAC	HINE CM	E-550,	ATV	DRI	LL METHOD Mud Rotary/Core HAMMER TYPE 140 lb. Manual, #5
DATE	STARTE	D 1	1/20/02			COMPLE	TED	11/22/	02	SURFACE WATER DEPTH N/A
CORE	SIZE	1Q				TOTAL R	UN 6	31.6 ft		DRILLER K. Pendley
ELEV.			DRILL RATE	REC.	RQD		REC.	RQD	Г	DESCRIPTION AND REMARKS
(ft) 	(ft)	(ft)	(Min/ft)	(ft) %	(ft) %	NO.	(ft) %	(ft) %	Ğ	
					ļ					Continued from previous page
			1:42	100%	70%					Hard Rock: Gray, black, and white, moderately to very slightly weathered, very closely to moderately closely fractured, moderately hard to hard, locally slightly schistose,
		ļ	1:38							BIOTITE GNEISS (continued)
		ĺ	1:41							
004.6	70.4		1:58							
201.0	70.1	5.0	1:34	(4.5)	(3.8)	RUN 10				(2 joints at 50° with clay and Fe stain; 4 joints at 30-35° with clay and Fe stain)
			1:58	90%	76%					
			2:07							
			2:02						}	
			1:12							196.5 74.6
196.0	75.1	5.0	1:10	(4.4)	(4.0)					Weathered Rock: No recovery - Interpreted as BIOTITE GNEISS 195.4 75:
			2:16	88%	80%					Hard Rock: Gray, black, and white, moderately weathered to fresh, very closely to widely fractured, moderately hard to hard, slightly schistose, BIOTITE GNEISS
			2:08							
			2:12						>>>	
			2:16							
191.0	80.1	5.0	1:44	(5.0)	(4.6)					(4 joints at 50° with trace clay and Quartz; 0.1ft wide Quartz vein at 50° at 84.0ft)
		Ì	1:37	100%	92%				>>>	
			1:56							
			1:33							
		Ì	1:57							
186.0	85.1	5.0	2:05	(5.0)	(4.4)	RUN 13				(5 joints at 30-35° with clay, Quartz, and Fe stain; 2 joints at 60-65° with clay, Quartz,
			2:19	100%						and Fe stain; 3 joints at 0-10° with trace clay)
			2:39							
			1:52							
			1:51						 	
181.0	90.1	}			-	 		+		181.0 90. Boring and Coring terminated at 90.1 ft in Hard Rock: Slightly weathered to fresh,
									1 -	closely to moderately closely fractured, hard, slightly schistose, Biotite Gneiss
									1 +	Bits Used: 3" Roller cone; N-size core bit (Face discharge, diamond impregnated)
									-	Drilling Fluid: Water/Bentonite (weight unknown)
								{	1 }	Borehole filled by grouting 12/6/02
									1 -	
									 	
									-	
									-	
							İ		1	
i									-	
ı			ļ				}		1	

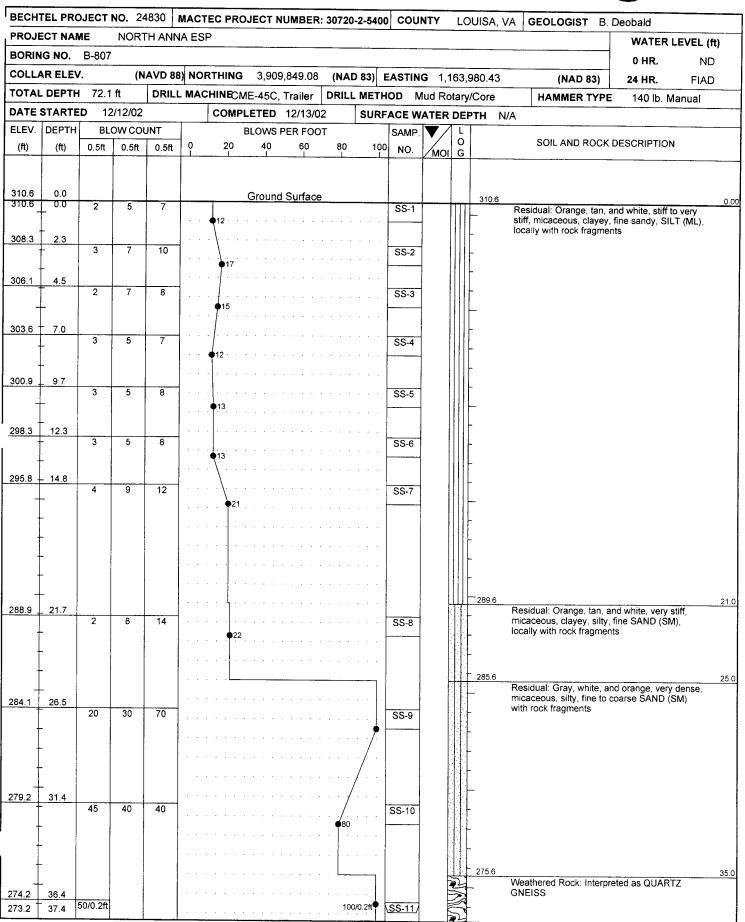
ROJECT I																
	NAME	NO.	RTH AN	VA ES	SP										WATER	R LEVEL (ft)
ORING NO	D. B-8	806									-	_			0 HR.	6.3
OLLAR EI	LEV.		(NAVD 8	B) NO	RTHING	3,909,	,416.24	(NA	83) E	ASTING	3 11,	,683,	977.28	(NAD 83)	24 HR.	FIAD
OTAL DEF	PTH 6	4.5 ft	DRIL	L MA	CHINECME	E-550, A	ATV	DRILL	METH	OD R	otary \	Wash	n/Core	HAMMER TYP	140 lb.	Manual, #5
ATE STAF	RTED	12/12/	02		COMPL	ETED	12/13/0	2	SURF	ACE W	ATER	DEP	TH N/A			
LEV. DEP	тн	BLOW (COUNT		В	LOWS P	ER FOO	T		ŞAMP.	$\mathbf{V}/$	L	,,,,,	2011 AND DOOR	D5000.071	
(ft) (ft) 0.5	5ft 0.5	oft 0.5ft	P	20 L	40	60	80	100	NO.	MOI	OG		SOIL AND ROCK	DESCRIPTIO	ON
61.8 37.					Continu	ed from	nrevio	ie pogo								
61.8 37	4	_		 	Continu	ieu iioii	previou	is page				///	Н	ard Rock: Dark to ligh	t gray, locally	with
†		ļ)	- o w	range Fe stain, mode eathered, verv closel	ately to slightly to moderatel	ly v closelv
+				' '									— fr	actured, moderately his NEISS (continued)	ard to hard, B	ÍOTITE
t													-	TVEIOO (Committee)		
+												\gg	-			
+													-			
+													-			
+													_			
+				1									_			
+				, .								>>>>	-			
+													-			
1													-			
1																
1													-			
1												M	_			
1	Ì		Ì										_			
T													_			
T				1									_			
Ť		ĺ														
†				1									243.4	de alle and Dead Dead	-1 F	
Ť												3	- v B	Veathered Rock: Part IOTITE GNEISS	arrecovery - c	otowii,
†				' '									-			
†												5	-			
+	İ												_			
+				1								M	- 238.8 F	lard Rock: Dark gray,	moderately w	eathered
+				' '									- v	close to closely fraction	ured, moderat	ely hard,
+													-	IVITE GNEISS		
+													235.6			
				1									-234.7 C	ard Rock: Gray, sligh losely fractured, hard	tly weathered QUARTZ GN	to fresh, EISS with
+													\8	iotite (5%) oring and Coring tern		. /
1													_ 5	lock: Slightly weather	ed to fresh, clo	sely
1														actured, hard, Quartz 5%)	Gneiss with E	SIOTITE
1													- E	its Used: 3" Roller co	ne; N-size cor	e bit (Face
														ischarge, diamond im		
														rilling Fluid: Water		
T											Ì		E	orehole filled by grou	ting 12/12/02	
Ţ																
†																
+											I	1	-			

CORE BORING REPORT SHEET 1 OF 2

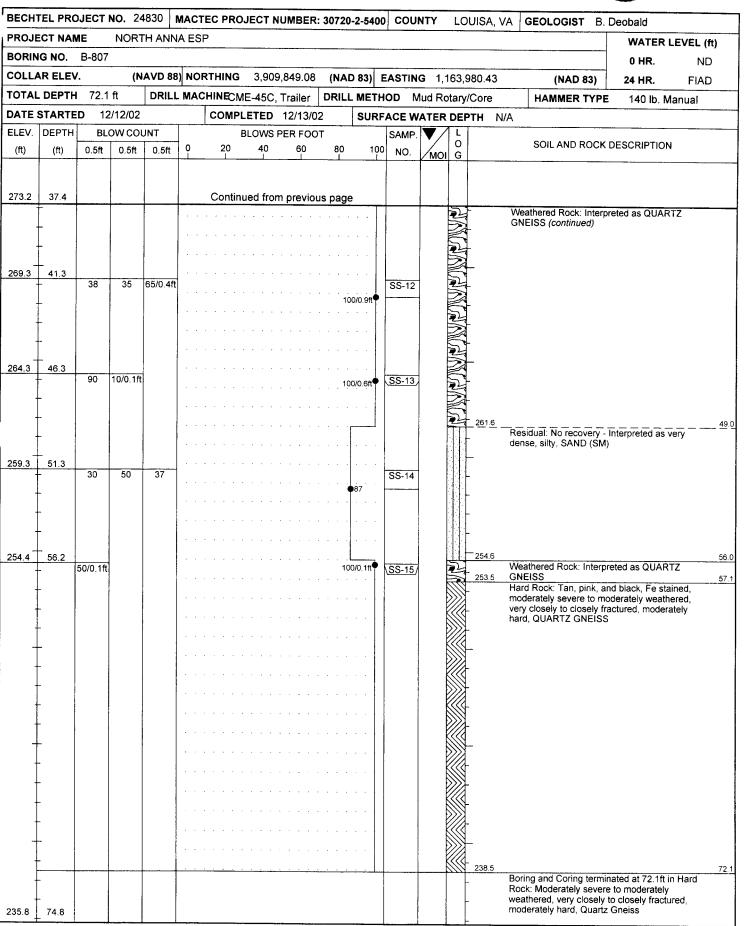
BECH	TEL PRO		NO. 248	30 N	ACTE	C PROJE	CT N	UMBEI	R: 30	0720-2-5400 COUNTY LOUISA, VA GEOLOGIST M. Lear						
	ECT NAM		NORTH	H ANNA	A ESP	•				WATER LEVEL (ft)						
	IG NO.			41						0 HR . 6.3						
	AR ELEV					RTHING		·		(NAD 83) EASTING 11,683,977.28 (NAD 83) 24 HR. FIAD						
	DEPTH		·	DRILL	MAC	HINE CM				DRILL METHOD Rotary Wash/Core HAMMER TYPE 140 lb. Manual, #5						
	STARTE		2/12/02			COMPLE				SURFACE WATER DEPTH N/A						
	SIZE	· · · · · ·	DRILL	RI	JN J	TOTAL R		SATA	L	DRILLER K. Pendley						
ELEV. (ft)	DEPTH (ft)	RUN (ft)	RATE (Min/ft)	REC. (ft) %	RQD (fl) %	SAMP. NO.	REC. (ft) %	RQD (ft) %	o G	DESCRIPTION AND REMARKS						
				(0.7)	(0.0)	SUNA				Begin Coring @ 10.2 ft						
289.0	10.2	4.3	2:02	(3.7) 86%	(2.8) 65%				1	288.4 10.8 Hard Rock: Dark gray, moderately to slightly weathered, very closely to closely						
			1:34							fractured, moderately hard to hard, BIOTITE GNEISS with Epidote (5%)(7 joints at 40-50° with clay; Severely weathered fracture zone with no recovery from 10.8ft to						
			2:05							11.4ft)						
284.7	14.5		2:03							284.7						
204.1	14.5	2.6	0:25/0.3 1:23	(0.8)	(0.6)			<u> </u>		Hard Rock: Grayish white, moderately weathered, very close to closely fractured,						
			1:34	31%	23%				P	moderately hard, QUARTZ GNEISS with Biotite (5%) Weathered Rock: Partial recovery - Interpreted as BIOTITE GNEISS						
282.1	17.1		0:57/0.6		<u></u>											
281.5		2.4	0:45/0.4	(0.4)	(0.0)	RUN 3										
			1:31	17%	0%	1.0.43										
279.7 279.1			1:09	(3.5)	(1.2)	RUN 4			뫍							
			0:57		<u>24%</u>					278.2 21.1						
			1:22							Hard Rock: Dark gray, moderately to slightly weathered, very closely to closely fractured, moderately hard to hard, BIOTITE GNEISS with Epidote (5%)						
			1:15							madered, medically hard to hard, brotting one too man appeals (678)						
			1:19													
274.7	24.5	1.8	1:14	(1.4)	(1.2)	RUN 5				-						
		1.6	0:57/0.8	78%	67%					273.4 25.						
272.9	26.3	3.2	1:03/0.2	(0.3)	(0.0)	RUN 6			2	Weathered Rock: Partial recovery - Interpreted as BIOTITE GNEISS						
			1:48	9%	0%											
		}	1:47													
269.7	29.5		1:45							1 -						
		3.6	1:52	(0.0)	(0.0)	RUN 7				र्न् प्र						
			1:01							**						
			1:45				:		5							
266.1	33.1	1.4	1:02/0.4	(1.1)	(0.4)	RUN 8			5	265.8 (3 Joints at 30-40° with trace clay)						
264.7	34.5	ļ	1:36	79%	29%					Hard Rock: Dark to light gray, locally with orange Fe stain, moderately to slightly weathered, very closely to moderately closely fractured, moderately hard to hard.						
		5.0	1:39	(5.0) 100%	(3.4) 68%		l			BIOTITE GNEISS						
			1:34							(6 Joints at 30-40° with trace clay and orange Fe stain; 1 joint at 80-90° with clay, quartz and orange Fe stain)						
			1:40							\$						
			1:31							4						
259.7	39.5		1:21)									
209./	39.5	5.0	1:41	(5.0)	(3.9)		1			(13 Joints at 30-40° with trace clay and orange Fe stain)						
			1:31	100%	78%											
			1:23													
			1:30				•									
			1:27							**						
254.7	44.5	5.0	1:24	(4.7)	(4.0)	RUN 11				(5 Joints at 30-40° with orange Fe stain; Severely weathered fracture zone with partial						
			1:21	94%	80%		Į.			recovery from 49.0ft to 49.5ft)						
			1:20							\$						
			1.20							>}						

CORE BORING REPORT SHEET 2 OF 2

ET NAM NO. R ELEV DEPTH TARTE IZE N DEPTH (ft)	B-806 64.5 D 13	(NA		1					WATER LEVEL (ft)
R ELEV DEPTH FARTE IZE N	64.5 D 12	(NA	VD 88)	NOD					
DEPTH FARTE IZE N DEPTH	64.5 D 1	ft	VD 88)	NOD				_	0 HR . 6.3
IZE N	D 1:	السلم		NUK	THING	3,909	,416.2	4	(NAD 83) EASTING 11,683,977.28 (NAD 83) 24 HR. FIAD
IZE N		140.00	DRILL	MACH	IINE CME	E-550,	ATV	DF	RILL METHOD Rotary Wash/Core HAMMER TYPE 140 lb. Manual, #5
DEPTH	IQ	2/12/02		1	COMPLE	TED '	12/13/9	02	SURFACE WATER DEPTH N/A
					TOTAL R	UN 5	4.3 ft		DRILLER K. Pendley
	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %	RQD (ft) %	SAMP. NO.	STR REC. (ft) %	ATA RQD (ft) %	L O G	DESCRIPTION AND REMARKS
1	·								Continued from previous page
		1:15							Hard Rock: Dark to light gray, locally with orange Fe stain, moderately to slightly weathered, very closely to moderately closely fractured, moderately hard to hard,
49.5		1:20							BIOTITE GNEISS (continued)
	5.0	1:31	(4.5) 90%	(3.7) 74%	RUN 12				(7 joints at 30-40° with trace clay and orange Fe stain; Severely weathered fracture zone with no recovery from 49.5ft to 50.0ft)
		1:34							-
		1:25							-
		1:30							_
54.5		1:41							_
0 1.0	5.0	2:15	(3.0)	(0.0)	RUN 13				(3 Joints at 30-40° with clay; 2 joints at 0-10° with clay and Fe stain)
		2:16	00%	076					243.4 55.8 Weathered Rock: Partial recovery - Brown, BIOTITE GNEISS
		1:35							, , , , , , , , , , , , , , , , , , ,
	'	1:34						5	_
50.5		2:30							
59.5	5.0	2:19	(4.8)	(2.0)	RUN 14			2	 - 238.8 60.4
		1:55	96%	40%					Hard Rock: Dark gray, moderately weathered, v. close to closely fractured, moderately
		1:35							hard, BIOTITE GNEISS
İ		2:11							-
		5:46							235.6 63.6 Hard Rock: Gray, slightly weathered to fresh, closely fractured, hard, QUARTZ
64.5			 					7777	234.7 GNEISS with Biotite (5%) 64.5
			-						Boring and Coring terminated at 64.5ft in Hard Rock: Slightly weathered to fresh, closely fractured, hard, Quartz Gneiss with Biotite (5%)
									Bits Used: 3" Roller cone; N-size core bit (Face discharge, diamond impregnated)
							1		L Drilling Fluid: Water
									Borehole filled by grouting 12/12/02
									-
									-
									-
								,	_
									-
			İ						
							1		_
	59.5	59.5	1:25 1:30 1:41 54.5 5.0 2:15 2:16 1:35 1:34 2:30 59.5 5.0 2:19 1:55 1:35 2:11 5:46	54.5 1:34 1:25 1:30 1:41 5:46 1:35 1:34 2:30 59.5 5.0 2:19 (4.8) 96% 1:35 2:11 5:46	1:34 1:25 1:30 1:41 54.5 5.0 2:15 60% 0% 2:16 1:35 1:34 2:30 59.5 5.0 2:19 (4.8) 96% 40% 1:55 1:35 2:11 5:46	1:34 1:25 1:30 1:41 54.5 5.0 2:15 60% 0% RUN 13 2:16 1:34 2:30 59.5 5.0 2:19 4.8) 96% 1:55 1:35 2:11 5:46	1:34 1:25 1:30 1:41 54.5 5.0 2:15 60% 0% 1:34 2:16 1:35 1:34 2:30 59.5 5.0 2:19 4.8) 96% 40% 1:55 1:35 2:11 5:46	1:34 1:25 1:30 1:41 54.5 5.0 2:15 60% 0% 1:35 1:34 2:30 59.5 5.0 2:19 4.8) 96% 40% 1:55 1:35 2:11 5:46	1:34 1:25 1:30 1:41 54.5 5.0 2:15 60% 0% RUN 13 0% 1:34 2:30 59.5 5.0 2:19 (4.8) 96% 1:55 1:35 2:11 5:46



DOT.GDT

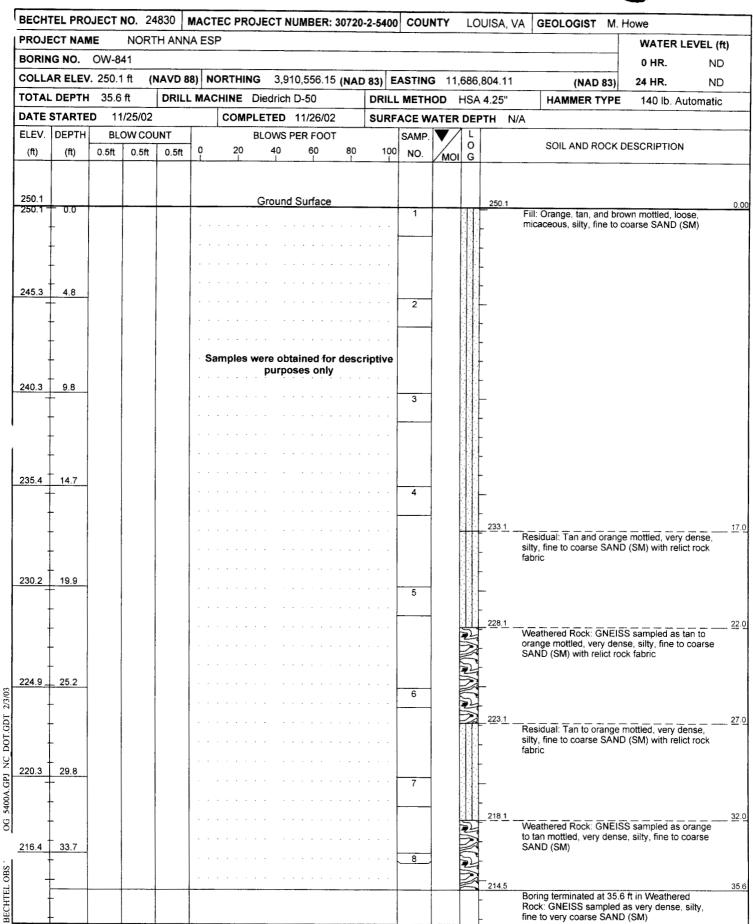

GEOTECHNICAL BORING LOG SHEET 1 OF 3

GEOTECHNICAL BORING LOG SHEET 3 OF 3

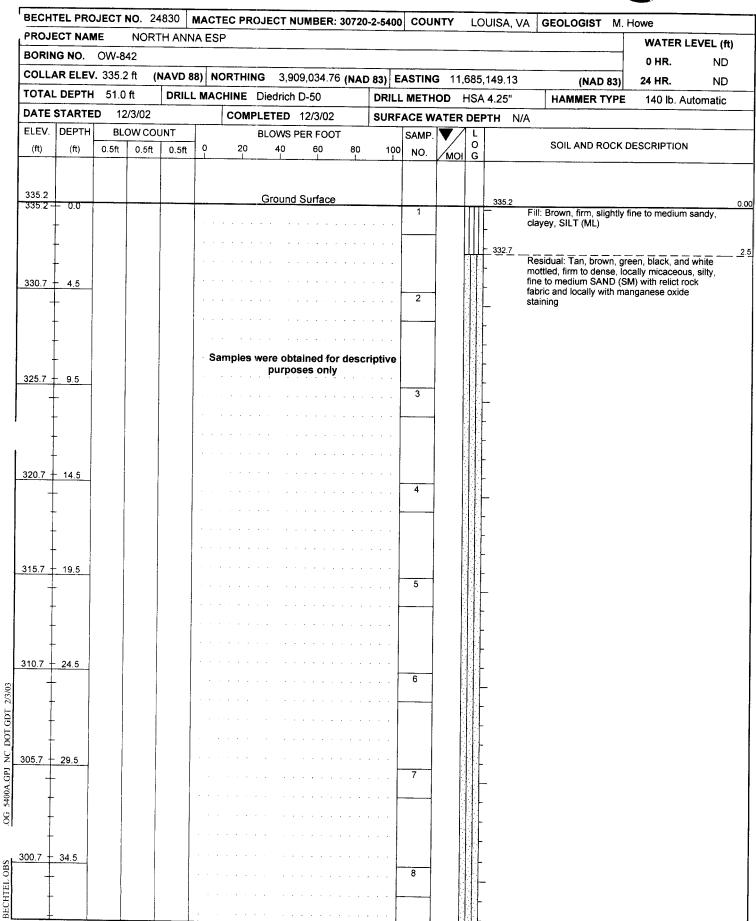
SEE ATTACHED CORE BORING REPORT FOR CORING DETAILS

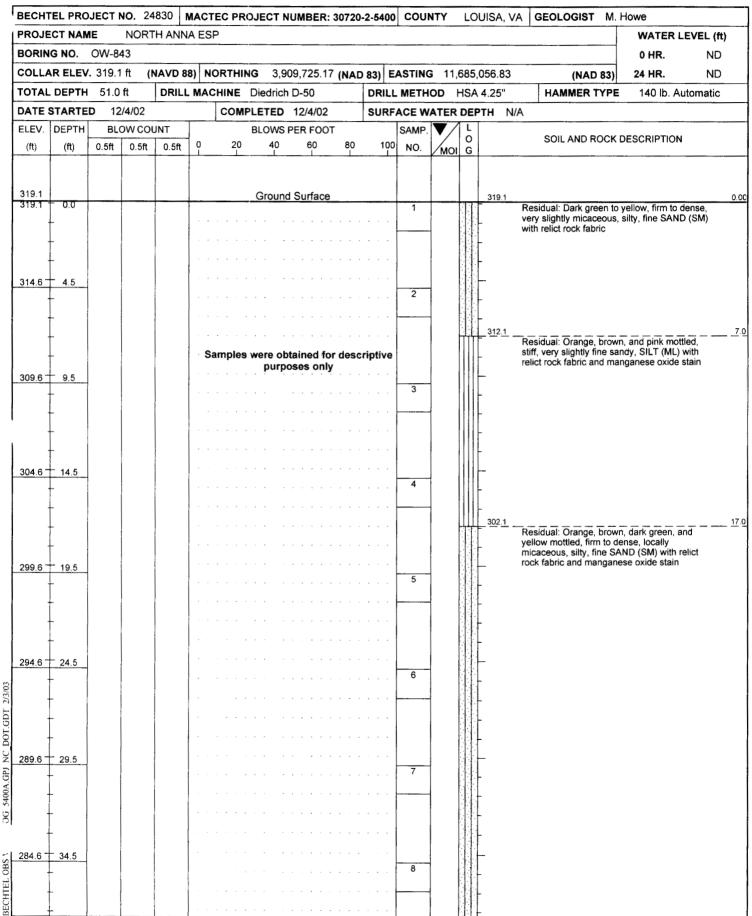
BECH	TEL PRO	JECT	NO. 24	1830 I	MAC	TEC PROJ	ECT N	UMBER:	30720	-2-5400	coul	NTY	LC	DUISA, VA	GEOLOGIST B. D	eobald	
ROJE	ECT NAM	ΛE	NORT	H ANN	A ES	SP										WATER I	EVEL (ft)
BORIN	IG NO.	B-807														0 HR.	ND
OLLA	AR ELEV	<i>'</i> .	(N	AVD 88) NO	RTHING	3,909	,849.08	(NA	83) E	ASTIN	G 1,1	63,9	980.43	(NAD 83)	24 HR.	FIAD
OTAL	DEPTH	72.1	ft	DRILL	MA	CHINECME	E-45C,	Trailer	DRILL	METH	OD M	lud Ro	tary	//Core	HAMMER TYPE	140 lb. M	lanual
ATE	STARTE	D 12	2/12/02		_	COMPL			2	SURF	ACE W	ATER	DEF	PTH N/A	<u> </u>		
LEV.	DEPTH	BL	ow col	JNT		В	LOWS F	ER FOO	Т		SAMP.	1	L				
(ft)	(ft)	0.5ft	0.5ft	0.5ft	P	20	40	60	80	100	NO.	моі	O G		SOIL AND ROCK D	ESCRIPTION	l
25.0	74.0					Continu	ad fram										
235,8	74.8					Continu	ea non	previou	is page					Bits	s Used: 3" Roller cone	N-size core b	oit (Face
_	†													dis	charge, diamond impre	egnated)	•
-	†													Dri	lling Fluid: Water/Mud	(weight unkno	own)
•	†													Boi	rehole filled by grouting	12/17/02	
	Ť																
•	<u> </u>									ĺ				-			
-	T																
•	†																
-	†													-			
	†													-			
-	†													-			
-														-			
-	 																
	†													-			
•	+													-			
•	†													-			
_	_													-			
-	†													-			
-	†													-			
-	+													+			
-	+													-			
-	-													-			
	†													-			
•	†													-			
	†																
	†													-			
-	†													F			
	†													F			
	+													+			
•	+													+			
	+													-			
-	+													_			
	+													-			
	+													-			
-	+													_			
	+		}											-			
_	+											;		L			
198.4	112.2											1		1			

CORE BORING REPORT SHEET 1 OF 1

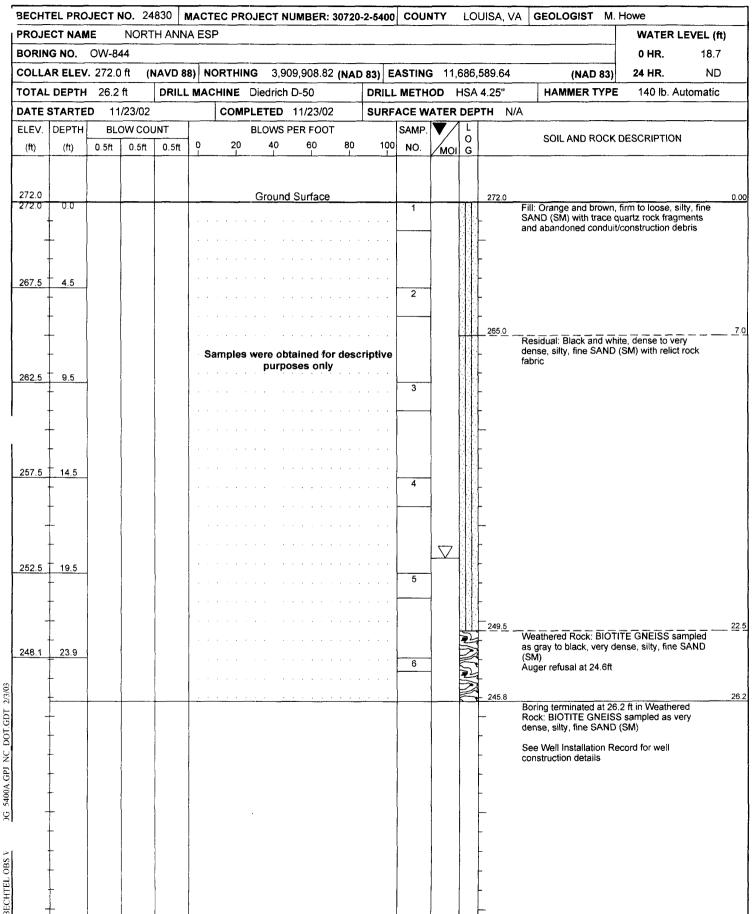

BECh.	RALEIG		NO. 248	830 1	MACTE	C PRO I	CT NI	IMREE	. 307	20-2-5400 COUNTY LOUISA, VA GEOLOGIST B. Deobald
	CT NAM		_	H ANN			CINC	MIDEN	. 307	WATER LEVEL (ff)
	IG NO.			1171919	A 201	<u> </u>				0 HR. ND
	AR ELEV				NOE	RTHING	3 000	840.0		
	DEPTH				`			<u> </u>		
	STARTE		2/12/02	DRILL		COMPLE				LL METHOD Mud Rotary/Core HAMMER TYPE 140 lb. Manual SURFACE WATER DEPTH N/A
			2/12/02						JZ	
	SIZE N		DRILL	R	RUN	TOTAL R	STR	RATA	L	DRILLER D. White
ELEV. (ft)	DEPTH (ft)	RUN (ft)	RATE (Min/ft)	REC. (ft) %	RQD (ft) %	SAMP. NO.	REC. (ft) %	RQD (ft) %	Ö G	DESCRIPTION AND REMARKS
				1						Begin Coring @ 57.1 ft
253.5	57.1	5.0	3:08	(0.5)	(0.0)	RUN 1				253.5 Hard Rock: Tan, pink, and black, Fe stained, moderately severe to moderately
			2:10	10%	0%					weathered, very closely to closely fractured, moderately hard, QUARTZ GNEISS
			2:15							
			2:20							
	\		2:40							
248.5	62.1	5.0	2:00	(3.7)	(0.5)	RUN 2				
			2:10	74%	10%					
			2:30							
			2:40							
			2:50							
243.5	67.1	5.0	2:20	(0.9)	(0.0)	RUN 3				
			2:20	18%	0%					
			1:40							
			2:00							
			2:00							
238.5	72.1									238.5 Boring and Coring terminated at 72.1ft in Hard Rock: Moderately severe to moderately
										weathered, very closely to closely fractured, moderately hard, Quartz Gneiss
		ŀ								Bits Used: 3" Roller cone; N-size core bit (Face discharge, diamond impregnated)
										Drilling Fluid: Water/Mud (weight unknown)
										Borehole filled by grouting 12/17/02
									[
				1						
										•
						ļ				
									-	-
									F	
									-	- -
									-	
									-	
			<u> </u>							2.5.4E

APPENDIX D OBSERVATION WELL LOGS OBSERVATION WELL INSTALLATION RECORDS WELL DEVELOPMENT RECORDS



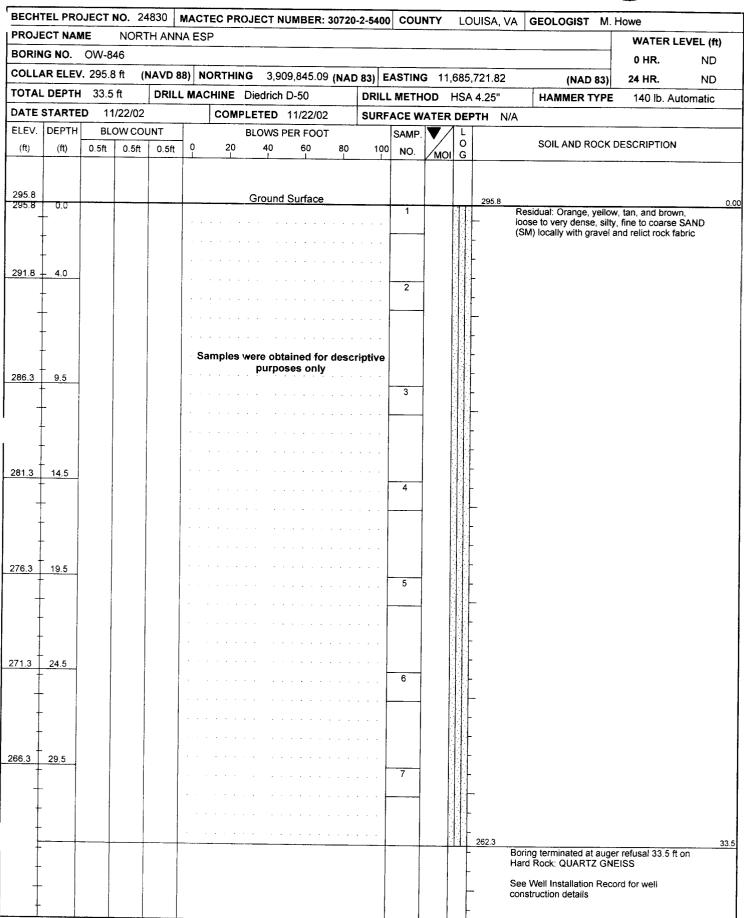


BECHT	EL PRO	JECT N	10. 24	830	MACT	TEC PRO	JECT	NUMBER:	30720-	2-5400	COU	NTY	LO	UISA, VA	GEOLOGIS	T M.	Howe	
	CT NAM			H ANN								·		.,				R LEVEL (ft)
BORIN	G NO.	OW-84			<u> </u>												0 HR.	ND
	R ELEV			A CVA	8) N	ORTHIN	G 3	909,034.76	/NAD	92\ F	STING	3 11	685	149 13	(NA	D 83)	24 HR.	ND
	DEPTH					CHINE I			(IVAD	DRILL					HAMMER			Automatic
	STARTE		/3/02	DIVILL	- 1017			12/3/02						PTH N/A	TAMMEN		140 10.	Automatic
	DEPTH		OW COL	INIT					. l	,			DEF	TIN IVA				
(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	20	40 40	S PER FOOT 60	80	100	SAMP. NO.		o		SOIL AND	ROCK	DESCRIPTI	ON
(11)	(11)	U.SIL	0.510	0.510	ļ I		<u>`</u>			- 1	NO.	MOI	G					
297.8						Contin	ued fr	om previou	s page				1.1					
-	-													.⊢ n	Residual: Tan, b nottled, firm to d	lense, lo	cally micac	eous, silty,
295.7 -	39.5													fi - fa	ne to medium S abric and locally	AND (Something	SM) with relic anganese o	ct rock xide
_	_									[9			s	taining (continu	ed)		
	-										····	-		+				
	-													-				
	-													1				
290.7	44.5													<u> </u>				
	_				,	amalca		btained fo	r doc-	rintisco	10			L				
-	-				3	ampies \	bnt here o	poses only	uesc	huve		-		-				
														_				
287.0	48.2													1				
	1										11							
	<u> </u>			ļ								1		1				
					ļ									284.2		 		5
-														fi fi	Boring terminate irm, micaceous,	d at 51. silty, fir	0 ft in Resid ne SAND (Si	ual: Very M) with
														re re	elict rock fabric			
•		ļ													See Well Installation det		cord for well	
_																		
-														<u> </u>				
-	<u> </u>													-				
-	†													-				
-														<u> </u>				
-	+			İ										-				
	+													-				
-	-											İ		}				
-	_													-				
-	-													F				
	- 1													-				
-	-													-				
-	+ !													}				
-	-													ŀ				
			ı											-				
-	_													_				
-			ı											1				
_														L				
-																		
	<u> </u>													<u> </u>				



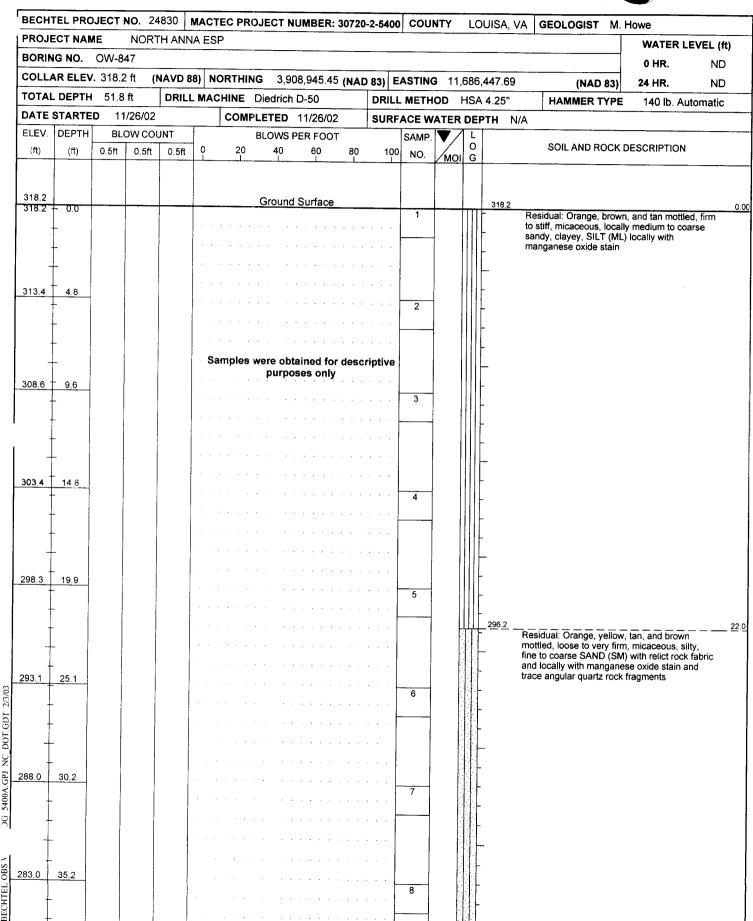
BECHI			NODI					NUMBER:							GEOLOGIST		·
	CT NAM			H ANN	A ESI												LEVEL (ft)
																0 HR.	ND
	AR ELEV			1 ' '				909,725.17	(NAD						(NAD 8	3) 24 HR.	ND
	. DEPTH			DRILI	. MAC		Diedric			DRILL	METH	OD I	HSA	4.25"	HAMMER TY	PE 140 lb. A	utomatic
	STARTE	,	/4/02			COMF	LETED	12/4/02		SURF	ACE W	ATER	DEF	PTH N/A			
	DEPTH		OW COL	T				PER FOOT			SAMP.	▼/	L	: 	SOIL AND RO	K DESCRIPTION	J
(ft)	(ft)	0.5ft	0.5ft	0.5ft	0		40	60	80	100	NO.	MOI					
281.7						Conti	nued fro	m previou	s page	,							
-														F	Residual: Orange, br	own, dark green,	and
279 6 ⁻	39.5													_ y	rellow mottled, firm to nicaceous, silty, fine	SAND (SM) with	relict
-	- 00.0										9				ock fabric and mang continued)	anese oxide stain	
_																	
-														L			
-				!													
274 € →	44.5													L			
<u> </u>	44.5										10						
					Sa	mples	were of	btained for	r desc	riptive							
4																	
271.1	48.0																
											11			_			
		,									-			_			
														268.1			
														B	Boring terminated at nicaceous, silty, fine	51.0 ft in Residua	l: Firm,
1													Ì	ro	ock fabric and mang	anese oxide stain	i Cilot
Ĩ		Ì	I								İ		ļ		See Well Installation	Record for well	
														_	onstruction details		
1	-													-			
1										Ì				_			
Ţ													.	-			
1													Ì	-			
7													ŀ	_			
†													ŀ	_			
1										ļ			ŀ	_			
1													ŀ	-			
1	_												ŀ	-			
7													-	<u> </u>			
1	-									ļ			f	-			
†										ļ			-	-			
†	-												}	-			
1	-		í										+	-			
+	-	ļ											}	_			
†	-												}	-			
†	- [-	-			
+	-	1											-	-			
+	-												-				
4	-										j		- 1				

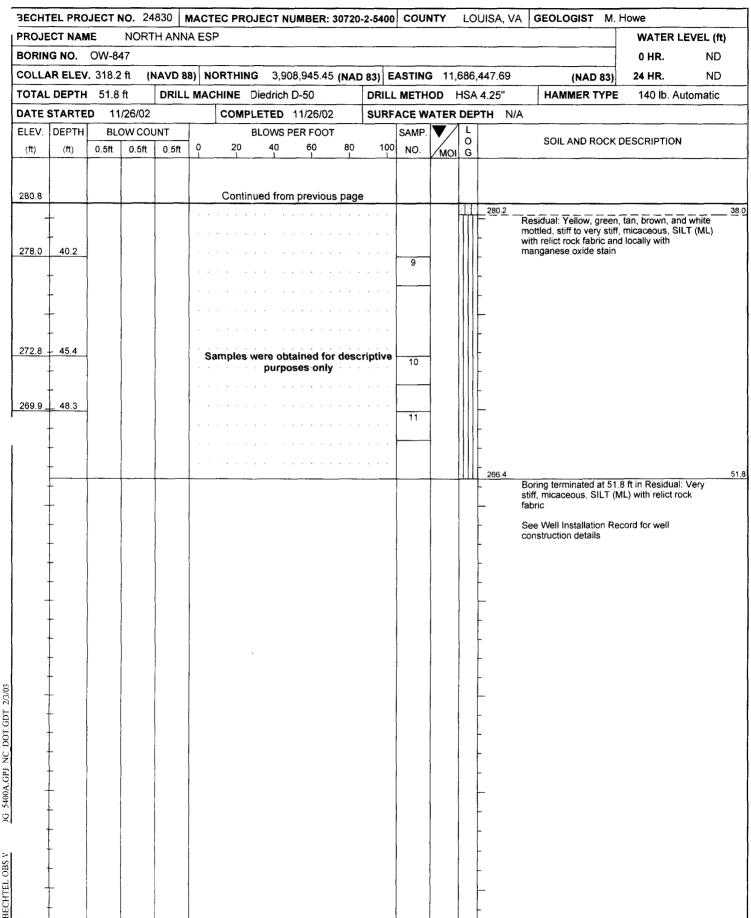
	TEL PRO			L.			- COLO	NUMBER:	30720		000			UISA, VA			. O.	Criscenzo	
	ECT NAM			TH AN	NA ES	P		···•										WATER L	EVEL (ft)
	IG NO.																	0 HR.	ND
	AR ELEV							3,909,858.66		83) E	ASTIN	3 11,	685	,741.11		(1	NAD 83)	24 HR.	ND
	L DEPTH			DRIL	L MAC	1		sol Rand T3\	Ν	DRILL	METH	OD ,	Air F	Rotary 6 1/8	3" H	AMM	ER TYPI	E N/A	
	STARTE		2/3/02		,	COM	MPLETE	D 12/3/02		SURF	ACE W	ATER	DEF	PTH N/A					
	DEPTH		OW CO	Т	1	20		S PER FOOT			SAMP.		L		S	OIL AN	ID ROCK	DESCRIPTION	
(ft)	(ft)	0.5ft	0.5ft	0.5ft	P	1) 4(0 60 L	80 	100	NO.	MOI							
295.8					<u> </u>			Ground						295.8					. (
-	_														- 55 f	eet dril	led withou	ut sampling	
	1		:		l									-					
	-																		
	ļ [
									• • •					_					
_		İ																	
-	↓													_					
-	↓													_					
-	ļ									`				_					
										- , .									
-																			
-																			
_					, ,									_					
-	_													_					
_	-													•					
-	-													_					
,	- 1													_					
-	-													_					
-	-													_					
_	_													_					
Å	-													_					
+	- 1													_					
+														-					
+		Ì	į										,	_					
4	-													_					
+	-													-					
-	-										i			_					
+	-													-					
	- [
+	-											j		_					
-	-																		
+	-				l									-					
1	-								. ,										
-														240.8					
											ŀ		T	Bc	oring te	ermina	ted at 55.	0 ft	55
												1	۲	-					

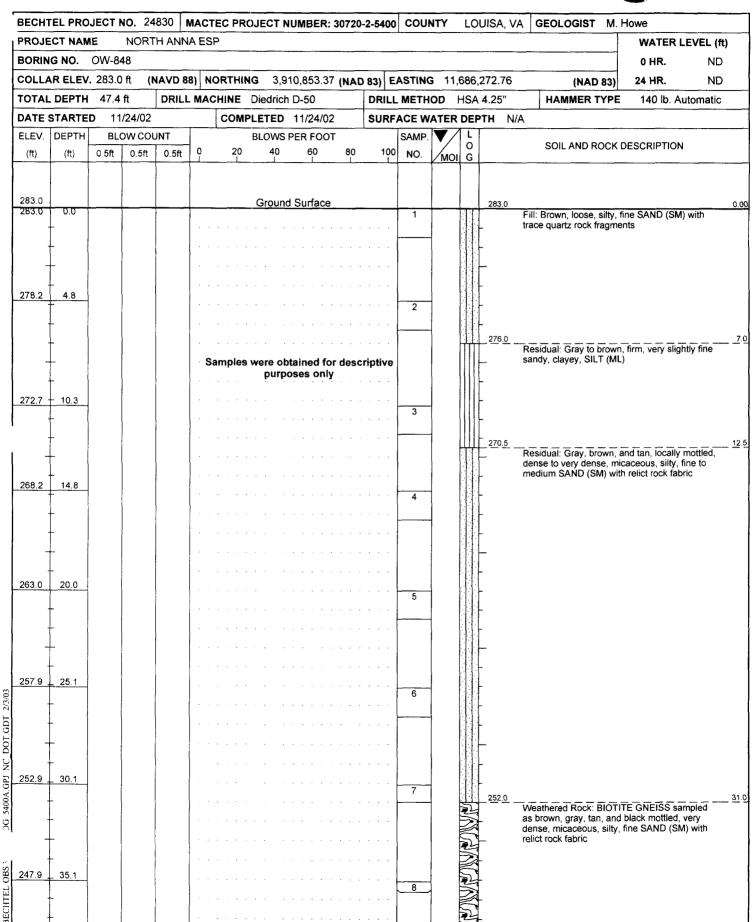


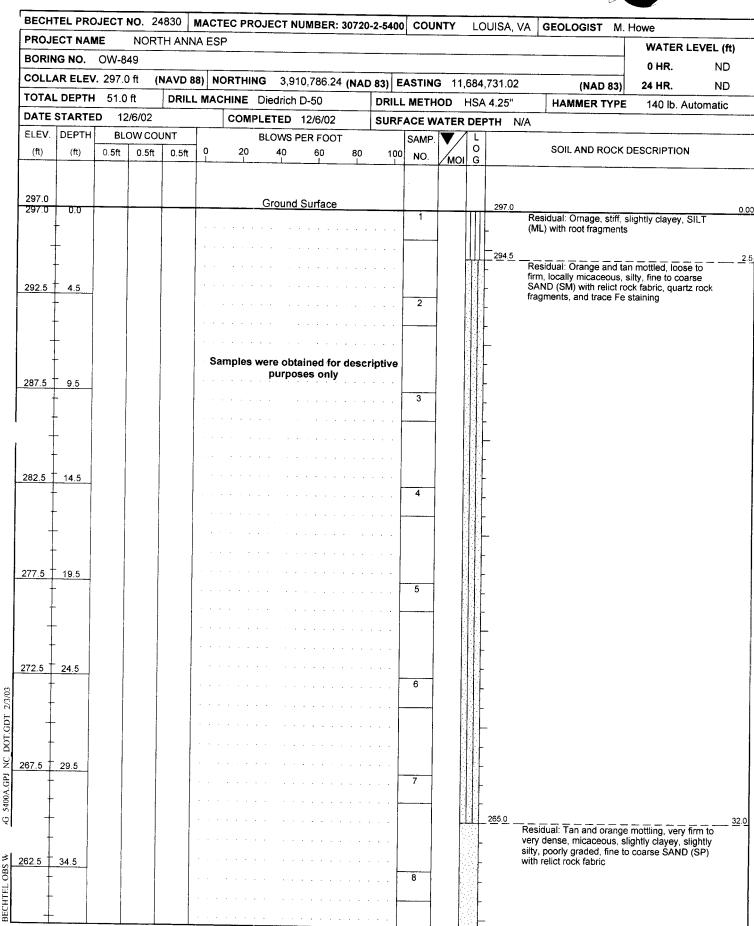
DOT.GDT 2/3/03

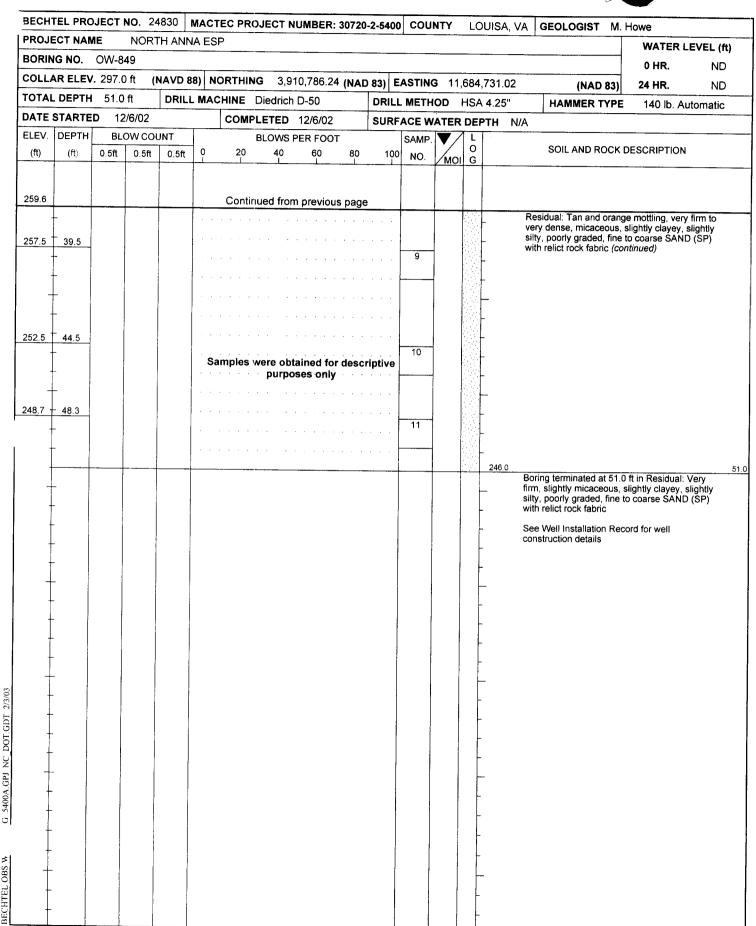
S

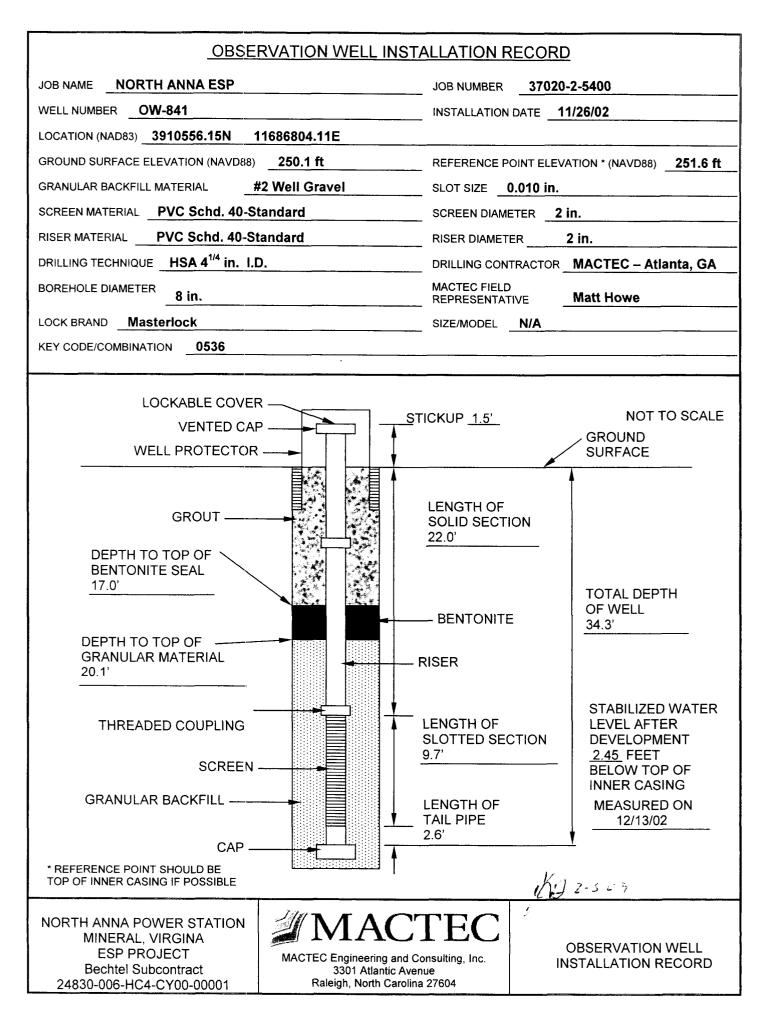

JG 5400A.GPJ

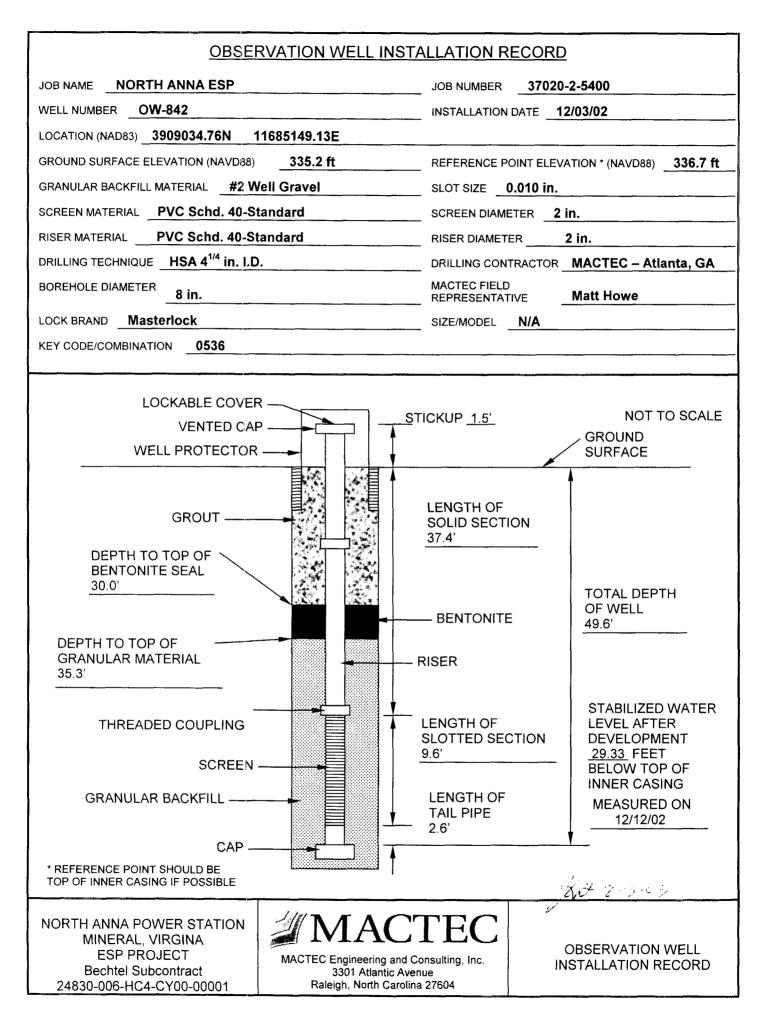


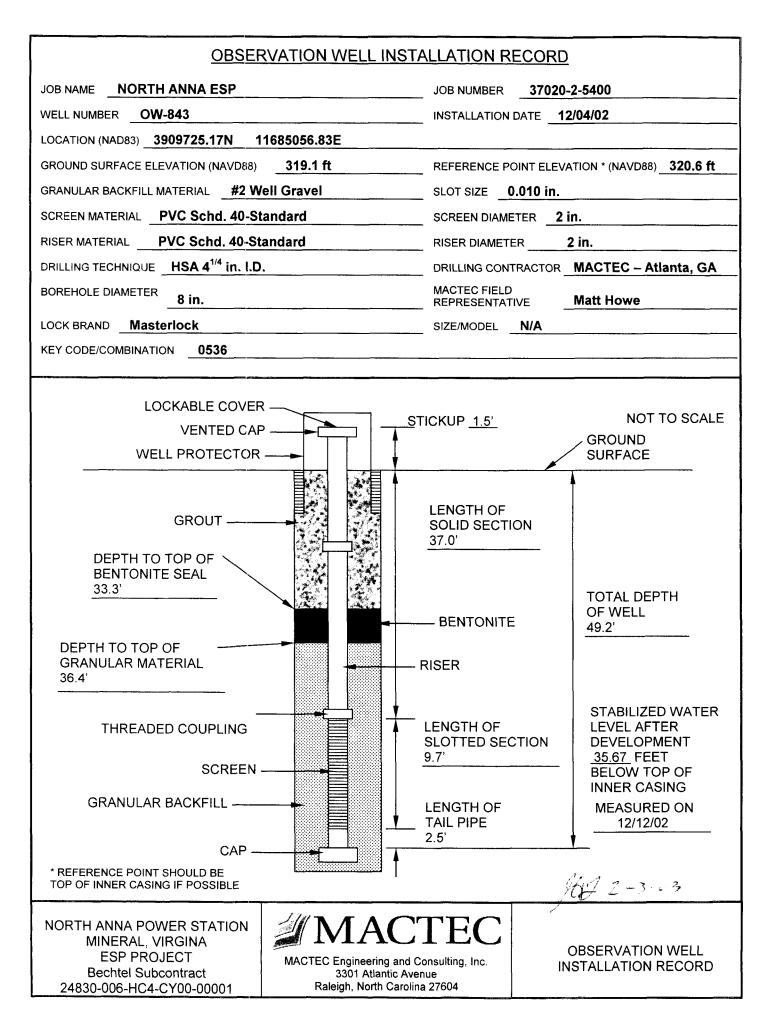


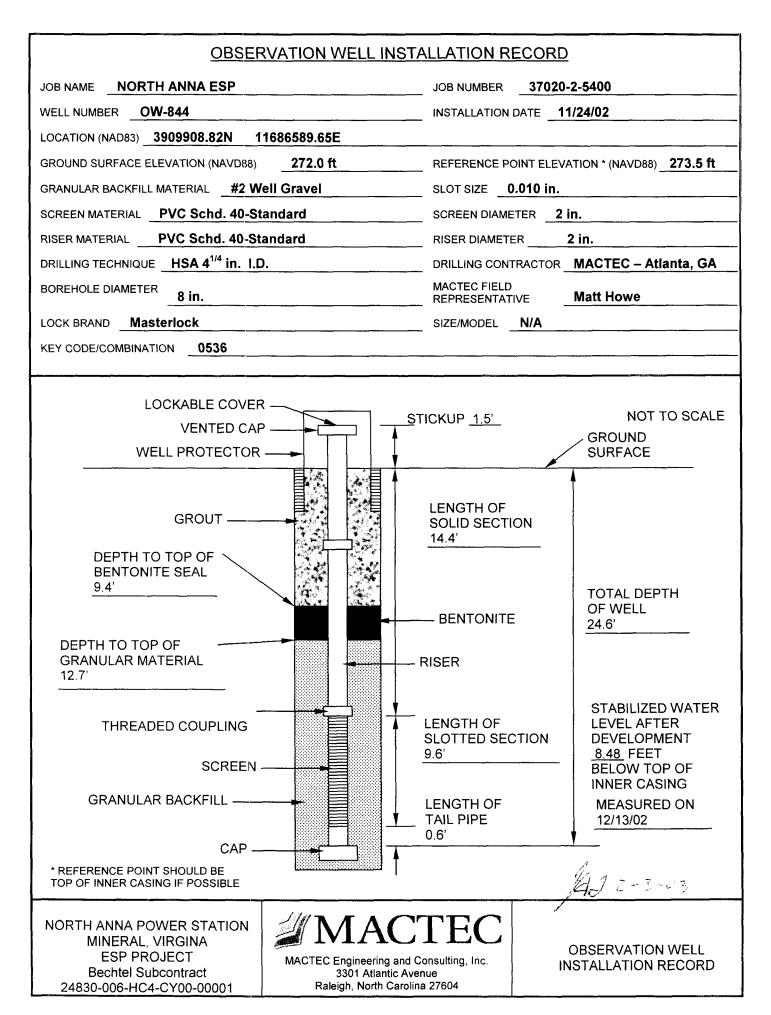


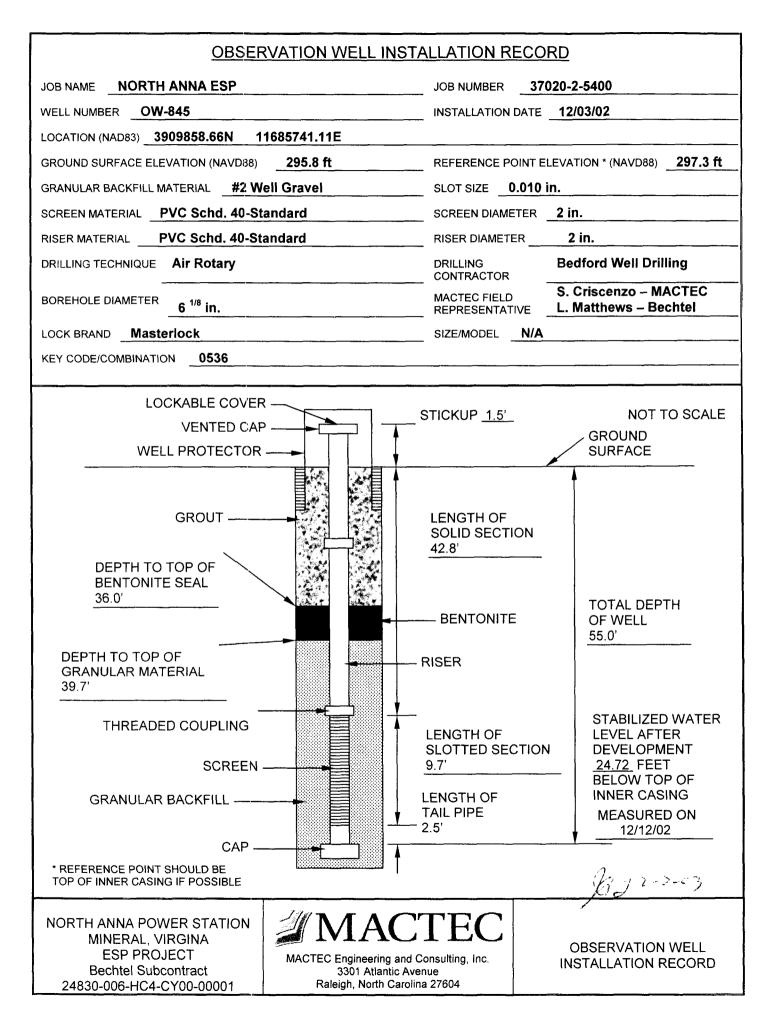


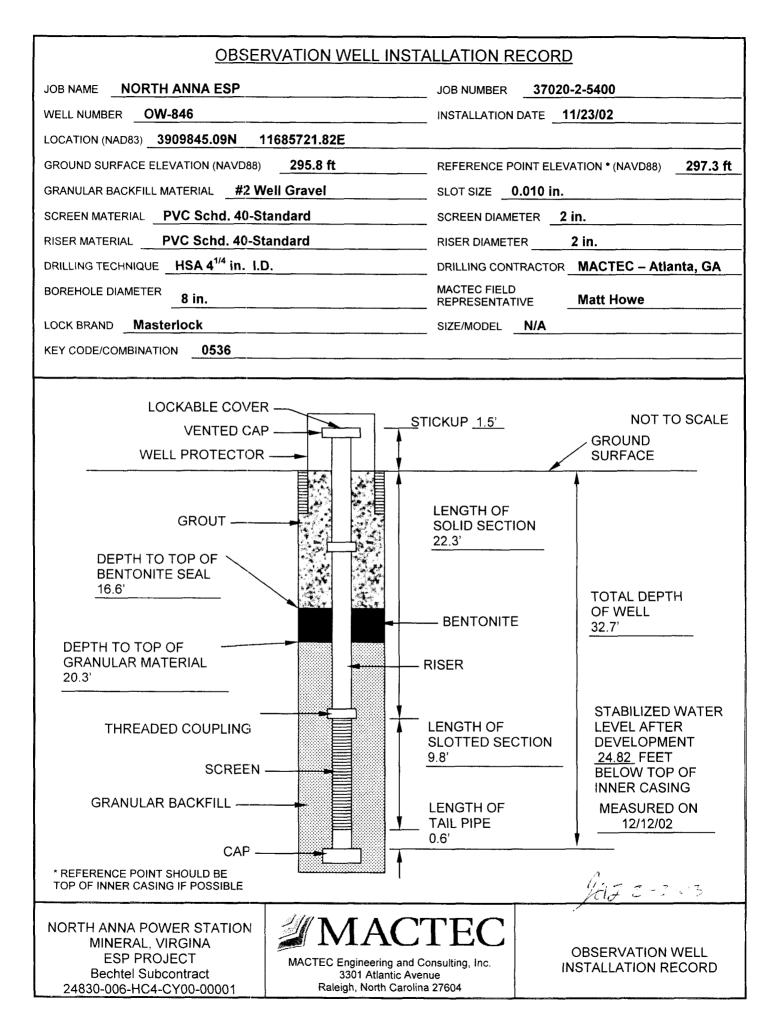


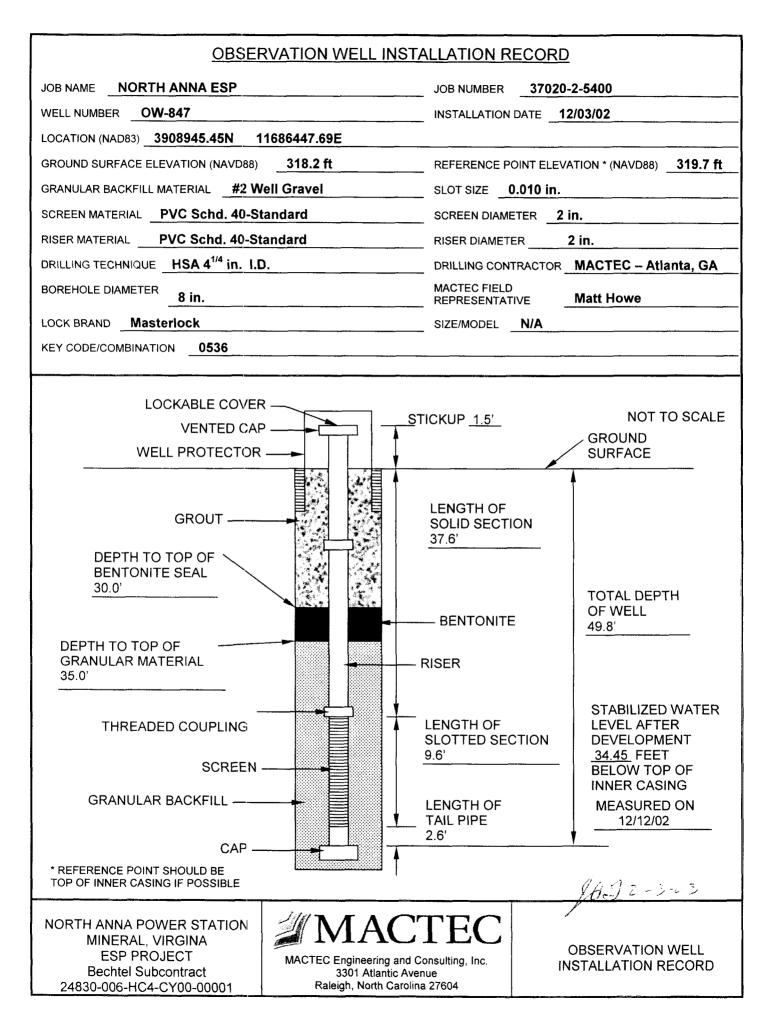


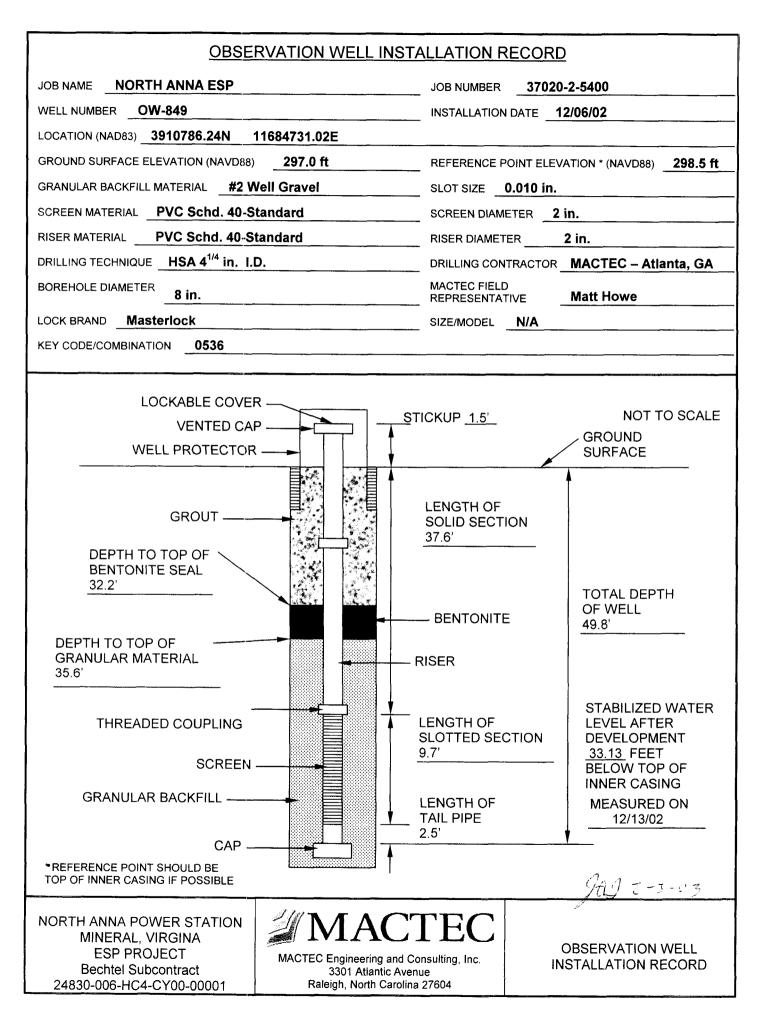












MACTEC JOB NUMBER3	0720-2-5400		OBSERVATION V	WELL NUMBER	Ow-841							
SITE NAME North Anna Power Station												
DATE (MO/DAY/YR)	-110/02		TIME (MILI	tary) <u>081</u>	<u>5</u>							
FIELD PERSONNEL	Trians + Ho	we										
WEATHER CONDITIONS	Cloudy +	Low 30's			· · · · · · · · · · · · · · · · · · ·							
TOTAL WELL DEPTH (TWO	351	to with 35	.80	FT. (C	EPTH BELOW ME	ASURING	POINT)					
HEIGHT OF MEASURING P	OINT ABOVE LANI	SURFACE	1.5			·	FT.					
DESCRIPTION OF MEASUR	RING POINT	TiDIC	ı .	·		·						
DEPTH TO GROUNDWATE	R (DGW)	35.60 walfing	w 2.63	FT. (DE	EPTH BELOW MEA	SURING F	OINT)					
METHOD OF WELL EVACU	IATION DISPOS BAILER		THER: Su	bruevible what	e Amp							
TOTAL VOLUME OF WATE	R REMOVED	33	GAL.	CASING DIAM	ETER		_ IN.					
CASING MATERIAL	PVC 🔀	s.s.	TEFLON	OTHER _	1/14							
SCREENED INTERVAL (FR	OM ID PLATE)	23,5 - 33,	2	(DEF	PTHS BELOW LAN	D SURFAC	E-FT.)					
STEEL GUARD PIPE AROU	IND CASING Y	ES 🗵 NO	COM	MENTS AND	5 gallers and	fet.	nst.					
LOCKING CAP	YI	ES- Lish Ithlogiano		•	tos a Purgest							
PROTECTIVE POST/ABUTI	MENT Y	ES NO	$\overline{\times}$	5 70	elling and le	7 rox						
NONPOTABLE LABEL	Y	ES NO	abla	5 mil	its. STATERA	uld	evolupour					
ID PLATE	Y	ES NO	∇				·					
WELL INTEGRITY SATISFA	CTORY Y	ES 🔃 NO										
WELL YIELD LOW	MODER	ATE	нідн 🛱	COMMENTS								
		GROUNDW	ATER PARAMETE	RS			wst-10					
VOLUME (GAL.)	5	10	15	7.)	75	30	35 33					
pH (S.U.)	6.44	6.68	6.82	6.66	667	6.67	6.98					
IF LATE AS SP. COND. (MMHOS/CM)	0.312	0.239	0.240	0:199	4040	0.217	0.258					
WATER TEMP. (°C)	NJA	MIA	N/A	N/14	MA	NII	MA					
TURBIDITY*	(3)	(3)	(3)	(1)	(1)	(1)	(1)					
* VISUAL DETERMINATION	ONLY (1) CLE	AR (2) SLIGHT (3	B) MODERATE (4))HIGH W	AD							
Two - Don x 0.16	7 X 6 = des	elsont a more	it in mallone		//							

MACTEC JOB NUMBER	30720-2-5400		OBSERVATION WELL NUMBER 0W - 842									
SITE NAME North Anna Power Station												
DATE (MO/DAY/YR)	-110/07		TIME (MI	LITARY) 1530	·							
FIELD PERSONNEL	rimes & Ho	owe.					_					
WEATHER CONDITIONS	cloudy-1	200 JOS										
TOTAL WELL DEPTH (TWI) <u>51,16</u>			FT. (DE	PTH BELOW MEAS	SURING POIN	(TV					
HEIGHT OF MEASURING F	POINT ABOVE LAN	SURFACE 1	5 '				FT.					
DESCRIPTION OF MEASU	RING POINT	TIDIC.										
DEPTH TO GROUNDWATE	R (DGW)	29,14		FT. (DEF	TH BELOW MEASL	JRING POIN	רד					
METHOD OF WELL EVACE	JATION DISPOS BAILER		THER:	obmessible whole	pump							
TOTAL VOLUME OF WATE	R REMOVED	77	GAL.	CASING DIAME	TER	· · · · · · · · · · · · · · · · · · ·	IN.					
CASING MATERIAL	PVC 🔀	s.s.	TEFLON	OTHER	I we	delplia						
SCREENED INTERVAL (FR	OM ID PLATE)	37.4-	45.3	(DEP1	HS BELOW LAND	SURFACE - I	FT.)					
STEEL GUARD PIPE AROL	JND CASING Y	es 🗵 no	co	OMMENTS Pura	3 galley aw	1 het my	/- -					
LOCKING CAP	YI	ES 🛛 NO		5 5 mllo	s. Project 3 m	e garders.	ang/					
PROTECTIVE POST/ABUTI	MENT YI	ES NO	X	let m	of sments.	, Ho feel						
NONPOTABLE LABEL	Y	ES NO	X	pusay.	levery mi wim	-s.						
ID PLATE	YI	ES NO	X									
WELL INTEGRITY SATISFA	CTORY Y	ES 🗵 NO										
WELL YIELD LOW	MODER	ATE	нідн 🗍	COMMENTS			———					
		GROUNDW	ATER PARAME		nest Nichoz	more in	relier					
VOLUME (GAL.)	3	6	+49	1512	1815	2218	22					
pH (S.U.)	7,30	7.18	7.15	7.13	7.04	7.04	- _{1.} 03					
SP. COND. (µMHOS/CM)	e to	0,705	0.192	०. ।४।	0.174	下が.0	0.16					
WATER TEMP. (°C)	11/14	MA	n/14	<i>1</i> √ <i>A</i>	MA	ห [ู] A	MIA					
TURBIDITY*	(4)	64)	(H)	(y)	(1)	(4)	(a)					
* VISUAL DETERMINATION	ONLY (1) CLE	AR (2) SLIGHT (3) MODERATE	(4) HIGH	x for							
TWD-06W *0.167 *	6 - developm	+ volume in.	حدااه									

Observation Well Development Woksheet

MACTEC JOB NUMBER 30720-2-5400 OBSERVATION WELL NUMBER 00-843	
ITE NAME North Anna Power Station	
TIME (MILITARY) 1675	
IELD PERSONNEL _ Unims of Howe	
VEATHER CONDITIONS Cloudy + Low 303	
OTAL WELL DEPTH (TWD) 50.90 FT. (DEPTH BELOW MEASURING PO	тиіс (тиіс
HEIGHT OF MEASURING POINT ABOVE LAND SURFACE 1,5	FT.
DESCRIPTION OF MEASURING POINT TOUCK	
DEPTH TO GROUNDWATER (DGW) 37 74 FT. (DEPTH BELOW MEASURING PO	(TNI
METHOD OF WELL EVACUATION DISPOSABLE OTHER: Submarsible while prop	
OTAL VOLUME OF WATER REMOVED GAL. CASING DIAMETER 2	IN.
CASING MATERIAL PVC S.S. TEFLON OTHER N/A	
SCREENED INTERVAL (FROM ID PLATE) 40,3 - 49,9 (DEPTHS BELOW LAND SURFACE	- FT.)
STEEL GUARD PIPE AROUND CASING YES X NO COMMENTS Total 25 yellows (at Men	
OCKING CAP YES THIPPET NO X 5 minutes. Royal distance of	alle 3
PROTECTIVE POST/ABUTMENT YES NO V	1 10
NONPOTABLE LABEL YES NO X development, Pungo 14	
DPLATE YES NO NO NO additional grations to 54	15:112
VELL INTEGRITY SATISFACTORY YES NO D	
VELL YIELD LOW MODERATE HIGH COMMENTS	
GROUNDWATER PARAMETERS IF I was VI Fliciar WI Fliciar	12/16/4
OLUME (GAL.) 3)5 650 975 + 100 +5125 1546	17.5
H(S.U.) 290 9.87 9.72 9.46 4.20 3.62	8. i g
(1/11/6) MS SP. COND. (pMHOS/CM) 9.187 0.182 0.177 0.172 0.171 9.172	0.K7
VATER TEMP. (°C) N/A N/A N/A N/A N/A N/A	144
TURBIDITY* (2) (2) (2) (2) (1)	Ġ.)
VISUAL DETERMINATION ONLY (1) CLEAR (2) SLIGHT (3) MODERATE (4) HIGH	\rightarrow

TWO- 12-W + 0.167 +1 = cluvelenent aum + 1, salla, Olfor See cartinuation sheet cidocuments and settingslaticellocal settingslaticelloc

MACTEC JOB NUMBER 30720-2-5400 OBSERVATION WELL NUMBER 6W-843 Continuation										
SITE NAME North Anna Power Station										
DATE (MO/DAY/YR) TIME (MILITARY)	_									
FIELD PERSONNEL	_									
WEATHER CONDITIONS	_									
TOTAL WELL DEPTH (TWD) FT. (DEPTH BELOW MEASURING POIN	רו									
HEIGHT OF MEASURING POINT ABOVE LAND SURFACE F	т.									
DESCRIPTION OF MEASURING POINT	_									
DEPTH TO GROUNDWATER (DGW) LATER (DGW) FT. (DEPTH BELOW MEASURING POINT)									
METHOD OF WELL EVACUATION DISPOSABLE OTHER:										
TOTAL VOLUME OF WATER REMOVED GAL. CASING DIAMETER !	N.									
CASING MATERIAL PVC S.S. TEFLON OTHER										
SCREENED INTERVAL (FROM ID PLATE) (DEPTHS BELOW LAND SURFACE - F	T.)									
STEEL GUARD PIPE AROUND CASING YES NO COMMENTS	_									
LOCKING CAP YES NO										
PROTECTIVE POST/ABUTMENT YES NO										
NONPOTABLE LABEL YES NO										
ID PLATE YES NO	_									
WELL INTEGRITY SATISFACTORY YES NO										
WELL YIELD LOW MODERATE HIGH COMMENTS	—									
GROUNDWATER PARAMETERS										
VOLUME (GAL.) 20 21.5 25 27.5 30										
ph (s.u.) 7.82 7.66 7.55 7.49 7.41										
SP. COND. (#MHOS/CM) Oilb5 0.164 Dilb3 Dilb1 oilb0										
WATER TEMP. (°C) NIA NIA NIA NIA NIA										
TURBIDITY* (1) (1) (1) (1)										
*VISUAL DETERMINATION ONLY (1) CLEAR (2) SLIGHT (3) MODERATE (4) HIGH OK ALL										

Observation Well Development Woksheet

MACTEC JOB NUMBER3	80720-2-5400		OBSERVATION V	VELL NUMBER	OW-844							
SITE NAME North Anna Power Station												
DATE (MO/DAY/YR)	1110002		TIME (MILIT	ARY) 1120								
FIELD PERSONNEL	rring of the	we										
WEATHER CONDITIONS	Cloudy,	low 30's		7/11-L								
TOTAL WELL DEPTH (TWD	D) 2512	5× 26.10	ust 17/11/07	FT. (D	EPTH BELOW MEA	SURING POINT)						
HEIGHT OF MEASURING P	OINT ABOVE LAN	D SURFACE	1.5			FT.						
DESCRIPTION OF MEASUR	RING POINT	Tioch.										
DEPTH TO GROUNDWATE	R (DGW)	8.95		FT. (DE	PTH BELOW MEAS	SURING POINT)						
METHOD OF WELL EVACU	JATION DISPOS BAILER	··	THER S.b.	messible whale	pump							
TOTAL VOLUME OF WATE	R REMOVED	17	GAL.	CASING DIAM	ETER	IN.						
CASING MATERIAL	PVC 🔀	s.s.	TEFLON	OTHER _								
SCREENED INTERVAL (FR	OM ID PLATE)	14.4 - 3	14.0	(DEP	THS BELOW LAND	SURFACE - FT.)						
STEEL GUARD PIPE AROU	IND CASING Y	ES NO	СОМ	IMENTS July 12	2 3 gullon 1	et Most						
LOCKING CAP	Y	ES NO				on dispuss						
PROTECTIVE POST/ABUT	MENT Y	ES NO	X	it will	deal wit	ryst						
NONPOTABLE LABEL	Y	ES NO	$\overline{\mathbf{X}}$	Driva y	p ~ 14.75 5×11	lans, lex						
ID PLATE	Y	ES NO	X	N-5+	. and - P	19.25 moles						
WELL INTEGRITY SATISFA	CTORY Y	ES 🔽 NO			MSA. 1350-175							
WELL YIELD LOW	MODE	RATE JUNIO	HIGH		- 8-41 . Ac							
			ATER PARAMETE	RS	1 (thinks = 8)	83, 6411 1)ry						
VOLUME (GAL.)	3	6	9	12	15,	17						
pH (S.U.)	8.47	7.97	\$.53	7.87	7,40	7.46						
SP. COND. (µMH05/CM)	0.202	0.195	0,203	0.190	6.195	0. i§7						
WATER TEMP. (°C)	NIC	NIA	NIA	NIA	NIA	NIA						
TURBIDITY*	(3)	(3)	(4)	(3)	63)	(2)						
* VISUAL DETERMINATION	ONLY (1) CLE	EAR (2) SLIGHT (3	3) MODERATE (4)	HIGH	with 17-11/07	Fader						

TWD - DE-W + DIE 7 × E = disciplinant growing on long c:\documents and settings\atice\local settings\lemporary internet files\olk\signature nana development worksheet.doc

or JAJ

See continuation sheet

MACTEC JOB NUMBER 30720-2-5400 OBSERVATION WELL NUMBER 0 W-844 Continuation											
SITE NAME North Anna Power Station											
DATE (MO/DAY/YR)			TIME (MILI	ITARY)		·					
FIELD PERSONNEL											
WEATHER CONDITIONS											
TOTAL WELL DEPTH (TWO	D)			FT. (DEPTH BELOW ME	ASURING POINT)					
HEIGHT OF MEASURING F	POINT ABOVE LANI	O SURFACE				FT.					
DESCRIPTION OF MEASU	RING POINT	USU									
DEPTH TO GROUNDWATE	R (DGW)	Hulot		FT. (D	EPTH BELOW MEA	SURING POINT)					
METHOD OF WELL EVACU	JATION DISPOS BAILER		OTHER:								
TOTAL VOLUME OF WATE	R REMOVED		GAL.	CASING DIA	METER	IN.					
CASING MATERIAL	PVC	s.s.	TEPLON _	OTHER							
SCREENED INTERVAL (FR	OM ID PLATE)			(DE	EPTHS BELOW LAN	D SURFACE - FT.)					
STEEL GUARD PIPE AROL	JND CASING Y	ES NO	co	мментѕ							
LOCKING CAP	Y	ES NO		\-							
PROTECTIVE POST/ABUTI	MENT Y	ES NO		\rightarrow							
NONPOTABLE LABEL	Y	ES NO			<u> </u>						
ID PLATE	Y	ES NO									
WELL INTEGRITY SATISFA	CTORY Y	ES NO									
WELL YIELD LOW	MODEF	RATE	HIGH	COMMENTS							
		GROUNDV	VATER PARAMET	ERS							
VOLUME (GAL.)	до	<i>‡</i> 3	76	29	37						
pH (S.U.)	7.63	7.12	7.67	7.66	7.62						
17 (mb) m5 SP. COND. (mmHOS/CM)	0,701	0.07	0.199	0209	Q. 200						
WATER TEMP. (°C)	ir let	alot	alu	n/4	15/4						
TURBIDITY*	(7)	() -)	(H)	(4)	(4)						
VISUAL DETERMINATION	ONLY (1) CLE	AR (2) SLIGHT (3) MODERATE (4) HIGH	or AD						

MACTEC JOB NUMBER 30720-2-5400 OBSERVATION WELL NUMBER 275												
SITE NAME North Anna Power Station												
DATE (MO/DAY/YR)	19/02		TIME (MILIT	'ary)	30							
FIELD PERSONNEL	rimes a Ho	we-				:						
WEATHER CONDITIONS	Partly So,	iny 2-301	5									
TOTAL WELL DEPTH (TW				FT. (DE	EPTH BELOW MEA	SURING POINT)						
HEIGHT OF MEASURING F	POINT ABOVE LAN	D SURFACE	1.5'			FT.						
DESCRIPTION OF MEASU	RING POINT	T.O.C.		VII.								
DEPTH TO GROUNDWATE	ER (DGW)	74.69		FT. (DE	PTH BELOW MEAS	URING POINT)						
METHOD OF WELL EVAC	UATION DISPOS BAILER		OTHER: UL	ula 26.w.	who pump							
TOTAL VOLUME OF WATE	ER REMOVED	31	GAL.	CASING DIAME	ETER	IN.						
CASING MATERIAL	PVC 📉	s.s.	TEFLON	OTHER	NA							
SCREENED INTERVAL (FF	ROM ID PLATE)	<u> 43.6 - </u>	53,3	(DEP	THS BELOW LAND	SURFACE - FT.)						
STEEL GUARD PIPE AROU		ES 🛛 NO	The COM		1							
LOCKING CAP		ES X NO	_	-borred	, 2.5 , xins 15.	minutes,						
PROTECTIVE POST/ABUT	MENT Y	ES Janua NO	\boxtimes	- projet	2.5 gallang 1	lef rest						
NONPOTABLE LABEL	Y	ES NO		15 200	etes. Ingel	5 gallers						
ID PLATE	Y	ES NO	X		sit overigh							
WELL INTEGRITY SATISFA	ACTORY Y	ES 🛚 NO		•	Dbn - 34, 69	•						
WELL YIELD LOW	MODER		HIGH	COMMENTS	- Marie							
		I HOW GROUNDW		RS Itlair	17/1007							
VOLUME (GAL.)	45	+\$10	Minto nor	٠٠٠)٠	3+5	31						
pH (S.U.)	5.87	5.83	5.87	5.83	5.81	5,80						
SP. COND. (µMHOS/CM)	0,89	0.098	0.095	0.096	0.095	0.096						
WATER TEMP. (°C)	NA	alet	N/H	11/4	nIA	1) IA						
TURBIDITY*	(1)	613	01)	(1)	(1)	(1)						
Don't 12/10/02 =	24.72007	D										
* VISUAL DETERMINATION	ONLY (1) CLE	AR (2) SLIGHT (3) MODERATE (4)	HIGH	OK JAS							
TO-06W +	0.167 +6=	development a	morat in out	^{٧,} ۸٥								

ACTEC JOB NUMBER 30720-2-5400 OBSERVATION WELL NUMBER 0 - 846							
SITE NAME North Anna Power Station							
ATE (MO/DAYYR) 17/467 TIME (MILITARY) 1615							
FIELD PERSONNEL Crimes + Howe							
WEATHER CONDITIONS Party Sung weed in the 30'S							
TOTAL WELL DEPTH (TWD) 336 3430 17/1167-49 FT. (DEPTH BELOW MEASURING POINT)							
HEIGHT OF MEASURING POINT ABOVE LAND SURFACE FT.							
DESCRIPTION OF MEASURING POINT T.O.C.							
EPTH TO GROUNDWATER (DGW) 248 FT. (DEPTH BELOW MEASURING POINT)							
METHOD OF WELL EVACUATION DISPOSABLE OTHER: Ebassible while pump							
TOTAL VOLUME OF WATER REMOVED 933 GAL. CASING DIAMETER 1N.							
CASING MATERIAL PVC S.S. TEFLON OTHER 1/14							
SCREENED INTERVAL (FROM ID PLATE) (DEPTHS BELOW LAND SURFACE - FT.)							
STEEL GUARD PIPE AROUND CASING YES NO COMMENTS - Around 1 grown, 124 min 5							
LOCKING CAP YES X NO [minutes, langer author gallan							
PROTECTIVE POST/ABUTMENT YES NO X							
NONPOTABLE LABEL YES NO () NO ()							
ID PLATE YES NO X galler let most 5 mints.							
WELL INTEGRITY SATISFACTORY YES X NO							
WELL YIELD LOW MODERATE HIGH X COMMENTS to char up redinar.							
GROUNDWATER PARAMETERS							
OLUME (GAL.) 15 30 4.5 60 7.5 5.0							
4(s.u.) 5.19 5.16 5.09 5.16 5.07							
P. COND. (HANTIOS/CM) 2.245 0.224 0.229 0.233 0.238 0.337							
VATER TEMP. (°C) N/A N/A N/A N/A N/A N/A N/A							
URBIDITY* $VSLIL (4) (4) (3) (3) (3)$							
The Dbw in 12/10/07 = 24.93							
*VISUAL DETERMINATION ONLY (1) CLEAR (2) SLIGHT (3) MODERATE (4) HIGH OK AAJ							
TD-Now + 0-167 +6 = development amount							

Observation Well Development Woksheet

MACTEC JOB NUMBER 30720-2-5400			OBSERVATION WELL NUMBER 0W-847				
SITE NAME North Anna Power Station							
DATE (MO/DAYN'R)			TIME (MILIT	ILITARY) 1410			
FIELD PERSONNEL Crims & Home							
WEATHER CONDITIONS Clarky + Low 30'S							
TOTAL WELL DEPTH (TWD) 51.30 11/11/67 FT. (DEPTH BELOW MEASURING POINT)							
HEIGHT OF MEASURING POINT ABOVE LAND SURFACE 1.5							
DESCRIPTION OF MEASURING POINT T.C.C							
DEPTH TO GROUNDWATER (DGW) 3418 FT. (DEPTH BELOW MEASURING POINT)							
METHOD OF WELL EVACUATION DISPOSABLE OTHER! Submersile whole fung							
TOTAL VOLUME OF WATER REMOVED 17 38 GAL. CASING DIAMETER 1N.							
CASING MATERIAL PVC X S.S. TEFLON OTHER NOTHER							
SCREENED INTERVAL (FROM ID PLATE) 37.6' - 45.5 (DEPTHS BELOW LAND SURFACE - FT.)							
STEEL GUARD PIPE AROUND CASING YES NO COMMENTS Frage 3 grants and Lat							
LOCKING CAP YES NO NO MST 5 m notes from 2							
PROTECTIVE POST/ABUTMENT YES NO X						- موريد	
NONPOTABLE LABEL YES NO X 5 minutes, Start & proper						penjag	
ID PLATE YES NO X divelepment volumes, le 11 = S							
WELL INTEGRITY SATISFACTORY YES X NO [] 11 all 2 mm gallons to class							
WELL YIELD LOW MODERATE HIGH COMMENTS UP SEE WITH							
GROUNDWATER PARAMETERS							
VOLUME (GAL.)	3	6	<u> </u>	12	15	17	
pH (S.U.)	7.48	7.11	7.10	7.16	7.25	7.04	
SP. COND. (µMH O S/CM)	0 134	0.103	0.101	0.607	0.119	0.107	
WATER TEMP. (°C)	n/A	n/A	0/04	11/17	MA	MA	
TURBIDITY*	(4)	C4)	(3)	(3)	(2)	(a)	
* VISUAL DETERMINATION ONLY (1) CLEAR (2) SLIGHT (3) MODERATE (4) HIGH							

Two - low tolows is a long development about in the sallons citiocuments and settingstaticellocal settingstemporary internet files bolk 9 in anna development worksheet doc

OK JAZ

5ce Continuation short

Observation Well Development Woksheet

MACTEC JOB NUMBER 30720-2-5400 OBSERVATION WELL NUMBER OW -847 (antimation			
SITE NAME North Anna Power Station			
DATE (MO/DAY/YR) TIME (MILITARY)			
FIELD PERSONNEL			
WEATHER CONDITIONS			
TOTAL WELL DEPTH (TWD) FT. (DEPTH BELOW MEASURING POINT)			
HEIGHT OF MEASURING POINT ABOVE LAND SURFACE FT.			
DESCRIPTION OF MEASURING POINT			
DEPTH TO GROUNDWATER (DGW) VSt 1/11/07 FT. (DEPTH BELOW MEASURING POINT)			
METHOD OF WELL EVACUATION DISPOSABLE OTHER:			
TOTAL VOLUME OF WATER REMOVED GAL. CASING DIAMETER IN.			
CASING MATERIAL PVC S.S. TEFLON OTHER			
SCREENED INTERVAL (FROM ID PLATE) (DEPTHS BELOW LAND SURFACE - FT.)			
STEEL GUARD PIPE AROUND CASING YES NO OMMENTS			
LOCKING CAP YES NO .			
PROTECTIVE POST/ABUTMENT YES NO NO			
NONPOTABLE LABEL YES NO			
ID PLATE YES NO			
WELL INTEGRITY SATISFACTORY YES NO .			
WELL YIELD LOW MODERATE HIGH COMMENTS			
GROUNDWATER PARAMETERS			
VOLUME (GAL.) ∂o $\partial \beta$ $\partial \delta$			
pH (S.U.) 6,94 7.05 7.04			
17 11/162 -55 MS SP. COND. (#MHOS/CM) 0,094 0,096 0.112			
WATER TEMP. (°C) Alet ULA Ala			
TURBIDITY* (7) (1)			
*VISUAL DETERMINATION ONLY (1) CLEAR (2) SLIGHT (3) MODERATE (4) HIGH OK MI			

and authorstaticational settingsternoprary internet filestolk9to anna development worksheet.doc

Observation Well Development Woksheet

MACTEC JOB NUMBER 30720-2-5400		OBSERVATION W	ELL NUMBER 2)W-848			
SITE NAME North Anna P	ower Statio	on			·		
DATE (MO/DAYYR) 17/10/0	۲		TIME (MILIT	ARY) 092	0		
FIELD PERSONNEL Fring	+ Howe		·				
WEATHER CONDITIONS				· · · · · · · · · · · · · · · · · · ·			<u>-</u>
TOTAL WELL DEPTH (TWD)	49.3	5 48.87 "	50 1 Hulod	FT. (D	EPTH BELOW MEA	SURING F	POINT)
HEIGHT OF MEASURING POINT	ABOVE LANI	D SURFACE	5'				_ FT.
DESCRIPTION OF MEASURING	POINT	T.O.C					
DEPTH TO GROUNDWATER (DO	sw) <u>4</u>	1.79	-	FT. (DE	PTH BELOW MEAS	SURING PO	тиіс)
METHOD OF WELL EVACUATIO		SABLE VALUE	OTHER SU	omesible wha	(jump	<u></u>	
TOTAL VOLUME OF WATER RE		DIS 8.5	GAL.	CASING DIAM	ETER		_ IN.
CASING MATERIAL PVC	: (S.S.	TEFLON	OTHER	nla		
SCREENED INTERVAL (FROM I	PLATE)	42.2 -	47.22	(DEF	THS BELOW LAND	SURFAC	E-FT.)
STEEL GUARD PIPE AROUND C	ASING Y	ES 🛛 NO	СОМ	MENTS Han	2 / galler +	let v	-5 /
LOCKING CAP	Y	es 🛛 No		5 mil	uts. Remod	1 galla	- <i>t</i>
PROTECTIVE POST/ABUTMENT	Y	ES NO		144.	Mg For 5 no	uts Res	me
NONPOTABLE LABEL	Y	ES NO	$\overline{\mathbb{X}}$! 40 C	in the x x ish	1~57	L.
ID PLATE	YI	ES NO		5 min	is price to	do rela	100
WELL INTEGRITY SATISFACTOR	RY YI	ES 🛛 NO		-p11-0	an addition	1 25	-lleng
WELL YIELD LOW	MODER	ATE T	нібн 🗌	COMMENTS	Octon of Sa	s/.lnert	
		GROUNDW	ATER PARAMETE	RS			
VOLUME (GAL.)	Ì	2	3	Ч	5	6	6.5
	8.87	8.60	9.38	8.38	8-43	50,25	7.88
SP. COND. (#MHOS/CM)	200	0.230	CIBE	0.781	0.293	c. 307	0.314
WATER TEMP. (°C)	(3) (4)-	12/12 tisting	2 1A	NA	14	n/2	114
TURBIDITY*	(4)	(4)	(4)	C4)	(4)	(3)	(3)
* VISUAL DETERMINATION ONLY (1) CLEAR (2) SLIGHT (3) MODERATE (4) HIGH							

two - 1) Lwt 0.167 #6 - dievelunment knownt - Jan 1/15 c. Volocuments and settings value Vocal settings variety internet files volk 9 vn anna development worksheet. doc

ON for see continuation sheet 2.5.4B-110

Observation Well Development Woksheet

MACTEC JOB NUMBER 30720-2-5400 OBSERVATION WELL NUMBER OW - 848 Continuent in					continuation	
SITE NAME North Ann	na Power Statio	<u>n</u>				
DATE (MO/DAY/YR)			TIME (MILIT	ARY)		
FIELD PERSONNEL	ANY CONTRACTOR OF THE PARTY OF		•			·
WEATHER CONDITIONS						
TOTAL WELL DEPTH (TWD	» <u> </u>			FT. (DEPTH BELOW M	EASURING POINT)
HEIGHT OF MEASURING P	OINT ABOVELAND	SURFACE	··			Fī.
DESCRIPTION OF MEASUR	RING POINT	\				
DEPTH TO GROUNDWATE	R (DGW)	WS II	11162	FT. (D	EPTH BELOW ME	ASURING POINT)
METHOD OF WELL EVACU	ATION DISPOS BAILER		OTHER:			
TOTAL VOLUME OF WATER	R REMOVED		GAL.	CASING DIAI	METER	in.
CASING MATERIAL	PVC	s.s.	TEFLON	OTHER		
SCREENED INTERVAL (FR	OM ID PLATE)			(DE	EPTHS BELOW LA	ND SURFACE - FT.)
STEEL GUARD PIPE AROU	IND CASING Y	s No	COM	MENTS		
LOCKING CAP	YI	s No		\		
PROTECTIVE POST/ABUT	MENT YI	ES NO		<u> </u>		
NONPOTABLE LABEL	YI	s No			\	
ID PLATE	YI	ES NO			$\overline{}$	
WELL INTEGRITY SATISFA	CTORY Y	ES NO		 		
WELL YIELD LOW	MODER	ATE	HIGH	COMMENTS		
		GROUNDW	VATER PARAMETE	RS		
VOLUME (GAL.)	7.5	8,5				
pH (S.U.)	7.49	7.42				
1Habit with in S SP. COND. (#MHOS/CM)	0.353	0.368				
WATER TEMP. (°C)	164	ula				
TURBIDITY*	(4)	(1)				
*VISUAL DETERMINATION ONLY (1) CLEAR (2) SLIGHT (3) MODERATE (4) HIGH OK AAJ						

Observation Well Development Woksheet

MACTEC JOB NUMBER 30720-2-5400 OBSERVATION WELL NUMBER <u>0₩ - 849</u>				
SITE NAME North Anna Power Station				
DATE (MO/DAY/YR) 12/11/62 TIME (MILITARY) 1350				
FIELD PERSONNEL Grines & Devland				
WEATHER CONDITIONS Vainy and Low 30'S				
TOTAL WELL DEPTH (TWD) 51, 30 FT. (DEPTH BELOW MEASURING POINT)				
HEIGHT OF MEASURING POINT ABOVE LAND SURFACE \\ \frac{1}{5} \] FT.				
DESCRIPTION OF MEASURING POINT T. D. C.				
DEPTH TO GROUNDWATER (DGW) 33,15 FT. (DEPTH BELOW MEASURING POINT)				
METHOD OF WELL EVACUATION DISPOSABLE DISPOSABLE Submarsible While Amp				
TOTAL VOLUME OF WATER REMOVED 18.5 Gal. Casing diameter 2 in.				
CASING MATERIAL PVC S.S. TEFLON OTHER O/				
SCREENED INTERVAL (FROM ID PLATE) 37.6-47.3 (DEPTHS BELOW LAND SURFACE - FT.)				
STEEL GUARD PIPE AROUND CASING YES NO COMMENTS Proper 3 gallas, let must 5				
LOCKING CAP YES NO				
PROTECTIVE POST/ABUTMENT YES NO X				
NONPOTABLE LABEL YES NO Y				
ID PLATE YES NO 🔀				
WELL INTEGRITY SATISFACTORY YES NO				
WELL YIELD LOW MODERATE HIGH COMMENTS				
GROUNDWATER PARAMETERS				
VOLUME (GAL.) 3 6 9 12 15 18.5				
pH(S.U.) 6.95 6.84 6.80 6.74 6.74 6.62				
SP. COND. (µMHOS/CM) 0.117 0.099 0.089 0.084 0.083 0.078				
WATER TEMP. (°C) 11/4 W/4 W/A W/A N/A N/A				
TURBIDITY* (λ) (λ) (λ) (λ) (λ) (λ) (λ)				
*VISUAL DETERMINATION ONLY (1) CLEAR (2) SLIGHT (3) MODERATE (4) HIGH OK A 2				

APPENDIX E WELL PERMEABILITY TEST RESULTS

1110	MACTEC Engineering and Consulting		
	3301 Atlantic Avenue		
MACTE	Raleigh, North Carolina		
	Slug Test Data Sheet		
MACTEC Job Name: North Anna ESP	MACTEC Job Number: <u>30720-2-5400</u>		
Date: 13/33 Time: 082			
Weather Conditions: Cloudy in white To.			
Method of Slug water, mechanica	or Test Method: Rising Head or		
Withdrawl (circle one): pressure	Falling Head		
	(circle)		
Diameter of Screen: ———————————————————————————————————	Diameter of Casing: <u>\(\lambda \) in.</u>		
Total Well 35.80 ft below reference point	Reference Point: Permanent mark on top		
Depth:	of casing		
Length of 9.7 ft Depth interval of screened 21.0. 71.7ft			
Screened Section:	portion:		
Depth to Groundwater: 2. 45 ft below	reference point		
Groundwater Measurements Collected Price	or Comments/Remarks		
to Slug Test	0.3		
Depth to Groundwater Date	flor 1 volume = 0.08 ft		
17-10-13 12-6-12	0.43		
2.89 12-09-02			
	- 10 cardyan s/h - 6497		
	- The capping of the control of the		
	- Hunt 8/2 - 5-749		
			
Gat towardow @ do belo	- Too his		

Vell: est Date: Test Type: OW-841 12/13/2002

Recovery (slug in)

0.08 (ft)

WELL DATA

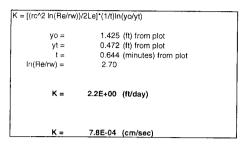
SWL =

WD =

WD =

rc =

DTSP =


rc (adjusted) =

2.45	(ft BTOC)	7
35.80	(ft BTOC)	
34.30	(ft BGS)	
20.10	(ft BGS)	1
0.08	(ft)	
0.30		1
0.33	(ft)	1

9.7 (ft) Le = Lw =

33.35 (ft) 29.39 Le/rw = Н = 50.00 (ft)

CALCULATION OF K

Calculation of In(Re/rw)

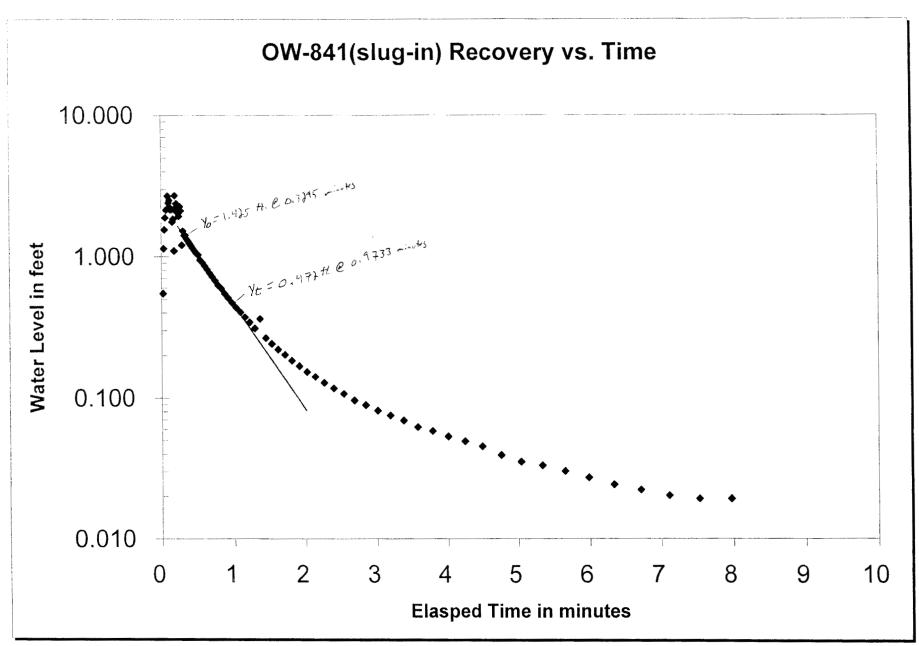
Where: Lw < H;	
$ln(Re/rw) = \{\{1.1/\langle ln(Lw/rw)\rangle\} + \{A + Bln(\langle H - Lw\rangle/rw)\}/(Le/rw)\}^{-1} = \{1.1/\langle ln(Lw/rw)\rangle\} + \{A + Bln(\langle H - Lw\rangle/rw)\}/(Le/rw)\}^{-1} = \{1.1/\langle ln(Lw/rw)\rangle\} + \{A + Bln(\langle H - Lw\rangle/rw)\}/(Le/rw)\}^{-1} = \{1.1/\langle ln(Lw/rw)\rangle\} + \{A + Bln(\langle H - Lw\rangle/rw)\}/(Le/rw)\}^{-1} = \{1.1/\langle ln(Lw/rw)\rangle\} + \{A + Bln(\langle H - Lw\rangle/rw)\}/(Le/rw)\}^{-1} = \{1.1/\langle ln(Lw/rw)\rangle\} + \{A + Bln(\langle H - Lw\rangle/rw)\}/(Le/rw)\}^{-1} = \{1.1/\langle ln(Lw/rw)\rangle\} + \{A + Bln(\langle H - Lw\rangle/rw)\}/(Le/rw)\}^{-1} = \{1.1/\langle ln(Lw/rw)\rangle\} + \{1.1/\langle l$	2.70
Where: Lw = H;	
$ln(Re/rw) = [\{1.1/(ln(Lw/rw))\}+\{C/(Le/rw)\}]^{-1} =$	3.23

Calculation of Coefficients

Value range for Le/rw from Table of Coefficients				
Le/rw	Α	В	С	
25	2.4	0.31	1.9	
30	2.5	0.35	2.1	

Interpolated values of A, B and C for Le/rw			
29.39	2.49	0.35	2.08

Coefficients Table


Le/rw	Α Ι	Le/rw	В	Le/rw	C
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25	8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3 00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0 60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Reference: Bouwer(1989), Bouwer and Rice(1976)

Conducted by: Entered/date: Checked/date:

Grimes and Howe
12/15/02
BWANG 12/26/02
TEST DATA

Elapsed time (min)	Log y	y (ft)	WL (ft BTOC)	Data Logger results
0	#NUM!	0.000	2.45	0
0.011	-3.00	0.001	2.449	-0.001
0.022	-0.26	0.550	1.9	-0.55
0.033	0.06	1.142	1.308	-1.142
0.044	0.19	1.561	0.889	-1.561
0.066	0.28	1.901 2.157	0.549	-1.901
0.077	0.34	2.175	0.293 0.275	-2.157
0.088	0.43	2.708	-0.258	-2.175
0.099	0.38	2.423	0.027	-2.708 -2.423
0.11	0.40	2.533	-0.083	-2.533
0.121	0.34	2.169	0.281	-2.169
0.132	0.35	2.223	0.227	-2.223
0.143	0.33	2,157	0.293	-2.157
0.154	0.25	1.776	0.674	-1.776
0.165	0.27	1.854	0.596	-1.854
0.176	0.04	1.102	1.348	-1.102
0.187	0.44	2.726	-0.276	-2.726
0.198	0.35	2.233	0.217	-2.233
0.22	0.32	2.396 2.076	0.054 0.374	-2.396 -2.076
0.231	0.32	2.083	0.367	-2.083
0.2427	0.29	1.946	0.504	-1.946
0.2552	0.36	2.286	0.164	-2.286
0.2683	0.33	2.129	0.321	-2.129
0.2823	0.08	1.210	1.24	-1.21
0.2972	0.18	1.530	0.92	-1.53
0.3128	0.15	1.419	1.031	-1.419
0.3295	0.15	1.425	1.025	-1.425
0.3472	0.13	1.341	1.109	-1.341
0.3857	0.11	1.295	1.155 1.201	-1.295
0.4067	0.08	1.249	1.249	-1.249 -1.201
0.4288	0.06	1.152	1.298	-1.152
0.4523	0.04	1.106	1.344	-1.106
0.4772	0.02	1.059	1.391	-1.059
0.5035	0.01	1.033	1.417	-1.033
0.5315	-0.02	0.948	1.502	-0.948
0.5612	-0.04	0.909	1.541	-0.909
0.5925	-0.06	0.861	1.589	-0.861
0.6257	-0.09	0.814	1.636	-0.814
0.6608	-0.12	0.766	1.684	-0.766
0.6982	-0.14	0.722	1.728	-0.722
0.7377 0.7795	-0.17 -0.20	0.675 0.625	1.775 1.825	-0.675
0.8238	-0.23	0.595	1.855	-0.625
0.8708	-0.26	0.549	1.901	-0.595 -0.549
0.9207	-0.29	0.510	1.94	-0.51
0.9733	-0.33	0.472	1.978	-0.472
1.0292	-0.36	0.436	2.014	-0.436
1.0883	-0.39	0.405	2.045	-0.405
1.151	-0.43	0.373	2.077	-0.373
1.2173	-0.46	0.344	2.106	-0.344
1.2877	-0.51	0.311	2.139	-0.311
1.3622	-0.44	0.363	2.087	-0.363
1.4412	-0.58	0.265	2.185	-0.265
1.5248	-0.62	0.241	2.209	-0.241
1.6133 1.7072	-0.66	0.220	2.23	-0.22
1.8065	-0.69 -0.74	0.202 0.184	2.248 2.266	-0.202 -0.184
1.9118	-0.77	0.168	2.282	-0.184
2.0233	-0.82	0.153	2.297	-0.153
2.1415	-0.85	0.141	2.309	-0.133
2.2667	-0.89	0.128	2.322	-0.128
2.3992	-0.93	0.117	2.333	-0.117
2.5397	-0.97	0.107	2.343	-0.107
2.6885	-1.02	0.096	2.354	-0.096
2.846	-1.05	0.089	2.361	-0.089
3.0128	-1.09	0.081	2.369	-0.081
3.1897	-1.12	0.075	2.375	-0.075
3.377	-1.16	0.069	2.381	-0.069
3.5753	-1.21	0.062	2.388	-0.062
3.7855 4.0082	-1.24	0.058	2.392	-0.058
4.0082	-1.28 -1.31	0.053	2.397	-0.053
4.4938	-1.35	0.049	2.401 2.405	-0.049 -0.045
4.7585	-1.41	0.045 0.039	2.405	-0.045
5.0388	-1.46	0.035	2.411	-0.039
5.3357	-1.48	0.033	2.417	-0.033
5.6502	-1.52	0.030	2.42	-0.033
5.9833	-1.57	0.027	2.423	-0.027
6.3362	-1.62	0.024	2.426	-0.024
6.71	-1.66	0.022	2.428	-0.022
7.106	-1.70	0.020	2.43	-0.02
7.5253	-1.72	0.019	2.431	-0.019
7.9697	-1.72	0.019	2.431	-0.019

CHIED: BUS 12/20102

Slug-out

MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina

	Slug Test Data Sheet
MACTEC Job Name: North Anna ESP	MACTEC Job Number: 30720-2-5400
Date: 1913/97 Time: 5833	Observation Well No.: @ 541
Weather Conditions: Clarky in 1845	
Method of Slug water, mechanical,	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
Withdrawl (circle one): pressure	Falling Head
	(circle)
	Diameter of Casing: 2 in.
Total Well <u>35 ਤੋਂ ਜੀ</u> below reference point	
Depth:	of casing
	Depth interval of screened 34.0.71.70 ft
	portion:
Depth to Groundwater: 2.45 ft below	
Groundwater Measurements Collected Prior	Comments/Remarks
to Slug Test	
Depth to Groundwater Date	- U54B
111010 35 30 2.63 11/16/12	1 mg # 2-> value = 0.08 173
2.89 17109/07	-
	- Transfer SIN = 6407 - 45449
	_ 45449
	Magnet 3/N
	_

set transition a 20' been Tol

Lesto

Well:

OW-841

Test Date:

12/13/2002

Test Type:

Recovery (slug out)

Conducted by:

Grimes and Howe

Entered/date: Checked/date: 12/15/02

Thisking 12/20/02

TEST DATA

WELL DATA

SWL =	2.45	(ft BTOC)	
WD =	35.80	(ft BTOC)	
WD =	34.30	(ft BGS)	
DTSP ≈	20.10	(ft BGS)	
rc =	0.08	(ft)	
n =	0.30		i
rw =	0.33	(ft)	
rc (adjusted) =	0.08		
			ĺ
Le =	9.7	(ft)	
Lw =	33.35	(ft)	

29.39

50.00 (ft)

 $K = [(rc^2 ln(Re/rw))/2Le]^*(1/t)ln(yo/yt)$ 2.180 (ft) from plot 0.829 (ft) from plot 0.540 (minutes) from plot 2.70 In(Re/rw) =

CALCULATION OF K

2.3E+00 (ft/day)

8.2E-04 (cm/sec)

Calculation	of	In(Re/rw)

Where: Lw < H;

Le/rw =

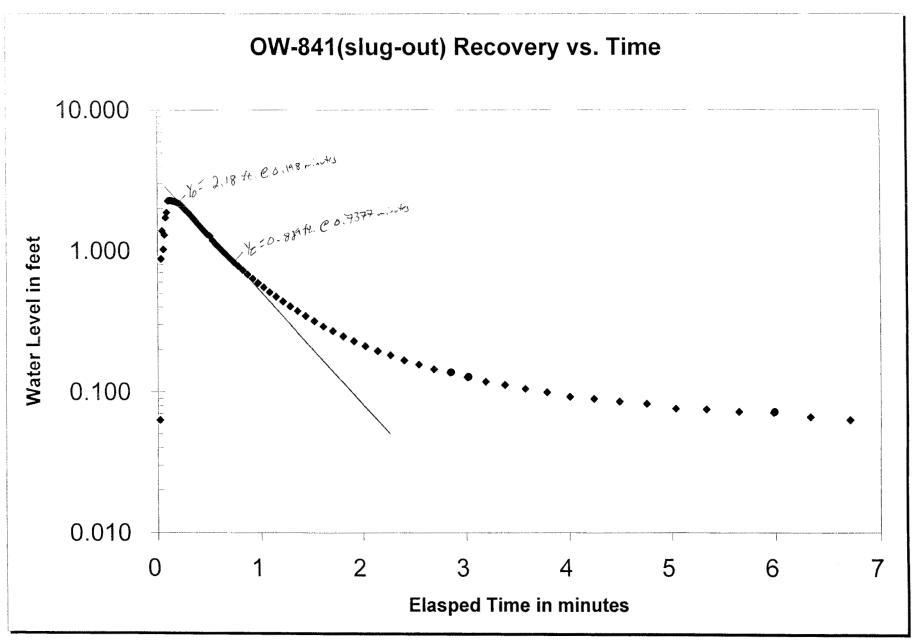
 $ln(Re/rw) = [{1.1/(ln(Lw/rw))}+{A+Bln((H-Lw)/rw)}/(Le/rw)]^{1}$

Where: Lw = H;

In(Re/rw) = [{1.1/(In(Lw/rw))}+{C/(Le/rw)}]^-1 =

2.70

Calculation of Coefficients


Value rang	<u>e for Le/rw tror</u>	n Table of Coe	<u>fficients</u>
Le/rw	A	В	С
25	2.4	0.31	1.9
30	2.5	0.35	2.1

Interpolated values of A, B and C for Le/rw 29.39 2.49 0.35

Coefficients Table

Le/rw	A	Le/rw	В	Le/rw	С
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25	8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	_ 20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

lapsed time (min)	Log y	(ft)	WL. (ft BTOC)	Data Logge results
0 [#NUM!	0.000	2.45	0
0.011	#NUM!	0.000	2.45	0
0.022	-1.20	0.063	2.513	0.063
0.033	-0.06	0.877	3.327	0.877
0.044	0.14	1.385	3.835 3.474	1.385 1.024
0.066	0.11	1.299	3.749	1,299
0.077	0.23	1.716	4.166	1.716
0.088	0.27	1.870	4.32	1.87
0.099	0.35	2.259	4.709	2.259
0.11	0.36	2.269	4.719	2.269
0.121	0.36	2.280	4.73	2.28
0.132	0.36	2.267	4.717	2.267
0.143	0.35	2.262 2.249	4.712 4.699	2.262 2.249
0.165	0.35	2.236	4.686	2.236
0.176	0.35	2.223	4.673	2.223
0.187	0.34	2.206	4.656	2,206
0.198	0.34	2.180	4.63	2.18
0.209	0.33	2.160	4.61	2.16
0.22	0.33	2.128	4.578	2.128
0.231	0.32	2.086	4.536	2,086
0.2427 0.2552	0.31	2.046 1.995	4.496 4.445	2.046 1.995
0.2683	0.29	1.949	4.399	1.949
0.2823	0.28	1.911	4.361	1.911
0.2972	0.27	1.860	4.31	1.86
0.3128	0.26	1.804	4.254	1,804
0.3295	0.24	1.746	4.196	1.746
0.3472	0.23	1.687	4.137	1.687 1.626
0.3658 0.3857	0.21	1.626 1.561	4.076 4.011	1.561
0.4067	0.18	1.500	3.95	1.5
0.4288	0.16	1.437	3.887	1.437
0.4523	0.14	1.375	3.825	1.375
0.4772	0.12	1.312	3.762	1.312
0.5035	0.11	1.281	3.731	1.281
0.5315	0.07	1.185	3.635	1.185
0.5612 0.5925	0.05	1.119	3.569 3.508	1.119 1.058
0.6257	0.00	0.998	3.448	0.998
0.6608	-0.03	0.942	3.392	0.942
0.6982	-0.05	0.884	3.334	0.884
0.7377	-0.08	0.829	3.279	0.829
0.7795	-0.11	0.780	3.23	0.78
0.8238	-0.14	0.732	3.182	0.732
0.8708 0.9207	-0.17 -0.20	0.681 0.636	3.131 3.086	0.681 0.636
0.9733	-0.23	0.593	3.043	0.593
1.0292	-0.26	0.552	3.002	0.552
1.0883	-0.29	0.511	2.961	0.511
1.151	-0.32	0.474	2.924	0.474
1.2173	-0.36	0.438	2.888	0.438
1.2877	-0.39	0.405	2.855	0.405
1.3622	-0.42 -0.46	0.376	2.826	0.376
1.4412 1.5248	-0.46	0.346	2,796 2,768	0.346
1.6133	-0.50	0.318	2.742	0.292
1.7072	-0.57	0.271	2.721	0.271
1.8065	-0.60	0.249	2.699	0.249
1.9118	-0.64	0.230	2.68	0.23
2.0233	-0.67	0.212	2.662	0.212
2.1415	-0.71	0.196	2.646	0.196
2.2667	-0.74	0.183	2.633	0.183
2.3992	-0.77 -0.80	0.168	2.618 2.607	0.168 0.157
2.5397 2.6885	-0.84	0.157 0.145	2.595	0.145
2.846	-0.86	0.145	2.587	0.137
3.0128	-0.90	0.127	2.577	0.127
3.1897	-0.93	0.118	2.568	0.118
3.377	-0.95	0.112	2.562	0.112
3.5753	-0.98	0.105	2.555	0.105
3.7855	-1.00	0.099	2.549	0.099
4.0082	-1.04	0.092	2.542	0.092
4.244	-1.05 -1.07	0.089	2.539	0.089
4.4938	-1.07	0.085	2.535	0.085
4.7585 5.0388	-1.09 -1.12	0.082	2.532 2.526	0.082
5.3357	-1.12	0.075	2.525	0.076
5.6502	-1.14	0.072	2.522	0.073
5.9833	-1.15	0.071	2.521	0.071
6.3362	-1.18	0.066	2.516	0.066
6.71	-1.20	0.063	2.513	0.063

MACTE	MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina
MACTEC Job Name: North Anna ESP Date: 12/12/2 Time: 12/15 Weather Conditions: 10/15/2 Water, mechanical Withdrawl (circle one): pressure	Slug Test Data Sheet MACTEC Job Number: 30720-2-5400 Observation Well No.: 20 34 J-
Diameter of Screen: in. Total Well	Diameter of Casing: in.
Depth to Groundwater: 26.4-3 ft below Groundwater Measurements Collected Prio to Slug Test	reference point r Comments/Remarks
Depth to Groundwater Let 14 It look The 133 It left Let 14 It left Let 15 It left Let 15 It left Let 15 It left Let 15 It left Let 15 It left Let 15 It left Let 15 It left Let 15 It left Let 15 It left Let 15 It left Let 16 It left Let 1	- 1 mil Sty #1 Lutan : 4,25 ml 3 - Transfer Sto = 4,5 ml 9

Sim Sandan Is the face the

wir

OW-842 12/17/2002 Well: Test Date. Test Type:

Recovery (slug in) WELL DATA

CALCULATION OF K

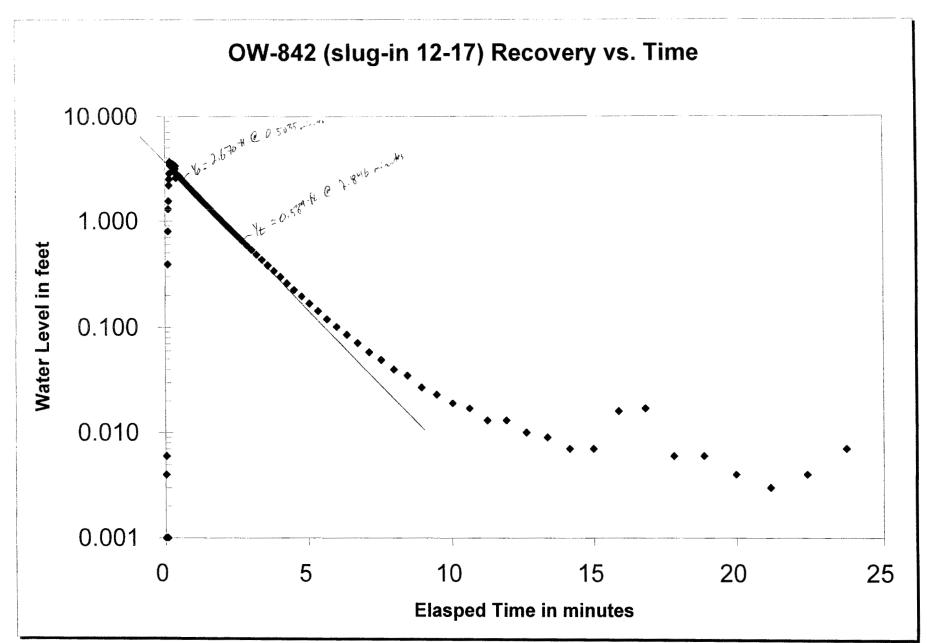
Conducted by: Entered/date: Checked/date:

Grimes and Howe WSG/12/18/2002 The 12/20/02
TEST DATA

SWL =	29.23	(ft BTOC)
WD =	51.16	(ft BTOC)
WD =	49.66	(ft BGS)
DTSP =	35.30	(ft BGS)
rc =	0.08	(ft)
n =	0.30	
rw =	0.33	(ft)
rc (adjusted) =	0.08	(ft)
1		
Le =	7.9	(ft)
Lw =	21.93	(ft)
Le/rw =	23.94	
H =	50.00	(ft)

	w))/2Le)*(1/t)In(yo/yt)	
yo =	2.670 (ft) from plot	
yt =	0.589 (ft) from plot	
t =	2.343 (minutes) from plo	t
In(Re/rw) =	2.38	
K =	9.3E-01 (ft/day)	
K =	3.3E-04 (cm/sec)	

Calculation of In(Re/rw)	
--------------------------	--


Where: Lw < H;	
$ln(Re/rw) = [\{1.1/(ln(Lw/rw))\} + \{A + 8ln((H - Lw)/rw)\}/(Le/rw)] - 1 =$	2.38
Where: Lw = H;	
In(Re/rw) = [{1 1/(ln[Lw/rw))}+{C/(Le/rw)}]^-1 =	2.94

Le/rw	A	8	С
20	2.23	0.29	1.7
30	2.5	0.35	2.

Coefficients Table

Le/tw	A	Le/rw	В	Le/rw	C
4	1.75	. 4	0.25	4	0.75
5	1.76	5	0.25	. 5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25	8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3,40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	89.0	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Elapsed time (min)	-	y (ft)	WL (ft BTOC)	Data Logger results
0.011	#NUM! -3.00	0.000	29.23 29.229	-0.001
0.022	-2.40	0.004	29.229	-0.001
0.033	-2.22	0.006	29.224	-0.006
0.044	-3.00	0.001	29,229	-0.001
0.066	#NUM!	0.000	29.23	0
0.077	-3.00	0.001	29.229 28.84	-0.001 -0.39
0.099	-0.10	0.800	28.43	-0.8
0.11	0.11	1.299	27.931 27.678	-1.299
0.132	0.34	2.184	27.678 27.046	-1.552 -2.184
0.143	0.40	2 501	26.729	-2.501
0.165	0.56	2.841 3.651	26.389 25.579	-2 841 -3 651
0.176	0.53	3.390	25 84	-3 39
0.187	0.55	3.535	25.695 25.644	-3.535 -3.586
0.209	0.53	3.411	25.819	-3.411
0.22	0.55	3.547	25,683	-3.547
0.2427	0.53	3.422	25.708 25.808	-3.522 -3.422
0.2552	0.53	3.350	25.88	-3.35
0.2683	0.54	3.502 3.282	25.728 25.948	-3.502 -3.282
0.2972	0.54	3.463	25.767	-3.463
0.3128	0.49	3.079	26.151 26.151	-3.079 -3.079
0.3472	0.50	3.149	26.081	-3.149
0.3658	0.53	3.360	25.87	-3.36
0.3857	0.41	2.569 2.793	26.661 26.437	-2.569 -2.793
0.4288	0.44	2.773	26.457	-2.773
0.4523	0.44	2.737 2.693	26.493 26.537	-2.737 -2.693
0.5035	0.43	2.670	26.56	-2.67
0.5315	0.41	2.589	26.641	-2.589
0.5925	0.40	2.533	26.697 26.746	-2.533 -2.484
0.6257	0.38	2.425	26.805	-2.425
0.6608	0.37 0.36	2.371	26.859 26.918	-2.371 -2.312
0.7377	0.35	2.256	26.974	-2.256
0.7795	0.34	2.190	27.04	-2.19
0.8708	0.33	2.129	27.101 27.17	-2.129 -2.06
0.9207	0.30	1.994	27.17 27.236	-1.994
1.0292	0.28	1.925	27.305 27.37	-1.925 -1.86
1.0883	0.25	1.782	27.448	-1.782
1.151	0.24	1.725	27.505 27.587	-1.725 -1.643
1.2877	0.19	1.566	27.664	-1.566
1.3622	0,17 0.15	1.491	27.739 27.809	-1.491 -1.421
1.5248	0.13	1.346	27.884	-1.421
1.6133	0.10	1.271	27.959	-1.271
1.7072	0.08	1.198	28.032 28.106	-1.198 -1.124
1.9118	0.02	1.054	28 176	-1.054
2.0233	-0.01 -0.04	0.980	28.25 28.319	-0.98 -0.911
2.2667	-0.07	0.844	28.386	-0.844
2.3992	-0.11 -0.15	0.776	28.454 28.517	-0.776 -0.713
2.6885	-0.19	0.649	28.581	-0.713
2.846	-0.23	0.589	28.641	-0.589
3.0128	-0.27 -0.32	0.534	28.696 28.749	-0.534 -0.481
3.377	-0.37	0.430	28.8	-0.43
3.5753 3.7855	-0.42 -0.47	0.381	28.849 28.892	-0.381 -0.338
4.0082	-0.53	0.297	28.933	-0.297
4.244 4.4938	-0.59 -0.65	0.259 0.225	28.971 29.005	-0.259 -0.225
4.7585	-0.71	0.196	29.034	-0.196
5.0388	-0.77	0.168	29.062	-0.168
5.3357 5.6502	-0.84 -0.92	0.143	29.087	-0.143 -0.119
5.9833	-1.00	0.101	29.129	-0.101
6.3362 6.71	-1.07 -1.15	0.085	29.145 29.159	-0.085 -0.071
7.106	-1.24	0.058	29.172	-0.058
7.5253	-1.31	0.049	29.181	-0.049
7.9697 8.4403	-1.40 -1.46	0.040	29.19 29.195	-0.04 -0.035
8.9388	-1.57	0.027	29.203	-0.027
9.4668 10.0262	-1.64 -1.72	0.023	29.207 29.211	-0.023 -0.019
10.6187	-1.77	0.019	29.213	-0.019
11.2462	-1.89	0.013	29.217	-0.013
11.911	-1.89 -2.00	0.013	29.217 29.22	-0.013 -0.01
13.361	-2.05	0.009	29.221	-0.009
14.151	-2.15	0.007	29.223	-0.007
14.9878 15.8743	-2.15 -1.80	0.007	29.223 29.214	-0.007 -0.016
16.8133	-1.77	0.017	29.213	-0.017
	-2.22	0.006	29.224	-0.006
17.808			00.001	
	-2.22	0.006	29.224 29.226	-0.006
17.808 18.8617			29.224 29.226 29.227 29.226	

CHKD: BWY 12/20102.

- 10 - 2 - 3

See frankling 461 beb. TOE

MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina

	Slug Test Data Sheet
MACTEC Job Name: North Anna ESP	MACTEC Job Number: <u>30720-2-5400</u>
Date: 1711/107 Time: 85	3 Observation Well No.: Oω-84ト
Weather Conditions: Foggy in the 405	
Method of Slug water, mechanical	or Test Method: (Rising Head) or
Withdrawl (circle one): pressure	Falling Head
	(circle)
Diameter of Screen: <u>in.</u>	Diameter of Casing: 2 in.
Total Well 51.16 ft below reference point	
Depth:	of casing
Length of 279ft	Depth interval of screened 37.4-453ft
Screened Section:	portion:
Depth to Groundwater: 24.33 ft below	
Groundwater Measurements Collected Prior	r <u>Comments/Remarks</u>
to Slug Test	
Depth to Groundwater Date	Est many was i
29.14 12/10/02	الأولاية عن المساورة المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالي
29.22 12/06/02	Some to the second of the seco
	Trough Sin : 6407
	Harat SN: 45969
	<u> </u>

مركامها

Well: Test Date: OW-842 12/12/2002

Test Type:

Recovery (slug out)

WELL DATA

CALCULATION OF K

29.33	(ft BTOC)
51.16	(ft BTOC)
49.66	(ft BGS)
35.30	(ft BGS)
0.08	(ft)
0.30	
0.33	(ft)
0.08	
7.9	(ft)
21.83	(ft)
23.94	
50.00	(ft)
	51.16 49.66 35.30 0.08 0.30 0.33 0.08 7.9 21.83 23.94

K = [{rc^2 ln(Re/r	w))/2Le]*(1/	t)In(yo/yt)
yo = vt =		(ft) from plot (ft) from plot
t = in(Re/rw) =		(minutes) from plot
ing round) =	2.00	
K =	9.3E-01	(ft/day)
K =	3.3E-04	(cm/sec)

Calculation of In(Re/rw)

Where: Lw < H;	
$ln(Re/rw) = [(1.1/(ln(Lw/rw)))+(A+Bln((H Lw)/rw))/(Le/rw)]^-1=$	2.38
Where: Lw = H;	
ln(Re/rw) = {{1.1/(ln(Lw/rw)})+{C/{Le/rw}}}^-1 =	2.94

Calculation of Coefficients

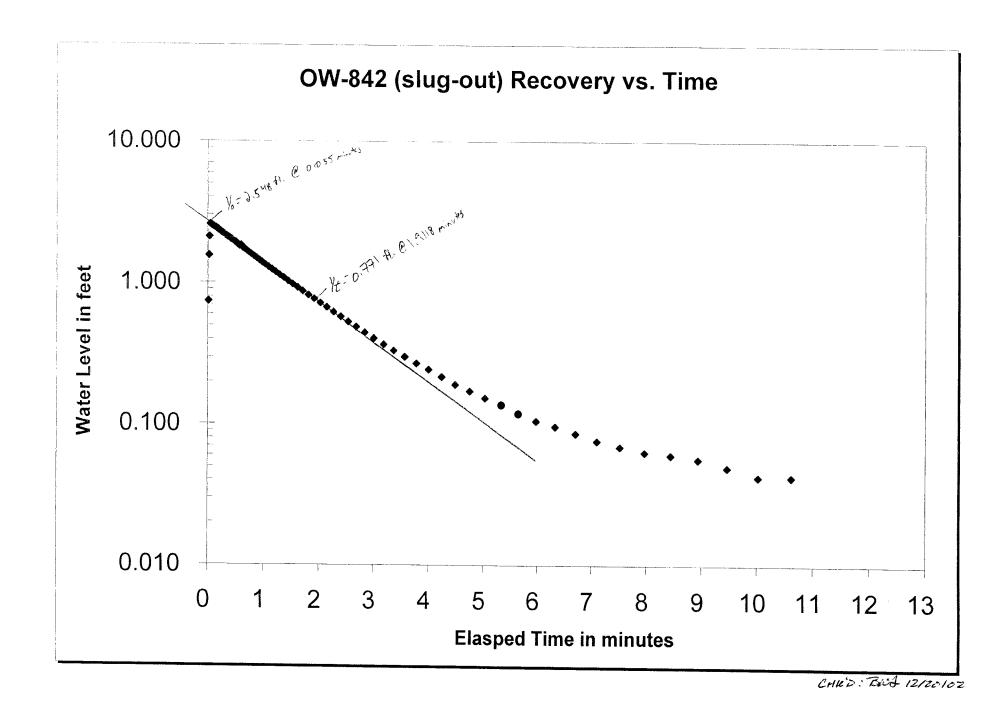
value range	tor Le/rw from	Table of Coef	ricients
Le/rw [A	B	<u>C</u>
20	2.23	0.29	1.75
30	2.5	0.35	2.1

Interpolated values of A, B and C for Le/rw
23.94 2.34 0.31

Coefficients Table

Le/rw	A	Le/rw	B	Le/rw	L C
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8.	1.83	8	0.25	8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	. 30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1,50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Reference: Bouwer(1989), Bouwer and Rice(1976)


Conducted by:

Grimes and Howe

12/15/02 Entered/date:

Checked/date: BWSms 12/20/02
TEST DATA

Elapsed time	Log y	V (#)	WL (# PTOC)	Data Logge
(min)	#NUM!	0.000	(ft BTOC) 29.33	results 29.33
0.011	-0.13	0.741	30.071	30.071
0.022	0.19	1.546	30.876	30.876
0.033	0.32	2.089	31.419	31.419
0.044	0.41	2.561 2.548	31.891 31.878	31.891 31.878
0.066	0.40	2.519	31,849	31.849
0.077	0.40	2.524	31.854	31.854
0.088	0.40	2,486	31.816	31.816
0.099	0.39	2.468	31.798	31.798
0.121	0.39	2.468 2.442	31.798 31.772	31.798
0.132	0.39	2.432	31.762	31.762
0.143	0.39	2.436	31.766	31.766
0.154 0.165	0.38	2.390	31.72	31.72
0.176	0.38	2.378 2.384	31.714	31.708 31.714
0.187	0.37	2.330	31.66	31.66
0.198	0.37	2.322	31.652	31.652
0.209	0.37	2.318	31.648	31.648
0.22	0.36 0.36	2.299	31.629 31.596	31.629 31.596
0.2427	0.35	2.246	31.576	31.576
0.2552	0.35	2.232	31.562	31.562
0.2683	0.35	2.216	31.546	31.546
0.2823	0.34 0.34	2.193 2.168	31.523 31.498	31.523 31.498
0.3128	0.33	2,143	31.473	31.473
0.3295	0.33	2.131	31.461	31.461
0.3472	0.32	2.094	31.424	31.424
0.3658 0.3857	0.32	2.07 <u>2</u> 2.05 <u>9</u>	31.402 31.389	31.402 31.389
0.4067	0.30	2.015	31.345	31.345
0.4288	0.30	2.003	31.333	31.333
0.4523	0.29	1.961	31.291	31.291
0.4772 0.5035	0.28 0.28	1.927 1.912	31.257 31.242	31.257 31.242
0.5315	0.27	1.843	31.173	31.173
0.5612	0.26	1.802	31.132	31,132
0.5925	0.26	1.827	31.157	31.157
0.6257 0.6608	0.24	1.744	31.074 31.034	31.074 31.034
0.6982	0.22	1.662	30.992	30.992
0.7377	0.21	1.617	30.947	30.947
0.7795	0.20	1.574	30.904	30.904
0.8238	0.18	1,530 1,482	30.86 30.812	30.86 30.812
0.9207	0.16	1.435	30.765	30.765
0.9733	0.14	1.386	30.716	30.716
1.0292	0.13	1.335	30.665	30.665
1.0883	0.11	1.287 1.236	30.617	30.617 30.566
1.2173	0.07	1.184	30.514	30.514
1.2877	0.05	1.133	30,463	30.463
1.3622	0.03	1.082	30.412	30.412
1.4412 1.5248	-0.01 -0.01	1.028 0.977	30.358	30.358 30.307
1.6133	-0.03	0.925	30.255	30.255
1.7072	-0.06	0.872	30.202	30.202
1.8065	-0.09	0.820	30.15	30.15
1.9118 2.0233	-0,11 -0.14	0.771 0.720	30.101 30.05	30.101
2.1415	-0.14	0.671_	30.001	30.05
2.2667	-0.21	0.623	29.953	29.953
2.3992	-0.24	0.576	29.906	29.906
2.5397 2.6885	-0.27 -0.31	0.531 0.489	29.861 29.819	29.861 29.819
2.846	-0.35	0.469	29.778	29.778
3.0128	-0.39	0.409	29.739	29.739
3.1897	-0.43	0.370	29.7	29.7
3.377 3.5753	-0.47	0.335	29.665	29.665
3.7855	-0.52 -0.57	0.302 0.271	29.632 29.601	29.632 29.601
4.0082	-0.61	0.245	29.575	29.575
4.244	-0.66	0.217	29.547	29,547
4.4938	-0.72	0.191	29.521	29.521
4.7585 5.0388	-0.77 -0.82	0.171	29.501 29.483	29.501 29.483
5.3357	-0.86	0.153 0.137	29.467	29.467
5.6502	-0.92	0.119	29.449	29.449
5.9833	-0.98	0.105	29.435	29.435
6.3362	-1.02	0.096	29.426	29.426
6.71 7.106	-1.07 -1.12	0.086	29.416	29.416 29.406
7.5253	-1.12	0.076 0.069	29.406 29.399	29.406
7.9697	-1.20	0.063	29.393	29.393
8.4403	-1.22	0.060	29.39	29.39
8.9388	-1.25	0.056	29.386	29.386
9.4668	-1.31	0.049	29.379	29.379
10.0262 10.6187	-1.38 -1.38	0.042	29.372	29.372
11.2462	-1.38	0.042	29.372 29.372	29.372 29.372
11.911	-1.38	0.042	29.372	29.372
		0.042	29.372	

Slux - 20

MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina Slug Test Data Sheet MACTEC Job Number: 30720-2-5400 MACTEC Job Name: North Anna ESP Date: 1772 **Observation Well No.:** Time: 11.34 5-3-13 Weather Conditions: Journ Brange you 30. water, mechanical, or Method of Slug Test Method: Rising Head or Falling Head Withdrawl (circle one): pressure (circle) <u>اب</u> in. Diameter of Casing: Diameter of Screen: ム in. Reference Point: ft below reference point Permanent mark on top **Total Well** of casing Depth: 7, 7 ft Depth interval of screened 40.3-49.9 ft Length of **Screened Section:** portion: ें अंदे ft below reference point Depth to Groundwater: **Groundwater Measurements Collected Prior** Comments/Remarks to Slug Test and Staffed was conspital **Depth to Groundwater** Date 35,74 12/10/01 Transles in 1 6407 35.63 11-2964 35.27 17/11/00 Manuel Va = 25419

received 48 14 hours to

سنادمدا

The trans early studen Transport of the State of the St LIC. 1 34 2 5 5 74 Now to the st ر (۶ کی الی

1. ...

Well:

OW-843

Test Date: 12/17/2002 Test Type:

Recovery (slug in)

Conducted by:

Grimes and Howe

Entered/date:

WSG/12/18/2002

Checked/date: Bhisting 12/20/02

WELL DATA

CALCULATION OF K

TEST DATA

SWL =	35.53	(ft BTOC)
WD =	50.90	(ft BTOC)
WD =	49.40	(ft BGS)
DTSP =	36.40	(ft BGS)
rc =	0.08	(ft)
n =	0.30	
rw =	0.33	(ft)
rc (adjusted) =	80.0	(ft)
Le =	9.7	(ft)
Lw =	15.37	
Le/rw =	29.39	(14)
H =	50.00	(ft)

K = [(rc^2 ln(Re/r	w))/2Le]*(1/t)In(yo/yt)
yo = yt =	1.569 (ft) from plot 0.518 (ft) from plot
t = In(Re/rw) =	0.993 (minutes) from plot 2.33
K =	1.3E+00 (ft/day)
K =	4.5E-04 (cm/sec)

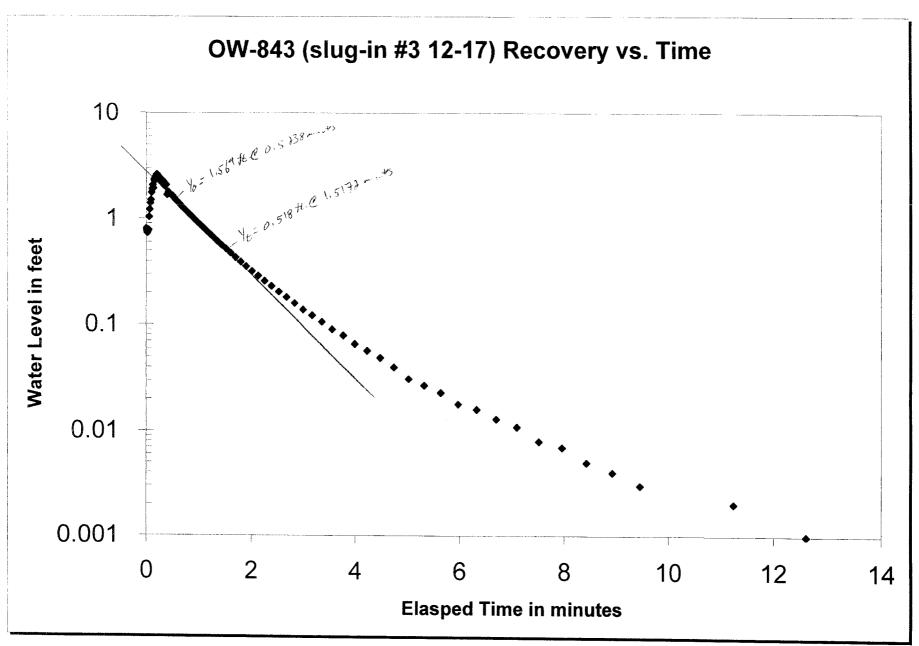
$K = [(rc^2 ln(Re/r$	w))/2Le]*(1/t)In(yo/yt)
yo = yt = t =	1.569 (ft) from plot 0.518 (ft) from plot 0.993 (minutes) from plot
In(Re/rw) =	2.33
K =	1.3E+00 (ft/day)
K =	4.5E-04 (cm/sec)

ot	

Calculation	of	In/Re	e/rw)

Where: Lw < H;	
$ln(Re/rw) = [{1.1/(ln(Lw/rw))}+{A+Bln((H-Lw)/rw)}/(Le/rw)]^{1}=$	2.33
Where: Lw = H;	
In(Re/rw) = [{1.1/(in(Lw/rw))}+{C/(Le/rw)}]^-1 =	2.78

	Ca	lculation	on of	Coeffic	cie	nts
nae	for	Le/rw	from	Table	of	Coefficients


Le/rw	Α	В	С
25	2.4	0.31	1.9
30	2.5	0.35	2.1

Interpola	ited values of A	B and C for Le/	rw
29.39	2.49	0,35	2.08

Coefficients Table

Le/rw	Α	Le/rw	В	Le/rw	C
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25	. 8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Elapsed time	Log y	y Adjusted	WL	Data Logger
(min)	0.10	(ft)	(ft BTOC)	results
0.0112	-0.10 -0.12	0.803 0.766	34.727 34.764	0.037
0.0223	-0.12	0.733	34.797	0.07
0.0335	-0.12	0.758	34.772	0.045
0.0447	-0.11	0.779	34.751	0.024
0.0558	0.02	1.036	34.494	-0.233
0.067	0.09	1.221	34.309	-0.418
0.0782	0.15	1.398	34.132	-0.595
0.0893 0.1005	0.18 0.25	1.502 1.762	34.028 33.768	-0. 699 -0.959
0.1000	0.28	1.908	33.622	-1.105
0.1228	0.32	2.078	33.452	-1.275
0.134	0.29	1.937	33.593	-1.134
0.1452	0.37	2.355	33.175	-1.552
0.1563	0.36	2.275	33.255	-1.472
0.1675 0.1787	0.39	2.472 2.483	33.058 33.047	-1.669 -1.68
0.1898	0.42	2.611	32.919	-1.808
0.201	0.42	2.63	32.9	-1.827
0.2122	0.41	2.596	32.934	-1.793
0.2233	0.40	2.531	32.999	-1.728
0.235	0.39	2.447	33.083	-1.644
0.2475	0.38	2.4	33.13	-1.597
0.2607 0.2747	0.38 0.35	2.426 2.258	33.104	-1.623 -1.455
0.2895	0.36	2.265	33.265	-1.462
0.3052	0.34	2.196	33.334	-1.393
0.3218	0.36	2.266	33.264	-1.463
0.3395	0.31	2.054	33.476	-1.251
0.3582	0.31	2.032	33.498	-1.229
0.378 0.399	0.32	2.094 1.677	33.436 33.853	-1.291 -0.874
0.4212	0.25	1.785	33.745	-0.982
0.4447	0.24	1.732	33.798	-0.929
0.4695	0.23	1.687	33.843	-0.884
0.4958	0.22	1.658	33.872	-0.855
0.5238	0.20	1.569	33.961	-0.766
0.5535 0.5848	0.18 0.16	1.512	34.018 34.076	-0.709 -0.651
0.618	0.15	1.454 1.397	34.076	-0.594
0.6532	0.13	1.335	34.195	-0.532
0.6905	0.11	1.277	34.253	-0.474
0.73	0.09	1.22	34.31	-0.417
0.7718	0.07	1.162	34.368	-0.359
0.8162	0.04	1.102	34,428	-0.299
0.8632 0.913	-0.02 -0.01	1.046 0.983	34.484 34.547	-0.243 -0.18
0.9657	-0.03	0.928	34.602	-0.125
1.0215	-0.06	0.871	34.659	-0.068
1.0807	-0.09	0.82	34.71	-0.017
1.1433	-0.12	0.763	34.767	0.04
1.2097	-0.15	0.711	34.819	0.092
1.28 1.3545	-0.18 -0.21	0.661	34.869 34.92	0.142 0.193
1.4335	-0.25	0.61 0.562	34.92	0.193
1.5172	-0.29	0.502	35.012	0.285
1.6057	-0.32	0.475	35.055	0.328
1.6995	-0.36	0.432	35.098	0.371
1.7988	-0.41	0.393	35.137	0.41
1.9042	-0.45	0.356	35.174	0.447
2.0157	-0.49	0.32	35.21	0.483
2.1338 2.259	-0.54 -0.59	0.289 0.258	35.241 35.272	0.514 0.545
2.3915	-0.59	0.236	35.299	0.572
2.532	-0.69	0.204	35.326	0.599
2.6808	-0.74	0.181	35.349	0.622
2.8383	-0.80	0.159	35.371	0.644
3.0052	-0.86	0.138	35.392	0.665
3.182 3.3693	-0.91	0.122	35.408 35.424	0.681 0.697
3.5677	-0.97 -1.05	0.106	35.424	0.713
3.7778	-1.10	0.079	35.451	0.724
4.0005	-1.18	0.066	35.464	0.737
4.2363	-1.24	0.057	35.473	0.746
4.4862	-1.31	0.049	35.481	0.754
4.7508	-1.40	0.04	35.49	0.763
5.0312	-1.51	0.031	35.499	0.772
5.328	-1.57	0.027	35.503	0.776
5.6425	-1.64	0.023	35.507	0.78
5.9757	-1.74	0.018	35.512	0.785

Sleg-ut

MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina

	Slug Test Data Sheet
MACTEC Job Name: North Anna ESP	MACTEC Job Number: <u>30720-2-5400</u>
Date: When 1245 17/1762 Time: 124	Observation Well No.: October 3
Weather Conditions: Party Sung in 4	(d)
Method of Slug water, mechanica	
Withdrawl (circle one): pressure	Falling Head
	(circle)
Diameter of Screen: <u>in.</u>	Diameter of Casing: <u> in.</u>
Total Well 5090 ft below reference point	Reference Point: Permanent mark on top
Depth:	of casing
Length of <u>1.7-ft</u>	Depth interval of screened 46x 455 ft
Screened Section:	portion:
Depth to Groundwater: 354 ft below	
Groundwater Measurements Collected Prior	c <u>Comments/Remarks</u>
to Slug Test	
Depth to Groundwater Date	- 1500 Slag L-> 1.de = 2005.43
35.74 12/10les	
	Tomoshor - SM = 6407
	Flerent - 7 45449
	5.4
	
	
	
a tragence 115 by be	- د المانات

Well:

OW-843

Test Date: Test Type:

12/12/2002 Recovery (slug out) Conducted by: Entered/date:

Grimes and Howe

Checked/date:

Busines 12/20/02

WELL DATA

CALCULATION OF K

TEST DATA

SWL	= 35.69	9 (ft BTOC)
WD:	= 50.90) (ft BTOC)
WD:	= 49.40	(ft BGS)
DTSP:	= 36.40) (ft BGS)
rc:	= 0.08	3 (ft)
n:	= 0.30)
l		
rw:	= 0.33	3 (ft)
rc (adjusted) =	= 0.08	3 (ft)
1		
ĺ		
1		
Le :	= 9.7	7 (ft)
Lw =	= 15.2	l (ft)
Le/rw =	= 29.39)
H :	= 50.00	(ft)

K = [(rc^2 ln(Re/rv	v))/2Le]*(1/t)In(yo/yt)
yo = yt = t = In(Re/rw) =	1.873 (ft) from plot 0.817 (ft) from plot 0.692 (minutes) from plo 2.33
K =	1.4E+00 (ft/day)
K =	4.9E-04 (cm/sec)

K = [(rc^2 ln(Re/	rw))/2Le]*(1/t)In(yo/yt)
yo = yt = t = In(Re/rw) =	1.873 (ft) from plot 0.817 (ft) from plot 0.692 (minutes) from plot 2.33
K=	1.4E+00 (ft/day)
K =	4.9E-04 (cm/sec)

Calculation of	In(Re/rw)

 $In(Re/rw) = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)\} ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{A + BIn((H-Lw)/rw)\}/(Le/rw)] ^- 1 = [\{1.1/(In(Lw/rw))\} + \{1.1/(In(Lw/rw))\} ^- 1 = [\{1.1/(In(Lw/rw))\} + [1.1/(In(Lw/rw))] ^- 1 = [1.1/(In(Lw/rw))] ^-$

2.33

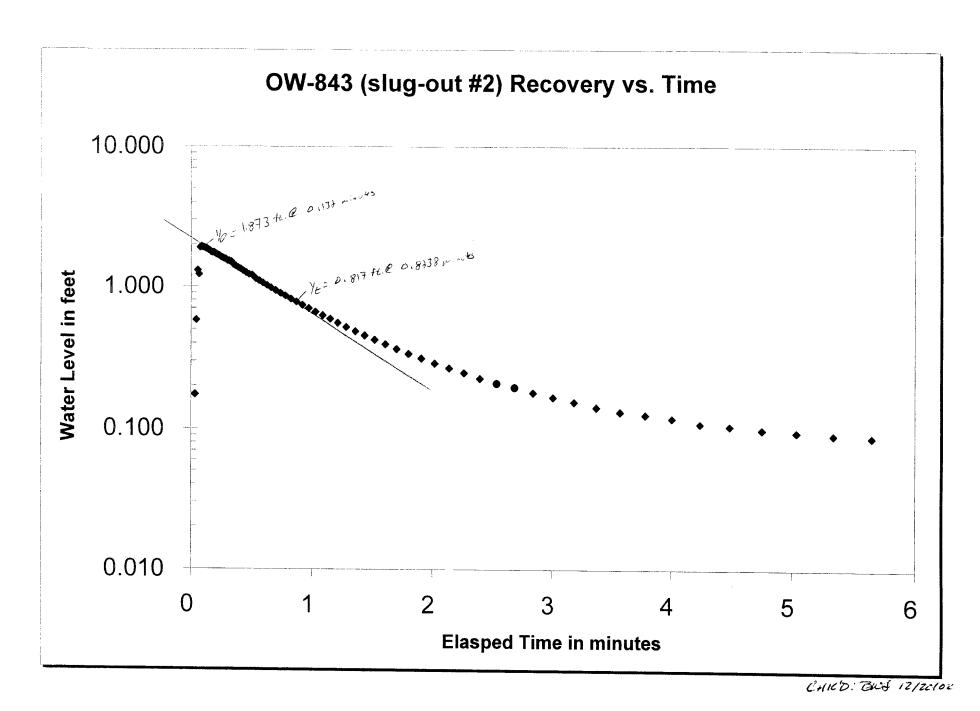
Where: Lw = H;

 $ln(Re/rw) = [{1.1/(ln(Lw/rw))}+{C/(Le/rw)}]^{-1} =$

2.78

Calculation of Coefficients

Value	range	for Le/	rw from	Table	of Co	efficients


Le/rw	Α	В	С
25	2.4	0.31	1.9
30	2.5	0.35	2.1

	Interpolated	values of A	, B and C for	Le/rw
Ĺ	29.39	2.49	0.35	2.08

Coefficients Table

Le/rw	A	Le/rw	В	Le/rw	С
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
	1.83		0.25	8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1,30	250	8.00
300	7.10	300	1,50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Elapsed time	Log y	у	WL	Data Logge
(min)	45111541	(ft)	(ft BTOC)	results
0.011	#NUM! -2.40	0.000	35.69 35.694	35.69
0.022	-2.22	0.004	35.696	35.694 35.696
0.033	-0.76	0.174	35.864	35.864
0.044	-0.24	0.578	36.268	36.268
0.055	0.12	1.307	36.997	36.997
0.066	0.09	1.223	36.913	36.913
0.077	0.28	1.912	37.602	37.602
0.088	0.29	1.941	37.631	37.631
0.099	0.28	1.918	37.608	37.608
0.11	0.28	1.906	37.596	37.596
0.121	0.27	1.882	37.572	37.572
0.132	0.27	1.873	37.563	37.563
0.143	0.26	1.839	37.529	37.529
0.154 0.165	0.26	1.813	37.503	37.503
0.185	0.25	1.778 1.761	37.468	37.468 37.451
0.170	0.25	1.760	37.451 37.45	37.45
0.198	0.24	1.738	37.428	37.428
0.209	0.23	1.709	37.399	37.399
0.22	0.23	1.689	37.379	37.379
0.231	0.22	1.666	37.356	37.356
0.2427	0.21	1.636	37.326	37.326
0.2552	_ 0.21	1.616	37.306	37.306
0.2683	0.20	1.592	37.282	37.282
0.2823	0.20	1.579	37.269	37.269
0.2972	0.19	1.540	37.23	37.23
0.3128	0.18	1.530	37.22	37.22
0.3295	0.18	1.508	37.198	37.198
0.3472	0.16	1.441	37.131	37.131
0.3658	0.15	1.406	37.096	37.096
0.3857	0.14	1.372	37.062	37.062
0.4067	0.13	1.343	37.033	37.033
0.4288	0.11	1.299	36.989	36.989
0.4523	0.10	1.264	36.954	36.954
0.4772	0.09	1.227	36.917	36.917
0.5035	0.08	1.210	36.9	36.9
0.5315	0.06	1.141	36.831	36.831
0.5612	0.04	1.105	36.795	36.795
0.5925	0.03	1.062	36.752	36.752
0.6257	0.01	1.021	36.711	36.711
0.6608	-0.01	0.980	36.67	36.67
0.6982	-0.03	0.940	36.63	36.63
0.7377 0.7795	-0.05 -0.07	0.898 0.858	36.588	36.588
0.8238	-0.07	0.817	36.548 36.507	36.548 36.507
0.8708	-0.11	0.779	36.469	36.469
0.9207	-0.13	0.738	36.428	36.428
0.9733	-0.15	0.700	36.39	36.39
1.0292	0.18	0.662	36.352	36.352
1.0883	-0.20	0.625	36.315	36.315
1.151	-0.23	0.592	36.282	36.282
1.2173	-0.26	0.555	36.245	36.245
1.2877	-0.28	0.519	36.209	36.209
1.3622	-0.31	0.486	36.176	36.176
1.4412	-0.34	0.455	36.145	36.145
1.5248	-0.37	0.424	36.114	36.114
1.6133	-0.40	0.395	36.085	36.085
1.7072	-0.44	0.366	36.056	36.056
1.8065	-0.47	0,339	36.029	36.029
1.9118	-0.50	0.315	36.005	36.005
2.0233	-0.54	0.290	35.98	35.98
2.1415	-0.57	0.269	35.959	35.959
2.2667	-0.60	0.249	35.939	35.939
2.3992	-0.64	0.227	35.917	35.917
2.5397	-0.68	0.211	35.901	35.901
2.6885	-0.71	0.197	35.887	35.887
2.846	-0.74	0.180	35.87	35.87
3.0128	-0.78	0.167	35.857	35.857
3.1897	-0.81	0.155	35.845	35.845
3.377	-0.85	0.142	35.832	35.832
3.5753	-0.88	0.132	35.822	35.822
3.7855	-0.90	0.126	35.816	35.816
4.0082	-0.92	0.119	35.809	35.809
4.244	-0.96	0.109	35.799	35.799
4.4938	-0.98	0.105	35.795	35.795
4.7585	-1.00	0.099	35.789	35.789
5.0388	-1.02	0.095	35.785	35.785
5.3357	-1.04	0.091	35.781	35.781
5.6502	1.06	0.088	35.778	35.778

MACTEC Engineering and Consulting MACTEC 3301 Atlantic Avenue Raleigh, North Carolina Slug Test Data Sheet MACTEC Job Number: 30720-2-5400 MACTEC Job Name: North Anna ESP Observation Well No.: " 5 0 644 Date: 17/13/07 Time: 0710 Weather Conditions: (1) 30 > Rising Head or water, mechanical, or Test Method: Method of Slug Falling Head Withdrawl (circle one): pressure (circle) Diameter of Casing: in. Diameter of Screen: _in. Permanent mark on top HW ft below reference point Reference Point: Total Well of casing Depth: Depth interval of screened 1997,340 ft 1.6 ft Length of portion: Screened Section: 8.46 ft below reference point Depth to Groundwater: Groundwater Measurements Collected Prior Comments/Remarks Usel Slag # 2 Twilliam ac 8 At 3 to Slug Test Depth to Groundwater Date Transdown SM -3:407 8,95 17 Iplor 8,91 17-110/02 Herent 5/1 -> 45449 8.83 11-111/20 8.90 12/06/03 سمكد

Lower Hear C. De below

50 to

Well: Test Date: OW-844 12/13/2002

Test Type: Recovery (slug in)

Conducted by: Entered/date: Checked/date: Grimes and Howe

Embers 12/20/02

EST DATA

WELL DATA

8.48	(ft BTOC)
26.10	(ft BTOC)
24.60	(ft BGS)
12.70	(ft BGS)
0.08	(ft)
0.30	
0.33	(ft)
0.08	(ft)
9.6	(ft)
17.62	(ft)
29.09	
50.00	(ft)
	26.10 24.60 12.70 0.08 0.30 0.33 0.08

K = [(rc^2 ln(Re/	rw))/2Le]*(1	/t)In(yo/yt)
yo =	3.022	(ft) from plot
yt =	2.000	(ft) from plot
t =	1.868	(minutes) from plot
In(Re/rw) =	2.38	
K =	2.5E-01	(ft/day)
K =	8.9E-05	(cm/sec)

CALCULATION OF K

Calculation of In(Re/rw)

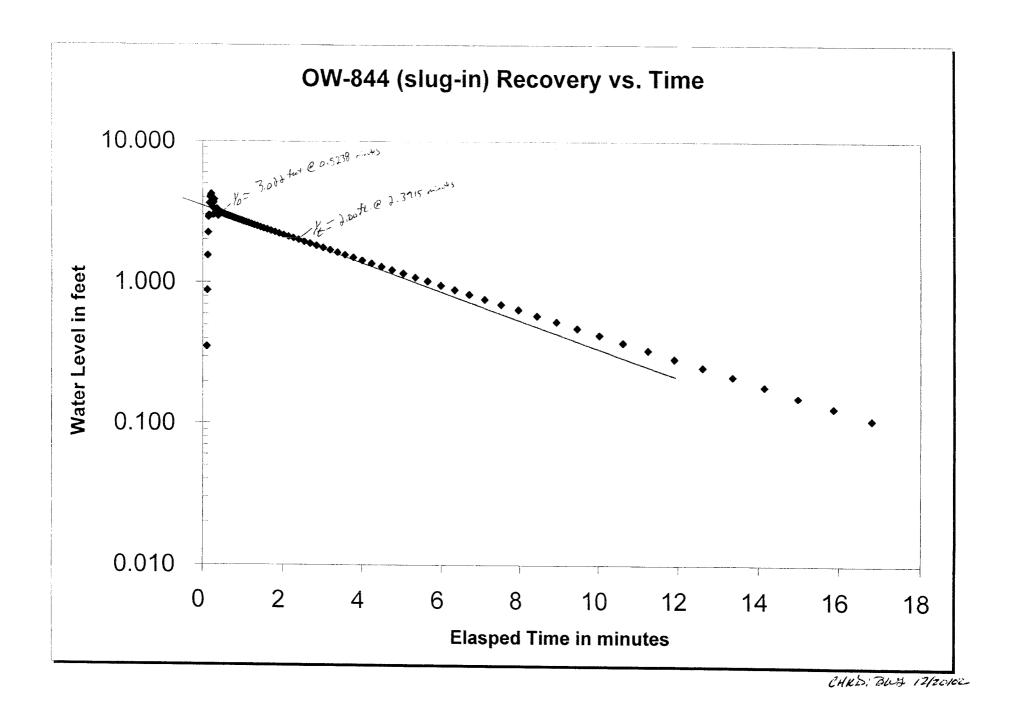
Where: Lw < H;	
$ln(Re/rw) = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)] - 1 = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)] - 1 = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)] - 1 = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)] - 1 = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)] - 1 = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)] - 1 = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)] - 1 = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)] - 1 = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)] - 1 = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)] - 1 = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)] - 1 = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)] - [\{1.1/(ln(Lw/rw))\} + [[1.1/(ln(Lw/rw))] + [1.1/(ln(Lw/rw))] + [1.1$	2.38
Where: Lw = H;	
$ln(Re/rw) = [(1.1/(ln(Lw/rw)))]+(C/(Le/rw))]^-1 =$	2.86

Calculation of Coefficients

Value range for Letrw from Table of Coefficients

Letrw A B C

25 24 0.31 1.9


30 25 0.35 2.1

| interpolated values of A, B and C for Le/rw | 29.09 | 2.48 | 0.34 | 2.06 |

Coefficients Table

Le/rw	A	Le/rw	В	Le/rw	C
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25	8	1,10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
. 80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Elapsed time	e Log y	y	WL (# PTOC)	Data Logger
(min) 0	#NUM!	0.000	(ft BTOC) 8.48	results 0
0.0112	-3.00	0.001	8,479	0.001
0.0223	#NUM! -3.00	0.000	8,48 8,479	0
0.0333	-2.40	0.004	8.476	-0.001 -0.004
0.0558	-2.40	0.004	8.476	-0.004
0.067	-2.22 -2.22	0.006	8.474 8.474	-0.006 -0.006
0.0893	-2.22	0.006	8.474	-0.006
0.1005	-0.45	0.352	8.128	-0.352
0.1117	-0.06 0.19	0.879 1.537	7.601 6.943	-0.879 -1.537
0.134	0.35	2.235	6.245	-2.235_
0.1452	0.46	2.874	5.606 5.507	-2.874 -2.973
0.1675	0.56	3.609	4.871	-3.609
0.1787 0.1898	0.60	4.000	4.48	-4
0.201	0.60	4.025	4.455	-4.025 -4.124
0.2122	0.63	4.229	4.251	-4.229
0.2233 0.235	0.57 0.53	3.697	4.783 5.098	-3.697 -3.382
0.2475	0.59	3.859	4.621	-3.859
0.2607 0.2747	0.47	2.980	5.5 4.809	-2.98
0.2895	0.59	3.671 3.859	4.621	-3.671 -3.859
0.3052	0.49	3.072	5.408	-3.072
0.3218 0.3395	0.49	3.097 3.292	5,383 5,188	-3.097 -3.292
0.3582	0.52	3.287	5.193	-3.287
0.378	0.47	2.940 3.019	5.54 5.461	-2.94 -3.019
0.4212	0.49	3.068	5.412	-3.068
0.4447	0.49	3.072	5.408	-3.072
0.4695 0.4958	0.49 0.48	3.088 3.046	5.392 5.434	-3.088 -3.046
0.5238	0.48	3.022	5.458	-3.022
0.5535 0.5848	0.48	3.002 2.976	5.478 5.504	-3.002 -2.976
0.618	0.47	2.953	5.527	-2.953
0.6532 0.6905	0.47	2.928 2.904	5.552	-2.928
0.0903	0.46	2.874	5,576 5,606	-2.904 -2.874
0.7718	0.45	2.845	5.635	-2.845
0.8162	0.45	2.818 2.790	5.662 5.69	-2.818 -2.79
0.913	0.44	2.756	5.724	-2.756
0.9657 1.0215	0.44	2.723	5.757	-2.723
1.0807	0.43	2.687 2.648	5.793 5.832	-2.687 -2.648
1.1433	0.42	2.615	5.865	-2.615
1.2097 1.28	0.41	2.574	5.906 5.946	-2.574 -2.534
1.3545	0.40	2.494	5.986	-2.494
1.4335 1.5172	0.39	2.446	6.034	-2.446
1.6057	0.38	2.407	6.073 6.121	-2.407 -2.359
1.6995	0.36	2.311	6.169	-2.311
1.7988	0.35	2.261	6.219 6.268	-2.261 -2.212
2.0157	0.33	2.159	6.321	-2.159
2.1338 2.259	0.32	2.100	6.38 6.426	-2.1 -2.054
2.3915	0.30	2.000	6.48	-2
2.532	0.29	1.934	6.546	-1.934
2.6808 2.8383	0.27	1.877 1.813	6.603 6.667	-1.877 -1.813
3.0052	0.24	1.753	6.727	-1.753
3.182 3.3693	0.23	1.687	6.793 6.856	-1.687 -1.624
3.5677	0.19	1.560	6.92	-1.56
3.7778	0.17	1,494	6.986	-1.494
4.0005 4.2363	0.15	1,425 1,360	7.055 7.12	-1.425 -1.36
4.4862	0.11	1.291	7.189	-1.291
4.7508 5.0312	0.09	1,222 1,158	7.258 7.322	-1.222 -1.158
5.328	0.04	1.087	7.393	-1.087
5.6425 5.9757	0.01	1.021 0.955	7.459	-1.021
6.3285	-0.02 -0.05	0.955	7.525 7.591	-0.955 -0.889
6.7023	-0.08	0,825	7.655	-0.825
7.0983 7.5177	-0.12 -0.15	0.762 0.700	7.718 7.78	-0.762 -0.7
7.962	-0.19	0.644	7.836	-0.644
8.4327	-0.24	0.582	7.898	-0.582
8.9312 9.4592	-0.28 -0.32	0.528 0.474	7.952 8.006	-0.528 -0.474
10.0185	-0.37	0.423	8.057	-0.423
10.611	-0.43	0.374	8.106	-0.374
11.2385 11.9033	-0.48 -0.54	0.331 0.289	8.149 8.191	-0.331 -0.289
12.6075	-0.60	0.252	8.228	-0.252
13.3533	-0.67	0.216	8.264	-0.216
14.1433	-0.74 -0.82	0.183 0.152	8.297 8.328	-0.183 -0.152
15.8667	0.89	0.128	8.352	-0.128
16.8057	-0.98	0.105	8.375	-0.105

2.5.4B-134

Slog-ar

MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina

MACTEC Job Name: No	orth Anna ESP	Slug Test Data Sheet MACTEC Job Number: 30720-2-5400
Date: 17/12 11/13/07 17		
Weather Conditions: 4 look		
Method of Slug wa	ter, mechanical,	or Test Method: Rising Head or
Withdrawl (circle one): pr	essure	Falling Head (circle)
Diameter of Screen: 🔑	<u>in.</u>	Diameter of Casing: 2 in.
Total Well <u>How ft</u> below	reference point	Reference Point: Permanent mark on top
Depth:		of casing
		Depth interval of screened $(\underline{u}, \underline{u} - \lambda \underline{u}, \underline{o})$ ft
Screened Section:		portion:
Depth to Groundwater:		
Groundwater Measurement		<u>Comments/Remarks</u>
to Slug Test		
Depth to Groundwater	<u>Date</u>	<u> </u>
8.95	1 Hoxor	
9.91 5 - 2	11-/10/04	
<u> </u>	12/11/02	
3,0	11-106/02	- Alam + Sh - 3
		- Ar File Howder last her
		11.3 6 12 3 4 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Se dos de la como de	+ 11 bear	the starter
)-	t. *	Mere Solf

Well:

OW-844

Test Date: Test Type: 12/13/2002 Recovery (slug out)

WELL DATA

CALCULATION OF K

SWL =	8.48	(ft BTOC)
WD =	26.10	(ft BTOC)
WD =	24.60	(ft BGS)
DTSP =	12.70	(ft BGS)
rc =	0.08	(ft)
n =	0.30	
rw =	0.33	(ft)
rc (adjusted) =	0.08	(ft)
Le =	9.6	(ft)
Lw ≃	17.62	(ft)
Le/rw =	29.09	
H=	50.00	(ft)

= [(rc^2 ln(Re/r	w))/2Le]*(1/t)In(yo/yt)
yo =	3.318 (ft) from plot
yt =	2.052 (ft) from plot
t =	1.966 (minutes) from plot
In(Re/rw) =	2.38
K =	2.8E-01 (ft/day)

9.9E-05 (cm/sec)

Calculation of In(Re/rw)

Where: Lw < H;	
$ln(Re/rw) = [{1.1/(ln(Lw/rw))}+{A+Bln((H-Lw)/rw)}/(Le/rw)]^-1=$	2.38
Where: Lw = H;	
in(Re/rw) = [{1.1/(ln(Lw/rw))}+{C/(Le/rw)}]^-1 =	2.86

Calculation of Coefficients

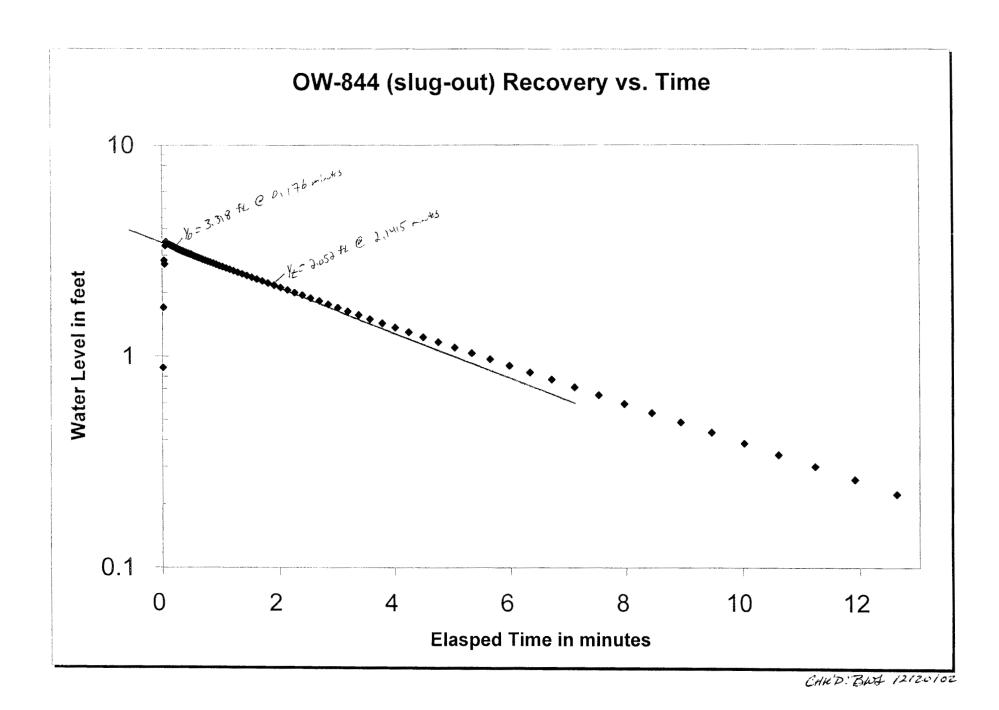
Value range for Le/rw from Table of Coefficients			
A	В	C	
2.4	0.31	1.9	
2.5	0.35	2.1	
	A 2.4 2.5	A B 2.4 0.31 2.5 0.35	

Interpola	ted values of A	, B and C for L	e/rw
29.09	2.48	0.34	2.06

Coefficients Table

Le/rw	A	Le/rw	В	Le/rw	C
4	1.75	4	0.25	4	0.75
	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25	8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Reference: Bouwer(1989), Bouwer and Rice(1976)


Conducted by: Entered/date: Grimes and Howe

d/date: 12/15/02

Checked/date: Blubing 12/20102

TEST DATA

Elapsed time (min)	Log y	(ft)	(ft BTOC)	Data Logger results
0	#NUM!	0	8.48	0
0.011	-0.06	0.881	9.361	0.881
0.022	0.23 0.45	2.844	10.18 11.324	1.7 2.844
0.044	0.44	2.726	11.206	2.726
0.055	0.52	3.327	11.807	3.327
0.066	0.54	3.479	11.959	3.479
0.077	0.54	3.459 3.44	11.939	3.459 3.44
0.099	0.53	3.419	11.899	3.419
0.11	0.53	3.396	11.876	3.396
0.121	0.53	3.38	11.86	3.38
0.132	0.53 0.53	3.365 3.352	11.845 11.832	3.365 3.352
0.154	0.52	3.341	11.821	3.341
0.165	0.52	3.328	11.808	3.328
0.176	0.52	3.318	11.798	3.318
0.187 0.198	0.52 0.52	3.307 3.302	11.787	3.307 3.302
0.209	0.52	3.282	11.762	3.282
0.22	0.51	3.263	11.743	3.263
0.231	0.51	3.251	11.731	3.251
0.2427 0.2552	0.51	3.24 3.228	11.72	3.24
0.2683	0.51 0.51	3.215	11.708	3.228 3.215
0.2823	0.51	3.202	11.682	3.202
0.2972	0.50	3.187	11.667	3.187
0.3128	0.50	3.174	11.654	3.174
0.3295 0.3472	0.50 0.50	3.16 3.144	11.64 11.624	3.16 3.144
0.3658	0.50	3.128	11.608	3.128
0.3857	0.49	3.11	11.59	3.11
0.4067 0.4288	0.49 0.49	3.094 3.077	11.574 11.557	3.094 3.077
0.4288	0.49	3.077	11.557	3.077
0.4772	0.48	3.039	11.519	3.039
0.5035	0.48	3.029	11.509	3.029
0.5315	0.48 0.47	2.991	11.471	2.991 2.97
0.5612 0.5925	0.47	2.97 2.946	11.426	2.946
0.6257	0.47	2.923	11.403	2.923
0.6608	0.46	2.896	11.376	2.896
0.6982 0.7377	0.46 0.45	2.868 2.841	11.348 11.321	2.868 2.841
0.7795	0.45	2.812	11.292	2.812
0.8238	0.44	2.782	11.262	2.782
0.8708	0.44	2.751	11.231	2.751
0.9207 0.9733	0.43 0.43	2.719	11.199 11.163	2.719 2.683
1.0292	0.42	2.649	11.129	2.649
1.0883	0.42	2.611	11.091	2.611
1.151	0.41	2.574	11.054	2.574 2.534
1.2173	0.40	2.534 2.492	11.014 10.972	2.534 2.492
1.3622	0.39	2.45	10.93	2.45
1.4412	0.38	2.406	10.886	2.406
1.5248 1.6133	0.37	2.36 2.311	10.84	2,36 2,311
1.7072	0.35	2.264	10.744	2.264
1,8065	0.34	2.213	10.693	2.213
1.9118	0.33	2.162	10.642	2.162
2.0233	0.32	2.108	10.588 10.532	2.108
2.2667	0.30	1.996	10.476	1.996
2.3992	0.29	1.939	10.419	1.939
2.5397	0.27	1.879	10.359	1.879
2.6885 2.846	0.26 0.24	1.82 1.756	10.3 10.236	1.82 1.756
3.0128	0.23	1.695	10.175	1.695
3.1897	0.21	1.63	10.11	1.63
3.377	0.20	1.567	10.047	1.567
3.5753 3.7855	0.18 0.16	1.499 1.433	9.979 9.913	1.499 1.433
4.0082	0.16	1.367	9.847	1.367
4.244	0.11	1.299	9.779	1.299
4.4938	0.09	1.23	9.71	1.23
4.7585	0.07	1.164	9.644	1.164
5.0388 5.3357	0.04	1.097	9.577 9.511	1.097
5.6502	-0.02	0.965	9.445	0.965
5.9833	-0.05	0.898	9.378	0.898
6.3362 6.71	-0.08 -0.11	0.834 0.771	9.314 9.251	0.834 0.771
7.106	-0.15	0.709	9.189	0.709
7.5253	-0.19	0.65	9.13	0.65
7.9697	-0.23	0.591	9.071	0.591
8.4403	-0.27	0.536	9.016	0.536
9.4668	-0.32 -0.36	0.484 0.433	8.964 8.913	0.484
10.0262	-0.42	0.433	8.864	0.433 0.384
10.6187	-0.47	0.339	8.819	0.339
11.2462	-0.53	0.298	8.778	0.298
11.911	-0.59	0.259	8.739	0.259
12.6152	-0.66	0.221	8.701	0.221

1110-	MACTEC Engineering and Consulting
MACTE	Raleigh, North Carolina
TATT TO T TV	
	Slug Test Data Sheet
MACTEC Job Name: North Anna ESP	MACTEC Job Number: <u>30720-2-5400</u>
Date: 17/107 Time: 15-32	Observation Well No.: Ow 945
Weather Conditions: for they summer 5	2.3
Method of Slug water, mechanical,	, or Test Method: Rising Head or
Withdrawl (circle one): pressure	Falling Head
	(circle)
	Diameter of Casing: 2 in.
Total Well 56.50 ft below reference point	
Depth:	of casing
Length of 1.7 ft	Depth interval of screened
Screened Section:	portion:
Depth to Groundwater: 14.71ft below	
Groundwater Measurements Collected Prior	r <u>Comments/Remarks</u>
to Slug Test	
Depth to Groundwater Date	- Slug # 2 volume = 0.08/+3 - + von show = 5/10 = 6407
74.69 17/09/02)107 10
74.69 17/10/07	- + v m show - 5/00 = 640 +
24,72 12/06/02	- +1000 shi = 45499
	¥ - * * * * * * * * * * * * * * * * * *

Sign Consider of 45" by the Too

سئ 5 دسا

Peron in 124302 & 1175

Peron in 12 not 2017

Tourson in 1 & 57

Clark in = 45449

Slig Ato Volume = 0,08 ft3

Well:

OW-845

Test Date: Test Type:

12/12/2002 Recovery (slug in)

Conducted by: Entered/date:

Grimes and Howe

12/15/02

Checked/date: Brusines 12/20/02

TEST DATA

WELL DATA

72 (ft BTOC)
50 (ft BTOC)
00 (ft BGS)
70 (ft BGS)
08 (ft)
30
33 (ft)
08 (ft)
.7 (ft)
78 (ft)
39 `
00 (ft)

 $K = [(rc^2 ln(Re/rw))/2Le]^*(1/t)ln(yo/yt)$ 0.048 (ft) from plot 0.025 (ft) from plot 0.470 (minutes) from plot yo = yt = t = In(Re/rw) = 1.8E+00 (ft/day)

* K = 6.3E-04 (cm/sec)

DATA 15 QUESTIONGABLE
(SEE GRAPH)

Calculation of In(Re/rw)

Where: Lw < H;	
$ln(Re/rw) = \{\{1.1/(ln(Lw/rw))\} + (A+Bln((H-Lw)/rw))/(Le/rw)\}^{-1} = \{1.1/(ln(Lw/rw))\} + (A+Bln((H-Lw)/rw))/(Le/rw)$	2.70
Where: Lw = H;	
$ln(Re/rw) = {\{1.1/(ln(Lw/rw))\}+\{C/(Le/rw)\}\}^{-1}} =$	3.23

Calculation of Coefficients

value range for Lerrw from Fable of Coefficients				
Le/rw	A	В	С	
25	2.4	0.31	1.9	
30	2.5	0.35	2.1	

Interpolated values of A, B and C for Le/rw 29.39 2.49 0.35 2.08

Coefficients Table

Le/rw	A	Le/rw	R	Le/rw	C
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25	8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

lapsed time	Log y	ý (ft)	WL (ft BTOC)	Data Logger
(min) [#NUM!	(ft) 0.000	(ft BTOC)	results
0.011	#NUM! -2.52	0.000	24.72	-0.003
0.022	-2.52 -2.52	0.003	24.717	-0.003
0.022	-2.52	0.003	24.717	-0.003
0.033	-2.52	0.003	24.717	-0.003
0.055	-2.52	0.003	24.717	-0.003
0.066	-2.52	0.003	24.717	-0.003
0.077	-2.52	0.003	24.717	-0.003
0.088	-0.74	0.182	24.538	-0.182
0.099	-0.45	0.356	24.364	-0.356
0.11	-0.46	0.349	24.371	-0.349
0.121	-0.55	0.281	24.439	-0.281
0.132	-0.59	0.255	24.465	-0.255
0.143	-0.80	0.159	24.561	-0.159
0.154	-0.58	0.262	24.458	-0.262
0.165	-0.54	0.291	24.429	-0.291
0.176	-0.50	0.317	24.403	-0.317
0.187	-0.49	0.324	24.396	-0.324
0.198 0.209	-0.33	0.467	24.253	-0.467 -0.427
0.209	-0.37	0.427	24.293	-0.427
0.22	-1.03 -0.76	0.094	24.626	-0.094
0.231	-0.76 -1.19	0.174	24.655	-0.174
0.2427	-1.19	0.055	24.665	-0.055
0.2552	-1.92	0.055	24.708	-0.055
0.2823	-0.73	0.012	24.533	-0.012
0.2972	-0.73	0.120	24.555	-0.12
0.2972	-1.07	0.086	24.634	0.086
0.3295	-2.52	0.003	24.717	0.003
0.3472	-1.57	0.027	24.693	0.003
0.3658	-1.28	0.053	24.667	-0.053
0.3857	-1.12	0.076	24.644	-0.076
0.4067	-1.12	0.075	24.645	-0.075
0.4288	-1.23	0.059	24.661	-0.059
0.4523	-1.32	0.048	24.672	-0.048
0.4772	-1.34	0.046	24.674	-0.046
0.5035	-1.32	0.048	24.672	-0.048
0.5315	-1.32	0.048	24.672	-0.048
0.5612	-1.37	0.043	24.677	-0.043
0.5925	-1.40	0.040	24.68	-0.04
0.6257	-1.41	0.039	24.681	-0.039
0.6608	-1.43	0.037	24.683	-0.037
0.6982	-1.44	0.036	24.684	-0.036
0.7377	-1.46	0.035	24.685	-0.035 -0.032
0.7795	-1.49 -1.52	0.032	24.688	-0.032
0.8238	-1.52	0.030	24.69	-0.03
0.8708	-1.54	0.029	24.691	-0.029 -0.027
0.9207	-1.57 -1.60	0.027	24.693	-0.027
0.9733	-1.60 -1.64	0.025	24.695 24.697	-0.025 -0.023
1.0292	-1.64 -1.66	0.023	24.697	-0.023
1.0883	-1.66 -1.70	0.022	24.698	-0.022
1.151	-1.70	0.020	24.7	-0.02
1.2173	-1.72 -1.77	0.019	24.701	-0.019
1.3622	-1.77	0.017	24.704	-0.017
1.4412	-1.80	0.016	24.704	-0.016
1.5248	-1.85	0.016	24.704	-0.016
1.6133	-1.89	0.014	24.707	-0.014
1.7072	-1.92	0.013	24.707	-0.012
1.8065	-2.00	0.012	24.71	-0.012
1.9118	-2.00	0.010	24.71	-0.01
2.0233	-2.05	0.009	24.711	-0.009
2.1415	-2.15	0.007	24.713	-0.007
2.2667	-2.15	0.007	24.713	-0.007
2.3992	-2.22	0.006	24.714	-0.006
2.5397	-2.22	0.006	24.714	-0.006
	****	0.004	24.716	-0.004

MMACTEC

MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina

MACTEC Job Name: N	Jorth Anna FSD	Slug Test Data Sheet MACTEC Job Number: 30720-2-5400
Date: 12/17 12	Time: 5	
Weather Conditions: 5		
	vater, mechanical	
_	ressure	Falling Head
•		(circle)
Diameter of Screen:	in.	Diameter of Casing: 1 in.
Total Well <u>sign</u> ft belo	w reference point	Reference Point: Permanent mark on top
Depth:		of casing
Length of	<u>ft</u>	Depth interval of screened 43.4 + 33.3 ft
Screened Section:		portion:
Depth to Groundwater:		
Groundwater Measuremen		r <u>Comments/Remarks</u>
to Slug Te	st	
Depth to Groundwater	<u>Date</u>	
20.19	11-109/12	- Ny 42 - Telline = 0.08 843
7-47-7 44,74	11-16-62	_
	13-100 lot	- Transfer Min 145
311.27	17/11/24	Land March 1991 con
34.62	1413/62	
	- u	
		<u> </u>

Recommended the second

OW-845

Test Date: Test Type: 12/17/2002 Recovery (slug in)

24.65 (ft BTOC) 56.50 (ft BTOC) 55.00 (ft BGS) 39.70 (ft BGS) 0.08 (ft) 0.30

0.33 (ft) 0.08 (ft)

WELL DATA

SWL = WD = WD = DTSP =

rw = rc (adjusted) =

CALCULATION OF K

vo =		(ft) from plot
vt =		(ft) from plot
t =		(minutes) from plot
In(Re/rw) =	2.70	, ,

#DIV/0! (cm/sec)

Le =	9.7	(ft)
Lw =	31.85	(ft)
Le/rw =	29.39	
H=	50.00	(ft)

Calculation of In(Re/rw)

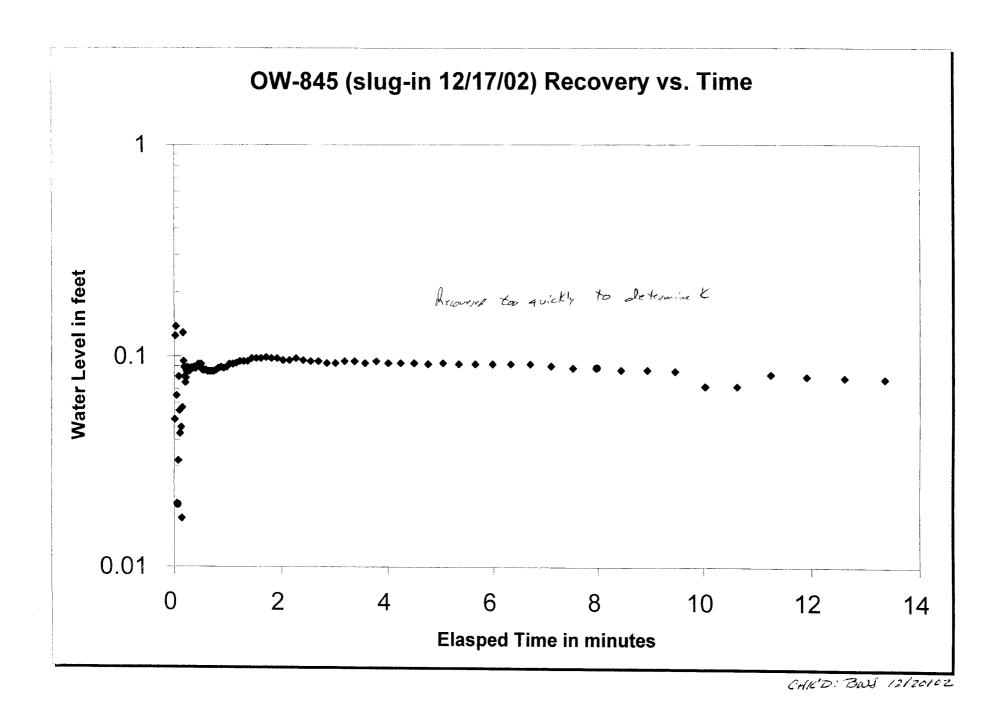
Where: L.w < H;	
$ln(Re/rw) = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)\}^{-1} =$	2.70
Where: Lw = H;	
$ln(Re/rw) = [\{1.1/(ln(Lw/rw))\}+\{C/(Le/rw)\}]^{-1} =$	3.23

Calculation of Coefficients

		able of Coeffici	
Le/rw	Α	8	C
25	2.4	0.31	1.9
30	2.5	0.35	2.1
Interpolated	values of A, B	and C for Le/n	W

Coefficients Table

Le/rw	Ā	Le/rw	В	Le/rw	C I
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25	8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6 10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9,50	1500	3.18	1500	12.90


Reference: Bouwer(1989), Bouwer and Rice(1976)

Conducted by: Entered/date: Checked/date:

Grimes and Howe

Blue Jane 12/20/02
TEST DATA

Elapsed time (min)	Log y	y (ft)	(ft BTOC)	Data Logger results
0	#NUM!	0	24.65	0
0.011	-1.30	0.05	24.6	0.05
0.022	-0.90 -0.86	0.125	24.525	0.125
0.044	-1.19	0.065	24.512 24.585	0.138
0.055	-1.70	0.02	24.63	0.02
0,066	#NUM!	-0.01	24.66	-0.01
0.077	-1.49 -1.10	0.032	24.618 24.57	0.032
0.099	-1.26	0.055	24.595	0.055
0.11	-1.37	0.043	24.607	0.043
0.121	-3.00	0.001	24.649	0.001
0.132 0.143	-1.34 -1.77	0.046	24.604 24.633	0.046 0.017
0.154	-1.24	0.057	24.593	0.057
0.165	-0.89	0.129	24.521	0.129
0.176 0.187	-1.02	0.095	24.555	0.095
0.198	-1.10	0.089	24.561	0.089
0.209	-1.12	0.075	24.575	0.075
0.22	-1.10	0.079	24.571	0.079
0.231	-1.07	0.085	24.565	0.085
0.2427 0.2552	-1,05 -1,06	0.089	24.561 24.562	0.089
0.2683	-1.07	0.085	24.565	0.085
0.2823	-1.07	0.085	24.565	0.085
0.2972	-1.06	0.088	24.562	0.088
0.3128	-1.06 -1.06	0.088	24.562 24.562	0.088
0.3472	-1.06	0.088	24.562	0.088
0.3658	-1.05	0.089	24.561	0.089
0.3857	-1.06	0.088	24.562	0.088
0.4067 0.4288	-1.06 -1.05	0.088	24.562 24.56	0.088
0.4268	-1.05	0.092	24.558	0.092
0.4772	-1.05	0.09	24.56	0.09
0.5035	-1.04	0.092	24.558	0.092
0.5315 0.5612	-1.07 -1.07	0.086	24.564 24.564	0.086
0.5925	-1.07	0.086	24.564	0.086
0.6257	-1.07	0.085	24.565	0.085
0.6608	-1.07	0.085	24.565	0.085
0.6982	-1.07	0.085	24.565	0.085
0.7377 0.7795	-1.07 -1.07	0.085	24.565 24.564	0.085
0.8238	-1.06	0.088	24.562	0.088
0.8708	-1.05	0.089	24.561	0.089
0.9207	-1.06	0.088	24.562	0.088
0.9733 1.0292	-1.05 -1.04	0.089	24.561 24.558	0.089
1.0883	-1.04	0.092	24.558	0.092
1.151	-1.03	0.093	24.557	0.093
1.2173	-1.02	0.095	24.555	0.095
1.2877	-1.02 -1.02	0.095	24.555 24.555	0.095
1.4412	-1.01	0.098	24.552	0.098
1.5248	-1.01	0.098	24.552	0.098
1.6133	-1.01	0.098	24.552	0.098
1.7072	-1.00 -1.01	0.099	24.551 24.552	0.099
1.9118	-1.01	0.098	24.552	0.098
2.0233	-1.02	0.096	24.554	0.096
2.1415	-1.02	0.096	24.554	0.096
2.2667	-1.01 -1.02	0.098	24.552 24.554	0.098
2.5397	-1.02	0.095	24.555	0.095
2.6885	-1.02	0.095	24.555	0.095
2.846	-1.03	0.093	24.557	0.093
3.0128 3.1897	-1.03 -1.02	0.093	24.557 24.555	0.093
3.377	-1.02	0.095	24.555	0.095
3.5753	-1.03	0.093	24.557	0.093
3.7855	-1.02	0.095	24.555	0.095
4.0082 4.244	-1.03 -1.03	0.093	24.557 24.557	0.093
4.4938	-1.03	0.093	24.557	0.093
4.7585	-1.04	0.092	24.558	0.092
5.0388	-1.03	0.093	24.557	0.093
5.3357 5.6502	-1.04 -1.04	0.092	24.558 24.558	0.092
5.6502	-1.04	0.092	24.558	0.092
6.3362	-1.04	0.092	24.558	0.092
6.71	-1.04	0.092	24.558	0.092
7.106	-1.05	0.09	24.56	0.09
7.5253 7.9697	-1.06 -1.06	0.088	24.562 24.562	0.088
8.4403	-1.06	0.088	24.562	0.086
8.9388	-1.07	0.086	24.564	0.086
9.4668	-1.07	0.085	24.565	0.085
10.0262	-1.14	0.072	24.578	0.072
10.6187	-1.14	0.072	24.578	0.072
11.2462	-1.09 -1.10	0.082	24.568 24.57	0.082
12.6152	-1.10	0.079	24.571	0.079
			24.572	0.078

510g- au+

MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina

	Slug Test Data Sheet
MACTEC Job Name: North Anna ESP	MACTEC Job Number: <u>30720-2-5400</u>
Date: 1H11-62 Time: +3	Observation Well No.: 00.845
Weather Conditions: Party sung in seist	
Method of Slug water, mechanica	
Withdrawl (circle one): pressure	Falling Head
	(circle)
Diameter of Screen:	Diameter of Casing: <u>A in.</u>
Total Well 5555 ft below reference point	=
Depth:	of casing
Length of <u>1.7 ft</u>	Depth interval of screened 43.4 533ft
Screened Section:	portion:
Depth to Groundwater: Ju. 72 ft below	
Groundwater Measurements Collected Price	<u>Comments/Remarks</u>
to Slug Test	
Depth to Groundwater Date	(\mu \text{X}
74.69 17/16/67 74.69 17/16/67	- Slug # L - Volume = 0 08 43
24.69 17/10/64	<u> </u>
	Transition Sm = 1407
	He-+ 32 = 45449

Set transhare 45 holes TOC

سم کی جدید

November 18/13/62 ~ 1120 VSER dry #2 - volume 0.08/11 Type de Sin 257 November 50 - 95009 April 6 will = 24.67

Well:

OW-845

Test Date:

12/12/2002

Test Type:

Recovery (slug out)

Conducted by:

Grimes and Howe

Entered/date:

12/15/02

Checked/date: Buthres 12/20102

TEST DATA

WELL DATA

SWL =	24.72	(ft BTOC)
WD =	56.50	(ft BTOC)
WD =	55.00	(ft BGS)
DTSP =	39.70	(ft BGS)
rc =	0.08	(ft)
n =	0.30	
rw =	0.33	(ft)
rc (adjusted) =	0.08	(ft)
Le =	9.7	(ft)
Lw =	31.78	(ft)
Le/rw =	29.39	
l		1411

$K = [(rc^2 ln(Re/rw))/2Le]^*(1/t)ln(yo/yt)$			
yo = 0.065 (ft) from plot yt = 0.027 (ft) from plot t = 0.369 (minutes) from plot ln(Re/rw) = 2.70			
K = 3.1E+00 (ft/day)			

CALCULATION OF K

Where: Lw < H;

 $ln(Re/rw) = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H - Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + [\{1.1/(ln(Lw/rw))\}]/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]^{-1} = [(1.1/(ln(Lw/rw))]/(Le/rw)]$

50.00 (ft)

Where: Lw = H;

In(Re/rw) = [{1.1/(ln(Lw/rw))}+{C/(Le/rw)}]^-1 =

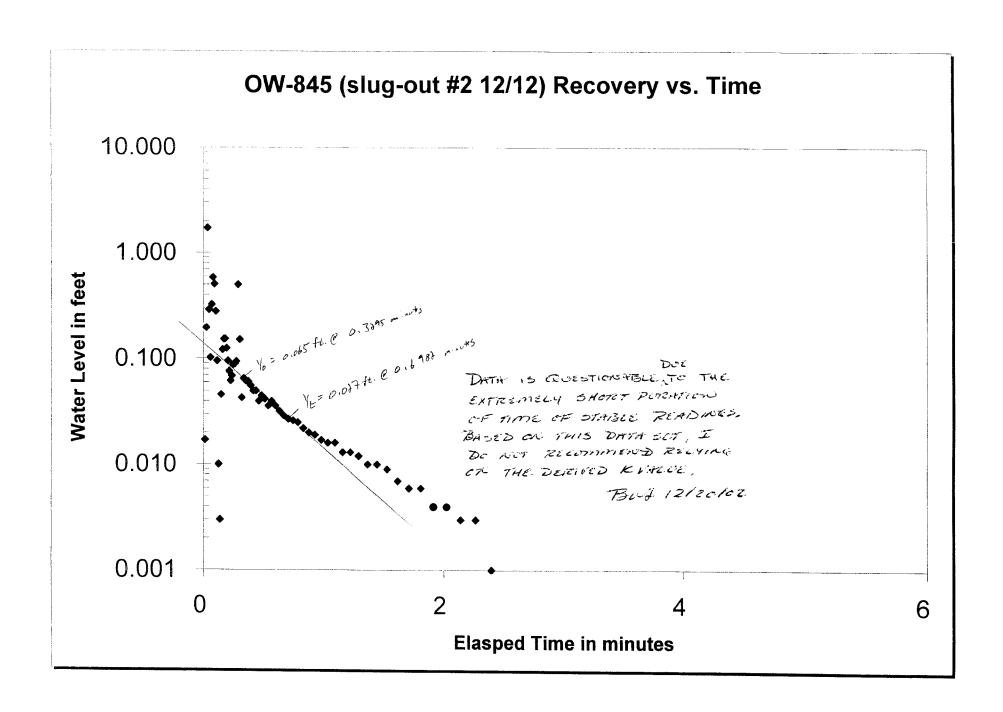
K = [(rc^2 ln(Re/r	w))/2Le]*(1/t)ln(yo/yt)
yo = yt = t = In(Re/rw) =	0.065 (tt) from plot 0.027 (ft) from plot 0.369 (minutes) from plot 2.70
K =	3.1E+00 (ft/day)
K =	1.1E-03 (cm/sec)

2.70

3.23

Calculation of In(Re/rw)

Value rang	Calculation of Coefficients Value range for Le/rw from Table of Coefficients				
Le/rw	Α	8	С		
25	24	0.31	19		


interpola	ted values of A	, B and C for L	.e/rw
29.39	2.49	0.35	2.08

0.35

Coefficients Table

Le/rw	Α	Le/rw	В	Le/rw	C	}
4	1.75	4	0.25	4	0.75	
5	1.76	5	0.25	5	0.85	
6	1.77	. 6	0.25	6	0.90	
7	1.80	7	0.25	7	1.00	
8	1.83	8	0.25	8	1.10	1
9	1.90	9	0.25	9	1.20	
10	1.95	10	0.25	10	1.30	
15	2.10	15	0.27	15_	1.50	
20	2.23	20	0.29	20	1.75	ļ
25	2 40	25	0.31	25	1.90	
30	2.50	30	0.35	30	2.10	ĺ
40	2.75	40	0.45	40	2.45	1
50	3.00	50	0.50	50	2.70	
60	3.45	60	0.52	60	3.00	
70	3.70	70	0.60	70	3.40	
80	3.90	80	0.65	80	3.60	
90	4.20	90	0.70	90	3.85	
100	4.50	100	0.75	100	4.20	
150	5.45	150	0.98	150	5.70	1
200	6.10	200	1.20	200	7.00	ĺ
250	6.70	250	1.30	250	8.00	
300	7.10	300	1.50	300	8.80	
400	7.75	400	1.90	400	9.90	
500	8.20	500	2.20	500	10.60	
600	8.50	600	2.33	600	11.10	
700	8.70	700	2.50	700	11.50	
800	8.90	800	2.70	800	11.80	
900	9.00	900	2.75	900	12.00	
1000	9.20	1000	2.83	1000	12.40	
1500	9.50	1500	3.18	1500	12.90	
Reference: Bouwer(1989), Bouwer and Rice(1976)						

Elapsed time	Log y	у	WL	Data Logger
(min)	1 450 (64)	(ft)	(ft BTQC)	results
0.011	#NUM! -1.77	0.000	24.72	24.72 24.737
0.022	-0.71	0.196	24.737	24.916
0.033	0.24	1.720	26.44	26.44
0.044	-0.54	0.290	25.01	25.01
0.055	-0.99	0.102	24.822	24.822
0.066	-0.49	0.324	25.044	25.044
0.077	-0.23 -0.30	0.585 0.506	25.305 25.226	25.305 25.226
0.099	-0.55	0.280	25	25
0.11	-1.02	0.095	24.815	24.815
0.121	-2.00	0.010	24.73	24.73
0.132	-2.52	0.003	24.723	24.723
0.143 0.154	-1.34 -0.92	0.046 0.121	24.766 24.841	24.766 24.841
0.165	-0.82	0.153	24.873	24.873
0.176	-0.81	0.154	24.874	24.874
0.187	-0.90	0.125	24.845	24.845
0.198	-1.02	0.095	24.815	24.815
0.209	-1.12	0.076	24.796	24.796 24.782
0.22 0.231	-1.21 -1.16	0.062	24.782 24.789	24.782
0.2427	-1.06	0.088	24.808	24.808
0.2552	-1.05	0.089	24.809	24.809
0.2683	-1.03	0.094	24.814	24.814
0.2823	-0.30	0.501	25.221	25.221
0.2972	-0.82	0.151	24.871	24.871
0.3128 0.3295	-1.37 -1.19	0.043	24.763 24.785	24.763 24.785
0.3293	-1.19	0.062	24.782	24.782
0.3658	-1.21	0.061	24.781	24.781
0.3857	-1.25	0.056	24.776	24.776
0.4067	-1.30	0.050	24.77	24.77
0.4288	-1.30	0.050	24.77	24.77 24.76
0.4523 0.4772	-1.40 -1.35	0.040	24.76 24.765	24.765
0.5035	-1.38	0.043	24.762	24.762
0.5315	-1.44	0.036	24.756	24.756
0.5612	-1.40	0.040	24.76	24.76
0.5925	-1.44	0.036	24.756	24.756
0.6257	-1.49	0.032	24.752	24.752
0.6608 0.6982	-1.54 -1.57	0.029 0.027	24.749 24.747	24.749 24.747
0.7377	-1.59	0.026	24.746	24.746
0.7795	-1.60	0.025	24.745	24.745
0.8238	-1.66	0.022	24.742	24.742
0.8708	-1.70	0.020	24.74	24.74
0.9207	-1.72	0.019	24.739	24.739
0.9733 1.0292	-1.77 -1.80	0.017 0.016	24.737 24.736	24.737 24.736
1.0883	-1.80	0.016	24.736	24.736
1.151	-1.89	0.013	24.733	24.733
1.2173	-1.89	0.013	24.733	24.733
1.2877	-1.92	0.012	24.732	24.732
1.3622 1.4412	-2.00 -2.00	0.010	24.73 24.73	24.73 24.73
1.5248	-2.00	0.009	24.73	24.73
1.6133	-2.15	0.007	24.727	24.727
1.7072	-2.22	0.006	24.726	24.726
1.8065	-2.22	0.006	24.726	24.726
1.9118	-2.40	0.004	24.724	24.724
2.0233 2.1415	-2.40	0.004	24.724 24.723	24.724 24.723
2.1413	-2.52 -2.52	0.003	24.723	24.723
2.3992	-3.00	0.001	24.721	24.721
2.5397	#NUM!	0.000	24.72	24.72
2.6885	#NUM!	0.000	24.72	24.72
2.846	#NUM!	-0.001	24.719	24.719
3.0128 3.1897	#NUM! #NUM!	-0.001 -0.001	24.719 24.719	24.719 24.719
3.377	#NUM!	-0.001	24.717	24.719
3.5753	#NUM!	-0.003	24.717	24.717
3.7855	#NUM!	-0.004	24.716	24.716
4.0082	#NUM!	-0.003	24.717	24.717
4.244	#NUM!	-0.004	24.716	24.716
4.4938	#NUM!	-0.004	24.716	24.716
4.7585 5.0388	#NUM! #NUM!	-0.004 -0.004	24.716 24.716	24.716 24.716
0.0000	#INCIVE	-0.004	۲۳,(۱۷	۲۳،/۱۷

MA	CTE	
	71 4 4 PCD	Slug Test Data Sheet
MACTEC Job Name:		MACTEC Job Number: 30720-2-5400
Date: 1/11/67	Time: 18025	Observation Well No.: Ow 841
Weather Conditions: ρω		
Method of Slug	water, mechanical,	
Withdrawl (circle one):	pressure	Falling Head
Diameter of Screen:	2 in. I	(circle) Diameter of Casing: in.
Total Well 34.32 ft be Depth:	elow reference point	of casing
	<u>5 ft</u> I	Depth interval of screened 과식-3사(ft
Screened Section:		portion:
Depth to Groundwater:	14.81 ft below r	eference point
Groundwater Measuren		
to Slug	Test	
Depth to Groundwater	Date	work 14/146i-
14.87	17-19-100-	12/09/07
24.87	17/06/62	12/09/07 ched they # 7 10 min = 0.08 4/3
		- Trumphoa. 3/ = 6407
		- Hami Vn -> 45,189
		Hawa in
		
		_

Det tousdone & 32 been too

Well: Test Date: OW-846

12/12/2002

Test Type: Recovery (slug in)

SWL =

WD = WD = DTSP =

rc =

WELL DATA

CALCULATION OF K

1		
ĺ		
ı		
ĺ		
l		
1		

24.82 (ft BTOC) 34.30 (ft BTOC) 32.80 (ft BGS) 20.30 (ft BGS) 0.08 (ft) 0.30

0.33 (ft) 0.19 (ft) rc (adjusted) =

> 9.75 (ft) 9.48 (ft) 29.55 Le = Lw = H = 50.00 (ft)

 $K = [(rc^2 in(Re/rw))/2Le]^*(1/t)ln(yo/yt)$ 0.704 (ft) from plot 0.495 (ft) from plot 1.069 (minutes) from plot 2.13 yo = yt = t = In(Re/rw) = 1.9E+00 (ft/day) 6.8E-04 (cm/sec)

Calculation of In(Re/rw)

Where: Lw < H;

 $ln(Re/rw) = [{1.1/(ln(Lw/rw))}+{A+Bln((H-Lw)/rw)}/(Le/rw)]^-1=$

Where: Lw = H;

 $ln(Re/rw) = [{1.1/(ln(Lw/rw))}+{C/(Le/rw)}]^{-1} =$

Calculation of Coefficients

Value range for Le/rw from Table of Coefficients Le/rw

0.31

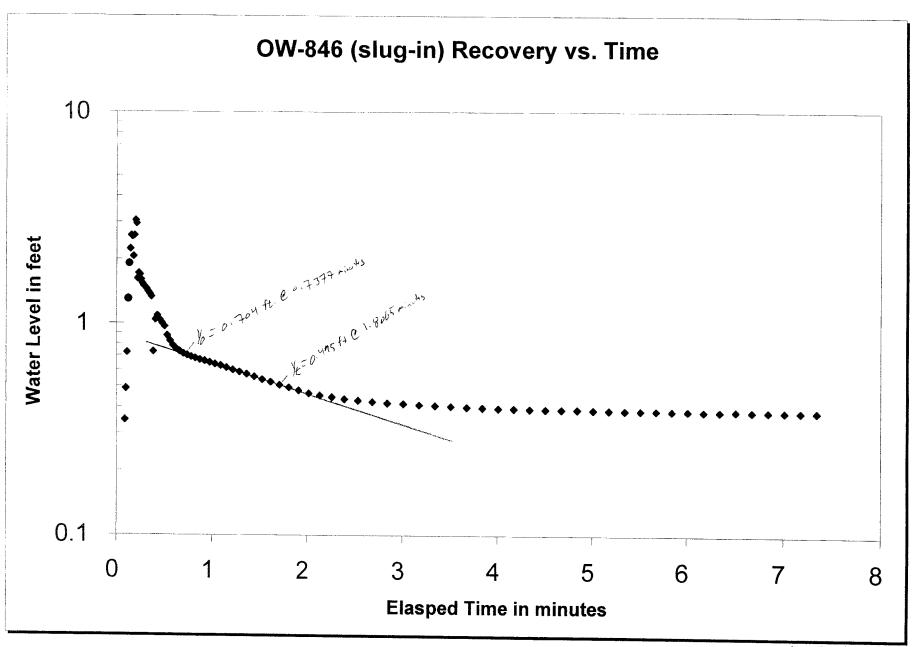
Interpolated values of A, B and C for Le/rw 29.55 2.49 0.35

Coefficients Table

Le/rw_	A	Le/rw	. В	Le/rw	C
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25		0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
	1.83	8	0.25		1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0,27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Reference: Bouwer(1989), Bouwer and Rice(1976)

Conducted by:


Grimes and Howe

Entered/date: Checked/date:

13/15/02 Hove 12/20/02

TEST DATA

Elapsed time (min) 0	Log y #NUM!	(ft)	(ft BTQC) 24.82	Data Logger results
0.011	-3.00	0.001	24.819	0.001
0.022	-3.00	0.001	24.819	0.001
0.033	-2.52	0.003	24.817	0.003
0.044 0.055	-2.40 -2.40	0.004	24.816 24.816	0.004
0.066	-2.40	0.004	24.816	0.004
0.077	-2.52	0.003	24.817	0.003
0.088	-0.46	0.347	24.473	-0.347
0.099	-0.31 -0.14	0.488	24.332 24.095	-0.488 -0.725
0,121	0.12	1.308	23.512	-1.308
0.132	0.28	1.91 2.238	22.91	-1.91
0.143 0.154	0.35	2.593	22.582 22.227	-2.238 -2.593
0.165	0.41	2.558	22.262	-2.558
0.176	0.31	2.062	22.758	-2.062
0.187	0.41	2.593 3.061	22,227 21.759	-2.593 -3.061
0.209	0.47	2.96	21.86	-2.96
0.22	0.21	1.617	23.203	-1.617
0.231 0.2427	0.24	1.718	23.102 23.128	1.718
0.2552	0.20	1.692 1.6	23.22	-1.692 -1.6
0.2683	0.19	1.538	23.282	-1.538
0.2823	0.18	1.501	23.319	-1.501
0.2972 0.3128	0.17 0.16	1.478 1.449	23.342 23.371	-1.478 -1.449
0.3295	0.15	1.449	23.413	-1.449
0.3472	0.14	1.374	23.446	-1.374
0.3658 0.3857	0.13 -0.14	1.336 0.732	23.484 24.088	-1.336 -0.732
0.4067	0.02	1.04	23.78	1.04
0.4288	0.04	1.087	23.733	-1.087
0.4523	0.02	1.04	23.78	-1.04
0.4772 0.5035	-0.02	1.002 0.964	23.818	-1.002 -0.964
0.5315	-0.06	0.872	23.948	-0.872
0.5612	-0.08	0.823	23.997	-0.823
0.5925 0.6257	-0.11 -0.12	0.783	24.037	-0.783 -0.754
0.6608	-0.13	0.734	24.086	-0.734
0.6982	-0.14	0.717	24.103	-0.717
0.7377	-0.15	0.704	24.116	-0.704
0.8238	-0.16 -0.17	0.692 0.682	24.128 24.138	-0.692 -0.682
0.8708	-0.17	0.671	24.149	-0.671
0.9207	-0.18	0.662	24.158	-0.662
0.9733 1.0292	-0.19 -0.19	0.65 0.639	24.17 24.181	-0.65 -0.639
1.0883	-0.20	0.629	24.191	-0.629
1.151	-0.21	0.615	24.205	-0.615
1.2173 1.2877	-0.22 -0.23	0.6 0.587	24.22	-0.6 -0.587
1.3622	-0.24	0.573	24.247	-0.573
1.4412	0.25	0.557	24.263	-0.557
1.5248	-0.27	0.541	24.279	-0.541
1.6133 1.7072	-0.28 -0.29	0.526 0.508	24.294 24.312	-0.526 -0.508
1.8065	-0.31	0.495	24.325	-0.495
1.9118	-0.32	0.48	24.34	-0.48
2.0233	-0.33 -0.34	0.465 0.455	24.355 24.365	-0.465 -0.455
2.2667	-0.35	0.447	24.373	-0.447
2.3992	-0.36	0.438	24.382	-0.438
2.5397 2.6885	-0.37 -0.37	0.431	24.389 24.395	-0.431 -0.425
2.846	-0.37	0.423	24.401	-0.425
3.0127	-0.38	0.416	24.404	-0.416
3.1793 3.346	-0.39 -0.39	0.411	24.409 24.412	-0.411
3.5127	-0.39 -0.39	0.408 0.405	24.412	-0.408 0.405
3.6793	-0.40	0.401	24.419	-0.401
3.846	-0.40	0.399	24.421	-0.399
4.0127 4.1793	-0.40 -0.40	0.396	24.424	-0.396 -0.395
4.1793	-0.40	0.393	24.425	-0.395
4.5127	-0.41	0.392	24.428	-0.392
4.6793	-0.41	0.391	24.429	-0.391
4.846 5.0127	-0.41 -0.41	0.391	24.429 24.431	-0.391 -0.389
5.1793	-0.41	0.388	24.432	-0.388
5.346	-0.41	0.386	24.434	-0.386
5.5127	-0.41	0.386	24.434	-0.386
5.6793 5.846	-0.41 -0.41	0.386 0.385	24.434	-0.386 -0.385
6.0127	-0.41	0.385	24.435	-0.385
6.1793	-0.42	0.383	24.437	-0.383
6.346	-0.42	0.383	24.437	-0.383
6.5127 6.6793	-0.41	0.385	24.435	-0.385
6.846	-0.42	0.383 0.383	24.437 24.437	-0.383 -0.383
7.0127	-0.42	0.382	24.438	-0.382
7.1793 7.346	-0.42 -0.42	0.382 0.382	24.438 24.438	-0.382 -0.382

CHICD: BIND 12/20/02

Slig-at

MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina

486

	Slug Test Data Sheet
MACTEC Job Name: North Anna ESP	MACTEC Job Number: 30720-2-5400
Date: 'Histor Time: 13	351535 Observation Well No.: Our 846
	+11+11+1-su
Method of Slug water, mechanica	l, or Test Method: Rising Head or
Withdrawl (circle one): pressure	Falling Head
	(circle)
Diameter of Screen: <u>Fin.</u>	Diameter of Casing: 2 in.
Total Well 340 ft below reference point	Reference Point: <u>Permanent mark on top</u>
Depth:	of casing
Length of <u>9175 ft</u>	Depth interval of screened 171.4-34.6ft
Screened Section:	portion:
Depth to Groundwater: Fig. 82 ft below	
Groundwater Measurements Collected Prio	or <u>Comments/Remarks</u>
to Slug Test	 ,
Depth to Groundwater Date 11-10	9/05
2418t trajos	we will for the survey and the
	Local Sive 4 Stag
	- 6549
	Lydrad Shr
	<u> </u>
	
got franklike @ 32"	being too

Well: Test Date: OW-846 12/12/2002

Test Type: Recovery (slug-out)

Conducted by: Entered/date: Checked/date: Grimes&Howe Grimes/12/15/02

ed/date: Buffores 12/20/02

TEST DATA

WELL DATA

SWL =	24.82	(ft BTOC)
WD =	34.30	(ft BTOC)
WD =	32.80	(ft BGS)
DTSP =	20.30	(ft BGS)
rc =	0.08	(ft)
n =	0.30	
rw =	0.33	(ft)
rc (adjusted) =	0.19	(ft)
Le =	9.75	(ft)
Lw =	9.48	(ft)
Le/rw =	29.55	
H =	50.00	(ft)

K = [(rc^2 ln(Re/	w))/2Lej*(1/t)ln(yo/yt)
VO =	1.707 (ft) from plot
yt =	1.162 (ft) from plot
t =	0.652 (minutes) from plot
In(Re/rw) =	2.13
K =	3.4E+00 (ft/day)

K = 1,2E-03 (cm/sec)

CALCULATION OF K

Calculation of In(Re/rw)	

Where: Lw < H;	
$ln(Re/rw) = \{\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)\}^{\wedge} + 1 = \{1.1/(ln(Lw/rw))\} + \{1.1/(ln(Lw/rw))\} + 1 = \{1.1/(l$	2.13
Where: Lw = H;	
In(Re/rw) = [{1.1/(In(Lw/rw))}+{C/(Le/rw)}}^-1 =	2.50

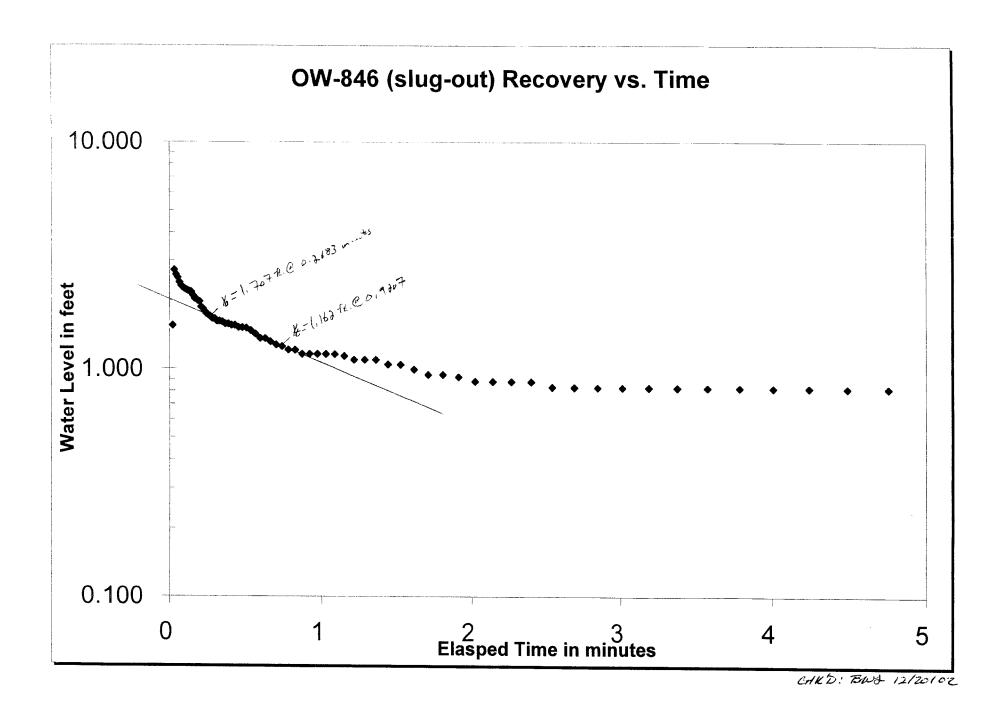
Calculation of Coefficients

Value range for Le/rw from Table of Coefficients

Le/rw A B C

25 2.4 0.31 1.9

30 2.5 0.35 2.1


Interpolated values of A, B and C for Le/rw

29,55 2.49 0.35 2.08

Coefficients Table

Le/rw	A	Le/rw	В	Le/rw	C
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
	1.83	8	0.25	8	1.10
. 9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3 00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3,60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	t.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1,90	400	9.90
500	8.20	500	2.20	500	10.60
600	8 50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Elapsed time (min)	Log y	(ft)	WL _(ft BTOC)	Data Logge results
0.011	#NUM! -3.00	0.000	24.82	24.82
0.022	0.19	1.552	26.372	26.372
0.033	0.44	2.727	27.547	27.547
0.044	0.42	2.604	27.424	27.424 27.348
0.055	0.40	2.528 2.412	27.348	27.232
0.077	0.37	2.334	27.154	27.154
0.088	0.36	2,293	27.113	27.113
0.099	0.35 0.35	2.262	27.082 27.058	27.082 27.058
0.121	0.35	2.218	27.038	27.038
0.132	0.34	2.201	27.021	27.021
0.143	0.34	2.185	27.005	27.005
0.154	0.32	2.113	26.933 26.863	26.933 26.863
0.176	0.31	2.033	26.853	26.853
0.187	0.30	1.997	26.817	26.817
0.198	0.30	1.981	26.801	26.801
0.209	0.27	1.874	26.694 26.662	26.694 26.662
0.231	0.25	1.796	26.616	26.616
0.2427	0.24	1.752	26,572	26.572
0.2552	0.24	1.729	26.549 26.527	26.549 26.527
0.2823	0.22	1.665	26.485	26.485
0.2972	0.22	1.664	26.484	26.484
0.3128	0.21	1.621	26.441	26.441
0.3295 0.3472	0.21 0.21	1.621	26.441 26.431	26.441 26.431
0.3658	0.20	1.576	26.396	26.396
0.3857	0.20	1.576	26.396	26.396
0.4067	0.19	1.556	26.376	26,376
0.4288	0.19	1.556 1.522	26.376 26.342	26,376 26,342
0.4772	0.18	1.520	26.34	26.34
0.5035	0.18	1.512	26.332	26,332
0.5315 0.5612	0.17	1.475	26.295 26.244	26,295 26,244
0.5925	0.13	1.364	26.184	26.184
0.6257	0.13	1.361	26.181	26,181
0.6608	0.12	1.317	26.137	26,137
0.6982	0.11	1.276	26.096 26.075	26.096 26.075
0.7795	0.08	1.213	26.033	26.033
0.8238	0.08	1.212	26.032	26,032
0.8708	0.07	1.163	25.983	25.983
0.9207 0.9733	0.07	1.162	25.982 25.982	25.982 25.982
1.0292	0.06	1.160	25.98	25.98
1.0883	0.06	1.159	25.979	25.979
1.151 1.21 <u>73</u>	0.06	1.139 1.097	25,959 25,917	25.959 25.917
1.2877	0.04	1.097	25.917	25,917
1.3622	0.04	1.096	25.916	25.916
1.4412	0.02	1.045	25.865	25.865
1.5248 1.6133	0.02	1.042 0.994	25.862 25.814	25.862 25.814
1.7072	-0.03	0.943	25.763	25.763
1.8065	-0.03	0.942	25.762	25.762
1.9118 2.0233	-0.04	0.922 0.880	25.742 25.7	25.742 25.7
2.1415	-0.06	0.880	25.699	25.699
2.2667	-0.06	0.877	25.697	25.697
2.3992	-0.06 -0.08	0.876	25.696 25.649	25.696
2.5397 2.6885	-0.08	0.829	25.649	25.649 25.647
2.846	-0.08	0.826	25.646	25.646
3.0128	-0.08	0.824	25.644	25.644
3.1897 3.377	-0.08 -0.09	0.823	25.643 25.641	25.643 25.641
3.5753	-0.09	0.820	25.64	25.64
3.7855	-0.09	0.820	25.64	25.64
4.0082	-0.09	0.818	25.638	25.638
4.244 4.4938	-0.09 -0.09	0.817 0.814	25.637 25.634	25.637 25.634
4.7585	-0.09	0.814	25.634	25.634
5.0388	-0.09	0.811	25.631	25.631
5.3357	-0.10	0.793	25.613	25.613
5.6502 5.9833	-0.11 -0.12	0.768 0.764	25.588 25.584	25.588 25.584
6.3362	-0.12	0.762	25.582	25.582
6.71	-0.12	0.761	25.581	25.581
7.106 7.5253	-0.12 -0.12	0.760 0.757	25.58 25.577	25.58 25.577
7.9697	-0.12	0.755	25.575	25.575
8.4403	-0.12	0.752	25.572	25.572
8.9388	-0.12	0.751	25.571	25.571
9.4668 10.0262	-0.12 -0.13	0.750 0.747	25,57 25,567	25.57 25.567
10.0262	-0.13	0.747	25.565	25,565
11.2462	-0.13	0.742	25.562	25.562
11.911	-0.13	0.738	25.558	25.558
12.6152	-0.13	0.737	25.557	25.557
13.361	-0.14 -0.14	0.732 0.729	25.552 25.549	25.552 25.549
14.151	-0.14	0.725	25.545	25.545
15.8743	-0.14	0.719	25.539	25.539
16.8133	-0.15	0.715	25.535	25.535
17.808 18.8617	-0.15 -0.15	0.711 0.706	25.531 25.526	25.531 25.526

MACTEC Engineering and Consulting
3301 Atlantic Avenue
3301 Atlantic Avenue Raleigh, North Carolina
Slug Test Data Sheet
MACTEC Job Number: <u>30720-2-5400</u>
Observation Well No.: Ow -847
,
or Test Method: Rising Head or
Falling Head
(circle)
Diameter of Casing: \(\sum_{\text{in.}} \)
Reference Point: Permanent mark on top
of casing
Depth interval of screened 3 ヌとーグって ft
portion:
reference point
r Comments/Remarks
(log / volume = 2,08 ft 3
- (Stop of solve = 0.08 +3)
USIL
Travalue - 56-17 6.107
- Herent 3/4 -> 45449
Maynut Vici V

set desdear 45' bok- Tox

Return bost on 12/13/62 (10055 11702 this test is inter-livers

Ling has Equipment (1005- 12-11/16/64

Depth to write = 34.31

Set the agreem to by before Toc

W56-

Well: Test Date: OW-847

Test Type:

12/13/2002 Recovery (slug in)

WELL DATA

Conducted by: Entered/date: Checked/date: Grimes and Howe

12/20/02 TEST DATA

	SWL =	34.31	(ft BTOC)	
	WD =	51.30	(ft BTOC)	
	WD =	49.80	(ft BGS)	
	DTSP =	35.00	(ft BGS)	
	rc =	0.08	(ft)	
	n =	0.30		
	rw =	0.33	(ft)	
	rc (adjusted) =	0.08	(ft)	
	Le =	7.9	(ft)	
	Lw =	16.99	(ft)	
	Le/rw =	23.94		
- 1	Н =	50.00	(ft)	

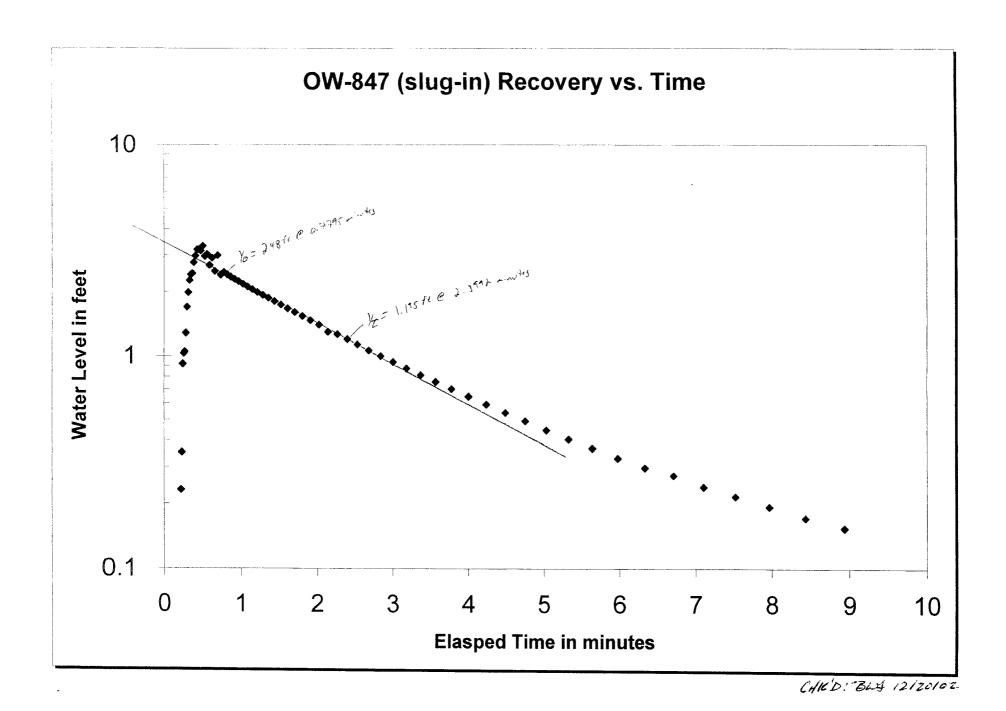
K = [(rc^2 ln(Re/r	w))/2Le]*(1/	t)in(yo/yt)
yo = yt = t = In(Re/rw) =	1.195	(ft) from plot (ft) from plot (minutes) from plot
K=	5.8E-01	(ft/day)
<u>K</u> =	2.1E-04	(cm/sec)

CALCULATION OF K

Calculation of In(Re/rw)

Where: Lw < H;	
$ln(Re/rw) = [\{1.1/(ln(Lw/rw))\} + \{A+Bln((H-Lw)/rw)\}/(Le/rw)\}^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A+Bln((H-Lw)/rw)\}/(Le/rw)\}^{-1}]$	2.27
Where: Lw = H;	
$ln(Re/rw) = [{1.1/(ln(Lw/rw))}+{C/(Le/rw)}]^{-1} =$	2.78

Calculation of Coefficients


value range for Le/rw from Table of Coefficients				
Le/rw	Α	В	С	
20	2.23	0.29	1,75	
30	2.5	0.35	2.1	

Interpola	ted values of A	, B and C for L	e/rw
23.94	2.34	0.31	1.89

Coefficients Table

Le/rw	L Ā	Le/rw	В	Le/rw	C
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25	8	1,10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Elapsed time	Log y	Ту] WL	Data Logger
(min)		(ft)	(ft BTOC)	results
0	#NUM!	0	34.31	0
0.011	-2.40 -2.40	0.004	34.306 34.306	0.004
0.033	-2.40	0.004	34.306	0.004
0.044	-2.40	0.004	34.306	0.004
0.055	-2.52	0.003	34.307	0.003
0.066	-3.00	0.001	34.309	0.001
0.077	-2.40 -2.52	0.004	34.306	0.004
0.099	-3.00	0.003	34.307 34.309	0.003
0.11	#NUM!	0	34.31	0
0.121	-2.52	0.003	34.307	0.003
0.132	-2.52	0.003	34.307	0.003
0.143 0.154	-3.00	0.001	34.309 34.309	0.001
0.165	-3.00 -3.00	0.001 0.001	34.309	0.001
0.176	-3.00	0.001	34.309	0.001
0.187	#NUM!	0	34.31	0
0.198	-3.00	0.001	34.309	0.001
0.209	#NUM! -0.63	0.233	34.31 34.077	-0.233
0.231	-0.45	0.352	33.958	-0.352
0.2427	-0.04	0.916	33.394	-0.916
0.2552	0.01	1.028	33.282	-1.028
0.2683	0.02	1.045 1.277	33.265 33.033	-1.045 -1.277
0.2972	0.11	1.692	32.618	-1.692
0.3128	0.30	1.986	32.324	-1.986
0.3295	0.36	2.269	32.041	-2.269
0.3472	0.38	2.418 2.447	31.892	-2.418 -2.447
0.3857	0.39 0.44	2.764	31.863 31.546	-2.764
0.4067	0.47	2.975	31.335	-2.975
0.4288	0.50	3.189	31.121	-3.189
0.4523	0.50	3.194	31.116	-3.194
0.4772 0.5035	0.50 0.52	3.149 3.318	31.161 30.992	-3.149 -3.318
0.5315	0.47	2.966	31.344	-2.966
0.5612	0.48	3.028	31.282	-3.028
0.5925	0.43	2.679	31.631	-2.679
0.6257	0.46	2.905	31.405	-2.905
0.6608 0.6982	0.40	2.508 2.991	31.802 31.319	-2.508 -2.991
0.7377	0.38	2.41	31.9	-2.41
0.7795	0.39	2.48	31.83	-2.48
0.8238	0.38	2.417	31.893	-2.417
0.8708 0.9207	0.37	2.359	31.951 32.011	-2.359 -2.299
0.9733	0.35	2.243	32.067	-2.243
1.0292	0.34	2.181	32.129	-2.181
1.0883	0.33	2.119	32.191	-2.119
1.151 1.2173	0.31	2.057	32.253	-2.057
1.2877	0.30 0.29	1.993	32.317 32.379	-1.993 -1.931
1.3622	0.27	1.868	32.442	-1.868
1.4412	0.26	1.8	32.51	-1.8
1.5248	0.24	1.734	32.576	-1.734
1.6133 1.7072	0.22 0.20	1.665 1.599	32.645 32.711	-1.665 -1.599
1.8065	0.19	1.533	32.777	-1.533
1.9118	0.17	1.464	32.846	-1.464
2.0233	0.14	1.396	32.914	-1.396
2.1415 2.2667	0.11	1.292 1.261	33.018 33.049	-1.292 -1.261
2.3992	0.10	1.195	33.115	-1.195
2.5397	0.05	1.13	33.18	-1.13
2.6885	0.03	1.061	33.249	-1.061
2.846 3.0128	0.00	0.999	33.311	-0.999 -0.937
3.1897	-0.03 -0.06	0.937	33.373 33.435	-0.937
3.377	-0.09	0.815	33.495	-0.815
3.5753	-0.12	0.758	33.552	-0.758
3.7855	-0.15	0.701	33.609	-0.701
4.0082 4.244	-0.19 -0.23	0.647 0.592	33.663 33.718	-0.647 -0.592
4.4938	-0.27	0.542	33.768	-0.542
4.7585	-0.31	0.494	33.816	-0.494
5.0388	-0.35	0.447	33.863	-0.447
5.3357	-0.39	0.405	33.905	-0.405
5.6502 5.9833	-0.44 -0.48	0.367	33.943 33.981	-0.367 -0.329
6.3362	-0.46	0.296	34.014	-0.329
6.71	-0.57	0.272	34.038	-0.272
7.106	-0.62	0.24	34.07	-0.24
7.5253	-0.67	0.216	34.094	-0.216
7.9697 8.4403	-0.71	0.193	34.117	-0.193 -0.171
8.9388	-0.77 -0.81	0.171 0.154	34.139 34.156	-0.171
	5.51	V. 10-T	V 1.700	<u> </u>

They art

MN A	CTE	MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina
MACTEC Job Name: Date: /ナ/ファケナ Weather Conditions: 50	North Anna ESP Time: \(\sigma \cap \frac{3}{2} \)	Slug Test Data Sheet MACTEC Job Number: 30720-2-5400 Observation Well No.: € 54 ₹
Method of Slug Withdrawl (circle one):	water, mechanical pressure	or Test Method: Rising Head or Falling Head (circle)
Diameter of Screen: Total Well Depth:		Diameter of Casing:J in.Reference Point:Permanent mark on top of casing
Length of 3.9 Screened Section: Depth to Groundwater:		Depth interval of screened 39.4555 ft portion:
Groundwater Measurem to Slug	ents Collected Prior Fest	r <u>Comments/Remarks</u>
Depth to Groundwater 3-1/8 5-1/31 3-1/35	Date 15/1022 15/106/02 15/13/22 15/13/24	= 1 2 CAN
7	16.14.74	

The same of the same of

ساؤسا

Well:

OW-847 12/17/2002

Test Date: Test Type:

Recovery (slug out)

34 34 (ft BTOC) 51.30 (ft BTOC) 49.80 (ft BGS) 35.00 (ft BGS) 0.08 (ft) 0.30

0.33 (ft) 0.08 (ft)

7.9 (ft) 16.96 (ft) 23.94 50.00 (ft)

WELL DATA

SWL =

WD = WD = DTSP = rc = n =

Le = Lw = Le/rw = H =

rw = rc (adjusted) =

CALCULATION OF K

Conducted by:

Entered/date:

Checked/date:

Grimes and Howe BULLING 12/02

TEST DATA

yo = yt = t = !n(Re/rw) = 3.543 (ft) from plot 2.387 (ft) from plot 0.761 (minutes) from plot 2.27

 $K = \{(rc^2 \ln(Re/rw))/2Le\}^*(1/t)\ln(yo/yt)$

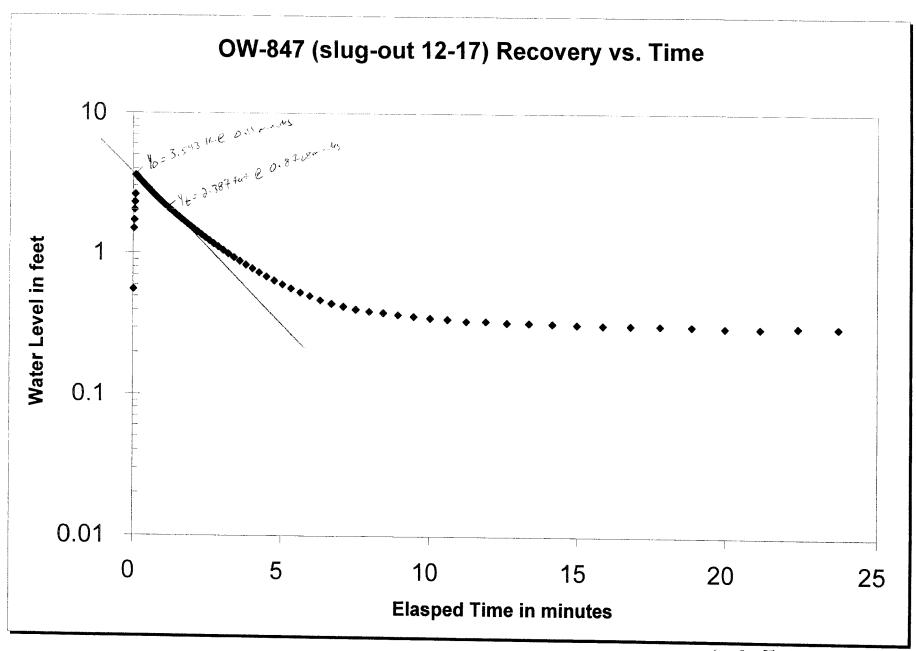
6.6E-01 (ft/day)

2.3E-04 (cm/sec)

Calculation of In(Re/rw)

Where: Lw < H; In(Re/rw) = [{1 1/(In(Lw/rw))}+{A+BIn((H-Lw)/rw)}/(Le/rw)}^- = 2.27 In(Re/rw) = {{1 1/(In(Lw/rw))}+{C/(Le/rw)}}^-1 = 2.78

Calculation of Coefficients


Value range for Le/rw from Table of Coefficients

Interpolated values of A, B and C for Le/rw 23.94 2.34 0.31 1.89

Coefficients Table

Le/rw	A	Le/rw	8	Le/rw	C
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	. 5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.:25	_ 7	1.00
	1.83	8	0.25	8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Elapsed time	Log y	y	WL (# DTOC)	Data Logger
(min) 0	#NUM!	(ft)	(ft BTOC) 34.34	results 0
0.011	#NUM!	-0.001	34.339	-0.001
0.022	-0.25 0.17	0.562 1.487	34.902 35.827	0.562 1.487
0.044	0.23	1.706	36.046	1.706
0.055	0.31	2.024	36.364	2.024
0.066	0.36	2.294	36.634 36.94	2.294
0.088	0.55	3.576	37.916	3.576
0.099	0.55	3.554	37.894 37.883	3.554 3.543
0.121	0.55	3.513	37.853	3.513
0.132 0.143	0.54 0.54	3.484	37.824 37.8	3.484 3.46
0.154	0 54	3 438	37 778	3 438
0 165 0 176	0.53 0.53	3.427	37.767 37.746	3.427 3.406
0.187	0.53	3 388	37.728	3.388
0.198 0.209	0.53 0.52	3 368 3.346	37.708 37.686	3.368 3.346
0.22	0.52	3.32	37.66	3.32
0.231 0.2427	0.52 0.52	3.303 3.277	37.643 37.617	3.303 3.277
0.2552	0.51	3.254	37.594	3.254
0.2683	0.51 0.51	3.234 3.207	37.574 37.547	3.234
0.2972	0.50	3.187	37.527	3.187
0.3128	0.50 0.50	3.162	37.502 37.471	3.162
0.3295 0.3472	0.50	3.131	37.471	3.131 3.096
0.3658	0.49	3.064	37.404	3.064
0.3857	0.48	3.033	37.373 37.34	3.033
0.4288	0.47	2.962	37.302	2.962
0.4523 0.4772	0.47 0.46	2.928	37.268 37.232	2.928
0.5035	0.46	2.875	37.215	2.875
0.5315 0.5612	0.45	2.811	37.151 37.11	2.811 2.77
0.5925	0.44	2.728	37.068	2.728
0.6257	0.43	2.682	37.022 36.976	2.682 2.636
0.6982	0.41	2.59	36.93	2.59
0.7377 0.7795	0.41	2.544	36.884 36.834	2.544 2.494
0.8238	0.39	2.442	36.782	2.442
0.8708 0.9207	0.38	2.387 2.336	36.727 36.676	2.387
0.9733	0.36	2.282	36.622	2.282
1.0292	0.35	2.223	36.563 36.506	2.223
1.151	0.32	2.107	36.447	2.107
1.2173 1.2877	0.31	2.047 1.988	36.387 36.328	1.988
1.3622	0.28	1.926	36.266	1.926
1.4412	0.27	1.863	36.203 36.141	1.863
1.6133	0.24	1.737	36.077	1.737
1.7072	0.22	1.673	36.013 35.949	1.673
1.9118	0.19	1.546	35.886	1.546
2.0233 2.1415	0.17	1.48	35.82 35.757	1.48
2.2667	0.13	1.352	35.692	1.352
2.3992	0.11	1.29	35.63 35.568	1.29
2.6885	0.07	1.167	35.507	1.167
2.846 3.0128	0.04	1.108	35.448 35.389	1.108
3.1897	0.00	0.991	35.331	0.991
3.377 3.5753	-0.03 -0.05	0.935	35.275 35.222	0.935 0.882
3.7855	-0.08	0.83	35.17	0.83
4.0082	-0.11 -0.13	0.783	35.123 35.074	0.783 0.734
4.4938	-0.16	0.688	35.028	0.688
4.7585 5.0388	-0.19 -0.22	0.646 0.607	34.986 34.947	0.646 0.607
5.3357	-0.24	0.57	34.91	0.57
5.6502 5.9833	-0.27 -0.30	0.534 0.505	34.874 34.845	0.534 0.505
6.3362	-0.33	0.472	34.812	0.472
6.71 7.106	-0.35 -0.37	0.446	34.786 34.767	0.446 0.427
7.5253	-0.37 -0.39	0.407	34.747	0.407
7.9697 8.4403	-0.40 -0.41	0.394 0.386	34.734 34.726	0.394 0.386
8.9388	-0.43	0.374	34.714	0.374
9.4668	-0.44 -0.45	0.364 0.355	34.704 34.695	0.364 0.355
10.0262 10.6187	-0.45 -0.46	0.348	34.688	0.348
11.2462	-0.47	0.337	34.677	0.337
11.911 12.6152	-0.47 -0.48	0.337	34.677 34.669	0.337
13.361	-0.48	0.328	34.668	0.328
14.151	-0.49 -0.50	0.324	34.664 34.659	0.324
15.8743	-0.50	0.316	34.656	0.316
16.8133 17.808	-0.50 -0.50	0.315 0.314	34.655 34.654	0.315 0.314
18.8617	-0.51	0.314	34.652	0.314
19.9777	-0.52	0.304	34.644	0.304
21.1598	-0.52 -0.51	0.302	34.642 34.648	0.302
23.7385	-0.51	0.306	34.646	0.306
25.1435	-0.52	0.302	34.642	0.302

MACTEC Job Name: North Anna ESP	MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina Slug Test Data Sheet MACTEC Job Number: 30720-2-5400
Date: 13/10 Time: \310	Observation Well No.: en -848
Weather Conditions: Rang & vine 30's	
Method of Slug water, meehanical Withdrawl (circle one): pressure	Falling Head (circle)
Diameter of Screen:	Diameter of Casing: 2 in.
Total Well 49.87 ft below reference point Depth:	of casing
Length of 5 c + ft	Depth interval of screened 422-47.1
Screened Section:	portion:
Depth to Groundwater: 12.65 ft below	
Groundwater Measurements Collected Prio	r <u>Comments/Remarks</u>
to Slug Test Depth to Groundwater Date	- Used Stup# 2 > value = 0.08 ft3
41.79 12/10/02 43:02 11/06/05	Transles Sin = 6407 Horang Sin = 45279
	Hroma sin = 45279
_\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

Set toms low to use below Too 198 - 12 months 21 was any storme

1 21 1 3 m

Well:

OW-848 12/13/2002

WELL DATA

Test Date:

Recovery (slug in)

Test Type:

CALCULATION OF K

Conducted by: Entered/date:

Grimes and Howe

12/15/02

Checked/date: BWJmes 12/20/02

TEST DATA

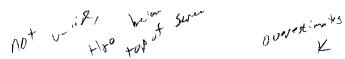
SWL	42.65	(ft BTOC)
WD:	= 48.87	(ft BTOC)
WD:	47.37	(ft BGS)
DTSP :	= 39.10	(ft BGS)
rc :	= 0.08	(ft)
n :	= 0.30	
rw =	= 0.33	(ft)
rc (adjusted) =	0.19	(ft)
Le :	5.02	(ft)
Lw =	6.22	(ft)
Le/rw =	= 15.21	
Н =	= 50.00	(ft)

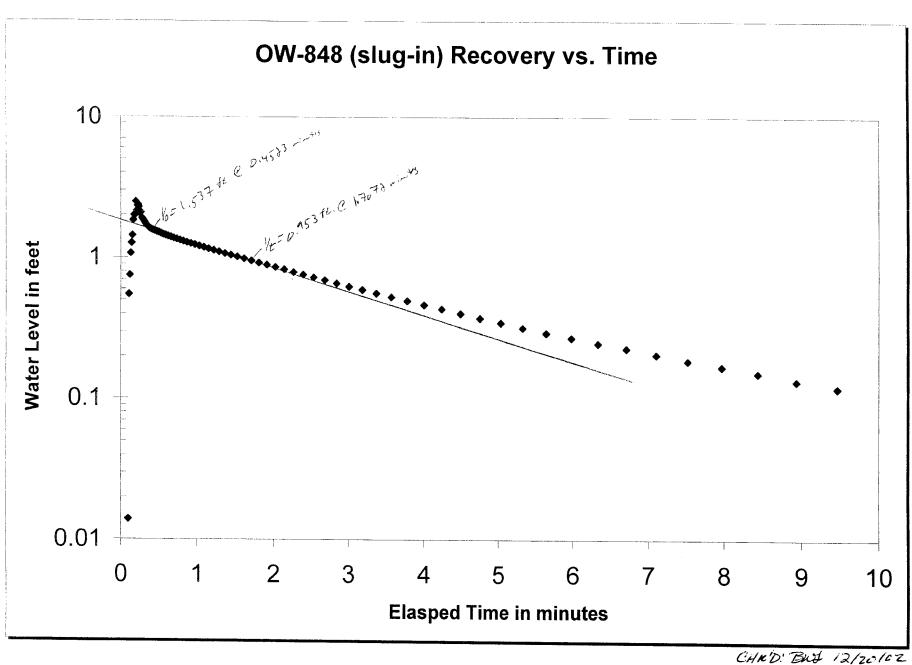
: [(rc^2 in(Re/i		•
yo =		(ft) from plot
yt =		(ft) from plot
t =	1.255	(minutes) from plot
n(Re/rw) ⇒	1.67	
К =	3.4E+00	(ft/day)
K =	1.2E-03	(cm/sec)

Calculation	of	In(Re/rw)
-------------	----	-----------

Where: Lw < H;	
$ln(Re/rw) = [\{1.1/(ln(Lw/rw))\}+\{A+Bln((H-Lw)/rw)\}/(Le/rw)]^-1=$	1.67
Where: Lw = H;	Ì
In(Re/rw) = [(1.1/{In(Lw/rw))}+{C/(Le/rw)}]^-1 =	2.13

Calculation of Coefficients


value range	e for Le/rw fron	n Table of Coel	ricients
Le/rw	Α	В	C
15	2.1	0.27	1.5
25	2.4	0.31	1.9


Interpola	ted values of A	, B and C for Le/rw	
15.21	2.11	0.27	1.51

Coefficients Table

Le/rw_	A	Le/rw	В	_Le/rw	C.
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25	. 8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Elapsed time (min)	Log y	y (ft)	(ft BTOC)	Data Logge results
0	#NUM!	0	42.65	0
0.011	-3.00	0.001	42.649	0.001
0.022	-2.52	0.003	42.647	0.003
0.033	-3.00	0.001	42.649	0.001
0.044	-3.00	0.001	42.649	0.001
0.055	#NUM!	0	42.65	0
0.066	-2.52	0.003	42.647	0.003
0.077	-3.00	0.001	42.649	0.001
0.088	-3.00	0.001	42.649	0.001
0.099	-1.85 -0.26	0.014	42.636	-0.014
0.11 0.121	-0.12	0.752	42.1 41.898	-0.55 -0.752
0.132	0.03	1.073	41.577	-1.073
0.143	0.10	1.261	41.389	-1.261
0.154	0.16	1,429	41.221	-1.429
0.165	0.26	1.831	40.819	-1.831
0.176	0.30	1.991	40.659	-1.991
0.187	0.30	1.995	40.655	-1.995
0.198	0.39	2.48	40.17	-2.48
0.209	0.33	2.128	40.522	-2.128
0.22	0.37	2.318	40.332	-2.318
0.231	0.37	2.358	40.292	-2.358
0.2427	0.36	2,266	40.384	-2.266
0.2552	0.31	2.042	40.608	-2.042
0.2683	0.32	2.078	40.572	-2.078
0.2823	0.28	1.893	40.757	-1.893
0.2972	0.26	1.837	40.813	-1,837
0.3128	0.25	1.778	40.872	-1.778
0.3295	0.24	1.718	40.932	-1.718
0.3472	0.22	1.672	40.978	-1.672
0.3658 0.3857	0.21	1.633	41.017 41.047	-1.633
	0.20	1.603		-1.603 -1.577
0.4067 0.4288	0.20	1.577	41.073 41.093	-1.557
0.4523	0.19	1.537	41.113	-1.537
0.4772	0.18	1.518	41.132	<u>-1.518</u>
0.5035	0.18	1.508	41.142	-1.508
0.5315	0.17	1.478	41.172	-1.478
0.5612	0.16	1.457	41.193	-1.457
0.5925	0.16	1.437	41.213	-1.437
0.6257	0.15	1.414	41.236	-1.414
0.6608	0.14	1.392	41.258	-1.392
0.6982	0.14	1.372	41.278	-1.372
0.7377	0.13	1.349	41.301	-1.349
0.7795	0.12	1.329	41.321	-1.329
0.8238	0.12	1.304	41.346	-1.304
0.8708	0.11	1.28	41.37	-1.28
0.9207	0.10	1.257	41.393	-1.257
0.9733	0.09	1.233	41.417	-1.233
1.0292	0.08	1.208	41.442	-1.208
1.0883	0.07	1.182 1.155	41.468	-1.182
1.151	0.06	1.128	41.495	<u>-1.155</u>
			41.522	-1.128
1.2877	0.04	1.101	41.549 41.577	-1.101 -1.073
1.4412	0.02	1.043	41.607	-1.043
1.5248	0.01	1.013	41.637	-1.013
1.6133	-0.01	0.984	41.666	-0.984
1.7072	-0.02	0.953	41.697	-0.953
1.8065	-0.04	0.921	41.729	-0.921
1.9118	-0.05	0.89	41.76	-0.89
2.0233	-0.07	0.858	41.792	-0.858
2.1415	-0.08	0.827	41.823	-0.827
2.2667	-0.10	0.792	41.858	-0.792
2.3992	-0.12	0.761	41.889	-0.761
2.5397	-0.14	0.728	41.922	-0.728
2.6885	-0.16	0.695	41.955	-0.695
2.846	-0.18	0.659	41.991	-0.659
3.0128	-0.20	0.626	42.024	-0.626
3.1897 3.377	-0.23 -0.25	0.593	42.057	-0.593 -0.56
3.5753	-0.28	0.56	42.09	-0.56
3.7855	-0.28	0.527 0.495	42.123 42.155	-0.527 -0.495
4.0082	-0.33	0.463	42.187	-0.463
4.244	-0.36	0.433	42.217	-0.433
4.4938	-0.39	0.403	42.247	-0.403
4.7585	-0.43	0.374	42.276	-0.374
5.0388	-0.46	0.347	42.303	-0.347
5.3357	-0.49	0.32	42.33	-0.32
5.6502	-0.53	0.294	42.356	-0.294
5.9833	-0.57	0.271	42.379	-0.271
6.3362	-0.61	0.247	42.403	-0.247
6.71	-0.64	0.227	42,423	-0.227
7.106	-0.69	0.205	42.445	-0.205
7.5253	-0.73	0.185	42.465	-0.185
7.9697	-0.77	0.168	42.482	-0.168
8.4403	-0.82	0.151	42.499	-0.151
8.9388	-0.88	0.133	42.517	-0.133
		U UU		500
9.4668	-0.92	0.119	42.531	-0.119

Slug-out

MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina

Slug Test Data Sh	neet
MACTEC Job Name: North Anna ESP MACTEC Job Number: 30'	<u>720-2-5400</u>
Date: 1011 600 141762 1415 1345 Observation Well No.: 0-	848
Weather Conditions:	
Michiga of Stag	Head or
The state of the s	g Head
(circle)	
Diameter of Sereen.	n.
Total Well (887-ft below reference point Reference Point: Permanent m	ark on top
Depth: of casing	5
Length of Sub-ft Depth interval of screened White-W	₹3.4 t
Screened Section: portion:	
Depth to Groundwater: 211.65 ft below reference point	
Groundwater Measurements Collected Prior Comments/Remarks	
to Slug Test	
Depth to Groundwater Date	on a service of
1 (0°, 0°) (1°) (1°) (1°) (1°)	
43-00+ 14,0000 Transacco SM -> 2	(40=
Florent M. 7 1/1	C. 199
F feem f - Not - 1	

Well: Test Date: OW-848

Test Type:

12/13/2002 Recovery (slug out)

0.30

WELL DATA

SWL =

WD =

DTSP = rc = n =

CALCULATION OF K

42.65 (ft BTOC) 48.87 (ft BTOC) 47.37 (ft BGS) 39.10 (ft BGS) 0.08 (ft)

0.33 (ft) 0.19 (ft) rw = rc (adjusted) =

> Le = 5.02 (ft) Lw = 6.22 (ft) 15.21 H=

 $K = [(rc^2 ln(Re/rw))/2Le]*(1/t)ln(yo/yt)$ 1.229 (ft) from plot 0.785 (ft) from plot vo = 1.426 (minutes) from plot 1.67 In(Re/rw) = 2.8E+00 (ft/day)

9.9E-04 (cm/sec)

Calculation of In(Re/rw)

Where: Lw < H;

 $ln(Re/rw) = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + \{A + Bln((H-Lw)/rw)\}/(Le/rw)]^{-1} = [\{1.1/(ln(Lw/rw))\} + [Alw + Bln((H-Lw)/rw)] + [Alw +$ 1.67

Where: Lw = H;

in(Re/rw) = [{1.1/(ln(Lw/rw))}+{C/(Le/rw)}}^-1 =

Calculation of Coefficients

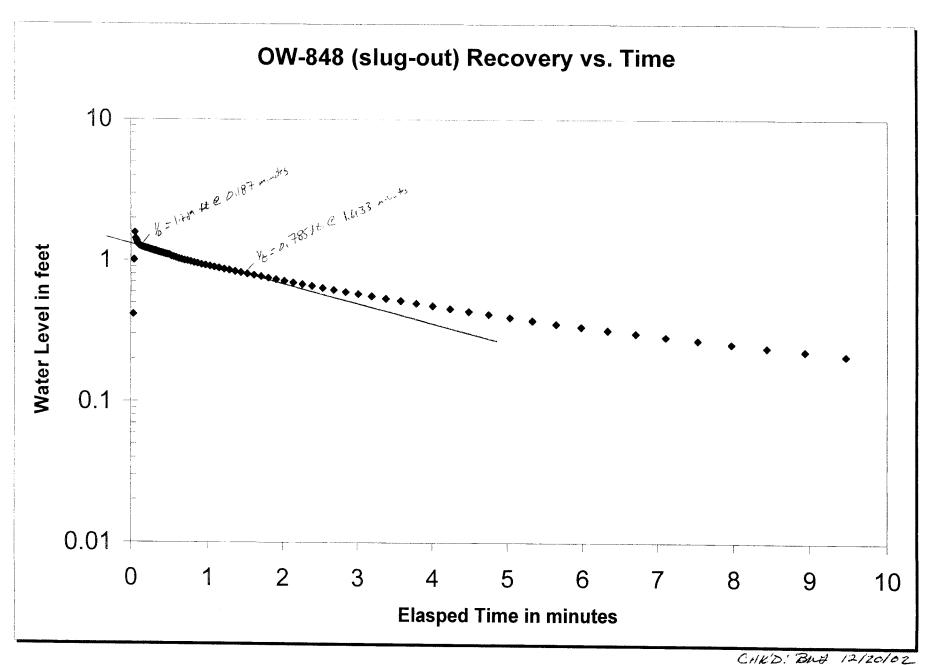
	Value range for Le/rw from Table of Coefficients						
[Le/rw	Α	В	C			
[15	2.1	0.27	1.5			
ſ	25	24	0.31	19			

Interpolated values of A, B and C for Le/rw 15.21 2.11 0.27

Coefficients Table

Le/rw	Α	Le/rw	В	Le/rw	C
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25	8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Reference: Bouwer(1989), Bouwer and Rice(1976)


Conducted by: Entered/date:

Grimes and Howe

12/15/02 Checked/date:

Brimes 12/20/02 TEST DATA

Elapsed time (min)	Log y	y (ft)	WL (ft.BTQC)	Data Logge results
0	#NUM!	0	42.65	0
0.011	-3.00 -2.52	0.001	42.651 42.653	0.001
0.022	-0.38	0.415	43.065	0.003 0.415
0.044	0.00	1.01	43.66	1.01
0.055	0.20	1.582	44.232	1.582
0.066	0.16	1.433	44.083	1.433
0.077	0.14	1.38	44.03	1.38
0.088	0.12	1.33	43.98	1.33
0.099	0.11	1.3	43.95	1.3
0.11	0.11	1.28	43.93	1.28
0.121	0.10	1.268	43.918	1.268
0.132 0.143	0.10	1.258	43.908 43.904	1.258 1.254
0.154	0.10	1.245	43.895	1.245
0.165	0.09	1.239	43.889	1.239
0.176	0.09	1.232	43.882	1.232
0.187	0.09	1,229	43.879	1.229
0.198	0.09	1.221	43.871	1.221
0.209	0.09	1.219	43.869	1.219 1.212
0.22	0.08	1.212	43.862	1.212
0.231	0.08	1.209	43.859	1.209
0.2427 0.2552	0.08	1,201 1,194	43.851 43.844	1.201 1.194
0.2683	0.08	1.189	43.839	1.189
0.2823	0.07	1.182	43.832	1.182
0.2972	0.07	1.176	43.826	1.176
0.3128	0.07	1.168	43.818	1.168
0.3295	0.07	1.165	43.815	1.165
0.3472	0.06	1.155	43.805	1.155
0.3658	0.06	1.145	43.795	1.145
0.3857 0.4067	0.06	1.136 1.129	43.786 43.779	1.136 1.129
0.4288	0.05	1,118	43.768	1.118
0.4523	0.05	1.11	43.76	1.11
0.4772	0.04	1.1	43.75	1.1
0.5035	0.04	1.096	43.746	1.096
0.5315	0.03	1.07	43.72	1.07
0.5612	0.02	1.057	43.707	1.057
0.5925	0.02	1,043	43.693	1.043
0.6257	0.01	1.029	43.679	1.029
0.6608	0.01	1.017	43.667 43.651	1.017
0.0362	0.00	0.993	43.643	0.993
0.7795	-0.01	0.98	43.63	0.98
0.8238	-0.02	0.963	43.613	0.963
0.8708	-0.02	0.951	43.601	0.951
0.9207	-0.03	0.935	43.585	0.935
0.9733	-0.03	0.924	43.574	0.924
1.0292	-0.04	0.911	43.561	0.911
1.0883	-0.05 -0.06	0.895	43.545	0.895
1.2173	-0.06	0.881 0.865	43.531 43.515	0.881 0.865
1.2877	-0.07	0.851	43.501	0.851
1.3622	-0.08	0.835	43.485	0.835
1.4412	-0.09	0.819	43.469	0.819
1.5248	-0.10	0.802	43.452	0.802
1.6133	-0.11	0.785	43.435	0.785
1.7072	-0.11	0.769	43.419	0.769
1.8065	-0.12	0.75	43.4	0.75
1.9118	-0.13 -0.15	0.733	43.383	0.733 0.714
2.0233 2.1415	-0.15	0.714	43.364 43.346	0.696
2.2667	-0.17	0.677	43.327	0.677
2.3992	-0.18	0.659	43.309	0.659
2.5397	-0.20	0.637	43.287	0.637
2.6885	-0.21	0.618	43.268	0.618
2.846	-0.22	0.597	43.247	0.597
3.0128	-0.24	0.578	43.228	0.578
3.1897	-0.25	0.557	43.207	0.557
3.377	-0.27	0.535	43.185	0.535
3.5753 3.7855	-0.29 -0.31	0.516 0.495	43.166 43.145	0.516 0.495
4.0082	-0.32	0.495	43.125	0.495
4.244	-0.32	0.453	43.123	0.453
4.4938	-0.36	0.433	43.083	0.433
4.7585	-0.38	0.413	43.063	0.413
5.0388	-0.41	0.393	43.043	0.393
5.3357	-0.43	0.374	43.024	0.374
5.6502	-0.45	0.354	43.004	0.354
5.9833	-0.47	0.337	42.987	0.337
6.3362	-0.50	0.319	42.969	0.319
6.71	-0.52	0.303	42.953	0.303
	-0.54	0.286	42.936	0.286
7.106		0.27	42.92	0.27
7.5253	-0.57			0.255
7.5253 7.9697	-0.59	0.255	42.905	0.255
7.5253				0.255 0.24 0.227

444	MACTEC Engineering and Consulting
	3301 Atlantic Avenue
	Raleigh, North Carolina
MACTEC	
	Slug Test Data Sheet
MACTEC Job Name: North Anna ESP	MACTEC Job Number: 30720-2-5400
Date: 17/13/67 Time: 0915	Observation Well No.: 0w-849
Weather Conditions: clarky in apr 30.5	
Method of Slug water, mechanical, or	Test Method: Rising Head or
Withdrawl (circle one): pressure	Falling Head
Wallani (on one odo). Prosouro	(circle)
Diameter of Screen: \rightarrow in. Dia	meter of Casing: in.
	Reference Point: Permanent mark on top
Depth:	of casing
Length of 17 ft De	oth interval of screened 37.6-47.3ft
	tion:
Depth to Groundwater: 33.13 ft below refe	erence point
Groundwater Measurements Collected Prior	Comments/Remarks
to Slug Test	
Depth to Groundwater Date	1500 5lug # 2 3 where: 058. +3
33.15 17/1/LD	
	Trusher sun - but 7
	1.5-1416
	Hamit SM > 45449
	·
	~ .
syt Townselves & 45' below	TOL wije

OW-849

Test Date: Test Type: 12/13/2002 Recovery (slug in) Conducted by: Entered/date: Checked/date:

Grimes and Howe

12/15/02

Bhitares 12/20/02

WELL DATA

CALCULA	TION	OF	K
---------	------	----	---

 $K = [(rc^2 ln(Re/rw))/2Le]^*(1/t)ln(yo/yt)$ 1.493 (ft) from plot 0.542 (ft) from plot 0.588 (minutes) from plot yt = t = In(Re/rw) = 2.44

2.0E+00 (ft/day)

7.0E-04 (cm/sec)

TEST DATA

SWL =	33.13	(ft BTOC)
WD =	51.30	(ft BTOC)
WD =	49.80	(ft BGS)
DTSP =	35.60	(ft BGS)
rc =	0.08	(ft)
n≖	0.30	
rw =	0.33	(ft)
rc (adjusted) =	0.08	(ft)
Le =	9.7	(ft)
Lw =	18.17	(ft)
Le/rw =	29.39	
H =	50.00	(ft)

Calculation of In(Re/rw)

 $ln(Re/rw) = [{1.1/(ln(Lw/rw))}+{A+Bln((H-Lw)/rw)}/(Le/rw)]^-1=$

Where: Lw = H;

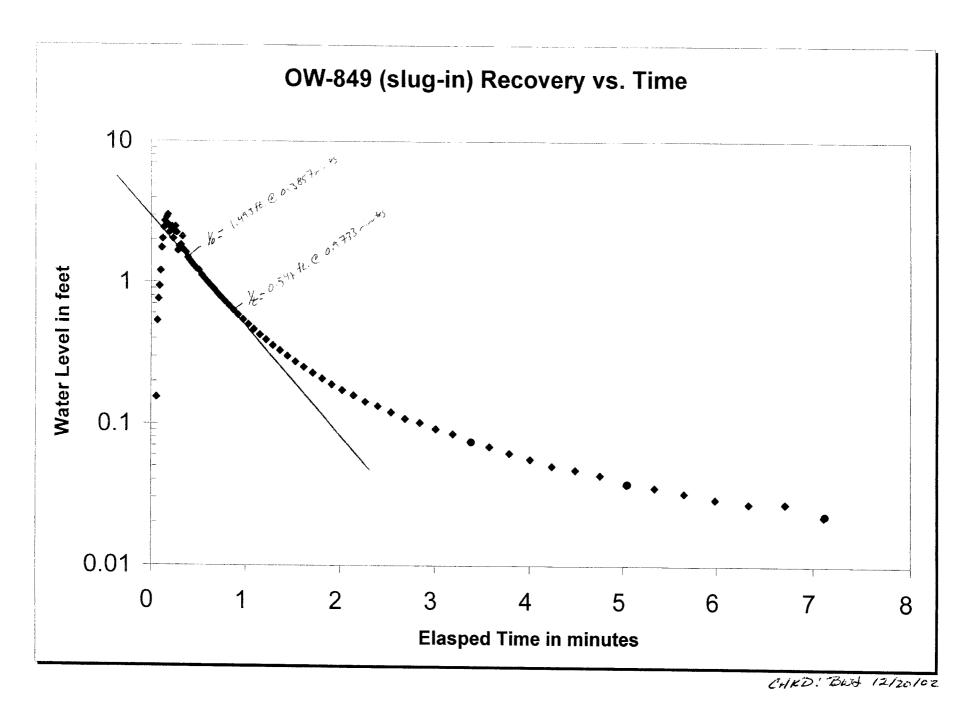
Where: Lw < H;

ln(Re/rw) = [{1.1/(ln(Lw/rw))}+{C/(Le/rw)}]^-1 =

2.94

2.44

Calculation of Coefficients


 Value range for Le/rw from Table of Coefficients						
Le/rw	Α	В	C			
25	2.4	0.31	1.9			
30	2.5	0.35	2.1			

Interpolated values of A, B and C for Le/rw 29.39 2.49 0.35 2.08

Coefficients Table

Le/rw	A	Le/rw	В	Le/rw	C
4	1.75	4	0.25	4	0.75
5	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25		1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40_	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Elapsed time	Log y	у	WL	Data Logge
(min) 0	#NUM!	(ft)	(ft BTOC)	results
0.011	-3.00	0.001	33.13 33.129	0 001
0.022	#NUM!	0.001	33.13	0.001
0.033	-3.00	0.001	33.129	0.001
0.044	-2.52	0.003	33.127	0.003
0.055	-0.81	0.155	32.975	-0.155
0.066	-0.27	0.533	32.597	-0.533
0.077	-0.12	0.759	32.371	-0.759
0.088	-0.03	0.935	32.195	-0.935
0.099	80.0	1.205	31.925	-1.205
0.11	0.24	1.757	31.373	-1.757
0.121	0.31	2.039	31.091	-2.039
0.132	0.39	2.449	30.681	-2.449
0.143	0.43	2.72	30.41	-2.72
0,154	0.40	2.517	30.613	-2.517
0.165 0.176	0.46 0.48	2.903 3.028	30.227 30.102	-2.903 -3.028
0.176	0.41	2.546	30.584	-2.546
0.198	0.36	2.281	30.849	-2.281
0.209	0.39	2.436	30.694	-2.436
0.22	0.39	2.483	30.647	-2.483
0.231	0.31	2.042	31.088	-2.042
0.2427	0.36	2.307	30.823	-2.307
0.2552	0.40	2.49	30.64	-2.49
0.2683	0.35	2.249	30.881	-2.249
0.2823	0.22	1.674	31.456	-1.674
0.2972	0.25	1.798	31.332	-1.798
0.3128	0.26	1.837	31.293	-1.837
0.3295	0.32	2.113	31.017	-2.113
0.3472	0.22	1.674	31.456	-1.674
0.3658	0.21	1.628	31.502	-1.628
0.3857	0.17	1.493	31.637	-1.493
0.4067 0.4288	0.15 0.14	1.425	31.705 31.765	-1.425 -1.365
0.4288	0.14	1.365 1.304	31.765	
0.4772	0.10	1.245	31.885	-1.304 -1.245
0.5035	0.08	1.214	31.916	-1.214
0.5315	0.05	1.12	32.01	-1.12
0.5612	0.03	1.06	32.07	-1.06
0.5925	0.00	1.002	32.128	-1.002
0.6257	-0.02	0.945	32.185	-0.945
0.6608	-0.05	0.892	32.238	-0.892
0.6982	-0.08	0.833	32.297	-0.833
0.7377	-0.11	0.779	32.351	-0.779
0.7795	-0.14	0.729	32.401	-0.729
0.8238 0.8708	-0.17	0.679	32.451 32.499	-0.679
0.9207	-0.20 -0.23	0.631 0.585	32.545	-0.631 -0.585
0.9733	-0.27	0.542	32,588	-0.542
1,0292	-0.30	0.502	32.628	-0.502
1.0883	-0.33	0.464	32.666	-0.464
1.151	-0.37	0.426	32.704	-0.426
1.2173	-0.41	0.393	32.737	-0.393
1.2877	-0.44	0.359	32.771	-0.359
1.3622	-0.48	0.331	32.799	-0.331
1.4412	-0.52	0.303	32.827	-0.303
1.5248	-0.56	0.276	32.854	-0.276
1.6133	-0.60	0.253	32.877	-0.253 -0.23
1.7072 1.8065	-0.64 -0.68	0.23 0.21	32.9 32.92	-0.23
1.9118	-0.72	0.191	32.939	-0.191
2.0233	-0.76	0.174	32.956	-0.174
2.1415	-0.80	0.16	32.97	-0.16
2.2667	-0.84	0.144	32.986	-0.144
2.3992	-0.87	0.134	32.996	-0.134
2.5397	-0.92	0.121	33.009	-0.121
2.6885	-0.96	0.109	33.021	-0.109
2.846	-0.99	0.102	33.028	-0.102
3.0128	-1.04	0.092	33.038	-0.092
3.1897	-1.07	0.085	33.045	-0.085
3.377	-1.12	0.075	33.055	-0.075
3.5753	-1.16 -1.21	0.069	33.061	-0.069 -0.063
3.7855 4.0082	-1.25	0.062	33.068 33.074	-0.062 -0.056
4.0082		0.05	33.074	-0.05
4.4938	-1.30 -1.33	0.05	33.08	-0.047
4.4936	-1.37	0.047	33.087	-0.047
5.0388	-1.43	0.037	33.093	-0.043
5.3357	-1.46	0.037	33,095	-0.035
5.6502	-1.49	0.033	33.098	-0.032
5.9833	-1.49	0.032	33.098	-0.032
6.3362	-1.57	0.029	33.101	-0.029
6.71	-1.57	0.027	33.103	-0.027
7.106	-1.66	0.027	33,108	-0.027
7.100	-1,00	V.UZZ	99,100	-0.022

MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina

سنؤس

	Slug Test Data Sheet
MACTEC Job Name: North Anna ESP	MACTEC Job Number: 30720-2-5400
Date: 11-113102 Time: 25 35	Observation Well No.: りんが9
Weather Conditions: and your 303	
Method of Slug water, mechanical,	
Withdrawl (circle one): pressure	Falling Head
	(circle)
	Diameter of Casing: <u>3 in.</u>
Total Well $5/3c$ ft below reference point	Reference Point: Permanent mark on top
Depth:	of casing
	Depth interval of screened 3 <u>코스 박카크 ft</u>
	portion:
Depth to Groundwater: 33(13 ft below	reference point
Groundwater Measurements Collected Prior	Comments/Remarks
to Slug Test	
Depth to Groundwater Date	- Lord Sty #4 - Volume =0.08123
33.15 12/11/02	
	- thompsien shy as 6000
	- 1600 + 5/4 = U5444
	- which is the second
	<u> </u>
	_
	_

we fallitan Stay at 49th on 1813 kg AND - 8 1516. WAN SIG # 1 = W/cm = 0.03 1 13 Translaw 5m > 6-167 Front 314 3 75 49

Justine & 45 / Low TOK

Dagar to week 33.06

2.5.4B-168

Well:

OW-849

WELL DATA

Test Date:

12/13/2002

Test Type:

Recovery (slug out)

Checked/date:

Conducted by: Grimes and Howe

Entered/date: 12/15/

12/15/02 Butter = 12/20/02

TEST DATA

	SWL =	33.06	(ft BTOC)
	WD =	51.30	(ft BTOC)
	WD≕	49.80	(ft BGS)
	DTSP =	35.60	(ft BGS)
	rc =	0.08	(ft)
ĺ	n =	0.30	
	rw =	0.33	(ft)
	rc (adjusted) =	0.08	(ft)
İ			
	Le =	9.7	(ft)
	Lw =	18.24	(ft)
	Le/rw =	29.39	
	L1 _	E0.00	(44)

	K = [(rc^2 ln(Re/n	w))/2Le]*(1/t)ln(yo/yt)
	yo =	2.895 (ft) from plot
	yt =	1.695 (ft) from plot
	t =	0.194 (minutes) from plot
	In(Re/rw) =	2.44
i	, ,	
	K =	3.2E+00 (ft/day)
i		, ,,,,
	K≖	1.1E-03 (cm/sec)

CALCULATION OF K

Calculation of In(I

Where: Lw < H;	
$ln(Re/rw) = [{1.1/(ln(Lw/rw))}+{A+Bln((H-Lw)/rw)}/(Le/rw)}^-1=$	2.44
Where: Lw = H;	
!n(Re/rw) = [{1.1/(ln(Lw/rw))}+{C/(Le/rw)}]^-1 =	2.94

Calculation of Coefficients


Le/rw	A	B	C
25	2.4	0.31	1.9
30	2.5	0.35	2.1

interpola	ted values of A.	, B and C for L	.e/rv
29.39	2.49	0.35	2.08

Coefficients Table

Le/rw	Α	Le/rw	B	Le/rw	C
4	1.75	4	0.25	4	0.75
5_	1.76	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25	- 8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	25	0.31	25	1.90
30	2.50	30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	60	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.65	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9.90
500	8.20	500	2.20	500	10.60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11.50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3.18	1500	12.90

Elapsed time	Log y	y (#1)	WL (#.DTOC)	Data Logo
(min) 0	#NUM!	(ft) 0	(ft BTOC) 33.06	results 0
0.011	-0.52	0.303	33.363	0.303
0.022	-0.14	0.722	33.782	0.722
0.033	0.17	1.491	34.551	1.491
0.044	0.32	2.08	35.14	2.08
0.055	0.47	2.964	36.024	2.964
0.066	0.50	3.153	36.213	3.153
0.077	0.48	3.015	36.075	3.015
0.088	0.46	2.895	35.955	2.895
0.099	0.44	2.784	35.844	2.784
0.11 0.121	0.43 0.41	2.692	35.752	2.692
0.132	0.40	2.59 2.512	35.65 35.572	2.59 2.512
0.143	0.39	2.429	35.489	2.429
0.154	0.37	2.354	35.414	2.354
0.165	0.36	2.283	35.343	2.283
0.176	0.35	2.218	35.278	2.218
0.187	0.33	2.15	35.21	2.15
0.198	0.32	2.083	35.143	2.083
0.209	0.31	2.027	35.087	2.027
0.22	0.29	1.968	35.028	1.968
0.231	0.28	1.916	34.976	1.916
0.2427	0.27	1.862	34.922	1.862
0.2552	0.26 0.24	1.804 1.749	34.864	1.804
0.2683	0.24	1.695	34.809 34.755	1.749
0.2972	0.22	1.643	34.703	1.643
0.3128	0.20	1.583	34.643	1.583
0.3295	0.18	1.525	34.585	1.525
0.3472	0.17	1.466	34.526	1.466
0.3658	0.15	1.412	34.472	1.412
0.3857	0.13	1.359	34.419	1.359
0.4067	0.11	1.298	34.358	1.298
0.4288	0.10	1.245	34.305	1.245
0.4523	0.07	1.182	34.242	1.182
0.4772	0.05	1.118	34.178	1.118
0.5035	0.04	1.09	34.15	1.09
0.5315	0.00	1.006	34.066	1.006
0.5612	-0.02	0.96	34.02	0.96
0.5925 0.6257	-0.04 -0.07	0.907 0.854	33.967 33.914	0.907 0.854
0.6608	-0.10	0.801	33.861	0.801
0.6982	-0.12	0.752	33.812	0.752
0.7377	-0.15	0.702	33.762	0.702
0.7795	-0.18	0.656	33.716	0.656
0.8238	-0.21	0.611	33.671	0.611
0.8708	-0.24	0.569	33.629	0.569
0.9207	-0.28	0.529	33.589	0.529
0.9733	-0.31	0.489	33.549	0.489
1.0292	-0.34	0.453	33.513	0.453
1.0883	-0.38	0.42	33.48	0.42
1.151 1.2173	-0.41 -0.45	0.387	33.447 33.417	0.387
1.2173	-0.45 -0.48	0.357 0.328	33.417	0.357
1.3622	-0.48	0.328	33.363	0.328
1.4412	-0.55	0.279	33.339	0.279
1.5248	-0.60	0.254	33.314	0.254
1.6133	-0.63	0.234	33.294	0.234
1.7072	-0.67	0.216	33.276	0.216
1.8065	-0.70	0.198	33.258	0.198
1.9118	-0.74	0.18	33.24	0.18
2.0233	-0.78	0.165	33.225	0.165
2.1415	-0.82	0.152	33.212	0.152
2,2667	-0.86	0.139	33.199	0.139
2.3992	-0.89	0.128	33.188	0.128
2.5397 2.6885	-0.94	0.116	33.176	0.116
2.846	-0.98 -1.02	0.105	33.165	0.105
3.0128	-1.02	0.096	33.156 33.149	0.096
3.1897	-1.09	0.089	33.149	0.081
3.377	-1.14	0.001	33.132	0.072
3.5753	-1.18	0.066	33.126	0.066
3.7855	-1.23	0.059	33.119	0.059

CHR'D: BNJ 12/20102

a	LAW	7		JOB NO	35776-7	- 5400 SHEET_	
	RESOURCES C	REATING SOLUTION	ONS	PHASE		TASK	
LAW Engineering and Environmental Services, Inc.				JOB NAI	ME NORTH AN	UNA ESP P	Zatet
5710 Olean	nder Drive				BNI		12/18/02
Suite 110 Wilmingto	on, NC 28403			l l	DBY OLF	_	12/20/02
:		STERN	SAUGAT VCD	<u> </u>		DAIL	100
WELL:	OW - 841	(SLUG OUT)) SHEET VER	IFICATION.	(A) (7) (5254)	BY! GRIM	an 5 1/200
	21 12/13				ENTERED/D		15/02
TEST TYP	E: RECO	jery (sc	06 001)				
DATA	COLLECTES	USING	HERMIT	3000			
MANUD	CALCS TO	YERLEY	SPREAD .	sheet to	memore A	<i>-</i>	
SPREA	Brieez a	1365 Bo	WELL PRICE	EMETHO	カ		
			•				
L/ru	VALUES	Fare A, E	P.C.OB	THINED F	Frem SPA.	end sheet	CARCS
					- - -		
Wece Sul-		TO C)			(T) IN (R.	·/c/s))/ 1)	(IN Yo)
WD =				((1) K =	2 4	(+)	7+/
1	34,30' (Z	•					j.
	20,10' (BC			IN (7.	· //-w) = 2	170 (Freen 5)	PREADSHERT)
N =		wree,			THAC'S NEXT	TPAGE	
			l ,		1	;	·
RC (AD) =	0.33 (174	DIOS OF BURGO	nehae)	***		· :	
			i !		•	:	
	9.7 (Leik. 0)				The first see an experience of the control of the c	:	
Le/rw = 2	33.35' (WD	- 5WL)	•	The second secon		i	
<i> </i>	O CEST, AC	DO. FER THICH	nes5.)	-	į	t	
<i>+ :</i>	0,7377 - 0,	198 (MINUTES) =	0.5397 (From Compl	ITER GRAPH	<u>} </u>	
) //	0.006444	2.7	/ . 2.1	8 \ 2 2		2 10	COMPUTER
/ K = (19.41	0, \$	54m 2 8	[9]	Y Y	- 2/18	COMPUTER FROM GRAPIL TEST FIT LINE
					/		
14 = 13	0,000 89 ++	10,9100	3/0	<u> </u>	-		
	32,4 32	6	e Te ge		:		
					_ < ^		
C = 2	2,66 × 10-5	++/382 VI	30.48 am/f+	2.66	×10-5	H1/5	
16= 2	-129 ft/d	The state of the s	errores - topographic - control state - exception and control state - exception - exceptio	229	fuld -		
			 			1	i
K= 8	ZE -04 6	m/sec	1	8.2 x	10-4 Cm	15	
	The state of the s	İ				i vi	2.5.4B-17

	LAW
6	RESOURCES CREATING SOLUTIONS
LAW Engine	ering and Environmental Services, Ir

LAW Engineering and Environmental Services, Inc. 5710 Oleander Drive Suite 110 Wilmington, NC 28403

JOB NO. <u>30770-2-5400</u>	_ SHEET _ 2 _ OF _ Z
PHASE	TASK
JOB NAME NORTH ANNA	LSP PROLLT
BY BWI	_ DATE _12/18/02_
CHECKED BY	DATE 12/20/02

SPREADSHELT YERFICATION	U CONT	well:	OW - 841 (36	(سینوی
/NI (Re/rw) = [11] + A+BIN[(H-	1	-1 A=	отротер 2.49 6.35	
$= \begin{bmatrix} 1.1 \\ 3.38 \end{bmatrix} + \begin{bmatrix} 2.49 + (0.35 \times 3) \\ 29.39 \end{bmatrix}$	9(2))			
= 0,457				
= 2.189 OR 2.2 COMPUTER IN (Re/rw) = 2.7	> Difference	e (N. Cases	f Comprut	
HAND GENERATED GRAFAI	Bouser & Ri	ce Cureve	(BY HAND)	
10 = 2.16 / 0.209 0.82 mm A = 49.254 B =	= 2.49 = 0.45			
IN (Re/rw) = [3.38 + (2.49 + (0.45 x 3.4)	<u>12)</u>] =	0.47	= 2.128 2.127	
	LN (2:16)			
K = (0,00070202')(0,02033/356)(1.36431)			
= 0.000019467 41/sec = 1,682 +1/d x 30.48 co	¢n/5€ c	0.0000	1947 Ge/	5 V
= 5.93 E-04 cm/sec D.D	066 c	m/sec	<i>\(\begin{aligned} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	
	;	The state of the s	; ;	2.5.4B-

Slug-out

MACTEC Engineering and Consulting 3301 Atlantic Avenue Raleigh, North Carolina

		Slug Test Data Sheet
MACTEC Job Name:	North Anna ESP	MACTEC Job Number: <u>30720-2-5400</u>
Date: 12/13/07	Time: カタ33	Observation Well No.: Ow-841
Weather Conditions:	cloudy in vote 35's	
Method of Slug	water, mechanical	or Test Method: Rising Head or
Withdrawl (circle one):	pressure	Falling Head
		(circle)
		Diameter of Casing: <u>2 in.</u>
Total Well 35.30 ft be	elow reference point	Reference Point: <u>Permanent mark on top</u>
Depth:		<u>of casing</u>
Length of 9.7	<u>ft</u>	Depth interval of screened 34.0-71.70 ft
Screened Section:		portion:
Depth to Groundwater:	2.45 ft below	reference point
Groundwater Measureme	ents Collected Prior	Comments/Remarks
to Slug T	est	
Depth to Groundwater	Date	U540
17110 35 86 2.63	12/10/22	
2.89	12109/07	~ ~
		Transdowr 5/W = 6407 Nove: + 5/N = 45449
		- 45449
		Munit 3/N
		NAMES OF THE PROPERTY OF THE P
		_

Sex transdior @ 20' below TOL

Well: Test Date: Test Type: OW-841 12/13/2002

Recovery (slug out)

CALCULATION OF K

Conducted by: Entered/date: Checked/date: Grimes and Howe 12/15/02

/date: 12/

WELL DATA

SWL =	2.45	(ft BTOC)
WD =	35.80	(fi BTOC)
WD =	34.30	(R BGS)
DTSP =	20.10	(ft BGS)
tC ≖	0.08	(ft)
n≖	0.30	
rw =	0.33	(ft)
rc (adjusted) =	80.0	(ft)
Le =	9.7	(和)
Lw *	33.35	(ft)
Le/rw =	29.39	
H≖	50.00	(ft)

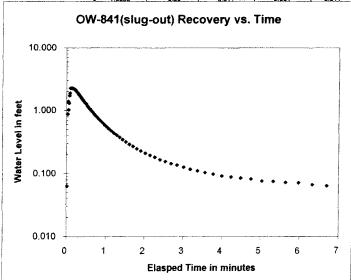
K = {(rc^2 ln(Re/rw))/2	Le]*(1/l)in(yo/y	1)
yo =	2.180	(R) from plot
yt =	0.829	(ft) from plot
t =	0.540	(minutes) from plot
in(Re/rw) =	2.70	
K =	2.3E+00	(ft/day)
K=	8.2E-04	(cm/sec)

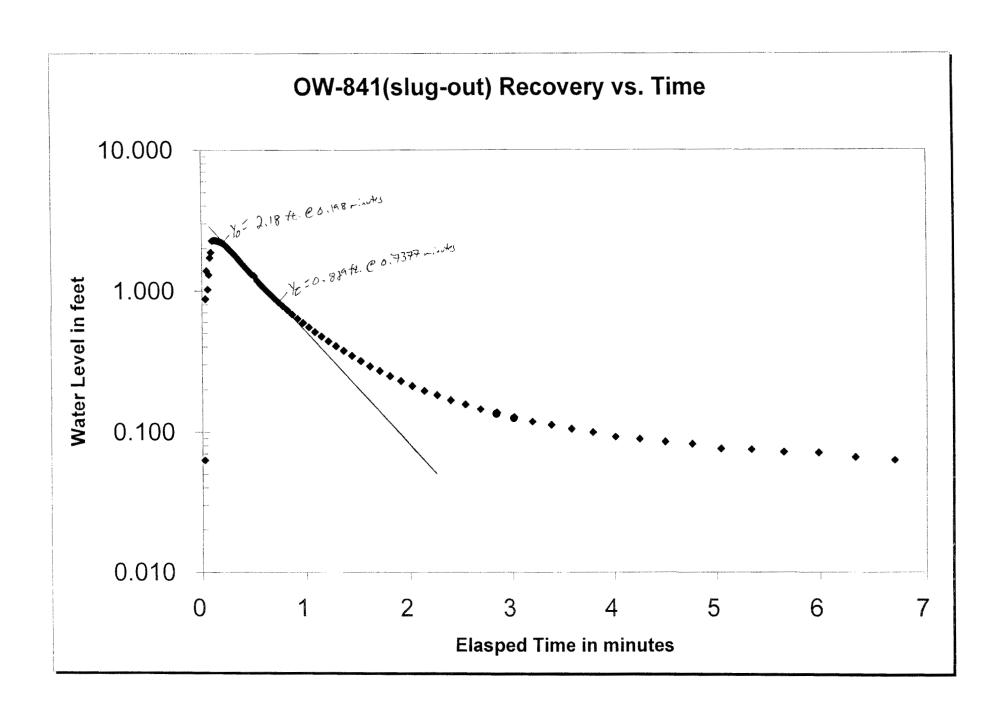
TEST	DATA
------	------

Elepsed time	Log y	y	WL (T 2700)	Data Logg
(min)		(ft)	(ft BTOC)	results
0	#NUM!	0.000	2.45	0
0.011	MUM	6.000	2.45	1 0
0.022	-1.20	0.063	2.513	0.063
0.033	-0.06	0.877	3.327	0.877
0.044	0.14	1.385	3.835	1.385
0.055	0.01	1.024	3.474	1.024
0.066	0.11	1,299	3.749	1.299
0.077	0.23	1.716	4.166	1.716
0.088	0.27	1,870	4.32	1.87
0.099	0.35	2.259	4.709	2.259
0.11	0.36	2.269	4.719	2.269
0.121	0.36	2.280	4.73	2.28
0.132	0.36	2.267	4.717	2.267
0.143	0.35	2.262	4.712	2.262
0.154	0.35	2.249	4.699	2.249
0.165	0.35	2.236	4.686	2.236
0.176	0.35	2.223	4.673	2.223
0.187	0.34	2.206	4.656	2.206
0.198	0.34	2.180	4.63	2.18
0.209	0.33	2.160	4.61	2.16
0.22	0.33	2.128	4.578	2.128
0.231	0,32	2.086	4.536	2.086
0.2427	0.31	2.046	4.496	2.046
0.2552	0.30	1.995	4.445	1.995
0.2683	0.29	1.949	4.399	1.949
0.2823	0.28	1.911	4.361	1.911
0.2972	0.27	1.860	4.31	1.85
0.3128	0.26	1.804	4.254	1.804
0.3295	0.24	1.748	4.196	1.746
0.3472	0.23	1.687	4.137	1.687
0.3658	0.21	1.626	4.076	1.626
0.3857	0,19	1.561	4.011	1.561
0.4067	0.18	1,500	3.95	1.5
0.4288	0.16	1.437	3.887	1.437
0.4523	0.14	1.375	3.825	1.375
0.4772	0.12	1.312	3.762	1.312
0.5035	0.11	1.281	3.731	1.281
0.5315	0.07	1.185	3.635	1,185
0.5612	0.05	1,119	3.589	1.119
0.5925	0.02	1.058	3.508	1.058
0.6257	0.00	0.998	3.448	0.995
0.8608	-0.03	0.942	3.392	0,942
0.6982	-0.05	0.884	3.334	0.884
0.7377	-0.08	0.829	3.279	0.829
0.7795	-0.11	0.780	3.23	0.78
0.8238	-0.14	0.732	3.182	0.732
0.8708	-0.17	0.681	3.131	0.681
0.9207	-0.17	0.836	3.086	0.638
0.9733	-0.23	0.593	3.043	0.593
1.0292	-0.26	0.552	3.002	0.552
1.0883	-0.29	0.552	2.961	0.532

Calculation of in(Re/rw)

Where: Lw < H;	
$ln(Re/nw) = \{\{1.1/(ln(Lw/rw))\}+\{A+Bln((H-Lw)/rw)\}/(Le/rw)\}^{A}-1=$	2.70
Where: Lw = H;	
In(Re/nv) = [[1.1/[In(Lw/nv))]+(C/(Le/nv))]^-1 =	3.23


Calculation of Coefficients


Value range for Le/rw from Table of Coefficients			
Le/rw	Α	В	С
25	2.4	0.31	1.9
30	2.5	0.35	2.1

interpolated	values of A, B and	C for Le/rw	
29.39	2.49	0.35	2.08

Coefficients Table

Le/rw	A	Le/rw	В	Le/rw	С
4	1.75	4	0.25	4	0.75
5	1.78	5	0.25	5	0.85
6	1.77	6	0.25	6	0.90
7	1.80	7	0.25	7	1.00
8	1.83	8	0.25	8	1.10
9	1.90	9	0.25	9	1.20
10	1.95	10	0.25	10	1.30
15	2.10	15	0.27	15	1.50
20	2.23	20	0.29	20	1.75
25	2.40	→ 25	0.31	25	1.90
30	2.50	- 30	0.35	30	2.10
40	2.75	40	0.45	40	2.45
50	3.00	50	0.50	50	2.70
60	3.45	60	0.52	80	3.00
70	3.70	70	0.60	70	3.40
80	3.90	80	0.85	80	3.60
90	4.20	90	0.70	90	3.85
100	4.50	100	0.75	100	4.20
150	5.45	150	0.98	150	5.70
200	6.10	200	1.20	200	7.00
250	6.70	250	1.30	250	8.00
300	7.10	300	1.50	300	8.80
400	7.75	400	1.90	400	9,90
500	8,20	500	2.20	500	10,60
600	8.50	600	2.33	600	11.10
700	8.70	700	2.50	700	11,50
800	8.90	800	2.70	800	11.80
900	9.00	900	2.75	900	12.00
1000	9.20	1000	2.83	1000	12.40
1500	9.50	1500	3,18	1500	12.90

decked by: Sel 12/20/02 11m2 110272

Hydrogeology and Groundwater Modeling

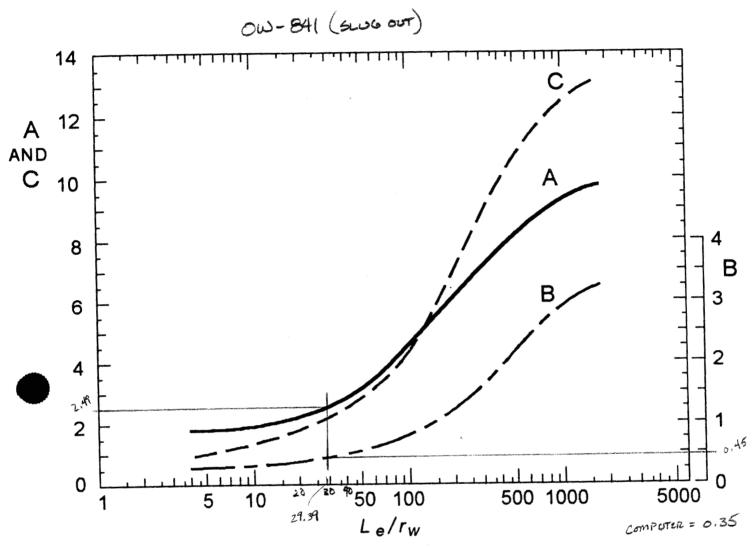
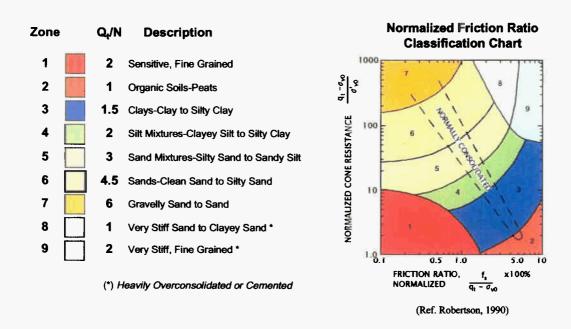


Figure 31.5 Dimensionless parameters A, B, and C as a function of L_e/r_w for calculation of $\ln(R_e/r_w)$ in the Bouwer and Rice slug test. (Bouwer, H., 1989: The Bouwer and Rice slug test. Ground Water, 27(3), p. 304–309. Reprinted by permission of Ground Water Publishing Company. Copyright 1989. All rights reserved.)


HYDRAULIC CONDUCTIVITY

Since time (t) and displacement (s) are the only variables in logarithmic equation), the plot of t versus s on a semi-log paper must show a straight line. However, the drawdown of the water table in the aquifer becomes more significant during atterpart of the test, the basic assumption of equation (31.4) does not hold any more lata points start to deviate from the straight line.

The slope of the best-fitting straight line through field data is found as:

APPENDIX F CONE PENTROMETER TEST RESULTS

CPT Soil Classification Legend

Coefficient of Permeability (cm/s)

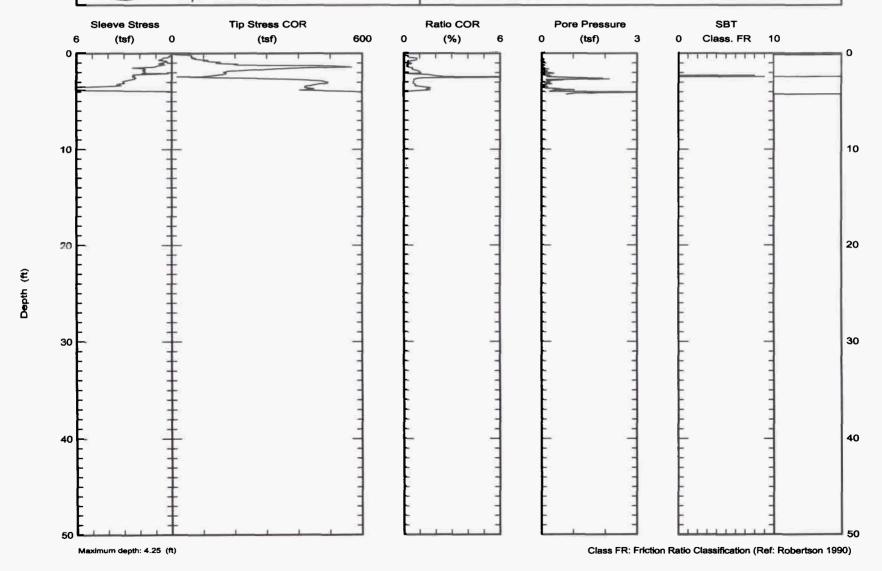
Zone	Description	Permeability
1	Sensitive Fines	10 ⁻⁵
2	Organic Soils-Peats	10 ⁻⁵
3	Clays	10 ⁻⁷
4	Silt Mixtures	10 ⁻⁶
5	Sand Mixtures	10 -4
6	Sands	10 ⁻²
7	Gravelly Sands	10 ⁻¹
8	Very Stiff Sands	10 ⁻⁵
9	Very Stiff Fines	10 ⁻⁶

Applied Research Associates, Inc., South Royalton, Vermont 05068 (802) 763-8348, cpt@ara.com, http://www.ara.com

The classification profiles can be very detailed due to the high spatial resolution afforded by collecting one sample every 2 cm (0.8 in) for CPT profiles. Frequently significant variability in soil types over small changes in elevation can be observed in the profiles. To provide a simplified soil stratigraphy for comparison to standard boring logs, a layering and generalized classification system was implemented. Layer thicknesses are determined based on the variability of the SBT profile. The layer sequence begins at the ground surface and layer thicknesses are determined based upon changes in the standard deviation of the SBT number. Whenever an additional 6-inch increment deviates from the previous increment, a new layer is started, otherwise, this material is added to the layer above and the next 6-inch section is evaluated. The soil type for the layer is determined by the mean value for the complete layer.

The lithology text seen on the plots is determined according to the following conditions:

Mean Value	Abbreviation	Description
1 – 2.25	Sen Clay	Sensitive Clay
>2.25 – 2.75	Soft Clay	Soft Clay
>2.75 – 3.25	Clay	Clay
>3.25 – 3.75	Si Clay	Silty Clay
>3.75 – 4.25	Cl Silt	Clayey Silt
>4.25 – 4.75	Sa Fine Gr	Sand – Fine Grained
>4.75 – 5.75	Sand Mix	Sand Mix
>5.75 – 6.75	Sand	Sand
>6.75 – 7.5	Gr Sand	Gravelly Sand
>7.5 – 8.5	OC	Over Consolidated
>8.5 – 9	OC-Clay	Over Consolidated-Clay

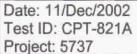


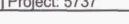
Email: cpt@ned.ara.com http://www.ara.com Northing: 3909965 Easting: 11686353 Elevation: ²⁷¹

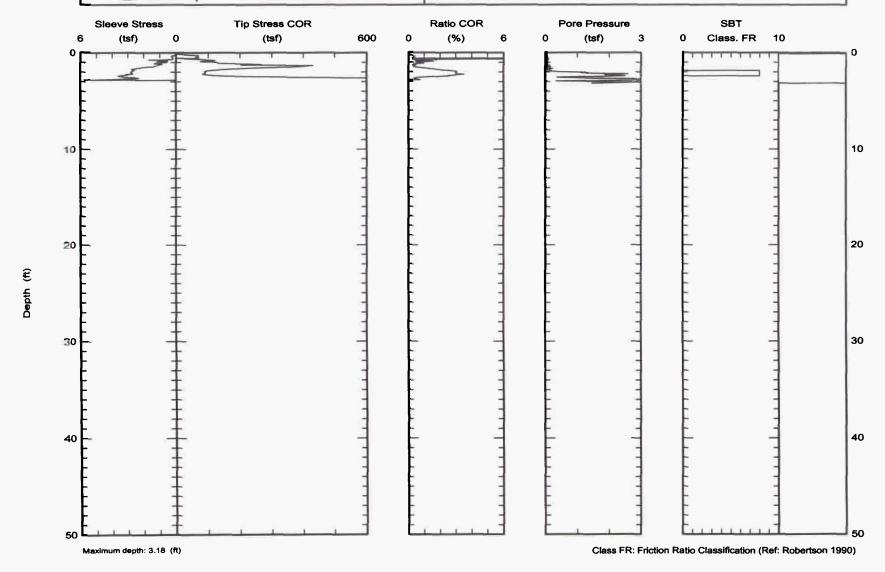
Client: MACTEC

Site: NORTH ANNA ESP

Date: 11/Dec/2002 Test ID: CPT-821 Project: 5737


Applied Research Associates South Royalton, VT 05068


802-763-8348


Email: cpt@ned.ara.com http://www.ara.com

Northing: 3909957 Easting: 11686348 Elevation: 271

Client: MACTEC

Sleeve Stress

(tsf)

6

10

20

30

40

Maximum depth: 1.19 (ft)

Depth (ft)

Applied Research Associates South Royalton, VT 05068 802-763-8348

Tip Stress COR

(tsf)

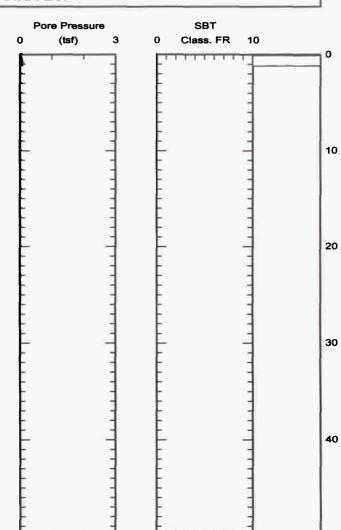
Email: cpt@ned.ara.com

http://www.ara.com

Northing: 3909966 Easting: 11686367 Elevation: 271

Client: MACTEC

Ratio COR


(%)

600

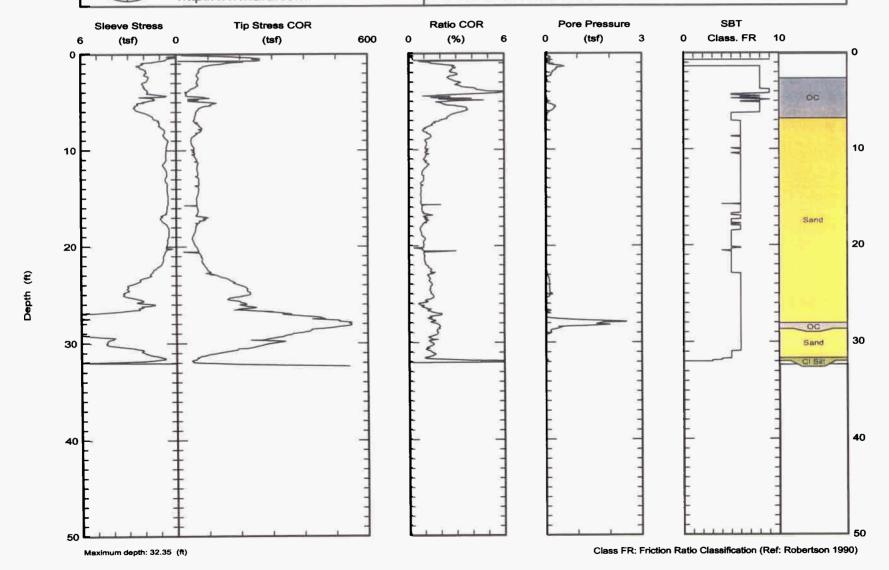
0

Site: NORTH ANNA ESP

Date: 11/Dec/2002 Test ID: CPT-821B Project: 5737

Class FR: Friction Ratio Classification (Ref: Robertson 1990)

Test ID: CPT-821B File: 311D0203C.ECP

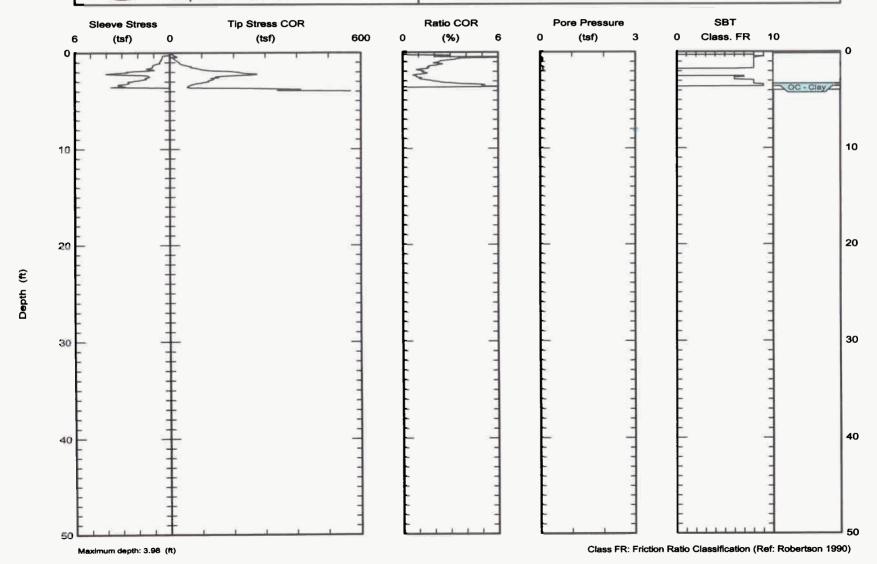

Email: cpt@ned.ara.com http://www.ara.com Northing: 3909850.0235 Easting: 11685756.1761

Elevation: 296.3

Client: MACTEC

Site: NORTH ANNA ESP

Date: 11/Dec/2002 Test ID: CPT-823 Project: 5737

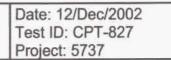

Email: cpt@ned.ara.com http://www.ara.com

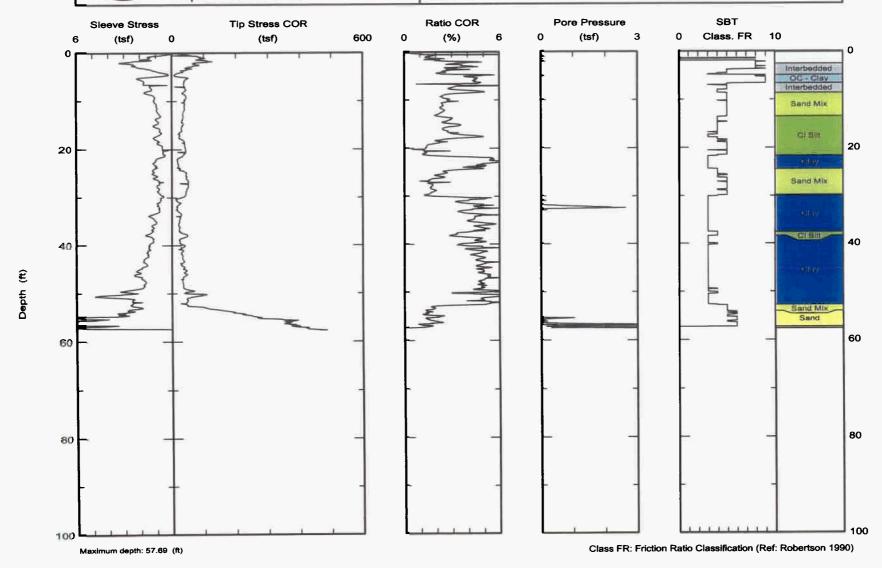
Northing: 3910054.2670 Easting: 11686009.5911

Elevation: 276.1

Client: MACTEC Site: NORTH ANNA ESP Date: 11/Dec/2002 Test ID: CPT-824

Project: 5737

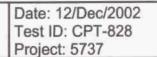

Applied Research Associates South Royalton, VT 05068

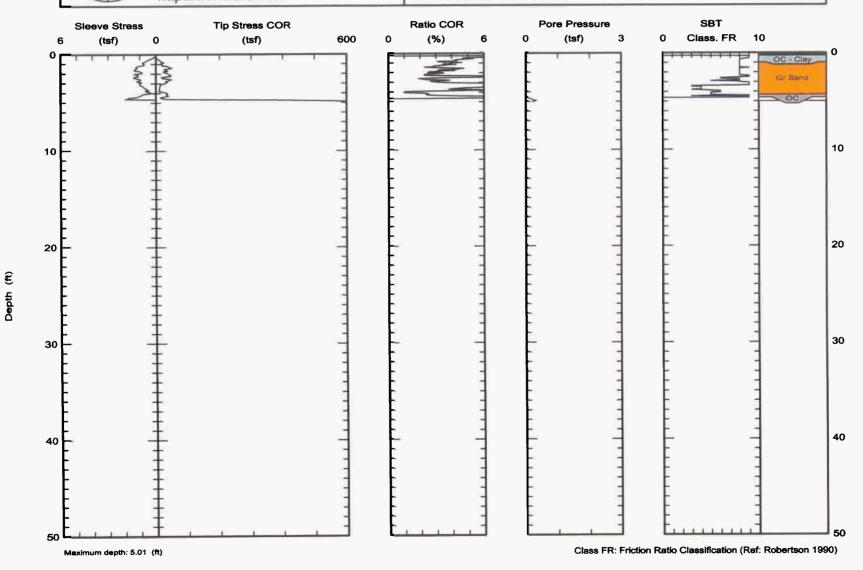

802-763-8348

Email: cpt@ned.ara.com http://www.ara.com Northing: 3910688.2442 Easting: 11683569.4372

Elevation: 277.1

Client: MACTEC


Applied Research Associates South Royalton, VT 05068

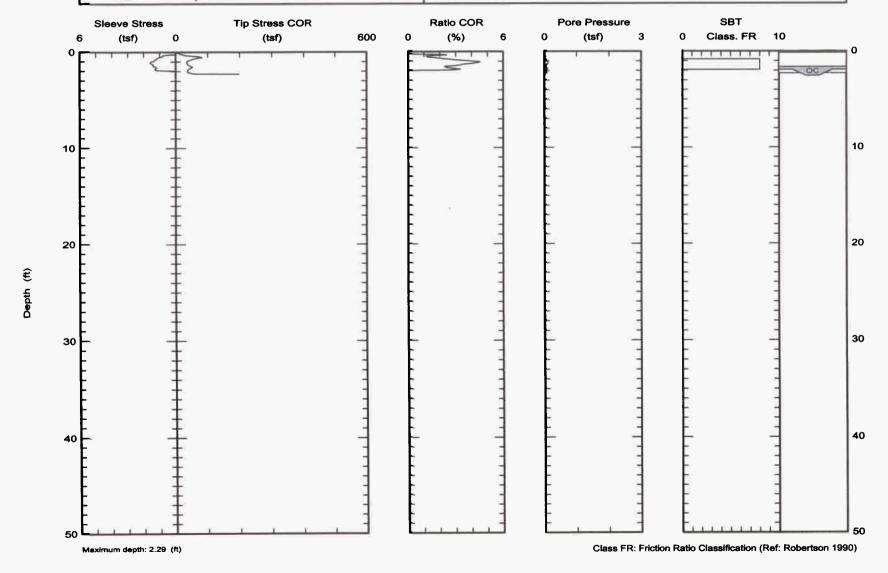

802-763-8348

Email: cpt@ned.ara.com http://www.ara.com

Northing: 3910652.8241 Easting: 11683066.3705 Elevation: 270.0

Client: MACTEC

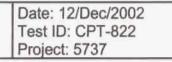


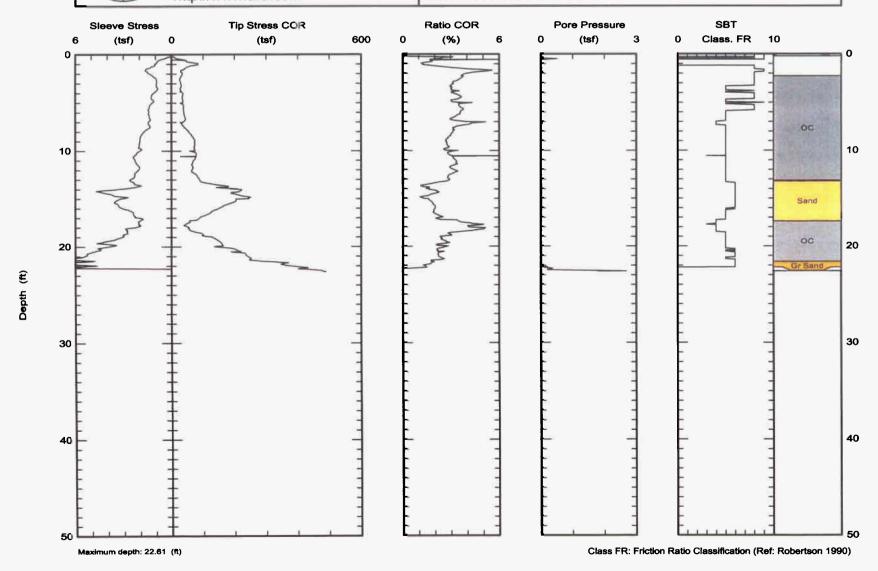


Email: cpt@ned.ara.com http://www.ara.com Northing: 3910652.8241 Easting: 11683066.3705

Elevation: 270.0

Client: MACTEC

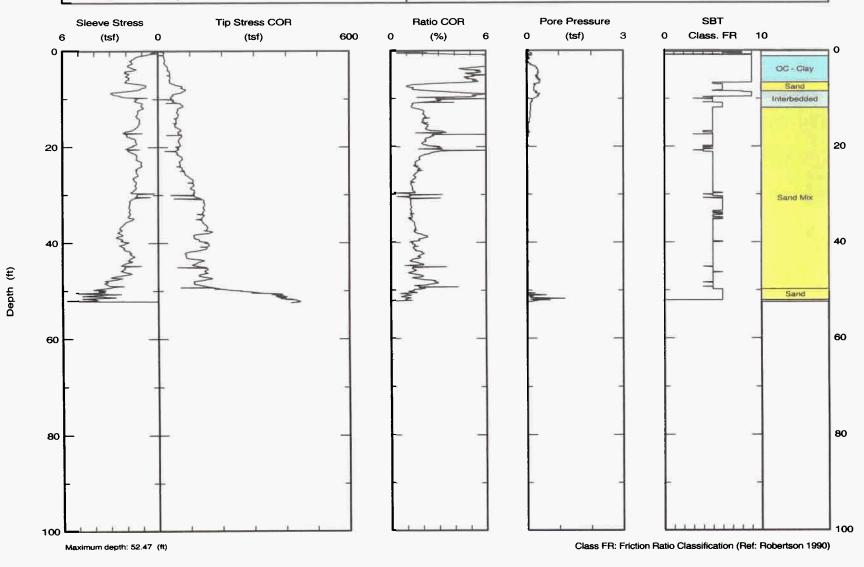




Email: cpt@ned.ara.com http://www.ara.com Northing: 3910375.4066 Easting: 11686237.2013

Elevation: 271.1

Client: MACTEC


Email: cpt@ned.ara.com

http://www.ara.com

Northing: 3909477.9442 Easting: 11685267.2998 Elevation: 332.5 Date: 12/Dec/2002

Test ID: CPT-825 Project: 5737

Client: MACTEC

Sleeve Stress

(tsf)

6

10

20

30

40

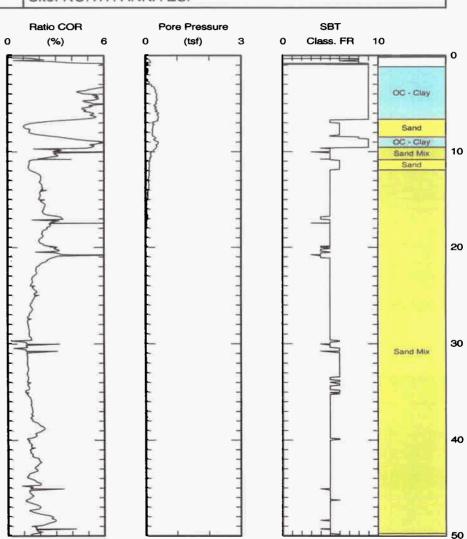
Depth (ft)

0

Applied Research Associates South Royalton, VT 05068 802-763-8348

Email: cpt@ned.ara.com http://www.ara.com

Tip Stress COR


(tsf)

600

Northing: 3909477.9442 Easting: 11685267.2998 Elevation: 332.5

Client: MACTEC

Site: NORTH ANNA ESP

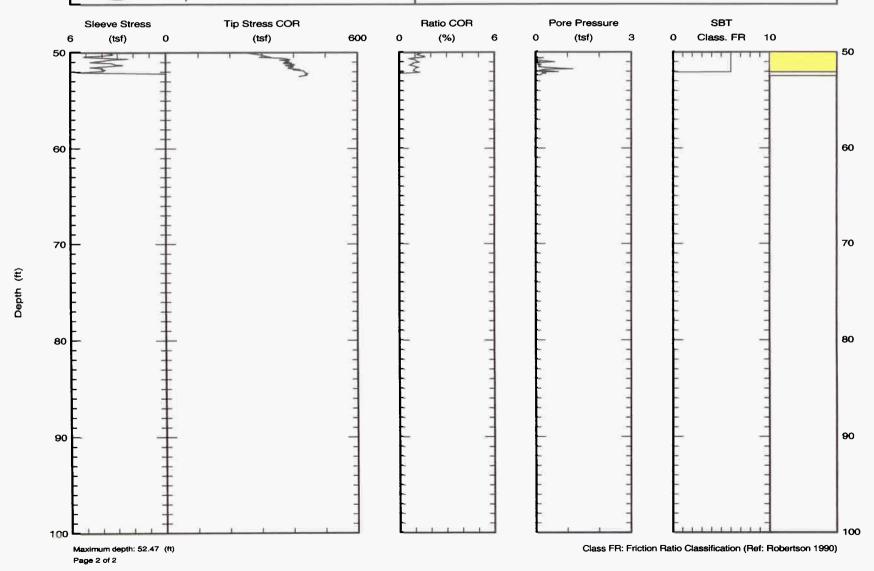
Class FR: Friction Ratio Classification (Ref: Robertson 1990)

Date: 12/Dec/2002

Test ID: CPT-825

Project: 5737

Applied Research Associates South Royalton, VT 05068


802-763-8348

Email: cpt@ned.ara.com http://www.ara.com Northing: 3909477.9442 Easting: 11685267.2998

Elevation: 332.5

Client: MACTEC

Sleeve Stress

(tsf)

10

20

30

40

Maximum depth: 15.79 (ft)

Depth (ft)

Applied Research Associates South Royalton, VT 05068

802-763-8348

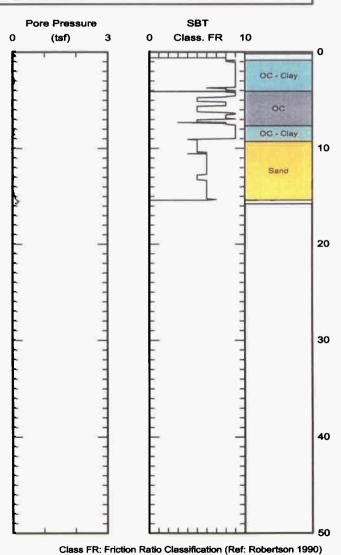
Email: cpt@ned.ara.com http://www.ara.com

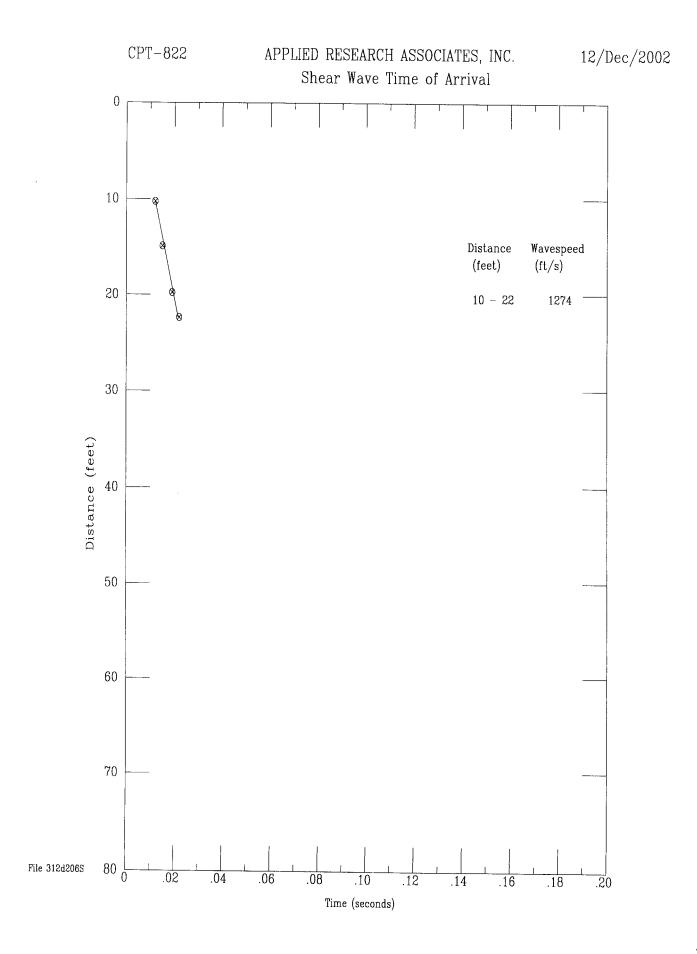
Tip Stress COR

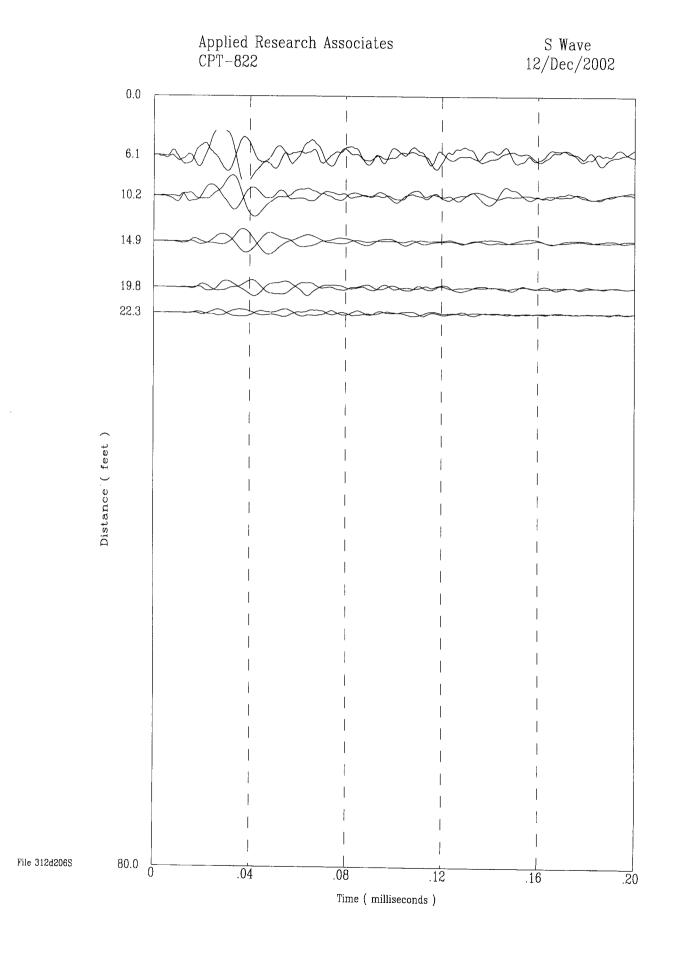
(tsf)

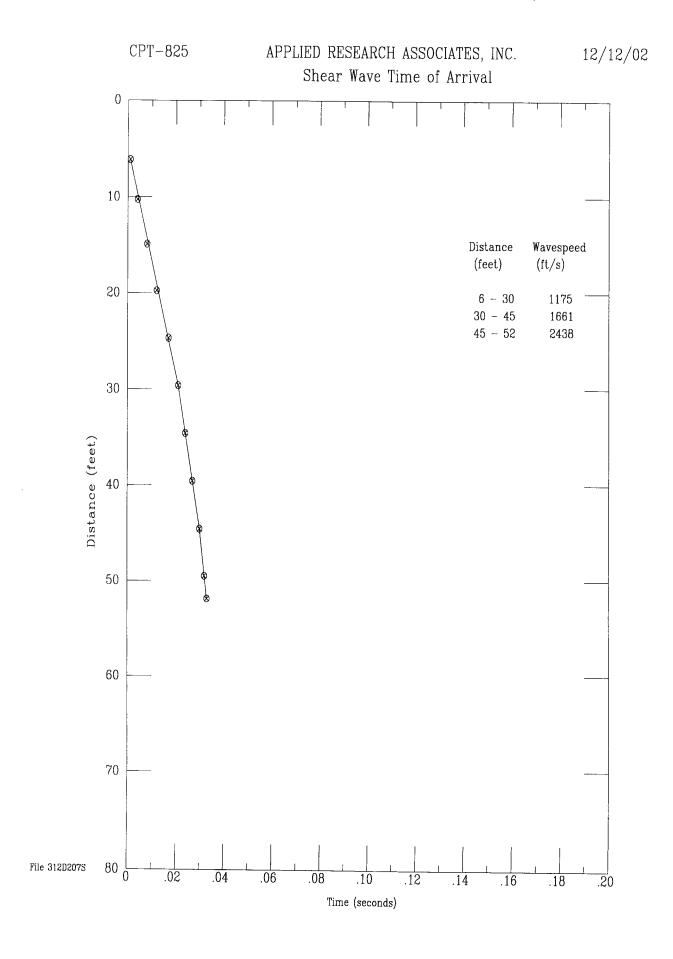
Northing: 3909848.9822 Easting: 11686000.3856 Elevation:

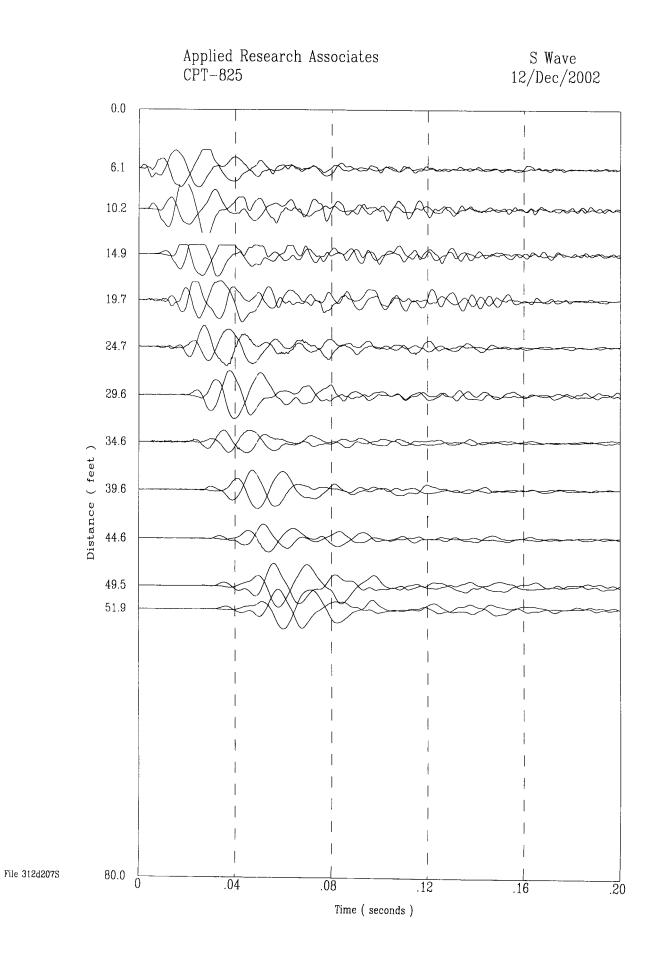
Client: MACTEC

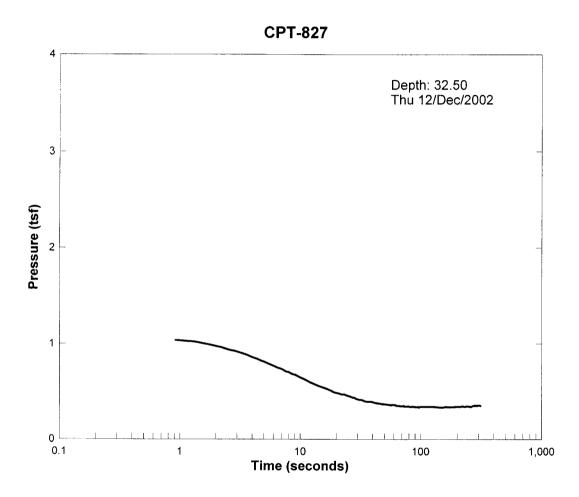

Ratio COR

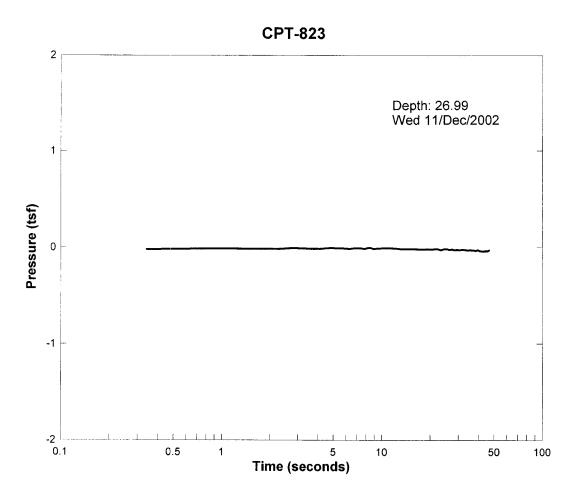

(%)

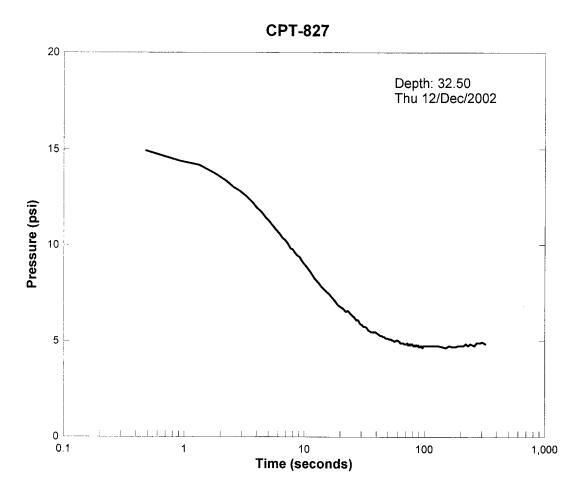

600

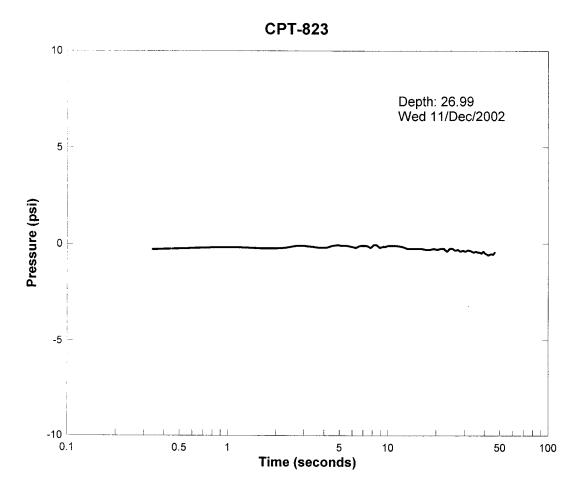

0

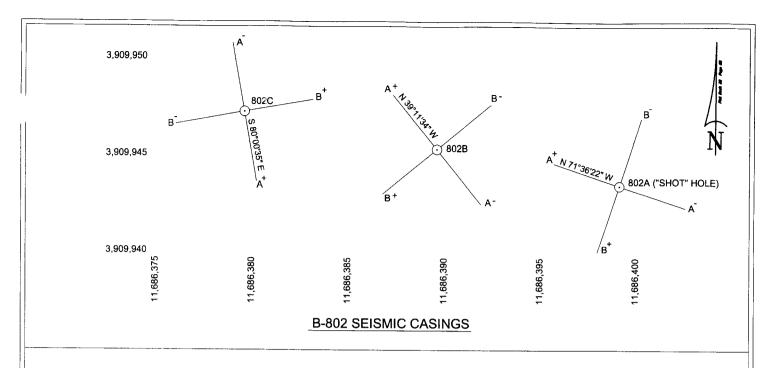


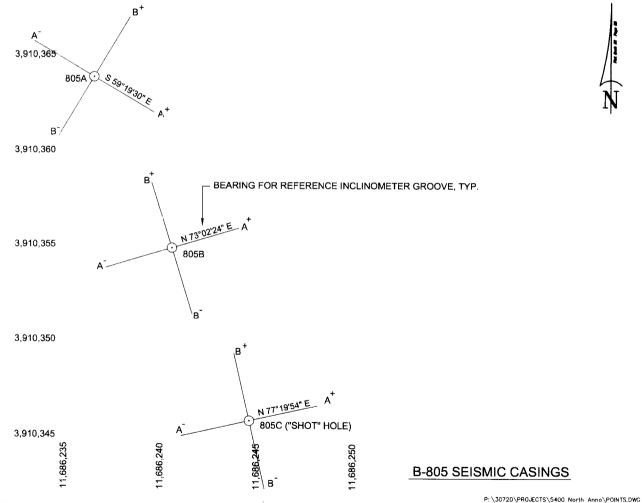












APPENDIX G DEVIATION SURVEY CROSSHOLE CASINGS

MACTEC ENGINEERING AND CONSULTING OF GEORGIA INC. 3301 ATLANTIC AVENUE RALEIGH, NORTH CAROLINA ORIENTATION OF INCLINOMETER GROOVES B-802 & B-805 SEISMIC CASINGS NORTH ANNA ESP

DRAWN: R.R.	DATE: FEB, 2003
DFT CHECK: A	SCALE: 1"=5'
ENG CHECK:	JOB: 30720-2-5400
APPROVAL:	DRAWING: DEV-1

REFERENCE: Survey by Stantec, Inc. with NAD 83 grid coordinates

		CROSSHOLE C	ASING DISTAN	CE, CALCULATION S	SHEET ,	,	
NORTH A	NNA ESP PROJI		Prepared by:	(A) L	Date: 1/2/07		
MACTEC	JOB NO. 30720-	2-5400	Checked by: /	12B	Date: 1/6	/c3	
	B-	802B	· · · · · · · · · · · · · · · · · · ·	-802C			
Depth, ft	N	Е	N	E	Delta N	Delta E	Distance
0	3909945.4	11686389.75	3909947.32	11686379.75	-1.92	10	10.18
2	3909945.37	11686389.78	3909947.351	11686379.78	-1.9804829	10.00133	10.20
4	3909945.349	11686389.82	3909947.38	11686379.81	-2.0309254	10.00289	10.21
6	3909945.34	11686389.85	3909947.411	11686379.84	-2.0708418	10.00788	10.22
8	3909945.34	11686389.89	3909947.444	11686379.87	-2.1047587	10.01786	10.24
10	3909945.345	11686389.93	3909947.482	11686379.9	-2.1366617	10.03111	10.26
12	3909945.355	11686389.97	3909947.524	11686379.92	-2.1682145	10.04924	10.28
14	3909945.369	11686390.02	3909947.568	11686379.94	-2.1990804	10.07537	10.31
16	3909945.385	11686390.06	3909947.613	11686379.96	-2.2278018	10.10417	10.35
18	3909945.4	11686390.11	3909947.659	11686379.98	-2.2598641	10.13585	10.38
20	3909945.408	11686390.17	3909947.708	11686380	-2.3001778	10.17056	10.43
22	3909945.416	11686390.23	3909947.759	11686380.02	-2.3423062	10.20679	10.47
24	3909945.425	11686390.28	3909947.812	11686380.04	-2.3868399	10.24617	10.52
26	3909945.433	11686390.34	3909947.865	11686380.06	-2.4316464	10.2854	10.57
28	3909945.44	11686390.4	3909947.919	11686380.07	-2.4795983	10.32441	10.62
30	3909945.443	11686390.45	3909947.974	11686380.09	-2.5308555	10.36344	10.67
32	3909945.445	11686390.51	3909948.034	11686380.11	-2.5890269	10.40188	10.72
34	3909945.438	11686390.57	3909948.101	11686380.14	-2.6631264	10.43323	10.77
36	3909945.43	11686390.64	3909948.175	11686380.17	-2.7453954	10.46598	10.82
38	3909945.424	11686390.71	3909948.254	11686380.21	-2.8292467	10.5041	10.88
40	3909945.425	11686390.78	3909948.332	11686380.24	-2.9073323	10.54328	10.94
42	3909945.432	11686390.86	3909948.412	11686380.26	-2.9801422	10.59473	11.01
44	3909945.439	11686390.94	3909948.492	11686380.29	-3.0523317	10.64779	11.08
46	3909945.452	11686391.01	3909948.573	11686380.31	-3.1217929	10.70229	11.15
48	3909945.464	11686391.08	3909948.656	11686380.32	-3.1918497	10.75848	11.22
50	3909945.474	11686391.16	3909948.736	11686380.34	-3.2619055	10.8181	11.30
52	3909945.486	11686391.24	3909948.816	11686380.35	-3.3298867	10.88116	11.38
54	3909945.5	11686391.32	3909948.892	11686380.37	-3.3921496	10.94756	11.46
56	3909945.516	11686391.4	3909948.967	11686380.38	-3.4506326	11.01946	11.55
58	3909945.534	11686391.49	3909949.043	11686380.39	-3.5093853	11.09775	11.64
60	3909945.552	11686391.59	3909949.122	11686380.41	-3.5704056	11.18126	11.74
62	3909945.573	11686391.69	3909949.208	11686380.42	-3.6342864	11.26986	11.84

64	3909945.594	11686391.8	3909949.308	11686380.44	-3.713479	11.35945	11.95
66	3909945.614	11686391.91	3909949.414	11686380.47	-3.8003499	11.44776	12.06
68	3909945.633	11686392.02	3909949.523	11686380.49	-3.8891598	11.53719	12.18
70	3909945.652	11686392.13	3909949.633	11686380.51	-3.9805984	11.62695	12.29
72	3909945.669	11686392.24	3909949.741	11686380.53	-4.0722546	11.71166	12.40
74	3909945.688	11686392.35	3909949.845	11686380.55	-4.1567401	11.79414	12.51
76	3909945.706	11686392.45	3909949.943	11686380.58	-4.2371288	11.87528	12.61
78	3909945.721	11686392.56	3909950.042	11686380.6	-4.3204107	11.9564	12.71
80	3909945.734	11686392.66	3909950.14	11686380.62	-4.4058201	12.03837	12.82
82	3909945.746	11686392.76	3909950.237	11686380.64	-4.4905526	12.12202	12.93
84	3909945.758	11686392.86	3909950.33	11686380.66	-4.5722656	12.20489	13.03
86	3909945.772	11686392.97	3909950.421	11686380.68	-4.6490619	12.28451	13.13
88	3909945.792	11686393.07	3909950.509	11686380.7	-4.7176571	12.36482	13.23
90	3909945.816	11686393.16	3909950.594	11686380.72	-4.7776835	12.44622	13.33

CALCULATION OF DEVIATION AT INCREMENTAL DEPTHS FOR CROSSHOLE CASINGS

Casing No	. B-802B	_,	Prepared by:	202		Date: 나일	103	.012 0/1001	
•			Checked by:	BKB		Date: 1/8/	03		
						-	=		
			Resultant A		calc angle	Delta N(in) d	elta E (ın) I		E(ft)
0	-	0		0				3909945.4	11686389.75
2		-0.0922	0.54	9.80	41.00	-0.36	0.41	3909945.37	11686389.78
4		-0.2414	1.01	13.82	36.98	-0.61	0.81	3909945.349	11686389.82
6		-0.4968	1.43	20.39	30.41	-0.72	1.23	3909945.34	11686389.85
8		-0.8318	1.82	27.25	23.55	-0.73	1.67	3909945.34	11686389.89
10		-1.2389	2.23	33.69	17.11	-0.66	2.13	3909945.345	11686389.93
12		-1.705	2.69	39.34	11.46	-0.53	2.64	3909945.355	11686389.97
14		-2.2378	3.21	44.18	6.62	-0.37	3.19	3909945.369	11686390.02
16	-2.5229	-2.8099	3.78	48.08	2.72	-0.18	3.77	3909945.385	11686390.06
18	-2.7706	-3.3878	4.38	50.72	0.08	-0.01	4.38	3909945.4	11686390.11
20	-3.0994	-3.9571	5.03	51.93	1.13	0.10	5.03	3909945.408	11686390.17
22	-3.4507	-4.5432	5.71	52.78	1.98	0.20	5.70	3909945.416	11686390.23
24	-3.8198	-5.1557	6.42	53.47	2.67	0.30	6.41	3909945.425	11686390.28
26	-4.176	-5.7562	7.11	54.04	3.24	0.40	7.10	3909945.433	11686390.34
28	-4.5437	-6.3283	7.79	54.32	3.52	0.48	7.78	3909945.44	11686390.4
30	-4.9435	-6.8842	8.48	54.32	3.52	0.52	8.46	3909945.443	11686390.45
32	-5.376	-7.4366	9.18	54.14	3.34	0.53	9.16	3909945.445	11686390.51
34	-5.8906	-7.9354	9.88	53.41	2.61	0.45	9.87	3909945.438	11686390.57
36	-6.469	-8.4998	10.68	52.73	1.93	0.36	10.68	3909945.43	11686390.64
38	-7.0603	-9.1205	11.53	52.26	1.46	0.29	11.53	3909945.424	11686390.71
40	-7.6118	-9.8093	12.42	52.19	1.39	0.30	12.41	3909945.425	11686390.78
42	-8.1154	-10.559	13.32	52.45	1.65	0.38	13.31	3909945.432	11686390.86
44	-8.6227	-11.3222	14.23	52.71	1.91	0.47	14.22	3909945.439	11686390.94
46	-9.0677	-12.096	15.12	53.14	2.34	0.62	15.10	3909945.452	11686391.01
48	-9.5069	-12.8702	16.00	53.55	2.75	0.77	15.98	3909945.464	11686391.08
50	-9.9854	-13.6574	16.92	53.83	3.03	0.89	16.89	3909945.474	11686391.16
52	-10.4726	-14.4691	17.86	54.10	3.30	1.03	17.83	3909945.486	11686391.24
54	-10.9574	-15.3298	18.84	54.44	3.64	1.20	18.81	3909945.5	11686391.32
٠.	10.007	. 5.5250		O 1. 1 1	0.0 1			00000.0.0	

19.88

20.97

22.14

23.40

56 -11.4547 -16.2494

58 -11.9717 -17.2171

60 -12.5328 -18.2544

62 -13.1165 -19.3733

54.82

55.19

55.53

55.90

4.02

4.39

4.73

5.10

Crosshole Deviation Calculation B-802B

1.39

1.60

1.83

2.08

19.83 3909945.516 11686391.4

20.91 3909945.534 11686391.49

22.07 3909945.552 11686391.59

23.30 3909945.573 11686391.69

64	-13.7554	-20.5507	24.73	56.20	5.40	2.33	24.62	3909945.594	11686391.8
66	-14.4144	-21.7363	26.08	56.45	5.65	2.57	25.95	3909945.614	11686391.91
68	-15.071	-22.9109	27.42	56.66	5.86	2.80	27.28	3909945.633	11686392.02
70	-15.7339	-24.0763	28.76	56.84	6.04	3.02	28.60	3909945.652	11686392.13
72	-16.3771	-25.1914	30.05	56.97	6.17	3.23	29.87	3909945.669	11686392.24
74	-17.005	-26.3155	31.33	57.13	6.33	3.45	31.14	3909945.688	11686392.35
76	-17.6395	-27.4416	32.62	57.27	6.47	3.67	32.41	3909945.706	11686392.45
78	-18.2861	-28.5245	33.88	57.34	6.54	3.86	33.66	3909945.721	11686392.56
80	-18.9504	-29.5824	3 5.13	57.36	6.56	4.01	34.90	3909945.734	11686392.66
82	-19.6205	-30.6288	36.37	57.36	6.56	4.15	36.14	3909945.746	11686392.76
84	-20.2944	-31.6766	37.62	57.35	6.55	4.29	37.37	3909945.758	11686392.86
86	-20.9304	-32.7283	38.85	57.40	6.60	4.47	38.59	3909945.772	11686392.97
88	-21.5011	-33.7978	40.06	57.54	6.74	4.70	39.78	3909945.792	11686393.07
90	-22.0306	-34.9133	41.28	57.75	6.95	4.99	40.98	3909945.816	11686393.16

CALCULATION OF DEVIATION AT INCREMENTAL DEPTHS FOR CROSSHOLE CASINGS

Casing No	b. B-802C		Prepared b	y:	<u>}</u>	Date: 1-8	3/03		
			Checked b			Date: 1/8/	63		
						' '			
Depth, ft	A Deviation		Resultant		calc angle	Delta N(in)	Delta E(in)	N (ft)	E (ft)
C		0	0	0				3909947.32	11686379.75
2			0.54	53.31	43.31	0.37			11686379.78
2			1.06	53.09	43.09				11686379.81
ϵ			1.57		43.80		1.14		11686379.84
3			2.08	55.79	45.79				11686379.87
10			2.62		47.80				
12			3.19	60.09	50.09	2.44			11686379.92
14			3.75	62.50	52.50	2.98			11686379.94
16			4.33	64.34	54.34	3.51	2.52		11686379.96
18			4.91	66.01	56.01	4.07		3909947.659	11686379.98
20		5.1077	5.53	67.42	57.42	4.66			11686380
22		5.7442	6.17	68.55	58.55	5.27			11686380.02
24	2.3784	6.4109	6.84	69.65	59.65	5.90	3.46	3909947.812	11686380.04
26	2.4835	7.0805	7.50	70.67	60.67	6.54	3.68	3909947.865	11686380.06
28	2.5747	7.7587	8.17	71.64	61.64	7.19	3.88	3909947.919	11686380.07
30	2.6726	8.4427	8.86	72.43	62.43	7.85	4.10	3909947.974	11686380.09
32	2.7854	9.1856	9.60	73.13	63.13	8.56	4.34	3909948.034	11686380.11
34	2.976	10.0373	10.47	73.49	63.49	9.37	4.67	3909948.101	11686380.14
36	3.2242	10.9906	11.45	73.65	63.65	10.26	5.08	3909948.175	11686380.17
38	3.4522	11.9856	12.47	73.93	63.93	11.20	5.48	3909948.254	11686380.21
40	3.694	12.9878	13.50	74.12	64.12	12.15	5.89	3909948.332	11686380.24
42	3.8054	13.9795	14.49	74.77	64.77	13.11	6.18	3909948.412	11686380.26
44	3.9106	14.9683	15.47	75.36	65.36	14.06	6.45	3909948.492	11686380.29
46	3.9643	15.9706	16.46	76.06	66.06	15.04	6.68	3909948.573	11686380.31
48	3.9926	16.9805	17.44	76.77	66.77	16.03	6.88	3909948.656	11686380.32
50	4.0186	17.9674	18.41	77.39	67.39	17.00	7.08	3909948.736	11686380.34
51	4.031	18.9355	19.36	77.98	67.98	17.95	7.26	3909948.816	11686380.35
54		19.8677	20.28	78.49	68.49	18.86	7.43	3909948.892	11686380.37
56	4.0517	20.7802	21.17	78.97	68.97	19.76	7.60	3909948.967	11686380.38
58	4.0277	21.7061	22.08	79.49	69.49	20.68	7.74	3909949.043	11686380.39
60	4.0162	22.6718	23.02	79.95	69.95	21.63	7.89	3909949.122	11686380.41
62		23.7077	24.04	80.40	70.40	22.65	8.06	3909949.208	11686380.42

Crosshole Deviation Calculation B-802C

64	4.0382	24.9307	25.26	80.80	70.80	23.85	8.31	3909949.308	11686380.44
66	4.0872	26.2402	26.56	81.15	71.15	25.13	8.58	3909949.414	11686380.47
68	4.1098	27.5635	27.87	81.52	71.52	26.43	8.83	3909949.523	11686380.49
70	4.1218	28.9061	29.20	81.88	71.88	27.75	9.08	3909949.633	11686380.51
72	4.1453	30.2366	30.52	82.19	72.19	29.06	9.33	3909949.741	11686380.53
74	4.2043	31.5038	31.78	82.40	72.40	30.30	9.61	3909949.845	11686380.55
76	4.2941	32.7226	33.00	82.52	72.52	31.48	9.91	3909949.943	11686380.58
78	4.3589	33.935	34.21	82.68	72.68	32.66	10.19	3909950.042	11686380.6
80	4.4064	35.1403	35.42	82.85	72.85	33.84	10.44	3909950.14	11686380.62
82	4.4323	36.3216	36.59	83.04	73.04	35.00	10.67	3909950.237	11686380.64
84	4.4774	37.4674	37.73	83.19	73.19	36.12	10.92	3909950.33	11686380.66
86	4.5451	38.5896	38.86	83.28	73.28	37.21	11.18	3909950.421	11686380.68
88	4.584	39.6696	39.93	83.41	73.41	38.27	11.40	3909950.509	11686380.7
90	4.6267	40.7078	40.97	83.52	73.52	39.29	11.63	3909950.594	11686380.72

0000011015	0.401410	DIOTALIOE			
CROSSHOLF	CASING	DISTANCE	JAI CUL	A HON SI	4FF1

NORTH ANN	A ESP PROJECT	i	Prepared by:	YALL	Date: 1-9-0	ジ	
MACTEC JO	B NO. 30720-2-54	00	Checked by:	BKB	Date: 1/8/0.	3	
	B-805	5A	В	3-805B	Delta N	Delta E	Distance, ft
Depth, ft N	Е	i	Ν	E			
0	3910364.026	11686236.69	3910354.987	11686240.74	9.039	-4.051	9.91
2	3910364.048	11686236.68	3910354.982	11686240.73	9.066090599	-4.048924	9.93
4	3910364.064	11686236.67	3910354.973	11686240.71	9.091124818	-4.041354	9.95
6	3910364.074	11686236.66	3910354.968	11686240.69	9.106526772	-4.034219	9.96
8	3910364.07	11686236.64	3910354.968	11686240.67	9.10207588	-4.031221	9.95
10	3910364.049	11686236.62	3910354.979	11686240.65	9.070460818	-4.031622	9.93
12	3910364.017	11686236.58	3910354.989	11686240.63	9.028436542	-4.044928	9.89
14	3910363.971	11686236.53	3910354.98	11686240.6	8.990443387	-4.061367	9.87
16	3910363.911	11686236.48	3910354.969	11686240.56	8.942413297	-4.076217	9.83
18	3910363.843	11686236.43	3910354.963	11686240.52	8.880154132	-4.090536	9.78
20	3910363.767	11686236.37	3910354.97	11686240.48	8.796807952	-4.104496	9.71
22	3910363.681	11686236.32	3910354.989	11686240.43	8.691540767	-4.111241	9.61
24	3910363.582	11686236.26	3910355.026	11686240.35	8.556378063	-4.087378	9.48
26	3910363.47	11686236.2	3910355.078	11686240.24	8.391564746	-4.039951	9.31
28	3910363.348	11686236.14	3910355.152	11686240.12	8.196011243	-3.978371	9.11
	0						

CALCULATION OF DEVIATION AT INCREMENTAL DEPTHS FOR CROSSHOLE CASINGS

Prepared by: Date: 1/6/03

Checked by: 18/8 Date: 1/6/03 Casing No. B-805B

Depth, ft	A Deviatior	B Deviatior	Resultant	Angle y	calc angle	Delta N, in	Delta E, in	N, ft	E, ft
0	0	0	0	0	_			3910354.987	11686240.74
2	-0.1464	-0.0211	0.147913	8.201318	25.16132	-0.0628878	-0.1338779	3910354.982	11686240.73
4	-0.3782	-0.0581	0.382637	8.733639	25.69364	-0.1658956	-0.3448036	3910354.973	11686240.71
6	-0.6029	-0.059	0.60578	5.589188	22.54919	-0.2323024	-0.5594685	3910354.968	11686240.69
8	-0.8122	0.012	0.812289	0.846466	16.11353	-0.2254439	-0.7803768	3910354.968	11686240.67
10	-1.0296	0.2098	1.050758	11.51739	5.442607	-0.0996629	-1.0460208	3910354.979	11686240.65
12	-1.2893	0.4128	1.353772	17.7537	0.793701	0.01875279	-1.353642	3910354.989	11686240.63
14	-1.681	0.4306	1.735274	14.36778	2.592219	-0.0784818	-1.7334988	3910354.98	11686240.6
16	-2.1408	0.4267	2.18291	11.27236	5.687645	-0.2163377	-2.1721638	3910354.969	11686240.56
18	-2.6179	0.4992	2.665071	10.79596	6.164036	-0.2861628	-2.6496626	3910354.963	11686240.52
20	-3.0605	0.7224	3.144602	13.281	3.679	-0.2017783	-3.1381217	3910354.97	11686240.48
22	-3.5659	1.1131	3.73559	17.33582	0.375817	0.02450245	-3.7355099	3910354.989	11686240.43
24	-4.3709	1.8226	4.735677	22.63541	5.675407	0.4683236	-4.7124633	3910355.026	11686240.35
26	-5.4053	2.795	6.08517	27.34281	10.38281	1.09669397	-5.9855288	3910355.078	11686240.24
28	-6.5424	4.0685	7.704264	31.8761	14.9161	1.98311109	-7.4446599	3910355.152	11686240.12
30	-7.6099	5.7158	9.517402	36.91023	19.95023	3.24737374	-8.9462568	3910355.258	11686239.99

CALCULATION OF DEVIATION AT INCREMENTAL DEPTHS FOR CROSSHOLE CASINGS

Casing No. B-805A		Date: \(\frac{\partial 9 - \mu 3}{2}\)
	Checked by: Sie B	Date: 1/8/05
		, ,

Depth, ft	A Deviation B	Deviation	Resultant	Angle x	calc angle	Delta N, in	Delta E in	N, ft	E, ft
0	0	0	0	0				3910364.026	11686236.689
2	-0.2275	0.1699	0.283941	36.75286	67.43286	0.262199	-0.108967	3910364.048	11686236.680
4	-0.4315	0.2784	0.513516	32.82975	63.50975	0.459602	-0.229052	3910364.064	11686236.670
6	-0.6029	0.3144	0.679953	27.54112	58.22112	0.578019	-0.358092	3910364.074	11686236.659
8	-0.7382	0.18	0.759828	13.70339	44.38339	0.531467	-0.543031	3910364.07	11686236.644
10	-0.8414	-0.1761	0.859631	11.82103	18.85897	0.277867	-0.813483	3910364.049	11686236.621
12	-1.0464	-0.7464	1.285327	35.50037	4.820368	-0.108009	-1.280781	3910364.017	11686236.582
14	-1.2605	-1.5166	1.972038	50.26883	19.58883	-0.661161	-1.857903	3910363.971	11686236.534
16	-1.4266	-2.4456	2.83128	59.74356	29.06356	-1.375378	-2.474769	3910363.911	11686236.483
18	-1.5682	-3.4795	3.816565	65.73906	35.05906	-2.192313	-3.124089	3910363.843	11686236.429
20	-1.6651	-4.6018	4.893784	70.10802	39.42802	-3.108083	-3.780072	3910363.767	11686236.374
22	-1.7194	-5.8397	6.087564	73.59383	42.91383	-4.145008	-4.458401	3910363.681	11686236.317
24	-1.7122	-7.2053	7.405942	76.6327	45.9527	-5.32314	-5.148996	3910363.582	11686236.260
26	-1.6291	-8.725	8.875787	79.42373	48.74373	-6.672529	-5.852943	3910363.47	11686236.201
28	-1 5034	-10 3483	10 45694	81 73391	51 05391	-8 132754	-6 573115	3910363 348	11686236 141

DEVIATION SURVEY RECORDS FOR ALL THREE CASINGS (ONLY SURVEYS FOR RECEIVER CASINGS USED IN CALCULATIONS)

SITE INSTALLATION

: NANPP : 802A

DESCRIPTION

: Entered Manually

CURRENT SURVEY

: 12/20/2002 1:35:39 PM

Probe Serial No

: 2591

DATE PRINTED

: 12/20/2002 1:52:48 PM

Data Reduction for A Axis:

(ft) A0 A180 Incr. Dev. (in) 0 0 0 0 0,0000 0,000 2 113 -126 0,1147 -0,114 4 80 -88 0,0806 -0,195 6 23 -33 0,0269 -0,222 8 -1 -7 0,0029 -0,225 10 -18 10 -0,0134 -0,211 12 -48 41 -0,0427 -0,169 14 -106 94 -0,0960 -0,073 16 -129 123 -0,1210 0,048 18 -155 143 -0,1430 0,1910 20 -178 169 -0,1666 0,3576 22 -214 204 -0,2006 0,5582 24 -238 229 -0,2242 0,7822 26 -261 251 -0,2458 1,0282 26 -261 251 -0,2458 1,0282 28 -267 258 -0,2520 1,2802 30 -278 271 -0,2635 1,5437 32 -292 284 -0,2765 1,8202 34 -310 301 -0,2933 2,1134 36 -299 292 -0,2837 2,3971 38 -261 253 -0,2467 2,6438 40 -233 222 -0,2184 2,8622 42 -209 197 -0,1949 3,0571 44 -147 140 -0,1378 3,1949 46 -148 137 -0,1368 3,3317 48 -151 145 -0,1421 3,4738 50 -149 140 -0,1378 3,1949 46 -148 137 -0,1368 3,3317 48 -151 145 -0,1421 3,4738 50 -149 140 -0,1378 3,1949 46 -148 137 -0,1368 3,3317 48 -151 145 -0,1421 3,4738 50 -149 140 -0,1387 3,6125 52 -127 116 -0,1166 3,7291 54 -110 103 -0,1022 3,8314 55 -92 83 -0,0840 3,9154 56 -92 83 -0,0840 3,9154 56 -146 135 -0,1349 4,4597 70 -194 182 -0,1805 4,7880 72 -227 216 -0,2126 5,0006 74 -269 263 -0,2554 5,2560 76 -320 307 -0,3010 5,5570 76 -320 307 -0,3010 5,5570 78 -330 322 -0,3130 5,8699 80 -353 343 -0,3341 6,2040 82 -382 370 -0,3610 6,5650		iction for A			
(in)	Depth	Current	Current		
0 0 0.0000 0.0000 2 113 -126 0.1147 -0.114 4 80 -88 0.0806 -0.195 6 23 -33 0.0269 -0.225 10 -18 10 -0.0134 -0.211 12 -48 41 -0.0427 -0.169 14 -106 94 -0.0960 -0.073 16 -129 123 -0.1210 0.048 18 -155 143 -0.1430 0.1910 20 -178 169 -0.1666 0.3576 22 -214 204 -0.2006 0.5582 24 -238 229 -0.2242 0.782 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202	(ft)	A0	A180	į.	Dev. (in)
2 113 -126 0.1147 -0.114 4 80 -88 0.0806 -0.195 6 23 -33 0.0269 -0.222 8 -1 -7 0.0029 -0.225 10 -18 10 -0.0134 -0.211 112 -48 41 -0.0427 -0.1696 14 -106 94 -0.0960 -0.073 16 -129 123 -0.1210 0.0486 18 -155 143 -0.1430 0.1910 20 -178 169 -0.1666 0.3576 22 -214 204 -0.2006 0.5582 24 -238 229 -0.2242 0.782 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3397 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.6622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1123 4.3248 66 -146 135 -0.1349 4.4597 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3341 6.2040 82 -382 370 -0.3610 6.5650					
4 80 -88 0.0806 -0.195 6 23 -33 0.0269 -0.222 8 -1 -7 0.0029 -0.225 10 -18 10 -0.0134 -0.211 12 -48 41 -0.0427 -0.1699 14 -106 94 -0.0960 -0.073 16 -129 123 -0.1210 0.048 18 -155 143 -0.1430 0.1910 20 -178 169 -0.1666 0.3576 22 -214 204 -0.2006 0.5582 24 -238 229 -0.2242 0.782 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933					0.0000
6 23 -33 0.0269 -0.222 8 -1 -7 0.0029 -0.225 10 -18 10 -0.0134 -0.211 12 -48 41 -0.0427 -0.169 14 -106 94 -0.0960 -0.073 16 -129 123 -0.1210 0.0480 18 -155 143 -0.1430 0.1911 20 -178 169 -0.1666 0.3576 22 -214 204 -0.2006 0.5582 24 -238 229 -0.2242 0.7824 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2502 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 56 -92 83 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1123 4.3248 66 -146 135 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 69 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650					-0.1147
8 -1 -7 0.0029 -0.225 10 -18 10 -0.0134 -0.211 12 -48 41 -0.0427 -0.1696 14 -106 94 -0.0960 -0.073 16 -129 123 -0.1210 0.048 18 -155 143 -0.1430 0.1910 20 -178 169 -0.1666 0.3576 22 -214 204 -0.2006 0.5582 24 -238 229 -0.2242 0.7824 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2635 1.5437 38 -261 253 -0.2467 2.6438 40 -233 222 -0.21					-0.1954
10 -18 10 -0.0134 -0.211 12 -48 41 -0.0427 -0.169 14 -106 94 -0.0960 -0.073 16 -129 123 -0.1210 0.0480 18 -155 143 -0.1430 0.1910 20 -178 169 -0.1666 0.3576 22 -214 204 -0.2006 0.5562 24 -238 229 -0.2242 0.7824 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5493 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222	6	23	-33	0.0269	-0.2222
12 -48 41 -0.0427 -0.169 14 -106 94 -0.0960 -0.073 16 -129 123 -0.1210 0.0480 18 -155 143 -0.1430 0.1910 20 -178 169 -0.1666 0.3576 22 -214 204 -0.2006 0.5582 24 -238 229 -0.2242 0.7822 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5493 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 <t< td=""><td></td><td></td><td></td><td></td><td>-0.2251</td></t<>					-0.2251
12 -48 41 -0.0427 -0.1690 14 -106 94 -0.0960 -0.0730 16 -129 123 -0.1210 0.0480 18 -155 143 -0.1430 0.1910 20 -178 169 -0.1666 0.3576 22 -214 204 -0.2006 0.5582 24 -238 229 -0.2242 0.7824 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 2222 -0.2184 2.8662 42 -209 197			10	-0.0134	-0.2117
14 -106 94 -0.0960 -0.073 16 -129 123 -0.1210 0.0480 18 -155 143 -0.1430 0.1910 20 -178 169 -0.1666 0.3576 22 -214 204 -0.2006 0.5582 24 -238 229 -0.2242 0.7822 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140			41	-0.0427	-0.1690
16 -129 123 -0.1210 0.0480 18 -155 143 -0.1430 0.1910 20 -178 169 -0.1666 0.3576 22 -214 204 -0.2006 0.5582 24 -238 229 -0.2242 0.7822 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137			94	-0.0960	-0.0730
18 -155 143 -0.1430 0.1910 20 -178 169 -0.1666 0.3576 22 -214 204 -0.2006 0.5586 24 -238 229 -0.2242 0.7824 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145		-129	123	-0.1210	0.0480
20 -178 169 -0.1666 0.3576 22 -214 204 -0.2006 0.5586 24 -238 229 -0.2242 0.7824 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.31949 46 -148 137 -0.1949 3.0571 48 -151 145 -0.1421 3.4738 50 -149 140	18	-155	143		0.1910
22 -214 204 -0.2006 0.5582 24 -238 229 -0.2242 0.7824 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1949 3.0571 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116	20		169	-0.1666	0.3576
24 -238 229 -0.2242 0.7824 26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103	22		204		0.5582
26 -261 251 -0.2458 1.0282 28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 <		-238			
28 -267 258 -0.2520 1.2802 30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 <td< td=""><td>26</td><td>-261</td><td>251</td><td></td><td></td></td<>	26	-261	251		
30 -278 271 -0.2635 1.5437 32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97		-267	258		
32 -292 284 -0.2765 1.8202 34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119			271		1,5437
34 -310 301 -0.2933 2.1134 36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112		-292	284		
36 -299 292 -0.2837 2.3971 38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1123 4.3248 66 -146 135	34	-310	301		2.1134
38 -261 253 -0.2467 2.6438 40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1123 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151	36	-299	292		
40 -233 222 -0.2184 2.8622 42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1123 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182	38	-261			
42 -209 197 -0.1949 3.0571 44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1123 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216	40	-233	222		2.8622
44 -147 140 -0.1378 3.1949 46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1123 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263	42	-209			
46 -148 137 -0.1368 3.3317 48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1123 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307	44	-147	140	-0.1378	
48 -151 145 -0.1421 3.4738 50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1123 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322	46	-148	137		
50 -149 140 -0.1387 3.6125 52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1193 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343			145		3.4738
52 -127 116 -0.1166 3.7291 54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1193 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343 -0.3610 6.5650	50	-149			
54 -110 103 -0.1022 3.8314 56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1123 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650	52	-127			
56 -92 83 -0.0840 3.9154 58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1123 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650	54		103		
58 -88 80 -0.0806 3.9960 60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1123 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650	56	-92			
60 -105 97 -0.0970 4.0930 62 -130 119 -0.1195 4.2125 64 -122 112 -0.1123 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650	58	-88			
62 -130 119 -0.1195 4.2125 64 -122 112 -0.1123 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650	60				
64 -122 112 -0.1123 4.3248 66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650	62				
66 -146 135 -0.1349 4.4597 68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650	64				
68 -157 151 -0.1478 4.6075 70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650		-146			
70 -194 182 -0.1805 4.7880 72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650					
72 -227 216 -0.2126 5.0006 74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650					
74 -269 263 -0.2554 5.2560 76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650					
76 -320 307 -0.3010 5.5570 78 -330 322 -0.3130 5.8699 80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650					
78 -330 322 -0.3130 5.8699 80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650					
80 -353 343 -0.3341 6.2040 82 -382 370 -0.3610 6.5650					
82 -382 370 -0.3610 6.5650					
2.0010 0.3000					
84 -385 377 -0.3658 6.9307					
0.0007	84	385	377	-0.3658	6.9307

NANPP:802A

Page 1

12/20/2002 1:35:39 PM

Depth	Current	Current	Current	Cum.
(ft)	AO	A180	Incr. Dev.	Dev. (in)
			(in)	• •
86	-441	428	-0.4171	7.3478
88	-496	488	-0.4723	7.8202
90	-573	561	-0.5443	8.3645

NANPP:802A

Page 2

12/20/2002 1:35:39 PM

SITE

: NANPP

INSTALLATION

: 802A

DESCRIPTION

: Entered Manually

CURRENT SURVEY

: 12/20/2002 1:35:39 PM

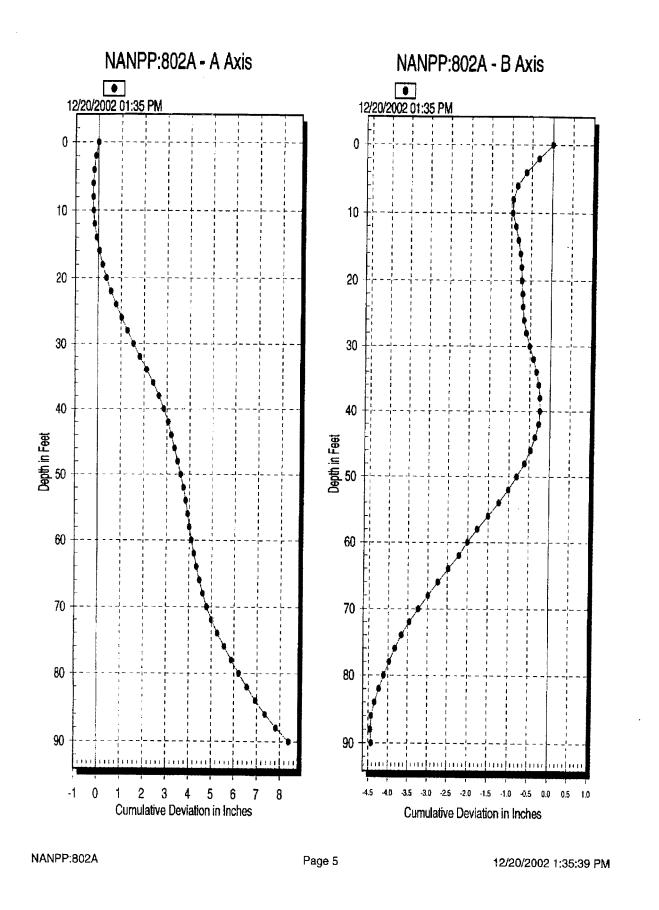
Probe Serial No

: 2591

DATE PRINTED

: 12/20/2002 1:52:48 PM

Data Reduction for B Axis:


Data Reduction for B Axis:							
Depth	Current	Current	Current	Cum.			
(ft)	BO	B180	Incr. Dev.	Dev. (in)			
			(in)				
0	0	0	0.0000	0.0000			
2	344	-348	0.3322	-0.3322			
4	306	-312	0.2966	-0.6288			
6	221	-239	0.2208	-0.8496			
8	108	-117	0.1080	-0.9576			
10	8	-17	0.0120	-0.9696			
12	-91	85	-0.0845	-0.8851			
14	-72	73	-0.0696	-0.8155			
16	-58	54	-0.0538	-0.7618			
18	-31	28	-0.0283	-0.7334			
20	-12	6	-0.0086	-0.7248			
22	-27	21	-0.0230	-0.7018			
24	-14	12	-0.0125	-0.6893			
26	-34	27	-0.0293	-0.6600			
28	-66	63	-0.0619	-0.5981			
30	-89	83	-0.0826	-0.5155			
32	-99	97	-0.0941	-0.4214			
34	-80	84	-0.0787	-0.3427			
36	-64	58	-0.0586	-0.2842			
38	-34	31	-0.0312	-0.2530			
40	-8	3	-0.0053	-0.2477			
42	28	-30	0.0278	-0.2755			
44	92	-96	0.0902	-0.3658			
46	108	-113	0.1061	-0.4718			
48	147	-153	0.1440	-0.6158			
50	198	-200	0.1910	-0.8069			
52	210	-208	0.2006	-1.0075			
54	246	-239	0.2328	-1.2403			
56	272	-276	0.2630	-1.5034			
58	276	-280	0.2669	-1.7702			
60	250	-256	0.2429	-2.0131			
62	216	-219	0.2088	-2.2219			
64	266	-268	0.2563	-2.4782			
66	267	-278	0.2616	-2.7398			
68	258	-264	0.2506	-2.9904			
70	251	-257	0.2438	-3.2342			
72	235	-241	0.2285	-3.4627			
74	214	-208	0.2026	-3.6653			
76	164	-179	0.1646	-3.8299			
78	152	-155	0.1474	-3.9773			
80	142	-146	0.1382	-4.1155			
82	119	-125	0.1302	-4.2326			
84	114	-125	0.1104	-4.2320			
84	[14]	-116	0.1104	-4.3430			

NANPP:802A

Page 3

12/20/2002 1:35:39 PM

	Depth	Current	Current	Current	Cum.
1	(ft)	B0	B180	Incr. Dev.	Dev. (in)
		:		(in)	`
	86	84	-89	0.0830	-4.4261
	88	16	-23	0.0187	-4.4448
	90	-24	18	-0.0202	-4.4246

SITE INSTALLATION

: NANPP : 802B

DESCRIPTION

: Entered Manually

CURRENT SURVEY

: 12/20/2002 1:54:55 PM

Probe Serial No

2591

DATE PRINTED

: 12/20/2002 2:03:40 PM

Data Reduction for A Axis:

Depth	Current	Current	Current	Cum.
(ft)	A 0	A180	Incr. Dev. (in)	Dev. (in)
0	0	C	0.0000	0.0000
2	54 5	-567	0.5338	-0.5338
4	461	-472	0.4478	-0.9816
6	364	-375	0.3547	-1.3363
8	282	-298	0.2784	-1.6147
10	248	-260	0.2438	-1.8586
12	225	-236	0.2213	-2.0798
14	227	-238	0.2232	-2.3030
16	223	-235	0.2198	-2.5229
18	254	-262	0.2477	-2.7706
20	336	-349	0.3288	-3.0994
22	360	-372	0.3514	-3.4507
24	379	-390	0.3691	-3.8198
26	367	-375	0.3562	-4.1760
28	378	-388	0.3677	-4.5437
30	411	-422	0.3998	-4.9435
32	446	-455	0.4325	-5.3760
34	528	-544		-5.8906
36	597		0.5784	-6.4690
38	609	-623	0.5914	-7.0603
40	570	-579	0.5515	-7.6118
42	512	-537	0.5035	-8.1154
44	523	-534	0.5074	
46	456	-471	0.4450	-9.0677
48	450	-465	0.4392	-9.5069
50	493	-504	0.4786	-9.9854
52	500	-515	0.4872	-10.4726
54	501	-509	0.4848	-10.9574
56	516	-520	0.4973	-11.4547
58	533	-544	0.5170	-11.9717
60	580	-589	0.5611	-12.5328
62	602	-614	0.5837	-13.1165
64	658	-673	0.6389	-13.7554
66	681	-692	0.6590	-14.4144
68		-691	0.6566	-15.0710
70		-696	0.6629	-15.7339
72	667	-673	0.6432	-16.3771
74		-662	0.6278	-17.0050
76	654	-668	0.6346	-17.6395
78		-680	0.6466	-18.2861
80	686	-698	0.6643	-18.9504
82	692	-704	0.6701	-19.6205
84	695	-709	0.6739	-20.2944

NANPP:802B

Page 1

12/20/2002 1:54:55 PM

	Depth	Current	Current	Current	Cum.
	(ft)	A0 ;	A180	Incr. Dev.	Dev. (in)
- 1)		(in)	
- 1	86	659	-666	0.6360	-20.9304
ĺ	88	590	-599	0.5707	-21.5011
	90	549	-554	0.5294	-22.0306

NANPP:802B

Page 2

12/20/2002 1:54:55 PM

: NANPP

INSTALLATION

: 802B

DESCRIPTION

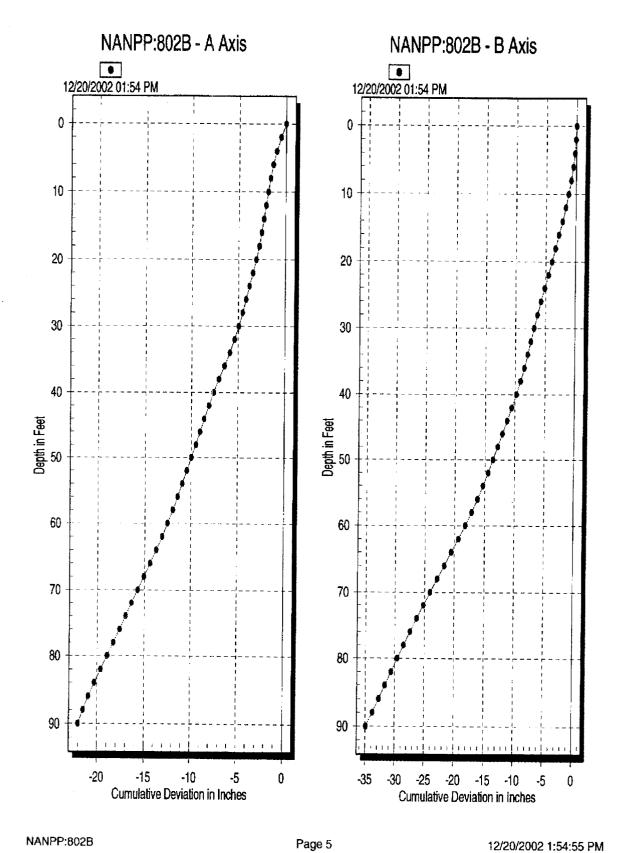
: Entered Manually

CURRENT SURVEY

: 12/20/2002 1:54:55 PM

Probe Serial No

: 2591


DATE PRINTED

: 12/20/2002 2:03:40 PM

Data Reduction for B Axis:

Depth	Current	Current	Current	Cum.
	BO	B180	Incr. Dev.	
(ft)	B U	B100	incr. Dev.	Dev. (in)
	0	0	0.0000	0.0000
0			0.0000	-0.0922
2	93	-99		
4	156	-155	0.1493	-0.2414
6	264	-268	0.2554	-0.4968
8	346	-352	0.3350	-0.8318
10	423	-425	0.4070	-1.2389
12	483	-488	0.4661	-1.7050
14	554	-556	0.5328	-2.2378
16	596	-596	0.5722	-2.8099
18	600	-604	0.5779	-3.3878
20	593	-593	0.5693	-3.9571
22	613	-608	0.5861	-4.5432
24	639	-637	0.6125	-5.1557
26	624	-627	0.6005	-5.7562
28	593	-599	0.5722	-6.3283
30	5 78	-580	0.5558	-6.8842
32	574	-577	0.5525	-7.4366
34	516	-523	0.4987	-7.9354
36	588	-588	0.5645	-8.4998
38	645	-648	0.6206	-9.1205
40	716		0.6888	-9.8093
42	778	-784	0.7498	-10.5590
44	803	-787	0.7632	-11.3222
46	810	-802	0.7738	-12.0960
48	805	-808	0.7742	-12.8702
50	820	-820	0.7872	-13.6574
52	847	-844	0.8117	-14.4691
54	898	-895	0.8606	-15.3298
56	954	-962	0.9197	-15.3298 -16.2494
58	1004	-1012	0.9677	-17.2171
60	1077	-1084	1.0373	-18.2544
62	1144	-1187	1.1189	-19.3733
64	1225	-1228	1.1774	-20.5507
66	1235	-1235	1.1856	-21.7363
68	1222	-1225	1.1746	-22.9109
70		-1217	1.1654	-24.0763
72		-1162	1.1150	-25.1914
74		-1172	1.1242	-26.3155
76	1172	-1174	1.1261	-27.4416
78	1126	-1130	1.0829	-28.5245
80	1101	-1103	1.0579	-29.5824
82	1096	-1084	1.0379	-30.6288
	1098			
84	1092	-1091	1.0478	-31.6766

Depth	Current	Current	Current	Cum.
(ft)	BO	B180	Incr. Dev.	Dev. (in)
` '			(in)	
86	1092	-1099	1.0517	-32.7283
88	1110	-1118	1.0694	-33.7978
90	1154	-1170	1.1155	-34.9133

1220/2002 1.34.33 F

SITE INSTALLATION : NANPP : 802C

DESCRIPTION

: Entered Manually

CURRENT SURVEY Probe Serial No

: 12/20/2002 2:04:16 PM : 2591

DATE PRINTED

: 12/20/2002 2:12:11 PM

Data Reduction for A Axis:

	Current		Current	C
Depth				
(ft)	A0	A180	Incr. Dev.	Dev. (in)
			(in)	
0	0	0	0.0000	0.0000
2	-347	325	-0.3226	0.3226
4	-331	321	-0.3130	0.6355
6	-311	300	-0.2933	0.9288
8	-256	246	-0.2410	1.1698
10	-243	231	-0.2275	1.3973
12	-204	196	-0.1920	1.5893
14	-155	145	-0.1440	1.7333
16	-151	141	-0.1402	1.8734
18	-133	125	-0.1238	1.9973
20	-136	128	-0.1267	2.1240
22	-146	131	-0.1330	2.2570
24	-131		-0.1214	2.3784
26	-115		-0.1051	2.4835
28	-99	91	-0.0912	2.5747
30	-109	95	-0.0979	2.6726
32	-123	112	-0.1128	2.7854
34	-204	193	-0.1906	2.9760
36	-266	251	-0.2482	3.2242
38	-246		-0.2280	3.4522
40	-212	199	-0.1973	3.6494
42	-169	156	-0.1560	3.8054
44	-117	102	-0.1051	3.9106
46	-60	52	-0.0538	3.9643
48	-38	21	-0.0283	3.9926
50	-30	24	-0.0259	4.0186
52	-18	8	-0.0125	4.0310
54	-19	12	-0.0149	4.0459
56	-10	2	-0.0058	4.0517
58	19	-31	0.0240	4.0277
60	5	-19	0.0115	
62	1	-14	0.0072	4.0090
64	-36	25	-0.0293	4.0382
66	-60	42	-0.0490	4.0872
68	-30	17		4.1098
70	-20	5		4.1098
72	-34	15		
74	-34 -65	58	-0.0235	4.1453
76	-100			4.2043
		87	-0.0898	4.2941
78	-74	61	-0.0648	4.3589
80	-55	44	-0.0475	4.4064
82	-34	20	-0.0259	4.4323
84	-53	41	-0.0451	4.4774

NANPP:802C

Page 1

12/20/2002 2:04:16 PM

1	Depth	Current	Current	Current	Cum.
	(ft)	A0	A180	Incr. Dev.	Dev. (in)
-				(in)	
L	86	-79	62	-0.0677	4.5451
	88	-36	45	-0.0389	4.5840
[90	-50	39	-0.0427	4.6267

SITE INSTALLATION

: NANPP

DESCRIPTION

: 802C : Entered Manually

CURRENT SURVEY

: 12/20/2002 2:04:16 PM

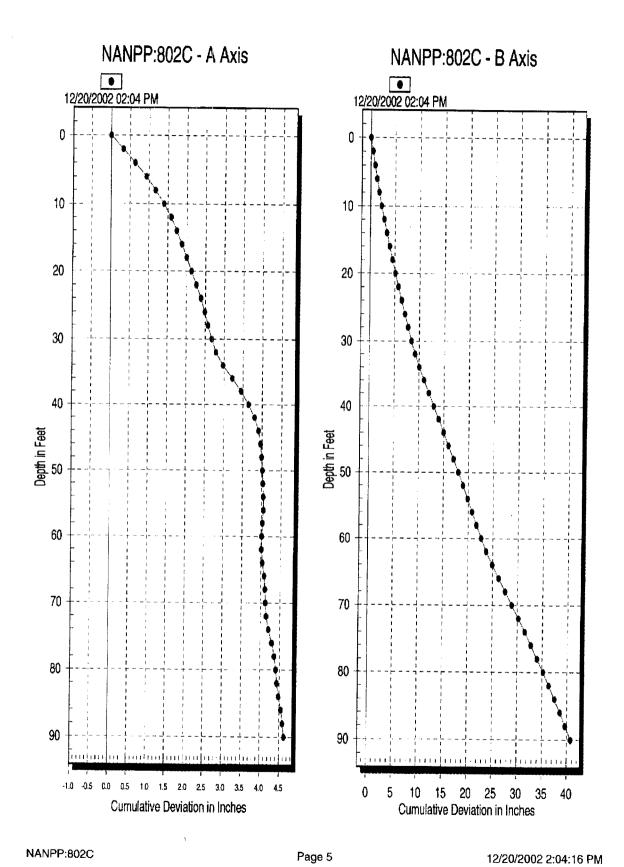
Probe Serial No

: 2591

DATE PRINTED

: 12/20/2002 2:12:11 PM

Data Reduction for B Axis:


Data Reduc	tion for B Ax			
Depth	Current	Current	Current	Cum.
(ft)	B0	B180	Incr. Dev. (in)	Dev. (in)
0	0	0	0.0000	0.0000
2	-452	450	-0.4330	0.4330
4	-430	431	-0.4133	0.8462
6	-440	441	-0.4229	1.2691
8	-470	471	-0.4517	1.7208
10	-520	518	-0.4982	2.2190
12	-565	567	-0.5434	2.7624
14	-592	591	-0.5678	3,3302
16	-593	592	-0.5688	3.8990
18	-614	612	-0.5885	4.4875
20	-648	644	-0.6202	5.1077
22	-662	664	-0.6365	5.7442
24	-692	697	-0.6667	6.4109
26	-696	699	-0.6696	7.0805
28	-706	707	-0.6782	7.7587
30	-715	710	-0.6840	8.4427
32	-755	751	-0.7229	9.1656
34	-905	911	-0.8717	10.0373
36	-995	991	-0.9533	10.9906
38	-1039	1034	-0.9950	11.9856
40	-1044	1044	-1.0022	12.9878
42	-1031	1035	-0.9917	13.9795
44	-1028	1032	-0.9888	14.9683
46	-1040	1048	-1.0022	15.9706
48	-1053	1051	-1.0099	16.9805
50	-1027	1029	-0.9869	17.9674
52	-1006	1011	-0.9682	18.9355
54	-969	973	-0.9322	19.8677
56	-951	950	-0.9125	20.7802
58	-964	965	-0.9259	21.7061
60	-1010	1002	-0.9658	22.6718
62	-1080	1078	-1.0358	23.7077
64	-1274	1274	-1.2230	24.9307
66	-1365	1363	-1.3094	26.2402
68	-1378	1379	-1.3234	27.5635
70	-1398	1399	-1.3426	28.9061
72	-1387	1385	-1.3306	30.2366
74	-1323	1317	-1.2672	31.5038
76	-1272	1267	-1.2187	32.7226
78	-1263	1263	-1.2125	33.9350
80	-1256	1255	-1.2053	35.1403
82	-1230	1231	-1.1813	36.3216
84	-1192	1195	-1.1458	37.4674
04	-11361	1100	1.1700	57.707

NANPP:802C

Page 3

12/20/2002 2:04:16 PM

1	Depth	Current	Current	Current	Cum.
١	(ft)	В0	B180	Incr. Dev.	Dev. (in)
				(in)	`
F	86	-1170	1168	-1.1222	38.5896
[88	-1122	1128	-1.0800	39.6696
ſ	90	-1082	1081	-1.0382	40.7078

: NANPP

INSTALLATION

: 805A

DESCRIPTION

: Entered Manually

CURRENT SURVEY

: 12/19/2002 5:28:37 PM

Probe Serial No

: 2591

DATE PRINTED

: 1/14/2003 1:27:11 PM

Data Reduction for A Axis:

Depth	Current	Current	Current	Cum.
(ft)	AO	A180	Incr. Dev.	Dev. (in)
```		1	(in)	
0	0	0	0.0000	0.0000
2	230	-244	0.2275	-0.2275
4	209	-216	0.2040	-0.4315
6	172	-185	0.1714	-0.6029
8	137	-145	0.1354	-0.7382
10	104	-111	0.1032	-0.8414
12	210	-217	0.2050	-1.0464
14	218	-228	0.2141	-1.2605
16	168	-178	0.1661	-1.4266
18	144	-151	0.1416	-1.5682
20	97	-105	0.0970	-1.6651
22	53	-60	0.0542	-1.7194
24	-13	2	-0.0072	-1.7122
26	-92	81	-0.0830	-1.6291
28	-135	127	-0.1258	-1.5034

: NANPP

INSTALLATION

: 805A

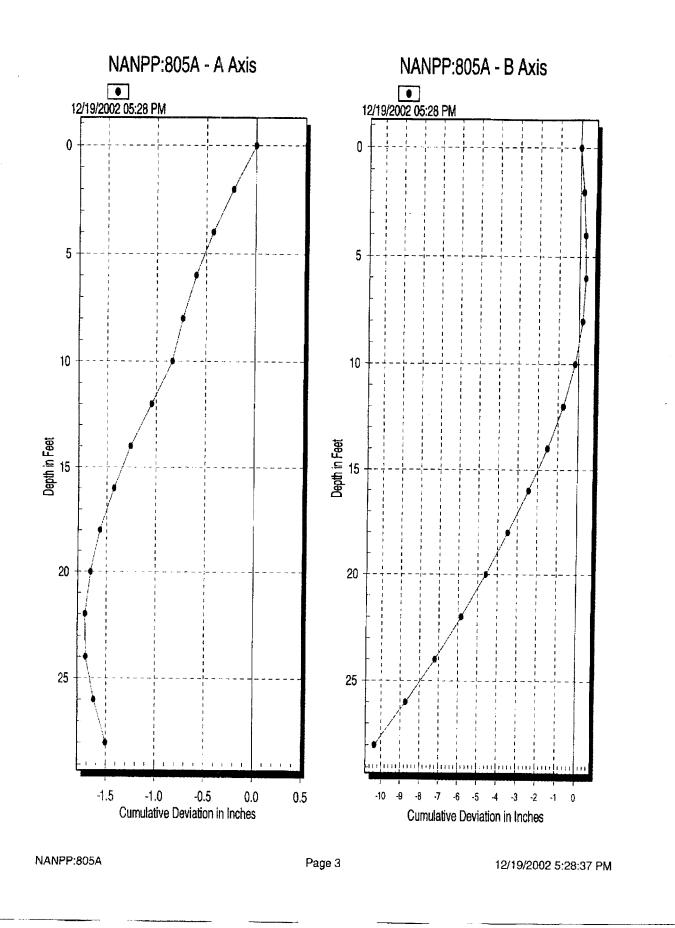
**DESCRIPTION** 

: Entered Manually

CURRENT SURVEY

: 12/19/2002 5:28:37 PM

Probe Serial No


: 2591

DATE PRINTED

: 1/14/2003 1:27:11 PM

Data Reduction for B Axis:

Depth	Current	Current	Current	Cum.
(ft)	BO	B180	Incr. Dev.	Dev. (in)
(11)	. 50	5100		Dev. (111)
			(in)	
0	0	0	0.0000	0.0000
2	-178	176	-0.1699	0.1699
4	-116	110	-0.1085	0.2784
6	-42	33	-0.0360	0.3144
8	134	-146	0.1344	0.1800
10	366	-380	0.3581	-0.1781
12	586	-598	0.5683	-0.7464
14	796	-809	0.7704	-1.5168
16	964	-971	0.9288	-2.4456
18	1073	-1081	1.0339	-3.4795
20	1166	-1172	1.1222	-4.6018
22	1285	-1294	1.2379	-5.8397
24	1419	-1426	1.3656	-7.2053
26	1576	-1590	1.5197	-8.7250
28	1687	-1695	1.6234	-10.3483



SITE : NANPP INSTALLATION : 805B DESCRIPTION : Entered Manually

CURRENT SURVEY : 12/20/2002 12:14:33 PM Probe Serial No : 2591

DATE PRINTED : 12/20/2002 2:18:14 PM

Data Reduction for A Axis:

Depth	Current	Current	Current	Cum.
(ft)	<b>A</b> 0 ;	A180	Incr. Dev.	Dev. (in)
\ \ \ \			(in)	
0	0	0	0.0000	0.0000
2	144	-161	0.1464	-0.1464
4	237	-246	0.2318	-0.3782
6	228	-240	0.2246	-0.6029
8	213	-223	0.2093	-0.8122
10	222	-231	0.2174	-1.0296
12	264	-277	0.2597	-1.2893
14	402	-414	0.3917	-1.6810
16	475	-483	0.4598	-2.1408
18	491	-503	0.4771	-2.6179
20	457	-465	0.4426	-3.0605
22	523	-530	0.5054	-3.5659
24	831	-846	0.8050	-4.3709
26	1072	-1083	1.0344	-5.4053
28	1178	-1191	1.1371	-6.5424
30	1107	-1117	1.0675	-7.6099

: NANPP

INSTALLATION

: 805B

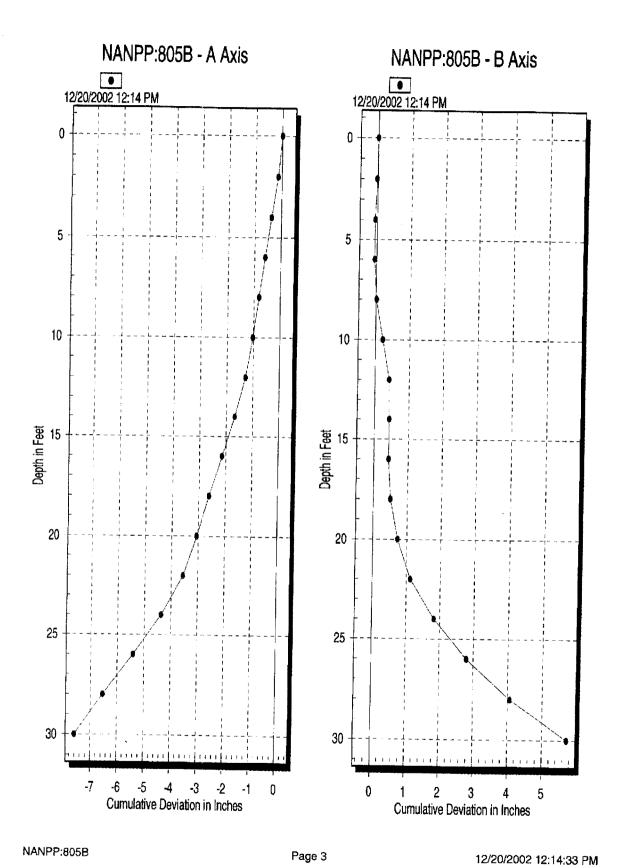
DESCRIPTION

: Entered Manually

CURRENT SURVEY

: 12/20/2002 12:14:33 PM

Probe Serial No


: 2591

DATE PRINTED

: 12/20/2002 2:18:14 PM

Data Reduction for B Axis:

Depth	Current	Current	Current	Cum.
(ft)	B0	B180	Incr. Dev.	Dev. (in)
			(in)	
0	0	0	0.0000	0.0000
2	24	-20	0.0211	-0.0211
4	39	-38	0.0370	-0.0581
6	1	-1	0.0010	-0.0590
8	-78	70	-0.0710	0.0120
10	-207	205	-0.1978	0.2098
12	-218	205	-0.2030	0.4128
14	-19	18	-0.0178	0.4306
16	5	-3	0.0038	0.4267
18	-78	73	-0.0725	0.4992
20	-235	230	-0.2232	0.7224
22	-409	405	-0.3907	1.1131
24	-741	737	-0.7094	1.8226
26	-1017	1009	-0.9725	2.7950
28	-1329	1324	-1.2734	4.0685
30	-1715	1717	-1.6474	5.7158



2.5.4B-234

: NANPP

INSTALLATION

: 805C

DESCRIPTION

: Entered Manually

CURRENT SURVEY

: 12/20/2002 12:27:39 PM

Probe Serial No

: 2591

DATE PRINTED

: 12/20/2002 1:32:57 PM

Data Reduction for A Axis:

Depth	Current	Current	Current	Cum.
(ft)	A0	A180	Incr. Dev.	Dev. (in)
			(in)	
0	0	O	0.0000	0.0000
2	-82	62	-0.0691	0.0691
4	-63	49	-0.0538	0.1229
6	-42	28	-0.0336	0.1565
8	10	-21	0.0149	0.1416
10	9	-19	0.0134	0.1282
12	-101	92	-0.0926	0.2208
14	-280	270	-0.2640	0.4848
16	-438	430	-0.4166	0.9014
18	-433	420	-0.4094	1.3109
20	-210	198	-0.1958	1.5067
22	-62	52	-0.0547	1.5614
24	61	-77	0.0662	1.4952
26	101	-110	0.1013	1.3939
28	205	-204	0.1963	1.1976
30	303	-316	0.2971	0.9005

: NANPP

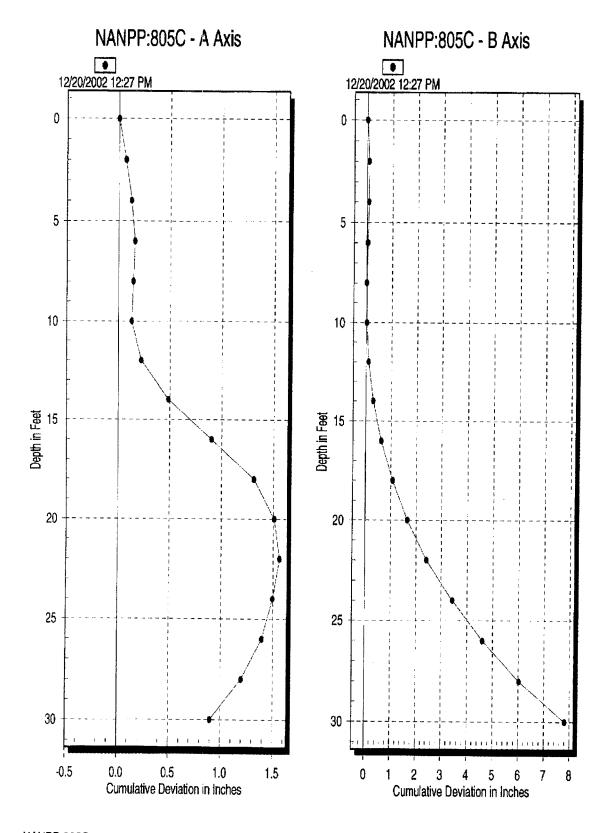
INSTALLATION

: 805C

DESCRIPTION

: Entered Manually

CURRENT SURVEY


NT SURVEY : 12/20/2002 12:27:39 PM Probe Serial No : 2591

DATE PRINTED

: 12/20/2002 1:32:57 PM

Data Reduction for B Axis:

Depth	Current	Current	Current	Cum.
(ft)	B0	B180	Incr. Dev.	Dev. (in)
'			(in)	
0	0	0	0.0000	0.0000
2	-75	77	-0.0730	0.0730
4	4	1	0.0014	0.0715
6	41	-40	0.0389	0.0326
8	29	-34	0.0302	0.0024
10	-11	16	-0.0130	0.0154
12	-86	84	-0.0816	0.0970
14	-194	206	-0.1920	0.2890
16	-336	332	-0.3206	0.6096
18	-484	481	-0.4632	1.0728
20	-610	599	-0.5803	1.6531
22	-796	791	-0.7618	2.4149
24	-1062	1059	-1.0181	3.4330
26	-1222	1209	-1.1669	4.5998
28	-1488	1476	-1.4227	6.0226
30	-1869	1848	-1.7842	7.8067



NANPP:805C

Page 3

12/20/2002 12:27:39 PM

# APPENDIX H CROSSHOLE SEISMIC REPORT AND DATA



### Grumman Exploration, Inc.

2309 Dorset Road Columbus, Ohio 43221 (614) 488-7860 tel; (614) 488-8945 fax

Non-destructive Subsurface Exploration Near-surface Geophysics

January 14, 2003

Mr. J. Allan Tice Mactec Engineering and Consulting Services, Inc. 3301 Atlantic Avenue Raleigh, NC 22080

RE:

Report of Cross-hole Seismic Testing, North Anna ESP Project, North Anna Nuclear Facility, Lake Anna, Virginia, GEI Project No. 01-22089, MACTEC JOB NO. 30720-2-5400

#### Dear Al:

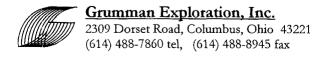
Grumman Exploration, Inc. has completed the cross-hole seismic testing at the above referenced site located on Lake Anna, Virginia. This letter-report summarizes the field procedures used and results of the tests performed at this site. The attached spreadsheets and plots summarize the estimated seismic velocities for the boreholes tested.

#### Project Description

Mactec Engineering and Consulting Services, Inc. is engaged in geotechnical investigations at the above referenced site. Cross-hole seismic testing was requested to assist in the evaluation and design of possible structures and foundations proposed for this location. Among the requirements and assumptions of the cross-hole testing procedure are: homogeneous isotropic subsurface materials, horizontal layering of subsurface materials, receiver hole verticality, minimal lateral stratigraphic variability and low ambient noise. Estimating a P or S wave arrival time onset can be complicated by the presence of noise and other interfering wave trains.

Report of Cross-hole Seismic Testing North Anna ESP Project, North Anna Nuclear Station, Virginia Mactec Engineering and Consulting Services, Inc. January 14, 2003 Page 2

#### Field Procedures


Grumman Exploration, Inc. conducted cross-hole seismic tests using boreholes B-805a, b, and c, and B-802a, b and c on December 12, 2002 as specified by Mactec Engineering and Consulting Services, Inc. The cross-hole seismic tests were performed in accordance with D-ASTM D4428/D4428M, with minor, approved exceptions noted on the field log. The depth of the two sets of test borings was approximately 29-ft and 92-ft for borings B-805 and B-802 respectively. The cross-hole tests in B-802 was performed in the bedrock portion of the hole (deeper than ~25-ft), while the testing performed in B-805 was performed entirely in the unconsolidated portion of the overburden. The receiver borings were lined with 2.875" diameter PVC inclinometer casing that were grouted in-place using a cement bentonite grout. Borehole deviation surveys were performed by Mactec Engineering and Consulting Services, Inc.

The following field equipment and procedures were used to conduct the tests:

- Geometrics, Inc. SmartSeis S-12, 12 channel, digital signal enhancement seismograph,
- Dual triaxial geophones, with mechanical sidewall clamping mechanisms [receiver holes], and
- Reversible polarity, dowhole impulse hammer source with trigger [shot hole]

In B-805 (soil/weathered rock boring), the tests were performed at intervals that corresponded to the approximate centers of the soil sampling intervals. In B-802, the tests were performed at 5-ft intervals to the end of the boring. The nominal receiver hole separation at the ground surface was approximately 10-ft however borehole deviation surveys were performed by Mactec Engineering and Consulting Services, Inc. The test preparation procedures consisted of lowering each geophone to the desired test depth in each receiver hole. The impulse source was placed in the shot hole to the corresponding testing depth. The impulse source was activated multiple times until a satisfactory signal response was obtained. Two separate tests were performed at each depth. Between 2 and 6 impacts per test were stacked to help enhance the P and S-wave signatures and cancel spurious noise effects. Sampling intervals of 0.03125 and 0.064 milli-seconds [msec] and record lengths (sweep-times) of between 64 and 128 milliseconds were used. A total of 2048 samples were digitally recorded per channel per shot and no filtering was used during acquisition. The seismograph was calibrated by the manufacturer two-weeks prior to the tests and the geophones were also manufactured and purchased new within three weeks of the tests. Sources of possible noise and other interfering vibrations included vehicle traffic, construction activity, heavy machinery operation and nearby concrete cutting operations.

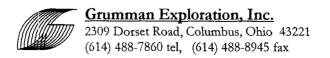
The data were observed and recorded in the field during acquisition and later returned to the offices of Grumman Exploration, Inc. for further review and analysis. The analysis consisted of estimating the earliest onset of the P-wave and S wave for each depth level tested. Some of the S-waves were analyzed by comparing similar S-wave onsets, peaks and/or zero crossings



Report of Cross-hole Seismic Testing North Anna ESP Project, North Anna Nuclear Station, Virginia Mactec Engineering and Consulting Services, Inc. January 14, 2003 Page 3

across the seismic traces. A computer program developed by Grumman Exploration, Inc. was used to extract and display the raw, unfiltered P and S-wave traces for each test interval. No alteration (e.g. filtering, processing) of the raw signals was performed. Using the arrival time estimates and the measured ground-level receiver-hole separation distance, P and S wave velocities were calculated for each depth interval. The vertically aligned geophones (channels 1 and 4) were used primarily for the S-wave analysis and the lateral geophones for the compressional (p-wave) assessment. Copies of the seismic waveforms used in the interpretation are attached.

# Cross-hole Seismic Testing Results


The attached spreadsheets summarizes the cross-hole seismic testing results for test hole locations B-802 and B-805 at the North Anna ESP Project site. Each spreadsheet represents a separate test performed at each depth. The spreadsheets include summaries of the P and S-wave arrival times, the calculated estimates of apparent P-wave and S-wave velocity and poisson's ratio for each test interval. Graphs illustrating these results are also included with each spreadsheet and as separate figures.

#### B-805 (soil/unconsolidated overburden)

The cross-hole seismic waveforms were reasonably clear and uncomplicated by noise interference with the exception of the deepest test intervals, near the bedrock contact. The downhole seismic impulse source is optimized for the Shear (S)-wave and the S-wave onset was more readily apparent than the earlier P-wave on the waveforms for B-805. The compressional (P)-wave onset was complicated by high-frequency noise, particularly at the deepest test intervals. The computed compressional wave velocities (Vp) generally appear higher than would be anticipated given the observed soil/overburden profile. Possible explanations for the elevated Vp include the presence of higher velocity weathered bedrock within the overburden, saturation of the deeper test intervals, and possible P-wave arrival time estimation inaccuracies caused by excessive noise interference.

#### B-802 (bedrock)

Severe high frequency noise appears to have severely degraded the overall quality of the B-802 results and complicated the interpretation of these results. A possible shear wave arrival was apparent only on the tests performed from 27-ft to approximately 45-ft. Deeper than 45-ft, no apparent shear-wave could be discerned from the results. Although excessive high-frequency noise severely complicated all of the recorded waveforms, no clear late-time waveforms (e.g. possible shear-waves) were apparent on the deeper records (>~45-ft). No compressional wave waves could be clearly interpreted on the seismic records. The compressional waveforms, if present, may have been obscured by the high-frequency noise. The observation of the P-wave onset may have been further complicated by the anticipated high Vp in the bedrock interval and resultant very small arrival time differential between receiver locations. The bedrock within the test area appears to readily transmit high-frequency noise from various noise sources throughout



Report of Cross-hole Seismic Testing North Anna ESP Project, North Anna Nuclear Station, Virginia Mactec Engineering and Consulting Services, Inc. January 14, 2003 Page 4

the site. An attempt to filter the seismic traces was performed, however, the results did not appear to improve the interpretation of the waveforms.

#### General Qualifications

It is considered possible that one or more of the circumstances noted below may have affected the P and S-wave velocities or their estimation through various regions of the subsurface. Bias in the arrival time picks and consequently the velocity estimates may be the result of one or more possible circumstances including: inaccuracies in the wave arrival time picks, irregular or incomplete borehole annular space filling, refraction effects, lateral stratigraphic changes, limitations on the resolution of the digitized signal, and the presence of interfering noise and other wavetrains.

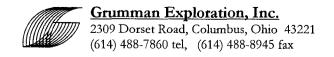
The cross-hole seismic data presented herein represent estimates of subsurface properties in the interval between the two receiver boreholes tested using the measurement procedures described above. No warranty, certification, or statement of fact, either expressed or implied, regarding actual subsurface properties surrounding the borehole tested is contained herein. If questions or uncertainties exist regarding the actual parameter values, supplemental in-situ or laboratory tests or other invasive explorations should be conducted to document actual subsurface material properties. No inference of subsurface properties can be made for depth intervals not tested.

Grumman Exploration, Inc. has appreciated this opportunity to be of service again to Mactec Engineering and Consulting Services, Inc. If you have any questions or comments regarding this report, please feel free to contact us.

Sincerely,

Grumman Exploration, Inc.

David L. Grumman, Jr. President/Geophysicist


Attachments:

Spreadsheets:

B802 Xhole Seismic.xls B805 Xhole Seismic.xls

Figure 1 (B-805) Figure 2 (B-802)

Field data acquisition logs for B-802 and B-805



**Cross-Hole Seismic Testing Summary Table** 

Test/Well ID: B-802

Project: Noth Anna ESP Project

Location: North Anna Power Station, Mineral, Virginia

Client/Owner: Mactec

Test Date: 12/12/2002 Calc. Date: 1/14/2003

Field Staff: dlg Data Proc by: dlg

Well Descr.: 2.875" PVC/inclinometer, grouted, ~92' depth

Grumman Exploration, Inc.

2309 Dorset Road

Columbus, Ohio 43221-3145

(614) 488-7860 tel

Test Interval	Interval Velocity (ft/sec)		Soil Density (pcf)	Shear Modulus	Bulk Modulus	Young's Modulus	Poisson's Ratio		
Depth (ft)	$V_p$	V _s	γ	G	K	E	υ	Depth (ft)	Material Descr/Class
27.00 30.00 30a 35.00 40.00 40a 45.00 50.00 55.00 60.00 60a 65.00		4508 5334 5204 5997 5208 5468 5556						27.00 30.00 30a 35.00 40.00 40a 45.00 50.00 55.00 60.00 60a 65.00	

# **Downhole Seismic Testing Field Data Spreadsheet**

Test/Well ID: B-802

Project: Noth Anna ESP Project

Grumman Exploration, Inc.

Location: North Anna Power Station, Mineral, Virginia

Nominal Test Hole Separation:

Client/Owner: Mactec ~10 ft

Test		Est'd Velocity (fps)	Esimated \	Nave Arriva	al Time (ms	ec)	receiver
Depth	Notes	$V_P$ $V_S$	P _{805B}	P _{805A}	S _{805B}	S _{805A}	separation (ft) ¹
27.0		4508	n/a	n/a	2.25	4.60	10.593
30.0	!	5334	n/a	n/a	2.00	4.00	10.668
30a	repeat	5204	n/a	n/a	1.95	4.00	10.668
35.0		5997	n/a	n/a	1.50	3.30	10.794
40.0		5208	n/a	n/a	2.10	4.20	10.937
40a	repeat	5468	n/a	n/a	2.05	4.05	10.937
45.0		5556	n/a	n/a	2.50	4.50 ⁻	11.112
50.0			n/a	n/a	n/a	n/a	11.299
55.0			n/a	n/a	n/a	n/a	11.504
60.0		;	n/a	n/a	n/a	n/a	11.737
60a	repeat		n/a	n/a	n/a	n/a	11.737
65.0			n/a	n/a	n/a	n/a	12.007
70.0			n/a	n/a	n/a	n/a	12.289
75.0			n/a	n/a	n/a	n/a	12.557
80.0			n/a	n/a	n/a	n/a	12.819
80a	repeat		n/a	n/a	n/a	n/a	12.819
85.0			n/a	n/a	n/a	n/a	13.084
89.00		5000 0 +10-i- 0 41	n/a	n/a	n/a	n/a	13.283

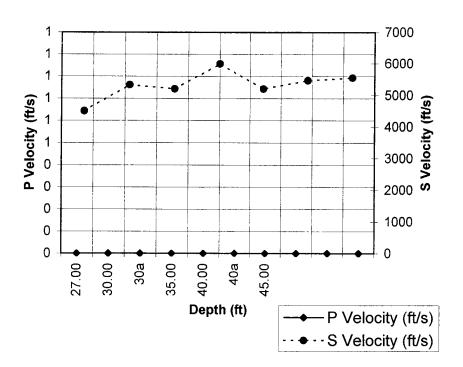
Field Equipment:

EG&G SmartSeis S-12, 12-channel, signal enhancement siesmograph

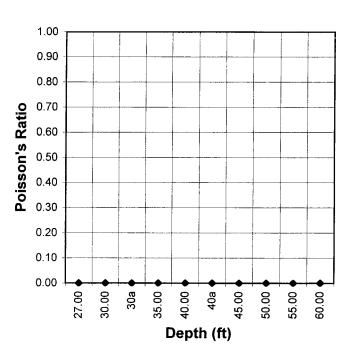
Two Triaxial Geophones, 10-ft nominal surface separation distance centered at depth indicated Downhole, reversible polarity hammer source

n/a uninterpretable/poor quality waveform

¹ Per checked deviation survey provded by Mactec


Test/Well ID: B-802

Project: Noth Anna ESP Project


Location: North Anna Power Station, Mineral, Virginia

Client/Owner: Mactec

P and S Velocity vs Depth



# Poisson's Ratio vs Depth





**Cross-Hole Seismic Testing Summary Table** 

Test/Well ID: B-805

Project: Noth Anna ESP Project

Location: North AnnaPower Station, Mineral, Virginia

Client/Owner: Mactec

Test Date: 12/12/2002 Calc. Date: 1/14/2003

Field Staff: dlg Data Proc by:

Grumman Exploration, Inc.

2309 Dorset Road

Columbus, Ohio 43221-3145

(614) 488-7860 tel

Well Descr.:	2.875" PVC	C/inclinome	ter, grouted,	~29' depth	Data Proc by: dlg				
Test Interval	Interval \	-	Soil Density (pcf)	Shear Modulus	Bulk Modulus	Young's Modulus	Poisson's Ratio		
Depth (ft)	V _p	V _s	γ	G	K	E	υ	Depth (ft)	Material Descr/Class
3.50 6.00 6.00 8.50 11.00 13.50 16.00 18.50 21.00 26.00 27.00	1243 1245 1660 1658 1652 4936 6552 5741 5683 5478	612 701 604 650 748 977 936 1072 1380 1023 1150 1047					0.340 0.268 0.424 0.409 0.371 0.480 0.490 0.482 0.469 0.482	3.50 6.00 8.50 11.00 13.50 16.00 18.50 21.00 26.00 27.00	

# **Downhole Seismic Testing Field Data Spreadsheet**

Test/Well ID: B-805

Project: **Noth Anna ESP Project**Location: North AnnaPower Station, Mineral, Virginia

Grumman Exploration, Inc.

Nominal Test Hole Separation:

Client/Owner: Mactec ~10 ft

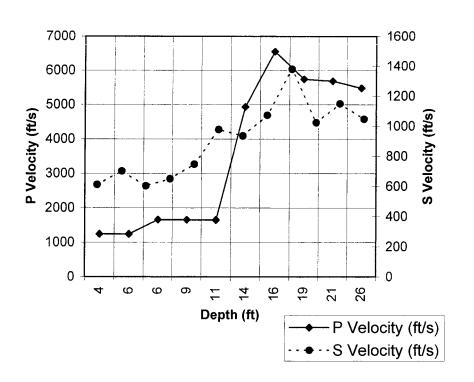
Test		Est'd Veloci	ty (fps)	Esimated \	ted Wave Arrival Time (msec)			receiver
Depth	Notes	V _P	Vs	P _{805B}	P _{805A}	S _{805B}	S _{805A}	separation (ft) ¹
3.5		1243	612	13.00	21.00	19.50	35.75	9.94398
6.0		1245	701	11.00	19.00	17.40	31.60	9.96011
6.0	repeat	1660	604	11.50	17.50	20.50	37.00	9.96011
8.5		1658	650	10.00	16.00	15.60	30.90	9.94764
11.0		1652	748	11.50	17.50	19.50	32.75	9.90961
13.5		4936	977	10.00	12.00	15.50	25.60	9.87221
16.0		6552	936	3.50	5.00	15.00	25.50	9.82763
18.5		5741	1072	1.50	3.20	10.60	19.70	9.75956
21.0		5683	1380	2.80	4.50	13.00	20.00	9.66105
26.0		5478	1023	2.20	3.90	11.40	20.50	9.31341
26.0	repeat		1150	3.60	n/a	11.40	19.50	9.31341
27.0			1047	3.00	n/a	10.70	19.50	9.21198
								1.
						[	1	
	:							
				l				

Field Equipment: EG&G SmartSeis S-12, 12-channel, signal enhancement siesmograph

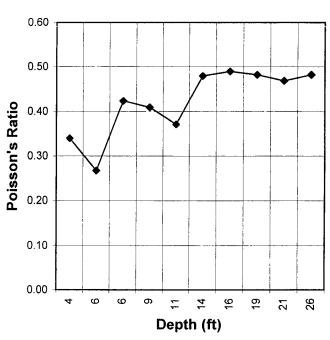
Two Triaxial Geophones, 10-ft nominal surface separation distance centered at depth indicated Downhole, reversible polarity hammer source

n/a uninterpretable/poor quality waveform

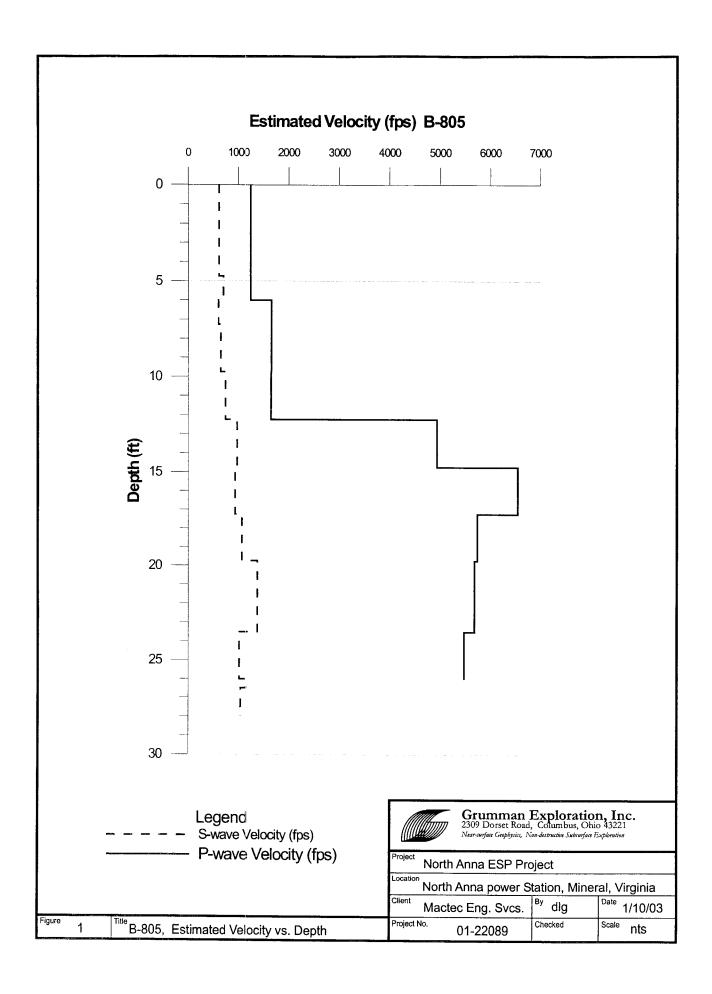
¹ Per checked deviation survey provded by Mactec


Test/Well ID: B-805

Project: Noth Anna ESP Project


Location: North AnnaPower Station, Mineral, Virginia

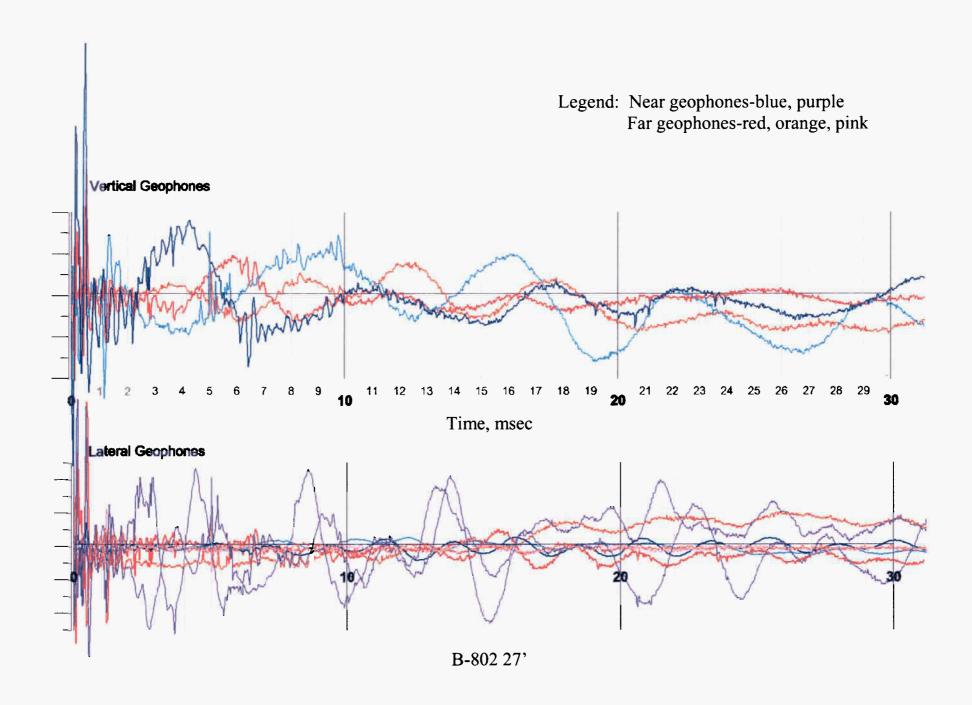
Client/Owner: Mactec

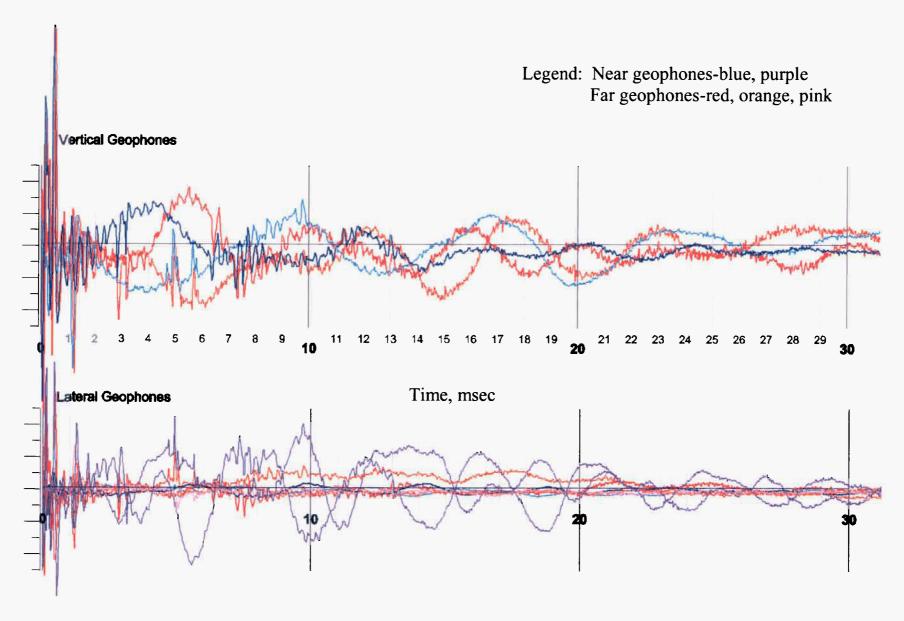

P and S Velocity vs Depth



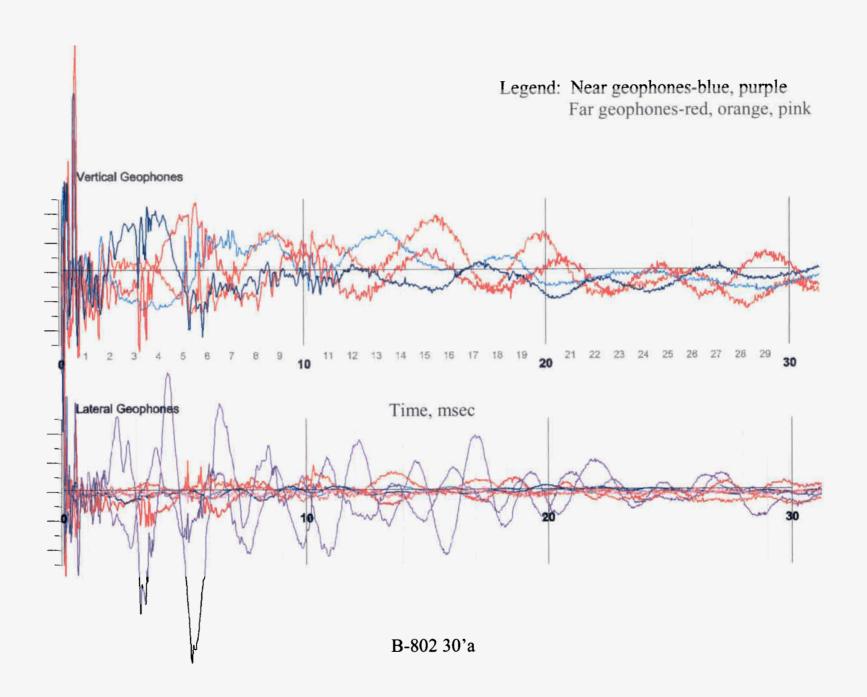
# Poisson's Ratio vs Depth

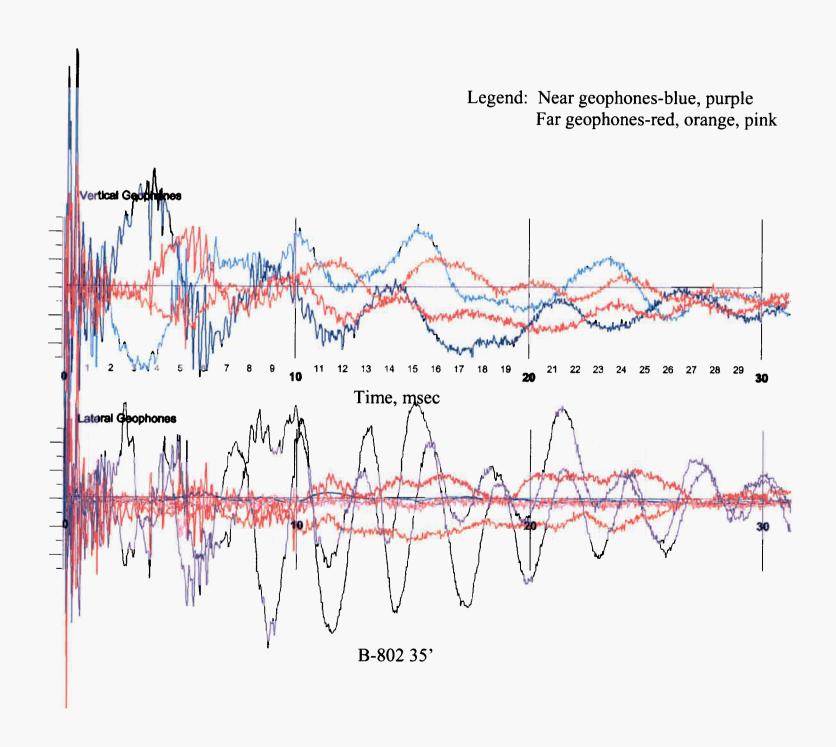




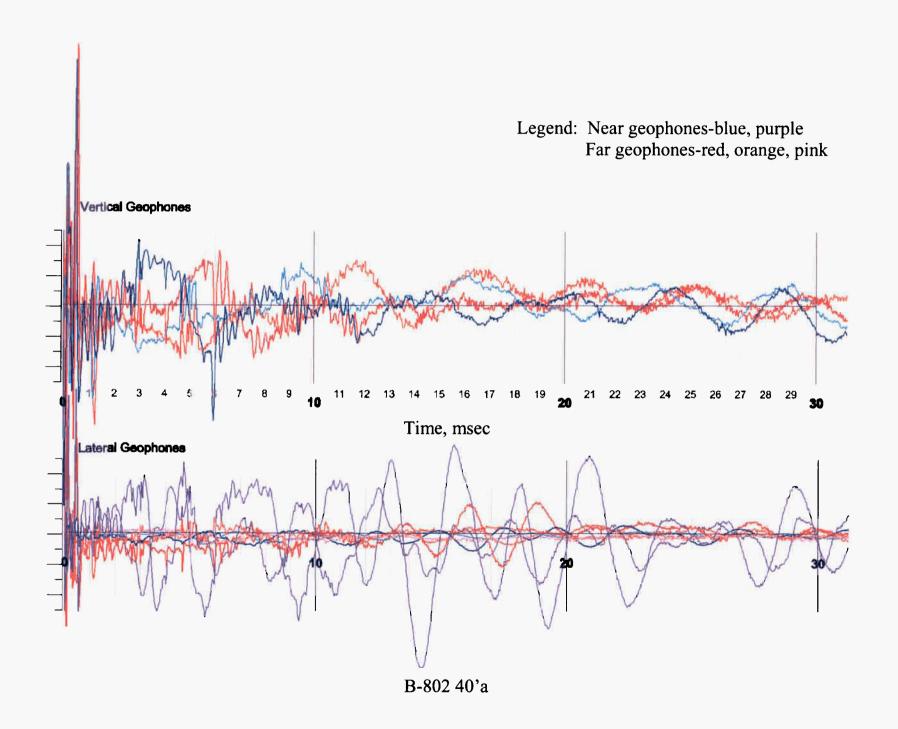



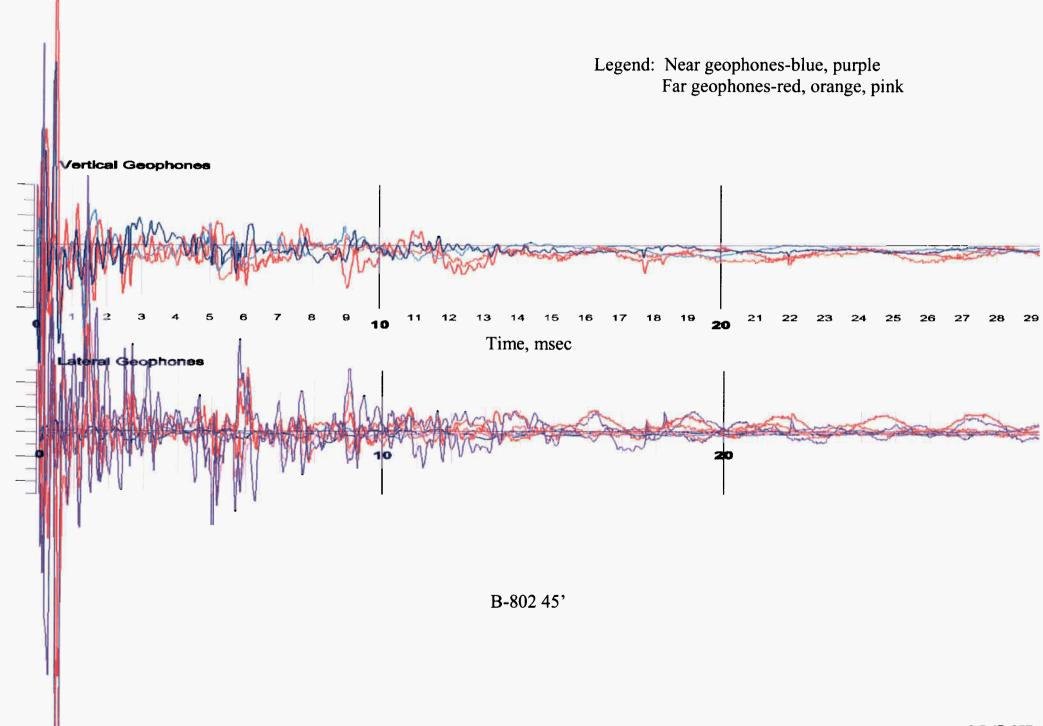

# WAVE FORMS FROM FIELD DATA

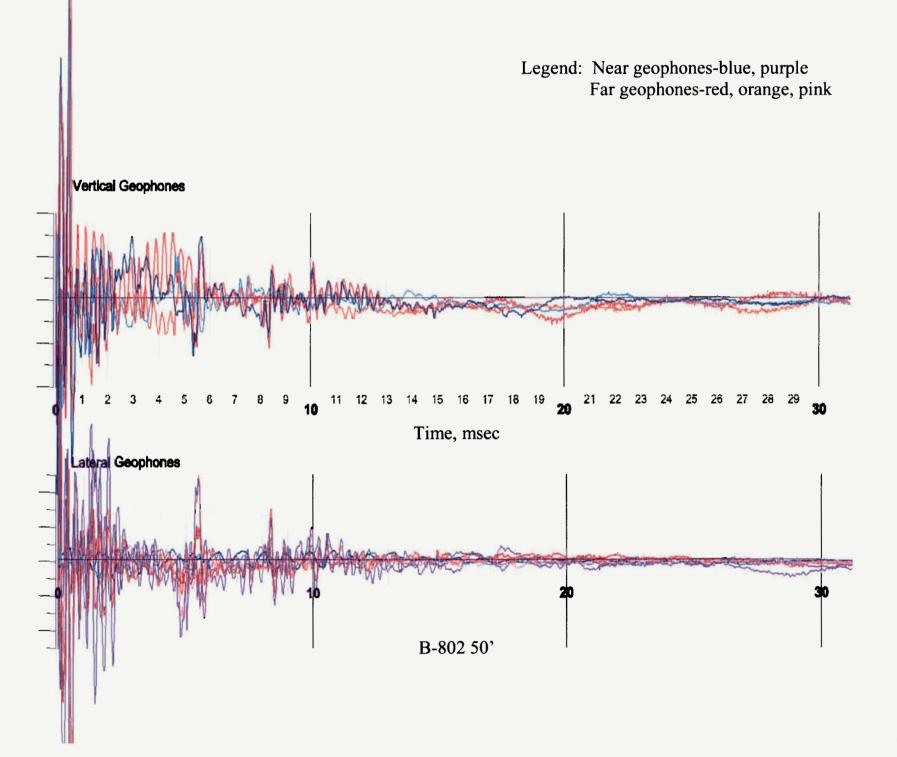

B-802 INCLUDES BOTH VERTICAL AND LATERAL GEOPHONES
B-805 INCLUDES ONLY THE VERTICAL GEOPHONES

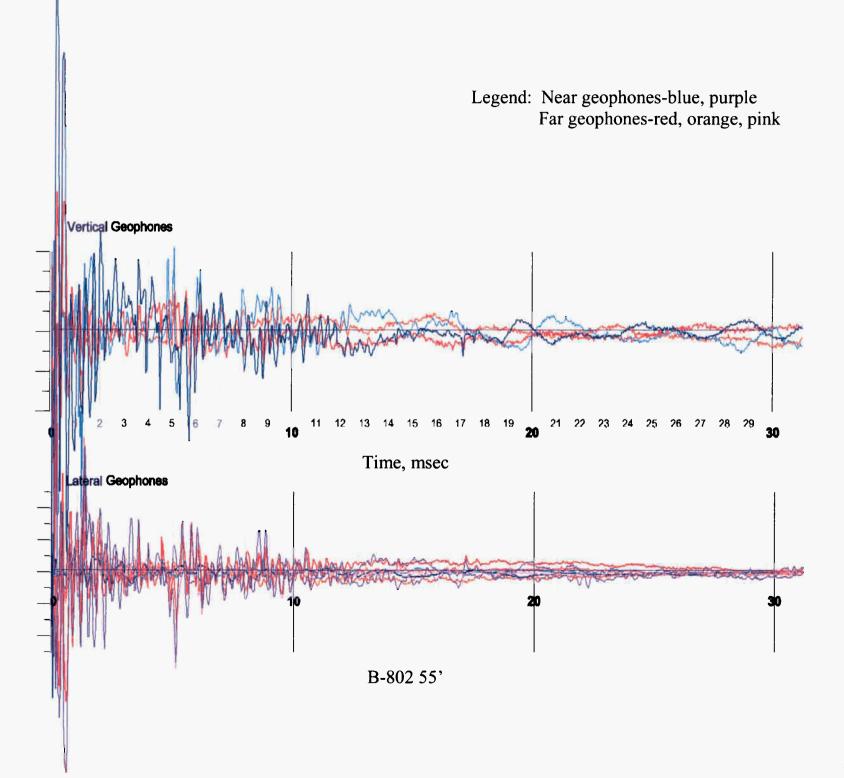

GRAPHS ARE CAPTIONED BY BOREHOLE LOCATION AND DEPTH AN "a" AFTER THE DEPTH INDICATES A REPEAT READING

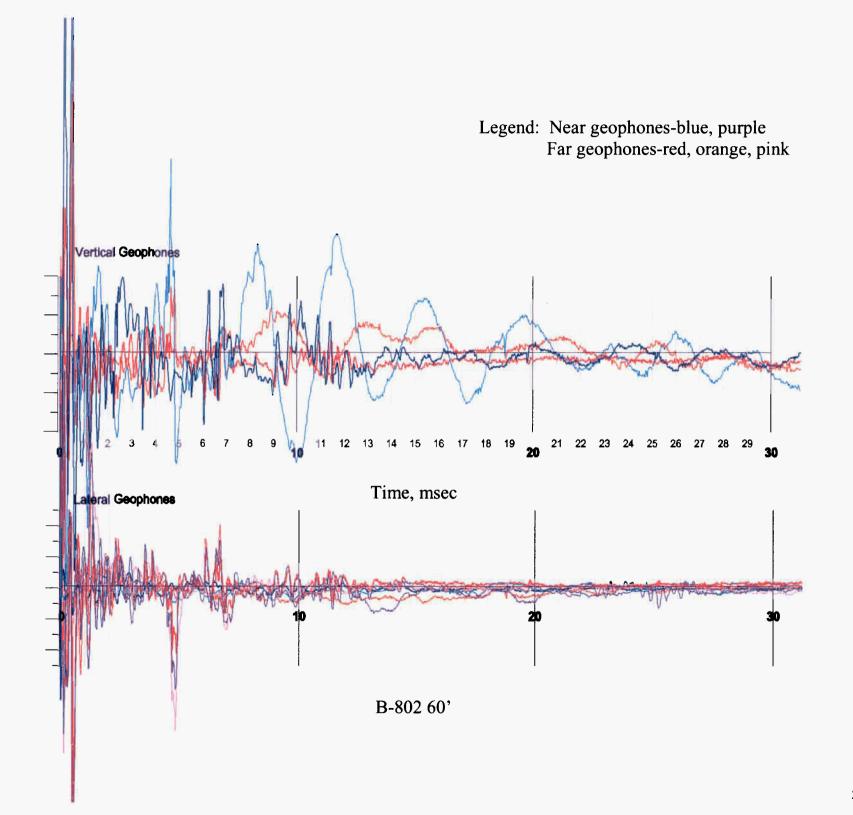


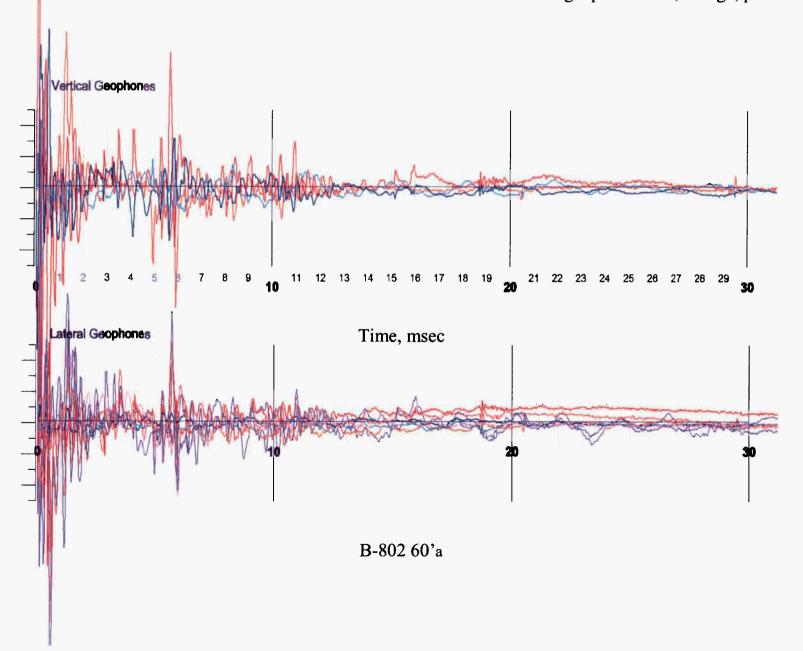


B-802 30'

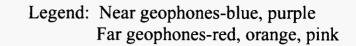


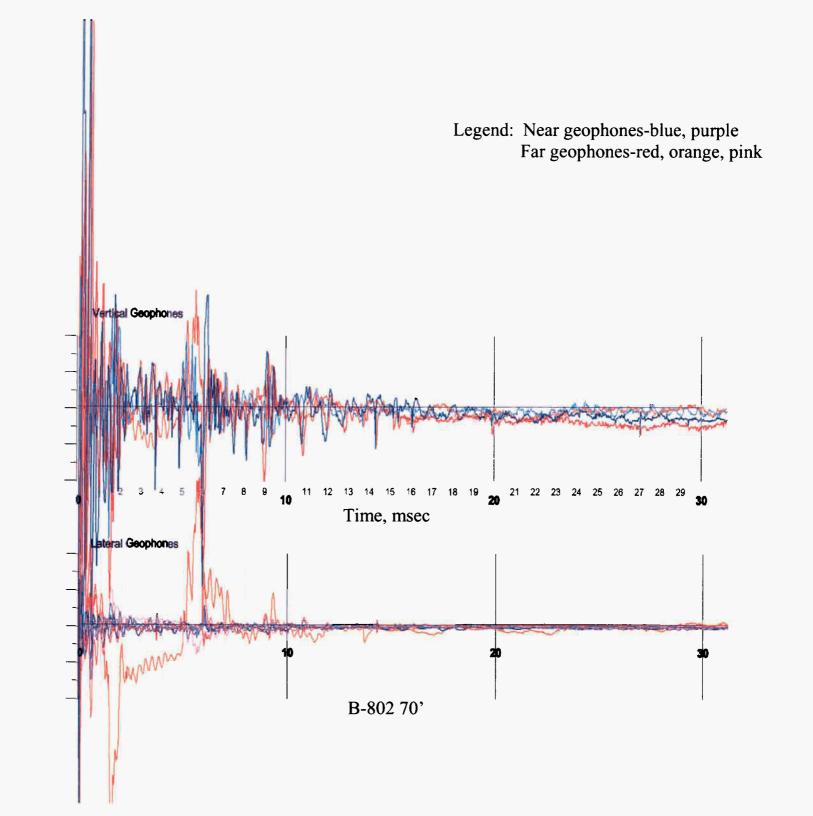


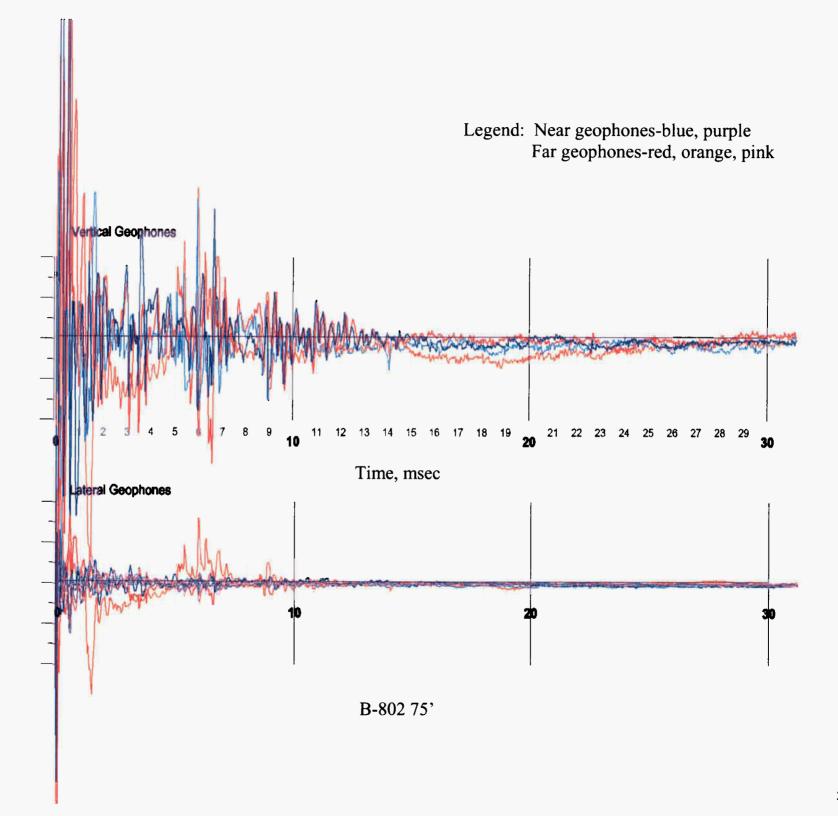



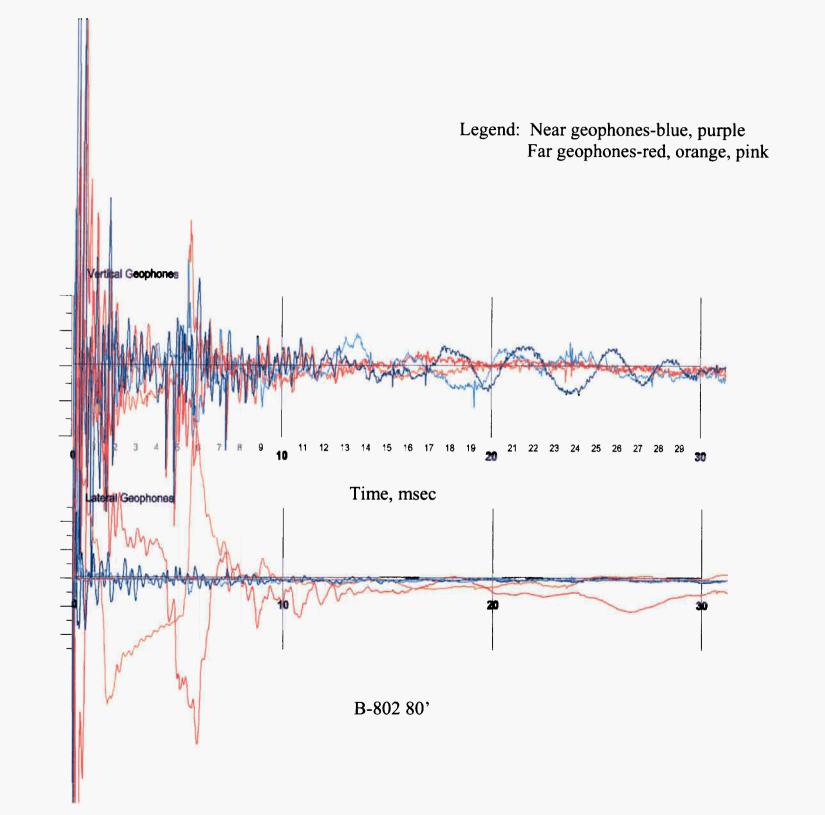



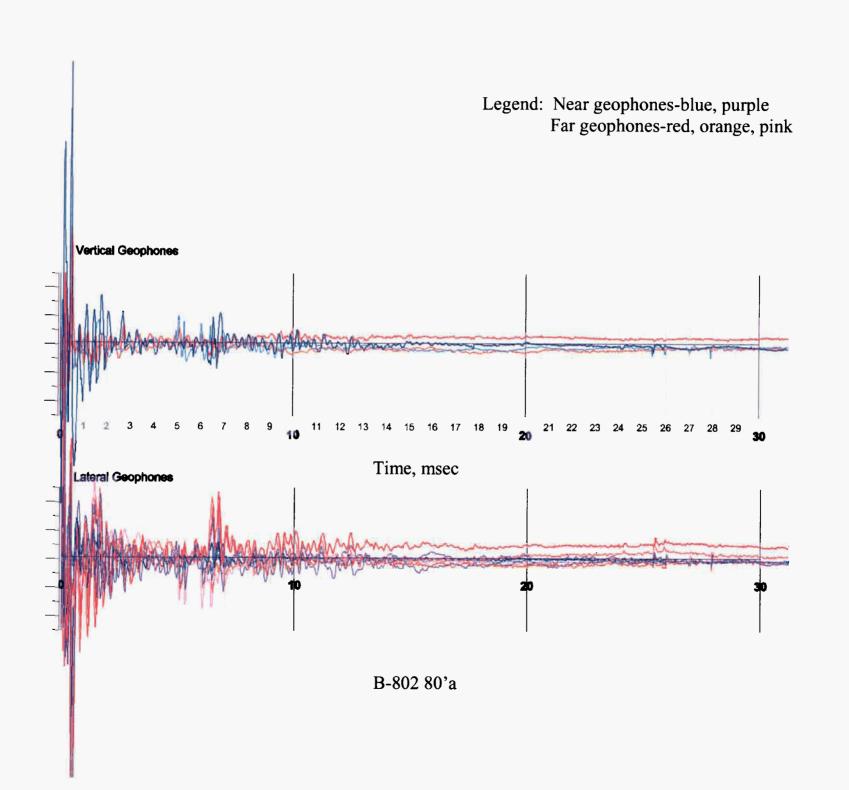


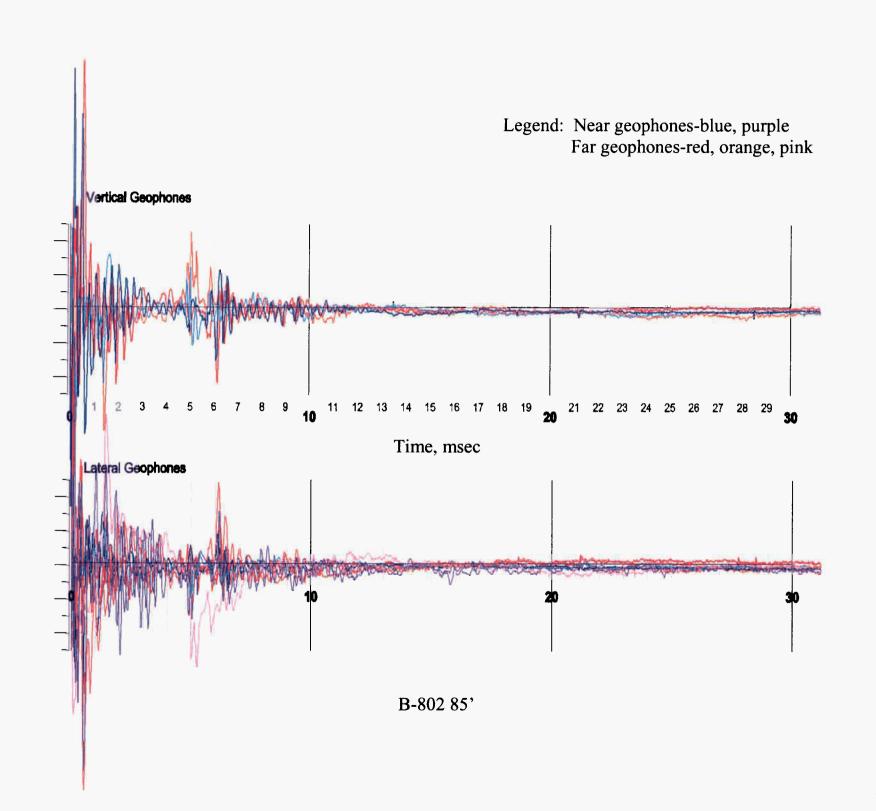


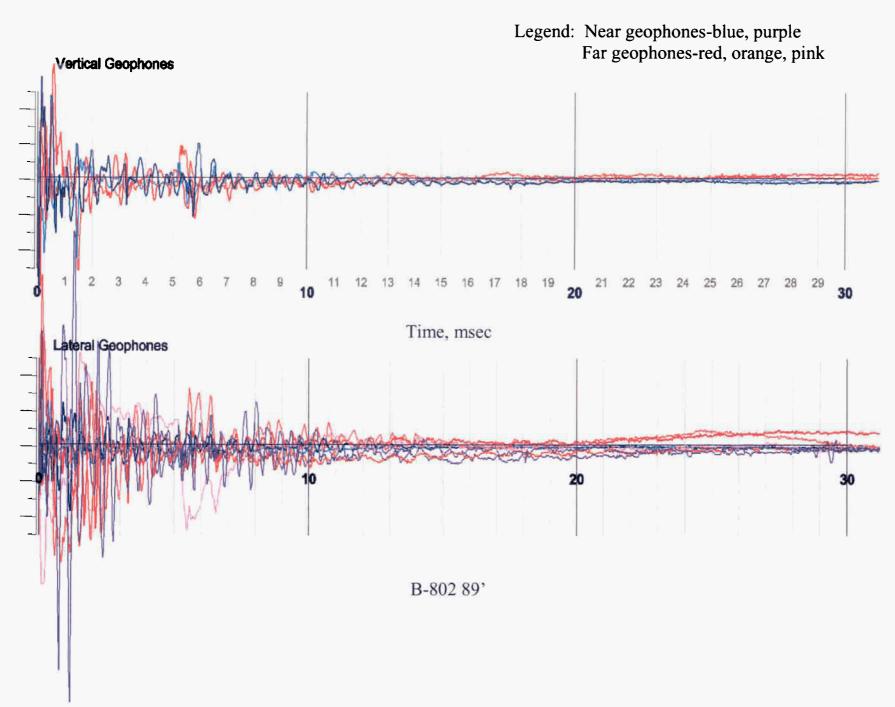




Legend: Near geophones-blue, purple Far geophones-red, orange, pink

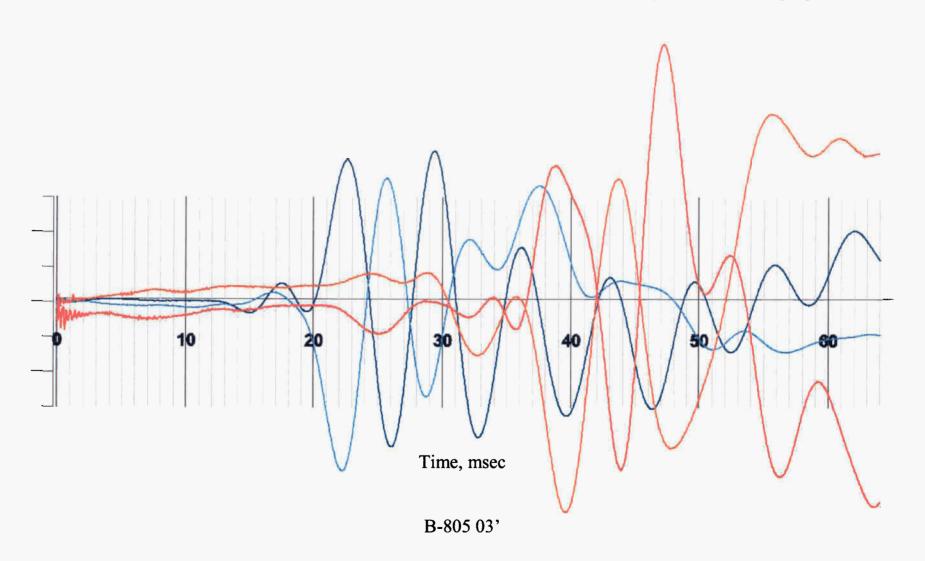


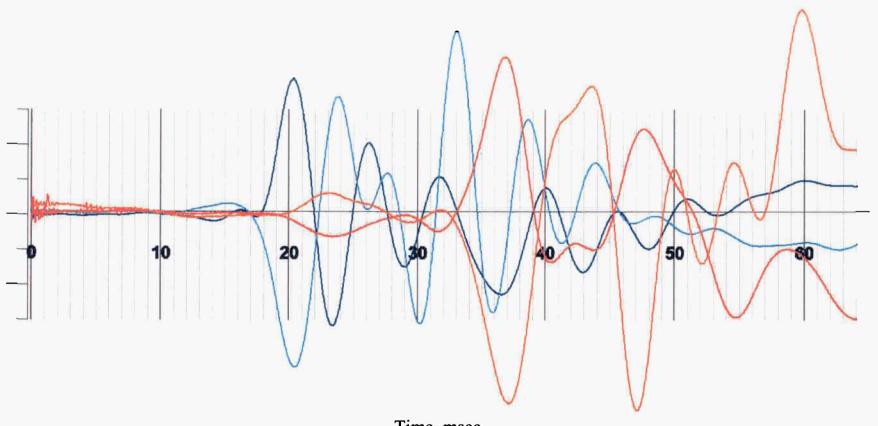





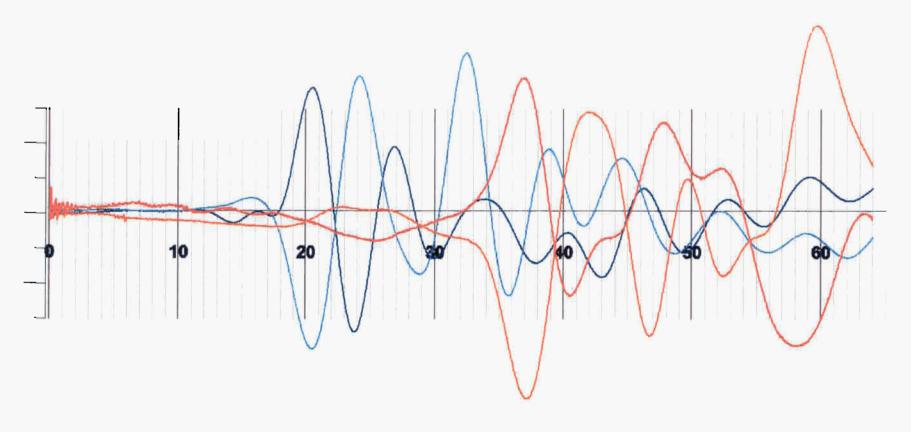




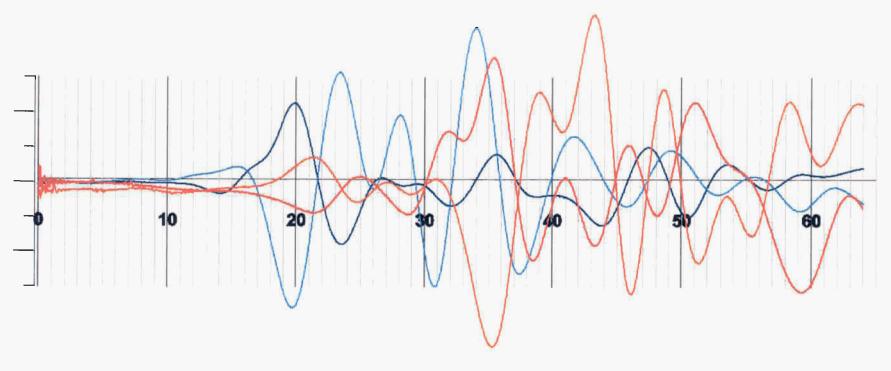

Legend: Near geophones-blue, purple Far geophones-red, orange, pink




Legend: Near geophones-blue, purple Far geophones-red, orange, pink

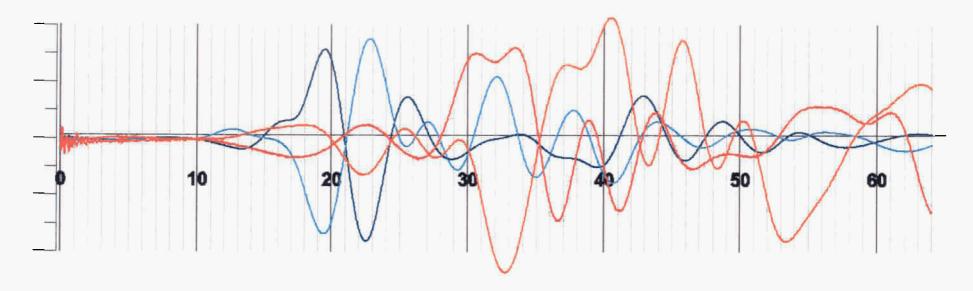


Time, msec


B-805 06'

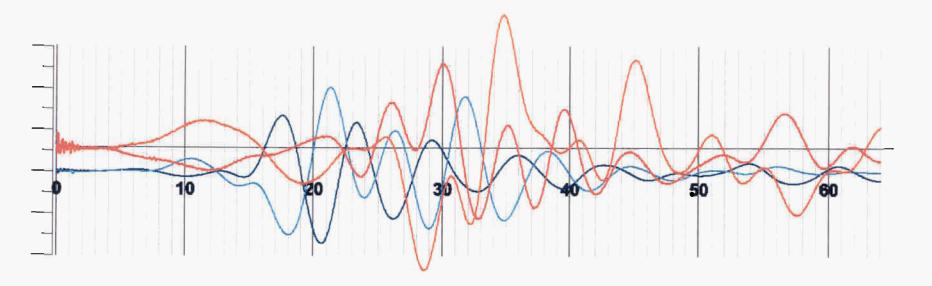
Legend: Near geophones-blue, purple Far geophones-red, orange, pink




B-805 06'a

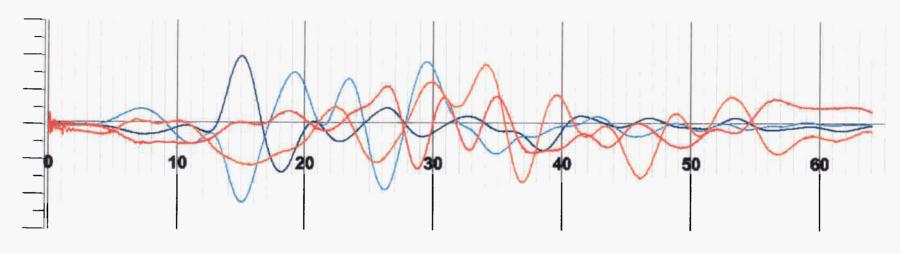
Legend: Near geophones-blue, purple Far geophones-red, orange, pink




B-805 08.5°

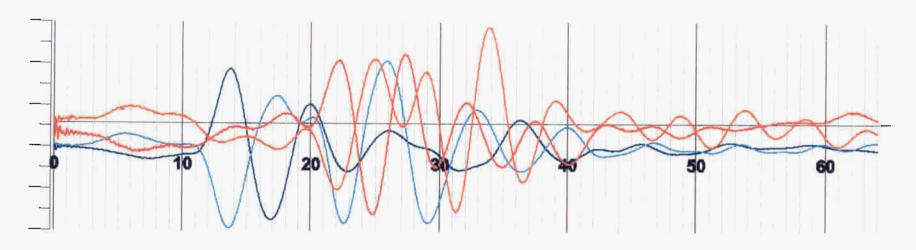
Legend: Near geophones-blue, purple Far geophones-red, orange, pink




B-805 11'

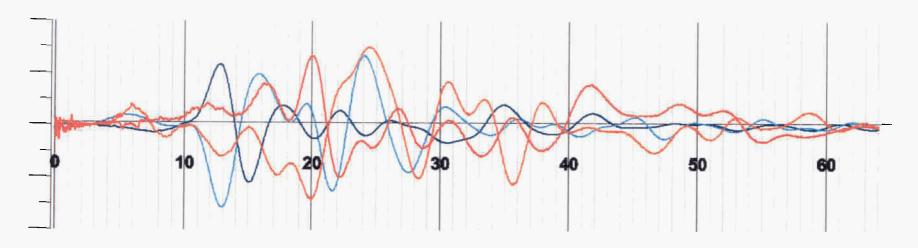
Legend: Near geophones-blue, purple Far geophones-red, orange, pink




B-805 13'

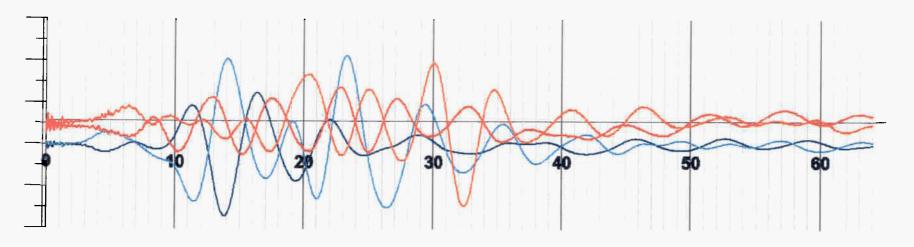
Legend: Near geophones-blue, purple Far geophones-red, orange, pink




B-805 16'

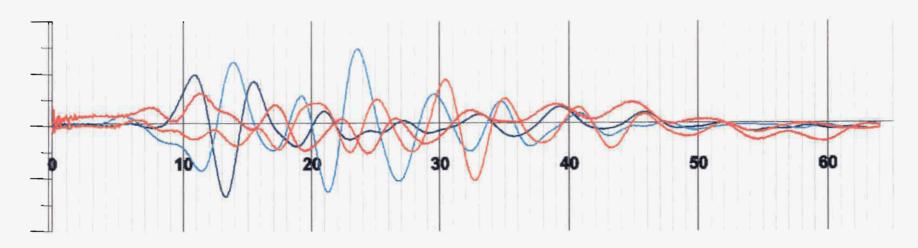
Legend: Near geophones-blue, purple Far geophones-red, orange, pink




B-805 18.5°

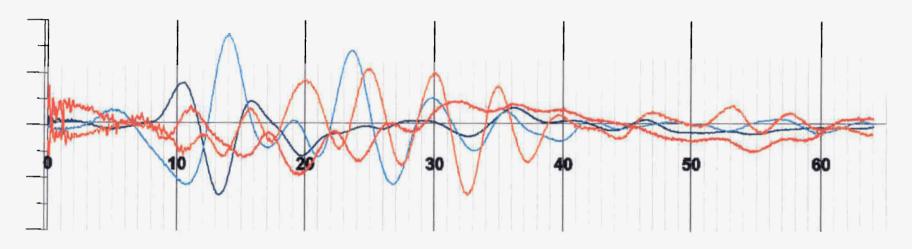
Legend: Near geophones-blue, purple Far geophones-red, orange, pink




B-805 21'

Legend: Near geophones-blue, purple Far geophones-red, orange, pink




B-805 26'

Legend: Near geophones-blue, purple Far geophones-red, orange, pink



B-805 26'a

Legend: Near geophones-blue, purple Far geophones-red, orange, pink



B-805 27'

# APPENDIX I LABORATORY TESTING DATA

## GEOTECHNICAL LABORATORY TEST ASSIGNMENT

Date

155-158 run24

SS1

SS5

Х

Х

0-1.5

8.5-10

core

jar

iar

801

Page 1 of €

11/27/2002-12/18/02 Job Name North Anna ESP Job No. 24830 Requested By John Davie COM-SAMPLE LOCATION PHYSICAL PROPERTIES STRENGTH TESTS CONSOLIDATION **PACTION** Unconfined Compression (rock) without stress-strain curve Grain Size Unconfined Compression Consolidated-Undrained Triaxial (3-stage w/pore-Analysis Chemical Analysis (pH, chloride, sulphate) NOTE:  $\widehat{\Box}$ rock) w/stress-strain  $\widehat{\Box}$ Sieve + Hydrometer Stress increments Confining Pressure Ú 芷 **Undrained Triaxial** Sample Type/No. Moisture Content Ú Sample Number Organic Content and rebound cycles, ksf. Atterberg Limits Unconsolidated-Specific Gravity Sample Depth, Point Load Test മ് മ് Unit Weight Standard (A, Direct Shear Modified (A, Boring No. Sieve Only CBR 805 7.5-9 SS4 Х х 18.5-20 SS7 40-45 run4 core Х 11 80-85 core run12 Х 803 6.1-7.6 iar SS3 Х х 8.6-10.1 **SS4** jar Х 3.7-15.1 **SS6** jar Х 23.6-25. SS8 jar core 50-55 run2 Х 11 70-75 run6 core Х 90-95 run10 core Х |125-13**0**| run18 core Х

REMARKS: Please contact John Davie of Bechtel if there are any questions: Phone (301) 228-7647; Fax (301) 682-6415; e-mail JDAVIE@BECHTEL.COM. For unconfined compression testing of rock cores, select typical rock core samples.

## GEOTECHNICAL LABORATORY TEST ASSIGNMENT

Page 2 of Ø

Date 11/27/2002-12/18/02 Job Name North Anna ESP Job No. 24830 Requested By John Davie COM-SAMPLE LOCATION PHYSICAL PROPERTIES STRENGTH TESTS CONSOLIDATION **PACTION** Grain Size Undrained Triaxial Consolidated-Undrained Triaxial (3-stage w/pore-Unconfined Compression (rock) w/stress-strain Unconfined Compression (rock) without stress-Chemical Analysis (pH, chloride, sulphate) Analysis NOTE:  $\widehat{\Box}$ Sieve + Hydrometer Stress increments Confining Pressure 缸 Ú Sample Type/No. Moisture Content Š Organic Content Sample Number and rebound cycles, ksf. Atterberg Limits Specific Gravity Unconsolidated-Sample Depth, Point Load Test Standard (A, B, ω Direct Shear Unit Weight Modified (A, strain curve Sieve Only Boring No. CBR 801 13.5-15 **SS6** Х 20-25 core run1 45-50 run6 core Х 804 3.5-5 SS3 jar Х 11-12.5 SS6 iar Х 18.5-20 SS8 iar Х 35-38 run3 ic of 46103 core Х 40-45 core run4 Х 50-55 core run6 Х 802 3.7-5.2 SS2 jar Х 20-25 run4 core Х *1 45-50 core run9 Х 65-70 run13 core 11 85-90 run17 core Х

REMARKS: Please contact John Davie of Bechtel if there are any questions: Phone (301) 228-7647; Fax (301) 682-6415; e-mail JDAVIE@BECHTEL.COM. For unconfined compression testing of rock cores, select typical rock core samples.

# GEOTECHNICAL LABORATORY TEST ASSIGNMENT

Page 3 of 8

 Date
 11/27/2002-12/18/02
 Job Name
 North Anna ESP
 Job No.
 24830
 Requested By
 John Davie

SAMPLE LOCATION					PHYSICAL PROPERTIES								STRENGTH TESTS								COM		CONSOLIDATION						
g No.	Sample Type/No.	Sample Depth, Ft	Sample Number	Moisture Content	Unit Weight	Specific Gravity	Atterberg Limits	l	Sieve + Hydrometer si Sieve	Chemical Analysis (pH, chloride, sulphate)				Unconsolidated- Undrained Triaxial	Consolidated-Undrained Triaxial (3-stage w/pore- pressure meas )	Unconfined Compression (rock) w/stress-strain	Unconfined Compression (rock) without stress- strain curve	Confining Pressure	Direct Shear	Point Load Test	Standard (A, B, C, D)	Modified (A, B, C, D)			NOTE: Stress increments and rebound cycles, ksf.			s, ksf.	
Boring No	Samp	Samp	Samp	Moist	Unit \	Speci	Atterk	Sieve	Sieve	Cherr (pH, c	Organ	ļ Ī		Uncol	Conso Triaxi press	Uncol (rock)	Uncor (rock) strain	Confi	Direct	Point	Stand	Modif	CBR		 				
806	jar	5.6-7.1	SS3						х	Х																			
11	core	24.5-26	run5														×												
"	core	40-45	run10														×												
П	core	60-65	run14														×												
807	jar	4.5-6	SS4	х			х																						
11	jar	2.3-13.	SS6	х			×			х																			
11	jar	21.8-23.	SS-8	x			х		х																				
	jar	31.5-33	SS10					Х																					
11	jar	11.4-42.6	SS12					Х																					

REMARKS: Please contact John Davie of Bechtel if there are any questions: Phone (301) 228-7647; Fax (301) 682-6415; e-mail JDAVIE@BECHTEL.COM. For unconfined compression testing of rock cores, select typical rock core samples.



#### MACTEC ENGINEERING AND CONSULTING, INC. RALEIGH, NORTH CAROLINA

REPORT OF STANDARD TEST METHOD FOR

LABORATORY DETERMINATION OF WATER CONTENT OF SOIL AND ROCK BY MASS

(ASTM D 2216)

PROJECT NAME: North Anna ESP MACTEC PROJECT NUMBER: 30720-2-5400 **BECHTEL JOB NO: 24830** 

DATE: 2/11/03

SAMPLE IDENTIFICATION			NATURAL	LIQUID	& PLASTIC	CLIMITS	% FINER				USCS	
BORING	TYPE	DEPTH (feet)	MOISTURE (%)	LL	PL	PI	#200 SIEVE	pН	CHLORIDES mg/kg	SULFATES mg/kg	CLASSIFICATION	
B-801	SS-1	0-1.5	22.2	39	29	10		6.3	130.0	< 27		
B-801	SS-5	8.5-10					39.9					
B-801	SS-6	13.5-15					55.1					
B-802	SS-2	3.7-5.2					19.5					
B-803	SS-3	6.1-7.6	18.9	30	26	4					;	
B-803	SS-4	8.6-10.1	23.2				24.4					
B-803	SS-6	13.7-15.3					20.9	5.7	100.0	< 23		
B-803	SS-8	23,6-25.1					18.5					
B-804	SS-3	3.5-5		-			54.2	,,				
B-804	SS-6	11-12.5					46.1					
B-804	SS-8	18.5-20					22.1	,				
B-805	SS-4	7.5-9	27.2	NP	NP	NP	27.5				SM	
B-805	SS-7	18.5-20					25.1					
B-806	SS-3	5.6-7.1					27.1	6.7	920.0	< 24		
B-807	SS-3	4.5-6	40.1	49	45	4						
B-807	SS-6	12.3-13.8	42.8	46	40	6		5.7	170.0	< 28		
B-807	SS-8	21.8-23.3	28.9	41	34	7	42.6	· · · · · · · · · · · · · · · · · · ·			SM-SC	
B-807	SS-10	31.5-33	26.7				37.7					
B-807	SS-12	41.4-42.9	21.8				44.2					

PREPARED BY: (

SCALES: 3.1.99 OVEN: 5.1.10

**TESTING** EQUIPMENT:

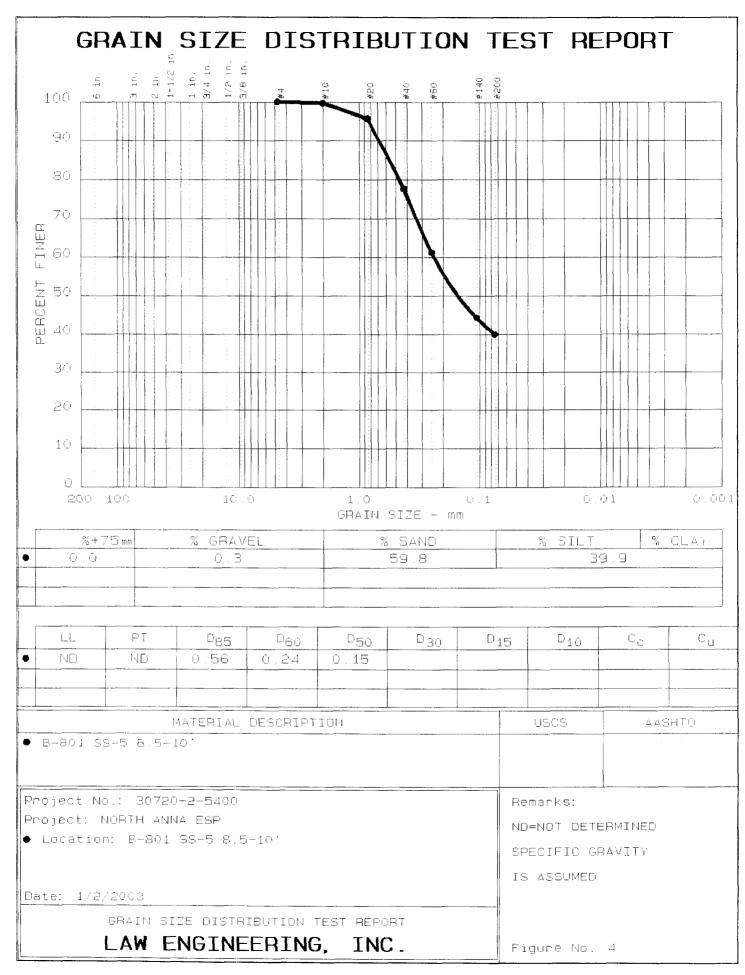
WASH SIEVE:

TECHNICIAN: JLB CALCULATIONS: JLB CHECKED BY: TLM

5.4.39

REVIEWED BY:

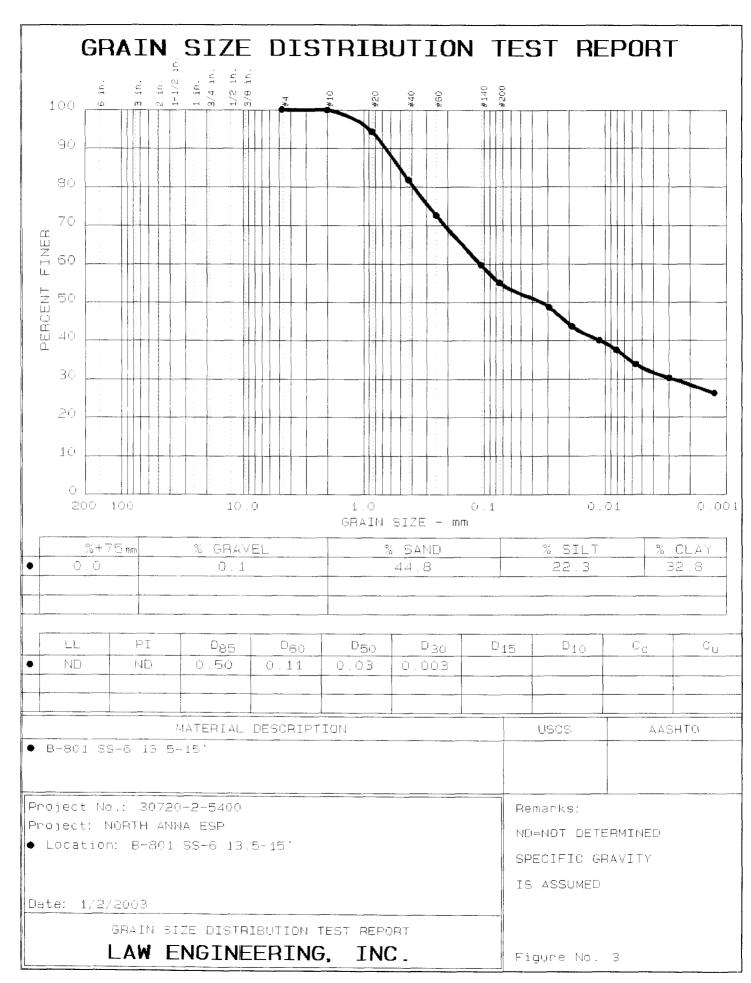
Stephen J. Criscenzo Principal Professional


APPROVED BY:

J. Allan Tice, P.E.

Principal Engineer/Project Manager

Trudy L. Mullins, Laboratory Manager


Registered Virginia, 5264



```
GRAIN SIZE DISTRIBUTION TEST DATA Test No.: 4
r -e: 1/2/2003
 ject No.: 30720-2-5400
Project: NORTH ANNA ESP
Sample Data
Location of Sample: B-801 SS-5 8.5-10'
Sample Description: B-801 SS-5 8.5-10'
USCS Class: SM
 Liquid limit: ND
 Plasticity index: ND
AASHTO Class: A-4

 Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 4
 Mechanical Analysis Data
 Initial
Dry sample and tare= 150.96
Tare = 0.00
Dry sample weight = 150.96
Tare for cumulative weight retained= 0
 ieve
 Cumul. Wt. Percent
 retained finer
 # 4
 0.00
 100.0
 # 10
 0.46
 99.7
 0.40
6.52
33.55
 # 20
 95.7
 # 40
 77.8
 # 60
 58.58
 61.2
 # 140
 84.15
 44.3
 90.76 39.9
 # 200
Fractional Components
Gravel/Sand based on #10 sieve
Sand/Fines based on #200 sieve
% + 75mm. = 0.0 % GRAVEL = 0.3 % SAND = 59.8
```

% FINES = 39.9

D85= 0.56 D60= 0.239 D50= 0.151



```

 GRAIN SIZE DISTRIBUTION TEST DATA
Pote: 1/2/2003
 ject No.: 30720-2-5400
Project: NORTH ANNA ESP

 Sample Data

Location of Sample: B-801 SS-6 13.5-15'
Sample Description: B-801 SS-6 13.5-15'
 Liquid limit: ND
USCS Class: ML
 Plasticity index: ND
AASHTO Class: A-4(0)
 Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 3

 Mechanical Analysis Data
 Initial
Dry sample and tare= 91.60
Tare = 0.00
Dry sample weight = 91.60
 0.00
Sample split on number 10 sieve
c it sample data:
 ample and tare = 81.22 Tare = 0 Sample weight = 81.22
 Cumulative weight retained tare= 0
Tare for cumulative weight retained= 0
 Cumul. Wt. Percent
 retained finer
0.00 100.0
0.08 99.9
4.54 94.3
 # 4
 # 10
 # 20
 14.71
 81.8
 # 40
 22.21
 # 60
 # 140
 32.68
 59.7
 55.1
 # 200
 36.40
 Hydrometer Analysis Data
Separation sieve is number 10
Percent -# 10 based on complete sample= 99.9
Weight of hydrometer sample: 81.22
Calculated biased weight= 81.29
Table of composite correction values:
 Temp, deg C: 15.3 20.3 27.1
```

- 6.5 - 5.0 - 3.0

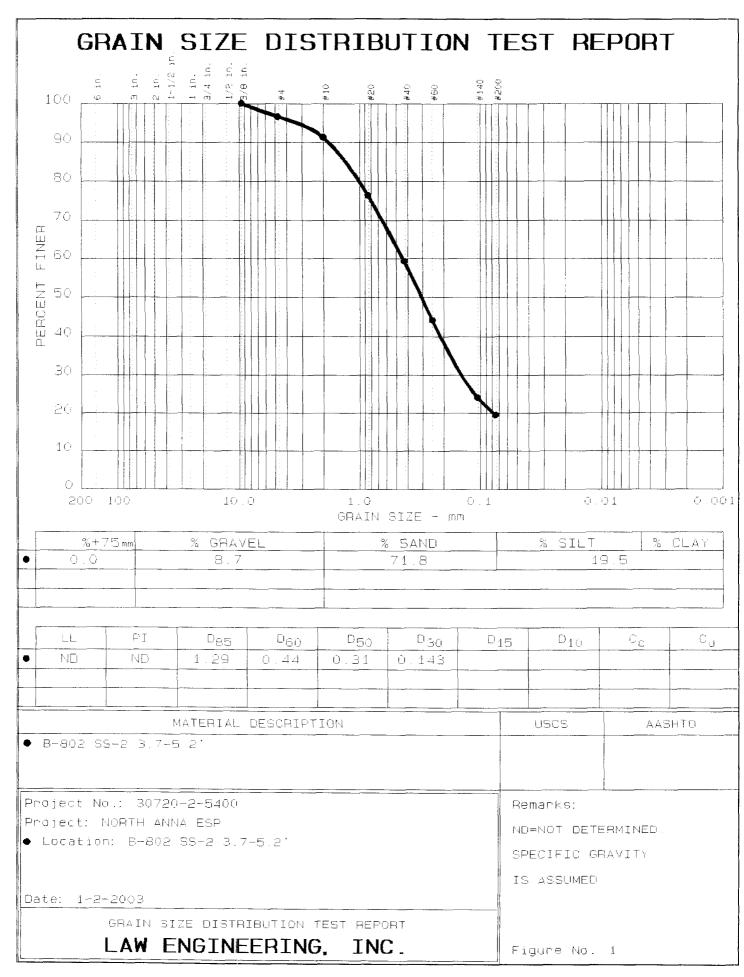
Meniscus correction only=-1

Specific gravity of solids= 2.63

cific gravity correction factor= 1.005 rometer type: 152H Effective depth L= 16.294964 - 0.164 x Rm

Elapsed time, min		Actual reading	Corrected reading	K	Rm	Eff. depth	Diameter mm	Percent finer
2.0	21.4	44.0	39.3	0.0135	43.0	9.2	0.0290	48.6
5.0	21.4	40.0	35.3	0.0135	39.0	9.9	0.0190	43.7
15.0	21.4	37.0	32.3	0.0135	36.0	10.4	0.0112	39.9
30.0	21.4	35.0	30.3	0.0135	34.0	10.7	0.0081	37.5
65.0	21.3	32.0	27.3	0.0135	31.0	11.2	0.0056	33.7
240.0	21.7	29.0	24.4	0.0134	28.0	11.7	0.0030	30.2
1440.0	21.0	26.0	21.2	0.0136	25.0	12.2	0.0012	26.2

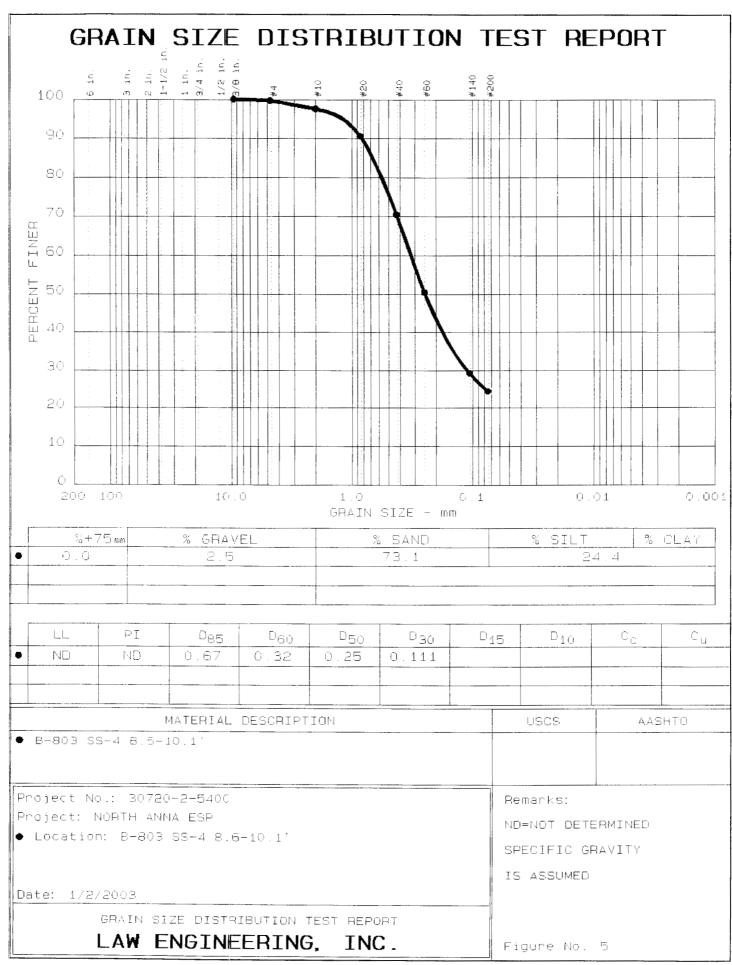
Fractional Components


Gravel/Sand based on #10 sieve Sand/Fines based on #200 sieve

% + 75mm. = 0.0 % GRAVEL = 0.1 % SAND = 44.8

% SILT = 22.3 % CLAY = 32.8

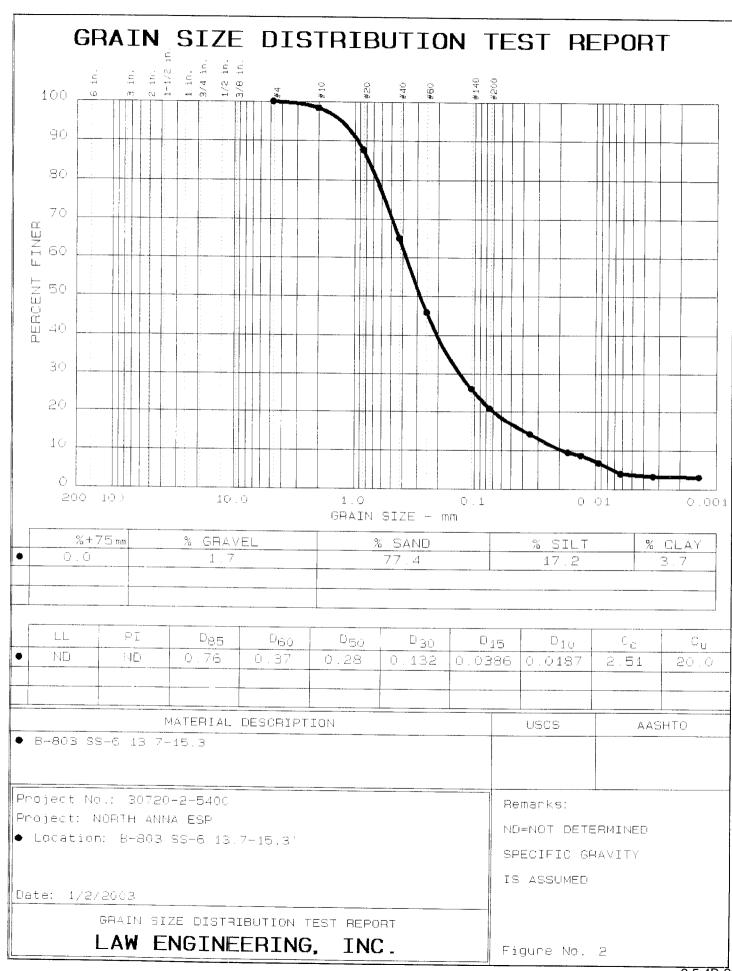
D85= 0.50 D60= 0.107 D50= 0.033


D30 = 0.0028



```
GRAIN SIZE DISTRIBUTION TEST DATA Test No.: 15
 e: 1-2-2003
ject No.: 30720-2-5400
Project: NORTH ANNA ESP
Sample Data
Location of Sample: B-802 SS-2 3.7-5.2'
Sample Description: B-802 SS-2 3.7-5.2'
USCS Class: SM
 Liquid limit: ND
AASHTO Class: A-2-4(0)
 Plasticity index: ND
Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 1
Mechanical Analysis Data
Initial
Dry sample and tare= 174.16
Tare = 0.00
Dry sample weight = 174.16
Tare for cumulative weight retained= 0
 Cumul. wc.
retained finer
0.00 100.0
5.93 96.6
15.16 91.3
41.13 76.4
71.05 59.2
 ieve Cumul. Wt. Percent
 0.375 inches
 # 4
 # 10
 # 20
 # 40
 59.2
 # 60
 97.38
 44.1
 # 140
 132.15
 24.1
 # 200
 140.21
 19.5
Fractional Components
Gravel/Sand based on #10 sieve
Sand/Fines based on #200 sieve
% + 75mm. = 0.0 % GRAVEL = 8.7 % SAND = 71.8
% FINES = 19.5
```

D85= 1.29 D60= 0.437 D50= 0.305


D30 = 0.1429



```
GRAIN SIZE DISTRIBUTION TEST DATA
Te: 1/2/2003
 ject No.: 30720-2-5400
Project: NORTH ANNA ESP
Sample Data
Location of Sample: B-803 SS-4 8.6-10.1'
Sample Description: B-803 SS-4 8.6-10.1'
USCS Class: SM
 Liquid limit: ND
AASHTO Class: A-2-4
 Plasticity index: ND
Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 5

 Mechanical Analysis Data
 Initial
Dry sample and tare= 112.71
Tare = 0.00
Dry sample weight = 112.71
Tare for cumulative weight retained= 0
 Cumul. Wt. Percent
 'ieve
 33.34
 # 40
 70.4
 # 60
 50.5
 55.82
 # 140
 79.83
 29.2
 # 200
 85.21
 24.4
 Fractional Components
 Gravel/Sand based on #10 sieve
Sand/Fines based on #200 sieve
% + 75mm. = 0.0 % GRAVEL = 2.5 % SAND = 73.1
% FINES = 24.4
```

D85= 0.67 D60= 0.322 D50= 0.246

D30= 0.1113



```
GRAIN SIZE DISTRIBUTION TEST DATA Test No.: 2
e: 1/2/2003
 Jject No.: 30720-2-5400
Project: NORTH ANNA ESP
Sample Data
Location of Sample: B-803 SS-6 13.7-15.3'
Sample Description: B-803 SS-6 13.7-15.3'
USCS Class: SM
 Liquid limit: ND
AASHTO Class: A-2-4(0)
 Plasticity index: ND
 Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 2
 Mechanical Analysis Data
 Initial
Dry sample and tare= 174.53
Tare = 0.00
Dry sample weight = 174.53
Sample split on number 10 sieve
 it sample data:
 pample and tare = 105.59 Tare = 0 Sample weight = 105.59
 Cumulative weight retained tare= 0
Tare for cumulative weight retained= 0
 Cumul. Wt. Percent
 Sieve
 retained finer
0.00 100.0
2.96 98.3
 # 4
 # 10
 # 20
 11.36
 87.7
 # 40
 35.82
 65.0
 # 60
 56.40
 45.8
 77.72 25.9
83.16 20.9
 # 140
 # 200
 Hydrometer Analysis Data
Separation sieve is number 10
Percent -# 10 based on complete sample= 98.3
Weight of hydrometer sample: 105.59
Calculated biased weight= 107.41
Table of composite correction values:
 Temp, deg C: 15.3 20.3 27.1
```

- 6.5 - 5.0 - 3.0

Meniscus correction only=-1

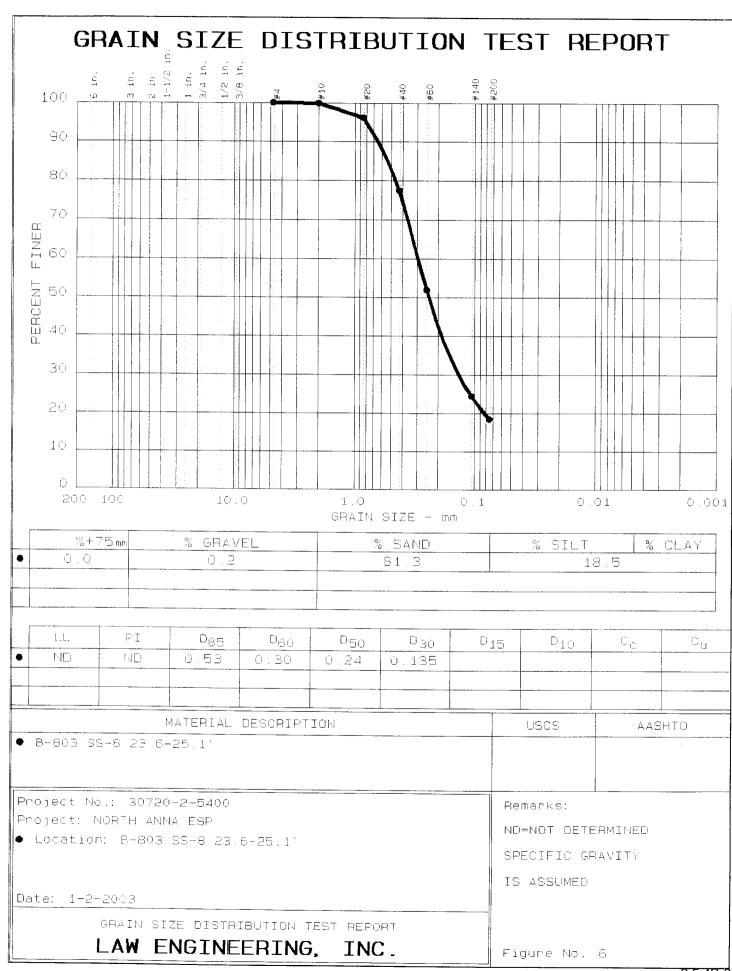
Specific gravity of solids= 2.63

ecific gravity correction factor= 1.005

rometer type: 152H Effective depth L= 16.294964 - 0.164 x Rm

Elapsed time, min		Actual reading	Corrected reading	K	Rm	Eff. depth	Diameter mm	Percent finer
2.0	20.9	20.0	15.2	0.0136	19.0	13.2	0.0348	14.2
9.0	20.9	15.0	10.2	0.0136	14.0	14.0	0.0169	9.5
15.0	21.0	14.0	9.2	0.0136	13.0	14.2	0.0132	8.6
30.0	20.9	12.0	7.2	0.0136	11.0	14.5	0.0094	6.7
71.0	20.9	9.0	4.2	0.0136	8.0	15.0	0.0062	3.9
246.0	21.7	8.0	3.4	0.0134	7.0	15.1	0.0033	3.2
1440.0	21.1	8.0	3.2	0.0135	7.0	15.1	0.0014	3.0

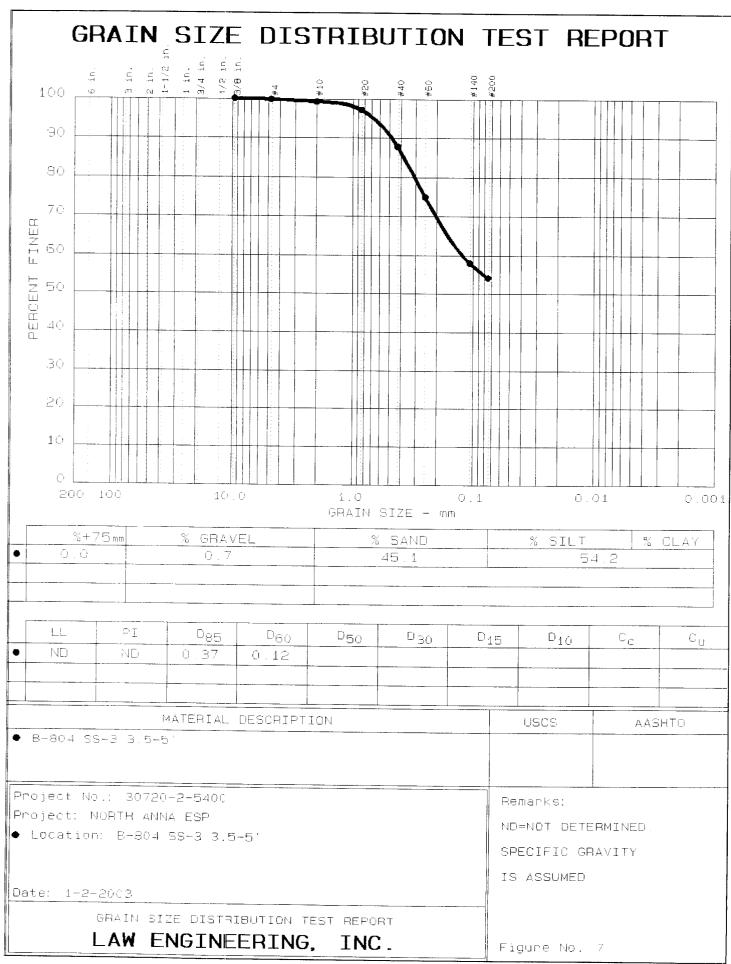
Fractional Components ______


Gravel/Sand based on #10 sieve Sand/Fines based on #200 sieve

% + 75mm. = 0.0 % GRAVEL = 1.7 % SAND = 77.4

% SILT = 17.2 % CLAY = 3.7

D85= 0.76 D60= 0.373 D50= 0.283 D30= 0.1323 D15= 0.03859 D10= 0.01869


Cc = 2.5119 Cu = 19.9526



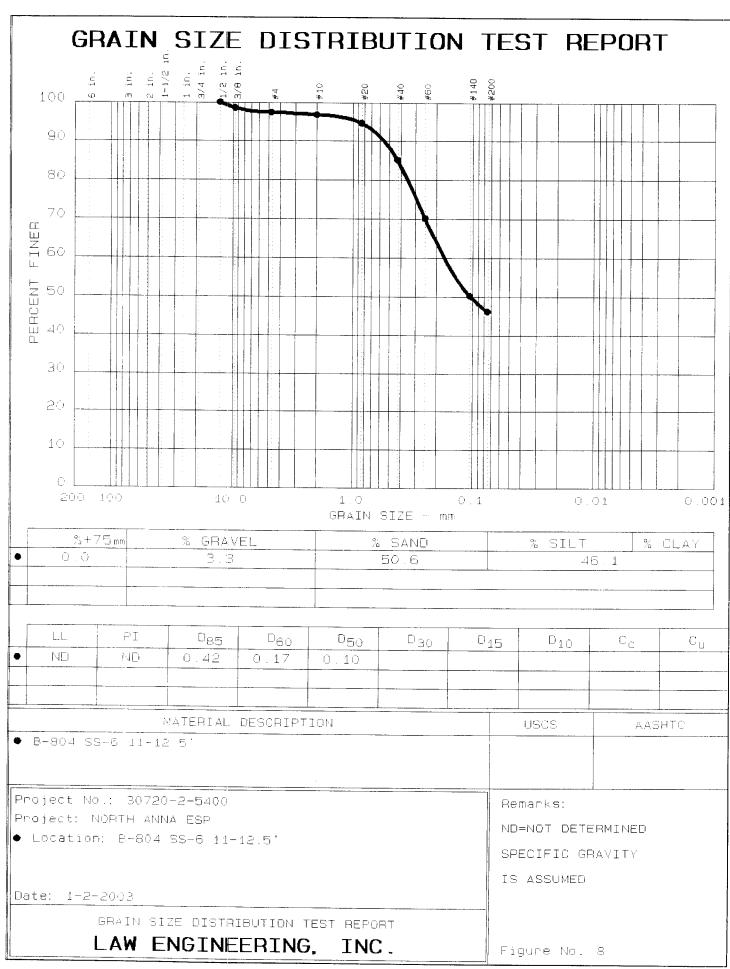
```

 GRAIN SIZE DISTRIBUTION TEST DATA

te: 1-2-2003
 pject No.: 30720-2-5400
Project: NORTH ANNA ESP

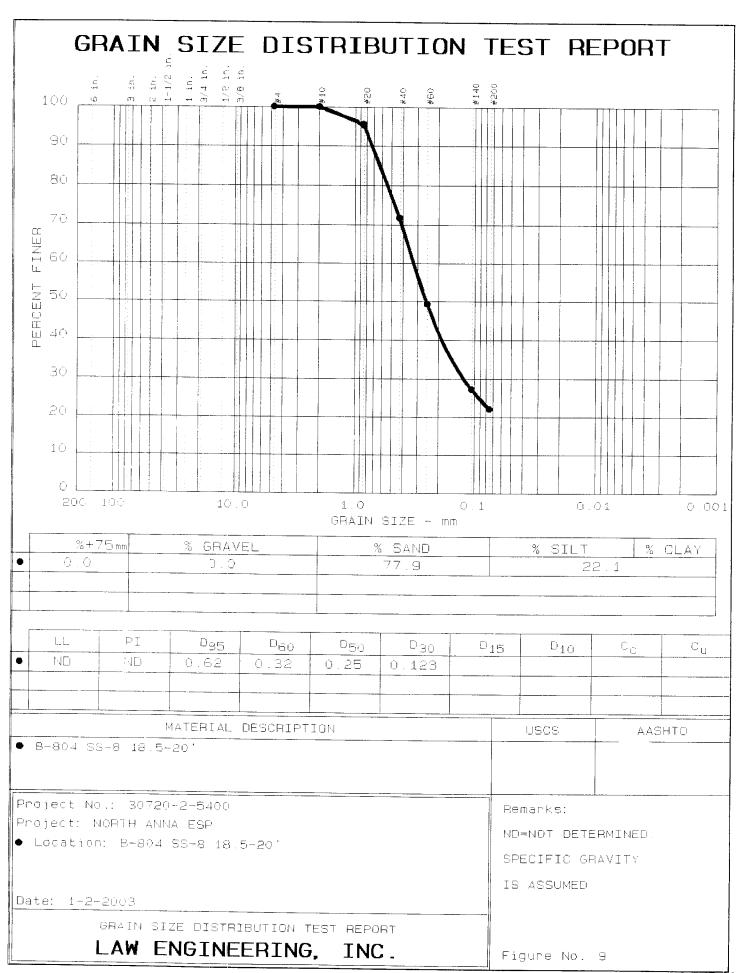
 Sample Data
Location of Sample: B-803 SS-8 23.6-25.1'
Sample Description: B-803 SS-8 23.6-25.1'
 Liquid limit: ND
USCS Class: SM
 Plasticity index: ND
AASHTO Class: A-2-4
 Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 6

 Mechanical Analysis Data
 Initial
Dry sample and tare= 142.55
 0.00
Tare
 =
Dry sample weight = 142.55
Tare for cumulative weight retained= 0
 Tieve Cumul. Wt. Percent
 retained finer
0.00 100.0
 # 4
 99.8
96.2
 0.26
 # 10
 # 20
 5.41
 77.5
 # 40
 32.09
 # 60
 68.56
 51.9
 # 140
 107.81
 24.4
 # 200
 116.12
 18.5
 Fractional Components
Gravel/Sand based on #10 sieve
Sand/Fines based on #200 sieve
% + 75mm. = 0.0 % GRAVEL = 0.2 % SAND = 81.3
% FINES = 18.5
```


D85= 0.53 D60= 0.295 D50= 0.240

D30= 0.1347

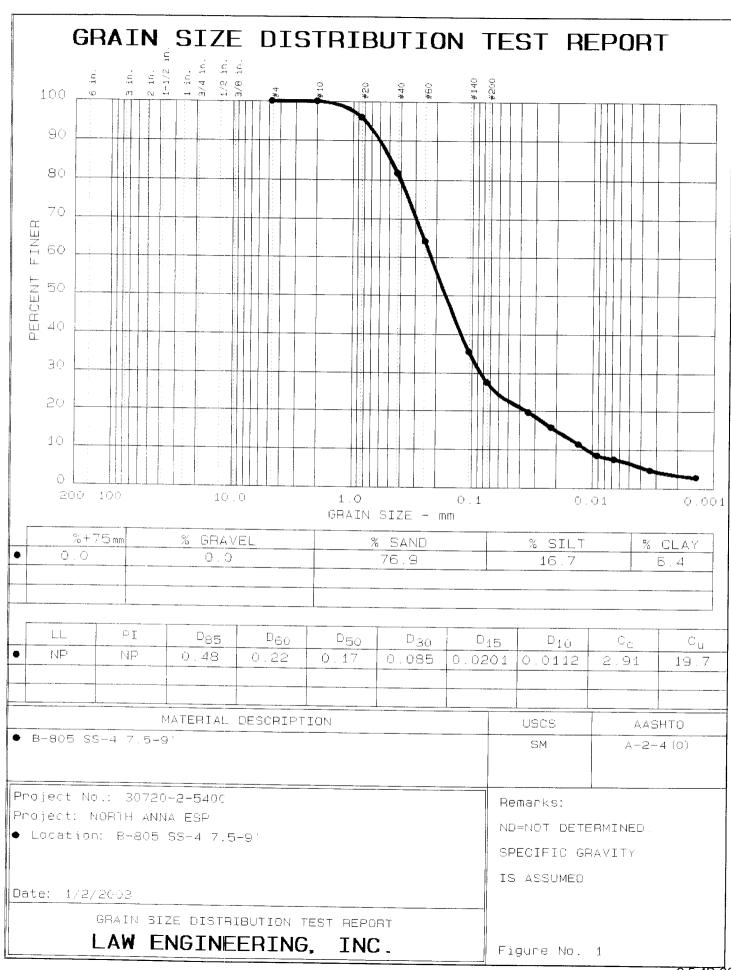



```
GRAIN SIZE DISTRIBUTION TEST DATA
 e: 1-2-2003
_ ject No.: 30720-2-5400
Project: NORTH ANNA ESP
Sample Data
Location of Sample: B-804 SS-3 3.5-5'
Sample Description: B-804 SS-3 3.5-5'
USCS Class: ML
 Liquid limit: ND
AASHTO Class: A-4
 Plasticity index: ND
 Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 7
 Mechanical Analysis Data
 Initial
Dry sample and tare= 135.24
Tare = 0.00
Dry sample weight = 135.24
Tare for cumulative weight retained= 0
 Cumul. Wt. Percent
 ieve
 retained finer
0.375 inches 0.00 100.0
4 0.22 99.8
 99.8
99.3
 1.00
 # 10
 # 20
 97.2
 # 40
 16.42
 87.9
 # 60
 33.97
 74.9
 # 140
 56.91
 57.9
 # 200
 62.03
 54.1
 Fractional Components
Gravel/Sand based on #10 sieve
Sand/Fines based on #200 sieve
% + 75mm. = 0.0 % GRAVEL = 0.7 % SAND = 45.1
% FINES = 54.2
```

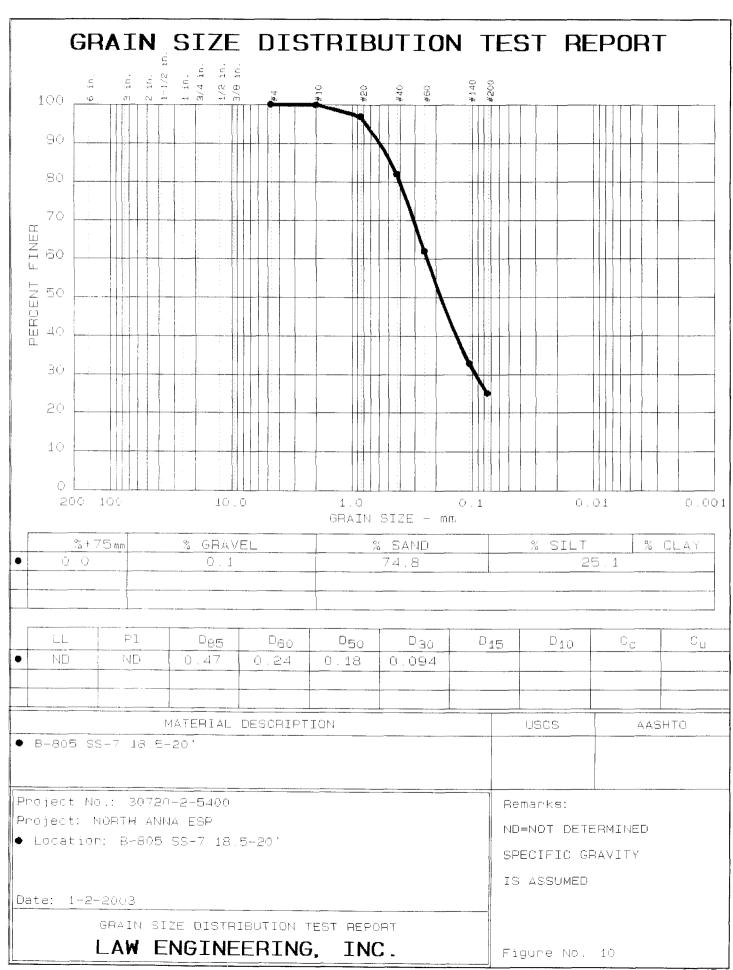
 $D85 = 0.37 \quad D60 = 0.122$ 



```
GRAIN SIZE DISTRIBUTION TEST DATA
te: 1-2-2003
ject No.: 30720-2-5400
Project: NORTH ANNA ESP
Sample Data
Location of Sample: B-804 SS-6 11-12.5'
Sample Description: B-804 SS-6 11-12.5'
USCS Class: SM
 Liquid limit: ND
AASHTO Class: A-4
 Plasticity index: ND
 Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 8
 Mechanical Analysis Data
 Initial
Dry sample and tare= 176.24
Tare = 0.00
Dry sample weight = 176.24
Tare for cumulative weight retained= 0
 `ieve
 Cumul. Wt. Percent
 retained finer
0.5 inches 0.00 100.0
0.375 inches 2.58 98.5
4 4.58 97.4
10 5.74 96.7
 94.6
 # 20
 9.55
 26.11
 # 40
 85.2
 # 60
 52.51
 70.2
 87.74
 # 140
 50.2
 46.2
 # 200
 94.90
 Fractional Components
Gravel/Sand based on #10 sieve
Sand/Fines based on #200 sieve
% + 75mm. = 0.0 % GRAVEL = 3.3 % SAND = 50.6
% FINES = 46.1
```


D85= 0.42 D60= 0.172 D50= 0.103




```
GRAIN SIZE DISTRIBUTION TEST DATA
 Test No.: 13

 e: 1-2-2003
viect No.: 30720-2-5400
Project: NORTH ANNA ESP

 Sample Data
Location of Sample: B-804 SS-8 18.5-20'
Sample Description: B-804 SS-8 18.5-20'
 Liquid limit: ND
USCS Class: SM
 Plasticity index: ND
AASHTO Class: A-2-4

 Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 9
 Mechanical Analysis Data

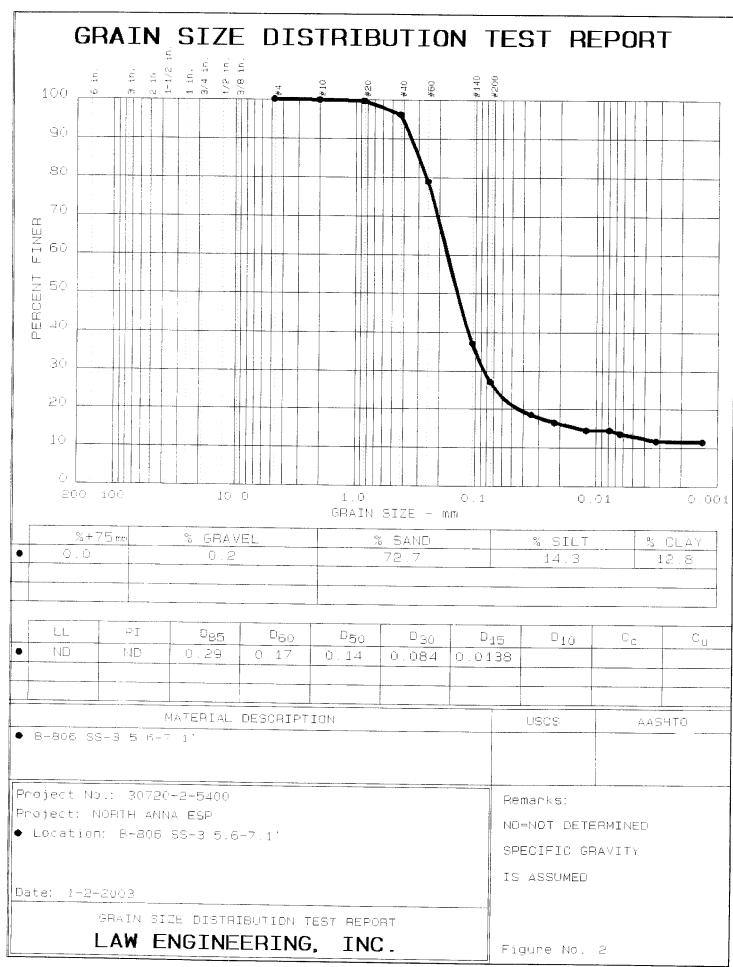
 Initial
Dry sample and tare= 133.91
Tare = 0.00
Dry sample weight = 133.91
Tare for cumulative weight retained= 0
 Cumul. Wt. Percent
 ieve
 retained finer
0.00 100.0
0.04 100.0
 # 4
 # 10
 95.6
71.8
 # 20
 5.94
 # 40
 37.80
 # 60
 67.88
 49.3
 # 140
 97.44
 27.2
 104.29
 22.1
 # 200

 Fractional Components
Gravel/Sand based on #10 sieve
Sand/Fines based on #200 sieve
% + 75mm. = 0.0 % GRAVEL = 0.0 % SAND = 77.9
% FINES = 22.1
```

D85= 0.62 D60= 0.324 D50= 0.254

D30 = 0.1230




```
GRAIN SIZE DISTRIBUTION TEST DATA
te: 1/2/2003
 ∍ject No.: 30720-2-5400
Project: NORTH ANNA ESP
Sample Data
Location of Sample: B-805 SS-4 7.5-9'
Sample Description: B-805 SS-4 7.5-9'
USCS Class: SM
 Liquid limit: NP
AASHTO Class: A-2-4(0)
 Plasticity index: NP
Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 1
Mechanical Analysis Data
Initial
Dry sample and tare= 168.13
Tare
Tare = 0.00
Dry sample weight = 168.13
Sample split on number 10 sieve
 it sample data:
 sample and tare = 99.56 Tare = 0 Sample weight = 99.56
 Cumulative weight retained tare= 0
Tare for cumulative weight retained= 0
 Cumul. Wt. Percent retained finer
 Sieve
 retained
 # 4
 100.0
100.0
 0.00
 # 10
 0.02
 95.9
81.8
64.2
 4.08
18.13
35.61
 # 20
 # 40
 # 60
 35.61
 # 140
 64.22
 35.5
 72.15 27.5
 # 200

 Hydrometer Analysis Data
Separation sieve is number 10
Percent -# 10 based on complete sample= 100.0
Weight of hydrometer sample: 99.56
Calculated biased weight= 99.57
Table of composite correction values:
 Temp, deg C: 15.3 20.3 27.1
```



```
GRAIN SIZE DISTRIBUTION TEST DATA
 Test No.: 14
e: 1-2-2003
. ject No.: 30720-2-5400
Project: NORTH ANNA ESP
Sample Data
Location of Sample: B-805 SS-7 18.5-20'
Sample Description: B-805 SS-7 18.5-20'
USCS Class: SM
 Liquid limit: ND
AASHTO Class: A-2-4
 Plasticity index: ND

 Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 10
Mechanical Analysis Data

 Initial
Dry sample and tare= 120.52
Tare = 0.00
Dry sample weight = 120.52
Tare for cumulative weight retained= 0
 ieve Cumul. Wt. Percent
 retained finer
0.00 100.0
0.11 99.9
3.76 96.9
21.65 82.0
 # 4
 # 10
 # 20
 # 40
 # 60
 45.83
 62.0
 # 140
 80.96
 32.8
 # 200
 90.24
 25.1
Fractional Components
Gravel/Sand based on #10 sieve
Sand/Fines based on #200 sieve
% + 75mm. = 0.0 % GRAVEL = 0.1 % SAND = 74.8
% FINES = 25.1
```

 $D85 = 0.47 \quad D60 = 0.237 \quad D50 = 0.182$ 

D30 = 0.0942



```
GRAIN SIZE DISTRIBUTION TEST DATA
 Test No.: 16
te: 1-2-2003
ject No.: 30720-2-5400
Project: NORTH ANNA ESP
Sample Data
Location of Sample: B-806 SS-3 5.6-7.1'
Sample Description: B-806 SS-3 5.6-7.1'
 Liquid limit: ND
USCS Class: SM
 Plasticity index: ND
AASHTO Class: A-2-4(0)

 Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 2
Mechanical Analysis Data
 Initial
Dry sample and tare= 120.73
Tare = 0.00
Dry sample weight = 120.73
Sample split on number 10 sieve
'it sample data:
 ample and tare = 98.05 Tare = 0 Sample weight = 98.05
 Cumulative weight retained tare= 0
Tare for cumulative weight retained= 0
 Cumul. Wt. Percent
 Sieve
 retained
0.00
 finer
 100.0
 # 4
 99.8
 0.21
 # 10
 0.21
 99.6
 # 20
 3.62
20.51
 96.1
 # 40
 78.9
 # 60
 61.66
 37.0
 # 140
 71.41 27.1
 # 200
 Hydrometer Analysis Data
Separation sieve is number 10
Percent -# 10 based on complete sample= 99.8
Weight of hydrometer sample: 98.05
Calculated biased weight= 98.22
```

Table of composite correction values: Temp, deg C: 15.3 20.3 27.1

- 6.5 - 5.0 - 3.0

Meniscus correction only=-1

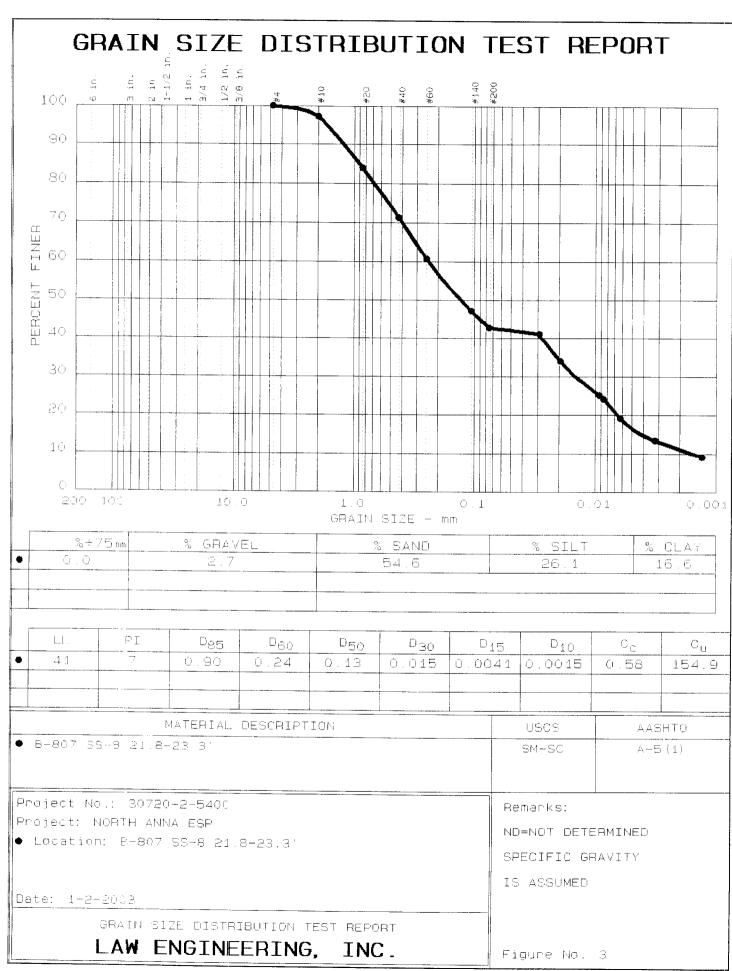
Specific gravity of solids= 2.63

ecific gravity correction factor= 1.005

rometer type: 152H Effective depth L= 16.294964 - 0.164 x Rm

Elapsed time, min		Actual reading	Corrected reading	K	Rm	Eff. depth	Diameter mm	Percent finer
2.0	20.5	23.0	18.1	0.0136	22.0	12.7	0.0344	18.5
5.0	20.5	21.0	16.1	0.0136	20.0	13.0	0.0220	16.4
17.0	20.6	19.0	14.1	0.0136	18.0	13.3	0.0121	14.4
41.0	20.6	19.0	14.1	0.0136	18.0	13.3	0.0078	14.4
62.0	20.9	18.0	13.2	0.0136	17.0	13.5	0.0063	13.5
244.0	21.6	16.0	11.4	0.0135	15.0	13.8	0.0032	11.6
1440.0	21.1	16.0	11.2	0.0135	15.0	13.8	0.0013	11.5

## Fractional Components


_

Gravel/Sand based on #10 sieve Sand/Fines based on #200 sieve

% + 75mm. = 0.0 % GRAVEL = 0.2 % SAND = 72.7

% SILT = 14.3 % CLAY = 12.8

D85= 0.29 D60= 0.171 D50= 0.141 D30= 0.0842 D15= 0.01382



```
GRAIN SIZE DISTRIBUTION TEST DATA
 e: 1-2-2003
_ ject No.: 30720-2-5400
Project: NORTH ANNA ESP

 Sample Data

Location of Sample: B-807 SS-8 21.8-23.3'
Sample Description: B-807 SS-8 21.8-23.3'
 Liquid limit: 41
USCS Class: SM-SC
AASHTO Class: A-5(1)
 Plasticity index: 7
 Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
IS ASSUMED
Fig. No.: 3
 Mechanical Analysis Data
 Initial
Dry sample and tare= 183.66
Tare = 0.00
Dry sample weight = 183.66
Sample split on number 10 sieve
 it sample data:
 Sample and tare = 97.65 Tare = 0 Sample weight = 97.65
 Cumulative weight retained tare= 0
Tare for cumulative weight retained= 0
 Sieve
 Cumul. Wt. Percent
 retained finer
 0.00
 # 4
 100.0
 # 10
 97.3
 5.04
 # 20
 13.34
 84.0
 71.3
 # 40
 26.07
 # 60
 36.65
 60.8
 # 140
 50.37
 47.1
 54.83 42.6
 # 200
 Hydrometer Analysis Data
Separation sieve is number 10
Percent -# 10 based on complete sample= 97.3
Weight of hydrometer sample: 97.65
Calculated biased weight= 100.41
Table of composite correction values:
```

Temp, deg C: 15.3 20.3 27.1

- 6.5 - 5.0 - 3.0

Meniscus correction only=-1

Specific gravity of solids= 2.63

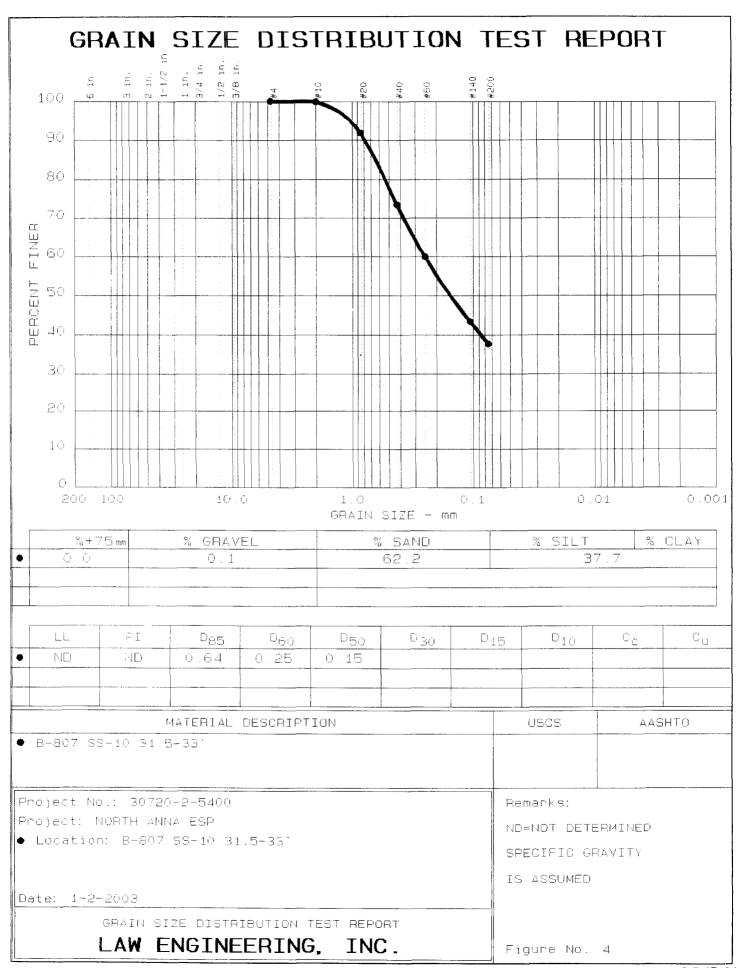
acific gravity correction factor= 1.005

rometer type: 152H Effective depth L= 16.294964 - 0.164 x Rm

2.0       20.3       46.0       41.0       0.0137       45.0       8.9       0.0289         5.0       20.3       39.0       34.0       0.0137       38.0       10.1       0.0194         25.0       20.4       30.0       25.0       0.0137       29.0       11.5       0.0093         30.0       20.4       29.0       24.0       0.0137       28.0       11.7       0.0085         60.0       20.8       24.0       19.1       0.0136       23.0       12.5       0.0062         240.0       21.6       18.0       13.4       0.0135       17.0       13.5       0.0032	41.0 34.0 25.0 24.0 19.2 13.4	
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------	--

Fractional Components

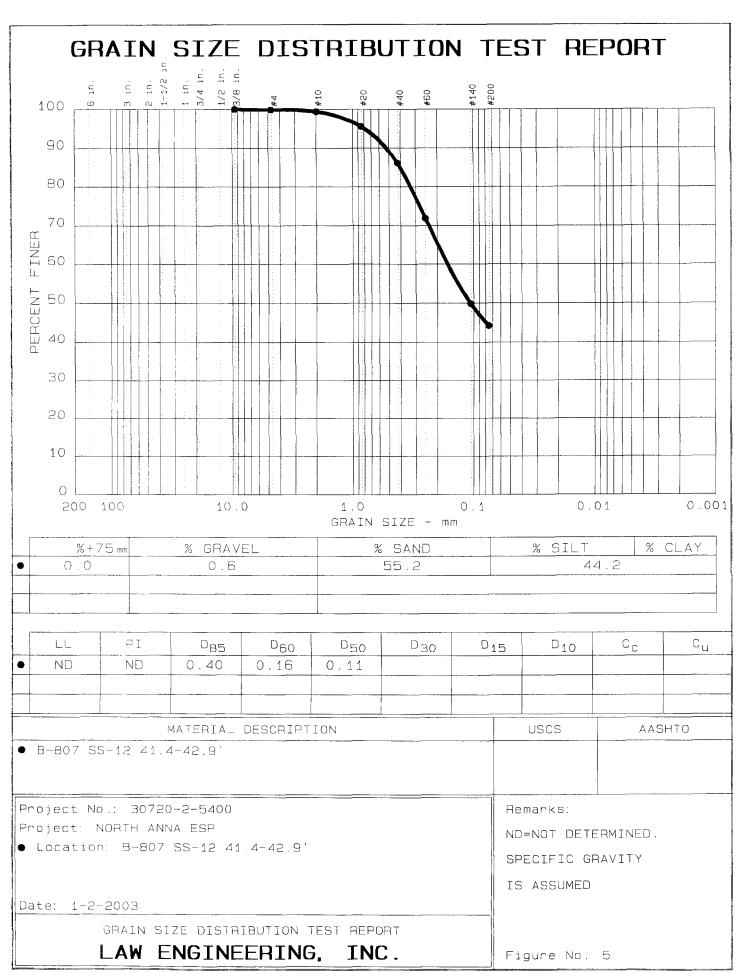
Gravel/Sand based on #10 sieve Sand/Fines based on #200 sieve


% + 75mm. = 0.0 % GRAVEL = 2.7 % SAND = 54.6

% SILT = 26.1 % CLAY = 16.6

D85= 0.90 D60= 0.240 D50= 0.129

D30= 0.0146 D15= 0.00412 D10= 0.00155


 $Cc = 0.5754 \quad Cu = 154.8817$ 



```
GRAIN SIZE DISTRIBUTION TEST DATA
 Test No.: 18
 e: 1-2-2003
. ject No.: 30720-2-5400
Project: NORTH ANNA ESP

 Sample Data
Location of Sample: B-807 SS-10 31.5-33'
Sample Description: B-807 SS-10 31.5-33'
USCS Class: SM
 Liquid limit: ND
AASHTO Class: A-4(0)
 Plasticity index: ND
 Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 4
 Mechanical Analysis Data
 Initial
Dry sample and tare= 180.87
Tare = 0.00
Dry sample weight = 180.87
Tare for cumulative weight retained= 0
 ieve
 Cumul. Wt. Percent
 retained finer 0.00 100.0
 # 4
 # 10
 0.25
 99.9
 # 20
 91.9
 14.68
 # 40
 47.99
 73.5
 # 60
 72.48
 59.9
 # 140
 102.54
 43.3
 # 200
 112.82
 37.6
 Fractional Components
 Gravel/Sand based on #10 sieve
Sand/Fines based on #200 sieve
% + 75mm. = 0.0 % GRAVEL = 0.1 % SAND = 62.2
```

% FINES = 37.7

D85= 0.64 D60= 0.251 D50= 0.155



```
GRAIN SIZE DISTRIBUTION TEST DATA Test No.: 19
 e: 1-2-2003
. ject No.: 30720-2-5400
Project: NORTH ANNA ESP
Sample Data

Location of Sample: B-807 SS-12 41.4-42.9'
Sample Description: B-807 SS-12 41.4-42.9'
USCS Class: SM
 Liquid limit: ND
AASHTO Class: A-4(0)
 Plasticity index: ND
 Notes
Remarks: ND=NOT DETERMINED. SPECIFIC GRAVITY
 IS ASSUMED
Fig. No.: 5
 Mechanical Analysis Data
 Initial
Dry sample and tare= 151.70
Tare
 0.00
Dry sample weight = 151.70
Tare for cumulative weight retained= 0
 Cumul. Wt. Percent
 retained
0.00
 finer
 100.0
 0.375 inches
 # 4
 0.15
 99.9
 # 10
 0.87
 99.4
 # 20
 6.70
 95.6
 # 40
 21.05
 86.1
 # 60
 42.60
 71.9
 # 140
 76.12
 49.8
 84.59 44.2

 Fractional Components
Gravel/Sand based on #10 sieve
Sand/Fines based on #200 sieve
% + 75mm. = 0.0 % GRAVEL = 0.6 % SAND = 55.2
% FINES = 44.2
```

D85= 0.40 D60= 0.164 D50= 0.106



## **Unconfined Compressive Strength of Intact Rock Core Specimens** (ASTM D2938-95) (Modified^{1,3})

Project No.:

30720-2-5400.07.800

Tested By: Daniel Johnson

Test Date: 1/21/2003

Project Name:

North Anna ESP

Reviewed By: Thomas Dobras

Review Date: 1/27/2003

Specimen Specifications:

⁴ Straightness: 0.02" maximum gap

² Minimum diameter - 47mm (1.85")

³ L/D ratio

2.0<L/D<2.5

⁵ Flatness: 0.0015" difference between maximum and minimum readings

Boring No.	Depth	MACTEC Lab ID #	Moisture Content	Dry	Specimen Diameter	Specimen	L/D	Type	Rate of	Unconfined
140.		Lab ID #	Content	Density	(D)	Length (L)	Ratio	of Break	Loading	Compressive Strength
	(ft)		(%)	(pcf)	(in)	(in)		Divak	(lbs/min)	(psi)
B-805	41.3-41.9	001639	0.2	169.6	1.859	3.685	2.0	Shear	800	3,400
B-804	38.9-39.9	001640	0.1	162.5	1.868	3.986	2.1	Cone	15,000	27,150
B-804	43.5-44.9	001641	0.1	163.0	1.868	4.000	2.1	Cone	14,000	25,200
B-805	80.8-81.6	001642	0.2	181.3	1.854	3.774	2.0	Shear	6,000	4,430
B-801	48.7-49.7	001644	0.1	164.0	1.863	4.051	2.2	Cone	10,000	28,420
B-804	49.9-50.5	001645	0.1	162.3	1.863	3.943	2.1	Cone & Shear	5,000	12,300
B-801	24.1-24.8	001646	0.1	164.0	1.864	4.010	2.2	Cone	14,000	27,210
B-806	42.6-43.2	001648	0.3	169.4	1.853	3.264	1.8	Cone & Shear	4,000	2,720
B-802	20.4-21.0	001649	0.2	160.8	1.861	3.973	2.1	Shear	6,000	8,640
B-802	66.0-66.7	001650	0.3	160.4	1.859	3.757	2.0	Cone & Split	5,000	14,710
B-806	25.1-25.8	001651	1.2	144.5	1.844	3.918	2.1	Crumbled	800	610
B-803	54.1-54.7	001652	0.1	162.4	1.858	3.830	2.1	Shear	12,000	13,010
B-803	129.4-130.1	001653	0.1	164.3	1.868	4.096	2.2	Shear	14,000	26,730
B-802	85.3-85.9	001654	0.3	161.8	1.859	3.773	2.0	Cone & Shear	10,000	9,370
B-803	70.4-71.1	001655	0.1	163.4	1.866	4.168	2.2	Cone & Shear	10,000	23,210
B-803	90.3-91.0	001656	0.1	163.0	1.872	3.903	2.1	Shear	14,000	27,590
B-803	155.6-156.4	001657	0.1	164.2	1.873	3.910	2.1	Cone & Shear	10,000	22,030
B-802	44.9-45.6	001658	0.1	175.5	1.862	4.105	2.2	Cone & Shear	8,000	11,760
B-806	64.1-64.5	001659	0.1	163.6	1.844	3.589	1.9	Cone & Shear	15,000	27,360

Comments:	Top bearing plate to specimen diameter ratio was 1.67 (Per Section 5.4 of ASTM D2938, max. allow. is 1.1)  All specimen diameters except as shaded met the minimum requirements per ASTM D4543-01.								
									³ Specimens shown were outside the allowable tolerance for L/D ratio or were less than the minimum diameter
	⁴ Straightness of elements was determined by Procedure A as referenced in ASTM D4543-01, Section 5.1.1. ⁵ Flatness of the specimen was determined by Procedure B as referenced in ASTM D4543-01, Section 5.2.2.  Physical description of the samples is listed on a separate report.  Test temperature was room temperature, 20-22 °C. Lab Id#s 001643 and 001647 not assigned.								





SAMPLES FOR STRENGTH TESTING AS RECEIVED IN LAB



Before testing

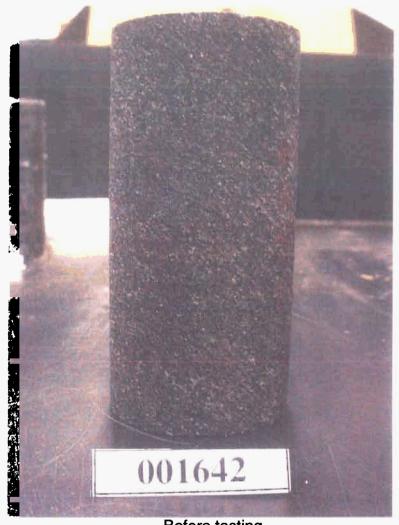


Physical Description: Fresh, very hard, Quartz Gneiss with weak foliation at  $50\text{-}60^\circ$ 



After Testing




Before testing



Physical Description: Very slightly weathered, hard, Quartz Gneiss with weak foliation at 50-60°



After testing



Before testing



Physical Description: Fresh, hard, Biotite Gneiss with strong foliation at 50-60°



After testing

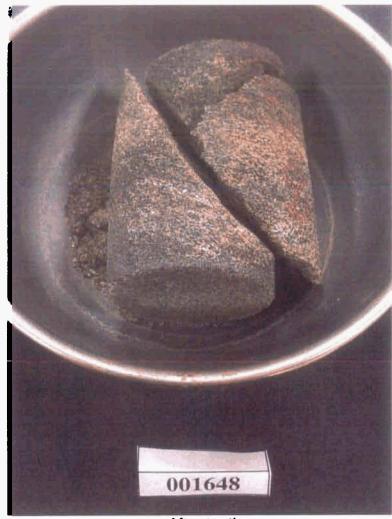


Before testing



Physical Description: Very slightly weathered, hard, Quartz Gneiss with weak foliation at 50-60°




After testing

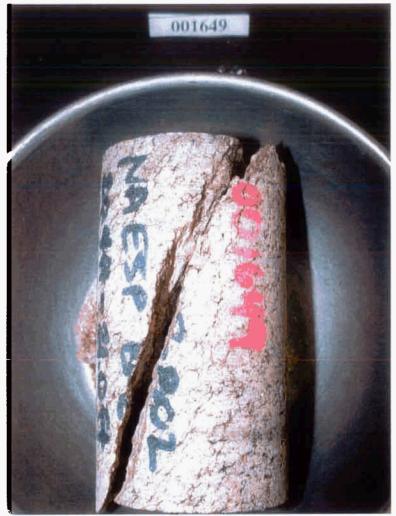


Before testing

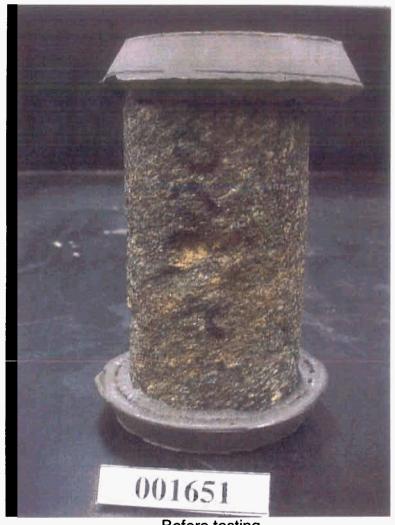


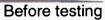
Physical Description: Moderately weathered, moderately hard, Biotite Gneiss with strong foliation at 30-40°




After testing




Before testing




Physical Description: Moderately weathered, hard, Quartz Gneiss with strong foliation at 50-60°



After testing







Physical Description: Moderately weathered, moderately hard, Biotite Gneiss with strong foliation at 30-40°

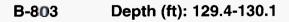


After testing



Before testing




Physical Description: Slightly weathered, hard, Quartz Gneiss with weak foliation at 50-60°



After testing



Before testing

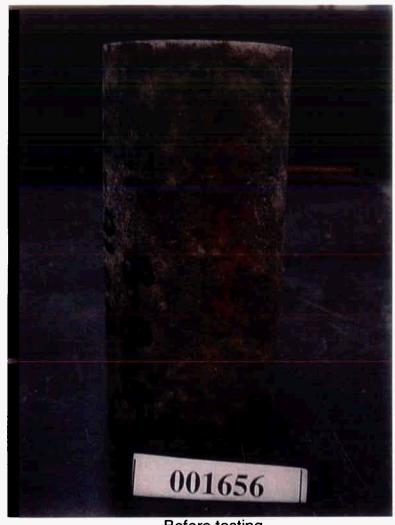


Physical Description: Fresh, very hard, Quartz Gneiss with weak foliation at  $50\text{-}60^\circ$ 



After testing




Before testing



Physical Description: Slightly weathered, hard, Quartz Gneiss with weak foliation at 50-60°



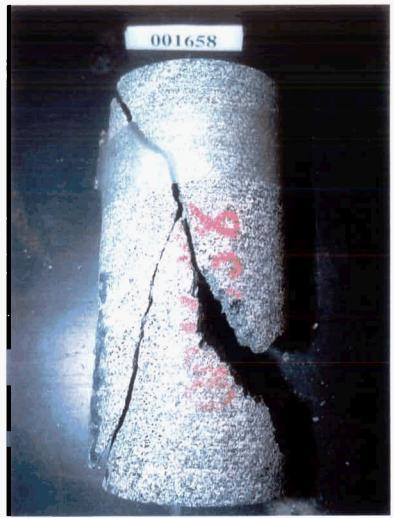
After testing



Before testing



Physical Description: Fresh, very hard, Quartz Gneiss with weak foliation at 50-60°




After testing



B-802 Depth (ft): 44.9-45.6

Physical Description: Slightly weathered, hard, Biotite Quartz Gneiss with strong foliation at 50-60°



After testing



Before testing



Physical Description: Fresh, Quartz Gneiss with weak foliation at 50-60°



After testing



# Elastic Modulii of Intact Rock Core Specimens in Uniaxial Compression

#### **ASTM D 3148-96**

Project Name: North Anna ESP
Project Number: 30720-2-5400.07,800

**MACTEC Lab ID:** 001639

**Sample I.D.:** B-805 Depth 41.3-41.9 ft

Tested By: David Jensen

**Test Date:** 01/24/03

**Transverse Strain Gage Series:** EA-06-20CBW-120 **Longitudinal Strain Gage Series:** EA-06-500BH-120

**Gage Factor:** 2.090 **Excitation Voltage:** 2.0 V

**Reviewed by:** Thomas N. Dobras

**Review Date:** 1/28/2003

	Specimen Info	rmation	
Average	Diameter, inch	1.859	
Average	Height, inch	3.685	
Moisture	Content (%)	0.2	
Ultima	ite Load, lbf	9222	~

RUN # 2		
Load,	Longitudinal ε	Transverse ε
lb _f	μ inch/inch	μ inch/inch
0	-11	11
400	-550	19
800	-969	24
1,200	-1426	69
1,600	-1865	125
2,000	-2283	220
2,400	-2624	340
2,800	-2948	470
3,200	-3272	600
3,600	-3578	755
4,000	-3850	915
4,400	-4144	1109
4,800	-4425	1319
5,200	-4701	1560
5,600	-4966	1818
6,000	-5251	2119
7,000	-5967	2990
8,000	-6803	4240
9,000	-7966	6300



# Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression ASTM D 3148-96

Project Name:

North Anna ESP

30720-2-5400.07.800

Transverse Strain Gage Series:

EA-06-20CBW-120

**Project Number:** 

30720-2-5**4**00.07 001639 Longitudinal Strain Gage Series:

EA-06-500BH-120

MACTEC Lab ID: Sample I.D.:

B-805 Depth 41.3-41.9 ft

**Gage Factor:** 2.09 **Excitation Voltage:** 2.0 V

Tested By:

David Jensen

01/24/03

Reviewed by: Thomas N. Dobras

Test Date:

Review Date:

01/28/03

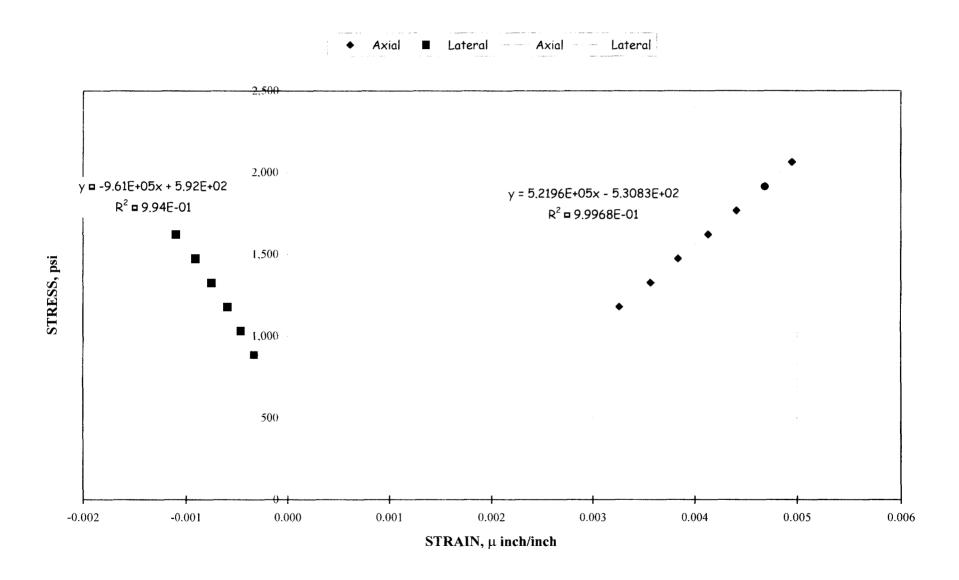
	Average Diameter, inch	1.859
	Average Length, inch	3.685
	Length/Diameter ratio	2.0
	Specimen Area, inch ²	2.714
	Moisture Content (%)	0.2
	Rate of loading (lbs/min)	800
	Compressive Strength, psi	3,400
•	Longitudinal e Correction, inch/inch	-0.000011
	Transverse e Correction, inch/inch	0.000011
	Modulus of Elasticity, psi	522,000
	Poisson's Ratio	0.54

	RUN # 2				
Stress,	Longitudinal e	Transverse e			
psi	inch/inch	inch/inch			
0	0.000000	0.000000			
147	0.000539	-0.000008			
295	0.000958	-0.000013			
442	0.001415	-0.000058			
589	0.001854	-0.000114			
737	0.002272	-0.000209			
884	0.002613	-0.000329			
1,032	0.002937	-0.000459			
1,179	0.003261	-0.000589			
1,326	0.003567	-0.000744			
1,474	0.003839	-0.000904			
1,621	0.004133	-0.001098			
1,768	0.004414	-0.001308			
1,916	0.004690	-0.001549			
2,063	0.004955	-0.001807			
2,211	0.005240	-0.002108			
2,579	0.005956	-0.002979			
2,947	0.006792	-0.004229			
3,316	0.007955	-0.006289			

Note: Points chosen are in Bold.

Comments:

Material description and photographs submitted in separate report


Test temperature was room temperature at 20-22 °C

Analysis using middle portion of curve. Poisson's ratio indicates plastic deformation

Analysis was rerun using lower portion of curve. See attached sheet.



# North Anna ESP Project 30720-2-5400 MODULUS OF ELASTICITY MACTEC Lab ID 001639 Boring No. B-805 (41.3-41.9 ft)





#### Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression **ASTM D 3148-96**

Project Name: **Project Number:** MACTEC Lab ID: North Anna ESP

30720-2-5400.07.800

001639

B-805 Depth 41.3-41.9 ft

Sample I.D.: Tested By: Test Date:

01/24/03

David Jensen

Transverse Strain Gage Series:

Longitudinal Strain Gage Series:

Gage Factor: 2.09

**Excitation Voltage:** 

Reviewed by: Review Date:

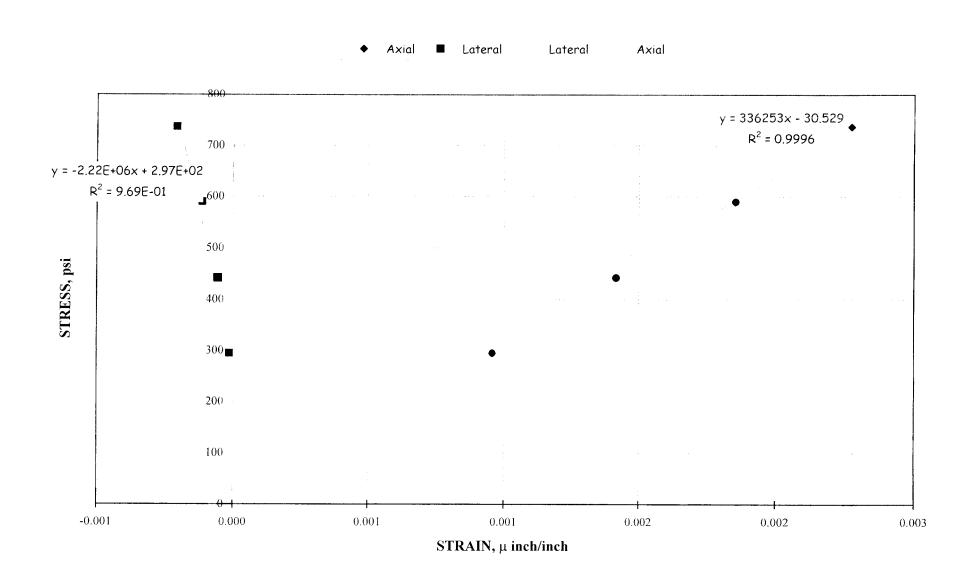
EA-06-20CBW-120 EA-06-500BH-120

2.0 V . A. TILE Thomas N. Dobras / 2-5-63

Average Diameter, inch	1.859
Average Length, inch	3.685
Length/Diameter ratio	2.0
Specimen Area, inch ²	2.714
Moisture Content (%)	0.2
Rate of loading (lbs/min)	800
Compressive Strength, psi	3,400
Longitudinal e Correction, inch/inch	-0.000011
Transverse e Correction, inch/inch	0.000011
Modulus of Elasticity, psi	336,000
Poisson's Ratio	0.15

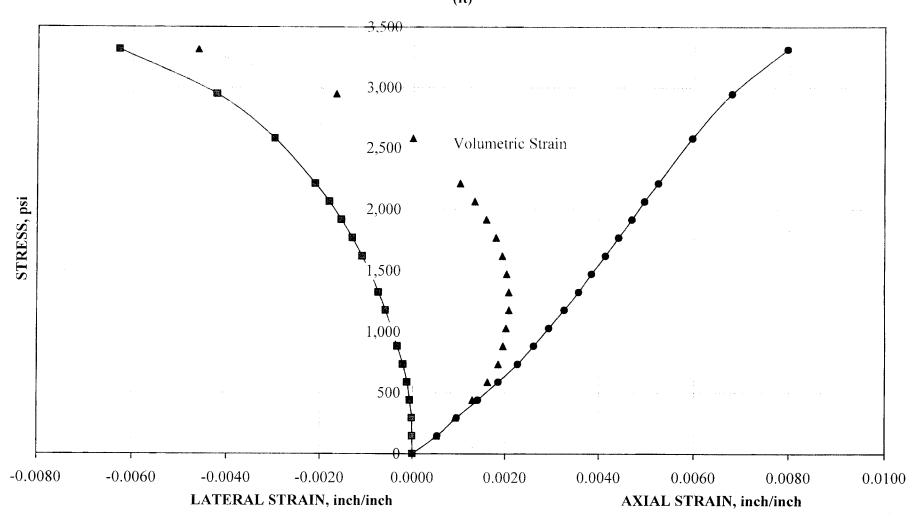
	RUN # 2		]			
Stress,	Longitudinal e	Transverse e	Longitudinal	Transverse	Poisson's	Volumetric Strain
psi	inch/inch	inch/inch	Modulus	Modulus	Ratio	$\epsilon_{v}$
0	0.000000	0.000000	273415.144	-18421345.31	0.014842	0
147	0.000539	-0.000008	351720.197	-29474152.49	0.011933	0.000523
295	0.000958	-0.000013	322474.316	-3274905.832	0.098468	0.000932
442	0.001415	-0.000058	335696.498	-2631620.758	0.127563	0.001299
589	0.001854	-0.000114	352561.633	-1551271.184	0.227273	0.001626
737	0.002272	-0.000209	432172.324	-1228089.687	0.351906	0.001854
884	0.002613	-0.000329	454848.032	-1133621.25	0.401235	0.001955
1,032	0.002937	-0.000459	454848.032	-1133621.25	0.401235	0.002019
1,179	0.003261	-0.000589	481603.799	-950779.1126	0.506536	0.002083
1,326	0.003567	-0.000744	541804.274	-921067.2653	0.588235	0.002079
1,474	0.003839	-0.000904	501261.097	-759643.1054	0.659864	0.002031
1,621	0.004133	-0.001098	524451.112	-701765.5355	0.747331	0.001937
1,768	0.004414	-0.001308	533952.038	-611496.9396	0.873188	0.001798
1,916	0.004690	-0.001549	556116.085	-571204.5056	0.973585	0.001592
2,063	0.004955	-0.001807	517090.395	-489603.8619	1.05614	0.001341
2,211	0.005240	-0.002108	514562.718	-422993.0036	1.21648	0.001024
2,579	0.005956	-0.002979	440702.041	-294741.5249	1.495215	-2E-06
2,947	0.006792	-0.004229	316790.117	-178848.0127	1.771281	-0.001666
3,316	0.007955	-0.006289				-0.004623

Note: Points chosen are in Bold.


Material description and photographs submitted in separate report

Test temperature was room temperature at 20-22 °C

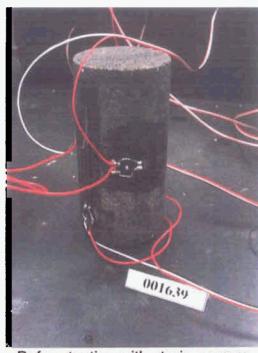
Analysis using lower portion of curve




# North Anna ESP Project 30720-2-5400 MODULUS OF ELASTICITY MACTEC Lab ID 001639 Boring No. B-805 (41.3-41.9 ft)






### North Anna ESP Project 30720-2-5400 MODULUS OF ELASTICITY MACTEC Lab ID 001639 Boring No. B-805 (41.3-41.9) (ft)







Physical Description: Slightly weathered, moderately hard, Biotite Gneiss with strong foliation at 50-60°



Before testing with strain gauges attached



After testing



# Elastic Modulii of Intact Rock Core Specimens in Uniaxial Compression

### **ASTM D 3148-96**

**Project Name:** North Anna ESP **Project Number:** 30720-2-5400.07.800

001644

MACTEC Lab ID: 001644

**Sample I.D.:** B-801 Depth 48.7-49.7 ft

**Tested By:** David Jensen **Test Date:** 01/24/03

**Transverse Strain Gage Series:** EA-06-20CBW-120 **Longitudinal Strain Gage Series:** EA-06-500BH-120

**Gage Factor:** 2.090 **Excitation Voltage:** 2.0 V

**Reviewed by:** Thomas N. Dobras

**Review Date:** 1/28/2003

Specimen Information		
Average Diameter, inch 1.863		
Average Height, inch	4.051	
Moisture Content (%)	0.1	
Ultimate Load, lbf	77,484	

RUN # 2		
Load,	Longitudinal ε	Transverse ε
lb _f	μ inch/inch	μ inch/inch
0	-15	24
5,000	-301	65
10,000	-539	112
15,000	-768	161
20,000	-983	214
25,000	-1196	268
30,000	-1406	330
35,000	-1618	400
40,000	-1827	473
45,000	-2034	551
50,000	-2248	644
55,000	-2459	759
60,000	-2677	910
65,000	-2898	1128
70,000	-3126	1499
75,000	-3328	2300



# Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression **ASTM D 3148-96**

**Project Name: Project Number:**  North Anna ESP

30720-2-5400.07.800

001644

MACTEC Lab ID: Sample I.D.:

Tested By: Test Date:

B-801 Depth 48.7-49.7 ft

David Jensen 01/24/03

Transverse Strain Gage Series:

Longitudinal Strain Gage Series:

**Gage Factor: Excitation Voltage:** 

Reviewed by: **Review Date:** 

EA-06-20CBW-120

EA-06-500BH-120

2.09

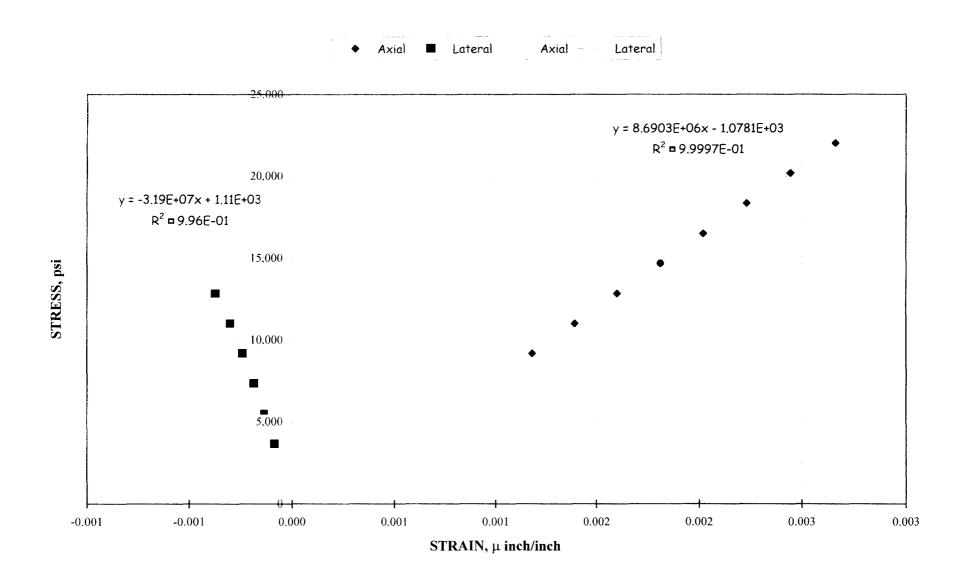
2.0 V Thomas N. Dobras

01/28/03

Average Diameter, inch	1.863
Average Length, inch	4.051
Length/Diameter ratio	2.2
Specimen Area, inch ²	2.726
Moisture Content (%)	0.1
Rate of loading (lbs/min)	10,000
Compressive Strength, psi	28,420
Longitudinal e Correction, inch/inch	-0.000015
Transverse e Correction, inch/inch	0.000024
Modulus of Elasticity, psi	8,670,000
Poisson's Ratio	0.27

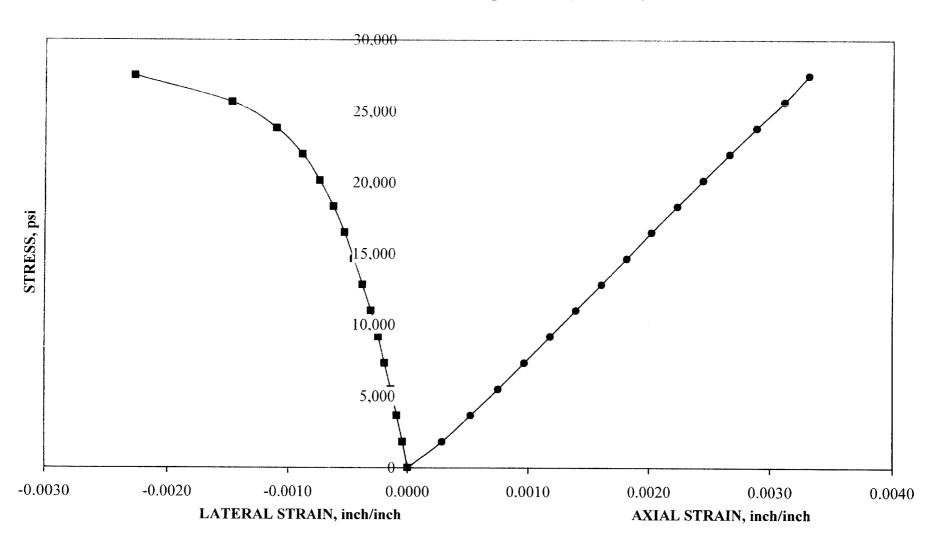
	RUN # 2				
Stress,	Longitudinal e	Transverse e			
psi	inch/inch	inch/inch			
0	0.000000	0.000000			
1,834	0.000286	-0.000041			
3,668	0.000524	-0.000088			
5,503	0.000753	-0.000137			
7,337	0.000968	-0.000190			
9,171	0.001181	-0.000244			
11,005	0.001391	-0.000306			
12,840	0.001603	-0.000376			
14,674	0.001812	-0.000449			
16,508	0.002019	-0.000527			
18,342	0.002233	-0.000620			
20,177	0.002444	-0.000735			
22,011	0.002662	-0.000886			
23,845	0.002883	-0.001104			
25,679	0.003111	-0.001475			
27,513	0.003313	-0.002276			

Note: Points chosen are in Bold.


Comments:

Material description and photographs submitted in separate report

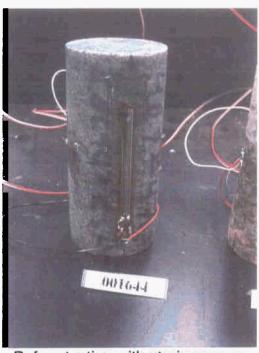
Test temperature was room temperature at 20-22 ⁰C




# North Anna ESP Project 30720-2-5400 MODULUS OF ELASTICITY MACTEC Lab ID 001644 Boring No. B-801 (48.7-49.7 ft)






### North Anna ESP Project 30720-2-5400 MODULUS OF ELASTICITY MACTEC Lab ID 001644 Boring No. B-801 (48.7-49.7 ft)





B-801 Depth (ft): 48.7-49.7

Physical Description: Fresh, very hard, Quartz Gneiss with weak foliation at 50-60°



Before testing with strain gauges attached



After testing



# Elastic Modulii of Intact Rock Core Specimens in Uniaxial Compression

### **ASTM D 3148-96**

**Project Name:** 

North Anna ESP

**Project Number:** 

30720-2-5400.07.800

MACTEC Lab ID: 001645

Sample I.D.:

B-804 Depth 49.9-50.5 ft

Tested By:

David Jensen

**Test Date:** 

01/24/03

**Transverse Strain Gage Series:** 

EA-06-20CBW-120

**Longitudinal Strain Gage Series:** 

EA-06-500BH-120 2.090

Gage Factor: **Excitation Voltage:** 

2.0 V

Reviewed by:

Thomas N. Dobras

**Review Date:** 

1/28/2003

Specimen Information		
Average Diameter, inch	1.863	
Average Height, inch	3.943	
Moisture Content (%)	0.1	
Ultimate Load, lb _f	33,532	

RUN # 2		
Load,	Longitudinal ε	Transverse ε
lb _f	μ inch/inch	μ inch/inch
0	-8	10
2,000	-641	80
4,000	-1065	180
6,000	-1423	279
8,000	-1718	380
10,000	-1980	476
12,000	-2211	573
14,000	-2443	673
16,000	-2670	802
18,000	-2938	998
20,000	-3198	1235
22,000	-3461	1514
24,000	-3735	1855
26,000	-4012	2287
28,000	-4298	2824
30,000	-4609	3582
32,000	-4960	4737



# Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression **ASTM D 3148-96**

**Project Name:** 

North Anna ESP

**Project Number:** 

30720-2-5400.07.800

MACTEC Lab ID:

001645

Sample I.D.:

B-804 Depth 49.9-50.5 ft

Tested By:

Test Date:

David Jensen

01/24/03

**Transverse Strain Gage Series:** 

Longitudinal Strain Gage Series:

**Gage Factor:** 

Reviewed by:

**Excitation Voltage:** 

**Review Date:** 

EA-06-20CBW-120

EA-06-500BH-120

2.09 2.0 V

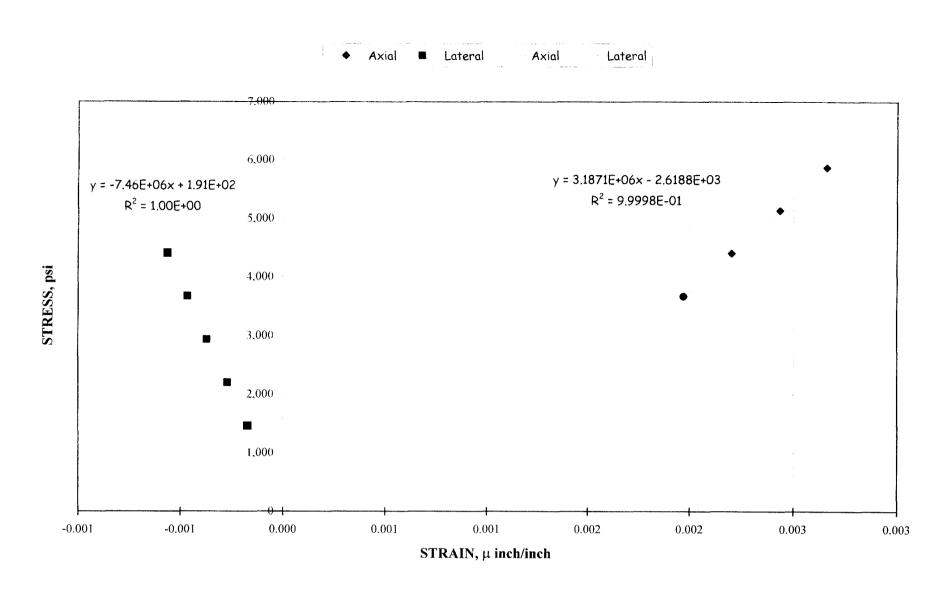
Thomas N. Dobras

01/28/03

Average Diameter, inch	1.863
Average Length, inch	3.943
Length/Diameter ratio	2.1
Specimen Area, inch ²	2.726
Moisture Content (%)	0.1
Rate of loading (lbs/min)	5000
Compressive Strength, psi	12,300
Longitudinal e Correction, inch/inch	-0.000008
Transverse e Correction, inch/inch	0.000010
Modulus of Elasticity, psi	3,190,000
Poisson's Ratio	0.43

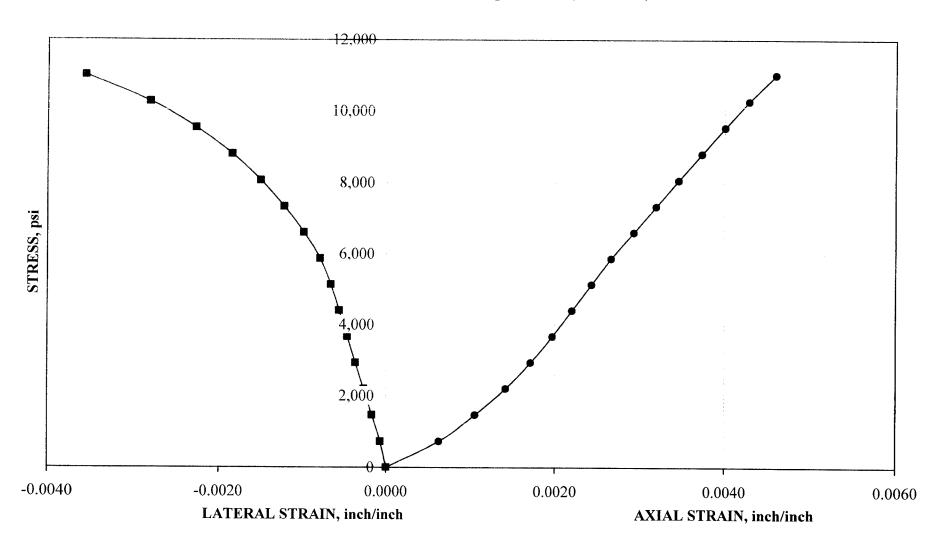
	RUN # 2	
Stress,	Longitudinal e	Transverse e
psi	inch/inch	inch/inch
0	0.000000	0.000000
734	0.000633	-0.000070
1,467	0.001057	-0.000170
2,201	0.001415	-0.000269
2,935	0.001710	-0.000370
3,668	0.001972	-0.000466
4,402	0.002203	-0.000563
5,136	0.002435	-0.000663
5,870	0.002662	-0.000792
6,603	0.002930	-0.000988
7,337	0.003190	-0.001225
8,071	0.003453	-0.001504
8,804	0.003727	-0.001845
9,538	0.004004	-0.002277
10,272	0.004290	-0.002814
11,005	0.004601	-0.003572

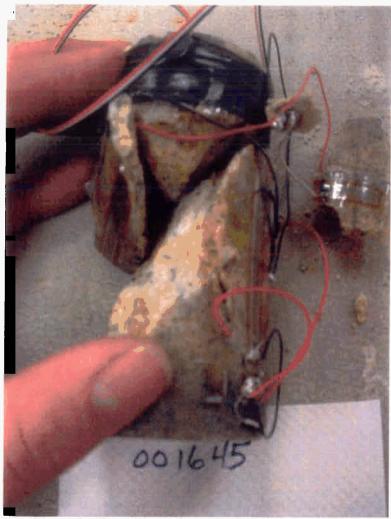
Note: Points chosen are in Bold.


Comments:

Material description and photographs submitted in separate report

Test temperature was room temperature at 20-22 °C





# North Anna ESP Project 30720-2-5400 MODULUS OF ELASTICITY MACTEC Lab ID 001645 Boring No. B-804 (49.9-50.5 ft)





#### North Anna ESP Project 30720-2-5400 MODULUS OF ELASTICITY MACTEC Lab ID 001645 Boring No. B-804 (49.9-50.5 ft)





After Testing (No Before Testing Picture Available)

B-804 Depth (ft): 49.9-50.5

Physical Description: Fresh, very hard, Quartz Gneiss with weak foliation at 50-60°



# Elastic Modulii of Intact Rock Core Specimens in Uniaxial Compression

### **ASTM D 3148-96**

Project Name: North Anna ESP
Project Number: 30720-2-5400.07.800

MACTEC Lab ID: 001650

**Sample I.D.:** B-802 Depth 66.0-66.7 ft

**Tested By:** David Jensen

**Test Date:** 01/24/03

Transverse Strain Gage Series: EA-06-20CBW-120

Longitudinal Strain Gage Series: EA-06-500BH-120
Gage Factor: 2.090

**Gage Factor:** 2.090 **Excitation Voltage:** 2.0 V

**Reviewed by:** Thomas N. Dobras

**Review Date:** 1/28/2003

Specimen Information	
Average Diameter, inch	1.859
Average Height, inch	3.757
<b>Moisture Content (%)</b>	0.3
Ultimate Load, lbf	39,933

RUN # 2		
Load,	Longitudinal ε	Transverse ε
lb _f	μ inch/inch	μ inch/inch
0	-11	10
1,000	-193	17
2,000	-374	24
3,000	-535	39
4,000	-678	45
5,000	-798	56
6,000	-912	68
7,000	-1020	81
8,000	-1122	97
9,000	-1221	111
10,000	-1316	127
12,000	-1503	161
14,000	-1677	196
16,000	-1844	233
18,000	-1995	271
20,000	-2142	312
25,000	-2500	424
30,000	-2830	565
35,000	-3139	761



# Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression ASTM D 3148-96

Project Name: Project Number:

North Anna ESP

30720-2-5400.07.800

001650

MACTEC Lab ID: Sample I.D.:

001030

B-802 Depth 66.0-66.7 ft

Tested By: Test Date:

David Jensen

01/24/03

Transverse Strain Gage Series:

Longitudinal Strain Gage Series:

Gage Factor:
Excitation Voltage:

Reviewed by:

**Review Date:** 

EA-06-20CBW-120

EA-06-500BH-120

2.09 2.0 V

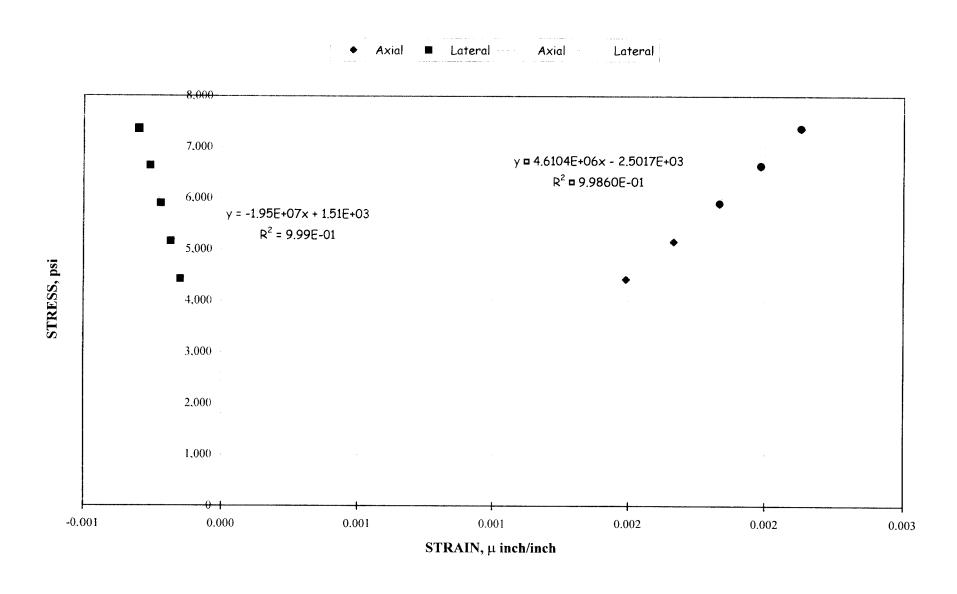
Thomas N. Dobras

01/28/03

Average Diameter, inch	1.859
Average Length, inch	3.757
Length/Diameter ratio	2.0
Specimen Area, inch ²	2.714
Moisture Content (%)	0.3
Rate of loading (lbs/min)	5000
Compressive Strength, psi	14,710
Longitudinal e Correction, inch/inch	-0.000011
Transverse e Correction, inch/inch	0.000010
Modulus of Elasticity, psi	4,613,000
Poisson's Ratio	0.24

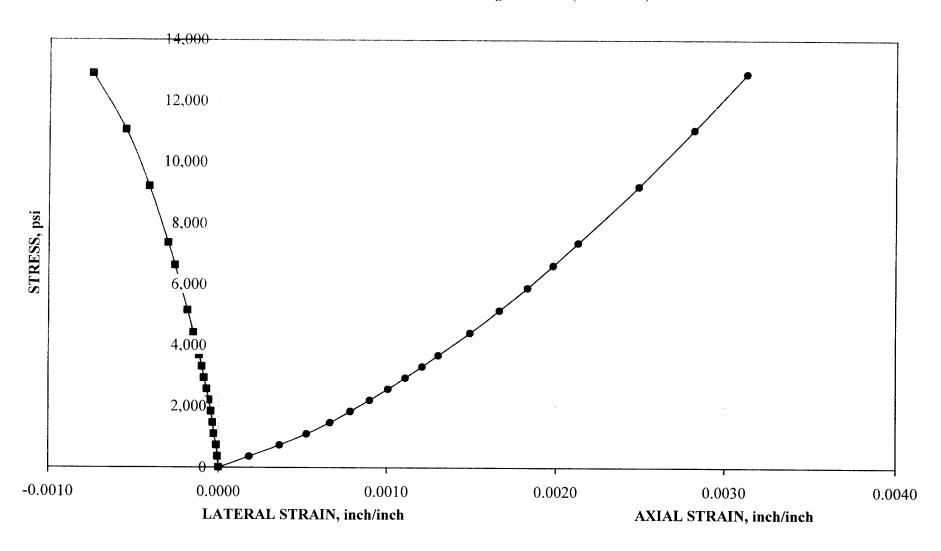
	RUN # 2	
Stress,	Longitudinal e	Transverse e
psi	inch/inch	inch/inch
0	0.000000	0.000000
368	0.000182	-0.000007
737	0.000363	-0.000014
1,105	0.000524	-0.000029
1,474	0.000667	-0.000035
1,842	0.000787	-0.000046
2,211	0.000901	-0.000058
2,579	0.001009	-0.000071
2,947	0.001111	-0.000087
3,316	0.001210	-0.000101
3,684	0.001305	-0.000117
4,421	0.001492	-0.000151
5,158	0.001666	-0.000186
5,895	0.001833	-0.000223
6,632	0.001984	-0.000261
7,369	0.002131	-0.000302
9,211	0.002489	-0.000414
11,053	0.002819	-0.000555
12,895	0.003128	-0.000751

Note: Points chosen are in Bold.


Comments:

Material description and photographs submitted in separate report

Test temperature was room temperature at 20-22 °C




# North Anna ESP Project 30720-2-5400 MODULUS OF ELASTICITY MACTEC Lab ID 001650 Boring No. B-802 (66.0-66.7 ft)





## North Anna ESP Project 30720-2-5400 MODULUS OF ELASTICITY MACTEC Lab ID 001650 Boring No. B-802 (66.0-66.7 ft)





B-802 Depth (ft): 66.0-66.7

Physical description: Slightly weathered, hard, Quartz Gneiss with strong foliation at 30-40°



Before testing with strain gauges attached



After testing



# Elastic Modulii of Intact Rock Core Specimens in Uniaxial Compression

#### **ASTM D 3148-96**

Project Name: North Anna ESP
Project Number: 30720-2-5400.07.800

MACTEC Lab ID: 001655

**Sample I.D.:** B-803 Depth 70.4-71.1 ft

Tested By: David Jensen

**Test Date:** 01/24/03

**Transverse Strain Gage Series:** EA-06-20CBW-120 **Longitudinal Strain Gage Series:** EA-06-500BH-120

Gage Factor: 2.090 Excitation Voltage: 2.0 V

**Reviewed by:** Thomas N. Dobras

**Review Date:** 1/28/2003

Specimen Information	
Average Diameter, inch	1.866
Average Height, inch	4.168
Moisture Content (%)	0.1
Ultimate Load, lb _f	63,464

RUN#2		
Load,	Longitudinal ε	Transverse ε
lb _f	μ inch/inch	μ inch/inch
0	-8	8
1,000	-110	16
2,000	-233	24
3,000	-348	34
4,000	-462	43
5,000	-572	55
6,000	-673	67
7,000	-770	81
8,000	-859	94
9,000	-945	107
10,000	-1023	123
12,000	-1177	152
14,000	-1317	183
16,000	-1448	216
18,000	-1572	248
20,000	-1692	282
25,000	-1971	371
30,000	-2237	468
35,000	-2494	580
40,000	-2741	713
45,000	-2988	883
50,000	-3230	1120
55,000	-3468	1520
60,000	-3689	2223



#### Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression **ASTM D 3148-96**

Project Name:

North Anna ESP

Transverse Strain Gage Series: 30720-2-5400.07.800

EA-06-20CBW-120

**Project Number:** 

Longitudinal Strain Gage Series:

EA-06-500BH-120

MACTEC Lab ID:

001655

Gage Factor:

2.09

Sample I.D.:

B-803 Depth 70.4-71.1 ft Excitation Voltage:

Tested By:

David Jensen

2.0 V Thomas N. Dobras

Reviewed by:

Test Date:

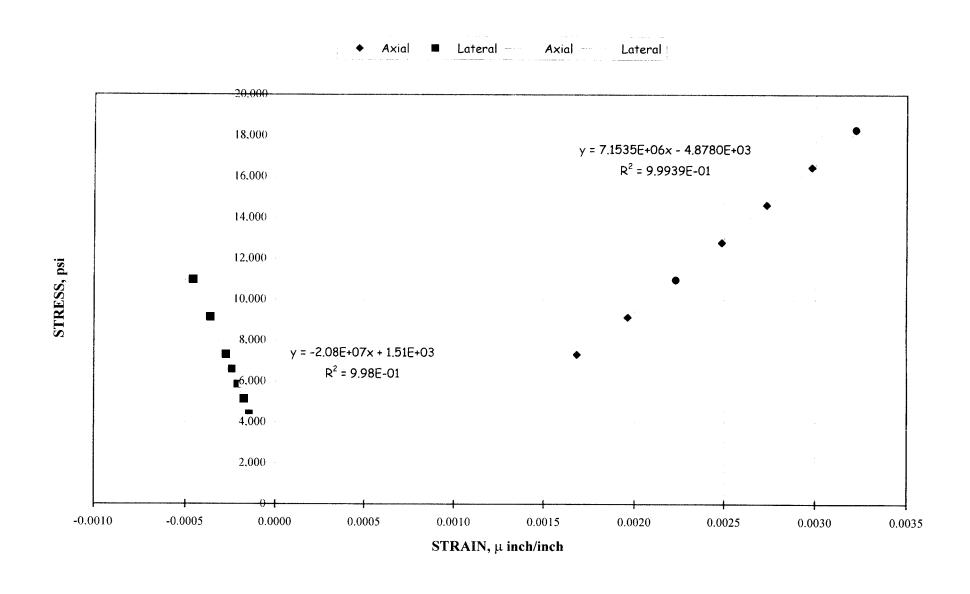
01/24/03

Review Date:

01/28/03

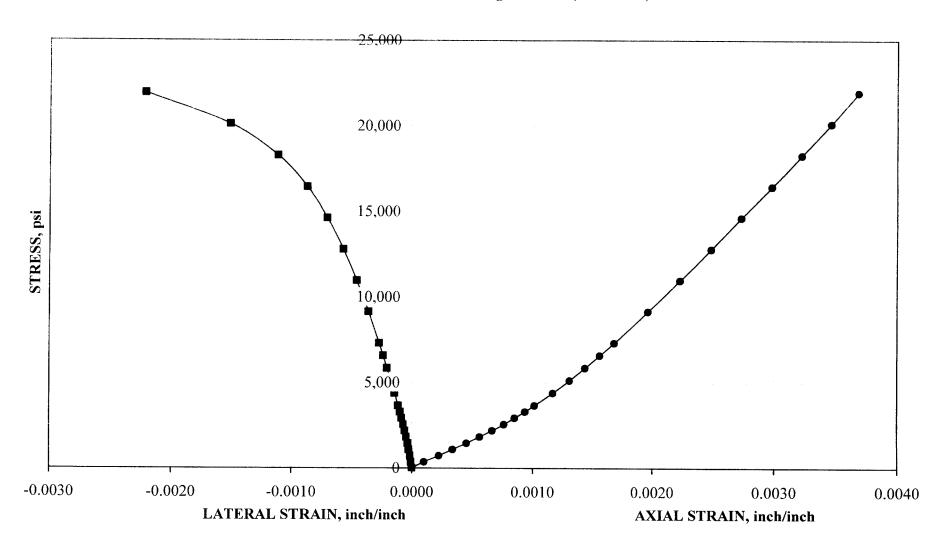
Average Diameter, inch	1.866
Average Length, inch	4.168
Length/Diameter ratio	2.2
Specimen Area, inch ²	2.735
Moisture Content (%)	0.1
Rate of loading (lbs/min)	10,000
Compressive Strength, psi	23,210
Longitudinal e Correction, inch/inch	-0.000008
Transverse e Correction, inch/inch	0.00008
Modulus of Elasticity, psi	7,133,000
Poisson's Ratio	0.34

	RUN # 2	
Stress,	Longitudinal e	Transverse e
psi	inch/inch	inch/inch
0	0.000000	0.000000
366	0.000102	-0.000008
731	0.000225	-0.000016
1,097	0.000340	-0.000026
1,463	0.000454	-0.000035
1,828	0.000564	-0.000047
2,194	0.000665	-0.000059
2,560	0.000762	-0.000073
2,925	0.000851	-0.000086
3,291	0.000937	-0.000099
3,657	0.001015	-0.000115
4,388	0.001169	-0.000144
5,119	0.001309	-0.000175
5,851	0.001440	-0.000208
6,582	0.001564	-0.000240
7,313	0.001684	-0.000274
9,142	0.001963	-0.000363
10,970	0.002229	-0.000460
12,798	0.002486	-0.000572
14,627	0.002733	-0.000705
16,455	0.002980	-0.000875
18,283	0.003222	-0.001112
20,112	0.003460	-0.001512
21,940	0.003681	-0.002215


Note: Points chosen are in Bold.

Comments: Material description and photographs submitted in separate report

Test temperature was room temperature at 20-22C




# North Anna ESP Project 30720-2-5400 MODULUS OF ELASTICITY MACTEC Lab ID 001655 Boring No. B-803 (70.4-71.1 ft)

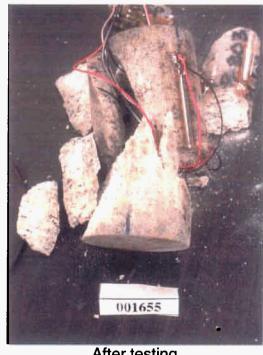




### North Anna ESP Project 30720-2-5400 MODULUS OF ELASTICITY MACTEC Lab ID 001655 Boring No. B-803 (70.4-71.1 ft)






Before testing

B-803 Depth (ft): 70.4-71.1

Physical Description: Very slightly weathered, hard, Quartz Gneiss with weak foliation at 50-60°



Before testing with strain gauges attached



After testing



# Elastic Modulii of Intact Rock Core Specimens in Uniaxial Compression

#### **ASTM D 3148-96**

**Project Name:** 

North Anna ESP

**Project Number:** 

30720-2-5400.07.800

MACTEC Lab ID: 001657

Sample I.D.:

B-803 Depth 155.6-156.4 ft

Tested By:

David Jensen

**Test Date:** 

01/24/03

**Transverse Strain Gage Series:** 

EA-06-20CBW-120

**Longitudinal Strain Gage Series:** 

EA-06-500BH-120

Gage Factor:

2.090

**Excitation Voltage:** 

2.0 V

Reviewed by: **Review Date:** 

Thomas N. Dobras

1/28/2003

Specimen Info	rmation	
Average Diameter, inch	1.873	
Average Height, inch	3.91	
Moisture Content (%)	0.1	
Ultimate Load, lb _f	60,698	

RUN#2		
Load,	Longitudinal ε	Transverse ε
lb _f	μ inch/inch	μ inch/inch
0	-9	10
5,000	-469	57
10,000	-815	114
15,000	-1130	179
20,000	-1420	250
25,000	-1688	325
30,000	-1945	411
35,000	-2197	504
40,000	-2447	610
45,000	-2700	730
50,000	-2958	874
55,000	-3227	1064
60,000	-3554	1366



# Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression **ASTM D 3148-96**

**Project Name:** 

North Anna ESP

Transverse Strain Gage Series:

EA-06-20CBW-120

**Project Number:** 

30720-2-5400.07.800

Longitudinal Strain Gage Series:

EA-06-500BH-120

MACTEC Lab ID:

001657

Gage Factor:

2.09

Sample I.D.:

B-803 Depth 155.6-156.4 ft Excitation Voltage:

2.0 V

Tested By:

David Jensen

Reviewed by:

Thomas N. Dobras

Test Date:

01/24/03

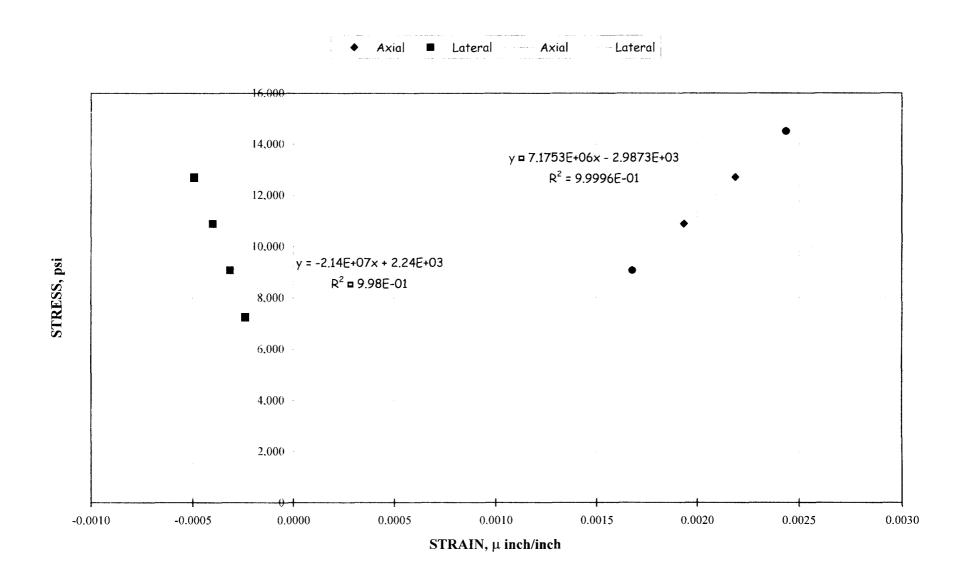
**Review Date:** 

01/28/03

Average Diameter, inch	1.873
Average Length, inch	3.910
Length/Diameter ratio	2.1
Specimen Area, inch ²	2.755
Moisture Content (%)	0.1
Rate of loading (lbs/min)	10,000
Compressive Strength, psi	22,030
Longitudinal e Correction, inch/inch	-0.000009
Transverse e Correction, inch/inch	0.000010
Modulus of Elasticity, psi	7,173,000
Poisson's Ratio	0.33

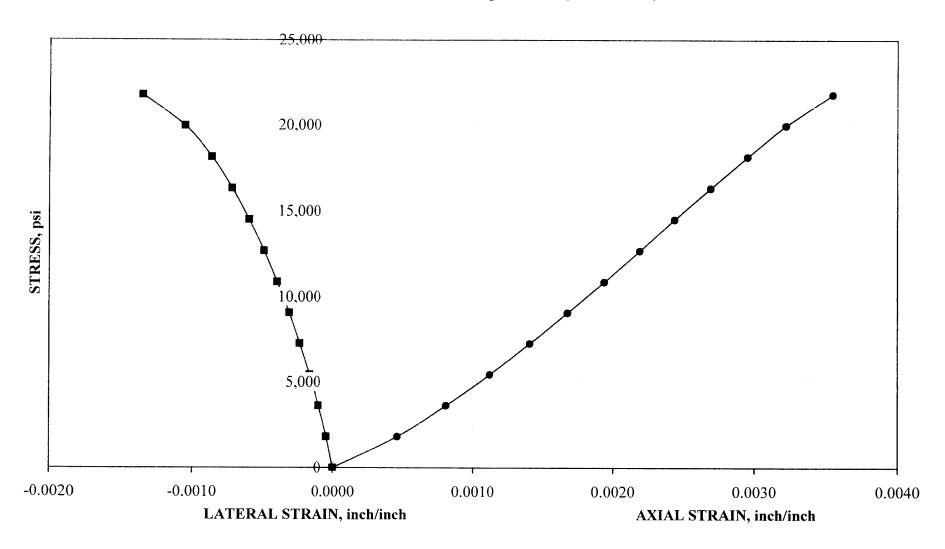
	RUN # 2								
Stress,	Longitudinal e	Transverse e							
psi	inch/inch	inch/inch							
0	0.000000	0.000000							
1,815	0.000460	-0.000047							
3,629	0.000806	-0.000104							
5,444	0.001121	-0.000169							
7,259	0.001411	-0.000240							
9,073	0.001679	-0.000315							
10,888	0.001936	-0.000401							
12,703	0.002188	-0.000494							
14,518	0.002438	-0.000600							
16,332	0.002691	-0.000720							
18,147	0.002949	-0.000864							
19,962	0.003218	-0.001054							
21,776	0.003545	-0.001356							

Note: Points chosen are in Bold.


Comments:

Material description and photographs submitted in separate report

Test temperature was room temperature at 20-22 °C




# North Anna ESP Project 30720-2-5400 MODULUS OF ELASTICITY MACTEC Lab ID 001657 Boring No. B-803 (155.6-156.4 ft)





## North Anna ESP Project 30720-2-5400 MODULUS OF ELASTICITY MACTEC Lab ID 001657 Boring No. B-803 (155.6-156.4 ft)





Before testing

B-803 Depth (ft): 155.6-156.4

Physical Description: Fresh, very hard, Quartz Gneiss with weak foliation at 50-60°



Before testing with strain gauges attached



After testing

# APPENDIX J DOWNHOLE SEISMIC REPORT AND DATA



Grumman Exploration, Inc.

2309 Dorset Road Columbus, Ohio 43221 (614) 488-7860 tel; (614) 488-8945 fax

Non-destructive Subsurface Exploration Near-surface Geophysics

March 17, 2003

Mr. J. Allan Tice Mactec Engineering Services, Inc. 3301 Atlantic Avenue Raleigh, NC 22080

RE: Report of Supplemental Downhole Seismic Testing at the North Anna Power Station

ESP, Mineral Virginia, GEI Project No. 01-22089,

MACTEC JOB NO. 30720-2-5400

#### Dear Al:

Grumman Exploration, Inc. has completed the downhole seismic testing at the above referenced project site located near Mineral, Virginia. This letter-report summarizes the field procedures used and results of the tests performed at this site. The attached spreadsheets and plots summarize the estimated seismic velocities and derived parameters for the borehole tested.

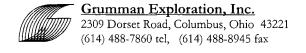
#### **Project Description**

Mactec Engineering Services, Inc. is engaged in geotechnical investigations at the site. Downhole seismic testing of a single borehole was requested to supplement an earlier cross-hole seismic test that may have yielded inconclusive results. Among the requirements and assumptions of the downhole testing procedure are: homogeneous isotropic subsurface materials, consistent annular space material, filling and diameter, and minimal ambient noise.

#### Field Procedures

Grumman Exploration, Inc. conducted downhole seismic tests at borehole B-802b on February 12, 2003 as specified by Mactec Engineering Services, Inc. B-802b was part of a three borehole set that was originally installed for cross-hole seismic tests. The borehole was lined with approximately 92-ft of 2.875" diameter inclinometer casing and was grouted in-place

using a cement bentonite grout according to ASTM D4428/D4428M. Approximately 50-ft of water in the cased hole was removed prior to testing.


The following field equipment and procedures were used to conduct the tests:

- Geometrics, Inc. SmartSeis S-12, 12 channel, digital signal enhancement seismograph,
- Four triaxial downhole geophones, 10-ft separation with leaf-spring sidewall clamping mechanisms, and
- Sledge hammer source, steel plate and weighted wood plank.

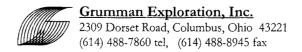
Tests were performed at 5-ft intervals from approximately 10-ft to 84-ft. Note that a 10-ft geophone separation was used to provide a longer measurement time interval between geophones in the anticipated high velocity bedrock. The seismograph sampling rate was 64 microseconds (0.064 msec) with a total sweep time of 128 milliseconds. A total of 2048 samples for each of the 12-channels were acquired for each shot. A pre-trigger delay of 5msec was used to provide additional data in a brief time window just prior to the initiation of the test. The test preparation procedures consisted of lowering the geophones to the desired test depth and releasing the sidewall clamping mechanism on each geophone. Three tests were performed at each test depth using multiple impacts from a sledgehammer striking an aluminum plate. The attached summary sheet describes the test nomenclature and test positions. The impact plate was struck from three positions: ground-surface (vertical, P-wave) and opposite sides of the horizontal plank (lateral, S wave, opposing polarities). The impacts from opposite sides of the plank were used to help identify the onset of the shear wave by observing the reversal in wave polarity. Between 2 and 7 impacts were stacked to help enhance the compressional (P) and shear (S) wave signatures and cancel spurious noise effects. A 4WD vehicle was used to weight the plank.

The data were observed and recorded in the field during acquisition. Both low and high-pass digital filters (250 Hz and 10 Hz, respectively) were used to help reduce interfering noise effects within the borehole. A preliminary assessment of the first five interval tests was performed in the field to observe the processed initial test results and adjust the acquisition parameters as needed. Upon the completion of the testing, the data were returned to the offices of Grumman Exploration, Inc. for further review and analysis.

A computer program developed by Grumman Exploration, Inc. was used to extract and display the P and S-wave traces for the geophones used for each test interval. Using the arrival time estimates, P and S wave velocities were calculated for each depth interval. The velocity calculation was based on the difference in arrival times and an assumed straight-line travel distances to each geophone using the in-hole depth to each geophone and the ground-level offset distance of the seismic impulse. An attachment summarizes the velocity calculation methodology.



The analysis consisted of estimating P-wave and S wave arrivals for each depth level tested. Three general approaches were used to estimate the compressional and shear wave arrival times:


- Composite plots illustrating all the results from all geophones at all test depths to observe general data trends;
- Multi-geophone arrival time assessment: examining the arrival time differences between successive geophones for each test position, repeated for all test positions; and
- Single-geophone assessment: examining the arrival time differences between individual geophones for different test depths, repeated for all four geophones.

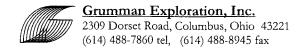
The criteria for selecting arrival times included (1) observing the apparent first onset of the P or S-wave, and/or (2) identifying a characteristic waveform, peak, polarity reversal, zero-crossing or shape that was consistently present between successive records. Apparently erroneous or unrealistically high or low velocity estimates were eliminated from the data summary tables. Because four geophones were used for each test, multiple velocity estimates for some of the test intervals were available.

#### Downhole Seismic Testing Results

The attached spreadsheets summarize the downhole seismic testing results for test borehole B-802b at the North Anna Power Station ESP site in Mineral, Virginia. The spreadsheet includes a summary of the compressional wave velocity (Vp) and the shear wave velocity (Vs). Some of the interval velocity estimates were averaged if multiple test results were available for that interval. Plots of these results are also included. The following paragraphs summarize some of the results of the downhole seismic tests:

- High Compressional wave velocities: The estimated compressional wave velocities ranged between 10,000 feet-per-second (fps) to over 16,000 fps. It is not clear why significantly lower Vp estimates occurred in the 70-ft to 85-ft depth interval. For very high velocity materials, such as occur at the North Anna ESP site, small variations in the arrival time estimates (on the order of 0.1 millisecond) can cause large changes in the Vp estimates (e.g. >1,500 fps for every 0.1 msec arrival time difference for material with Vp over 12,000 fps). Consequently, signal resolution limitations, interfering noise and slight biases in the arrival time estimates can all contribute to disproportionate, large variations in the Vp estimates. Other possible explanations for the apparent lower velocity levels may be attributable to geologic factors such as the possible presence of fracture zones and fracture filling, changes in lithology, enhanced weathering, and anisotropy.
- Shear Wave velocities were correspondingly high and were estimated in the range of 3,500 to 6,300 fps in the areas were reliable shear wave information was available. The




shear wave information appeared less reliable and thus more inconclusive below approximately 45-ft.

- Compressional waveforms: The compressional wave onset was fairly clear throughout the borehole. P-wave arrival times became more inconsistent and unreliable below approximately 65-ft where more coincident p-wave arrivals occurred (i.e. approx. same arrival time for different depths). Possible refraction effects, geologic conditions and noise interference may be responsible for some of the irregular P-wave arrivals.
- Shear waveforms: the shear-wave was generally well defined to a depth of approximately 45-ft. Although well-defined S-wave waveforms appeared to be present below 45-ft, the waveforms below this depth tended to provide more unrealistic velocity estimates and consequently fewer of the S-wave results were used below 45-ft. Below approximately 65-ft, the S-wave appears to be absent. The higher amplitude signals with the appearance of an S-wave may actually represent noise wavetrains because (a) maximum seismograph amplification of the waveforms and (b) the signal peaks all occur at approximately the same time. Ambient vibrations in the 30 to 40 Hz range are apparent in the records from bottom 20-ft of B-802b. Possible explanations for the apparent loss of signal in the lowermost sections of the borehole include excessive interfering ambient noise and possible incomplete grout filling or grout set-up within the annular space near the hole bottom.

Bias in the arrival time picks and consequently the velocity estimates could result from one or more possible circumstances including: difficulty in estimating the S and P wave arrival times, irregular or incomplete borehole annular space filling, refraction effects (non-straight line travel path), limitations on the resolution of the digitized signal, and the presence of interfering noise and other wavetrains.

#### General Qualifications

The downhole seismic data presented herein represent estimates of subsurface properties in the immediate vicinity of the boreholes tested using the measurement procedures described above. No warranty, certification, or statement of fact, either expressed or implied, regarding actual subsurface properties surrounding the borehole tested is contained herein. If questions or uncertainties exist regarding the actual parameter values, supplemental in-situ or laboratory tests or other invasive explorations should be conducted to document actual subsurface material properties. No inference of subsurface properties can be made for depth intervals not tested.



Grumman Exploration, Inc. has appreciated this opportunity to be of service again to Mactec Engineering Services, Inc. If you have any questions or comments regarding this report, please feel free to contact us.

Sincerely,

Grumman Exploration, Inc.

David L. Grumman, Jr. President/Geophysicist

# **Downhole Seismic Testing Summary Table**

Test/Well ID: B-802b

Project: North Anna ESP

Location: Mineral, VA Test Date: Client/Owner: Mactec Calc. Date: 3/17/2003

Well Descr.: 2.875" PVC, grouted, ~91' depth

2/12/2003

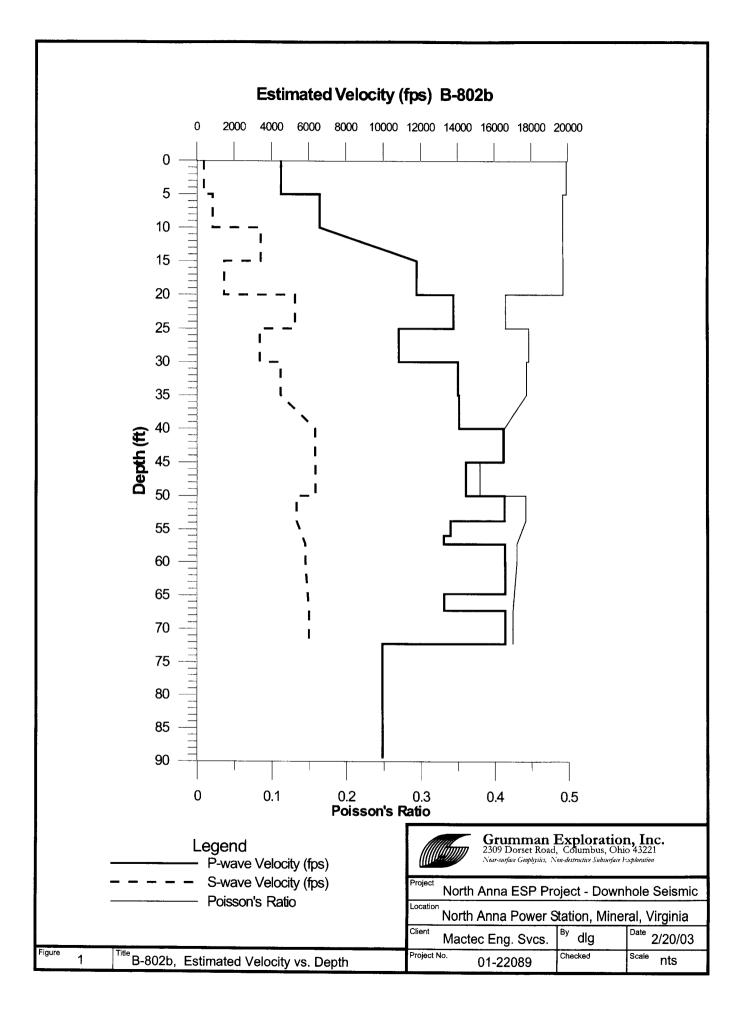
Field Staff: dlg Data Proc by: dlg

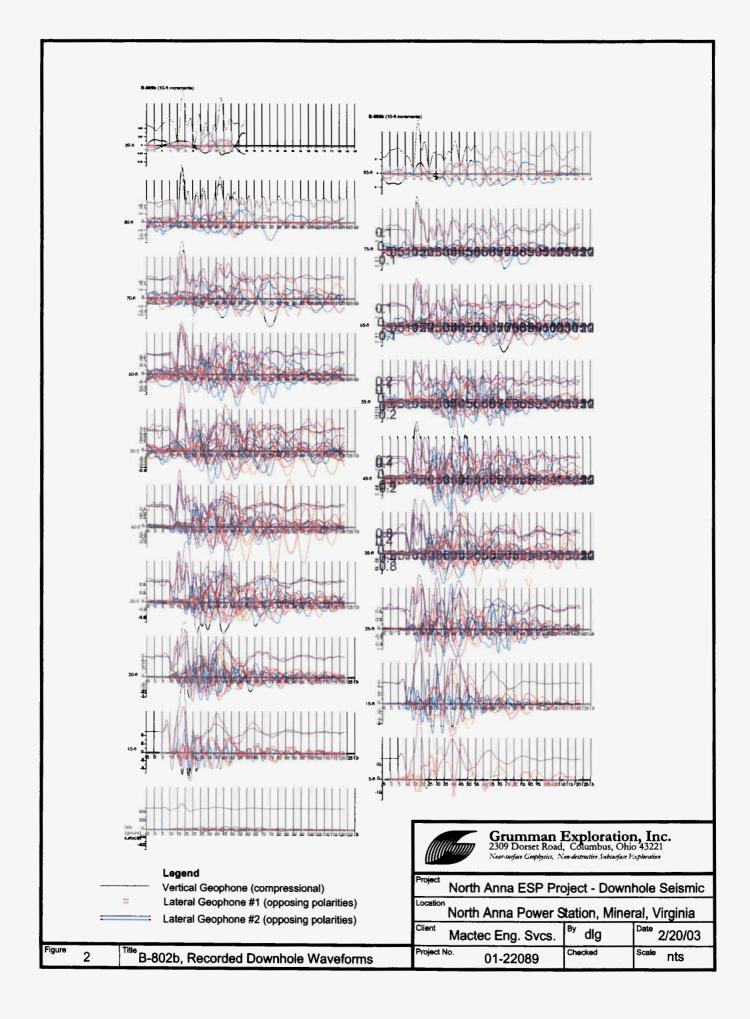
#### Grumman Exploration, Inc.

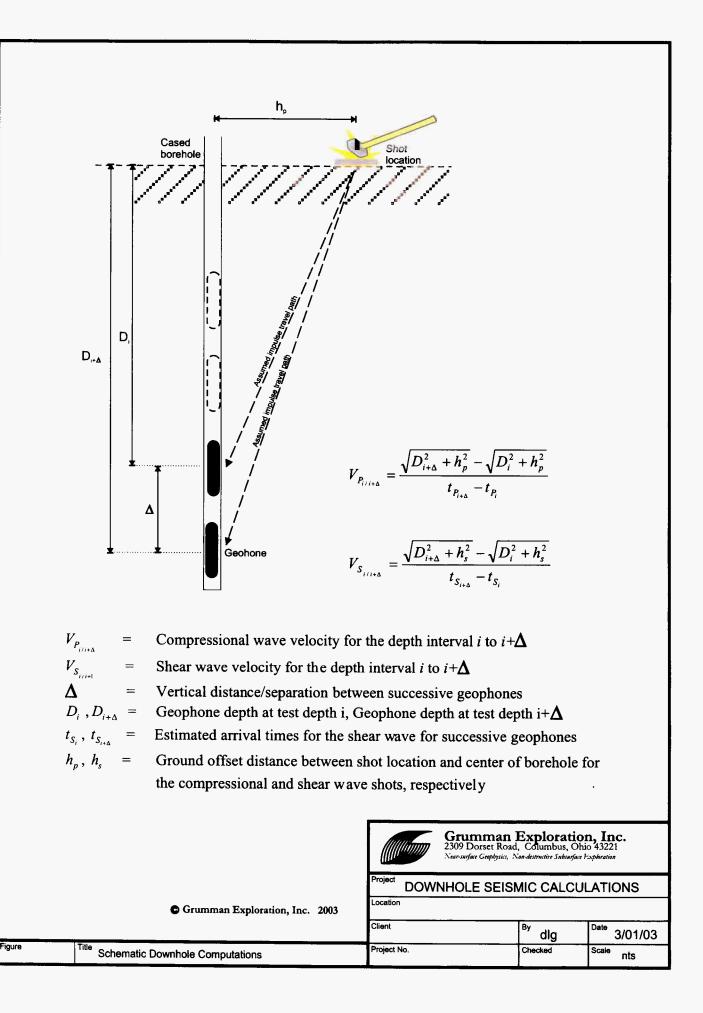
2309 Dorset Road

Columbus, Ohio 43221-3145 (614) 488-7860 tel

Eqp: Geometrics S-12 Seismograph


			Soil	Shear	Bulk	Young's	Poisson's	7	4 triaxial geophones
Test	Interval V	/elocity	Density	Modulus	Modulus	Modulus	Ratio		sledge hammer impulse source
Interval	(ft/see	c)	(pcf)						· ·
Depth (ft)	V _p	V _s	η	G	K	E	υ	Depth (ft)	Material Descr/Class
2.50	4526	385					0.496	2.50	
7.50	6603	854					0.491	7.50	
12.50	ľ	3435						12.50	
17.50	11813	1482					0.492	17.50	
22.50	13798	5278					0.414	22.50	
27.50	10854	3398					0.446	27.50	
32.50	14047	4513					0.442	32.50	
37.50	14106							37.50	
42.50	16502	6364			·		0.413	42.50	
47.50	14468	6382					0.379	47.50	
52.50	16559	5371					0.441	52.50	
55.00	13623							55.00	
57.00	13260							57.00	
57.50	16576	5835					0.429	57.50	
62.50	16590							62.50	
67.00	13280							67.00	
67.50	16601	6030					0.424	67.50	
77.00	9970							77.00	
87.00	9976	j						87.00	
		l							
<u> </u>								<u> </u>	AND A


Notes:


Blank value denotes uninterpretable data

	Projec	ct: North An	na ESP			Grumm	an Explora	tion, Inc.	20
	Boreho	le: B-802b	L	ocation:	Mineral,	VA			
				Wave T	vpe :	Shear			
				Ground		7.35	ft		
	Arrival Time E	st's. Geopho	nes A. E			1100	Velocity		
Depth	A.1 A.2		C.1	C.2	D.1	D.2	Avg (fps)	Depth	
	√s √15.00		<u> </u>		<del></del>		7 (1 pc)	0.0	
2.5	385			<del> </del>	1		385	2.5	
	19.00							5.0	
7.5	880	828	1	<del> </del>			854	7.5	
	23.00	23.25					judi.	10.0	
12.5	138 30 <b>20.00</b>	3435					1435	12.5	_
	₹ 22.40	24.50	15.00				7,7520	15.0	
17.5	1123	1842			<del> </del>		1482	17.5	
	5 Sp 26.50		20.30	ļ			1902	20.0	
22.5	5278		1		<del>                                     </del>		5278	22.5	
	27.40	' 27.05	23.00	ļ	25.00		JL1 U	25.0	
27.5	3577		3219		] <b></b>		3398	27.5	
	28.75		7000		25.90		,,,,,,	30.0	
32.5	3901	3901	24.00	<u>.</u>	5737		1519	32.5	
	30.00	30.50	25.25		26.75		154)	35.0	
37.5			<u></u>	· · · · · · · · · · · · · · · · · · ·	7	·		37.5	
	32.00		27 00		[⊥]			40.0	
42.5			3560		6158	1	6364	42.5	
	l l	i.00	27.75	·	28.00		OCO	45.0	
47.5		176	3588		المنتفعرات		6382	47.5	
					[⊥] ⇔∞30.50	29.40	1,000	50.0	_
52.5			1	<u></u>	7074	3668	5371	52.5	
				¹ > 30.00	31.20	30.75		55.0	
57.5					्रिक्ष गाँउ विशेषकार्यः साम्यवः 	5835	5835	57.5	
	29.90	1/4/1/32:10		20200	D NE 31270	31:60		60.0	
62.5								62.5	
65.0		* 34.31.50		\$F#37.50	F	3225		65.0	
67.5		6213		্কারে বিশ্বস্থা		5848	ISCOL	67.5	
70.0		W474-32.30	<u>,                                     </u>	444.4%T	). ).	A. 33.10		70.0	
72.5								72.5	
75.0	<del>-</del>			47.00	):			75.0	
77.5					·			77.5	
80.0		-	<del>                                     </del>	†	· · · · · · ·	<b>†</b>		80.0	
82.5			1		<b>†</b>	†		82.5	
85.0								85.0	
87.5								87.5	
90.0								90.0	
				<u> </u>	<b>†</b>				
	Notes: Shade	d cells are ge	ophone	locations	w/ est'd a	rrival time	ės (msec).	1	
	Red	values are ve	locity est	imates (f	ps) for de	pth interv	al `	1	
	quest	ionable/erron	eouś velo	ocity estir	nates bla	nked	Γ	<b>†</b>	

	1-	roject:	North An			Grumn	an Explor	ation, In	c. 200	
	В	orehole:	B-802b	L	ocation:	Mineral,	VA		Ī	
						ype :Com				1
					Ground		6.00		<u> </u>	<del>                                     </del>
	Arrival 7	lime Fet'	s, Geopho	nee A F			0.00	Velocity	<del>-</del>	+
Donah								Velocity		+
Depth	A 6.90	В	С	D	Avg (fps			_		ļ
2.5	4526				4526	0.0 2.5				<del></del>
5.0	7.30	7.50			40.00	5.0			<del></del>	+
7.5	5502		·		5503	7.5				+
10.0	8.00	8.00				10.0				+
12.5		ĺ				12.5			<del>                                     </del>	1
		11.60	10.60			15.0				
17.5			11813		11813	17.5				
		9110-11.80	<b>\$</b> 311.00			20.0				
22.5			13798	عنجه داها هار شدار پورازی	13798	22.5				1
25.0		2011 <b>.40</b>	11.35	4.77 VA1:/0	110954	25.0 27.5				
		- 121 <b>5</b>	1-112.35	110004 15.45		30.0				1
32.5	10.00	12 1 (25) 124 102	An and Assist House	14047	14047	32.5				
		12.00	411.90	12.50		35.0			<del>                                     </del>	+
37.5	14106				14106	37.5				1
40.0	12.75	y - × 12.75	**************************************	WW 1310		40.0			**	
42.5			16502		16502	42.5				
		13:40	\$ 12.90	<b>5.8</b> 13.00		45.0				
47.5		12401		Circle - Classic	14468	47.5				
52.5	9: 770) Z. WO	的[40] [7.66]	13.20	<b>明宗司法/5</b>		50.0				
		 	13.50		16559	52.5 55.0				_
57.5		San Carlot Control			165/6	57.5				+
		1350				60.0				+
62.5				16590	16590	62.5			<del> </del>	+
65.0		13.60		## # £30		65.0				
67.5		16601			16601	67.5			1	
70.0		13:00		<b>13544.95</b>		70.0				
	W4280			13623	13623	55.0			1	<u> </u>
57.0	13260 313.10			35 43 90	13260	57.0				
33.0	1800000000	1		78 M 4.70		59.0 0.0				
65.0		13.60		465 4411V		65.0				+
67.0		13280			13280	67.0				
69.0		13.90				69.0			<del></del>	
						0.0	-			
75.0			14.40			75.0				
77.0			9970		9970	77.0				
79.0	·		14.80		<u> </u>	79.0				
85.0				₩k14.80		0.0 85.0				1
87.0		-	-	9976	9976	85.0 87.0				
89.0	1			15.20		89.0				
				Charles Continue	1	0.0				+
	Notes:	Shaded c	ells are ge	ophone I	ocations	w/ est'd a	rrival time	es (msec),		
		Hed val	ues are vel able/errone	ocity esti	mates (fp	s) for de	oth interv	al		



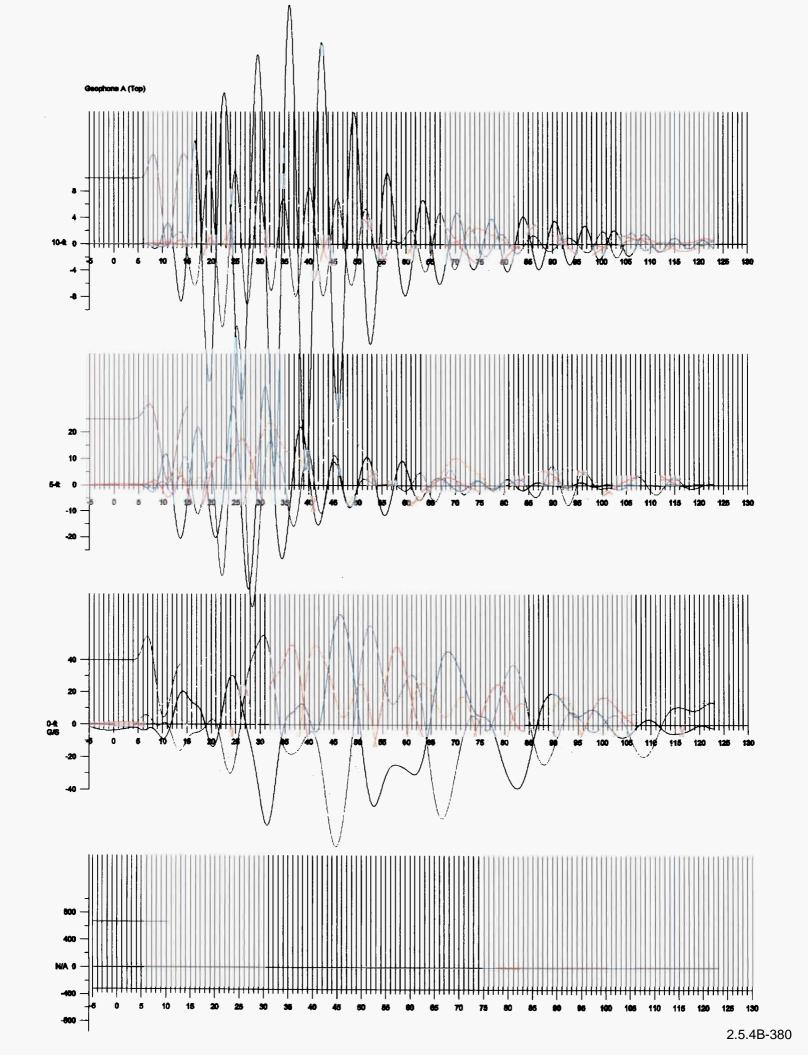


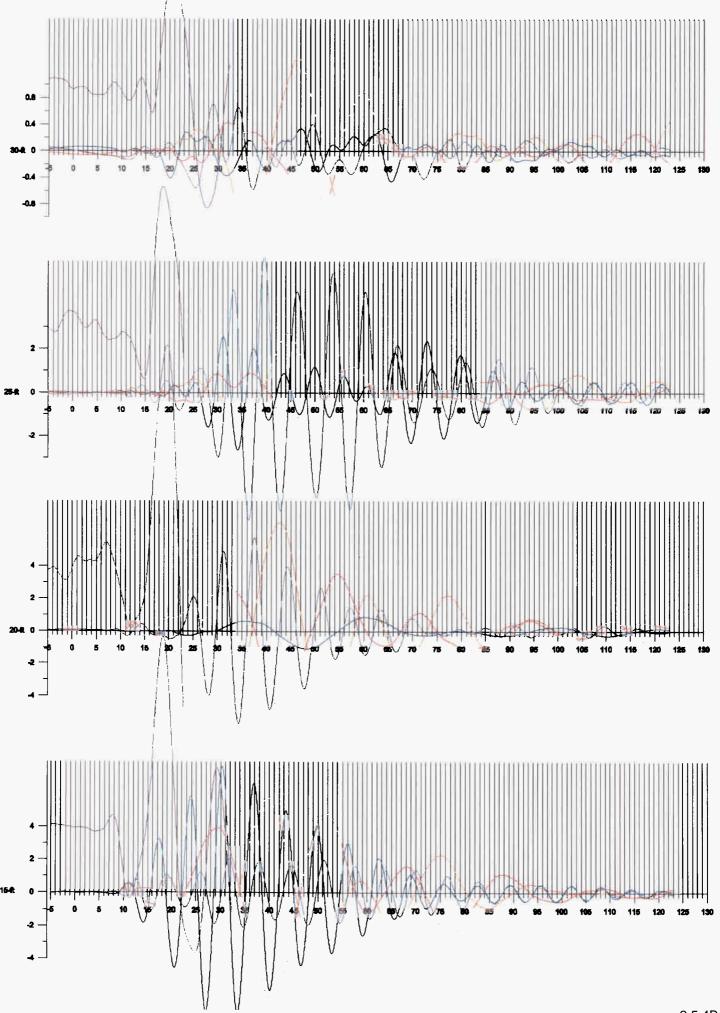


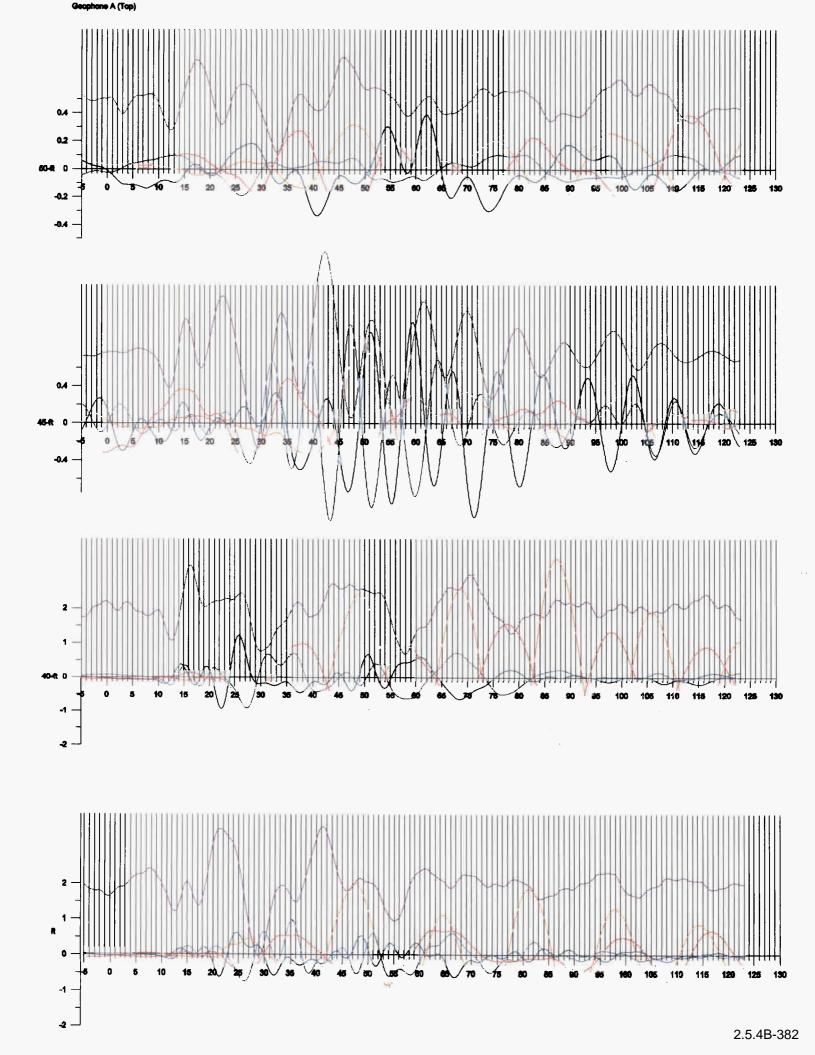
## WAVE FORMS FROM FIELD DATA

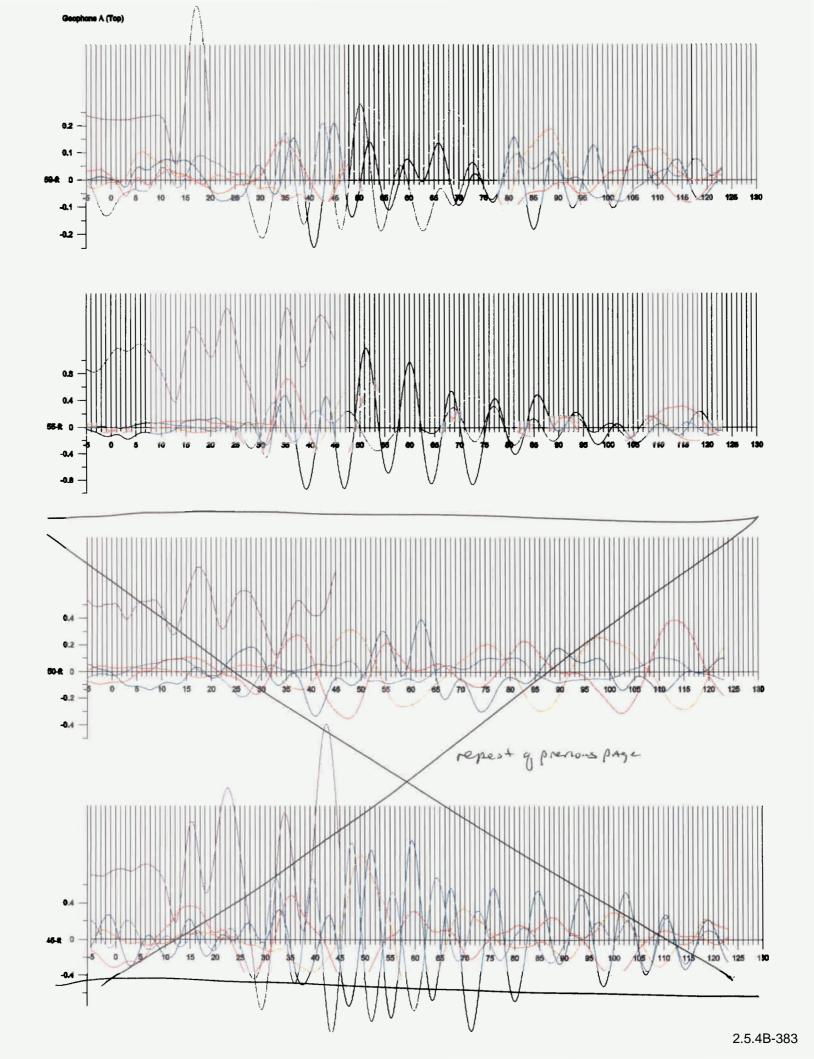
Wave forms from each geophone are presented on a series of sheets. Each sheet shows data from the indicated geophone at different depths below the surface as shown on the left side of the sheet, reading from bottom to top of the sheet. There are four geophones – A (at the top of the array), B (at the top middle of the array), C (at the bottom middle of the array) and D (at the bottom of the array). The horizontal axis is time in milliseconds. The vertical axis is amplitude of the signal and has a variable scale.

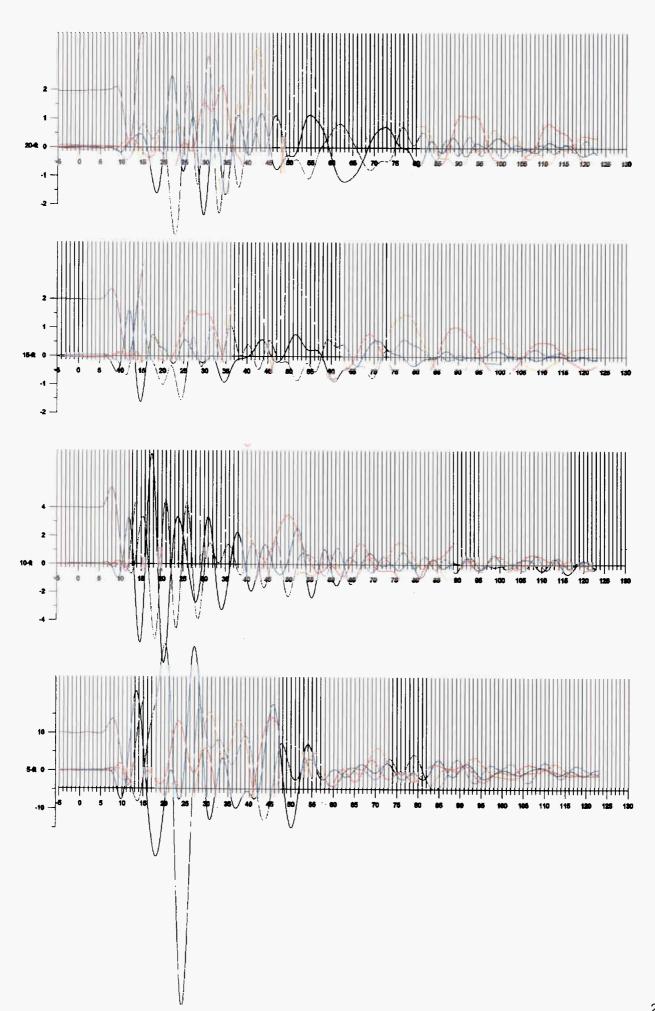
The color plots are coded as follows:

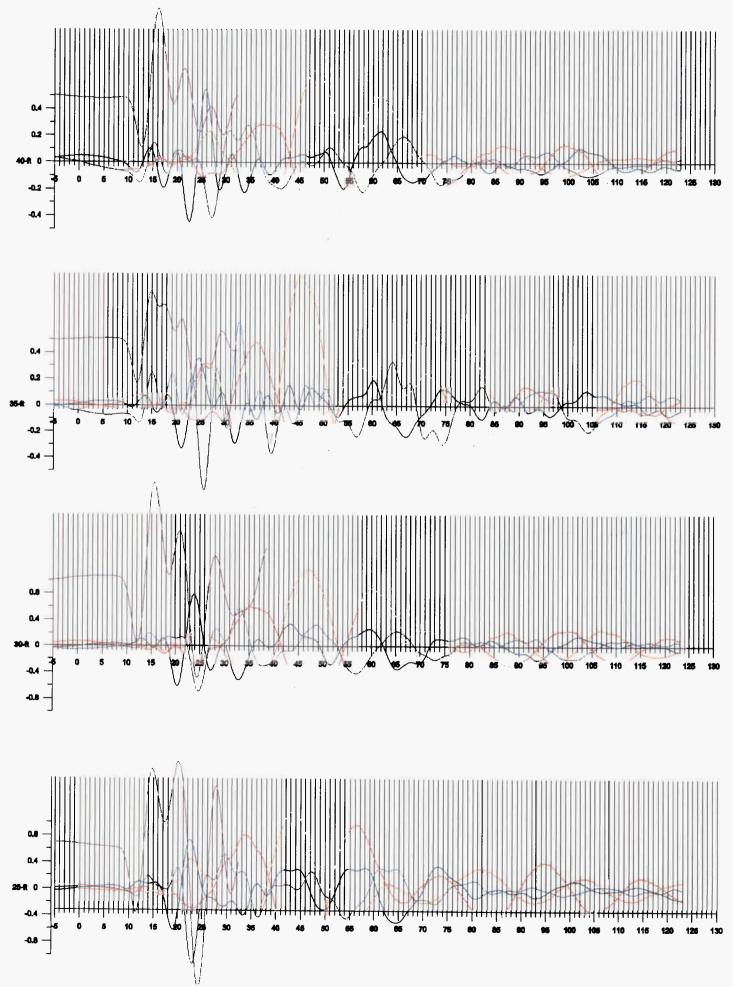

Purple - vertical signal

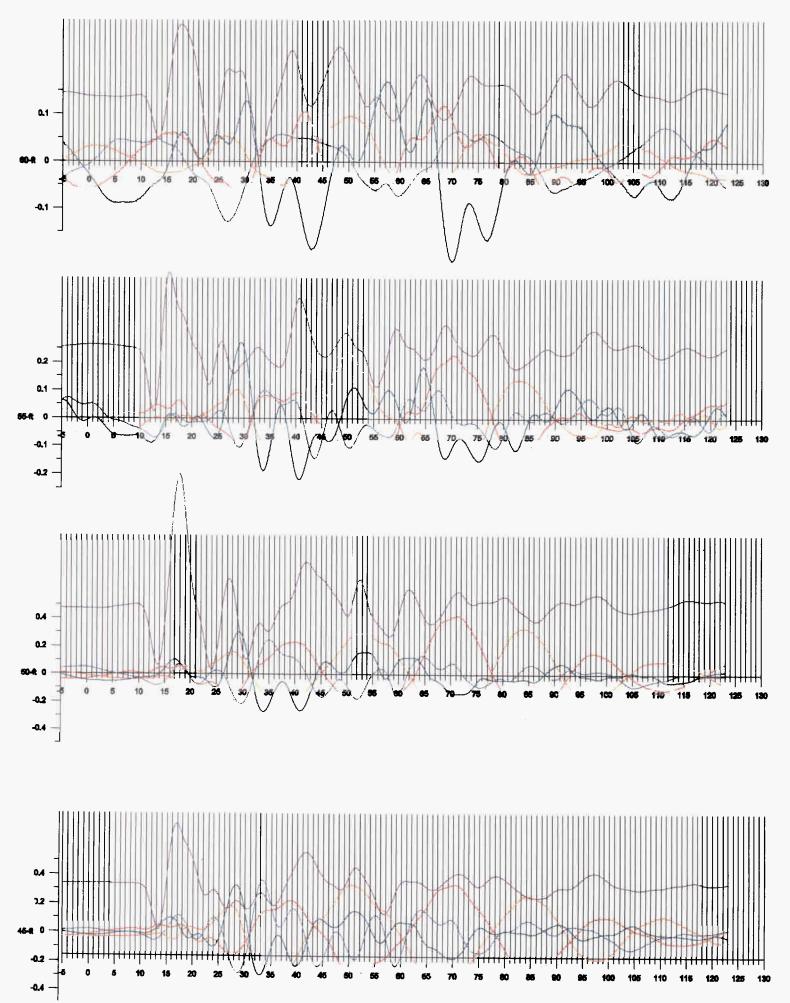

Red - lateral signal geophone 1

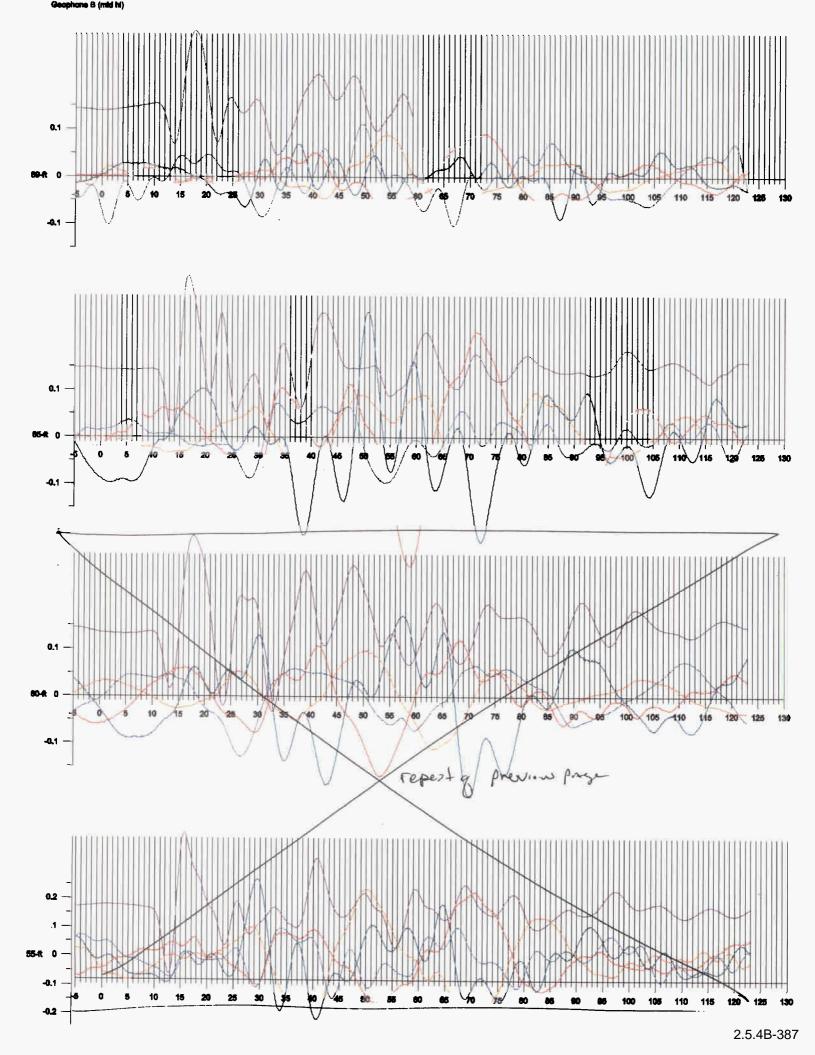

Orange - lateral signal geophone 1, opposite polarity

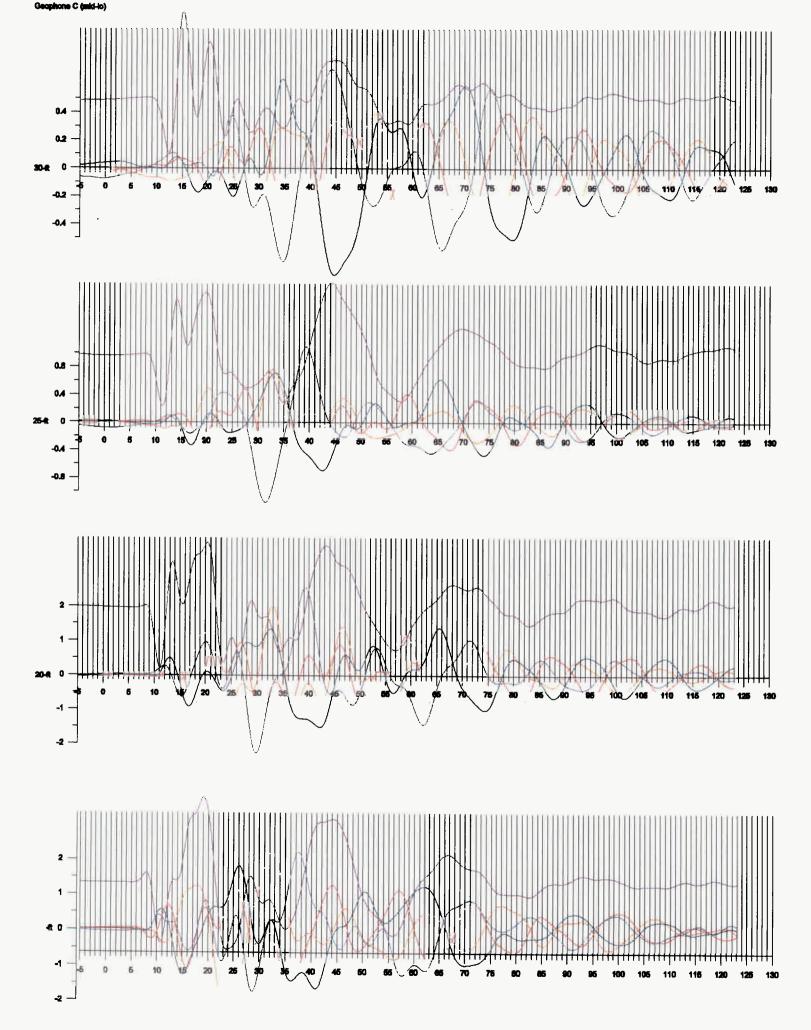

Light Blue - lateral signal geophone 2

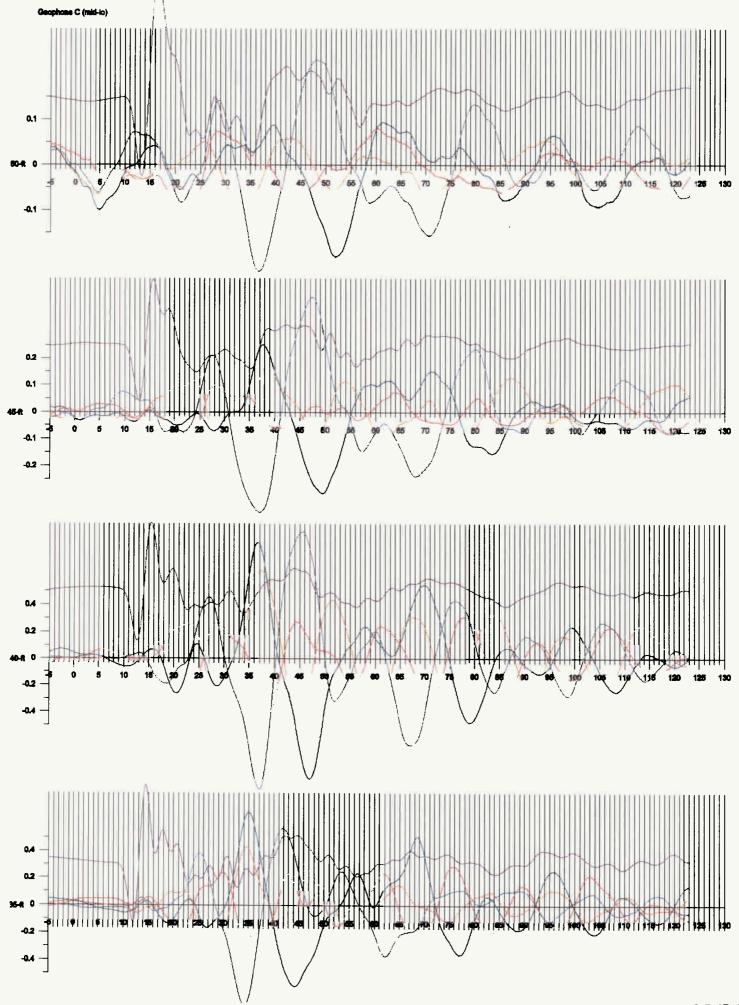

Dark Blue - lateral signal geophone 2, opposite polarity

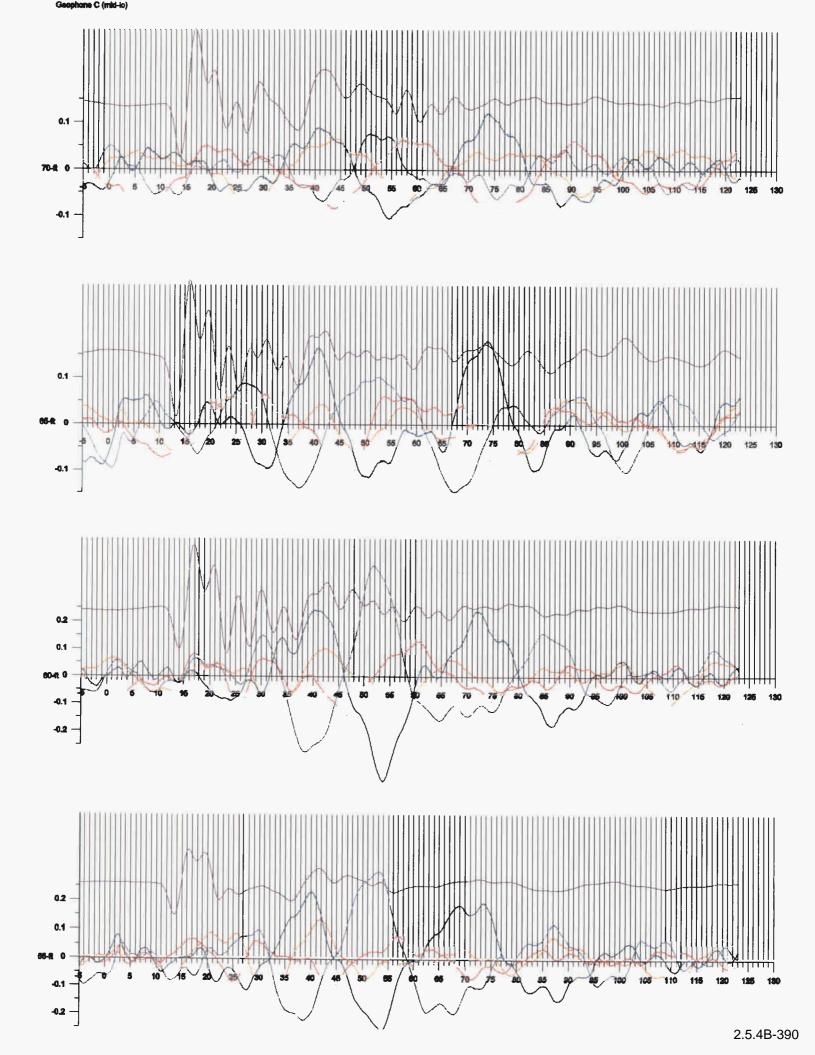


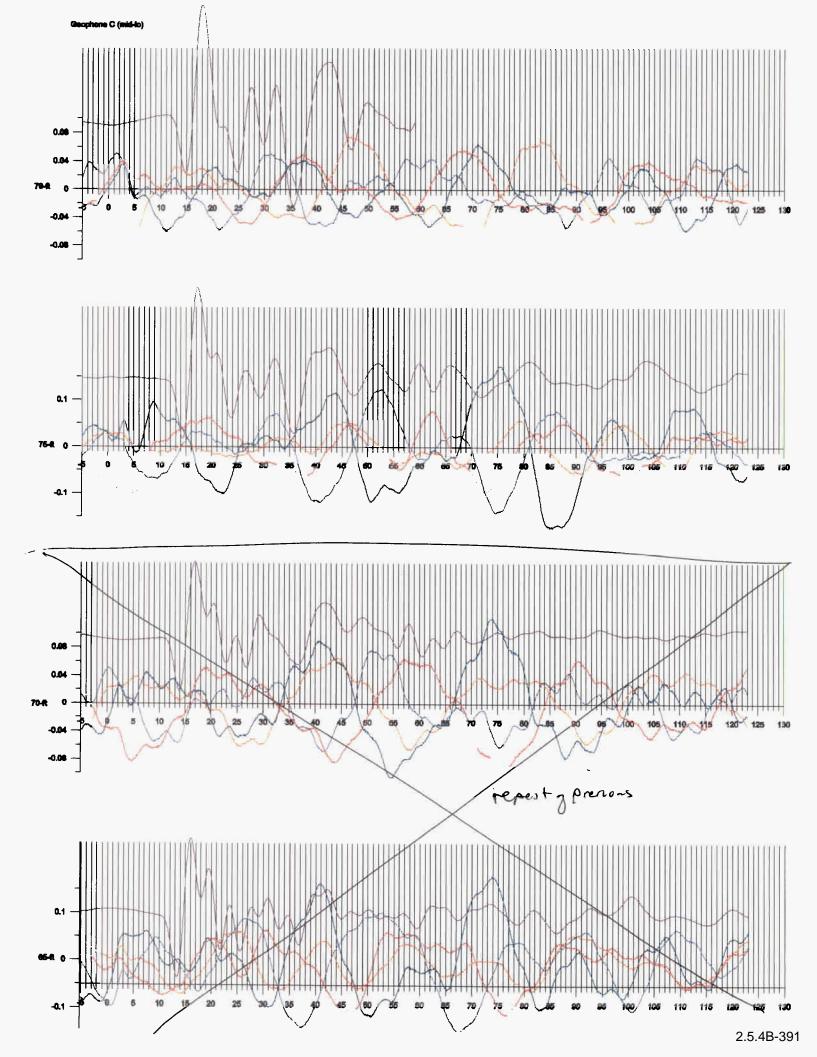



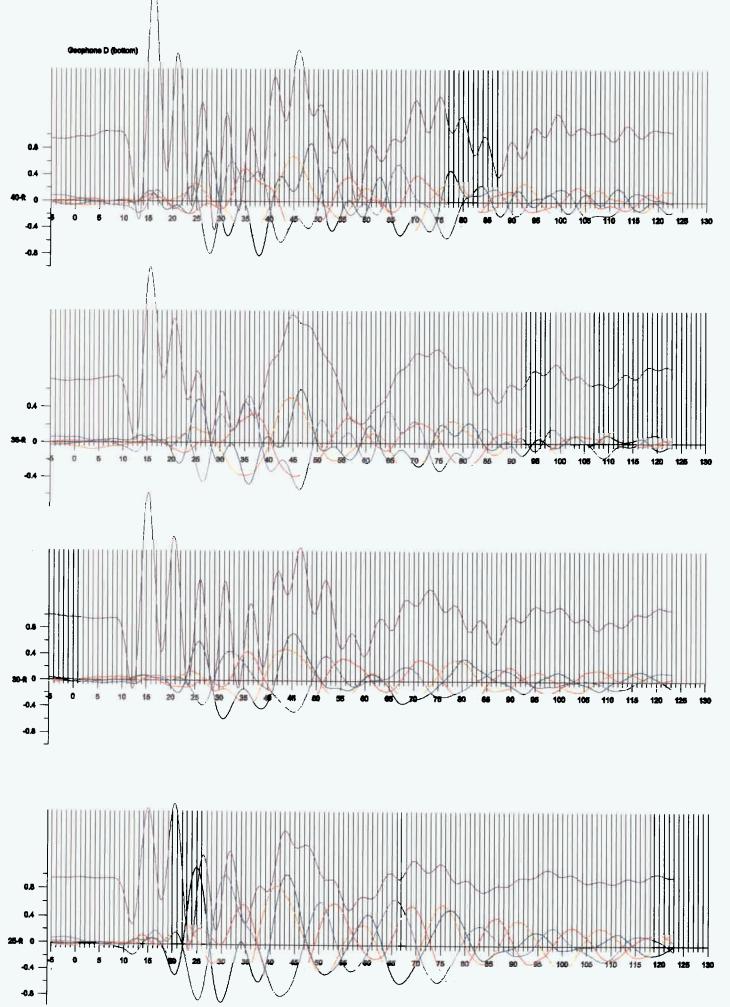



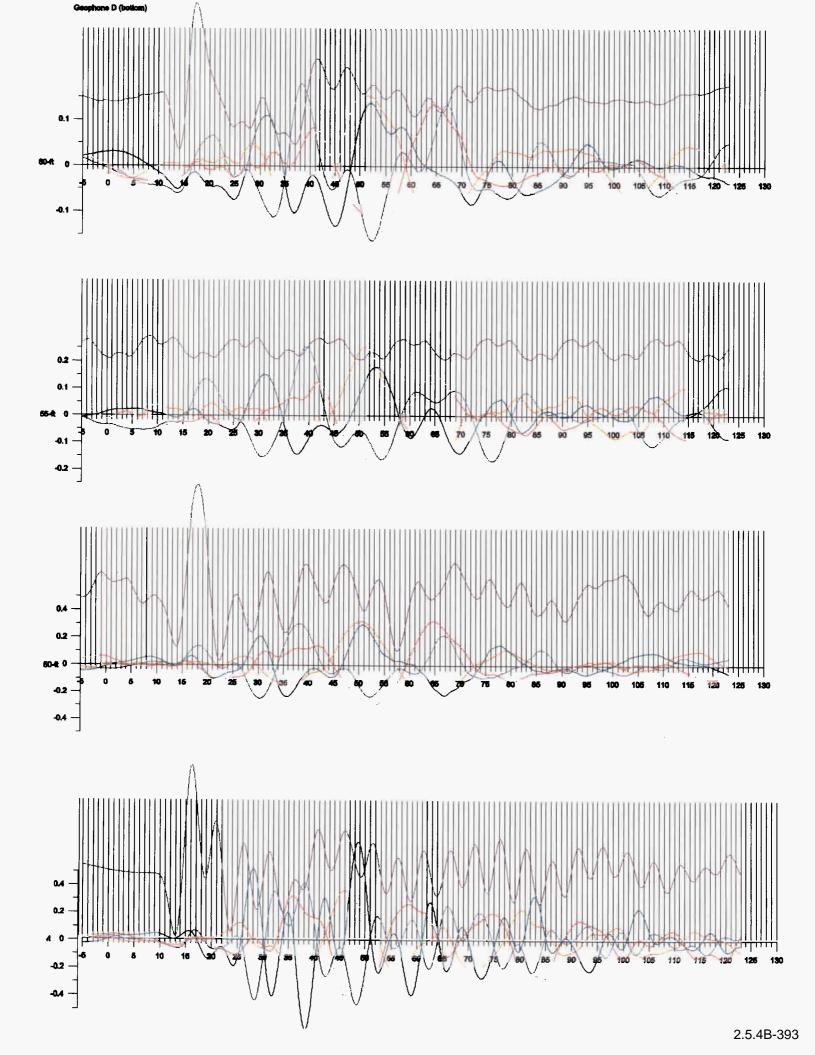



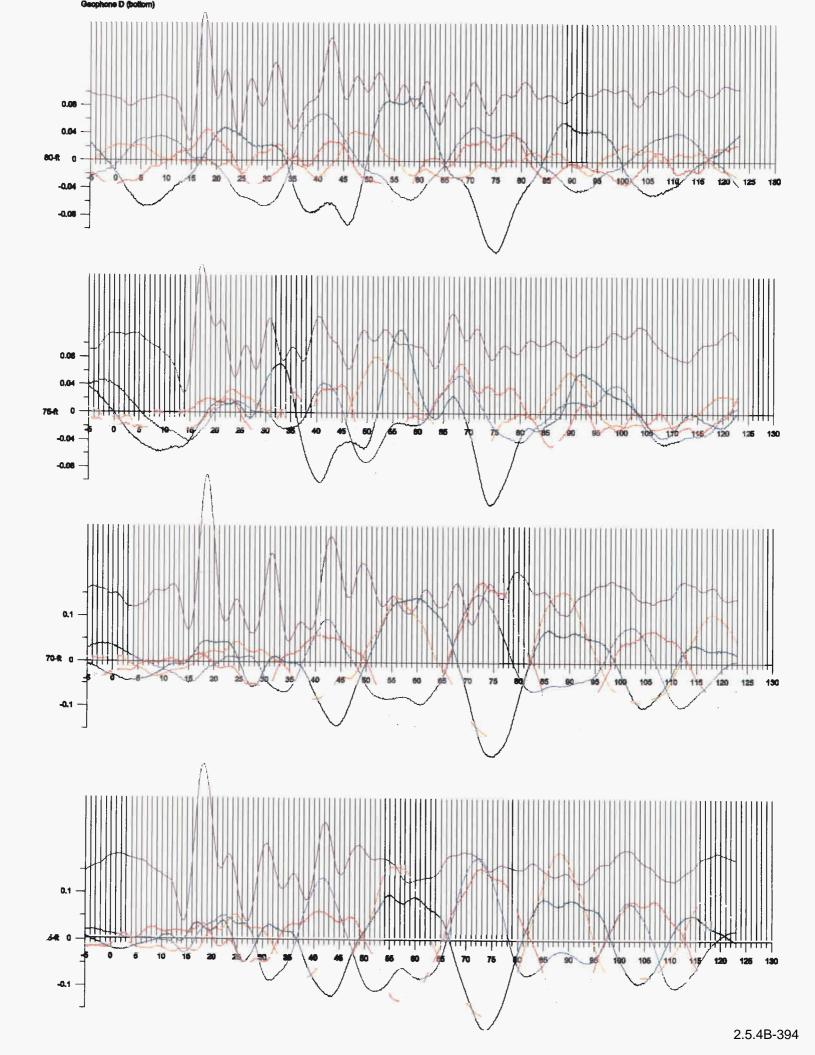



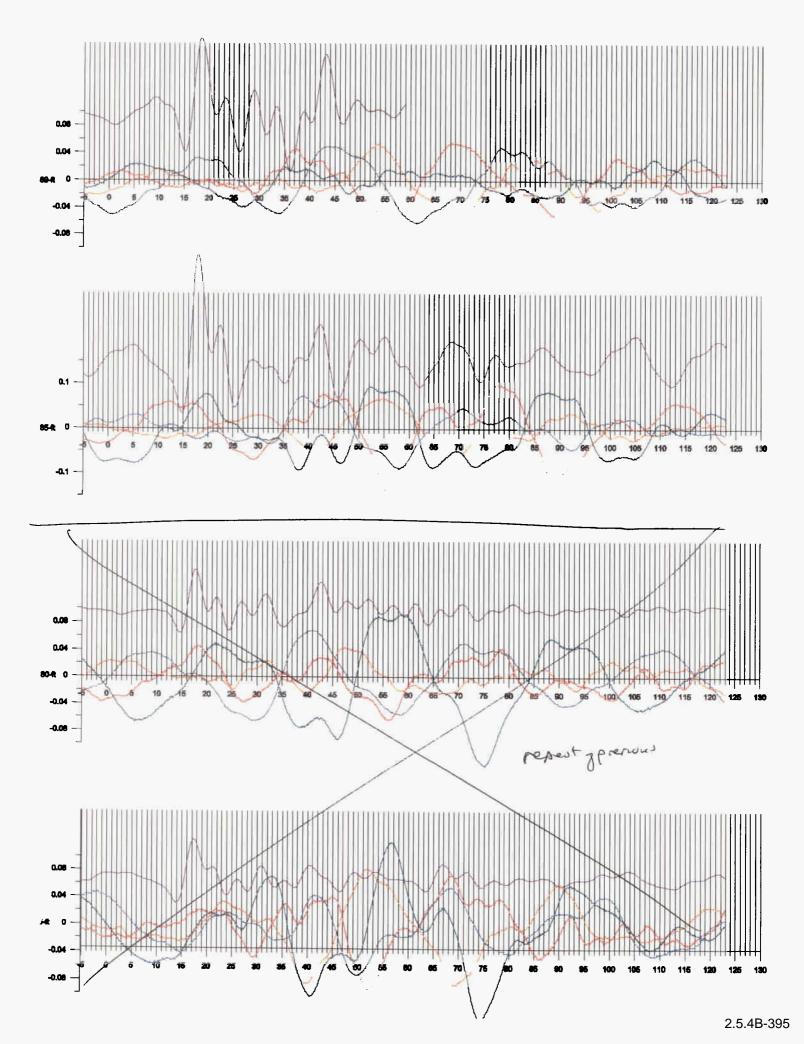













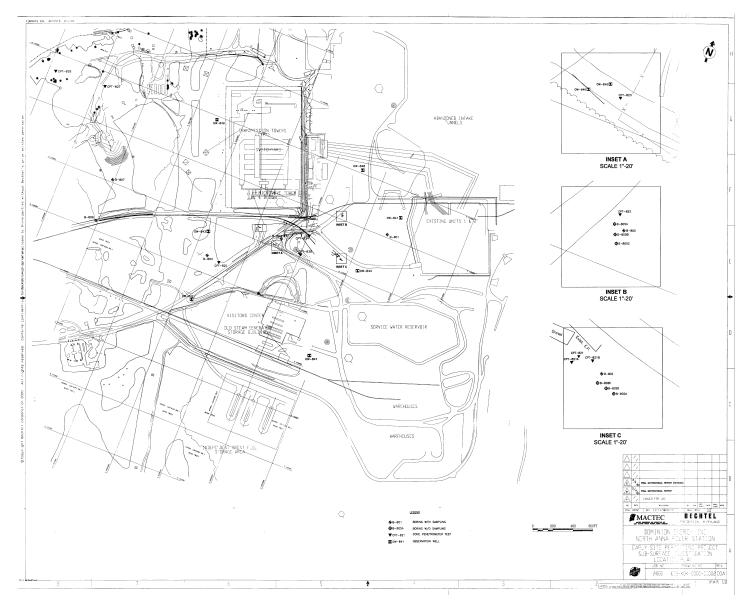




Figure 2.5-4B-1 Sub-Surface Investigation Location Plan