A Hachment Y

FAQ 36.8 Ginna

On August 14, 2003 Ginna Station scrammed due to the wide spread grid disturbance in the Northeast United States. Subsequent to the scram, Main Feedwater Isolation occurred as designed on low Tavg coincident with a reactor trip. However, due to voltage swings from the grid disturbance, instrument variations caused the Advanced Digital Feedwater Control System (ADFCS) to transfer to manual control. This transfer overrode the isolation signal causing the Main Feedwater Regulation Valves (MFRVs) to go to, and remain at, the normal or nominal automatic demand position at the time of the transfer, resulting in an unnecessary feedwater addition. The feedwater addition was terminated when the MFRVs closed on the high-high steam generator level (85%) signal.

Operators conservatively closed the MSIVs in accordance with the procedure to mitigate a high water level condition in the Steam Generators. Decay heat was subsequently removed using the Atmospheric Relief Valves (ARVs).

1

Should the scram be counted under the PI "Unplanned Scrams with Loss of Normal Heat Removal?"

FAQ 28.3 Perry

This event was initiated because a feedwater summer card failed low. The failure caused the feedwater circuitry to sense a lower level than actual. This invalid low level signal caused the Reactor Recirculation pumps to shift to slow speed while also causing the feedwater system to feed the Reactor Pressure Vessel (RPV) until a high level scram (Reactor Vessel Water Level – High, Level 8) was initiated.

Within the first three minutes of the transient, the plant had gone from Level 8, which initiated the scram, to Level 2 (Reactor Vessel Water Level – Low Low, Level 2), initiating High Pressure Core Spray (HPCS) and Reactor Core Isolation Cooling (RCIC) injection, and again back to Level 8. The operators had observed the downshift of the Recirculation pumps nearly coincident with the scram, and it was not immediately apparent what had caused the trip due to the rapid sequence of events.

As designed, when the reactor water level reached Level 8, the operating turbine driven feed pumps tripped. The pump control logic prohibits restart of the feed pumps (both the turbine driven pumps and motor driven feed pump (MFP)) until the Level 8 signal is reset. (On a trip of one or both turbine feed pumps, the MFP would automatically start, except when the trip is due to Level 8.) All three feedwater pumps (both turbine driven pumps and the MFP) were physically available to be started from the control room, once the Level 8 trip was reset. Procedures are in place for the operators to start the MFP or the turbine driven feedwater pumps in this situation.

Because the cause of the scram was not immediately apparent to the operators, there was initially some misunderstanding regarding the status of the MFP. (Because the card failure resulted in a sensed low level, the combination of the recirculation pump downshift, the reactor scram, and the initiation of HPCS and RCIC at Level 2 provided several indications to suspect low water level caused the scram.) As a result of the initial indications of a plant problem (the downshift of the recirculation pumps), some operators believed the MFP should have started on the trip of the turbine driven pumps. This was documented in several personnel statements and a narrative log entry. Contributing to this initial misunderstanding was a MFP control power available light bulb that did not illuminate until it was touched. In fact, the MFP had functioned as it was supposed to, and aside from the indication on the control panel, there were no impediments to restarting any of the feedwater pumps from the control room. No attempt was made to manually start the MFP prior to resetting the Level 8 feedwater trip signal.

Regardless of the issue with the MFP, however, both turbine driven feed pumps were available once the high reactor water level cleared, and could have been started from the control room without diagnosis or repair. Procedures are in place to accomplish this restart, and operators are trained in the evolution. Since RCIC was already in operation, operators elected to use it as the source of inventory, as provided for in the plant emergency instructions, until plant conditions stabilized. Should this event be counted as a Scram with a Loss of Normal Heat Removal?

FAQ 36.2 Peach Bottom Unit 2

.

At approximately 1345 on 07/22/03, a Main Generator 386B and 386F relay trip resulted in a load reject signal to the main turbine and the main turbine control valves went closed. The Unit 2 reactor received an automatic Reactor Protection System (RPS) scram signal as a result of the main turbine control valves closing. Following the scram signal, all control rods fully inserted and, as expected, Primary Containment Isolation System (PCIS) Group II and III isolations occurred due to low Reactor Pressure Vessel (RPV) level. The Group III isolation includes automatic shutdown of Reactor Building Ventilation. RPV level control was re-established with the Reactor Feed System and the scram signal was reset at approximately 1355 hours. At approximately 1356 hours, the crew received a High Area Temperature alarm for the Main Steam Line area. The elevated temperature was a result of the previously described trip of the Reactor Building ventilation system. At approximately 1358, a PCIS Group I isolation signal occurred due to Steam Tunnel High Temperature resulting in the automatic closure of all Main Steam Isolation Valves (MSIV). Following the MSIV closure, the crew transitioned RPV pressure and level control to the High Pressure Coolant Injection (HPCI) and Reactor Core Isolation Cooling (RCIC) systems. Following the reset of the PCIS Group II and III isolations at approximately 1408, Reactor Building ventilation was restored.

At approximately 1525, the PCIS Group I isolation was reset and the MSIVs were opened. Normal cooldown of the reactor was commenced and both reactor recirculation pumps were restarted. Even though the Group I isolation could have been reset following the Group II/III reset at 1408, the crew decided to pursue other priorities before reopening the MSIVs including: stabilizing RPV level and pressure using HPCI and RCIC; maximizing torus cooling; evaluating RCIC controller oscillations; evaluating a failure of MO-2-02A-53A "A" Recirculation Pump Discharge Valve; and, minimizing CRD flow to facilitate restarting the Reactor Recirculation pumps.

Problem Assessment:

It is recognized that loss of Reactor Building ventilation results in rising temperatures in the Outboard MSIV Room. The rate of this temperature rise and the maximum temperature attained are exacerbated by summertime temperature conditions. When the high temperature isolation occurred, the crew immediately recognized and understood the cause to be the loss of Reactor Building ventilation. The crew then prioritized their activities and utilized existing General Plant (GP) and System Operating (SO) procedures to re-open the MSIVs.

Reopening of the MSIVs was:

- easily facilitated by restarting Reactor Building ventilation,
- completed from the control room using normal operating procedures
- without the need of diagnosis or repair

Therefore, the MSIV closure does not meet the definition of "Loss of normal heat removal path" provided in NEI 99-02, Rev. 2, page 15, line 37, and it is appropriate not to include this event in the associated performance indicator – Unplanned Scrams with Loss of Normal Heat Removal.

Discussion of specific aspects of the event:

Was the recognition of the condition from the Control Room?

:

Yes. Rising temperature in the Outboard MSIV Room is indicated by annunciator in the main control room. Local radiation levels are also available in the control room. During the July 22, 2003 scram, control room operators also recognized that the increase in temperature was not due to a steam leak in the Outboard MSIV Room because the local radiation monitor did not indicate an increase in radiation levels. Initiation of the Group I isolation on a Steam Tunnel High Temperature is indicated by two annunciators in the control room.

Does it require diagnosis or was it an alarm?

The event is annunciated in the control room as described previously.

Is it a design issue?

 Yes. The current Unit 2 design has the Group I isolation temperature elements closer to the Outboard MSIV Room ventilation exhaust as compared to Unit 3. As a result, the baseline temperatures, which input into the Group I isolation signal, are higher on Unit 2 than Unit 3.

Are actions virtually certain to be successful?

• The actions to reset a Group I isolation are straight forward and the procedural guidance is provided to operate the associated equipment. No diagnosis or troubleshooting is required.

Are operator actions proceduralized?

 The actions to reset the Group I isolation are delineated in General Plant procedure GP-8.A "PCIS Isolation-Group I." The actions to reopen the MSIVs are contained in System Operating procedures SO 1A.7.A-2 "Main Steam System Recovery Following a Group I Isolation" and Check Off List SO 1A.7.A-2 "Main Steam Lineup After a Group I Isolation." These procedures are performed from the control room.

How does Training address operator actions?

• The actions necessary for responding to a Group I isolation and subsequent recovery of the Main Steam system are covered in licensed operator training.

Are stressful or chaotic conditions during or following an accident expected to be present?

• As was demonstrated in the event of July 22, 2003, sufficient time existed to stabilize RPV level and pressure control and methodically progress through the associated procedures to reopen the MSIVs without stressful or chaotic conditions

Should this be considered a scram with the loss of normal heat removal?

FAQ 27.3 LaSalle Unit 2

÷

On April 6, 2001 LaSalle Unit 2 (BWR), during maintenance on a motor driven feedwater pump regulating valve, experienced a reactor automatic reactor scram on high reactor water level. During the recovery, both turbine driven reactor feedwater pumps (TDRFPs) tripped due to high reactor water level. The motor driven reactor feedwater pump was not available due to the maintenance being performed. The reactor operators choose to restore reactor water level through the use of the Reactor Core Isolation Cooling (RCIC) System, due to the fine flow control capability of this system, rather than restore the TDRFPs. Feedwater could have been restored by resetting a TDRFP as soon as the control board high reactor water level alarm cleared. Procedure LGA-001 "RPV Control" (Reactor Pressure Vessel control) requires the unit operator to "Control RPV water level between 11 in. and 59.5 in. using any of the systems listed below: Condensate/feedwater, RCIC, HPCS, LPCS, LPCI, RHR."

The following control room response actions, from standard operating procedure LOP-FW-04, "Startup of the TDRFP" are required to reset a TDRFP. No actions are required outside of the control room (and no diagnostic steps are required).

Verify the following:

- TDRFP M/A XFER (Manual/Automatic Controller) station is reset to Minimum
- No TDRFP trip signals are present
- Depress TDRFP Turbine RESET pushbutton and observe the following
- Turbine RESET light Illuminates
- TDRFP High Pressure and Low Pressure Stop Valves OPEN
- PUSH M/A increase pushbutton on the Manual/Automatic Controller station

بر بید دیدار از از بر ایر این

Should this be considered a scram with the loss of normal heat removal?

•

FAQ 36.1 Quad Cities 2

With the unit in RUN mode at 100% power, the control room received indication that a Reactor Pressure Vessel relief valve was open. After taking the steps directed by procedure to attempt to reseat the valve without success, operators scrammed the reactor in response to increasing suppression pool temperature. Following the scram, and in response to procedural direction to limit the reactor cooldown rate to less than 100 degrees per hour, the operators closed the Main Steam Isolation Valves (MSIVs). The operators are trained that closure of the MSIV's to limit cool down rate is expected in order to minimize steam loss through normal downstream balance-of-plant loads (steam jet air ejectors, offgas preheaters, gland seal steam).

At the time that the MSIVs were closed, the reactor was at approximately 500 psig. One half hour later, condenser vacuum was too low to open the turbine bypass valves and reactor pressure was approximately 325 psig. Approximately eight hours after the RPV relief valve opened, the RPV relief valve closed with reactor pressure at approximately 50 psig. This information is provided to illustrate the time frame during which the reactor was pressurized and condenser vacuum was low.

Although the MSIVs were not reopened during this event, they could have been opened at any time. Procedural guidance is provided for reopening the MSIVs. Had the MSIVs been reopened within approximately 30 minutes of their closure, condenser vacuum was sufficient to allow opening of the turbine bypass valves. If it had been desired to reopen the MSIVs later than that, the condenser would have been brought back on line by following the normal startup procedure for the condenser.

As part of the normal startup procedure for the condenser, the control room operator draws vacuum in the condenser by dispatching an operator to the mechanical vacuum pump. The operator starts the mechanical vacuum pump by opening a couple of manual valves and operating a local switch. All other actions, including opening the MSIVs and the turbine bypass valves, are taken by the control room operator in the control room. It normally takes between 45 minutes and one hour to establish vacuum using the mechanical vacuum pump.

The reactor feed pumps and feedwater system remained in operation or available for operation throughout the event. The condenser remained intact and available and the MSIVs were available to be opened from the control room throughout the event. The normal heat removal path was always and readily available (i.e., use of the normal heat removal path required only a decision to use it and the following of normal station procedures) during this event.

Does this scram constitute a scram with a loss of normal heat removal?