

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

DUKE POWER COMPANY MCGUIRE NUCLEAR STATION Units 1 and 2

2004

TABLE OF CONTENTS

1.0 Exe	cutive Summary .			•								1-1
2.0 Intr	oduction .											2-1
2.												2-1
2.	_											2-1
2.												2-1
۷.	2.3.1 Estimation of t	auonai	Wiethiou	ology	·	•	·	•	•	•	•	2-2 2-2
	2.5.1 Estimation of t	f Deter	i value	M::.	•	D-4	1. 1 .	•	•	•	•	
	2.3.2 Lower Level o											2-3
	2.3.3 Trend Identifie	cation.	•	•	•	•	•	•	•	•	•	2-3
3.0 Int	erpretation of Results											3-1
3.	—	e and Pa	rticulat	es								3-2
3.												3-5
3.		• •	•	•	•	•		•				3-7
3.		· ·						•		•		3-9
3.		• •	•	•	•	•	•	•	:	:		3-10
3.		• •	•	•	·	·	·	•	•	•		3-10
3. 3.										•		3-12
										•		3-12
3.											·	
3.											•	3-18
3.	10 Land Use Census	• •	·	•	•	•	•	•		•	•	3-20
4.0 Ev	aluation of Dose											4-1
4.												4-1
4.							•			•		4-1
4.										•		4-2
4.	5 Comparison of Doses	• •	•	•	•	•	•	•	•	•	•	4-2
5.0 Qu	ality Assurance											5-1
5.												5-1
5.												5-1
5.	3 Dosimetry Analysis											5-1
5.		nt Quali	ty Assu	rance								5-1
	5.4.1 Daily Quality C	ontrol.										5-1
	5.4.2 Calibration Ver	ification										5-1
	5.4.3 Batch Processi				-							5-2
5.												5-2
	6 Duke Power Audits	iparisor	iiiogiu		•	•	•	•	•	•	•	5-2
5. 5.							·	•	•	•	·	5-2
5.	•	-		-				•			·	5-2 5-2
				011 PTC	-					•	•	
5.								•	•	•	•	5-3
	5.9.1 Nuclear Techno								•	•	•	5-3
	5.9.2 State of North C					0			·	•	•	5-3
	5.9.3 Internal Crossc	neck (D	uke Pov	ver)	•	•	•	•	•	•	•	5-3
6 A D.	eferences											6-1
U.U IN	ACIUNCO			•			•					0-1

Appendices

Appendix	A: En	vironmental Sa	mpling	and Ana	lysis	Proce	edure s	з.					A-1
I.	Chan	ge of Sampling	Proced	ures									A-2
II.	Desci	ription of Analy	sis Pro	cedures									A-2
III.		ge of Analysis I						•					A-3
IV.	Samp	ling and Analys											A-3
	A.1	Airborne Parti											A-3
	A.2	Drinking Wate											A-3
	A.3	Surface Water	·			•	•		•	•			A-4
	A.4						•						A-4
	A.5	Broadleaf Veg	etation				•						A-4
	A.6	Food Products	s				•						A-4
	A.7						•						A-4
	A.8	Shoreline Sedi					•						A-5
	A.9	Direct Gamma	Radiati	on (TLD).	•	•		•	•			A-5
		Annual Land U											A-6
V. (Global F	Positioning Systematics	em (GF	S) Analy	isis								A-6
	B: Ra	diological Env.	Monito	ring Prog	gram ·	- Sum	nmary	of Re	esults				B-1
	B: Ra Air Pa	diological Env.	Monito	ring Prog	gram ·	- Sum	nmary	of Re	esults		•		B-2
	B: Ra Air Pa Air R	diological Env. articulate . adioiodine .	Monito	ring Prog	gram ·	- Sum	nmary	of Re	esults				B-2 B-3
	B: Ra Air Pa Air R Drink	diological Env. articulate . adioiodine . ing Water .	Monito	ring Prog · ·	gram · ·	- Sum · ·	nmary	of Re	esults				B-2 B-3 B-4
	B: Ra Air Pa Air R Drink Surfa	diological Env. articulate . adioiodine . ting Water . ce Water .	Monito · · · · · ·	ring Prog · ·	gram · ·	- Sum · ·	nmary	of Re	esults				B-2 B-3 B-4 B-5
	B: Ra Air Pa Air R Drink Surfa Milk	diological Env. articulate . adioiodine . ting Water . ce Water .	Monito 	ring Prog · ·	gram · ·	- Sum · ·	nmary	of Re	esults				B-2 B-3 B-4
	B: Ra Air Pa Air R Drink Surfa Milk Broac	diological Env. articulate . adioiodine .	Monito	ring Prog · ·	gram	- Sum	nmary	of Re	esults				B-2 B-3 B-4 B-5 B-6 B-7
	B: Ra Air Pa Air R Drink Surfa Milk Broad Food	diological Env. articulate . adioiodine . ing Water . ce Water . lleaf Vegetation Products .	Monito	ring Prog	gram · · ·	- Sum	nmary	of Re	esults				B-2 B-3 B-4 B-5 B-6
	B: Ra Air Pa Air R Drink Surfa Milk Broac	diological Env. articulate . adioiodine . ing Water . ce Water . lleaf Vegetation Products .	Monito	ring Prog	gram - - - - - - - -	- Sum	nmary	of Re	esults				B-2 B-3 B-4 B-5 B-6 B-7
	B: Ra Air Pa Air R Drink Surfa Milk Broad Food Fish Shore	diological Env. articulate . adioiodine . ting Water . ce Water . lleaf Vegetation Products . 	Monito	ring Proş	gram - - - - - - - - - - -	- Sum - - - - - - - - - - - -	1mary - - - - - - - - - - -	of Re	esults	· · · ·			B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10
Appendix	B: Ra Air Pa Air R Drink Surfa Milk Broad Food Fish Shore Direct	diological Env. articulate . adioiodine . ting Water . ce Water . lleaf Vegetation Products . eline Sediment t Gamma Radiat	Monito	ring Proş	gram - - - - - - - - - - - - - - -	- Sum - - - - - - - - - - - - - -	1mary - - - - - - - - - - - - - -	of Re	esults	· · · ·			B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9
Appendix	B: Ra Air P: Air R Drink Surfa Milk Broad Food Fish Shore Direct C: Sa	diological Env. articulate . adioiodine . ting Water . ce Water . lleaf Vegetation Products . eline Sediment t Gamma Radiat mpling Deviation	Monito	ring Proş	gram - - - - - - - - - - - - - - - - - - -	- Sum - - - - - - - - - - - - - - - - - - -	1mary - - - - - - - - - - - - - - - - - - -	of Re	esults	· · · ·			B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10 B-11 C-1
Appendix	B: Ra Air P: Air R Drink Surfa Milk Broad Food Fish Shore Direct C: Sa C.1	diological Env. articulate . adioiodine . .ting Water . .ce Water . lleaf Vegetation Products . line Sediment t Gamma Radiat mpling Deviatio Sampling Devia	Monito	ring Proş	gram - able A	- Sum	1mary - - - - - - - - - - - - - - - - - - -	of Re	esults	· · · ·		· · · · · · · · ·	B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10 B-11
Appendix	B: Ra Air Pa Air R Drink Surfa Milk Broad Food Fish Shore Direct C: Sa C.1 C.2	diological Env. articulate . adioiodine . ing Water . ce Water . lleaf Vegetation Products . line Sediment t Gamma Radiat mpling Deviatio Sampling Deviation Unavailable An	Monito	ring Proş	gram - - - - - - - - - - - - - - - - - - -	- Sum - - - - - - - - - - - - - - - - - - -	1mary - - - - - - - - - - - - -	of Re	esults	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · ·	B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10 B-11 C-1 C-2 C-3
Appendix Appendix Appendix	B: Ra Air Pa Air R Drink Surfa Milk Broad Food Fish Shore Direct C: Sa C.1 C.2 D: Ar	diological Env. articulate . adioiodine . .ting Water . .ce Water . lleaf Vegetation Products . line Sediment t Gamma Radiat mpling Deviatio Sampling Devia	Monito	ring Proş	gram - - - - - - - able 4	- Sum - - - - - - - - - - - - - - - - - - -	imary - - - - - - - - - - - - -	of Re	esults	• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10 B-11 C-1 C-2

LIST OF FIGURES

Sampling Locations Map (0.5 Mile Radius) .							2-4
Sampling Locations Map (Ten Mile Radius)							2-5
Concentration of Gross Beta in Air Particulate							3-3
Concentration of Tritium in Drinking Water.							3-5
Concentration of Tritium in Surface Water .							3-7
Concentration of Cs -137 in Fish							3-13
Concentration of Co-60 in Fish							3-13
Concentration of Cs -137 in Shoreline Sediment							3-15
Concentration of Co-60 in Shoreline Sediment							3-16
Direct Gamma Radiation (TLD) Results .							3-18
2003 Land Use Census Map							3-21
	Sampling Locations Map (Ten Mile Radius) Concentration of Gross Beta in Air Particulate Concentration of Tritium in Drinking Water . Concentration of Tritium in Surface Water . Concentration of Cs -137 in Fish Concentration of Co-60 in Fish Concentration of Cs -137 in Shoreline Sediment Concentration of Co-60 in Shoreline Sediment Direct Gamma Radiation (TLD) Results .	Sampling Locations Map (Ten Mile Radius) Concentration of Gross Beta in Air Particulate Concentration of Tritium in Drinking Water . Concentration of Tritium in Surface Water . Concentration of Cs -137 in Fish . Concentration of Co -60 in Fish . Concentration of Cs -137 in Shoreline Sediment . Concentration of Co -60 in Shoreline Sediment . Direct Gamma Radiation (TLD) Results .	Sampling Locations Map (Ten Mile Radius).Concentration of Gross Beta in Air Particulate.Concentration of Tritium in Drinking Water.Concentration of Tritium in Surface Water.Concentration of Cs -137 in Fish.Concentration of Co-60 in Fish.Concentration of Cs -137 in Shoreline Sediment.Concentration of Co-60 in Shoreline Sediment.Direct Gamma Radiation (TLD) Results.	Sampling Locations Map (Ten Mile Radius).Concentration of Gross Beta in Air Particulate.Concentration of Tritium in Drinking Water.Concentration of Tritium in Surface Water.Concentration of Cs -137 in Fish.Concentration of Co-60 in Fish.Concentration of Cs -137 in Shoreline Sediment.Concentration of Co-60 in Shoreline Sediment.Concentration of Co-60 in Shoreline Sediment.Direct Gamma Radiation (TLD) Results.	Sampling Locations Map (Ten Mile Radius).Concentration of Gross Beta in Air Particulate.Concentration of Tritium in Drinking Water.Concentration of Tritium in Surface Water.Concentration of Cs -137 in Fish.Concentration of Co-60 in Fish.Concentration of Cs -137 in Shoreline Sediment.Concentration of Co-60 in Shoreline Sediment<	Sampling Locations Map (Ten Mile Radius).Concentration of Gross Beta in Air Particulate.Concentration of Tritium in Drinking Water.Concentration of Tritium in Surface Water.Concentration of Cs -137 in Fish.Concentration of Co-60 in Fish.Concentration of Cs -137 in Shoreline Sediment.Concentration of Co-60 in Shoreline Sediment<	Sampling Locations Map (Ten Mile Radius)Concentration of Gross Beta in Air ParticulateConcentration of Tritium in Drinking WaterConcentration of Tritium in Surface WaterConcentration of Cs -137 in Fish

LIST OF TABLES

2.1-B	Radiological Monitoring Program Sampling Locations (TLD Site	es)		2-7
2.2-A	Reporting Levels for Radioactivity Concentrations in			
	Environmental Samples			2-8
2.2-В	REMP Analysis Frequency			2-8
2.2-C	Maximum Values for the Lower Limits of Detection			2-9
3.1-A	Mean Concentrations of Radionuclides in Air Particulate .			3-3
3.1-B	Mean Concentrations of Air Radioiodine (I-131)			3-4
3.2	Mean Concentrations of Radionuclides in Drinking Water .			3-6
3.3	Mean Concentrations of Tritium in Surface Water			3-8
3.4	Mean Concentrations of Cs -137 in Milk			3-9
3.5	Mean Concentrations of Cs -137 in Broadleaf Vegetation .			3-10
3.6	Mean Concentrations of Cs -137 in Food Products			3-11
3.7	Mean Concentrations of Radionuclides in Fish			3-14
3.8	Mean Concentrations of Radionuclides in Shoreline Sediment			3-16
3.9	Direct Gamma Radiation (TLD) Results			3-19
3.10	Land Use Census Results			3-20
4.1-A	2004 Environmental and Effluent Dose Comparison			4-3
4.1-B	Maximum Individual Dose for 2004 based on Environmental			
	Measurements for McGuire Nuclear Station			4-6
5.0-A	2004 Cross-Check Results for EnRad Laboratories			5-4
5.0-B	2004 Environmental Dosimeter Cross-Check Results			5-12

LIST OF ACRONYMS USED IN THIS TEXT (*in alphabetical order*)

BW	BiWeekly
С	Control
DEHNR	Department of Environmental Health and Natural Resources
DHEC	Department of Health and Environmental Control
EPA	Environmental Protection Agency
GI-LLI	Gastrointestinal – Lower Large Intestine
GPS	Global Positioning System
LLD	Lower Limit of Detection
М	Monthly
MDA	Minimum Detectable Activity
MNS	McGuire Nuclear Station
mrem	millirem
NIST	National Institute of Standards and Technology
NRC	Nuclear Regulatory Commission
ODCM	Offsite Dose Calculation Manual
pCi/kg	picocurie per kilogram
pCi/l	picocurie per liter
pCi/m3	picocurie per cubic meter
PIP	Problem Investigation Process
Q	Quarterly
REMP	Radiological Environmental Monitoring Program
SA	Semiannually
SLCs	Selected Licensee Commitments
SM	Semimonthly
TECH SPECs	Technical Specifications
TLD	Thermoluminescent Dosimeter
µCi/ml	microcurie per milliliter
UFSAR	Updated Final Safety Analysis Report
W	Weekly

1.0 EXECUTIVE SUMMARY

This Annual Radiological Environmental Operating Report describes the McGuire Nuclear Station Radiological Environmental Monitoring Program (REMP), and the program results for the calendar year 2004.

Included are the identification of sampling locations, descriptions of environmental sampling and analysis procedures, comparisons of present environmental radioactivity levels and preoperational environmental data, comparisons of doses calculated from environmental measurements and effluent data, analysis of trends in environmental radiological data as potentially affected by station operations, and a summary of environmental radiological sampling results. Quality assurance practices, sampling deviations, unavailable samples, and program changes are also discussed.

Sampling activities were conducted as prescribed by Selected Licensee Commitments (SLC's). Required analyses were performed and detection capabilities were met for all collected samples as required by SLC's. Eleven-hundred thirty-six samples were analyzed comprising 1,618 test results in order to compile data for the 2004 report. Based on the annual land use census, the current number of sampling sites for McGuire Nuclear Station is sufficient.

Concentrations observed in the environment in 2004 for station related radionuclides were generally within the ranges of concentrations observed in the past. Inspection of data showed that radioactivity concentrations in surface water, drinking water, shoreline sediment and fish are higher than the activities reported for samples collected prior to the operation of the station. Measured concentrations were not higher than expected, and all positively identified measurements were within limits as specified in SLC's.

Additionally, environmental radiological monitoring data is consistent with effluents introduced into the environment by plant operations. The total body dose estimated to the maximum exposed member of the public as calculated by environmental sampling data, excluding TLD results, was 4.84E-2 mrem for 2004. It is therefore concluded that station operations has had no significant radiological impact on the health and safety of the public or the environment.

Vegetation Sampling

2.0 INTRODUCTION

2.1 SITE DESCRIPTION AND SAMPLE LOCATIONS

McGuire Nuclear Station (MNS) is located geographically near the center of a highly industrialized region of the Carolinas. The land is predominantly rural non-farm with a small amount of land being used to support beef cattle and farming. The McGuire site is in northwestern Mecklenburg County, North Carolina, 17 miles north-northwest of Charlotte, North Carolina. The site is bounded to the west by the Catawba River channel and to the north by 32,510 acre Lake Norman. Lake Norman is impounded by Duke Power Company's Cowans Ford Dam Hydroelectric Station. The tailwater of Cowans Ford Dam is the upper limit of Mountain Island Reservoir. Mountain Island Dam is located 15 miles downstream from the site. Lookout Shoals Hydroelectric Station is at the upper reaches of Lake Norman. Marshall Steam Station is located on the western shore of Lake Norman, approximately 16 miles upstream from the site (reference 6.3).

MNS consists of two pressurized water reactors. Each reactor unit is essentially a mirror image of the other joined by an auxiliary building housing both separate and common equipment. Each unit was designed to produce approximately 1200 gross Megawatts of electricity. Unit 1 achieved criticality August 8, 1981 and Unit 2 on May 8, 1983.

Figures 2.1-1 and 2.1-2 are maps depicting the Thermoluminescent Dosimeter (TLD) monitoring locations and the sampling locations. The location numbers shown on these maps correspond to those listed in Tables 2.1-A and 2.1-B. Figure 2.1-1 comprises all sample locations within 0.5 mile radius of MNS. Figure 2.1-2 comprises all sample locations within a ten mile radius of MNS.

2.2 SCOPE AND REQUIREMENTS OF THE REMP

An environmental monitoring program has been in effect at McGuire Nuclear Station since 1977, four years prior to operation of Unit 1 in 1981. The preoperational program provides data on the existing environmental radioactivity levels for the site and vicinity which may be used to determine whether increases in environmental levels are attributable to the station. The operational program provides surveillance and backup support of detailed effluent monitoring which is necessary to evaluate the significance, if any, of the contributions to the existing environmental radioactivity levels that result from station operation.

This monitoring program is based on NRC guidance as reflected in the Selected Licensee Commitments Manual, with regard to sample media, sampling locations, sampling frequency, and analytical sensitivity requirements. Indicator and control locations were established for comparison purposes to distinguish radioactivity of station origin from natural or other "man-made" environmental radioactivity. The environmental monitoring program also verifies projected and anticipated radionuclide concentrations in the environment and related exposures from releases of radionuclides from McGuire Nuclear Station.

This program satisfies the requirements of Section IV.B.2 of Appendix I to 10CFR50 and provides surveillance of all appropriate critical exposure pathways to man and protects vital interests of the company, public, and state and federal agencies concerned with the environment. Reporting levels for radioactivity found in environmental samples are listed in Table 2.2-A. Table 2.2-B lists the REMP analysis and frequency schedule.

The Annual Land Use Census, required by Selected Licensee Commitments, is performed to ensure that changes in the use of areas at or beyond the site boundary are identified and that modifications to the Radiological Environmental Monitoring Program are made if required by changes in land use. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10CFR50. Results are shown in Table 3.10.

Participation in an interlaboratory comparison program as required by Selected Licensee Commitments provides for independent checks on the precision and accuracy of measurements of radioactive material in REMP sample matrices. Such checks are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10CFR50. A summary of the results obtained as part of this comparison program are in Section 5 of this annual report.

2.3 STATISTICAL AND CALCULATIONAL METHODOLOGY

2.3.1 ESTIMATION OF THE MEAN VALUE

There was one (1) basic statistical calculation performed on the raw data resulting from the environmental sample analysis program. The calculation involved the determination of the mean value for the indicator and the control samples for each sample medium. The mean is a widely used statistic. This value was used in the reduction of the data generated by the sampling and analysis of the various media in the Radiological Environmental Monitoring Program. The following equation was used to estimate the mean (reference 6.8):

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Where:

- x =estimate of the mean,
- i = individual sample,
- N = total number of samples with a net activity (or concentration),
- χ_i = net activity (or concentration) for sample i.

NOTE: "Net activity (or concentration)" is the activity (or concentration) determined to be present in the sample. No "Minimum Detectable Activity", "Lower Limit of Detection", "Less Than Level", or negative activities or concentrations are included in the calculation of the mean.

2.3.2 LOWER LEVEL OF DETECTION AND MINIMUM DETECTABLE ACTIVITY

The Lower Level of Detection (LLD) and Minimum Detectable Activity (MDA) are used throughout the Environmental Monitoring Program.

LLD - The LLD, as defined in the Selected Licensee Commitments Manual is the smallest concentration of radioactive material in a sample that will yield a net count, above the system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD is an *a priori* lower limit of detection. The actual LLD is dependent upon the standard deviation of the background counting rate, the counting efficiency, the sample size (mass or volume), the radiochemical yield, and the radioactive decay of the sample between sample collection and counting. The "required" LLD's for each sample medium and selected radionuclides are given in the Selected Licensee Commitments and are listed in Table 2.2-C.

MDA - The MDA may be thought of as an "actual" LLD for a particular sample measurement remembering that the MDA is calculated using a sample background instead of a system background.

2.3.3 TREND IDENTIFICATION

One of the purposes of an environmental monitoring program is to determine if there is a buildup of radionuclides in the environment due to the operation of the nuclear station. Visual inspection of tabular or graphical presentations of data (including preoperational) is used to determine if a trend exists. A decrease in a particular radionuclide's concentration in an environmental medium does not indicate that reactor operations are removing radioactivity from the environment but that reactor operational level and that the normal removal processes (radioactive decay, deposition, resuspension, etc.) are influencing the concentration.

Substantial increases or decreases in the amount of a particular radionuclide's release from the nuclear plant will greatly affect the resulting environmental levels; therefore, a knowledge of the release of a radionuclide from the nuclear plant is necessary to completely interpret the trends, or lack of trends, determined from the environmental data. Some factors that may affect environmental levels of radionuclides include prevailing weather conditions (periods of drought, solar cycles or heavier than normal precipitation), construction in or around either the nuclear plant or the sampling location, and addition or deletion of other sources of radioactive materials (such as the Chernobyl accident). Some of these factors may be obvious while others are sometimes unknown. Therefore, how trends are identified will include some judgment by plant personnel.

Figure 2.1-1

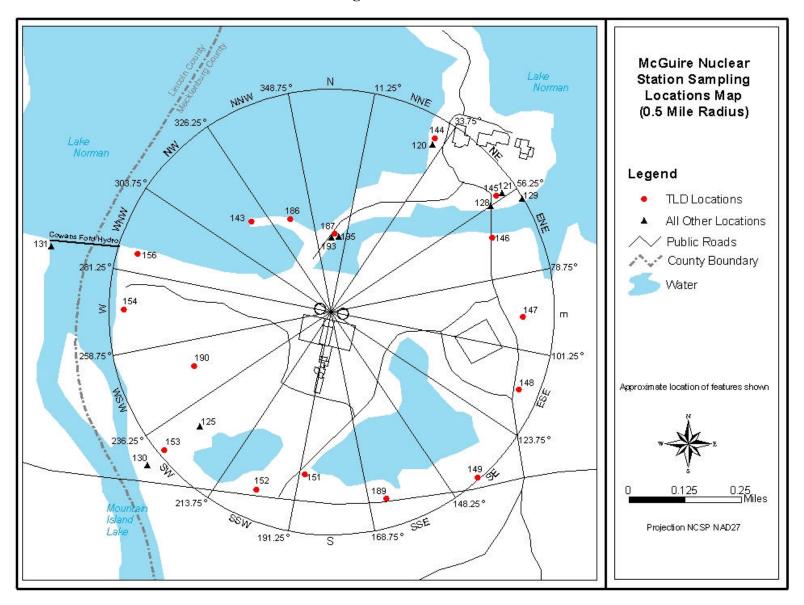
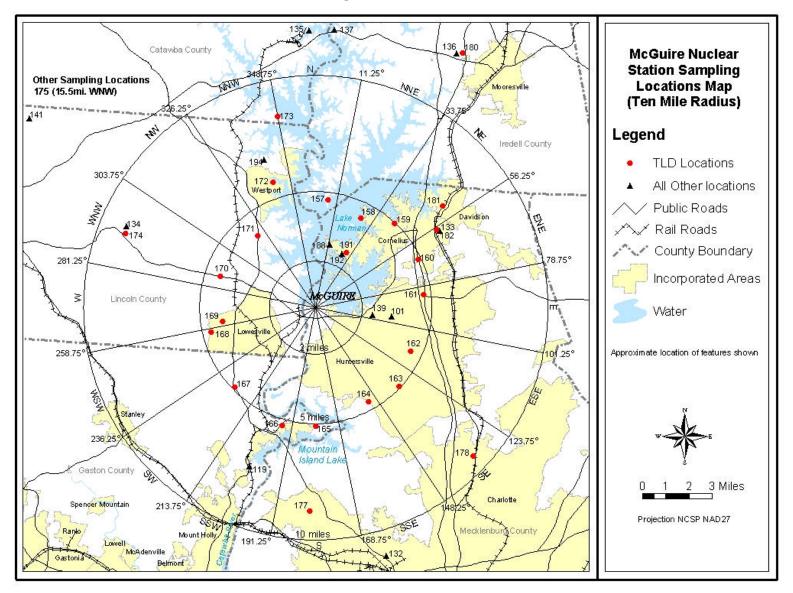



Figure 2.1-2

TABLE 2.1-A

MCGUIRE RADIOLOGICAL MONITORING PROGRAM SAMPLING LOCATIONS

	Table 2.1-A Codes									
W Weekly SM Semimonthly										
BW	BiWeekly	Q	Quarterly							
М	Monthly	SA	Semiannually							
С	Control									

Site #	Location Description*	Air Rad. & Part.	Surface Water	Drinking Water	Shoreline Sediment	Food Products	Fish	Milk	Broad Leaf Veg.
101	North Mecklenburg Water Treatment Facility (3.31 mi E)			BW					
119	Mt. Holly Municipal Water Supply (7.40 mi SSW)			BW					
120	Site Boundary (0.46 mi NNE)	W		Dii					M(b)
120	Site Boundary (0.47 mi NE)	W							
125	Site Boundary (0.38 mi SW)	W							M(b)
128	Discharge Canal Bridge (0.45 mi NE)		BW						
129	Discharge Canal Entrance to Lake Norman (0.51 mi ENE)				SA		SA		
130	Hwy 73 Bridge Downstream (0.52 mi SW)				SA				
131	Cowans Ford Dam (0.64 mi WNW)		BW						
132	Charlotte Municipal Water Supply (11.1 mi SSE)			BW					
133	Cornelius (6.23 mi ENE)	W							
134 C	East Lincoln Jr.High School (8.77 mi WNW)	W							M (b)
135 C	Plant Marshall Intake Canal (11.9 mi N)		BW						
136 C	Mooresville Municipal Water Supply (12.7 mi NNE)			BW					
137 C	Pinnacle Access Area (12.0 mi N)				SA		SA		
139	William Cook Dairy (2.49 mi E)							SM	
141 C	Lynch Dairy-Cows (14.8 mi WNW)							SM	
188	5 mile radius Gardens (2.79 mi NNE)					M (a)			
192	Peninsula (2.84 mi NNE)	W							
193	Site Boundary (0.19 mi N)								M (b)
194	East Lincoln County Water Supply (6.73 mi NNW)			BW					
195	Fishing Access Road (0.19 mi N)	W							

(a) During Harvest Season

(b) When Available

* GPS data reflect approximate accuracy to within 2-5 meters. GPS field measurements were taken as close as possible to the item of interest.

TABLE 2.1-B

MCGUIRE RADIOLOGICAL MONITORING PROGRAM SAMPLING LOCATIONS

Site #	Location	Distance*	Sector	Site #	Location	Distance *	Sector
					HAMBRIGHT &		
143	SITE BOUNDARY	0.27 miles	NW	164	BEATTIES FORD ROAD	4.64 miles	SSE
144		0.46	NINIT	165	HORSESHOE BEND	5 11	G
144	SITE BOUNDARY	0.46 miles	NNE	165	BEACH ROAD	5.11 miles	S
145	SITE BOUNDARY	0.47 miles	NE	166	RIVERBEND FOSSIL STATION	5.25 miles	SSW
					LUCIA RIVERBEND HWY/		
146	SITE BOUNDARY	0.42 miles	ENE	167	OLD FIREHOUSE	4.87 miles	SW
147	SITE BOUNDARY	0.44 miles	Е	168	OLD PLANK ROAD BRIDGE	4.60 miles	WSW
148	SITE BOUNDARY	0.46 miles	ESE	169	GLOVER LANE	4.03 miles	w
110	SHEDOCRDIAN	0.10 miles	LOL	109		1.05 miles	
149	SITE BOUNDARY	0.50 miles	SE	170	LITTLE EGYPT ROAD	4.32 miles	WNW
151	SITE BOUNDARY	0.37 miles	S	171	TRIANGLE ACE HARDWARE	3.95 miles	NW
					WESTPORT COMMUNITY AT		
152	SITE BOUNDARY	0.44 miles	SSW	172	GOLF COURSE DRIVE	5.70 miles	NNW
					KEISTLER STORE /		
153	SITE BOUNDARY	0.47 miles	SW	173 SI	GLENWOOD ROAD	8.39 miles	NNW
					EAST LINCOLN JR. HIGH		
154	SITE BOUNDARY	0.45 miles	W	174 SI	SCHOOL	8.77 miles	WNW
156	SITE BOUNDARY	0.44 miles	WNW	175 C	BOGER CITY	15.5 miles	WNW
					BELMARROW ROAD /		
189	SITE BOUNDARY	0.43 miles	SSE	177 SI	COULWOOD COMMUNITY	8.77 miles	S
100		0.00 11		150.61	FLORIDA STEEL	0.00 11	a la
190	SITE BOUNDARY	0.33 miles	WSW	178 SI	CORPORATION	9.32 miles	SE
157	THE POINTE/MOORESVILLE	4.69 miles	Ν	180 SI	MOORESVILLE WATER TREATMENT FACILITY	12.7 miles	NNE
157	THE FORTE/ MOORES VILLE	4.07 miles	1	100 51	OLD DAVIDSON WATER	12.7 miles	INITE
158	BETHEL CHURCH ROAD	4.33 miles	NNE	181 SI	TREATMENT FACILITY	7.02 miles	NE
159	HENDERSON ROAD	4.98 miles	NE	182 SI	CORNELIUS / AIR SITE # 133	6.23 miles	ENE
	ANCHORAGE MARINE				MCGUIRE FISHING ACCESS		
160	SHOWROOM	4.89 miles	ENE	186 SI	ROAD ON PENINSULA	0.24 miles	NNW
161	SAM FURR ROAD	4 70	Б	107 01	ENERGY EXPLORIUM /	0.10	N
161	& HWY 21	4.70 miles	E	187 SI	AIR SITE # 195	0.19 miles	N
162	RANSON ROAD	4.53 miles	ESE	191 SI	PENINSULA DEVELOPMENT / AIR SITE # 192	2.84 miles	NNE
163	MCCOY ROAD	4.94 miles	SE				

(TLD SITES)

C = Control

SI = Special Interest

* GPS data reflect approximate accuracy to within 2-5 meters. GPS field measurements were taken as close as possible to the item of interest.

TABLE 2.2-A

REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES

Analysis	Water (pCi/liter)	Air Particulates or Gases (pCi/m ³)	Fish (pCi/kg-wet)	Milk (pCi/liter)	BroadLeaf Vegetation (pCi/kg-wet)
H-3	20,000 ^{(a),(b)}				
Mn-54	1,000		30,000		
Fe-59	400		10,000		
Co-58	1,000		30,000		
Co-60	300		10,000		
Zn-65	300		20,000		
Zr-Nb-95	400				
I-131	2	1		3	100
Cs-134	30	10	1,000	60	1,000
Cs-137	50	20	2,000	70	2,000
Ba-La-140	200			300	

(a) If no drinking water pathway exists, a value of 30,000 pCi/liter may be used.

(b) H-3 Reporting level not applicable to surface water

TABLE 2.2-B

REMP ANALYSIS FREQUENCY

Sample	Analysis	Gamma	Tritium	Low Level	Gross	TLD
Medium	Schedule	Isotopic	11110111	I-131	Beta	TED
Air Radioiodine	Weekly	X				
Air	Weekly	Х			Х	
Direct Radiation	Quarterly					Х
Surface	Monthly Composite	Х				
Water	Quarterly Composite		Х			
Drinking	Monthly Composite	Х		(a)	Х	
Water	Quarterly Composite		Х			
Shoreline Sediment	Semiannually	Х				
Milk	Semimonthly	Х		Х		
Fish	Semiannually	Х				
Broadleaf Vegetation	Monthly ^(b)	Х				
Food Products	Monthly ^(b)	Х				

(a) Low-level I-131 analysis will be performed if the dose calculated for the consumption of drinking water is > 1 mrem per year. An LLD of 1 pCi/liter will be required for this analysis.

(b) When Available

TABLE 2.2-C

Analysis	Water (pCi/liter)	Air Particulates or Gases (pCi/m ³)	Fish (pCi/kg-wet)	Milk (pCi/liter)	BroadLeaf Vegetation (pCi/kg-wet)	Sediment (pCi/kg-dry)
Gross Beta	4	0.01				
H-3	2000 ^(a)					
Mn-54	15		130			
Fe-59	30		260			
Co-58, 60	15		130			
Zn-65	30		260			
Zr-Nb-95	15					
I-131	1 ^(b)	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba-La-140	15			15		

MAXIMUM VALUES FOR THE LOWER LIMITS OF DETECTION

(a) If no drinking water pathway exists, a value of 3000 pCi/liter may be used.

(b) If no drinking water pathway exists, the LLD of gamma isotopic analysis may be used.

3.0 INTERPRETATION OF RESULTS

Review of 2004 REMP analysis results was performed to detect and identify changes in environmental levels as a result of station operation. The radionuclides with Selected Licensee Commitments reporting levels that indicate consistent detectable activity have been historically trended from preoperation to present. Analyses from 1977 - 1978 have been excluded since these results were much higher than the other preoperational years due to outside influences such as weapons esting. The preoperational analyses from 1981 were combined with the operational analyses from the latter part of 1981 and averaged to give one concentration for each radionuclide for that year.

The highest annual mean concentration of applicable Selected Licensee Commitments radionuclides from the indicator locations for each media type was used for trending purposes. Trending was performed by comparing annual mean concentrations to historical results. Factors evaluated include the frequency of detection and the concentration in terms of the percent of the radionuclide's SLC reporting level (Table 2.2-A). All maximum percent of reporting level values were well below the 100% action level. The highest value reached during 2004 was 3.21% for drinking water tritium at the North Mecklenburg Water Treatment Facility (Location 101).

Changes in sample location, analytical technique, and presentation of results must be considered when reviewing for trends. Calculation of the annual mean concentrations has been performed differently over the history of the REMP. During 1979-1986, all net results (sample minus background) positive and negative, were included in the calculation of the mean. Only positive net activity results were used to calculate the mean for the other years. All negative values were replaced with a zero for calculational and graphical purposes to properly represent environmental conditions. A change in gamma spectroscopy analysis systems in 1987 ended a period when many measurements yielded detectable low-level activity for both indicator and control location samples. It is possible that the method the previous system used to estimate net activity may have been vulnerable to false-positive results.

This section includes tables and graphs containing the highest annual mean concentrations of any effluent related radionuclide detected since the change in analysis systems in 1987. Any zero concentrations used in tables or graphs represent activity measurements less than detectable levels. Only the specific radionuclides that represent the highest dose contributors or demonstrate consistent detectable activity are shown graphically.

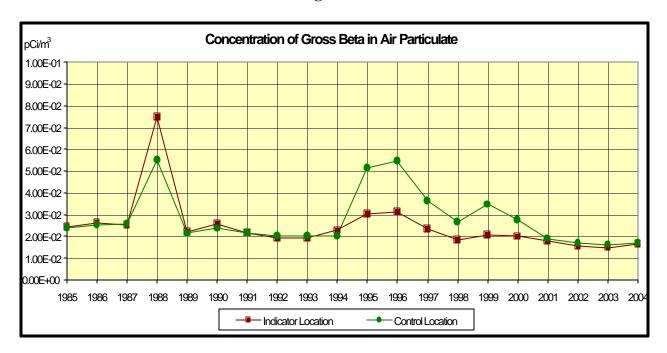
Data presented in Sections 3.1 through 3.9 support the conclusion that there was no significant increase in radioactivity in the environment around McGuire Nuclear Station due to station operations in 2004. Similarly, there was no significant increase in ambient background radiation levels in the surrounding areas. The 2004 land use census data, shown in Section 3.10, indicates that no program changes are required as a result of the census.

3.1 AIRBORNE RADIOIODINE AND PARTICULATES

In 2004, 364 particulate and radioiodine samples were analyzed, 312 at six indicator locations and 52 at the control location. Particulate samples were analyzed weekly for gamma and gross beta. Radioiodine samples received a weekly gamma analysis.

Gross beta analyses indicated 1.67E-2 pCi/m³ at the location with the highest annual mean and 1.71E-2 pCi/m³ at the control location. Co-58 activity was detected in one indicator sample with an activity of 9.77E-2 pCi/m³. PIP G-04-00134 was written since Co-58 has not been detected in the past. Co-58 was being released from McGuire during the period that this air sample was collected. Detectable gamma emitting particulate activity was last observed in environmental air particulate samples in 1987.

No detectable I-131 activity in any environmental air radioiodine samples was found in 2004. K-40 and Be-7 that occur naturally were routinely detected in charcoal cartridges collected during the year. Cs-137 activity was detected on one cartridge in 2003 from the control location. Cs-137 detection cartridge on the charcoal was determined in 1990 to be an active constituent of the charcoal. A similar study was performed in 2001 again vielding



this conclusion. Therefore, any Cs-137 activities were not used in any dose calculations in Section 4.0 of this report.

Figure 3.1 shows gross beta highest annual mean indicator and control location concentrations since 1985. There is no reporting level for gross beta. Table 3.1-A shows indicator and control location highest annual means for Cs-137 and gross beta.

Table 3.1-B gives indicator location highest annual means and control means since 1979 for I-131. Preoperational and ten year averages are also shown. No I-131 activity has been detected since 1989. Since no activity was detected in 2004, no reporting levels were approached.

Figure 3.1

There is no reporting level for Gross Beta in air particulate

YEAR	Cs-137 Indicator (pCi/m ³)	Cs-137 Control (pCi/m ³)	Beta Indicator (pCi/m ³)	Beta Control (pCi/m ³)
1979*	4.40E-3	1.47E-3	**	**
1980*	6.70E-3	4.53E-3	**	**
1981*	6.16E-3	5.32E-3	**	**
1982*	3.82E-3	2.29E-3	**	**
1983*	2.93E-3	3.21E-3	**	**
1984	1.74E-3	8.29E-4	**	**
1985	1.86E-3	1.32E-3	2.44E-2	2.40E-2
1986	4.98E-3	3.03E-3	2.64E-2	2.52E-2
1987	1.07E-2	7.91E-3	2.54E-2	2.59E-2
1988	0.00E0	0.00E0	7.49E-2	5.51E-2
1989	0.00E0	0.00E0	2.22E-2	2.14E-2
1990	0.00E0	0.00E0	2.58E-2	2.37E-2
1991	0.00E0	0.00E0	2.16E-2	2.15E-2
1992	0.00E0	0.00E0	1.92E-2	2.02E-2
1993	0.00E0	0.00E0	1.93E-2	2.04E-2
1994	0.00E0	0.00E0	2.28E-2	2.02E-2
1995	0.00E0	0.00E0	3.02E-2	5.17E-2
1996	0.00E0	0.00E0	3.11E-2	5.49E-2
1997	0.00E0	0.00E0	2.34E-2	3.62E-2
1998	0.00E0	0.00E0	1.86E-2	2.66E-2
1999	0.00E0	0.00E0	2.06E-2	3.47E-2
2000	0.00E0	0.00E0	2.00E-2	2.77E-2
2001	0.00E0	0.00E0	1.79E-2	1.91E-2

Table 3.1-A Mean Concentrations of Radionuclides in Air Particulate

Table 3.1-A continued

YEAR	Cs-137 Indicator (pCi/m ³)	Cs-137 Control (pCi/m ³)	Beta Indicator (pCi/m ³)	Beta Control (pCi/m ³)
2002	0.00E0	0.00E0	1.57E-2	1.72E-2
2003	0.00E0	0.00E0	1.50E-2	1.63E-2
Average (1994 – 2003)	NOT APPLICABLE	NOT APPLICABLE	2.15E-02	3.05E-02
2004	0.00E0	0.00E0	1.67E-2	1.71E-2

0.00E0 = no detectable measurements

* Radioiodines and Particulates analyzed together

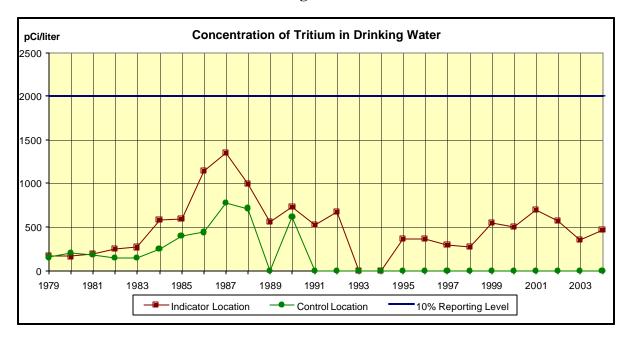
** Gross Beta analysis not performed

Table 3.1-B Mean Concentrations of Air Radioiodine (I-131)

Year	Indicator Location (pCi/m ³)	Control Location (pCi/m ³)
1979*	3.28E-3	1.04E-3
1980*	2.01E-3	1.10E-3
1981*	4.17E-3	6.27E-4
1982*	1.42E-3	2.48E-3
1983*	1.99E-3	2.01E-4
1984	3.17E-3	0.00E0
1985	3.15E-3	1.04E-3
1986	1.27E-2	6.10E-3
1987	1.07E-2	6.60E-3
1988	0.00E0	0.00E0
1989	2.18E-2	0.00E0
1990	0.00E0	0.00E0
1991	0.00E0	0.00E0
1992	0.00E0	0.00E0
1993	0.00E0	0.00E0
1994	0.00E0	0.00E0
1995	0.00E0	0.00E0
1996	0.00E0	0.00E0
1997	0.00E0	0.00E0
1998	0.00E0	0.00E0
1999	0.00E0	0.00E0
2000	0.00E0	0.00E0
2001	0.00E0	0.00E0
2002	0.00E0	0.00E0
2003	0.00E0	0.00E0
2004	0.00E0	0.00E0

0.00E0 = no detectable measurements

* Radioiodines and Particulates analyzed together.


3.2 DRINKING WATER

In 2004, 65 drinking water samples were analyzed for gross beta and gamma emitting radionuclides. Fifty-two samples were from the four indicator locations and 13 from the control location. Tritium (H-3) analyses were performed on 20 composite samples, 16 at indicator locations and four at the control location.

No detectable gamma activity was found in drinking water samples in 2004 and has not been detected since 1987. Gross beta analyses indicated 1.68 pCi/l at the location with the highest annual mean and 1.29 pCi/l at the control location. Tritium was detected in 9 of the 16 indicator composite samples taken in 2004 with the highest annual mean resulting in only 2.31% of the reporting level. The dose for consumption of water was less than one mrem per year, historically and for 2004; therefore low-level iodine analysis is not required.

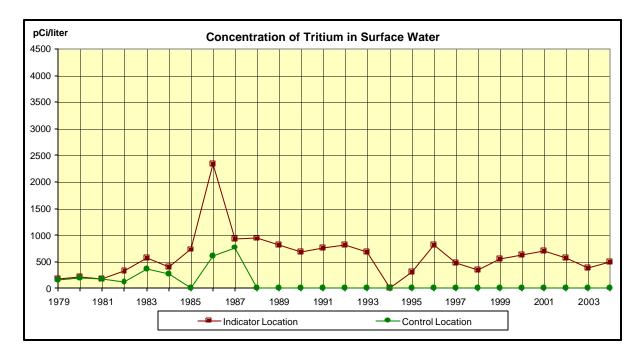
Figure 3.2 shows tritium highest annual mean indicator and control location concentrations with comparisons to 10% of the reporting level. Table 3.2 gives indicator location highest annual means and control means since 1979 for tritium and gross beta. There is no reporting level for gross beta.

Drinking water Location 101 was added to the sampling program in 1999. Figure 3.2 shows a slight increase beginning in that year.

	Gross Beta	(pCi/l)	Tritium (pCi/l)
YEAR	Indicator Location	Control	Indicator Location	Control
		Location		Location
1979	2.40E0	2.03E0	1.65E2	1.50E2
1980	2.34E0	1.87E0	1.63E2	2.05E2
1981	2.79E0	2.41E0	1.88E2	1.78E2
1982	2.62E0	2.43E0	2.43E2	1.45E2
1983	1.80E0	1.87E0	2.65E2	1.45E2
1984	2.78E0	1.81E0	5.77E2	2.45E2
1985	1.88E0	1.90E0	5.93E2	4.00E2
1986	2.13E0	2.15E0	1.14E3	4.37E2
1987	2.30E0	2.00E0	1.35E3	7.75E2
1988	2.00E0	2.00E0	9.92E2	7.11E2
1989	2.80E0	2.70E0	5.62E2	0.00E0
1990	3.70E0	4.30E0	7.32E2	6.11E2
1991	2.40E0	2.50E0	5.22E2	0.00E0
1992	2.00E0	1.70E0	6.73E2	0.00E0
1993	2.80E0	2.40E0	0.00E0	0.00E0
1994	2.47E0	2.90E0	0.00E0	0.00E0
1995	4.20E0	3.30E0	3.58E2	0.00E0
1996	2.75E0	2.11E0	3.60E2	0.00E0
1997	2.70E0	2.24E0	2.90E2	0.00E0
1998	2.75E0	2.33E0	2.68E2	0.00E0
1999	2.48E0	2.17E0	5.49E2	0.00E0
2000	2.66E0	1.99E0	5.04E2	0.00E0
2001	2.48E0	2.19E0	6.98E2	0.00E0
2002	2.47E0	2.08E0	5.64E2	0.00E0
2003	1.81E0	1.52E0	3.51E2	0.00E0
2004	1.68E0	1.29E0	4.61E2	0.00E0

Table 3.2 Mean Concentrations of Radionuclides in Drinking Water

3.3 SURFACE WATER


In 2004, 39 surface water samples were analyzed for gamma emitting radionuclides, 26 at the two indicator locations and 13 at the control location. Analyses for H-3 were performed on 12 samples, eight at indicator locations and four at the control location.

No detectable gamma activity was found in surface water samples in 2004 and has not been detected since 1988. Tritium was detected in seven of the eight indicator composite samples taken in 2004. Tritium was not detected in any of the control location composite samples in 2004.

Figure 3.3 shows tritium highest annual mean indicator and control location concentrations. Table 3.3 gives indicator and control location highest annual means since 1979 for tritium.

Figure 3.3

There is no reporting level for tritium in surface water

YEAR	H-3 Indicator (pCi/l)	H-3 Control (pCi/l)
1979	1.85E2	1.66E2
1980	2.13E2	1.93E2
1981	1.75E2	1.70E2
1982	3.30E2	1.23E2
1983	5.75E2	3.67E2
1984	4.10E2	2.65E2
1985	7.33E2	0.00E0
1986	2.33E3	6.13E2
1987	9.20E2	7.70E2
1988	9.40E2	0.00E0
1989	8.22E2	0.00E0
1990	6.77E2	0.00E0
1991	7.53E2	0.00E0
1992	8.13E2	0.00E0
1993	6.85E2	0.00E0
1994	0.00E0	0.00E0
1995	3.15E2	0.00E0
1996	8.08E2	0.00E0
1997	4.85E2	0.00E0
1998	3.40E2	0.00E0
1999	5.60E2	0.00E0
2000	6.22E2	0.00E0
2001	6.98E2	0.00E0
2002	5.65E2	0.00E0
2003	3.91E2	0.00E0
2004	5.04E2	0.00E0

Table 3.3 Mean Concentrations of Tritium in Surface Water

3.4 <u>MILK</u>

In 2004, 52 milk samples were analyzed for low level I-131 and other gamma emitting radionuclides, 26 at the indicator location and 26 at the control location.

No detectable activity was found in milk samples in 2004 other than naturally-occurring K-40. Cs-137 has not been detected in milk samples since 1990 and all other radionuclides have not been detected since 1987.

Table 3.4 gives indicator location highest annual means and control means since 1979 for Cs-137. Since no activity was detected in 2004, no reporting levels were approached.

YEAR	Cs-137 Indicator (pCi/l)	Cs-137 Control (pCi/l)
1979	2.48E1	6.04E0
1980	1.72E1	4.13E0
1981	2.04E1	4.15E0
1982	1.21E1	5.20E0
1983	2.01E1	2.82E0
1984	1.48E1	2.56E0
1985	1.42E1	2.72E0
1986	3.74E0	3.45E0
1987	5.20E0	8.60E0
1988	3.40E0	2.90E0
1989	6.00E0	5.60E0
1990	5.30E0	2.60E0
1991	0.00E0	0.00E0
1992	0.00E0	0.00E0
1993	0.00E0	0.00E0
1994	0.00E0	0.00E0
1995	0.00E0	0.00E0
1996	0.00E0	0.00E0
1997	0.00E0	0.00E0
1998	0.00E0	0.00E0
1999	0.00E0	0.00E0
2000	0.00E0	0.00E0
2001	0.00E0	0.00E0
2002	0.00E0	0.00E0
2003	0.00E0	0.00E0
2004	0.00E0	0.00E0

Table 3.4 Mean Concentrations of Cs-137 in Milk

3.5 BROADLEAF VEGETATION

In 2004, 32 broadleaf vegetation samples were analyzed, 24 at the three indicator locations and eight at the control location.

No detectable activity was detected in any of the vegetation samples taken in 2004.

Cs-137 was last detected in 1998 in one vegetation sample. No other detectable gamma activity was found in vegetation samples in 1998 and no other radionuclides have been detected in vegetation samples since 1987.

Table 3.5 gives indicator and control location highest annual means since 1979 for Cs-137.

Table 3.5 Mean Concentrations of Cs-137 in Broadleaf Vegetation

YEAR	Cs-137 Indicator (pCi/kg)	Cs-137 Control (pCi/kg)
1979	2.19E1	1.93E1
1980	2.30E1	1.92E1
1981	3.04E1	2.02E1
1982	2.46E1	1.22E1
1983	9.07E0	7.85E0
1984	1.02E1	1.05E1
1985	8.05E0	2.37E-2
1986	4.03E1	1.27E1
1987	2.20E1	1.70E1
1988	3.90E1	3.40E1
1989	9.60E1	0.00E0
1990	4.00E1	0.00E0
1991	3.30E1	0.00E0
1992	4.90E1	0.00E0
1993	1.60E1	0.00E0
1994	0.00E0	0.00E0
1995	0.00E0	0.00E0
1996	0.00E0	0.00E0
1997	0.00E0	0.00E0
1998	0.00E0	2.69E1
1999	0.00E0	0.00E0
2000	0.00E0	0.00E0
2001	0.00E0	0.00E0
2002	0.00E0	0.00E0
2003	0.00E0	0.00E0
2004	0.00E0	0.00E0

3.6 FOOD PRODUCTS

In 2004, 8 food products (crops) samples were analyzed, all at one indicator location. There is no control location for this media.

No detectable activity has been detected in this media since 1987. Table 3.6 shows Cs-137 indicator highest annual means with preoperational data and ten year averages. Since no activity was detected in 2004, no reporting levels were approached.

YEAR	Cs-137 Indicator (pCi/kg)
1979	2.19E1
1980	2.30E1
1981	3.04E1
1982	2.46E1
1983	9.07E0
1984	8.45E0
1985	7.99E0
1986	2.15E1
1987	2.90E1
1988	0.00E0
1989	0.00E0
1990	0.00E0
1991	0.00E0
1992	0.00E0
1993	0.00E0
1994	0.00E0
1995	0.00E0
1996	0.00E0
1997	0.00E0
1998	0.00E0
1999	0.00E0
2000	0.00E0
2001	0.00E0
2002	0.00E0
2003	0.00E0
2004	0.00E0

Table 3.6 Mean Concentrations of Cs-137 in Food Products

3.7 <u>FISH</u>

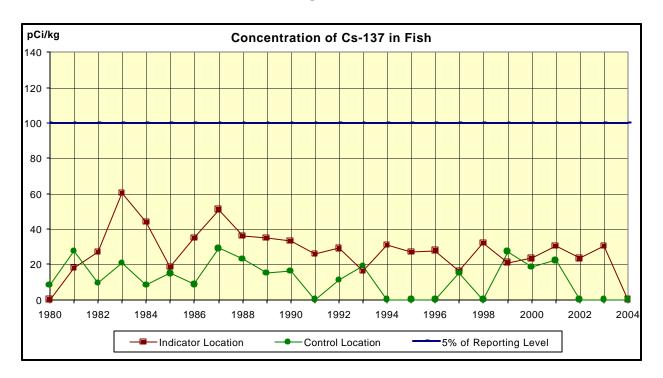

In 2004, 12 fish samples were analyzed for gamma emitting radionuclides, six at the indicator location and six at the control location.

Figure 3.7-1 shows Cs-137 highest annual mean indicator and control location concentrations with comparisons to 5% of the reporting level. Figure 3.7-2 shows Co-60 highest annual mean indicator and control location concentrations also with comparisons to 5% of the reporting level.

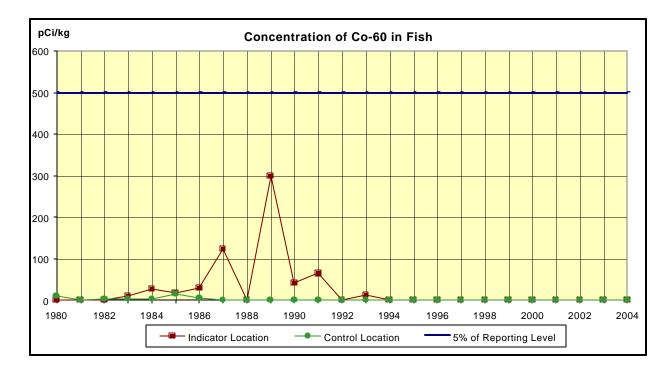

Table 3.7 gives indicator location highest annual means since 1980 for all radionuclides detected since the analysis change in 1988. No indicator samples were analyzed in 1979. Co-58 activity was not detected in 2004 in any of the six indicator samples. Cs-137 activity was not detected in 2004 in any of the six indicator samples. Cs-137 was not detected in any of the six control location samples. All other radionuclides not shown in the table have demonstrated no detectable activity since 1986. Since no activity was detected in 2004, no reporting levels were approached.

Figure 3.7-1

Figure 3.7-2

	Mn-54	Co-58	Co-60	Cs-134	Cs-137
YEAR	Indicator	Indicator	Indicator	Indicator	Indicator
1980	-1.97E1	8.36E0	-2.25E1	-2.70E1	-4.13E0
1981	-2.71E0	-2.98E0	-2.65E0	-1.99E0	1.80E1
1982	-3.83E0	8.16E0	-4.34E-1	-8.22E-1	2.69E1
1983	-2.60E0	2.60E1	1.11E1	-1.32E0	6.03E1
1984	3.61E0	1.45E2	2.82E1	3.11E1	4.38E1
1985	2.53E-1	7.19E0	1.72E1	-1.56E0	1.86E1
1986	1.03E0	3.17E1	2.96E1	1.67E1	3.49E1
1987	0.00E0	2.71E2	1.25E2	2.60E1	5.10E1
1988	1.20E1	7.70E1	0.00E0	2.70E1	3.60E1
1989	9.00E1	4.05E2	2.99E2	1.10E1	3.50E1
1990	0.00E0	5.60E1	4.10E1	0.00E0	3.30E1
1991	6.20E0	1.40E1	6.50E1	5.90E0	2.60E1
1992	0.00E0	0.00E0	0.00E0	0.00E0	2.90E1
1993	0.00E0	8.20E1	1.30E1	0.00E0	1.60E1
1994	0.00E0	0.00E0	0.00E0	0.00E0	3.10E1
1995	0.00E0	0.00E0	0.00E0	0.00E0	2.70E1
1996	0.00E0	0.00E0	0.00E0	0.00E0	2.78E1
1997	0.00E0	0.00E0	0.00E0	0.00E0	1.62E1
1998	0.00E0	0.00E0	0.00E0	0.00E0	3.21E1
1999	0.00E0	3.53E1	0.00E0	0.00E0	2.10E1
2000	0.00E0	4.28E1	0.00E0	0.00E0	2.34E1
2001	0.00E0	1.32E1	0.00E0	0.00E0	3.04E1
2002	0.00E0	0.00E0	0.00E0	0.00E0	2.33E1
2003	0.00E0	0.00E0	0.00E0	0.00E0	3.05E1
2004	0.00E0	0.00E0	0.00E0	0.00E0	0.00E0

Table 3.7 Mean Concentrations of Radionuclides in Fish (pCi/kg)

0.00E0 = no detectable measurements

All negative values have been replaced with zeros for calculational purposes

3.8 SHORELINE SEDIMENT

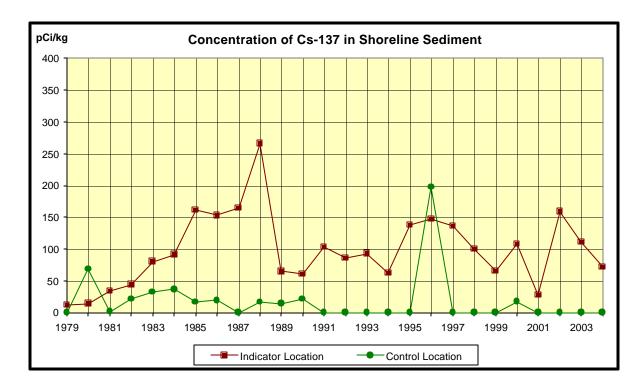

In 2004, six shoreline sediment samples were analyzed, four from two indicator locations and two at the control location.

Figure 3.8-1 shows Cs-137 highest annual mean indicator and control location concentrations since 1979. Figure 3.8-2 shows Co-60 highest annual mean indicator and control location concentrations since 1979.

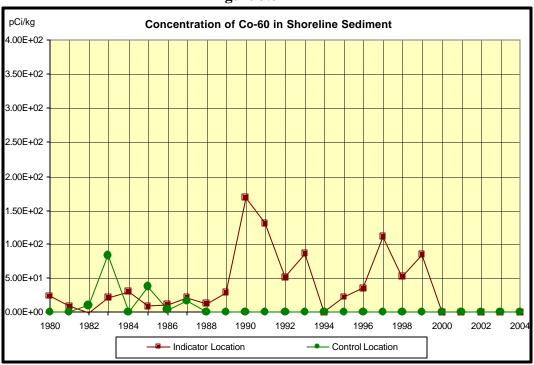

Table 3.8 gives indicator location highest annual means since 1979 for all radionuclides detected since the analysis change in 1988. There is no reporting level for shoreline sediment.

Figure 3.8-1

There is no reporting level for Cs-137 in shoreline sediment

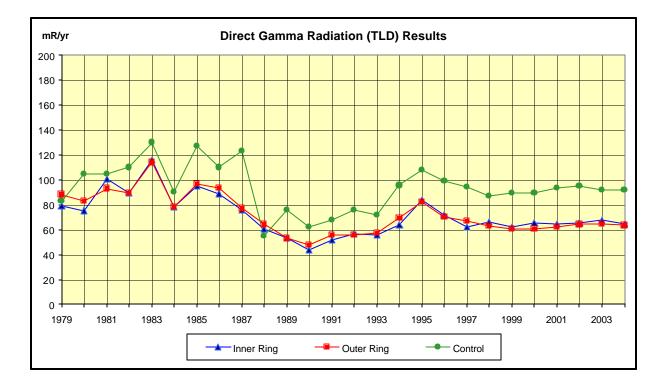
Figure 3.8-2

There is no reporting level for Co-60 in shoreline sediment

YEAR	Mn-54 Indicator	Co-58 Indicator	Co-60 Indicator	Cs-134 Indicator	Cs-137 Indicator
1979	-1.07E1	2.25E1	-6.50E0	0.00E0	1.20E1
1980	1.06E1	-8.74E0	2.36E1	-3.53E0	1.44E1
1981	2.13E1	1.20E1	8.21E0	3.97E1	3.36E1
1982	5.38E1	1.66E1	-1.69E0	7.67E1	4.40E1
1983	4.40E0	3.43E1	2.12E1	7.65E1	8.02E1
1984	1.19E1	7.11E1	3.04E1	3.34E1	9.13E1
1985	4.77E0	1.46E1	9.20E0	2.02E1	1.61E2
1986	1.37E1	1.02E1	1.16E1	6.35E1	1.53E2
1987	0.00E0	1.06E2	2.10E1	4.20E1	1.65E2
1988	6.50E0	9.20E1	1.20E1	9.10E0	2.66E2
1989	2.90E1	3.80E1	2.90E1	5.30E1	6.50E1
1990	3.80E1	2.70E1	1.68E2	0.00E0	6.10E1
1991	2.80E1	5.30E1	1.31E2	0.00E0	1.03E2
1992	9.40E0	0.00E0	5.10E1	9.20E0	8.60E1
1993	0.00E0	2.20E1	8.60E1	0.00E0	9.30E1
1994	4.10E1	0.00E0	0.00E0	0.00E0	8.00E1
1995	1.70E1	0.00E0	2.30E1	0.00E0	1.38E2
1996	2.90E1	1.78E1	3.50E1	0.00E0	1.47E2
1997	0.00E0	0.00E0	1.11E2	3.10E1	1.36E2
1998	0.00E0	0.00E0	5.21E1	0.00E0	9.97E1
1999	0.00E0	2.47E1	8.49E1	0.00E0	6.51E1
2000	0.00E0	3.04E1	0.00E0	0.00E0	1.08E2

Table 3.8 Mean Concentrations of Radionuclides in Shoreline Sediment (pCi/kg)

Table 3.8 continued


	Mn-54	Co-58	Co-60	Cs-134	Cs-137
YEAR	Indicator	Indicator	Indicator	Indicator	Indicator
2001	0.00E0	0.00E0	0.00E0	0.00E0	2.77E1
2002	2.24E1	0.00E0	0.00E0	0.00E0	1.59E2
2003	0.00E0	0.00E0	0.00E0	0.00E0	1.11E2
2004	0.00E0	0.00E0	0.00E0	0.00E0	7.17E1

3.9 DIRECT GAMMA RADIATION

In 2004, 162 TLDs were analyzed, 158 at indicator locations, four at the control location. TLDs are collected and analyzed quarterly. The highest annual mean exposure for an indicator location was 102.8 milliroentgen. The annual mean exposure for the control location was 91.6 milliroentgen.

Figure 3.9 and Table 3.9 show TLD inner ring (site boundary), outer ring (4-5 miles), and control location annual averages in milliroentgen per year. Preoperational data and ten year rolling averages are also given. As shown in the graph, inner and outer ring averages historically compare closely, with control data somewhat higher. Inner and outer ring averages comprise a number of data points with the control average representing only one location.

The calculated total body dose from gaseous effluents for 2004 was 5.50E-1 millirem, which is 0.85% of the average inner ring TLD values. Therefore, it can be concluded that discharges from the plant had very little impact on the measured TLD values.

Figure 3.9

There is no reporting level for Direct Radiation (TLD)

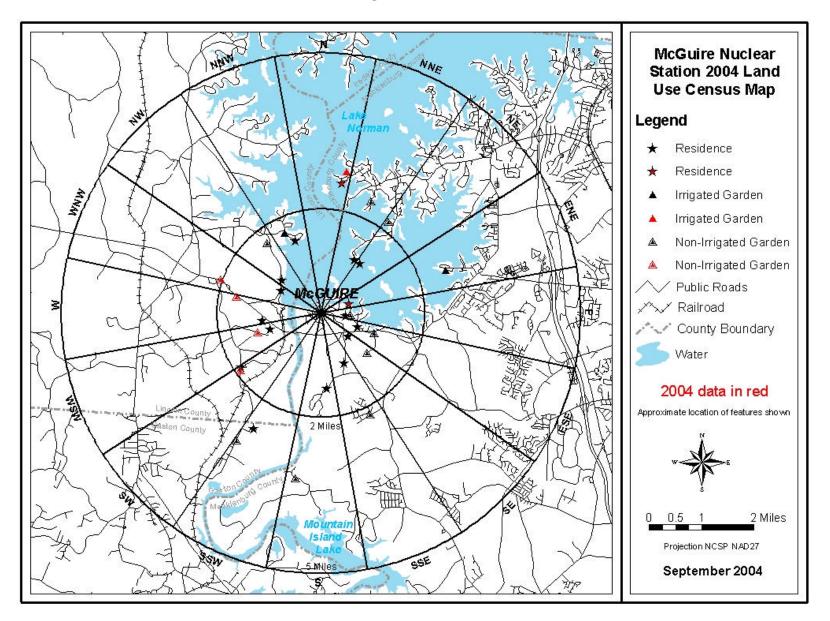
YEAR	Inner Ring Average	Outer Ring Average	Control
	(mR/yr)	(mR/yr)	(mR/yr)
1979	7.91E1	8.82E1	8.32E1
1980	7.54E1*	8.29E1*	1.05E2
1981	1.01E2	9.31E1	1.05E2
1982	8.95E1	8.97E1	1.10E2
1983	1.16E2	1.14E2	1.30E2
1984	7.85E1	7.83E1	9.02E1
1985	9.54E1	9.69E1	1.27E2
1986	8.91E1	9.35E1	1.10E2
1987	7.58E1	7.71E1	1.23E2
1988	6.03E1	6.42E1	5.48E1
1989	5.37E1	5.30E1	7.55E1
1990	4.34E1	4.78E1	6.25E1
1991	5.14E1	5.59E1	6.80E1
1992	5.65E1	5.55E1	7.60E1
1993	5.61E1	5.71E1	7.20E1
1994	6.40E1	6.93E1	9.55E1
1995	8.36E1	8.25E1	1.08E2
1996	7.18E1	7.02E1	9.88E1
1997	6.22E1	6.68E1	9.45E1
1998	6.59E1	6.32E1	8.69E1
1999	6.23E1	6.05E1	8.96E1
2000	6.50E1	6.08E1	8.97E1
2001	6.51E1	6.22E1	9.33E1
2002	6.57E1	6.43E1	9.48E1
2003	6.74E1	6.45E1	9.20E1
Average (1994 – 2003)	6.73E1	6.64E1	9.41E1
2004	6.46E1	6.33E1	9.16E1

Table 3.9 Direct Gamma Radiation (TLD) Results

* Values are based on two quarters due to change in TLD locations.

3.10 LAND USE CENSUS

The land use census was conducted June 7 and June 8, 2004 as required by SLC 16.11.14. Table 3.10 summarizes census results. A map indicating identified locations is shown in Figure 3.10.


During the 2004 census, no new or closer irrigated gardens were identified. The nearest residence is located in the East sector at 0.48 miles. No program changes were required as a result of the 2004 land use census.

Sector		Distance (Miles)	Sector		Distance (Miles)
N	Nearest Residence Nearest Garden (irrigated) Nearest Milk Animal	2.54 2.79 -	S	Nearest Residence Nearest Garden Nearest Milk Animal	1.45 3.21
NNE	Nearest Residence Nearest Garden Nearest Milk Animal	1.23 2.35	SSW	Nearest Residence Nearest Garden Nearest Milk Animal	2.56 2.94 -
NE	Nearest Residence Nearest Garden Nearest Milk Animal	1.21 2.18	SW	Nearest Residence Nearest Garden Nearest Milk Animal	1.85 1.89 -
ENE	Nearest Residence Nearest Garden (irrigated) Nearest Milk Animal	0.57 2.54	WSW	Nearest Residence Nearest Garden Nearest Milk Animal	1.01 1.27
E	Nearest Residence Nearest Garden Nearest Milk Animal	0.48 0.48 2.48	W	Nearest Residence Nearest Garden Nearest Milk Animal	1.15 1.64
ESE	Nearest Residence Nearest Garden Nearest Milk Animal	0.65 1.10	WNW	Nearest Residence Nearest Garden Nearest Milk Animal	0.88 2.02
SE	Nearest Residence Nearest Garden Nearest Milk Animal	0.67 1.18 -	NW	Nearest Residence Nearest Garden Nearest Milk Animal	0.95 1.68 -
SSE	Nearest Residence Nearest Garden Nearest Milk Animal	1.06 2.18	NNW	Nearest Residence Nearest Garden (irrigated) Nearest Milk Animal	1.48 1.69 -

Table 3.10 McGuire 2004 Land Use Census Results

"-" indicates no occurrences within the 5 mile radius

Figure 3.10

4.0 EVALUATION OF DOSE

4.1 DOSE FROM ENVIRONMENTAL MEASUREMENTS

Annual doses to maximum exposed individuals were estimated based on measured concentrations of radionuclides in 2004 MNS REMP samples. The primary purpose of estimating doses based on sample results is to allow comparison to effluent program dose estimates.

Doses based on sample results were calculated using the methodology and data presented in NRC Regulatory Guide 1.109. Measured radionuclide concentrations, averaged over the entire year for a specific radionuclide, indicator location and sample type, were used to calculate REMP-based doses. Where applicable, average background concentration at the corresponding control location was subtracted. Regulatory Guide 1.109 consumption rates for the maximum exposed individual were used in the calculations. When the guide listed "NO DATA" as the dose factor for a given radionuclide and organ, a dose factor of zero was assumed.

Maximum dose estimates (Highest Annual Mean Concentration) based on drinking water, fish, and shoreline sediment sample results are reported in Table 4.1-A. The individual critical population and pathway dose calculations are reported in Table 4.1-B.

REMP-based dose estimates are not reported for airborne radioiodine, milk, or broadleaf vegetation sample types because no radionuclides other than naturally occurring K-40 and Be-7 were detected in the samples. Dose estimates are not reported for surface water because sampled surface water is not considered to be a potable drinking water source. Exposure estimates based upon REMP TLD results are discussed in Section 3.9.

The maximum environmental organ dose estimate for any single sample type (other than direct radiation from gaseous effluents) collected during 2004 was 1.31E-1 mrem to the maximum exposed teen lung from inhalation. This is an annual dose based on one positive result from one on-site location during 2004 (environmental doses are based on a mean that includes only samples with a net positive activity). There were fifty-one non-positive results from this location that were not used in calculating the annual dose.

4.2 ESTIMATED DOSE FROM RELEASES

Throughout the year, dose estimates were calculated based on actual 2004 liquid and gaseous effluent release data. Effluent-based dose estimates were calculated using the RETDAS computer program which employs methodology and data presented in NRC Regulatory Guide 1.109. The 2004 MNS Annual Radioactive Effluent Release Report (reference 6.6) included calendar year dose estimates for the location with the highest

individual organ dose from liquid and gaseous effluent releases. These reported doses are shown in Table 4.1-A along with the corresponding REMP-based dose estimates.

The effluent-based liquid release doses are summations of the dose contributions from the drinking water, fish, and shoreline pathways. The effluent-based gaseous release doses report noble gas exposure separately from iodine, particulate, and tritium exposure. For noble gas exposure there is no critical age group; as the maximum exposed individuals are assumed to receive the same doses, regardless of their age group. For iodine, particulate, and tritium exposure the effluent-based gaseous release doses are summations of the dose contributors from ground/plane, inhalation, milk and vegetation pathways.

4.3 <u>COMPARISON OF DOSES</u>

The environmental and effluent dose estimates given in Table 4.1-A agree reasonably well. The similarity of the doses indicate that the radioactivity levels in the environment do not differ significantly from those expected based on effluent measurements and modeling of the environmental exposure pathways. This indicates that effluent program dose estimates are both valid and reasonably conservative.

There are some differences in how effluent and environmental doses are calculated that affect the comparison. Doses calculated from environmental data are conservative because they are based on a mean that includes only samples with a net positive activity versus a mean that includes all sample results (i.e. zero results are not included in the mean). Also, airborne tritium is not measured in environmental samples but is used to calculate effluent doses.

In calculations based on liquid release pathways, drinking water and fish consumption were the predominant dose pathways based on environmental and effluent data. The maximum total organ dose based on 2004 environmental sample results was 4.84E-2 mrem to the child total body. The maximum total organ dose of 1.17E-1 mrem for liquid effluent-based estimates was to the child liver and GI-LLI.

In calculations based on gaseous release pathways, vegetation was the predominant dose pathway for effluent samples. The maximum total organ dose for gaseous effluent estimates was 5.59E-1 mrem to the child's thyroid. Inhalation was the predominant dose pathway for environmental samples. Co-58 was detected in one environmental air sample during 2004 (PIP G-04-00134). The maximum total organ dose for gaseous environmental estimates was 1.31E-1 mrem to the teen lung.

Noble gas samples are not collected as part of the REMP, preventing an analogous comparison of effluent-based noble gas exposure estimates.

The doses calculated do not exceed the 40CFR190 dose commitment limits for members of the public. Doses to members of the public attributable to the operation of MNS are being maintained well within regulatory limits.

TABLE 4.1-A

MCGUIRE NUCLEAR STATION 2004 ENVIRONMENTAL AND EFFLUENT DOSE COMPARISON

LIQUID RELEASE PATHWAY

Organ	Environmental or Effluent Data	Critical Age ⁽¹⁾	Critical Pathway ⁽²⁾	Location	Maximum Dose ⁽³⁾ (mrem)
Skin	Environmental	Teen	Shoreline Sediment	130 (0.52 mi. SW)	1.88E-04
Skin	Effluent	Teen	Shoreline Sediment	0.5 mi. NNE	1.52E-03
Bone	Environmental	-	-	-	0.00E+00
Bone	Effluent	Teen	Fish	0.5 mi. NNE	2.87E-03
Liver	Environmental	Child	Drinking Water	101 (3.31 mi. E)	4.83E-02
Liver	Effluent	Child	Drinking Water	0.5 mi. NNE	1.17E-01
T. Body	Environmental	Child	Drinking Water	101 (3.31 mi. E)	4.84E-02
T. Body	Effluent	Child	Drinking Water	0.5 mi. NNE	1.14E-01
Thyroid	Environmental	Child	Drinking Water	101 (3.31 mi. E)	4.83E-02
Thyroid	Effluent	Child	Drinking Water	0.5 mi. NNE	1.14E-01
Kidney	Environmental	Child	Drinking Water	101 (3.31 mi. E)	4.83E-02
Kidney	Effluent	Child	Drinking Water	0.5 mi. NNE	1.15E-01
Lung	Environmental	Child	Drinking Water	101 (3.31 mi. E)	4.83E-02
Lung	Effluent	Child	Drinking Water	0.5 mi. NNE	1.14E-01
GI-LLI	Environmental	Child	Drinking Water	101 (3.31 mi. E)	4.83E-02
GI-LLI	Effluent	Child	Drinking Water	0.5 mi. NNE	1.17E-01

(1) Critical Age is the highest total dose (all pathways) to an age group.

(2) Critial Pathway is the highest individual dose within the identified Critical Age group.

(3) Maximum dose is a summation of the fish, drinking water and shoreline sediment pathways.

GASEOUS RELEASE PATHWAY

Organ	Environmental or Effluent Data	Critical Age ⁽¹⁾	Critical Pathway ⁽²⁾	Location	Maximum Dose ⁽³⁾ (mrem)
Skin	Environmental	All	-	-	0.00E+00
Skin	Effluent		Ground Plane	0.5 mi. E	2.68E-02
Bone	Environmental	-	-	-	0.00E+00
Bone	Effluent	Child	Vegetation	0.5 mi. E	5.08E-05
Liver	Environmental	Teen	Inhalation	195 (0.19 mi.N)	2.02E-04
Liver	Effluent	Child	Vegetation	0.5 mi. E	5.50E-01
T. Body	Environmental	Child	Inhalation	195 (0.19 mi.N)	3.09E-04
T. Body	Effluent	Child	Vegetation	0.5 mi. E	5.50E-01
1. Dody	Lindent	Child	vegetation	0.5 III. L	5.502-01
Thyroid	Environmental	-	-	-	0.00E+00
Thyroid	Effluent	Child	Vegetation	0.5 mi. E	5.59E-01
Kidney	Environmental	-	-	-	0.00E+00
Kidney	Effluent	Child	Vegetation	0.5 mi. E	5.50E-01
			C C		
Lung	Environmental	Teen	Inhalation	195 (0.19 mi.N)	1.31E-01
Lung	Effluent	Child	Vegetation	0.5 mi. E	5.50E-01
GI-LLI	Environmental	Adult	Inhalation	195 (0.19 mi.N)	1.04E-02
GI-LLI	Effluent	Child	Vegetation	0.5 mi. E	5.50E-01

IODINE, PARTICULATE, and TRITIUM

(1) Critical Age is the highest total dose (all pathways) to an age group.

(2) Critial Pathway is the highest individual dose within the identified Critical Age group.

(3) Maximum dose is a summation of the ground/plane, inhalation, milk and vegetation pathways.

Page 3 of 3

NOBLE GAS

Air Dose	Environmental or Effluent Data	Critical Age	Critical Pathway	Location	Maximum Dose (mrad)
Beta	Environmental	-	-	-	Not Sampled
Beta	Effluent	N/A	Noble Gas	0.5 mi. NNE	4.15E-02
Gamma	Environmental	-	-	-	Not Sampled
Gamma	Effluent	N/A	Noble Gas	0.5 mi. NNE	6.24E-02

TABLE 4.1-B

Maximum Individual Dose for 2004 based on Environmental Measurements (mrem) for McGuire Nuclear Station

Age	Sample Medium	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Skin
Infant	Airborne	0.00E + 00	1.19E-04	1.78E-04	0.00E+00	0.00E+00	7.59E-02	1.09E-03	0.00E + 00
	Drinking Water	0.00E + 00	4.69E-02	4.69E-02	4.69E-02	4.69E-02	4.69E-02	4.69E-02	0.00E + 00
	Milk	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E + 00
	TOTAL	0.00E+00	4.70E-02	4.71E-02	4.69E-02	4.69E-02	1.23E-01	4.80E-02	0.00E+00
Child	Airborne	0.00E + 00	1.73E-04	3.09E-04	0.00E+00	0.00E+00	1.08E-01	3.36E-03	0.00E + 00
	Drinking Water	0.00E + 00	4.77E-02	4.77E-02	4.77E-02	4.77E-02	4.77E-02	4.77E-02	0.00E + 00
	Milk	0.00E + 00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E + 00
	Broadleaf Vegetation	0.00E + 00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E + 00
	Fish	0.00E + 00	6.36E-04	6.36E-04	6.36E-04	6.36E-04	6.36E-04	6.36E-04	0.00E + 00
	Shoreline Sediment	0.00E+00	0.00E+00	3.37E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.93E-05
	TOTAL	0.00E+00	4.85E-02	4.87E-02	4.83E-02	4.83E-02	1.56E-01	5.17E-02	3.93E-05
Teen	Airborne	0.00E + 00	2.02E-04	2.71E-04	0.00E+00	0.00E+00	1.31E-01	9.30E-03	0.00E + 00
	Drinking Water	0.00E + 00	2.49E-02	2.49E-02	2.49E-02	2.49E-02	2.49E-02	2.49E-02	0.00E + 00
	Milk	0.00E+00	0.00E+00	0.00E + 00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Broadleaf Vegetation	0.00E+00	0.00E+00	0.00E + 00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Fish	0.00E+00	7.70E-04	7.70E-04	7.70E-04	7.70E-04	7.70E-04	7.70E-04	0.00E+00
	Shoreline Sediment	0.00E+00	0.00E+00	1.61E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.88E-04
	TOTAL	0.00E+00	2.59E-02	2.61E-02	2.57E-02	2.57E-02	1.57E-01	3.50E-02	1.88E-04
Adult	Airborne	0.00E+00	1.55E-04	2.02E-04	0.00E+00	0.00E+00	9.07E-02	1.04E-02	0.00E + 00
	Drinking Water	0.00E + 00	3.53E-02	3.53E-02	3.53E-02	3.53E-02	3.53E-02	3.53E-02	0.00E + 00
	Milk	0.00E + 00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E + 00
	Broadleaf Vegetation	0.00E + 00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Fish	0.00E+00	1.00E-03	1.00E-03	1.00E-03	1.00E-03	1.00E-03	1.00E-03	0.00E+00
	Shoreline Sediment	0.00E+00	0.00E+00	2.89E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.37E-05
	TOTAL	0.00E+00	3.65E-02	3.65E-02	3.63E-02	3.63E-02	1.27E-01	4.67E-02	3.37E-05

Note: Dose tables are provided for sample media displaying positive nuclide occurrence.

McGuire Nuclear Station Dose from Air Particulate Inhalation Pathway for 2004 Data Maximum Exposed Infant

Infant Dose from Air Particulate Inhalation Pathway (mrem) = Usage (m³/yr) x Dose Factor (mrem/pCi inhaled) x Concentration (pCi/m³)

Breathing Rate (one year 1400 m³/yr

(one year		ĩ					0								
			Inhalatio	on Dose Fa	<u>ictor</u>							Dose (m	<u>rem)</u>		
Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI		2	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
NO DATA	1.81E-05	3.56E-06	NO DATA	3.56E-06	7.14E-04	5.04E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NO DATA	8.71E-07	1.30E-06	NO DATA	NO DATA	5.55E-04	7.95E-06	195	9.77E-02	0.00E+00	1.19E-04	1.78E-04	0.00E+00	0.00E+00	7.59E-02	1.09E-03
9.69E-06	1.68E-05	6.77E-06	NO DATA	NO DATA	7.25E-04	1.77E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NO DATA	5.73E-06	8.41E-06	NO DATA	NO DATA	3.22E-03	2.28E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1.38E-05	4.47E-05	2.22E-05	NO DATA	2.32E-05	4.62E-04	3.67E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1.12E-05	4.59E-06	2.70E-06	NO DATA	3.37E-06	3.42E-04	9.05E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
8.24E-05	1.99E-05	1.45E-05	NO DATA	2.22E-05	1.25E-03	1.55E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2.71E-05	3.17E-05	1.40E-05	1.06E-02	3.70E-05	NO DATA	7.56E-07	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2.83E-04	5.02E-04	5.32E-05	NO DATA	1.36E-04	5.69E-05	9.53E-07	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
3.92E-04	4.37E-04	3.25E-05	NO DATA	1.23E-04	5.09E-05	9.53E-07	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
4.00E-05	4.00E-08	2.07E-06	NO DATA	9.59E-09	1.14E-03	2.74E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Bone NO DATA NO DATA 9.69E-06 NO DATA 1.38E-05 1.12E-05 8.24E-05 2.71E-05 2.83E-04 3.92E-04	Bone Liver NO DATA 1.81E-05 NO DATA 8.71E-07 9.69E-06 1.68E-05 NO DATA 5.73E-06 1.38E-05 4.47E-05 1.12E-05 4.59E-06 8.24E-05 1.99E-05 2.71E-05 5.02E-04 3.92E-04 4.37E-04	Bone Liver T. Body NO DATA 1.81E-05 3.56E-06 NO DATA 8.71E-07 1.30E-06 9.69E-06 1.68E-05 6.77E-06 NO DATA 5.73E-06 8.41E-06 1.38E-05 4.47E-05 2.22E-05 1.12E-05 4.59E-06 2.70E-06 8.24E-05 1.99E-05 1.45E-05 2.71E-05 3.17E-05 5.32E-05 3.92E-04 4.37E-04 3.25E-05	Inhalation Bone Liver T. Body Thyroid NO DATA 1.81E-05 3.56E-06 NO DATA NO DATA 1.81E-05 3.56E-06 NO DATA NO DATA 8.71E-07 1.30E-06 NO DATA 9.69E-06 1.68E-05 6.77E-06 NO DATA NO DATA 5.73E-06 8.41E-06 NO DATA 1.38E-05 4.47E-05 2.22E-05 NO DATA 1.12E-05 4.59E-06 2.70E-06 NO DATA 8.24E-05 1.99E-05 1.45E-05 NO DATA 2.71E-05 3.17E-05 1.40E-05 1.06E-02 2.83E-04 5.02E-04 5.32E-05 NO DATA	Inhalation Dose FaBoneLiverT. BodyThyroidKidneyNO DATA1.81E-053.56E-06NO DATA3.56E-06NO DATA8.71E-071.30E-06NO DATANO DATA9.69E-061.68E-056.77E-06NO DATANO DATA9.69E-061.68E-056.77E-06NO DATANO DATA1.38E-053.73E-068.41E-06NO DATANO DATA1.38E-054.47E-052.22E-05NO DATA3.37E-061.12E-054.59E-062.70E-06NO DATA3.37E-068.24E-051.99E-051.45E-05NO DATA2.22E-052.71E-053.17E-051.40E-051.06E-023.70E-053.92E-044.37E-043.25E-05NO DATA1.23E-04	Inhalativ Dose FirstonBoneLiverT. BodyThyroidKidneyLungNO DATA1.81E-053.56E-06NO DATA3.56E-067.14E-04NO DATA8.71E-071.30E-06NO DATANO DATA5.55E-049.69E-061.68E-056.77E-06NO DATANO DATA5.55E-04NO DATA5.73E-066.77E-06NO DATANO DATA3.22E-031.38E-054.47E-052.22E-05NO DATA3.37E-063.42E-041.12E-054.59E-062.70E-06NO DATA3.37E-063.42E-042.21E-051.06E-023.70E-051.05E-031.05E-032.38E-045.32E-05NO DATA1.36E-045.69E-053.92E-043.25E-05NO DATA1.23E-045.09E-05	Interpretation interpretationBoneLiverT.BodyThyroidKidneyLungGI-LLINO DATA1.81E-053.56E-06NO DATA3.56E-067.14E-045.04E-06NO DATA8.71E-071.30E-06NO DATANO DATA5.55E-047.95E-069.69E-061.68E-056.77E-06NO DATANO DATA7.25E-041.77E-05NO DATA5.73E-068.41E-06NO DATANO DATA3.22E-032.28E-051.38E-054.47E-052.22E-05NO DATA2.32E-054.62E-043.67E-051.12E-054.59E-062.70E-06NO DATA3.37E-063.42E-049.05E-062.21E-051.99E-051.45E-05NO DATA2.22E-051.05E-051.55E-049.55E-042.31E-053.17E-051.40E-051.06E-023.70E-051.05E-051.55E-059.53E-073.92E-045.32E-05NO DATA1.36E-045.09E-059.53E-073.92E-043.75E-05NO DATA1.23E-055.09E-059.53E-07	Inhalation Dose FormationBoneLiverT. BodyThyroidKidneyLungGI-LLIConcent IndicatorBoneLiverT. BodyThyroidKidneyLungGI-LLIALLNO DATA1.81E-053.56E-06NO DATA3.56E-067.14E-045.04E-06ALLNO DATA8.71E-071.30E-06NO DATANO DATA5.55E-047.95E-061.959.69E-061.68E-056.77E-06NO DATANO DATA7.25E-041.77E-05ALLNO DATA5.73E-068.41E-06NO DATANO DATA3.22E-032.28E-05ALL1.38E-054.47E-052.22E-05NO DATA2.32E-054.62E-043.67E-06ALL1.12E-054.59E-061.45E-05NO DATA2.22E-051.25E-031.55E-05ALL2.71E-053.17E-051.40E-051.06E-023.70E-05NO DATA7.56E-07ALL2.33E-044.37E-045.32E-05NO DATA1.36E-045.09E-059.53E-07ALL3.02E-044.37E-043.25E-05NO DATA1.23E-045.09E-059.53E-07ALL	Image: And and any orbit of the section of the se	Indulation Inhalation <td>Image: series of the series</td> <td>Initial Initial Dose Field And And<!--</td--><td>Interpretation Interpretation Inter</td><td>Industry Industry Industry</td><td>Interpretation Interpretation Interpr</td></td>	Image: series of the series	Initial Initial Dose Field And </td <td>Interpretation Interpretation Inter</td> <td>Industry Industry Industry</td> <td>Interpretation Interpretation Interpr</td>	Interpretation Inter	Industry Industry	Interpretation Interpr

Dose Commitment (mrem) =

0.00E+00 1.19E-04 1.78E-04 0.00E+00 0.00E+00 7.59E-02 1.09E-03

McGuire Nuclear Station Dose from Drinking Water Pathway for 2004 Data Maximum Exposed Infant

Highest Annual

Infant Dose from Drinking Water Pathway (mrem) = Usage (l) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year) = 330 l

		Net M								Net Mean						
				Ingestio	n Dose Fa	actor		Concent					Dose (m	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Indicator Location	Water (pCi/l)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	1.99E-05	4.51E-06	NO DATA	4.41E-06	NO DATA	7.31E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	3.60E-06	8.98E-06	NO DATA	NO DATA	NO DATA	8.97E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fe-59	3.08E-05	5.38E-05	2.12E-05	NO DATA	NO DATA	1.59E-05	2.57E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	1.08E-05	2.55E-05	NO DATA	NO DATA	NO DATA	2.57E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	1.84E-05	6.31E-05	2.91E-05	NO DATA	3.06E-05	NO DATA	5.33E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	4.20E-08	1.73E-08	1.00E-08	NO DATA	1.24E-08	NO DATA	1.46E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	2.06E-07	5.02E-08	3.56E-08	NO DATA	5.41E-08	NO DATA	2.50E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	3.59E-05	4.23E-05	1.86E-05	1.39E-02	4.94E-05	NO DATA	1.51E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	3.77E-04	7.03E-04	7.10E-05	NO DATA	1.81E-04	7.42E-05	1.91E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	5.22E-04	6.11E-04	4.33E-05	NO DATA	1.64E-04	6.64E-05	1.91E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	1.71E-04	1.71E-07	8.81E-06	NO DATA	4.06E-08	1.05E-07	4.20E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Н-3	NO DATA	3.08E-07	3.08E-07	3.08E-07	3.08E-07	3.08E-07	3.08E-07	101	461	0.00E+00	4.69E-02	4.69E-02	4.69E-02	4.69E-02	4.69E-02	4.69E-02

Dose Commitment (mrem) =

0.00E+00 4.69E-02 4.69E-02 4.69E-02 4.69E-02 4.69E-02 4.69E-02

McGuire Nuclear Station Dose from Air Particulate Inhalation Pathway for 2004 Data Maximum Exposed Child

Child Dose from Air Particulate Inhalation Pathway (mrem) = Usage (m³/yr) x Dose Factor (mrem/pCi inhaled) x Concentration (pCi/m³)

Breathing Rate (one year 3700 m³/yr

	(one year	2100						Highest Net I	Annual Mean							
				Inhalatio	n Dose Fa	<u>ictor</u>			tration				Dose (m	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Indicator Location	Air (pCi/m ³)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	1.16E-05	2.57E-06	NO DATA	2.71E-06	4.26E-04	6.19E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	4.79E-07	8.55E-07	NO DATA	NO DATA	2.99E-04	9.29E-06	195	9.77E-02	0.00E+00	1.73E-04	3.09E-04	0.00E+00	0.00E+00	1.08E-01	3.36E-03
Fe-59	5.59E-06	9.04E-06	4.51E-06	NO DATA	NO DATA	3.43E-04	1.91E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	3.55E-06	6.12E-06	NO DATA	NO DATA	1.91E-03	2.60E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	1.15E-05	3.06E-05	1.90E-05	NO DATA	1.93E-05	2.69E-04	4.41E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	6.35E-06	2.48E-06	1.77E-06	NO DATA	2.33E-06	1.66E-04	1.00E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	5.13E-05	1.13E-05	1.00E-05	NO DATA	1.61E-05	6.03E-04	1.65E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	1.30E-05	1.30E-05	7.37E-06	4.39E-03	2.13E-05	NO DATA	7.68E-07	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	1.76E-04	2.74E-04	6.07E-05	NO DATA	8.93E-05	3.27E-05	1.04E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	2.45E-04	2.23E-04	3.47E-05	NO DATA	7.63E-05	2.81E-05	9.78E-07	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	2.00E-05	1.75E-08	1.17E-06	NO DATA	5.71E-09	4.71E-04	2.75E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Dose Commitment (mrem) =

0.00E+00 1.73E-04 3.09E-04 0.00E+00 0.00E+00 1.08E-01 3.36E-03

McGuire Nuclear Station Dose from Drinking Water Pathway for 2004 Data Maximum Exposed Child

Child Dose from Drinking Water Pathway (mrem) = Usage (l) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year) = 510 l

		Net N								Net Mean						
				Ingestion	n Dose Fa	<u>actor</u>		Concent					Dose (mi	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Indicator Location	Water (pCi/l)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	1.07E-05	2.85E-06	NO DATA	3.00E-06	NO DATA	8.98E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	1.80E-06	5.51E-06	NO DATA	NO DATA	NO DATA	1.05E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fe-59	1.65E-05	2.67E-05	1.33E-05	NO DATA	NO DATA	7.74E-06	2.78E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C0-60	NO DATA	5.29E-06	1.56E-05	NO DATA	NO DATA	NO DATA	2.93E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	1.37E-05	3.65E-05	2.27E-05	NO DATA	2.30E-05	NO DATA	6.41E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	2.25E-08	8.76E-09	6.26E-09	NO DATA	8.23E-09	NO DATA	1.62E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	1.16E-07	2.55E-08	2.27E-08	NO DATA	3.65E-08	NO DATA	2.66E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	1.72E-05	1.73E-05	9.83E-06	5.72E-03	2.84E-05	NO DATA	1.54E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	2.34E-04	3.84E-04	8.10E-05	NO DATA	1.19E-04	4.27E-05	2.07E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	3.27E-04	3.13E-04	4.62E-05	NO DATA	1.02E-04	3.67E-05	1.96E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	8.31E-05	7.28E-08	4.85E-06	NO DATA	2.37E-08	4.34E-08	4.21E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Н-3	NO DATA	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	101	461	0.00E+00	4.77E-02	4.77E-02	4.77E-02	4.77E-02	4.77E-02	4.77E-02

Highest Annual

Dose Commitment (mrem) =

0.00E+00 4.77E-02 4.77E-02 4.77E-02 4.77E-02 4.77E-02 4.77E-02

McGuire Nuclear Station Dose from Fish Pathway for 2004 Data Maximum Exposed Child

Child Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg) H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 504 pCi/kg

Usage (intake in one year) = 6.9 kg

		00		Ingestion	n Dose Fa	actor		Highest Annual Net Mean <u>Concentration</u> <u>Dose (mrem)</u>								
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Indicator Location	Fish (pCi/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	1.07E-05	2.85E-06	NO DATA	3.00E-06	NO DATA	8.98E-06	ALL	0.00	0.00E+00						
Co-58	NO DATA	1.80E-06	5.51E-06	NO DATA	NO DATA	NO DATA	1.05E-05	ALL	0.00	0.00E+00						
Fe-59	1.65E-05	2.67E-05	1.33E-05	NO DATA	NO DATA	7.74E-06	2.78E-05	ALL	0.00	0.00E+00						
C0-60	NO DATA	5.29E-06	1.56E-05	NO DATA	NO DATA	NO DATA	2.93E-05	ALL	0.00	0.00E+00						
Zn-65	1.37E-05	3.65E-05	2.27E-05	NO DATA	2.30E-05	NO DATA	6.41E-06	ALL	0.00	0.00E+00						
Cs-134	2.34E-04	3.84E-04	8.10E-05	NO DATA	1.19E-04	4.27E-05	2.07E-06	ALL	0.00	0.00E+00						
Cs-137	3.27E-04	3.13E-04	4.62E-05	NO DATA	1.02E-04	3.67E-05	1.96E-06	ALL	0.00	0.00E+00						
Н-3	NO DATA	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	2.03E-07	128	454	0.00E+00	6.36E-04	6.36E-04	6.36E-04	6.36E-04	6.36E-04	6.36E-04
						Dose Comm	nitment (mre	em) =		0.00E+00	6.36E-04	6.36E-04	6.36E-04	6.36E-04	6.36E-04	6.36E-04

McGuire Nuclear Station Dose from Shoreline Sediment Pathway for 2004 Data Maximum Exposed Child

Shoreline Recreation =	14	hr (in one year)
Shore Width Factor =	0.3	(lake shore - location 129)
Shore Width Factor =	0.2	(river shoreline - location 130)
Sediment Surface Mass =	40	kg/m ²

Child Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCi/m²) x Shore Width Factor x Sediment Surface Mass (kg/m²) x Sediment Concentration (pCi/kg)

	Dose Fact taminated	tor Standing <u>Ground</u>	0	Annual Net ncentration	Dose				
Radionuclide	(mrem/hr j T. Body	per pCi/m ²) Skin	Indicator Location	Sediment (pCi/kg)	(mr T. Body	rem) Skin			
Mn-54	5.80E-09	6.80E-09	ALL	0.00	0.00E+00	0.00E+00			
Co-58	7.00E-09	8.20E-09	ALL	0.00	0.00E+00	0.00E+00			
Co-60	1.70E-08	2.00E-08	ALL	0.00	0.00E+00	0.00E+00			
Cs-134	1.20E-08	1.40E-08	ALL	0.00	0.00E+00	0.00E+00			
Cs-137	4.20E-09	4.90E-09	130	71.7	3.37E-05	3.93E-05			
		Dose Commitmen	t (mrem) =		3.37E-05	3.93E-05			

McGuire Nuclear Station Dose from Air Particulate Inhalation Pathway for 2004 Data Maximum Exposed Teen

Teen Dose from Air Particulate Inhalation Pathway (mrem) = Usage (m³/yr) x Dose Factor (mrem/pCi inhaled) x Concentration (pCi/m³)

Breathing Rate (one year 8000 m³/yr

	(one year	0000	,,,					Highest Net I								
				Inhalatio	n Dose Fa	<u>ictor</u>			tration				Dose (m	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Indicator Location	Air (pCi/m ³)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	6.39E-06	1.05E-06	NO DATA	1.59E-06	2.48E-04	8.35E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	2.59E-07	3.47E-07	NO DATA	NO DATA	1.68E-04	1.19E-05	195	9.77E-02	0.00E+00	2.02E-04	2.71E-04	0.00E+00	0.00E+00	1.31E-01	9.30E-03
Fe-59	1.09E-06	4.62E-06	1.79E-06	NO DATA	NO DATA	1.91E-04	2.23E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	1.89E-06	2.48E-06	NO DATA	NO DATA	1.09E-03	3.24E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	4.82E-06	1.67E-05	7.80E-06	NO DATA	1.08E-05	1.55E-04	5.83E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	2.32E-06	1.29E-06	7.08E-07	NO DATA	1.25E-06	9.39E-05	1.21E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	1.82E-05	5.73E-06	3.94E-06	NO DATA	8.42E-06	3.36E-04	1.86E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	4.43E-06	6.14E-06	3.30E-06	1.83E-03	1.05E-05	NO DATA	8.11E-07	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	6.28E-05	1.41E-04	6.86E-05	NO DATA	4.69E-05	1.83E-05	1.22E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	8.38E-05	1.06E-04	3.89E-05	NO DATA	3.80E-05	1.51E-05	1.06E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	6.84E-06	8.38E-09	4.40E-07	NO DATA	2.85E-09	2.54E-04	2.86E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Dose Commitment (mrem) =

0.00E+00 2.02E-04 2.71E-04 0.00E+00 0.00E+00 1.31E-01 9.30E-03

McGuire Nuclear Station Dose from Drinking Water Pathway for 2004 Data Maximum Exposed Teen

Teen Dose from Drinking Water Pathway (mrem) = Usage (l) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year) = 510 l

-								Highest Net N								
				Ingestio	n Dose F	<u>actor</u>		Concent Indicator	t <u>ration</u> Water				Dose (m	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/l)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	5.90E-06	1.17E-06	NO DATA	1.76E-06	NO DATA	1.21E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	9.72E-07	2.24E-06	NO DATA	NO DATA	NO DATA	1.34E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fe-59	5.87E-06	1.37E-05	5.29E-06	NO DATA	NO DATA	4.32E-06	3.24E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	2.81E-06	6.33E-06	NO DATA	NO DATA	NO DATA	3.66E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	5.76E-06	2.00E-05	9.33E-06	NO DATA	1.28E-05	NO DATA	8.47E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	8.22E-09	4.56E-09	2.51E-09	NO DATA	4.42E-09	NO DATA	1.95E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	4.12E-08	1.30E-08	8.94E-09	NO DATA	1.91E-08	NO DATA	3.00E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	5.85E-06	8.19E-06	4.40E-06	2.39E-03	1.41E-05	NO DATA	1.62E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	8.37E-05	1.97E-04	9.14E-05	NO DATA	6.26E-05	2.39E-05	2.45E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	1.12E-04	1.49E-04	5.19E-05	NO DATA	5.07E-05	1.97E-05	2.12E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	2.84E-05	3.48E-08	1.83E-06	NO DATA	1.18E-08	2.34E-08	4.38E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Н-3	NO DATA	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	101	461	0.00E+00	2.49E-02	2.49E-02	2.49E-02	2.49E-02	2.49E-02	2.49E-02

Dose Commitment (mrem)=

0.00E+00 2.49E-02 2.49E-02 2.49E-02 2.49E-02 2.49E-02 2.49E-02

McGuire Nuclear Station Dose from Fish Pathway for 2004 Data Maximum Exposed Teen

Teen Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg) H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 504 pCi/l x 0.9 = 454 pCi/kg Usage (intake in one year) = 16 kg

								Highest	Annual							
				Ingestio	n Dose Fa	actor		Net N	Aean				Dose (m	rem)		
								Concen	tration							
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	5.90E-06	1.17E-06	NO DATA	1.76E-06	NO DATA	1.21E-05	ALL	0.00	0.00E+00						
Co-58	NO DATA	9.72E-07	2.24E-06	NO DATA	NO DATA	NO DATA	1.34E-05	ALL	0.00	0.00E+00						
Fe-59	5.87E-06	1.37E-05	5.29E-06	NO DATA	NO DATA	4.32E-06	3.24E-05	ALL	0.00	0.00E+00						
Co-60	NO DATA	2.81E-06	6.33E-06	NO DATA	NO DATA	NO DATA	3.66E-05	ALL	0.00	0.00E+00						
Zn-65	5.76E-06	2.00E-05	9.33E-06	NO DATA	1.28E-05	NO DATA	8.47E-06	ALL	0.00	0.00E+00						
Cs-134	8.37E-05	1.97E-04	9.14E-05	NO DATA	6.26E-05	2.39E-05	2.45E-06	ALL	0.00	0.00E+00						
Cs-137	1.12E-04	1.49E-04	5.19E-05	NO DATA	5.07E-05	1.97E-05	2.12E-06	ALL	0.00	0.00E+00						
Н-3	NO DATA	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	1.06E-07	128	454	0.00E+00	7.70E-04	7.70E-04	7.70E-04	7.70E-04	7.70E-04	7.70E-04

Dose Commitment (mrem) = 0.00E+00 7.70E-04 7.70E

McGuire Nuclear Station Dose from Shoreline Sediment Pathway for 2004 Data Maximum Exposed Teen

Shoreline Recreation =	67	hr (in one year)
Shore Width Factor =	0.3	(lake shore - location 129)
Shore Width Factor =	0.2	(river shoreline - location 130)
Sediment Surface Mass =	40	kg/m ²

Teen Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCi/m²) x Shore Width Factor x Sediment Surface Mass (kg/m²) x Sediment Concentration (pCi/kg)

	l Dose Factor taminated Gr	e	Highest An <u>Mean Conce</u>		<u>D</u>	<u>ose</u>
(mren Radionuclide	ı/hr per pCi/n T. Body	n ²) Skin	Indicator Location	Sediment (pCi/kg)	(mı T. Body	rem) Skin
Mn-54	5.80E-09	6.80E-09	ALL	0.00	0.00E+00	0.00E+00
Co-58	7.00E-09	8.20E-09	ALL	0.00	0.00E+00	0.00E+00
Co-60	1.70E-08	2.00E-08	ALL	0.00	0.00E+00	0.00E+00
Cs-134	1.20E-08	1.40E-08	ALL	0.00	0.00E+00	0.00E+00
Cs-137	4.20E-09	4.90E-09	130	71.7	1.61E-04	1.88E-04
I	Dose Commit	ment (mrem) =	=		1.61E-04	1.88E-04

McGuire Nuclear Station Dose from Air Particulate Inhalation Pathway for 2004 Data Maximum Exposed Adult

Adult Dose from Air Particulate Inhalation Pathway (mrem) = Usage (m³/yr) x Dose Factor (mrem/pCi inhaled) x Concentration (pCi/m³)

Breathing Rate (one year 8000 m³/yr

	(one year	0000						Highest Net I	Annual Mean							
				Inhalatio	on Dose Fa	<u>ictor</u>			tration				Dose (m	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Indicator Location	Air (pCi/m ³)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	4.95E-06	7.87E-07	NO DATA	1.23E-06	1.74E-04	9.67E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	1.98E-07	2.59E-07	NO DATA	NO DATA	1.16E-04	1.33E-05	195	9.77E-02	0.00E+00	1.55E-04	2.02E-04	0.00E+00	0.00E+00	9.07E-02	1.04E-02
Fe-59	1.47E-06	3.47E-06	1.32E-06	NO DATA	NO DATA	1.27E-04	2.35E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	1.44E-06	1.85E-06	NO DATA	NO DATA	7.46E-04	3.56E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	4.05E-06	1.29E-05	5.28E-06	NO DATA	8.62E-06	1.08E-04	6.68E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	1.76E-06	9.77E-07	5.26E-07	NO DATA	9.67E-07	6.31E-05	1.30E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	1.34E-05	4.30E-06	2.91E-06	NO DATA	6.77E-06	2.21E-04	1.88E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	3.15E-06	4.47E-06	2.56E-06	1.49E-03	7.66E-06	NO DATA	7.85E-07	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	4.66E-05	1.06E-04	9.10E-05	NO DATA	3.59E-05	1.22E-05	1.30E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	5.95E-05	7.76E-05	5.35E-05	NO DATA	2.78E-05	9.40E-06	1.05E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	4.88E-06	6.13E-09	3.20E-07	NO DATA	2.09E-09	1.59E-04	2.73E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Dose Commitment (mrem) =

0.00E+00 1.55E-04 2.02E-04 0.00E+00 0.00E+00 9.07E-02 1.04E-02

McGuire Nuclear Station Dose from Drinking Water Pathway for 2004 Data Maximum Exposed Adult

Highest Annual

Adult Dose from Drinking Water Pathway (mrem) = Usage (l) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/l)

Usage (intake in one year) = 730 1

								Net M	lean							
				Ingestion	n Dose Fa	actor		Concent	ration				Dose (m	<u>rem)</u>		
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Indicator Location	Water (pCi/l)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI
Mn-54	NO DATA	4.57E-06	8.72E-07	NO DATA	1.36E-06	NO DATA	1.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-58	NO DATA	7.45E-07	1.67E-06	NO DATA	NO DATA	NO DATA	1.51E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fe-59	4.34E-06	1.02E-05	3.91E-06	NO DATA	NO DATA	2.85E-06	3.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Co-60	NO DATA	2.14E-06	4.72E-06	NO DATA	NO DATA	NO DATA	4.02E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zn-65	4.84E-06	1.54E-05	6.96E-06	NO DATA	1.03E-05	NO DATA	9.70E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nb-95	6.22E-09	3.46E-09	1.86E-09	NO DATA	3.42E-09	NO DATA	2.10E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zr-95	3.04E-08	9.75E-09	6.60E-09	NO DATA	1.53E-08	NO DATA	3.09E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	4.16E-06	5.95E-06	3.41E-06	1.95E-03	1.02E-05	NO DATA	1.57E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-134	6.22E-05	1.48E-04	1.21E-04	NO DATA	4.79E-05	1.59E-05	2.59E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cs-137	7.97E-05	1.09E-04	7.14E-05	NO DATA	3.70E-05	1.23E-05	2.11E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BaLa-140	2.03E-05	2.55E-08	1.33E-06	NO DATA	8.67E-09	1.46E-08	4.18E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Н-3	NO DATA	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	101	461	0.00E+00	3.53E-02	3.53E-02	3.53E-02	3.53E-02	3.53E-02	3.53E-02

Dose Commitment (mrem) =

0.00E+00 3.53E-02 3.53E-02 3.53E-02 3.53E-02 3.53E-02 3.53E-02

McGuire Nuclear Station Dose from Fish Pathway for 2004 Data Maximum Exposed Adult

Adult Dose from Fish Pathway (mrem) = Usage (kg) x Dose Factor (mrem/pCi ingested) x Concentration (pCi/kg) H-3 Concentration in Fish = Surface Water pCi/l x Bioaccumulation Factor 0.9 pCi/kg per pCi/l = 504 pCi/l x 0.9 = 454 pCi/kg Usage (intake in one year) = 21 kg

								Highest Net N									
			Ingestio	n Dose Fa	actor			Concen	<u>tration</u>				Dose (m	<u>rem)</u>			
Radionuclide	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	Location	(pCi/kg)	Bone	Liver	T. Body	Thyroid	Kidney	Lung	GI-LLI	
Mn-54	NO DATA	4.57E-06	8.72E-07	NO DATA	1.36E-06	NO DATA	1.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Co-58	NO DATA	7.45E-07	1.67E-06	NO DATA	NO DATA	NO DATA	1.51E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Fe-59	4.34E-06	1.02E-05	3.91E-06	NO DATA	NO DATA	2.85E-06	3.40E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Co-60	NO DATA	2.14E-06	4.72E-06	NO DATA	NO DATA	NO DATA	4.02E-05	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Zn-65	4.84E-06	1.54E-05	6.96E-06	NO DATA	1.03E-05	NO DATA	9.70E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Cs-134	6.22E-05	1.48E-04	1.21E-04	NO DATA	4.79E-05	1.59E-05	2.59E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Cs-137	7.97E-05	1.09E-04	7.14E-05	NO DATA	3.70E-05	1.23E-05	2.11E-06	ALL	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Н-3	NO DATA	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	1.05E-07	128	454	0.00E+00	1.00E-03	1.00E-03	1.00E-03	1.00E-03	1.00E-03	1.00E-03	
							•• • • •	``		0.005.00	1 005 02	1.005.03	1.005.03	1.005.03	1.005.03	1.005.03	

Dose Commitment (mrem) =

0.00E+00 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03

McGuire Nuclear Station Dose from Shoreline Sediment Pathway for 2004 Data Maximum Exposed Adult

Shoreline Recreation =	12	hr (in one year)
Shore Width Factor =	0.3	(lake shore - location 129)
Shore Width Factor =	0.2	(river shoreline - location 130)
Sediment Surface Mass =	40	kg/m ²

Adult Dose from Shoreline Sediment Pathway (mrem) = Shoreline Recreation (hr) x External Dose Factor (mrem/hr per pCi/m²) x Shore Width Factor x Sediment Surface Mass (kg/m²) x Sediment Concentration (pCi/kg)

External Do	se Factor S	Standing	Highest Aı	nnual Net	D	ose
<u>on Conta</u>	aminated (Fround	Mean Con	<u>centration</u>		
		7			(mi	rem)
Radionuclide	(mrem/hr p T. Body	er pCi/m²) Skin	Indicator Location	Sediment (pCi/kg)	T. Body	Skin
Mn-54	5.80E-09	6.80E-09	ALL	0.00	0.00E+00	0.00E+00
Co-58	7.00E-09	8.20E-09	ALL	0.00	0.00E+00	0.00E+00
Co-60	1.70E-08	2.00E-08	ALL	0.00	0.00E+00	0.00E+00
Cs-134	1.20E-08	1.40E-08	ALL	0.00	0.00E+00	0.00E+00
Cs-137	4.20E-09	4.90E-09	130	71.7	2.89E-05	3.37E-05
	Dose Comm	nitment (mrei	m) =		2.89E-05	3.37E-05

5.0 QUALITY ASSURANCE

5.1 <u>SAMPLE COLLECTION</u>

EnRad Laboratories, Fisheries, and Aquatic Ecology performed the environmental sample collections as specified by approved sample collection procedures.

5.2 <u>SAMPLE ANALYSIS</u>

EnRad Laboratories performed the environmental sample analyses as specified by approved analysis procedures. EnRad Laboratories is located in Huntersville, North Carolina, at Duke Power Company's Environmental Center.

5.3 **DOSIMETRY ANALYSIS**

Duke Power Company's Environmental Center

The Radiation Dosimetry and Records group performed environmental dosimetry measurements as specified by approved dosimetry analysis procedures.

5.4 LABORATORY EQUIPMENT QUALITY ASSURANCE

5.4.1 DAILY QUALITY CONTROL

EnRad Laboratories has an internal quality assurance program which monitors each type of instrumentation for reliability and accuracy. Daily quality control checks ensure that instruments are in proper working order and these checks are used to monitor instrument performance.

5.4.2 CALIBRATION VERIFICATION

National Institute of Standards and Technology (NIST) standards that represent counting geometries are analyzed as unknowns at various frequencies ranging from weekly to annually to verify that efficiency calibrations are valid. The frequency is dependent upon instrument use and performance. Investigations are performed and documented should calibration verification data fall out of limits.

5.4.3 BATCH PROCESSING

Method quality control samples are analyzed with sample analyses that are processed in batches. These include gross beta in drinking water and all tritium analyses.

5.5 DUKE POWER INTERCOMPARISON PROGRAM

EnRad Laboratories participated in the Duke Power Nuclear Generation Department Intercomparison Program during 2004. Interlaboratory cross-check standards, including, Marinelli beakers, air filters, air cartridges, gross beta on smears, and tritium in water samples were analyzed at various times of the year by the four counting laboratories in Duke Power Company for this program. A summary of these Intercomparison Reports for 2004 is documented in Table 5.0-A.

5.6 **DUKE POWER AUDITS**

The McGuire Radiation Protection Section was audited by the Quality Assurance Group in January, 2004. One deviation was identified pertaining to several routine TLD locations with distances outside the six to eight km range as required by SLC Table 16.11.13-1. PIP G-04-00139 written to document corrective actions.

EnRad Laboratories was audited by the Quality Assurance Group in March, 2004. Laboratory practices and procedures were reviewed. One example of insufficient documentation for a cross-check which yielded data outside of acceptance limits was identified and is described in PIP G-04-00140. Several areas for improvement were identified and are described in PIP G-04-00142. There were no significant findings as a result of this audit.

5.7 U.S. NUCLEAR REGULATORY COMMISSION INSPECTIONS

The McGuire Nuclear Station Radiological Environmental Monitoring Program was not audited by the NRC in 2004. The program was audited by the NRC in January of 2003 (Reference 6.12). There were no findings or issues identified by the audit.

EnRad Laboratories was not audited by the NRC in 2004.

5.8 STATE OF NORTH CAROLINA INTERCOMPARISON PROGRAM

EnRad Laboratories routinely participates with the State of North Carolina Department of Environmental Health and Natural Resources (DEHNR) in an intercomparison program.

EnRad Laboratories sends air, water, milk, vegetation, sediment, and fish samples which have been collected to the State of North Carolina Radiation Protection Section for intercomparison analysis.

5.9 <u>TLD INTERCOMPARISON PROGRAM</u>

5.9.1 NUCLEAR TECHNOLOGY SERVICES INTERCOMPARISON PROGRAM

Radiation Dosimetry and Records participates in a quarterly TLD intercomparison program administered by Nuclear Technology Services, Inc. of Roswell, GA. Nuclear Technology Services irradiates environmental dosimeters quarterly and sends them to the Radiation Dosimetry and Records group for analysis of the unknown estimated delivered exposure. A summary of the Nuclear Technology Services Intercomparison Report is documented in Table 5.0-B.

5.9.2 STATE OF NORTH CAROLINA INTERCOMPARISON PROGRAM

Radiation Dosimetry and Records routinely participates in a TLD intercomparison program. The State of North Carolina Radiation Protection Section irradiates environmental dosimeters and sends them to the Radiation Dosimetry and Records group for analysis of the unknown estimated delivered exposure. A summary of the State of North Carolina Environmental Dosimetry Intercomparison Report for 2004 is documented in Table 5.0-B.

5.9.3 INTERNAL CROSSCHECK (DUKE POWER)

Radiation Dosimetry and Records participates in a quarterly TLD intracomparison program administered internally by the Dosimetry Lab. The Dosimetry Lab Staff irradiates environmental dosimeters quarterly and submits them for analysis of the unknown estimated delivered exposure. A summary of the Internal Cross Check (Duke Power) Result is documented in Table 5.0-B.

TABLE 5.0-ADUKE POWER COMPANYINTERLABORATORY COMPARISON PROGRAM

2004 CROSS-CHECK RESULTS FOR ENRAD LABORATORIES

Cross-Check samples are normally analyzed a minimum of three times. A status of "3 Pass" indicates that all three analyses yielded results within the designated acceptance range. A status of "1 Pass" indicates that one analysis of the cross-check was performed.

Footnote explanations are included following this data table.

Gamma in Water 3.5 liters	Gamma	in	Water	3.5	liters
---------------------------	-------	----	-------	-----	--------

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/l	pCi/l	pCi/l	
3/17/2004	Q041GWSL	Cr-51	1.06 - 1.88 E3	1.41 E3	1.41 E3	3 Pass
		Mn-54	2.63 - 4.67 E4	3.51 E4	3.73 E4	3 Pass
		Co-57	0.00 - 0.00 E3	0.00E+00	1.00 E3	3 Pass ⁽¹⁾
		Co-58	7.07 - 12.53 E3	9.42 E3	9.40 E3	3 Pass
		Fe-59	2.01 - 3.56 E3	2.67 E3	2.80 E3	3 Pass
		Co-60	4.86 - 8.62 E4	6.48 E4	6.85 E4	3 Pass
		Zn-65	4.42 - 7.84 E4	5.90 E4	6.21 E4	3 Pass
		Cs-134	4.26 - 7.56 E4	5.68 E4	5.22 E4	3 Pass
		Cs-137	3.67 - 6.51 E4	4.90 E4	4.80 E4	3 Pass
		Ce-139	0.00 - 0.00 E2	0.00E+00	6.10 E2	3 Pass ⁽¹⁾
		Ce-141	0.76 - 1.35 E3	1.01E+03	1.01 E3	3 Pass
6/28/2004	Q042GWR	Cr-51	3.52 - 6.25 E3	4.70 E3	4.56 E3	3 Pass
		Co-57	1.46 - 2.58 E2	1.94 E2	1.86 E2	3 Pass
		Co-60	0.81 - 1.44 E3	1.08 E3	1.06 E3	3 Pass
		Sr-85	7.47 - 13.25 E2	9.96 E2	9.64 E2	3 Pass
		Y-88	1.33 - 2.37 E3	1.78 E3	1.76 E3	3 Pass
		Cd-109	3.83 - 6.79 E3	5.11 E3	5.43 E3	3 Pass
		Sn-113	6.53 - 11.58 E2	8.71 E2	8.78 E2	3 Pass
		Te-123m	1.79 - 3.17 E2	2.38 E2	2.36 E2	3 Pass
		Cs-137	6.24 - 11.06 E2	8.32 E2	7.96 E2	3 Pass
	1	1		1		
9/8/2004	Q043GWSL	Cr-51	3.84 - 6.82 E5	5.13 E5	4.96 E5	3 Pass
		Co-57	1.03 - 1.82 E4	1.37 E4	1.39 E4	3 Pass
		Co-60	5.07 - 8.99 E4	6.76 E4	6.45 E4	3 Pass
		Sr-85	6.40 - 11.35 E4	8.53 E4	8.10 E4	3 Pass
		Y-88	1.01 - 1.80 E5	1.35 E5	1.30 E5	3 Pass
		Cd-109	2.64 - 4.69 E5	3.52 E5	3.51 E5	3 Pass
		Sn-113	4.89 - 8.67 E4	6.52 E4	6.31 E4	3 Pass
		Te-123m	1.29 - 2.28 E4	1.71 E4	1.68 E4	3 Pass
		Cs-137	4.21 - 7.46 E4	5.61 E4	5.25 E4	3 Pass

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
12/3/2004	Q044GWR	Cr-51	0.97 - 1.72 E5	1.29 E5	1.27 E5	3 Pass
		Co-57 Co-60	2.32 - 4.12 E3 1.18 - 2.09 E4	3.10 E3 1.57 E4	3.18 E3 1.52 E4	3 Pass 3 Pass
		Sr-85	1.58 - 2.81 E4	2.11 E4	2.01 E4	3 Pass
		Y-88	2.35 - 4.17 E4	3.14 E4	3.07 E4	3 Pass
		Cd-109	5.91 - 10.48 E4	7.88 E4	7.95 E4	3 Pass
		Sn-113	1.12 - 1.98 E4	1.49 E4	1.47 E4	3 Pass
		Te-123m	2.94 - 5.21 E3	3.92 E3	3.83 E3	3 Pass
		Cs-137	0.98 - 1.74 E4	1.31 E4	1.24 E4	3 Pass

Gamma in Water 3.5 liters, continued

Gamma in Water 1.0 liter

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check		
Date	-		Range	Value	Value	Status		
			pCi/l	pCi/l	pCi/l			
3/17/2004	Q041GWSL	Cr-51	1.06 - 1.88 E3	1.41 E3	1.55 E3	3 Pass		
		Mn-54	2.63 - 4.67 E4	3.51 E4	3.73 E4	3 Pass		
		Co-57	0.00 - 0.00 E3	0.00E+00	1.02 E3	3 Pass ⁽¹⁾		
		Co-58	7.07 - 12.53 E3	9.42 E3	9.37 E3	3 Pass		
		Fe-59	2.01 - 3.56 E3	2.67 E3	2.85 E3	3 Pass		
		Co-60	4.86 - 8.62 E4	6.48 E4	6.86 E4	3 Pass		
		Zn-65	4.42 - 7.84 E4	5.90 E4	6.30 E4	3 Pass		
		Cs-134	4.26 - 7.56 E4	5.68 E4	5.07 E4	3 Pass		
		Cs-137	3.67 - 6.51 E4	4.90 E4	4.77 E4	3 Pass		
		Ce-139	0.00 - 0.00 E2	0.00E+00	5.81 E2	3 Pass ⁽¹⁾		
		Ce-141	0.76 - 1.35 E3	1.01E+03	1.00 E3	3 Pass		
6/28/2004	Q042GWR	Cr-51	3.52 - 6.25 E3	4.70 E3	4.52 E3	3 Pass		
		Co-57	1.46 - 2.58 E2	1.94 E2	2.00 E2	3 Pass		
		Co-60	0.81 - 1.44 E3	1.08 E3	1.06 E3	3 Pass		
		Sr-85	7.47 - 13.25 E2	9.96 E2	9.23 E2	3 Pass		
		Y-88	1.33 - 2.37 E3	1.78 E3	1.73 E3	3 Pass		
		Cd-109	3.83 - 6.79 E3	5.11 E3	5.04 E3	3 Pass		
		Sn-113	6.53 - 11.58 E2	8.71 E2	8.15 E2	3 Pass		
		Te-123m	1.79 - 3.17 E2	2.38 E2	2.39 E2	3 Pass		
		Cs-137	6.24 - 11.06 E2	8.32 E2	7.89 E2	3 Pass		
9/8/2004	Q043GWSL	Cr-51	3.84 - 6.82 E5	5.13 E5	4.94 E5	3 Pass		
		Co-57	1.03 - 1.82 E4	1.37 E4	1.39 E4	3 Pass		
		Co-60	5.07 - 8.99 E4	6.76 E4	6.56 E4	3 Pass		
		Sr-85	6.40 - 11.35 E4	8.53 E4	7.93 E4	3 Pass		
		Y-88	1.01 - 1.80 E5	1.35 E5	1.31 E5	3 Pass		
		Cd-109	2.64 - 4.69 E5	3.52 E5	3.43 E5	3 Pass		
		Sn-113	4.89 - 8.67 E4	6.52 E4	6.25 E4	3 Pass		
		Te-123m	1.29 - 2.28 E4	1.71 E4	1.67 E4	3 Pass		
		Cs-137	4.21 - 7.46 E4	5.61 E4	5.19 E4	3 Pass		

Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
12/3/2004	Q044GWR	Cr-51	0.97 - 1.72 E5	1.29 E5	1.25 E5	3 Pass
		Co-57	2.32 - 4.12 E3	3.10 E3	3.07 E3	3 Pass
		Co-60	1.18 - 2.09 E4	1.57 E4	1.54 E4	3 Pass
		Sr-85	1.58 - 2.81 E4	2.11 E4	1.97 E4	3 Pass
		Y-88	2.35 - 4.17 E4	3.14 E4	3.06 E4	3 Pass
		Cd-109	5.91 - 10.48 E4	7.88 E4	7.72 E4	3 Pass
		Sn-113	1.12 - 1.98 E4	1.49 E4	1.43 E4	3 Pass
		Te-123m	2.94 - 5.21 E3	3.92 E3	3.77 E3	3 Pass
		Cs-137	0.98 - 1.74 E4	1.31 E4	1.21 E4	3 Pass

Gamma in Water 1.0 liter, continued

Gamma in Water 0.5 liter

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check		
Date	-		Range	Value	Value	Status		
			pCi/l	pCi/l	pCi/l			
3/17/2004	Q041GWSL	Cr-51	1.06 - 1.88 E3	1.41 E3	1.58 E3	3 Pass		
		Mn-54	2.63 - 4.67 E4	3.51 E4	3.77 E4	3 Pass		
		Co-57	0.00 - 0.00 E3	0.00E+00	1.01 E3	3 Pass ⁽¹⁾		
		Co-58	7.07 - 12.53 E3	9.42 E3	9.35 E3	3 Pass		
		Fe-59	2.01 - 3.56 E3	2.67 E3	2.83 E3	3 Pass		
		Co-60	4.86 - 8.62 E4	6.48 E4	6.89 E4	3 Pass		
		Zn-65	4.42 - 7.84 E4	5.90 E4	6.45 E4	3 Pass		
		Cs-134	4.26 - 7.56 E4	5.68 E4	4.87 E4	3 Pass		
		Cs-137	3.67 - 6.51 E4	4.90 E4	4.78 E4	3 Pass		
		Ce-139	0.00 - 0.00 E2	0.00E+00	5.89 E2	3 Pass ⁽¹⁾		
		Ce-141	0.76 - 1.35 E3	1.01E+03	1.05 E3	3 Pass		
6/28/2004	Q042GWR	Cr-51	3.52 - 6.25 E3	4.70 E3	4.53 E3	3 Pass		
		Co-57	1.46 - 2.58 E2	1.94 E2	1.91 E2	3 Pass		
		Co-60	0.81 - 1.44 E3	1.08 E3	1.08 E3	3 Pass		
		Sr-85	7.47 - 13.25 E2	9.96 E2	9.42 E2	3 Pass		
		Y-88	1.33 - 2.37 E3	1.78 E3	1.76 E3	3 Pass		
		Cd-109	3.83 - 6.79 E3	5.11 E3	4.83 E3	3 Pass		
		Sn-113	6.53 - 11.58 E2	8.71 E2	8.36 E2	3 Pass		
		Te-123m	1.79 - 3.17 E2	2.38 E2	2.51 E2	3 Pass		
		Cs-137	6.24 - 11.06 E2	8.32 E2	7.92 E2	3 Pass		
9/8/2004	Q043GWSL	Cr-51	3.84 - 6.82 E5	5.13 E5	4.95 E5	3 Pass		
		Co-57	1.03 - 1.82 E4	1.37 E4	1.38 E4	3 Pass		
		Co-60	5.07 - 8.99 E4	6.76 E4	6.63 E4	3 Pass		
		Sr-85	6.40 - 11.35 E4	8.53 E4	8.08 E4	3 Pass		
		Y-88	1.01 - 1.80 E5	1.35 E5	1.32 E5	3 Pass		
		Cd-109	2.64 - 4.69 E5	3.52 E5	3.48 E5	3 Pass		
		Sn-113	4.89 - 8.67 E4	6.52 E4	6.25 E4	3 Pass		
		Te-123m	1.29 - 2.28 E4	1.71 E4	1.66 E4	3 Pass		
		Cs-137	4.21 - 7.46 E4	5.61 E4	5.32 E4	3 Pass		

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
12/3/2004	Q044GWR	Cr-51	0.97 - 1.72 E5	1.29 E5	1.22 E5	3 Pass
		Co-57	2.32 - 4.12 E3	3.10 E3	3.09 E3	3 Pass
		Co-60	1.18 - 2.09 E4	1.57 E4	1.53 E4	3 Pass
		Sr-85	1.58 - 2.81 E4	2.11 E4	1.98 E4	3 Pass
		Y-88	2.35 - 4.17 E4	3.14 E4	3.01 E4	3 Pass
		Cd-109	5.91 - 10.48 E4	7.88 E4	7.55 E4	3 Pass
		Sn-113	1.12 - 1.98 E4	1.49 E4	1.42 E4	3 Pass
		Te-123m	2.94 - 5.21 E3	3.92 E3	3.79 E3	3 Pass
		Cs-137	0.98 - 1.74 E4	1.31 E4	1.21 E4	3 Pass

Gamma in Water 0.5 liter, continued

Gamma in Water 0.25 liter

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check		
Date			Range	Value	Value	Status		
			pCi/l	pCi/l	pCi/l			
3/17/2004	Q041GWSL	Cr-51	1.06 - 1.88 E3	1.41 E3	1.52 E3	3 Pass		
		Mn-54	2.63 - 4.67 E4	3.51 E4	3.84 E4	3 Pass		
		Co-57	0.00 - 0.00 E3	0.00E+00	1.02 E3	3 Pass ⁽¹⁾		
		Co-58	7.07 - 12.53 E3	9.42 E3	9.54 E3	3 Pass		
		Fe-59	2.01 - 3.56 E3	2.67 E3	2.97 E3	3 Pass		
		Co-60	4.86 - 8.62 E4	6.48 E4	7.04 E4	3 Pass		
		Zn-65	4.42 - 7.84 E4	5.90 E4	6.54 E4	3 Pass		
		Cs-134	4.26 - 7.56 E4	5.68 E4	5.00 E4	3 Pass		
		Cs-137	3.67 - 6.51 E4	4.90 E4	4.87 E4	3 Pass		
		Ce-139	0.00 - 0.00 E2	0.00E+00	5.85 E2	3 Pass ⁽¹⁾		
		Ce-141	0.76 - 1.35 E3	1.01E+03	1.05 E3	3 Pass		
6/28/2004	Q042GWR	Cr-51	3.52 - 6.25 E3	4.70 E3	4.45 E3	3 Pass		
		Co-57	1.34 - 2.81 E2	1.94 E2	1.73 E2	3 Pass		
		Co-60	0.81 - 1.44 E3	1.08 E3	1.07 E3	3 Pass		
		Sr-85	7.47 - 13.25 E2	9.96 E2	9.15 E2	3 Pass		
		Y-88	1.33 - 2.37 E3	1.78 E3	1.67 E3	3 Pass		
		Cd-109	3.58 - 7.30 E3	5.11 E3	4.85 E3	3 Pass		
		Sn-113	6.53 - 11.58 E2	8.71 E2	8.40 E2	3 Pass		
		Te-123m	1.79 - 3.17 E2	2.38 E2	2.40 E2	3 Pass		
		Cs-137	6.24 - 11.06 E2	8.32 E2	7.72 E2	3 Pass		
9/8/2004	Q043GWSL	Cr-51	3.84 - 6.82 E5	5.13 E5	5.03 E5	3 Pass		
		Co-57	1.03 - 1.82 E4	1.37 E4	1.40 E4	3 Pass		
		Co-60	5.07 - 8.99 E4	6.76 E4	6.74 E4	3 Pass		
		Sr-85	6.40 - 11.35 E4	8.53 E4	8.18 E4	3 Pass		
		Y-88	1.01 - 1.80 E5	1.35 E5	1.33 E5	3 Pass		
		Cd-109	2.64 - 4.69 E5	3.52 E5	3.55 E5	3 Pass		
		Sn-113	4.89 - 8.67 E4	6.52 E4	6.41 E4	3 Pass		
		Te-123m	1.29 - 2.28 E4	1.71 E4	1.71 E4	3 Pass		
		Cs-137	4.21 - 7.46 E4	5.61 E4	5.39 E4	3 Pass		

Date		Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
12/3/2004	Q044GWR	Cr-51	0.97 - 1.72 E5	1.29 E5	1.25 E5	3 Pass
		Co-57	2.32 - 4.12 E3	3.10 E3	3.18 E3	3 Pass
		Co-60	1.18 - 2.09 E4	1.57 E4	1.55 E4	3 Pass
		Sr-85	1.58 - 2.81 E4	2.11 E4	1.97 E4	3 Pass
		Y-88	2.35 - 4.17 E4	3.14 E4	3.05 E4	3 Pass
		Cd-109	5.91 - 10.48 E4	7.88 E4	7.88 E4	3 Pass
		Sn-113	1.12 - 1.98 E4	1.49 E4	1.45 E4	3 Pass
		Te-123m	2.94 - 5.21 E3	3.92 E3	3.83 E3	3 Pass
		Cs-137	0.98 - 1.74 E4	1.31 E4	1.21 E4	3 Pass

Gamma in Water 0.25 liter, continued

Gamma in Filter

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi	Reference Value pCi	Mean Reported Value pCi	Cross Check Status
6/15/2004	1066324	Cr-51	0.97 - 1.94 E2	1.37 E2	1.52 E2	3 Pass
		Co-57	2.55 - 7.09 E0	4.25 E0	5.32 E0	3 Pass
		Co-60	1.66 - 3.20 E1	2.30 E1	2.32 E1	3 Pass
		Sr-85	1.82 - 3.22 E1	2.42 E1	2.54 E1	3 Pass
		Y-88	3.07 - 5.45 E1	4.10 E1	4.23 E1	3 Pass
		Cd-109	0.68 - 1.78 E2	1.10 E2	1.32 E2	3 Pass
		Sn-113	1.40 - 2.85 E1	1.99 E1	1.89 E1	3 Pass
		Te-123m	4.08 - 7.23 E0	5.44 E0	5.72 E0	3 Pass
		Cs-137	1.23 - 2.52 E1	1.76 E1	1.72 E1	3 Pass
12/9/2004	E4348-37	Cr-51	1.82 - 3.23 E2	2.43 E2	2.38 E2	3 Pass
		Mn-54	6.53 - 11.57 E1	8.70 E1	9.11 E1	3 Pass
		Co-57	0.00 - 0.00 E0	0.00E+00	4.06 E0	3 Pass ⁽²⁾
		Co-58	7.05 - 12.50 E1	9.40 E1	9.11 E1	3 Pass
		Fe-59	5.85 - 10.37 E1	7.80 E1	8.25 E1	3 Pass
		Co-60	0.84 - 1.49 E2	1.12 E2	1.09 E2	3 Pass
		Zn-65	0.95 - 1.68 E2	1.26 E2	1.23 E2	3 Pass
		Cs-134	0.82 - 1.45 E2	1.09 E2	0.98 E2	3 Pass
		Cs-137	6.08 - 10.77 E1	8.10 E1	7.80 E1	3 Pass
		Ce-141	0.77 - 1.37 E2	1.03 E2	1.00 E2	3 Pass

Iodine in Water

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi/l	pCi/l	pCi/l	
1/2/2004	Q041LIW1	I-131	6.00 - 10.64 E2	8.00 E2	7.94 E2	3 Pass
1/2/2004	Q041LIW2	I-131	6.38 - 11.32 E1	8.51 E1	9.12 E1	3 Pass
1/2/2004	Q041LIW3	I-131	N/A	0.00E+00	0.00E+00	3 Pass

Iodine in Water, continued

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
7/14/2004	Q043LIW1	I-131	7.16 - 12.69 E2	9.54 E2	6.91 E2	3/3 Low ⁽³⁾
7/14/2004	Q043LIW2	I-131	2.56 - 4.54 E2	3.41 E2	2.53 E2	2/3 Low ⁽⁴⁾
7/14/2004	Q043LIW3	I-131	1.61 - 10.04 E0	4.02 E0	2.61 E0	3 Pass
12/2/2004	Q044LIW1	I-131	2.36 - 4.18 E1	3.15 E1	3.02 E1	3 Pass
12/2/2004	Q044LIW2	I-131	0.92 - 1.62 E2	1.22 E2	1.15 E2	3 Pass
12/2/2004	Q044LIW3	I-131	N/A	0.00E+00	0.00E+00	3 Pass

Iodine in Milk

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
6/22/2004	Q042LIM1	Co-58 I-131	0.00 - 0.00 E0 N/A	0.00E+00 0.00E+00	3.47 E0 0.00E+00	3/3 High ⁽⁵⁾ 3 Pass
6/22/2004	Q042LIM2	I-131	0.82 - 1.45 E3	1.09 E3	0.91 E3	3 Pass
6/22/2004	Q042LIM3	I-131	1.87 - 3.31 E1	2.49 E1	2.09 E1	3 Pass
<i>3, 22, 200</i> 1	QU IZENNIS	1 101	1.07 5.51 11	2.17 11	2.07 11	J 1 400

Iodine on Cartridge

Reference	Sample I.D.	Nuclide	Acceptance	Reference	Mean Reported	Cross Check
Date			Range	Value	Value	Status
			pCi	pCi	pCi	
6/15/2004	1066-32-3	I-131	4.13 - 7.33 E6	5.51 E6	4.91 E6	3 Pass
12/9/2004	E4349-37	I-131	6.64 - 11.77 E1	8.85 E1	10.63 E1	3 Pass

Beta in Water

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
3/25/2004	E4056-37	Cs-137	2.07 - 3.67 E2	2.76 E2	2.60 E2	3 Pass
9/16/2004	E4233-37	Cs-137	1.69 - 2.99 E2	2.25 E2	2.34 E2	3 Pass

Beta Smear

Reference Date	Sample I.D.	Nuclide	Acceptance Range dpm	Reference Value dpm	Mean Reported Value dpm	Cross Check Status
5/14/2004	A18024-37	Am-241	N/A	Interference	4.71 E3	3 Pass
		Cs-137	1.01 - 1.80 E4	1.35 E4	1.35 E4	3 Pass

Reference Date	Sample I.D.	Nuclide	Acceptance Range pCi/l	Reference Value pCi/l	Mean Reported Value pCi/l	Cross Check Status
3/17/2004	Q041TWSL1	H-3	2.70 - 4.79 E4	3.60 E4	3.17 E4	3 Pass
3/17/2004	Q041TWSL2	H-3	N/A	0.00E+00	0.00E+00	3 Pass
6/28/2004	Q042TWR1	H-3	5.24 - 9.29 E2	6.99 E2	7.33 E2	3 Pass
6/28/2004	Q042TWR2	H-3	2.29 - 5.59 E2	3.58 E2	4.12 E2	3 Pass
6/28/2004	Q042TWR3	H-3	N/A	0.00E+00	0.00E+00	3 Pass
9/8/2004	Q043TWSL1	H-3	N/A	0.00E+00	0.00E+00	3 Pass
9/8/2004	Q043TWSL2	H-3	6.18 - 10.96 E4	8.24 E4	7.94 E4	3 Pass
12/3/2004	Q044TWR1	H-3	N/A	0.00E+00	0.00E+00	3 Pass
12/3/2004	Q044TWR2	H-3	4.43 - 8.07 E2	5.98 E2	5.77 E2	3 Pass
12/3/2004	Q044TWR3	H-3	1.52 - 2.70 E3	2.03 E3	2.04 E3	3 Pass
				•		

Table 5.0-A Footnote Explanations

 Gamma in Water, Sample ID Q041GWSL, Reference Date 3/17/2004: 3.5 L Marinelli, 1.0 L Marinelli, 0.5 L Marinelli, 0.25 L Marinelli

Co-57 and Ce-139 were observed in cross-checks and attributed to a contaminant arriving with the source. The nuclides were determined to be present, but there was no reference activity applicable to the results.

(2) Gamma in Filter, Sample ID E4348-37, Reference Date 12/9/2004

Co-57 was observed in cross-check and attributed to a contaminant arriving with the source. The nuclide was determined to be present, but there was no reference activity applicable to the results.

(3) Iodine in Water, Sample ID Q043LIW1, Reference Date 7/14/2004

Three results for low-level I-131 [364.48 keV] analysis were reported, with all three being below acceptance limit. General Office PIP G-04-00280 was written to record investigative actions.

(4) Iodine in Water, Sample ID Q043LIW2, Reference Date 7/14/2004

Three results for low-level I-131 [364.48 keV] analysis were reported, with two of the three being below acceptance limit. General Office PIP G-04-00280 was written to record investigative actions.

(5) Iodine in Milk, Sample ID Q042LIM1, Reference Date 6/22/2004

Three results for low-level I-131 [364.48 keV] analysis were reported and were within acceptance limits. Co-58 was observed in all three analyses and was attributed to an unintended contaminant. General Office PIP G-04-00248 was written to record investigative actions.

TABLE 5.0-B2004 ENVIRONMENTAL DOSIMETERCROSS-CHECK RESULTS

Nuclear Technology Services											
1st Quart	er 2004					2nd Quar	ter 2004				
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
101150	90.5	98.5	8.84	<+/-15%	Pass	100380	65.5	66.6	1.68	<+/-15%	Pass
101147	90.5	96.6	6.74	<+/-15%	Pass	100215	65.5	66.1	0.92	<+/-15%	Pass
101175	90.5	95.4	5.41	<+/-15%	Pass	100240	65.5	66.9	2.14	<+/-15%	Pass
101173	90.5	96.0	6.08	<+/-15%	Pass	100045	65.5	66.9	2.14	<+/-15%	Pass
101374	90.5	95.3	5.30	<+/-15%	Pass	100040	65.5	63.0	-3.82	<+/-15%	Pass
	Average Bias (B)		6.48				Avera	ge Bias (B)	0.61		
	Standard Deviation (S)		1.44				Standard De	eviation (S)	2.52		
Mea	Measure Performance B +S		7.92	<15%	Pass	Meas	sure Perform	nance B +S	3.14	<15%	Pass
3rd Quar	ter 2004					4th Quart	er 2004				
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
100178	94.0	100.2	6.60	<+/-15%	Pass	101290	71.7	67.8	-5.44	<+/-15%	Pass
100700	94.0	97.8	4.04	<+/-15%	Pass	101322	71.7	69.9	-2.51	<+/-15%	Pass
100821	94.0	99.3	5.64	<+/-15%	Pass	101370	71.7	70.7	-1.39	<+/-15%	Pass
101179	94.0	101.3	7.77	<+/-15%	Pass	101373	71.7	69.5	-3.07	<+/-15%	Pass
101376	94.0	97.5	3.72	<+/-15%	Pass	101418	71.7	70.1	-2.23	<+/-15%	Pass
	Average Bias (B)		5.55				Avera	ge Bias (B)	-2.93		
	Standard Deviation (S)		1.70				Standard De	eviation (S)	1.53		
Mea	sure Perform	nance B +S	7.26	<15%	Pass	Meas	sure Perform	nance B +S	4.46	<15%	Pass

Nuclear Technology Services

State of North Carolina, Division of Radiation Protection

Spring 20	04					Fall 2004					
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
101213	54.0	59.9	10.93	<+/-15%	Pass	100958	46.5	51.7	11.15	<+/-15%	Pass
101145	54.0	57.4	6.30	<+/-15%	Pass	100526	46.5	49.9	7.33	<+/-15%	Pass
101370	54.0	58.9	9.07	<+/-15%	Pass	100121	46.5	52.6	13.12	<+/-15%	Pass
101322	54.0	58.7	8.70	<+/-15%	Pass	100109	46.5	49.9	7.25	<+/-15%	Pass
101290	54.0	56.7	5.00	<+/-15%	Pass	100723	46.5	48.3	3.94	<+/-15%	Pass
101339	54.0	57.8	7.04	<+/-15%	Pass	100267	46.5	51.4	10.63	<+/-15%	Pass
101265	54.0	56.7	5.00	<+/-15%	Pass	100660	46.5	50.2	8.03	<+/-15%	Pass
101418	54.0	57.8	7.04	<+/-15%	Pass	100921	46.5	50.9	9.51	<+/-15%	Pass
Average Bias (B)		7.38				Avera	ge Bias (B)	8.87			
	Standard Deviation (S)		2.07				Standard De	eviation (S)	2.85		
Mea	Measure Performance B +S		9.45	<15%	Pass	Meas	sure Perforn	nance B +S	11.71	<15%	Pass

1st Quarter 2004							ter 2004				
TLD		Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
100103	26.0	24.1	-7.31	<+/-15%	Pass	100080	19.0	19.0	0.19	<+/-15%	Pass
100794	26.0	24.6	-5.38	<+/-15%	Pass	100727	19.0	19.4	1.94	<+/-15%	Pass
100964	26.0	24.4	-6.15	<+/-15%	Pass	100964	19.0	19.1	0.44	<+/-15%	Pass
100940	26.0	25.4	-2.31	<+/-15%	Pass	101020	19.0	18.6	-1.93	<+/-15%	Pass
100747	26.0	24.6	-5.38	<+/-15%	Pass	100103	19.0	18.8	-0.99	<+/-15%	Pass
101020	26.0	24.3	-6.54	<+/-15%	Pass	100794	19.0	18.7	-1.46	<+/-15%	Pass
100080	26.0	24.5	-5.77	<+/-15%	Pass	101036	19.0	19.6	2.98	<+/-15%	Pass
100818	26.0	24.8	-4.62	<+/-15%	Pass	100176	19.0	19.7	3.62	<+/-15%	Pass
101122	26.0	24.1	-7.31	<+/-15%	Pass	100770	19.0	18.5	-2.42	<+/-15%	Pass
100727	26.0	25.5	-1.92	<+/-15%	Pass	101035	19.0	18.3	-3.44	<+/-15%	Pass
	Averag	ge Bias (B)	-5.27				Avera	ge Bias (B)	-0.11		
	Standard Deviation (S)		1.87			Standard Deviation (S) 2.37					
Mea	Measure Performance B +S		7.14	<15%	Pass	Meas	sure Perform	nance B +S	2.47	<15%	Pass
3rd Quar						4th Quart					
TLD	Delivered	Reported	Bias	Pass/Fail		TLD	Delivered	Reported	Bias	Pass/Fail	
Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail	Number	(mrem)	(mrem)	(% diff)	Criteria	Pass/Fail
100813	38.0	36.7	-3.43	<+/-15%	Pass	100079	63.0	61.0	-3.16	<+/-15%	Pass
100068	38.0	40.2	5.78	<+/-15%	Pass	100106	63.0	62.5	-0.72	<+/-15%	Pass
100940	38.0	39.4	3.74	<+/-15%	Pass	100148	63.0	62.0	-1.55	<+/-15%	Pass
100953	38.0	38.4	1.18	<+/-15%	Pass	100268	63.0	60.2	-4.46	<+/-15%	Pass
100251	38.0	39.4	3.80	<+/-15%	Pass	100110	63.0	61.8	-1.96	<+/-15%	Pass
100506	38.0	39.8	4.73	<+/-15%	Pass	100830	63.0	60.8	-3.54	<+/-15%	Pass
100654	38.0	40.6	6.74	<+/-15%	Pass	100801	63.0	61.9	-1.72	<+/-15%	Pass
101017	38.0	38.4	1.11	<+/-15%	Pass	100826	63.0	62.9	-0.19	<+/-15%	Pass
100252	38.0	38.5	1.42	<+/-15%	Pass	100439	63.0	64.5	2.34	<+/-15%	Pass
100150	38.0	39.2	3.22	<+/-15%	Pass	100953	63.0	61.3	-2.75	<+/-15%	Pass
	Averag	ge Bias (B)	2.83					ge Bias (B)	-1.77		
	Standard Deviation (S)		2.91			Standard Deviation (S)			1.94		
Mea	Measure Performance B +S		5.74	<15%	Pass	Meas	sure Perform	nance B +S	3.71	<15%	Pass

Internal Crosscheck (Duke Power)

6.0 REFERENCES

- 6.1 McGuire Selected License Commitments
- 6.2 McGuire Technical Specifications
- 6.3 McGuire Updated Final Safety Analysis Report
- 6.4 Duke Power Company McGuire Offsite Dose Calculation Manual
- 6.5 McGuire Annual Radiological Environmental Operating Report 1979 2003
- 6.6 McGuire Annual Radioactive Effluent Release Report 2004
- 6.7 Probability and Statistics in Engineering and Management Science, Hines and Montgomery, 1969, pages 287-293.
- 6.8 Practical Statistics for the Physical Sciences, Havilcek and Crain, 1988, pages 83-93.
- 6.9 Nuclear Regulatory Commission Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purposes of Evaluating Compliance with 10CFR50, Appendix I.
- 6.10 EnRad Laboratories Operating Procedures
- 6.11 RETDAS, Radiological Effluent Tracking and Dose Assessment Software, Canberra Version 3.5.1, DPC Revision #4.0
- 6.12 NRC Integrated Inspection Report (50-369/03-02, 50-370/03-02)
- 6.13 Duke Power Company EnRad Laboratory Charcoal Cartridge Study, performed 2001

APPENDIX A

ENVIRONMENTAL SAMPLING & ANALYSIS PROCEDURES

APPENDIX A

ENVIRONMENTAL SAMPLING AND ANALYSIS PROCEDURES

Adherence to established procedures for sampling and analysis of all environmental media at McGuire Nuclear Station was required to ensure compliance with Station Selected Licensee Commitments. Analytical procedures were employed to ensure that Selected Licensee Commitments detection capabilities were achieved.

Environmental sampling and analyses were performed by EnRad Laboratories, Dosimetry and Records, and Fisheries and Aquatic Ecology.

This appendix describes the environmental sampling frequencies and analysis procedures by media type.

I. <u>CHANGE OF SAMPLING PROCEDURES</u>

No changes were made to the sampling procedure during 2004.

II. DESCRIPTION OF ANALYSIS PROCEDURES

Gamma spectroscopy analyses are performed using high purity germanium gamma detectors and Canberra analytical software. Designated sample volumes are transferred to appropriate counting geometries and analyzed by gamma spectroscopy. Perishable samples such as fish and broadleaf vegetation are ground to achieve a homogeneous mixture. Soils and sediments are dried, sifted to remove foreign objects (rocks, clams, glass, etc.) then transferred to appropriate counting geometry.

Low-level iodine analyses are performed by passing a designated sample aliquot through a preweighed amount of ion exchange resin to remove and concentrate any iodine in the aqueous sample (milk). The resin is then dried, mixed thoroughly, and a net resin weight determined before being transferred to appropriate counting geometry and analyzed by gamma spectroscopy.

Tritium analyses are performed quarterly by using low-level environmental liquid scintillation analysis technique on a Packard 2550 liquid scintillation system. Tritium samples are batch processed with a tritium spike to verify instrument performance and sample preparation technique are acceptable. Gross beta analysis is performed by concentrating a designated aliquot of sample precipitate and analyzing by gas-flow proportional counters. Samples are batch processed with a blank to ensure sample contamination has not occurred.

III. CHANGE OF ANALYSIS PROCEDURES

No analysis procedures were changed during 2004.

IV. SAMPLING AND ANALYSIS PROCEDURES

A.1 AIRBORNE PARTICULATE AND RADIOIODINE

Airborne particulate and radioiodine samples at each of seven locations were composited continuously by means of continuous air samplers. Air particulates were collected on a particulate filter and radioiodines were collected in a charcoal cartridge positioned behind the filter in the sampler. The samplers are designed to operate at a constant flow rate (in order to compensate for any filter loading) and are set to sample approximately 2 cubic feet per minute. Filters and cartridges were collected weekly. A separate weekly gamma analysis was performed on each charcoal cartridge and air particulate. A weekly gross beta analysis was performed on each filter. The continuous composite samples were collected from the locations listed below.

=	Site Boundary (0.46 mi. NNE)
=	Site Boundary (0.47 mi. NE)
=	Site Boundary (0.38 mi. SW)
=	Cornelius (6.23 mi. ENE)
=	East Lincoln Jr. High School (8.77 mi. WNW)
=	Peninsula (2.84 mi. NNE)
=	Fishing Access Road (0.19 mi. N)
	= = = =

A.2 DRINKING WATER

Biweekly composite samples were collected. A gross beta and gamma analysis was performed on monthly composites. Tritium analysis was performed on the quarterly composites. The composites were collected biweekly from the locations listed below.

Location 101	=	North Mecklenburg Water Treatment Facility (3.31 mi E)
Location 119	=	Mt. Holly Municipal Water Supply (7.40 mi. SSW)
Location 132	=	Charlotte Municipal Water Supply (11.1 mi. SSE)
Location 136	=	Mooresville Municipal Water Supply (12.7 mi. NNE)
Location 194	=	East Lincoln County Water Supply (6.73 mi. NNW)

A.3 SURFACE WATER

Biweekly composite samples were collected. A gamma analysis was performed on the monthly composites. Tritium analysis was performed on the quarterly composites sample. The composites were collected biweekly from the locations listed below.

Location 128	=	Discharge Canal Bridge (0.45 mi. NE)
Location 131	=	Cowans Ford Dam (0.64 mi. WNW)
Location 135	=	Plant Marshall Intake Canal (11.9 mi. N)

A.4 <u>MILK</u>

Biweekly grab samples were collected at each dairy. A gamma and low-level Iodine-131 analysis was performed on each sample. The biweekly grab samples were collected from the locations listed below.

Location 139	=	William Cook Dairy (2.49 mi. E)
Location 141	=	Lynch Dairy - Cows (14.8 mi. WNW)

A.5 BROADLEAF VEGETATION

Monthly samples were collected as available and a gamma analysis was performed on each sample. The samples were collected from the locations listed below.

Location 120	=	Site Boundary (0.46 mi. NNE)
Location 125	=	Site Boundary (0.38 mi. SW)
Location 134	=	East Lincoln Junior High School (8.77 mi. WNW)
Location 193	=	Site Boundary (0.19 mi. N)
Location 134	=	East Lincoln Junior High School (8.77 mi. WNW)

A.6 FOOD PRODUCTS

Samples were collected monthly when available during the harvest season and a gamma analysis was performed on each. The samples were collected at the location listed below.

Location 188 = 5 mile radius Gardens (2.79 mi NNE)

A.7 <u>FISH</u>

Semiannual samples were collected and a gamma analysis was performed on the edible portions of each sample. Boney fish (i.e. Sunfish) were prepared whole minus the head and tail portions. The samples were collected from the locations listed below.

Location 129	=	Discharge Canal Entrance to Lake Norman (0.51 mi. ENE)
Location 137	=	Pinnacle Access Area (12.0 mi. N)

A.8 SHORELINE SEDIMENT

Semiannual samples were collected and a gamma analysis was performed on each following the drying and removal of rocks and clams. The samples were collected from the locations listed below.

Location 129	=	Discharge Canal Entrance to Lake Norman (0.51 mi. ENE)
Location 130	=	Highway 73 Bridge Downstream (0.52 mi. SW)
Location 137	=	Pinnacle Access Area (12.0 mi. N)

A.9 DIRECT GAMMA RADIATION (TLD)

Thermoluminescent dosimeters (TLD) were collected quarterly at forty-one locations. A gamma exposure rate was determined for each TLD. TLD locations are listed in Table 2.1-B. The TLDs were placed as indicated below.

- * An inner ring of 14 TLDs at the site boundary, one in each available meteorological sector. The site boundary locations in the N and NNW sectors are over water; however, two special interest TLD's were placed in these sectors inside the site boundary in March, 1991.
- * An outer ring of 16 TLDs, one in each meteorological sector in the 6 to 8 kilometer range.
- * The remaining TLDs were placed in special interest areas such as population centers, residential areas, schools, and control locations.

A.10 ANNUAL LAND USE CENSUS

An annual Land Use Census was conducted to identify within a distance of 8 kilometers (5.0 miles) from the station, the nearest location from the site boundary in each of the sixteen meteorological sectors, the following:

- * The Nearest Residence
- * The Nearest Garden greater than 50 square meters or 500 square feet
- * The Nearest Milk-giving Animal (cow, goat, etc.)

The census was conducted during the growing season from 6/7 to 6/8/2004. Results are shown in Table 3.10. No changes were made to the sampling procedures during 2004 as a result of the 2004 census.

In the environmental program, the air deposition parameters (D/Q) are used to determine air, broadleaf vegetation and milk sampling locations. McGuire's sectors with the three highest values did not change in 2004.

V. <u>GLOBAL POSITIONING SYSTEM (GPS) ANALYSIS</u>

The McGuire site centerline used for GPS measurements was referenced from the McGuire Nuclear Station Updated Final Safety Analysis Report (UFSAR), section 2.1.1, Site Location. Waypoint coordinates used for MNS GPS measurements were latitude 35°-25'-59"N and longitude 80°-56'-55"W. Maps and tables were generated using North American Datum (NAD) 27. Data normally reflect accuracy to within 2 to 5 meters from point of measurement. GPS field measurements were taken as close as possible to the item of interest. Distances for the locations are displayed using three significant figures.

APPENDIX B

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SUMMARY OF RESULTS

2004

Facility: McGuire Nuclear Station

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2004 to 31-DEC-2004

Medium or Pathway Sampled	Total Number		Lower Limit of Detection	All Indicator Locations	Location with Highest Annual Mean Name, Distance, Direction		Control Location	No.of Non- Routine Report Meas.
Unit of Measurement	Analy: Perform		(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Air Particulate (pCi/m3)							134 (8.77 mi WNW)	
	BETA	364	1.00E-02	1.60E-2 (312/312)	195	1.67E-2 (52/52)	1.71E-2 (52/52)	0
				5.77E-3 - 3.51E-2	(0.19 mi N)	7.95E-3 - 3.51E-2	8.70E-3 - 2.56E-2	
	CO-58*	1	0.00E+00	9.77E-2 (1/1)	195	9.77E-2 (1/1)	0.00 (0/52)	
				9.77E-2 - 9.77E-2	(0.19 mi N)	9.77E-2 - 9.77E-2	0.00 - 0.00	
	CS-134	364	5.00E-02	0.00 (0/312)		0.00 (0/52)	0.00 (0/52)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137	364	6.00E-02	0.00 (0/312)		0.00 (0/52)	0.00 (0/52)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	I-131	364	7.00E-02	0.00 (0/312)		0.00 (0/52)	0.00 (0/52)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

* Reference PIP G-04-00134

Facility: McGuire Nuclear Station

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2004 to 31-DEC-2004

Medium or Pathway Sampled	Type a Tota Numb of	ıl	Lower Limit of Detection	All Indicator Locations	Location with Highest Annual Mean Name, Distance, Direction		Control Location	No. of Non- Routine Report Meas.
Unit of	Analy	ses	(LLD)	Mean (Fraction)	Location	Mean (Fraction)	Mean (Fraction)	
Measurement	Perform	ned	(LLD)	Range	Code	Range	Range	
Air Radioiodine (pCi/m3)							134 (8.77 mi WNW)	
_	CS-134	364	5.00E-02	0.00 (0/312)		0.00 (0/52)	0.00 (0/52)	0
_				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137	364	6.00E-02	0.00 (0/312)		0.00 (0/52)	0.00 (0/52)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	I-131	364	7.00E-02	0.00 (0/312)		0.00 (0/52)	0.00 (0/52)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

Facility: McGuire Nuclear Station

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2004 to 31-DEC-2004

Medium or Pathway Sampled	Type and Total Number of		Number		All Indicator		Annu	with Highest al Mean ance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyse Performe		(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range			
Drinking Water (pCi/liter)							136 (12.7 mi NNE)			
	BALA-140	65	15	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0		
	BETA	65	4	1.63 (51/52)	119	1.68 (13/13)	1.29 (12/13)	0		
	DETA	05	4	0.81 - 2.94	(7.40 mi SSW)	0.82 - 2.53	0.67 - 2.07	0		
	CO-58	65	15	0.00 (0/52)	(7.40 III 55 (7)	0.00 (0/13)	0.00 (0/13)	0		
	0000	05	15	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	0		
	CO-60	65	15	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0		
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00			
	CS-134	65	15	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0		
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00			
	CS-137	65	18	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0		
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00			
	FE-59	65	30	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0		
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00			
	H-3	20	2000	375 (9/16)	101	461 (4/4)	0.00 (0/4)	0		
				221 - 642	(3.31 mi E)	287 - 642	0.00 - 0.00			
	I-131	65	15	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0		
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00			
	MN-54	65	15	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0		
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00			
	NB-95	65	15	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0		
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00			
	ZN-65	65	30	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0		
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00			
	ZR-95	65	15	0.00 (0/52)		0.00 (0/13)	0.00 (0/13)	0		
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00			

Mean and range based upon detectable measurements only

Facility: McGuire Nuclear Station

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2004 to 31-DEC-2004

Medium or Pathway Sampled	Type and Total Number of		Lower Limit of Detection	All Indicator Locations	Location with Highest Annual Mean Name, Distance, Direction		Control Location	No. of Non- Routine Report Meas.
Unit of	Analyse	s		Mean (Fraction)	Location	Mean (Fraction)	Mean (Fraction)	
Measurement	Performe	ed	(LLD)	Range	Code	Range	Range	
Surface Water (pCi/liter)							135 (11.9 mi N)	
	BALA-140	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-58	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-60	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-134	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137	39	18	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	FE-59	39	30	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	H-3	12	2000	404 (7/8)	128	504 (4/4)	0.00 (0/4)	0
				232 - 580	(0.45 mi NE)	302 - 580	0.00 - 0.00	
	I-131	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	MN-54	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	NB-95	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZN-65	39	30	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZR-95	39	15	0.00 (0/26)		0.00 (0/13)	0.00 (0/13)	0
				0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Facility: McGuire Nuclear Station

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2004 to 31-DEC-2004

Medium or Pathway Sampled	Type and Tot Number of	al Lower Limit of Detection	All Indicator Locations	Location with Highest Annual Mean Name, Distance, Direction		Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Milk (pCi/liter)						141 (14.8 mi WNW)	
	BALA-140	52 15	0.00 (0/26)		0.00 (0/26)	0.00 (0/26)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-134	52 15	0.00 (0/26)		0.00 (0/26)	0.00 (0/26)	0
	<u> </u>	- 10	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137	52 18	0.00 (0/26)		0.00 (0/26)	0.00 (0/26)	0
	I-131	52 15	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	0
	<u>1-131</u> ,	52 15	0.00 (0/26)		0.00 (0/26)	0.00 (0/26)	0
	LLI-131	52 1	0.00 (0/26)		0.00 (0/26)	0.00 (0/26)	0
		2 1	0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	0
			*				

Mean and range based upon detectable measurements only

Facility: McGuire Nuclear Station

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2004 to 31-DEC-2004

Medium or Pathway Sampled	Type and Total Number of	Lower Limit of Detection	All Indicator Locations	Ann	a with Highest ual Mean tance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Broadleaf Vegetation (pCi/kg-wet)						134 (8.77 mi WNW)	
(per kg-wet)	CS-134 32	60	0.00 (0/24)		0.00 (0/8)	0.00 (0/8)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137 32	80	0.00 (0/24)		0.00 (0/8)	0.00 (0/8)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	I-131 32	60	0.00 (0/24)		0.00 (0/8)	0.00 (0/8)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

Facility: McGuire Nuclear Station

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2004 to 31-DEC-2004

Medium or Pathway Sampled	Type and Total Number of	Lower Limit of Detection	All Indicator Locations	Annua	vith Highest al Mean nce, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Food Products (pCi/kg-wet)						NO CONTROL LOCATION	
	CS-134 8	60	0.00 (0/8)		0.00 (0/8)	0.00 (0/0)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137 8	80	0.00 (0/8)		0.00 (0/8)	0.00 (0/0)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	I-131 8	60	0.00 (0/8)		0.00 (0/8)	0.00 (0/0)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Facility: McGuire Nuclear Station

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2004 to 31-DEC-2004

Medium or Pathway Sampled	Type and Total Number of	Lower Limit of Detection	All Indicator Locations	Ann	with Highest ual Mean tance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Fish (pCi/kg-wet)						137 (12.0 mi N)	
	CO-58 12	130	0.00 (0/6)		0.00 (0/6)	0.00 (0/6)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-60 12	130	0.00 (0/6)		0.00 (0/6)	0.00 (0/6)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-134 12	130	0.00 (0/6)		0.00 (0/6)	0.00 (0/6)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137 12	150	0.00 (0/6)		0.00 (0/6)	0.00 (0/6)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	FE-59 12	260	0.00 (0/6)		0.00 (0/6)	0.00 (0/6)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	MN-54 12	130	0.00 (0/6)		0.00 (0/6)	0.00 (0/6)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	ZN-65 12	260	0.00 (0/6)		0.00 (0/6)	0.00 (0/6)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	

Mean and range based upon detectable measurements only

Facility: McGuire Nuclear Station

Docket No. 50-369,370

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2004 to 31-DEC-2004

Medium or Pathway Sampled	Type and Total Number of	Lower Limit of Detection	All Indicator Locations	Ann	with Highest ual Mean cance, Direction	Control Location	No. of Non- Routine Report Meas.
Unit of	Analyses	(LLD)	Mean (Fraction)	Location	Mean (Fraction)	Mean (Fraction)	
Measurement	Performed	(LLD)	Range	Code	Range	Range	
Shoreline						137	
Sediment						(12.0 mi N)	
(pCi/kg-dry)							
	MN-54 6	0	0.00 (0/4)		0.00 (0/2)	0.00 (0/2)	
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-58 6	0	0.00 (0/4)		0.00 (0/2)	0.00 (0/2)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CO-60 6	0	0.00 (0/4)		0.00 (0/2)	0.00 (0/2)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-134 6	150	0.00 (0/4)		0.00 (0/2)	0.00 (0/2)	0
			0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
	CS-137 6	180	71.7 (1/4)	130	71.7 (1/2)	0.00 (0/2)	0
			71.7 - 71.7	(0.52 mi SW)	71.7 - 71.7	0.00 - 0.00	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction)

Zero range indicates no detectable activity measurements

If LLD is equal to 0.00, then the LLD is not required by Selected Licensee Commitments

Facility: McGuire Nuclear Station

Location: Mecklenburg County, North Carolina

Report Period: 01-JAN-2004 to 31-DEC-2004

Medium or Pathway Sampled	Type and Total Number of	Lower Limit of Detectio n	All Indicator Locations	Location with Highest Annual Mean Name, Distance, Direction		Control Location	No. of Non- Routine Report Meas.
Unit of Measurement	Analyses Performed	(LLD)	Mean (Fraction) Range	Location Code	Mean (Fraction) Range	Mean (Fraction) Range	
Direct Radiation TLD (mR/standard quarter)						175 (15.5 mi WNW)	
	162	0.00E+00	16.8 (158/158)	180	25.7 (4/4)	22.9 (4/4)	0
			9.90 - 27.6	(12.7 mi NNE)	23.6 - 27.6	20.2 - 24.0	

Mean and range based upon detectable measurements only

Fraction of detectable measurements at specified locations is indicated in parentheses, (Fraction) Zero range indicates no detectable activity measurements

Docket No. 50-369,370

APPENDIX C

SAMPLING DEVIATIONS & UNAVAILABLE ANALYSES

APPENDIX C

MCGUIRE NUCLEAR STATION SAMPLING DEVIATIONS & UNAVAILABLE ANALYSES

	DEVIATION & UNAVAILABLE REASON CODES					
BF	Blown Fuse	PO	Power Outage			
FZ	Sample Frozen	PS	Pump out of service / Undergoing Repair			
IW	Inclement Weather	SL	Sample Loss/Lost due to Lab Accident			
LC	Line Clog to Sampler	SM	Motor / Rotor Seized			
OT	Other	TF	Torn Filter			
PI	Power Interrupt	VN	Vandalism			
PM	Preventive Maintenance	CN	Construction			

C.1 SAMPLING DEVIATIONS

Air Particulate and Air Radioiodines

Location	Scheduled Collection Dates	Actual Collection Dates	Reason Code	Corrective Action
134	6/23-6/30/2004	6/23-6/30/2004	PI	The primary and secondary air sampler experienced a power interruption during the composite period as both clocks indicated a run time of about 161 hours. The expected run time was about 166.7 hours. Both samplers were running at time of collection.
				During sample collection on 10/13/2004 sampler 00302 caused the main breaker to trip. Collection personnel cannot reset the breaker that was tripped. Work request 10000 was written to restore power. Power was restored on 10/14/2004 at 08:48. Sampler 00302 was removed from service and returned to the
125	10/13-10/20/2004	10/14-10/20/2004	PI	lab for repairs.

Drinking Water

Location	Scheduled Collection Dates	Actual Collection Dates	Reason Code	Corrective Action
				Water treatment plant personnel isolated reservoir tank (turned off water supply) on approximately 6/16/2004. It was discovered during the 6/23/2004 collection and s ampler was returned to normal
136*	6/9-7/7/2004	6/9-7/7/2004	OT	operation.

132*	6/9-7/7/2004	7/7-7/7/2004	OT	During composite period, water treatment plant personnel turned off water supply valve. A grab sample was taken on 7/7/2004. Sampler was returned to normal operation 7/7/2004 at about 12:35.
101*	8/4-9/1/2004	8/4-9/1/2004	OT	Water supply was turned off by water plant personnel. Sufficient volume of water was collected to obtain a full sample. The water supply was turned back on by sampling team member. The second half of the composite period was interrupted again by water plant personnel turning the water supply off. The water supply was restored and normal sampling was resumed on 9/1/2004 15:10.

* Signs have been placed on samplers and valves requesting EnRad be notified of any sampling interruptions.

Surface Water

Location	Scheduled Collection Dates	Actual Collection Dates	Reason Code	Corrective Action
				Work request 3022830 written to
				reconfigure water site for ISCO water
				sampler placement. During
				reconfiguration on 1/7/2004, most of the
				first half water composite inadvertently
				lost. A grab sample was taken on 1/7/2004
				12:20. Composite period is 1/7/2004 12:20
				to 1/21/2004 10:40. Sampling equipment
				reconfigured and restored to normal
128	12/23-1/21/2004	1/7-1/21/2004	CN	sampling.
				Power failure for undetermined reason
				occurred. Grab sample collected on
				5/26/2004 for normal sampling period
				5/12/2004 - 5/26/2004. Work request
				4013285 was written. Power restored to
				the site 6/3/2004 14:15. When reservoir
				pump started, the breaker tripped. ISCO
				sampler moved to pier, work request
				4013879 written. Platform pump replaced
				and normal sampling resumed
135	5/12-6/9/2004	5/26-6/9/2004	PO	approximately 6/9/2004 10:05.

C.2 <u>UNAVAILABLE ANALYSES</u>

TLD

Location	Scheduled Collection Dates	Reason Code	Corrective Action
181	12/18-3/18/2004	CN	TLD missing. 2 nd quarter 2004 TLD placed in field.
181	3/18-6/17/2004	OT	TLD missing. 3 rd quarter 2004 TLD placed in field.

APPENDIX D

ANALYTICAL DEVIATIONS

No Analytical deviations were incurred for the 2004 Radiological Environmental Monitoring Program

APPENDIX E

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM RESULTS

This appendix includes all of the sample analysis reports generated from each sample medium for 2004. Appendix E is located separately from this report and is permanently archived at Duke Power Company's Environmental Center radiological environmental master file, located at the McGuire Nuclear Station Site in Huntersville, North Carolina.