

Proposed Manual Action Rule Impact on Peach Bottom Preliminary Comments

Presentation to NRC Staff April 27, 2005

Purpose

- The purpose of this presentation is to provide insights on the impact of the proposed Appendix R Manual Action Rulemaking on a specific plant.
- This plant is an older BWR-4/Mark-1 that uses a post-fire shutdown methodology similar to most BWR plants, but is bounding for decay heat and containment response.

Agenda

- Provide overview of existing PBAPS manual actions
- Provide details on the impact the proposed rule would have on PBAPS

Overview - Licensing

- Always Been Included in the PBAPS FSSD Analysis
 - July 1983 Meeting and September 1983 Submittal
 - "Associated circuits that have a separation from the fire area less than that required by Section III.G.2 of Appendix R and have a connection to circuits of equipment whose spurious operation could adversely affect the shutdown capability have been adequately <u>resolved by appropriate action</u> <u>pre- or post-fire.</u>
 - "This analysis assumes that any <u>manual capability</u> credited as part of the safe shutdown system for the purposes of this review, will be based on verification that, at a minimum, sufficient numbers of operating shift personnel will be available to fight the fire and perform the necessary operator actions.
 - "The only requirements is that sufficient time must be available to restore the affected safe shutdown system function prior to the occurrence of an unrecoverable plant condition. For this analysis, a time-line/manpower concept is utilized to establish that sufficient time is available for restoration of the safe shutdown system function. The resulting time-line diagram shows the number of personnel involved in performing each safe shutdown function and the time required to perform those functions. The time-line diagram demonstrates that sufficient time and personnel are available to perform the safe shutdown functions."

Overview - Licensing

- Fire Protection Program Document (UFSAR) 1986
 - Per GL 86-10 guidance, gathers all related FP information into a single volume of the UFSAR. Describes FSSD methods including manual actions. Provides listing of manual actions
- 1989 Submittal on MHIF and manual actions
 - Response to URI on MHIF and Manual Actions
- Safety Evaluation Report 1993
 - Approves FPP
- August 1995 Submittal (G.L. 92-08 Response)
 - FSSD re-analysis relies on operator manual actions
- T-Lag Meeting 1997
 - Explained manual actions are used
- T-Lag Order
 - Required completion of actions docketed in 1997 T-Lag meeting.

Background

- Previously Approved
 - Industry Definition of Current Licensing Basis based on NRC Definition (LIC-100, 10CFR54.3, GL 91-18)
 - Docketed Correspondence
 - Information contained in letters that are referenced in SER's
 - Orders, License Conditions, Bulletin & Generic Letter responses.
 - Appendix R implementation encompassed all of these
 - Resolution of enforcement actions (URI's, Violations, LERs)
 - Typically documented via inspection reports.
 - Not limited to information explicitly stated in a Safety Evaluation Report

Overview - Risk

- Risk Impact of Manual Actions
 - Required to be addressed in IPEEE (GL 88-20 Supplement 4, NUREG-1407)
 - Addressed in Peach Bottom IPEEE Submittal
 - Evaluated by NRC (NUREG/CR-4550, NUREG-1742, section 3.4.8.1)
 - Re-evaluated in current PBAPS Fire PRA
 - 1 dominant scenario per unit
 - Remaining MA scenarios < 2.8E-7

Feasibility

- Timelines and staffing requirements
 - Part of original FSSD design basis calculations
 - Certain actions field tested during PBAPS extended shutdown
 - 2002 Manual Action Feasibility Study
 - Comprehensive Review of FSSD Manual Actions
 - NRC inspection team reviewed during 2003 Fire Protection Triennial
 - Found manual actions feasible with no safety concerns

Types of Actions

- Trip/Open Breakers
- Close Breakers
- Operate
 Handswitches
 - Restore power to battery chargers
 - Establish Lighting for Alt. SSD Panel

- Operate Valves
 - Manually operate
 - Operate at MCC
- Pull Control Power Fuses
- Insert Plug into Receptacle

Skill of the craft

Feasibility

- PBAPS Manual Actions
 - Most manual actions are similar to tasks operators perform on a frequent basis.
 - "Pre-engineered" to be as simple as possible
 - Most tasks can be accomplished without entering the affected fire area.
 - Operators know plant layout and can often take alternate routes to reach the same location.
 - Many post-fire safe shutdown tasks are similar to tasks performed for both normal and shutdowns addressed by other EOP's and AOP's.

Specific Concerns

- Time Margin for Manual Actions
 - Current Design basis actions are based on assumed "all-encompassing" fire at T=0
 - Creates perception issue
 - Sequencing & timing taken on inflated importance
 - For realistic fire scenarios
 - Most manual actions are not required
 - Sequence & timing less important
 - Operators will have advance warning of fire conditions since T never really equals 0

Specific Concerns

Dose

- NUREG-0737 GDC-19 dose limits are applicable to emergency actions, not 10CFR20.
- 10CFR20 sets occupational limits, annual accounting & bookkeeping.
 - Accounting and bookkeeping can't be managed in emergency situation, creates a distraction
 - Not reasonable to maintain "dose balance" in reserve for post-fire actions, nor is it currently required for other non-fire post-accident conditions.

Typical Generic Actions

- Appendix R assumptions (ex., GL 86-10 guidance) non-mechanistically force us to assume many initiators.
- These same initiators already have generic manual actions as part of their response, regardless of the cause.
- Due to the design of Rx protection systems, no amount of fire barriers/encapsulation can completely prevent these initiators from occurring in a fire.

Typical Generic Actions

- Chapter 15 Accidents & Transients typically allow manual actions, 10 minutes after event initiation.
 - Only exception is that actions to protect <u>Tech Spec Safety</u> <u>Limits</u> for Chapter 15 Accidents & Transients must be automatic (GL 91-18)
- Common (BWR/PWR)
 - LOOP Verify DG operation, including local observation and adjustment
 - LOOP or 4kv transfer Verify transfer, re-set power supplies & chargers, verify system alignments
 - LO Inst Air Reposition critical valves by hand or manually align backup supply to critical valves
 - Any Event Manage unit dependencies to support the "accident" unit (plant specific)

Typical Generic Actions

BWR

- Transient Inhibit ADS
- SORV Remove fuses
- LOFW Maximize CRD flow (manual valve)
- Cont Isolation Re-open instrument valves. Restore instrument nitrogen to valves in containment.

PWR

- LO RCP Seal Cooling manually restore cooling and/or trip RCPs
- LOFW manually initiate turbine-driven EFW
- ES Actuation Reset actuation, return systems to standby
- Depressurization/Cooldown Periodically Block ESAS

- Detection and Automatic Suppression In Fire Area Requiring the Manual Action
 - Existing Detection and Suppression provided to meet specific hazards (BTP 9.5-1) and regulatory requirements (App. R).
 - Existing exemptions in some areas for lack of detection (III.F) or lack of suppression (III.G.2.b, III.G.2.c) based on hazards analysis.
 - Will these exemptions still be valid? Revision req'd?

- Most fire areas are large with multiple zones and rooms.
 - Suppression often limited to an zone/room with a specific hazard and is not area wide.
 - Further subdivision of fire areas into smaller areas would require additional FSSD analysis and upgrade of barriers.

- Primary impact was lack of full area automatic suppression systems.
- Exemption Requests to address these areas could be submitted.
 - 13 out of 47 fire areas affected
 - 168 rooms/zones affected within these 13 fire areas.

- Exemption Justification
 - Low combustible loading in most zones
 - Typical combustibles in the areas are not prone to fast spreading fires.
 - Spatial and physical separation between rooms/zones within fire area
 - Typically, damage to a specific part of the fire area results in the need for manual actions.
 - Existing barriers while not credited for App. R
 will slow fire growth and limit exposure.

- Unintended Consequences
 - New suppression systems will create hazards to some equipment.
 - Flooding design basis impacted
 - "Gridlock" future changes to FP program
 - Significantly limit what changes could be made under Standard FP Licensing Condition w/o prior NRC approval (contrary to Commission policies on burden reduction for requirements marginal to safety, GL 86-10, GL 88-12).

- \$67 Million Cost Estimate for sprinklers
 - Excludes Turbine deck, Refuel floor, Feedwater heater rooms, Stair towers
 - Additional factors to consider (not in \$ est.)
 - Dose Significant dose during installation and future testing.
 - Drainage Many areas do not have floor drains (or the drains covered for Rad/Environmental reasons).
 - Plant Equipment Impact of sprinkler flow and pipe breaks would have to be addressed.
 - Impact on capacity of existing fire protection water supply system.

- Fire Area Example
 - Turbine Building (Fire Area 50)
 - Large fire area encompassing both U2 & U3 areas.
 - 143,000 ft2 already provided with automatic sprinkler protection.
 - Lube oil rooms, moisture separators, condenser pits, common areas, 13kV Switchgear areas, feed pump rooms, railroad bay and hatch area.

Impact of Proposed Rule uclear

- Turbine Building (Fire Area 50)
 - 87,000 ft2 not proposed to have automatic suppression (exemption required)
 - Pipe tunnels, ventilation equipment area, feedwater heater rooms, turbine deck (turbine bearings and underskirt area have sprinklers)
 - Cost for sprinklers if required would exceed \$26 million
 - 57,000 ft2 could need sprinkler protection under proposed rule (exemption would be submitted)
 - Areas do not present FSSD hazards
 - Areas not required to have suppression under prior NRC rules or guidelines.
 - Cost for sprinkler installation would exceed \$17 million

- RadWaste Building (Fire Area 2)
 - Large multistory building between two reactor buildings, common fire area
 - Suppression systems in HPCI pump rooms and in old baling and drumming room
 - 45,000 ft2 would need sprinkler protection under the proposed rule
 - Projected cost would exceed \$13 million
 - Secondary Containment breaches involved

- Radwaste Building (Fire Area 2)
 - Exemption Request would be submitted
 - Low combustible loading throughout building (except where suppression is provided)
 - Building is well compartmentalized primarily for radiation considerations
 - Many high dose rooms

Training

- Increase in training requirements in FSSD procedures will impact the training organization.
 - Training cycle already full.
 - FSSD procedures are covered on two year cycle but not in detail required by the proposed rule.
 - Training is already performed, <u>however</u> proposed rule will result in 94 unique training events per operator.
 - Result will be less training time to spend on other more risk significant events.
 - Train on the same action, for multiple fire areas?

- Procedures
 - Written using a template
 - Supplement the EOPs
 - Format provides consistent and easy to understand guidance for the operator.
 - Human factors reviews.
 - Operator feedback
 - 1 procedure per fire area per unit
 - Each action is in a separate "tear-out"

Summary

- Improvement in Safety Does Not Support Proposed Rule Given the Cost of Compliance
 - Cost of additional automatic suppression systems could exceed \$70 million at PBAPS
 - Training burden may impact plant safety since less time will be available for other even more risk relevant training.
 - Ignores 25 years of precedent on manual actions at PBAPS
 - Significant burden developing exemptions
 - PBAPS Triennial inspection found all actions feasible

Conclusion

 "The results from NRC fire protection inspections to date indicate that there is insufficient evidence that the generic use of these manual actions poses a safety concern." – Reg Analysis 12/2004