Dominion Nuclear Connecticut, Inc. Millstone Power Station Rope Ferry Road Waterford, CT 06385

Washington, DC 20555

U.S. Nuclear Regulatory Commission

Attention: Document Control Desk



APR 2 9 2005

Serial No.

RO

MPS Lic/GJC Docket Nos.

50-245 50-336

05-208

50-423

License Nos.

DPR-21 DPR-65

NPF-49

## DOMINION NUCLEAR CONNECTICUT, INC. MILLSTONE POWER STATION UNITS 1, 2, AND 3 2004 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

This letter transmits the Annual Radiological Environmental Operating Report for the Millstone Power Station, for the period January 2004 through December 2004. This satisfies the provisions of Section 5.7.2 of Unit 1 Permanently Defueled Technical Specifications (PDTS), and Sections 6.9.1.6a and 6.9.1.3 of the Millstone Units 2 and 3 Technical Specifications, respectively.

If you have any questions or require additional information, please contact Mr. David W. Dodson at (860) 447-1791, extension 2346.

Very truly yours,

Ste Vice President - Millstone

IFAS

Attachments: 1

Commitments made in this letter: None.

cc: U.S. Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia, PA 19406-1415

> Mr. A. B. Wang Project Manager U.S. Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike Mail Stop 7E1 Rockville, MD 20852-2738

> Mr. R. Prince NRC Inspector U.S. Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia, PA 19406-1415

> Mr. V. Nerses Senior Project Manager U.S. Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike Mail Stop 8C2 Rockville, MD 20852-2738

> Mr. G. F. Wunder Project Manager U.S. Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike Mail Stop 08-B-1A Rockville, MD 20852-2738

Mr. S. M. Schneider NRC Senior Resident Inspector Millstone Power Station

Serial No. 05-208 2004 Annual Radiological Environmental Operating Report Page 3 of 3

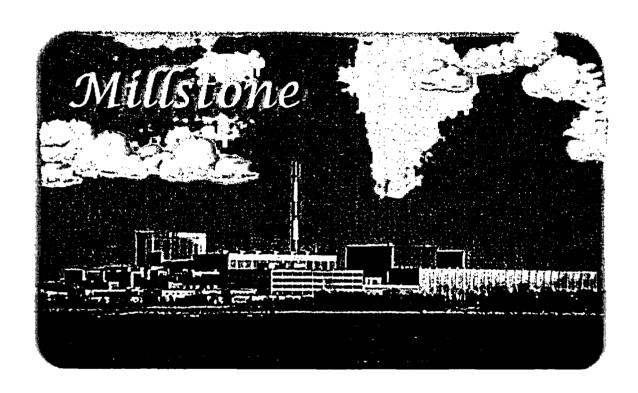
(2copies)
Director
Bureau of Air Management
Monitoring & Radiation Division
Department of Environmental Protection
79 Elm Street
Hartford, CT 06106-5127

Serial No. 05-208 Docket Nos. 50-245 50-336 50-423 License Nos. DPR-21

DPR-65 NPF-49

#### **Attachment 1**

2004 Annual Radiological Environmental Operating Report


Millstone Power Station Units 1, 2, and 3 Dominion Nuclear Connecticut, Inc. (DNC)

#### **Millstone Power Station**

#### 2004

#### Radiological Environmental Operating Report

January 1, 2004 - December 31, 2004



#### Dominion Nuclear Connecticut, Inc.

| Unit | License | Docket |
|------|---------|--------|
| 1    | DPR-21  | 50-245 |
| 2    | DPR-65  | 50-336 |
| 3    | NPF-49  | 50-423 |



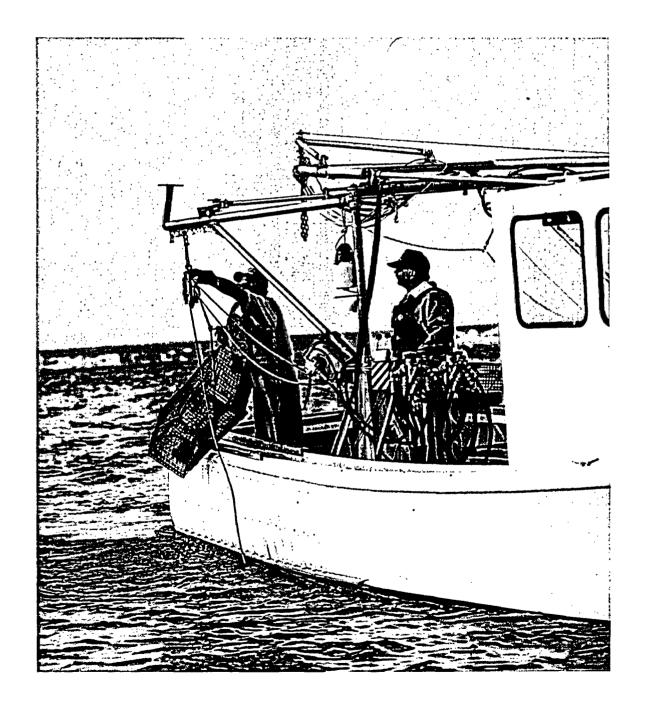
# ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

#### MILLSTONE POWER STATION

#### RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

#### 2004

MILLSTONE UNIT 1, DOCKET NO. 50-245 MILLSTONE UNIT 2, DOCKET NO. 50-336 MILLSTONE UNIT 3, DOCKET NO. 50-423


By the

Dominion Nuclear Connecticut, Inc. Waterford, Connecticut

#### ~ TABLE OF CONTENTS ~

| 1. E  | EXECUTIVE SUMMARY                                  | 1    |
|-------|----------------------------------------------------|------|
| 2. P  | ROGRAM DESCRIPTION                                 | 2-1  |
| 2.1.  | Sampling Schedule and Locations                    | 2-1  |
| 2.2.  |                                                    | 2-7  |
| 3. F  | RADIOCHEMICAL RESULTS                              | 3-1  |
| 3.1.  | Summary Table                                      | 3-1  |
| 3.2.  | Data Tables                                        | 3-3  |
| 4. I  | DISCUSSION OF RESULTS                              | 4-1  |
| 4.1.  | Gamma Exposure Rate (Table 1)                      | 4-1  |
| 4.2.  | Air Particulate Gross Beta Radioactivity (Table 2) | 4-3  |
| 4.3.  | Airborne Iodine (Table 3)                          | 4-5  |
| 4.4.  | Air Particulate Gamma (Table 4A-D)                 | 4-5  |
| 4.5.  | Air Particulate Strontium (Table 5)                | 4-5  |
| 4.6.  | Soil (Table 6)                                     | 4-5  |
| 4.7.  | Cow Milk (Table 7)                                 | 4-6  |
| 4.8.  | Goat Milk (Table 8)                                | 4-6  |
| 4.9.  | Pasture Grass and Feed (Table 9)                   | 4-7  |
| 4.10. | Well Water (Table 10)                              | 4-7  |
| 4.11. | Reservoir Water (Table 11)                         | 4-8  |
| 4.12. | Fruits and Vegetables (Table 12)                   | 4-8  |
| 4.13. | · · · · · · · · · · · · · · · · · · ·              | 4-8  |
| 4.14. | Seawater (Table 14)                                | 4-8  |
| 4.15. | Bottom Sediment (Table 15)                         | 4-11 |
| 4.16. | Aquatic Flora (Table 16)                           | 4-11 |
| 4.17. | Fish (Tables 17A and 17B)                          | 4-12 |
| 4.18. | Mussels (Table 18)                                 | 4-12 |
| 4.19. | Oysters (Table 19)                                 | 4-12 |
|       | Clams (Table 20)                                   | 4-13 |
|       | Scallops (Table 21)                                | 4-14 |
| 4.22. | Lobsters (Table 22)                                | 4-14 |
| 5. C  | FFSITE DOSE EQUIVALENT COMMITMENTS                 | 5-1  |
| 6. D  | DISCUSSION                                         | 6-1  |
| APPEN | NDIX A - LAND USE CENSUS FOR 2004                  | A-1  |
| APPEN | NDIX B - DNC QA PROGRAM                            | B-1  |
| APPEN | NDIX C - SUMMARY OF INTERLABORATORY COMPARISONS    | C-1  |
| APPEN | NDIX D - ERRATA FOR 2003                           | D-1  |

### **Executive Summary**



#### 1. EXECUTIVE SUMMARY

The radiological environmental monitoring program for the Millstone Power Station was continued for the period January through December 2004, in compliance with the Technical Specifications and the Radiological Effluent Monitoring and Offsite Dose Calculation Manual. The Radiological Protection and Chemistry Department of Dominion Nuclear Connecticut, Inc. (DNC) prepared this annual report. Radiological Protection and Environmental Services staff performed collection and preparation. Framatome ANP DE&S Laboratory Environmental performed exposure gamma measurements and laboratory analyses.

Thermoluminescent dosimeters (TLDs) were used to measure direct gamma exposure in the vicinity of the station and as far away as 14 Radiochemical and radiological counting analyses of samples were performed to detect the presence of any station related radioactivity. Samples included: air particulate and charcoal filters, soil, goat milk, pasture grass, hay, well water, broad leaf vegetation, fruits, vegetables, sea water, bottom sediment, aquatic flora, fish, mussels, oysters, clams, and lobsters. In evaluating the results of these analyses it is necessary to consider the variability of natural and man-made sources of radioactivity, radionuclide distribution in the environment and radionuclide uptake in environmental media. This variability is dependent on many factors including station release rates, past spatial variability of radioactive fallout from nuclear weapons tests and on-going redistribution of the fallout, contribution from cosmically produced radioactivity, soil characteristics, farming practices, and feed type. Significant variations in measured levels of radioactivity could be caused by any one of these factors. Therefore, these factors need to be considered in order to properly explain any variations in radiation detected and to distinguish between natural and nuclear station related radioactivity.

Millstone Unit 1 is permanently shutdown. The annual capacity factor for Millstone Unit 2 was 97.6% based on Design Electrical Rating (DER). The annual capacity factor for Unit 3 was 88.2%. Unit 3 was shutdown in the second quarter for 3R09 refueling and maintenance. The radioactive releases of gaseous effluents in 2004 were comparable to years when one or more units operated for the majority of the year. Radioactive releases in liquid effluents continue to be low.

No station effects were detected in terrestrial media. The predominant radioactivity, except for a few aquatic sample results, was that from outside sources, such as fallout from nuclear weapons tests and naturally occurring radionuclides. Monitoring of the aquatic environment in the area of the discharge indicated the presence of the following station related radionuclides: Cobalt-60, Silver-110m, Cesium-137 and Tritium. Due to

٠.

Dominion Nuclear Connecticut, Inc. Millstone Station

the decreasing trend in liquid effluent releases, a corresponding decrease is observed in measured levels of radionuclides in the environment. Doses from the 2004 measured levels are well below those required by each Unit's Safety Technical Specifications (10CFR50 Appendix I, Design Guidelines).

Cesium-137 and Strontium-90 were detected in goat milk. Cesium-137 was also found in several pasture grass and hay samples and all soil samples. These levels are the result of nuclear weapons testing in the 1960's and not the result of station operation. This can be concluded because insufficient quantities of these isotopes have been released by the station to account for the measured concentrations and the presence of these isotopes have been consistently declining since the early 1960's after signing of the Nuclear Test Ban Treaty.

The radiation dose (dose equivalent commitment) to the general public from the station's discharges has been evaluated by two methods. One method utilizes the measured station's discharges and conservative transport models and the other utilizes the measured concentrations of radioactivity in the environmental media. The maximum whole body dose (station boundary) that could occur to a member of the general public as a result of station operation was 0.17 millirem. This dose is 0.7 percent of the standard (i.e., 25 millirem to the whole body at the station site boundary) as set by the Environmental Protection Agency on the maximum allowable dose to an individual of the general public. Historically, the average whole body dose for a member of the public residing within 50 miles of the station is generally three orders of magnitude less than the maximum individual whole body dose. The standards of the Environmental Protection Agency are a small fraction (less than 10 percent) of the 284 mrem per year normal Connecticut resident background radiation (NCRP94) and are designed to be inconsequential in regard to public health and safety. Station related doses are even a smaller fraction of the natural background. Therefore, the station related doses have insignificant public health consequences.

#### 2. PROGRAM DESCRIPTION

#### 2.1. Sampling Schedule and Locations

The sample locations and the sample types and frequency of analysis are given in Tables 2-1 and 2-2 and Figures 2.1-1 and 2.1-2. The program as described on Table 2-2 only lists the required samples as specified in the Radiological Effluent Monitoring and Offsite Dose Calculation Manual. However, in order to identify the locations of the extra samples, all locations (both required and extra) are listed in Table 2-1 and shown on the figures.

Table 2-1 Environmental Monitoring Program Sampling Types and Locations

| Location      |                              | Direction & Distance |                                         |
|---------------|------------------------------|----------------------|-----------------------------------------|
| Number*       | Location Name                | From Release Point** | Camula Tunas                            |
|               | On-site - Old Millstone Rd.  |                      | Sample Types TID Air Portigulate Indian |
| 1-I           | On-site - Old Millistone Rd. | 0.6 Mi, NNW          | TLD, Air Particulate, Iodine,           |
| <b>0.</b> T   | On all a Wanthan Charle      | 0234: 6              | Vegetation                              |
| 2-I           | On-site - Weather Shack      | 0.3 Mi, S            | TLD, Air Particulate, Iodine            |
| 3-I           | On-site - Bird Sanctuary     | 0.3 Mi, NE           | TLD, Air Particulate, Iodine,           |
|               | 0 1 41 15                    | 1036 31              | Soil                                    |
| 4-I           | On-site - Albacore Drive     | 1.0 Mi, N            | TLD, Air Particulate, Iodine,           |
|               | 1 (DO'TO) 1                  | 0.4.3.6. 600         | Soil                                    |
| 5-I           | MP3 Discharge                | 0.1 Mi, SSE          | TLD                                     |
| 6-I           | Quarry Discharge             | 0.3 Mi, SSE          | TLD                                     |
| 7-I           | Environmental Lab Dock       | 0.3 Mi, SE           | TLD                                     |
| 8-I           | Environmental Lab            | 0.3 Mi, SE           | TLD                                     |
| 9-I           | Bay Point Beach              | 0.4 Mi, W            | TLD                                     |
| 10-I          | Pleasure Beach               | 1.2 Mi, E            | TLD, Air Particulate, Iodine,           |
|               |                              |                      | Vegetation                              |
| 11-I          | New London Country Club      | 1.6 Mi, ENE          | TLD, Air Particulate, Iodine            |
| 12-C          | Fisher's Island, NY          | 8.0 Mi, ESE          | TLD                                     |
| 13-C          | Mystic, CT                   | 11.5 Mi, ENE         | TLD                                     |
| 14-C          | Ledyard, CT                  | 12.0 Mi, NE          | TLD, Soil                               |
| 15-C          | Norwich, CT                  | 14.0 Mi, N           | TLD, Air Particulate, Iodine            |
| 16-C          | Old Lyme, CT                 | 8.8 Mi, W            | TLD                                     |
| 17-I          | Site Boundary                | 0.5 Mi, NE           | Vegetation                              |
| 21-I          | Goat Location #1             | 2.0 Mi, N            | Milk                                    |
| 22-I          | Goat Location #2             | 5.2 Mi, NNE          | Milk                                    |
| 24-C          | Goat Location #4             | 29.0 Mi, NNW         | Milk                                    |
| 25-I          | Within 10 Miles              | Within 10 Miles      | Fruits & Vegetables                     |
| 26-C          | Beyond 10 Miles              | Beyond 10 Miles      | Fruits & Vegetables                     |
| 27-I          | Niantic                      | 1.7 Mi, WNW          | TLD, Air Particulate, Iodine            |
| 28-I          | Two Tree Island              | 0.8 Mi, SSE          | Mussels                                 |
| 29-I          | West Jordan Cove             | 0.4 Mi, NNE          | Clams                                   |
| 30-I          | Niantic Shoals               | 1.5 Mi, NNW          | Mussels                                 |
| 31 <b>-</b> I | Niantic Shoals               | 1.8 Mi, NW           | Bottom Sediment, Oysters                |
| 31-X          | Niantic Shoals               | 1.8 Mi, NW           | Scallops                                |
| 32-I          | Vicinity of Discharge        | *                    | Bottom Sediment, Oysters,               |
|               | ,                            |                      | Lobster, Fish, Seawater                 |
| 32-X          | Vicinity of Discharge        | 000012220000000      | Fucus                                   |
| 33-I          | Seaside Point                | 1.8 Mi, ESE          | Bottom Sediment                         |
| 33-X          | Seaside Point                | 1.8 Mi, ESE          | Fucus                                   |
| 34 <b>-</b> I | Thames River Yacht Club      | 4.0 Mi, ENE          | Bottom Sediment                         |
| 34-X          | Thames River Yacht club      | 4.0 Mi, ENE          | Oysters                                 |
| 35-I          | Niantic Bay                  | 0.3 Mi, WNW          | Lobster, Fish                           |
| 35-X          | Niantic Bay                  | 0.3 Mi, WNW          | Bottom Sediment, Seawater,              |
|               |                              |                      | Clams, Fucus                            |

<sup>\*</sup>Key: I - Indicator C - Control X - Extra - sample not required by REMODCM

2-2

<sup>\*\*</sup>The release points are the MP1 stack for terrestrial locations and the quarry cut for aquatic locations.

| Location |                                  | Direction & Distance |                           |
|----------|----------------------------------|----------------------|---------------------------|
| Number*  | Location Name                    | From Release Point** | Sample Types              |
| 36-I     | Black Point                      | 3.0 Mi, WSW          | Oysters                   |
| 36-X     | Black Point                      | 3.0 Mi, WSW          | Bottom Sediment, Fucus    |
| 37-C     | Giant's Neck                     | 3.5 Mi, WSW          | Bottom Sediment, Oysters, |
|          |                                  | •                    | Seawater                  |
| 37-X     | Giant's Neck                     | 3.5 Mi, WSW          | Lobster                   |
| 38-I     | Waterford Shellfish Bed #1       | 1.0 Mi, NW           | Clams                     |
| 39-X     | Jordon Cove Bar                  | 0.8 Mi, NE           | Bottom Sediment, Clams,   |
|          | Jordon Cove Dat                  | 0.0 1/11,110         | Seawater, Fucus           |
| 40-X     | Quarry                           |                      | Fish, Oysters             |
| 41-I     | Myrock Avenue                    | 3.2 Mi, ENE          | TLD                       |
| 42-I     | Billow Road                      | 2.4 Mi, WSW          | TLD                       |
| 43-I     | Black Point                      | 2.6 Mi, SW           | TLD                       |
| 44-I     | Onsite - Schoolhouse             | 0.1 Mi, NNE          | TLD                       |
| 45-I     | Onsite Access Road               | 0.5 Mi, NNW          | TLD                       |
| 46-I     | Old Lyme - Hillcrest Ave.        | 4.6 Mi, WSW          | TLD                       |
| 47-I     | East Lyme - W. Main St.          | 4.5 Mi, W            | TLD                       |
| 48-I     | East Lyme - Corey Rd.            | 3.4 Mi, WNW          | TLD                       |
| 49-I     | East Lyme - Society Rd.          | 3.6 Mi, NW           | TLD                       |
| 50-I     | East Lyme - Manwaring Rd.        | 2.1 Mi, W            | TLD                       |
| 51-I     | East Lyme - Smith Ave.           | 1.5 Mi, NW           | TLD                       |
| 52-I     | Waterford - River Rd.            | 1.1 Mi, NNW          | TLD                       |
| 53-I     | Waterford - Gardiners Wood Rd.   | 1.4 Mi, NNE          | TLD                       |
| 55-I     | Waterford - Magonk Point         | 1.8 Mi, ESE          | TLD                       |
| 56-I     | New London - Mott Ave.           | 3.7 Mi, E            | TLD                       |
| 57-I     | New London - Ocean Ave.          | 3.6 Mi, ENE          | TLD                       |
| 59-I     | Waterford -Miner Ave.            | 3.4 Mi, NNE          | TLD                       |
| 60-I     | Waterford - Parkway South        | 4.0 Mi, N            | TLD                       |
| 61-I     | Waterford - Boston Post Rd.      | 4.3 Mi, NNW          | TLD                       |
| 62-I     | East Lyme - Columbus Ave.        | 1.9 Mi, WNW          | TLD                       |
| 63-I     | Waterford - Jordon Cove Rd.      | 0.8 Mi, NE           | TLD                       |
| 64-I     | Waterford - Shore Rd.            | 1.1 Mi, ENE          | TLD                       |
| 65-I     | Waterford - Bank St.             | 3.2 Mi, NE           | TLD                       |
| 66-X     | NAP Parking Lot - Fitness Center | 0.4 Mi, NW           | TLD                       |
| 67-X     | Golden Spur                      | 4.7 Mi, NNW          | Bottom Sediment           |
| 68-Z     | Ram Island                       | 9.6 Mi., ESE         | Oysters                   |
| 70-C     | Background Well                  | NA                   | Well Water                |
| 71-I     | Onsite Well                      | Onsite               | Well Water                |
| 72-I     | Onsite Well                      | Onsite               | Well Water                |
| 73-X     | Site Switchyard Fence            | 0.3 Mi, N            | TLD                       |
| 74-X     | Ball Field Foul Pole             | 0.6 Mi, N            | TLD                       |
| 75-X     | Waterford – Windward Way &       | 0.5 Mi, NE           | TLD                       |
| 13-1     | Shotgun                          | U.J IVII, IVE        | ILU                       |

\*Key: I - Indicator C - Control X or Z - Extra - sample not required
\*\*The release points are the MP1 stack for terrestrial locations and the quarry cut for aquatic

locations.

Table 2-2 Required Sampling Frequency & Type of Analysis

|     | Exposure Pathway and/or Sample                                | No. of<br>Locations | Sampling & Collection<br>Frequency                                                                                                      | Type of Analysis                                                                                                                                                                                       |
|-----|---------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | Gamma Dose -<br>Environmental TLD                             | 403                 | Quarterly                                                                                                                               | Gamma Dose - Quarterly                                                                                                                                                                                 |
| 2.  | Airborne Particulate                                          | 8                   | Continuous sampler - weekly<br>filter change                                                                                            | Gross Beta - Weekly Gamma Spectrum - Quarterly on composite (by location), and on individual sample if gross beta is greater than 10 times the mean of the weekly control station's gross beta results |
| 3.  | Airborne Iodine                                               | 8                   | Continuous sampler - weekly canister change                                                                                             | I-131 - Weekly                                                                                                                                                                                         |
| 4.  | Vegetation                                                    | 5                   | One sample near middle and one near end of growing season                                                                               | Gamma Isotopic on each sample                                                                                                                                                                          |
| 5.  | Milk                                                          | 3                   | Semimonthly when animals are on pasture; monthly at other times.                                                                        | Gamma Isotopic and I-131 on each sample; Sr-89 and Sr-90 on quarterly composite                                                                                                                        |
| 5a. | Pasture Grass                                                 | 3                   | Sample as necessary to substitute for unavailable milk                                                                                  | Gamma Isotopic and I-131 on each sample                                                                                                                                                                |
| 6.  | Sea Water                                                     | 2                   | Continuous sampler with a monthly collection at indicator location. Quarterly at control location - Composite of 6 weekly grab samples. | Gamma Isotopic and Tritium on each sample.                                                                                                                                                             |
| 6a. | Well Water                                                    | 3                   | Quarterly                                                                                                                               | Gamma Isotopic and Tritium on each sample                                                                                                                                                              |
| 7.  | Bottom Sediment '                                             | 5                   | Semiannual                                                                                                                              | Gamma Isotopic on each sample                                                                                                                                                                          |
| 7a. | Soil                                                          | 3                   | Quarterly                                                                                                                               | Gamma Isotopic on each sample                                                                                                                                                                          |
| 8.  | Fin Fish-Flounder<br>and one other type<br>of edible fin fish | 2                   | Quarterly                                                                                                                               | Gamma Isotopic on each sample                                                                                                                                                                          |
| 9.  | Mussels<br>(edible portion)                                   | 2                   | Quarterly                                                                                                                               | Gamma Isotopic on each sample                                                                                                                                                                          |
| 10. | Oysters<br>(edible portion)                                   | 4                   | Quarterly                                                                                                                               | Gamma Isotopic on each sample                                                                                                                                                                          |
| 11. | Clams<br>(edible portion)                                     | 2                   | Quarterly                                                                                                                               | Gamma Isotopic on each sample                                                                                                                                                                          |
| 12. | Lobster<br>(edible portion)                                   | 2                   | Quarterly                                                                                                                               | Gamma Isotopic on each sample                                                                                                                                                                          |

<sup>(</sup>a) Two or more TLDs or TLD with two or more elements per location

2-4

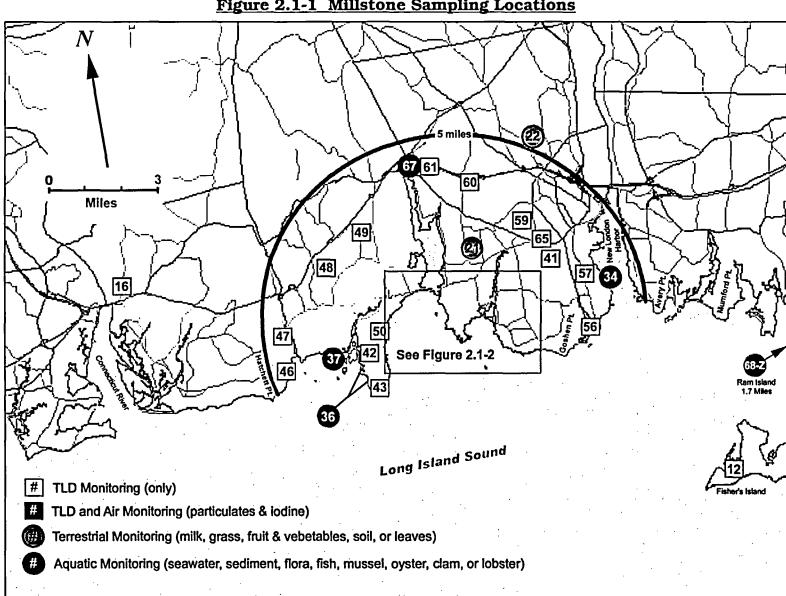
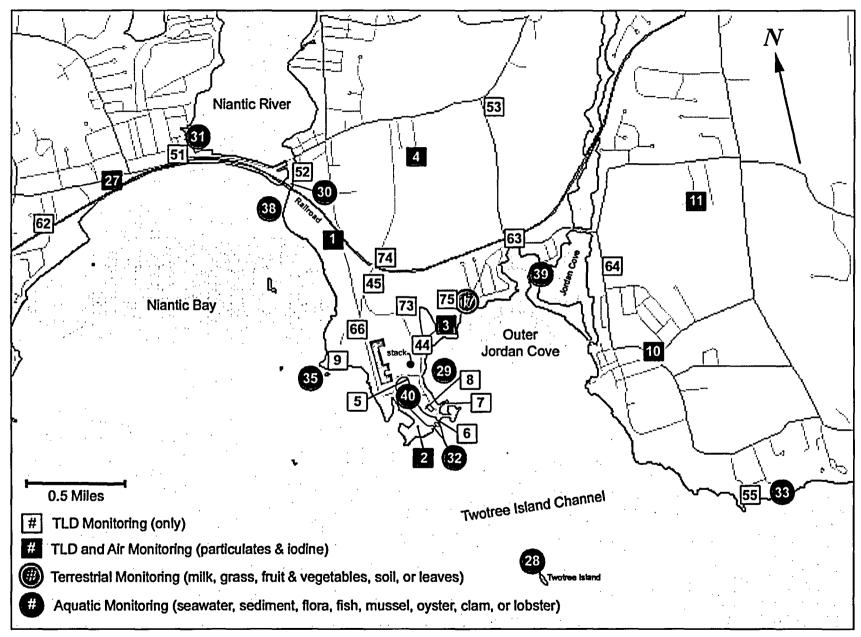




Figure 2.1-1 Millstone Sampling Locations

Figure 2.1-2 Millstone Sampling Locations (Within 2 miles)



#### 2.2. Samples Collected During Report Period

The following table summarizes the number of samples of each type collected and analyzed during 2004:

| Sample Type                           | Number of<br>Required Samples | Number of<br>Required Samples<br><u>Analyzed</u> | Number of<br>Extra Samples<br><u>Analyzed</u> |
|---------------------------------------|-------------------------------|--------------------------------------------------|-----------------------------------------------|
| Gamma Exposure<br>(Environmental TLD) | 160                           | 1201                                             | 12                                            |
| Air Particulates                      | 416                           | 416                                              | 0                                             |
| Air Iodine                            | 416                           | 416                                              | 0                                             |
| Soil                                  | 12                            | 12                                               | 0                                             |
| Goat Milk                             | 57                            | 25 <sup>2</sup>                                  | 0                                             |
| Pasture Grass                         | Variable <sup>3</sup>         | 31                                               | 0                                             |
| Fruit and Vegetables                  | 8                             | 8                                                | 1                                             |
| Broad Leaf Vegetation                 | 6                             | 6                                                | 12                                            |
| Sea Water                             | 16                            | 16                                               | 0                                             |
| Well Water                            | 12                            | 12                                               | 3                                             |
| Bottom Sediment                       | 10                            | 10                                               | 15                                            |
| Aquatic Flora                         | 0                             | 0                                                | 18                                            |
| Fish                                  | 16                            | 144                                              | 4                                             |
| Mussels                               | 8                             | 8                                                | 0                                             |
| Oysters                               | 16                            | 15 <sup>4</sup>                                  | 8                                             |
| Clams                                 | 8                             | 8                                                | 8                                             |
| Lobster                               | 8                             | 8                                                | 4                                             |
| Total All Types                       | 1,169                         | 1,125                                            | 85                                            |

<sup>&</sup>lt;sup>1</sup> 2nd Quarter TLDs were lost (see CR-04-07177).. TLDs were collected at the end of the second quarter as scheduled and delivered along with the routine weekly air samples to site warehouse for shipment to vendor. The air samples and TLDs were placed in separate bags and placed together in the shipment preparation area. The assignment report for the TLDs was placed in the bag with the TLDs while the air sample transmittal form was left outside the bag. Air samples were sent and received by the vendor, however the TLDs were lost. Subsequent efforts to locate the TLDs were unsuccessful. Several corrective actions have been implemented to prevent recurrence. Deviations from the sampling schedule are permitted for legitimate reasons.

<sup>&</sup>lt;sup>2</sup>Pasture grass (or hay) sampled as necessary to substitute for unavailable milk.

<sup>&</sup>lt;sup>3</sup> Depends upon availability of goat milk samples.

<sup>&</sup>lt;sup>4</sup> Due to sample unavailability, not all required fish and oyster samples could be obtained.

#### 3. RADIOCHEMICAL RESULTS

#### 3.1. Summary Table

In accordance with the Radiological Effluent Monitoring Manual (REMM), Section I.F.1, a summary table of the radiochemical results has been prepared and is presented in Table 3-1.

The mean and range recorded are based only upon detectable measurements. The fraction in parentheses (next to the mean for the results) indicates the ratio of measurements that are considered above the detection limit for each individual analysis. The range of values above the detection limit is listed in parentheses below the mean of the detectable measurements.

A more detailed analysis of the data is given in Section 4.0 where a discussion of the variations in the data explains many aspects that are not evident in the Summary Table because of the basic limitation of data summaries. The data summaries include the extra 'X' samples (those taken in addition to the required locations or frequency) collected throughout the year. These samples are taken in an effort to enhance the monitoring program or are the results of special studies.

Page 1 of 16

| Medium or<br>Pathway             | Anal          | ysis        | *   | Indicator<br>Locations        | Loca | tion with Hig         | hest Mean                                   | Control<br>Locations        | Non-<br>Routine               |
|----------------------------------|---------------|-------------|-----|-------------------------------|------|-----------------------|---------------------------------------------|-----------------------------|-------------------------------|
| Sampled<br>(Units)               | Туре          | Total<br>No | LLD | Mean<br>Range                 | Name | Distance<br>Direction | Mean<br>Range                               | Mean<br>Range               | Reported<br>Measure-<br>ments |
| TLD<br>(uR/hr)                   | Gamma<br>Dose | 132         | -   | 8.14 (117/117)<br>(4.41-12.7) | 08   | 0.3 mi<br>SE          | 12 (3/3)<br>(11.3-12.7)                     | 8.22 (15/15)<br>(5.52-10.4) |                               |
| AP Gross Beta<br>(pCi/m3 x 1000) | Gross<br>Beta | 416         | 10  | 18.7 (362/364)<br>(6.8-37.1)  | 15-C | 14 mi<br>N            | 19.2 (52/52)<br>(7.1-35)                    | 19.2 (52/52)<br>(7.1-35)    |                               |
| Air Iodine<br>(pCi/m3 x 1000)    | I-131         | 416         | 70  | (0/364)                       | -    | -                     | <lld< td=""><td>(0/52)</td><td></td></lld<> | (0/52)                      |                               |
| AP Gamma<br>(pCi/m3 x 1000)      | Ba-140        | 32          | -   | (0/28)                        | -    | -                     | < LLD                                       | (0/4)                       |                               |
|                                  | Be-7          | 32          | -   | 91.1 (25/28)<br>(57-119)      | 15-C | 14 mi<br>N            | 114 (4/4)<br>(93-132)                       | 114 (4/4)<br>(93-132)       |                               |
|                                  | Ce-141        | 32          | -   | (0/28)                        | -    | -                     | < LLD                                       | (0/4)                       |                               |
|                                  | Ce-144        | 32          | -   | (0/28)                        | -    | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<>  | (0/4)                       |                               |
|                                  | Co-58         | 32          | -   | (0/28)                        | -    | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<>  | (0/4)                       |                               |
|                                  | Co-60         | 32          | -   | (0/28)                        | -    | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<>  | (0/4)                       |                               |
|                                  | Cr-51         | 32          | -   | (0/28)                        | -    | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<>  | (0/4)                       |                               |
|                                  | Cs-134        | 32          | 50  | (0/28)                        | -    | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<>  | (0/4)                       |                               |
|                                  | Cs-137        | 32          | 60  | (0/28)                        | -    | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<>  | (0/4)                       |                               |
|                                  | Mn-54         | 32          | -   | (0/28)                        | •    | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<>  | (0/4)                       |                               |
|                                  | Nb-95         | 32          | -   | (0/28)                        | -    | -                     | < LLD                                       | (0/4)                       |                               |
|                                  | Ru-103        | 32          | -   | (0/28)                        | -    | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<>  | (0/4)                       |                               |
|                                  | Ru-106        | 32          | -   | (0/28)                        | -    | -                     | < LLD                                       | (0/4)                       |                               |
|                                  | Zr-95         | 32          | -   | (0/28)                        | -    | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<>  | (0/4)                       |                               |

Page 2 of 16

| Medium or<br>Pathway | Analysis |             | *    | Indicator<br>Locations     | Locat | ion with Hig          | hest Mean                                  | Control<br>Locations      | Non-<br>Routine               |
|----------------------|----------|-------------|------|----------------------------|-------|-----------------------|--------------------------------------------|---------------------------|-------------------------------|
| Sampled<br>(Units)   | Туре     | Total<br>No | LLD  | Mean<br>Range              | Name  | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range             | Reported<br>Measure-<br>ments |
| Soil<br>(pCi/g dry)  | Be-7     | 12          | -    | (0/8)                      | 14-C  | 12 mi<br>NE           | 0.36 (1/4)<br>(0.36-0.36)                  | 0.36 (1/4)<br>(0.36-0.36) |                               |
|                      | Ce-141   | 12          | -    | (0/8)                      | -     | -                     | < LLD                                      | (0/4)                     |                               |
|                      | Ce-144   | 12          | -    | (0/8)                      | -     | -                     | < LLD                                      | (0/4)                     |                               |
|                      | Co-58    | 12          | -    | (0/8)                      | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                     |                               |
|                      | Co-60    | 12          | •    | (0/8)                      | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                     |                               |
|                      | Cr-51    | 12          | -    | (0/8)                      | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                     |                               |
|                      | Cs-134   | 12          | 0.15 | (0/8)                      | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                     |                               |
|                      | Cs-137   | 12          | 0.18 | 0.745 (8/8)<br>(0.44-1.23) | 14-C  | 12 mi<br>NE           | 1.52 (4/4)<br>(1.37-1.66)                  | 1.52 (4/4)<br>(1.37-1.66) |                               |
|                      | Fe-59    | 12          | -    | (0/8)                      | -     | -                     | < LLD                                      | (0/4)                     |                               |
|                      | K-40     | 12          | -    | 9.91 (8/8)<br>(6.3-12.5)   | 04    | 1 mi<br>N             | 11.9 (4/4)<br>(10.7-12.5)                  | 11.8 (4/4)<br>(10.2-13)   |                               |
|                      | Mn-54    | 12          | -    | (0/8)                      | -     | -                     | < LLD                                      | (0/4)                     |                               |
|                      | Nb-95    | 12          | -    | (0/8)                      | -     | -                     | < LLD                                      | (0/4)                     |                               |
|                      | Ru-103   | 12          | -    | (0/8)                      | -     | -                     | < LLD                                      | (0/4)                     |                               |
|                      | Ru-106   | 12          | •    | (0/8)                      | -     | -                     | < LLD                                      | (0/4)                     |                               |
|                      | Sb-125   | 12          | -    | (0/8)                      | -     | -                     | < LLD                                      | (0/4)                     |                               |
|                      | Th-228   | 12          | -    | 0.84 (8/8)<br>(0.48-1.21)  | 14-C  | 12 mi<br>NE           | 1.34 (4/4)<br>(1.18-1.55)                  | 1.34 (4/4)<br>(1.18-1.55) |                               |
|                      | Zn-65    | 12          | -    | (0/8)                      | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                     |                               |
|                      | Zr-95    | 12          | -    | (0/8)                      | -     | -                     | < LLD                                      | (0/4)                     |                               |

Page 3 of 16

| Medium or<br>Pathway                  | Anal   | Analysis    |      | Indicator<br>Locations        | Loca   | tion with Hig         | hest Mean                                    | Control<br>Locations         | Non-<br>Routine               |
|---------------------------------------|--------|-------------|------|-------------------------------|--------|-----------------------|----------------------------------------------|------------------------------|-------------------------------|
| Sampled<br>(Units)                    | Туре   | Total<br>No | LLD  | Mean<br>Range                 | Name   | Distance<br>Direction | Mean<br>Range                                | Mean<br>Range                | Reported<br>Measure-<br>ments |
| Goat Milk<br>(pCi/L)                  | Ba-140 | 25          | 70   | (0/15)                        | •<br>• | -                     | <lld< td=""><td>(0/10)</td><td>,</td></lld<> | (0/10)                       | ,                             |
|                                       | Cs-134 | 25          | 15   | (0/15)                        | -      | -                     | < LLD                                        | (0/10)                       |                               |
|                                       | Cs-137 | 25          | 18   | 9.58 (4/15)<br>(5.3-11.7)     | 22     | 5.2 mi<br>NNE         | 11.7 (1/5)<br>(11.7-11.7)                    | (0/10)                       |                               |
|                                       | I-131  | 25          | 1    | (0/15)                        | -      | -                     | <lld< td=""><td>(0/10)</td><td></td></lld<>  | (0/10)                       |                               |
|                                       | K-40   | 25          | -    | 1616 (15/15)<br>(1220-1920)   | 22     | 5.2 mi<br>NNE         | 1725 (5/5)<br>(1630-1773)                    | 1672 (10/10)<br>(1550-1880)  |                               |
|                                       | La-140 | 25          | 25   | (0/15)                        | -      | •                     | < LLD                                        | (0/10)                       |                               |
|                                       | Sr-89  | 6           | -    | (0/4)                         | -      | •                     | < LLD                                        | (0/2)                        |                               |
|                                       | Sr-90  | 6           | -    | 5.18 (3/4)<br>(1.24-8.1)      | 22     | 5.2 mi<br>NNE         | 7.15 (2/2)<br>(6.2-8.1)                      | 1.7 (2/2)<br>(1.62-1.78)     |                               |
| Pasture Grass<br>(Hay)<br>(pCi/g wet) | Ba-140 | 31          | -    | (0/22)                        | -      | -                     | < LLD                                        | (0/9)                        |                               |
|                                       | Be-7   | 31          | -    | 1.99 (18/22)<br>(0.4-4.36)    | 21     | 2 mi<br>N             | 2.13 (6/9)<br>(0.46-3.86)                    | 2.04 (6/9)<br>(0.7-4.32)     |                               |
|                                       | Ce-141 | 31          | -    | (0/22)                        | -      | -                     | < LLD                                        | (0/9)                        |                               |
|                                       | Ce-144 | 31          | -    | (0/22)                        | -      | -                     | < LLD                                        | (0/9)                        |                               |
|                                       | Co-58  | 31          | -    | (0/22)                        | -      | •                     | < LLD                                        | (0/9)                        |                               |
|                                       | Co-60  | 31          | -    | (0/22)                        | -      | -                     | < LLD                                        | (0/9)                        |                               |
|                                       | Cr-51  | 31          | -    | (0/22)                        | -      | -                     | < LLD                                        | (0/9)                        |                               |
|                                       | Cs-134 | 31          | 0.06 | (0/22)                        | -      | -                     | <lld< td=""><td>(0/9)</td><td></td></lld<>   | (0/9)                        |                               |
|                                       | Cs-137 | 31          | 0.08 | 0.125 (2/22)<br>(0.088-0.162) | 21     | 2 mi<br>N             | 0.125 (2/9)<br>(0.088-0.162)                 | 0.064 (4/9)<br>(0.043-0.079) | )                             |
|                                       | Fe-59  | 31          | -    | (0/22)                        | -      | -                     | < LLD                                        | (0/9)                        |                               |

Page 4 of 16

| Medium or<br>Pathway                  | Anal   | Analysis    |      | Indicator<br>Locations      | Loca | tion with Hig         | hest Mean                                  | Control<br>Locations      | Non-<br>Routine               |
|---------------------------------------|--------|-------------|------|-----------------------------|------|-----------------------|--------------------------------------------|---------------------------|-------------------------------|
| Sampled<br>(Units)                    | Туре   | Total<br>No | LLD  | Mean<br>Range               | Name | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range             | Reported<br>Measure-<br>ments |
| Pasture Grass<br>(Hay)<br>(pCi/g wet) | I-131  | 31          | 0.06 | (0/22)                      | -    | -                     | <lld< td=""><td>(0/9)</td><td></td></lld<> | (0/9)                     |                               |
|                                       | K-40   | 31          | -    | 6.96 (22/22)<br>(2.66-14.6) | 24-C | 29 mi<br>NNW          | 10.4 (9/9)<br>(3.46-19.6)                  | 10.4 (9/9)<br>(3.46-19.6) |                               |
|                                       | La-140 | 31          | -    | (0/22)                      | -    | -                     | < LLD                                      | (0/9)                     |                               |
|                                       | Mn-54  | 31          | -    | (0/22)                      | -    | -                     | < LLD                                      | (0/9)                     |                               |
|                                       | Nb-95  | 31          | -    | (0/22)                      | -    | -                     | <lld< td=""><td>(0/9)</td><td></td></lld<> | (0/9)                     |                               |
|                                       | Ru-103 | 31          | -    | (0/22)                      | -    | -                     | < LLD                                      | (0/9)                     |                               |
|                                       | Ru-106 | 31          | -    | (0/22)                      | -    | -                     | < LLD                                      | (0/9)                     |                               |
|                                       | Sb-125 | 31          | -    | (0/22)                      | -    | -                     | < LLD                                      | (0/9)                     |                               |
|                                       | Th-228 | 31          | -    | (0/22)                      | -    | -                     | <lld< td=""><td>(0/9)</td><td></td></lld<> | (0/9)                     |                               |
|                                       | Zn-65  | 31          | -    | (0/22)                      | -    | -                     | < LLD                                      | (0/9)                     |                               |
|                                       | Zr-95  | 31          | -    | (0/22)                      | -    | -                     | < LLD                                      | (0/9)                     |                               |
| Well Water<br>(pCi/l)                 | Ba-140 | 15          | 60   | (0/10)                      | -    | -                     | < LLD                                      | (0/5)                     |                               |
| (F-1-4)                               | Be-7   | 15          | -    | (0/10)                      | -    | -                     | <lld< td=""><td>(0/5)</td><td></td></lld<> | (0/5)                     |                               |
|                                       | Co-58  | 15          | 15   | (0/10)                      | -    | -                     | <lld< td=""><td>(0/5)</td><td></td></lld<> | (0/5)                     |                               |
|                                       | Co-60  | 15          | 15   | (0/10)                      | -    | -                     | < LLD                                      | (0/5)                     |                               |
|                                       | Cr-51  | 15          | -    | (0/10)                      | -    | -                     | <lld< td=""><td>(0/5)</td><td></td></lld<> | (0/5)                     |                               |
|                                       | Cs-134 | 15          | 15   | (0/10)                      | -    | -                     | < LLD                                      | (0/5)                     |                               |
|                                       | Cs-137 | 15          | 18   | (0/10)                      | -    | -                     | < LLD                                      | (0/5)                     |                               |

Page 5 of 16

| Medium or<br>Pathway                  | Analysis |             | *    | Indicator<br>Locations      | Locat | ion with Hig          | hest Mean                                  | Control<br>Locations   | Non-<br>Routine               |
|---------------------------------------|----------|-------------|------|-----------------------------|-------|-----------------------|--------------------------------------------|------------------------|-------------------------------|
| Sampled<br>(Units)                    | Туре     | Total<br>No | LLD  | Mean<br>Range               | Name  | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range          | Reported<br>Measure-<br>ments |
| Well Water<br>(pCi/l)                 | Fe-59    | 15          | 30   | (0/10)                      | -     | -                     | <lld< td=""><td>(0/5)</td><td></td></lld<> | (0/5)                  |                               |
|                                       | H-3      | 12          | 2000 | (0/8)                       | -     | -                     | < LLD                                      | (0/4)                  |                               |
|                                       | I-131    | 15          | 15   | (0/10)                      | -     | -                     | <lld< td=""><td>(0/5)</td><td></td></lld<> | (0/5)                  |                               |
|                                       | K-40     | 15          | -    | (0/10)                      | -     | -                     | < LLD                                      | (0/5)                  |                               |
|                                       | La-140   | 15          | 15   | (0/10)                      | -     | -                     | < LLD                                      | (0/5)                  |                               |
|                                       | Mn-54    | 15          | 15   | (0/10)                      | -     | -                     | < LLD                                      | (0/5)                  |                               |
|                                       | Nb-95    | 15          | 15   | (0/10)                      | -     | -                     | < LLD                                      | (0/5)                  |                               |
|                                       | Ru-103   | 15          | -    | (0/10)                      | -     | -                     | < LLD                                      | (0/5)                  |                               |
|                                       | Ru-106   | 15          | -    | (0/10)                      | -     | -                     | <lld< td=""><td>(0/5)</td><td></td></lld<> | (0/5)                  |                               |
|                                       | Sb-125   | 15          | -    | (0/10)                      | -     | -                     | <lld< td=""><td>(0/5)</td><td></td></lld<> | (0/5)                  |                               |
|                                       | Sr-90    | 15          | -    | (0/10)                      | 70-C  |                       | 2.2 (1/5)<br>(2.2-2.2)                     | 2.2 (1/5)<br>(2.2-2.2) |                               |
|                                       | Th-228   | 15          | -    | (0/10)                      | -     | -                     | < LLD                                      | (0/5)                  |                               |
|                                       | Zn-65    | 15          | 30   | (0/10)                      | -     | -                     | <lld< td=""><td>(0/5)</td><td></td></lld<> | (0/5)                  |                               |
|                                       | Zr-95    | 15          | 30   | (0/10)                      | -     | -                     | < LLD                                      | (0/5)                  |                               |
| Fruits &<br>Vegetables<br>(pCi/g wet) | Ba-140   | 9           | -    | (0/5)                       | -     | -                     | < LLD                                      | (0/4)                  |                               |
|                                       | Be-7     | 9           | -    | 0.188 (2/5)<br>(0.17-0.206) | 25    | 10- mi                | 0.188 (2/5)<br>(0.17-0.206)                | (0/4)                  |                               |
|                                       | Ce-141   | 9           | -    | (0/5)                       | -     | -                     | < LLD                                      | (0/4)                  |                               |
|                                       | Ce-144   | 9           | -    | (0/5)                       | -     | -                     | < LLD                                      | (0/4)                  |                               |

Page 6 of 16

| Medium or<br>Pathway                  | Anal   | Analysis    |      | Indicator<br>Locations    | Locat | hest Mean             | Control<br>Locations                       | Non-<br>Routine         |                               |
|---------------------------------------|--------|-------------|------|---------------------------|-------|-----------------------|--------------------------------------------|-------------------------|-------------------------------|
| Sampled<br>(Units)                    | Туре   | Total<br>No | LLD  | Mean<br>Range             | Name  | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range           | Reported<br>Measure-<br>ments |
| Fruits &<br>Vegetables<br>(pCi/g wet) | Co-58  | 9           | -    | (0/5)                     | •     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                   |                               |
|                                       | Co-60  | 9           | -    | (0/5)                     | -     | -                     | < LLD                                      | (0/4)                   |                               |
|                                       | Cr-51  | 9           | -    | (0/5)                     | -     | -                     | < LLD                                      | (0/4)                   |                               |
|                                       | Cs-134 | 9           | 0.06 | (0/5)                     | -     | -                     | < LLD                                      | (0/4)                   |                               |
|                                       | Cs-137 | 9           | 0.08 | (0/5)                     | -     | -                     | < LLD                                      | (0/4)                   |                               |
|                                       | Fe-59  | 9           | -    | (0/5)                     | -     | -                     | < LLD                                      | (0/4)                   |                               |
|                                       | I-131  | 9           | 0.06 | (0/5)                     | -     | -                     | < LLD                                      | (0/4)                   |                               |
|                                       | K-40   | 9           | -    | 1.98 (5/5)<br>(0.49-3.91) | 25    | 10- mi                | 1.98 (5/5)<br>(0.49-3.91)                  | 1.7 (4/4)<br>(0.8-3.06) |                               |
|                                       | La-140 | 9           | -    | (0/5)                     | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                   |                               |
|                                       | Mn-54  | 9           | -    | (0/5)                     | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                   |                               |
|                                       | Nb-95  | 9           | -    | (0/5)                     | -     | -                     | < LLD                                      | (0/4)                   |                               |
|                                       | Ru-103 | 9           | -    | (0/5)                     | -     | -                     | < LLD                                      | (0/4)                   |                               |
|                                       | Ru-106 | 9           | -    | (0/5)                     | -     | -                     | < LLD                                      | (0/4)                   |                               |
|                                       | Sb-125 | 9           | -    | (0/5)                     | -     | -                     | < LLD                                      | (0/4)                   |                               |
|                                       | Th-228 | 9           | -    | (0/5)                     | -     | -                     | < LLD                                      | (0/4)                   |                               |
|                                       | Zn-65  | 9           | -    | (0/5)                     | -     | -                     | < LLD                                      | (0/4)                   |                               |
|                                       | Zr-95  | 9           | -    | (0/5)                     | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                   |                               |

Page 7 of 16

| Medium or<br>Pathway                   | Anal   | ysis        | Indicator  * Locations |                              | Loca | tion with Hig         | hest Mean                                  | Control<br>Locations | Non-<br>Routine               |
|----------------------------------------|--------|-------------|------------------------|------------------------------|------|-----------------------|--------------------------------------------|----------------------|-------------------------------|
| Sampled<br>(Units)                     | Туре   | Total<br>No | LLD                    | Mean<br>Range                | Name | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range        | Reported<br>Measure-<br>ments |
| Broadleaf<br>Vegetation<br>(pCi/g wet) | Ba-140 | 18          | -                      | (0/18)                       | •    | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                                        | Be-7   | 18          | -                      | 0.807 (11/18)<br>(0.34-2.23) | 01   | 0.6 mi<br>NNW         | 0.94 (3/6)<br>(0.84-1.01)                  | (0/0)                |                               |
|                                        | Ce-141 | 18          | -                      | (0/18)                       | -    | -                     | < LLD                                      | (0/0)                |                               |
|                                        | Ce-144 | 18          | -                      | (0/18)                       | -    | -                     | < LLD                                      | (0/0)                |                               |
|                                        | Co-58  | 18          | -                      | (0/18)                       | •    | •                     | < LLD                                      | (0/0)                |                               |
|                                        | Co-60  | 18          | -                      | (0/18)                       | -    | -                     | < LLD                                      | (0/0)                |                               |
|                                        | Cr-51  | 18          | -                      | (0/18)                       | -    | -                     | < LLD                                      | (0/0)                |                               |
|                                        | Cs-134 | 18          | 60                     | (0/18)                       | -    | -                     | < LLD                                      | (0/0)                |                               |
|                                        | Cs-137 | 18          | 80                     | 0.05 (2/18)<br>(0.048-0.051) | 17   | 0.5 mi<br>NE          | 0.05 (2/6)<br>(0.048-0.051)                | (0/0)                |                               |
|                                        | Fe-59  | 18          | -                      | (0/18)                       | -    | -                     | < LLD                                      | (0/0)                |                               |
|                                        | I-131  | 18          | 60                     | (0/18)                       | -    | -                     | < LLD                                      | (0/0)                |                               |
|                                        | K-40   | 18          | -                      | 2.76 (18/18)<br>(1.36-3.74)  | 01   | 0.6 mi<br>NNW         | 3.07 (6/6)<br>(1.63-3.74)                  | (0/0)                |                               |
|                                        | La-140 | 18          | -                      | (0/18)                       | -    | •                     | < LLD                                      | (0/0)                |                               |
|                                        | Mn-54  | 18          | -                      | (0/18)                       | -    | -                     | < LLD                                      | (0/0)                |                               |
|                                        | Nb-95  | 18          | -                      | (0/18)                       | -    | -                     | < LLD                                      | (0/0)                |                               |
|                                        | Ru-103 | 18          | -                      | (0/18)                       | -    | -                     | < LLD                                      | (0/0)                |                               |
|                                        | Ru-106 | 18          | -                      | (0/18)                       | -    | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                                        | Sb-125 | 18          | -                      | (0/18)                       | -    | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |

Page 8 of 16

| Medium or<br>Pathway                   | Analy  | rsis        | *    | Indicator<br>Locations   | Locat | tion with Hig         | hest Mean                                  | Control<br>Locations   | Reported                      |
|----------------------------------------|--------|-------------|------|--------------------------|-------|-----------------------|--------------------------------------------|------------------------|-------------------------------|
| Sampled<br>(Units)                     | Туре   | Total<br>No | LLD  | Mean<br>Range            | Name  | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range          | Reported<br>Measure-<br>ments |
| Broadleaf<br>Vegetation<br>(pCi/g wet) | Th-228 | 18          | -    | (0/18)                   | •     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                  |                               |
|                                        | Zn-65  | 18          | -    | (0/18)                   | -     | -                     | < LLD                                      | (0/0)                  |                               |
|                                        | Zr-95  | 18          | -    | (0/18)                   | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                  |                               |
| Sea Water<br>(pCi/L)                   | Ba-140 | 16          | 60   | (0/12)                   | -     | -                     | < LLD                                      | (0/4)                  |                               |
|                                        | Be-7   | 16          | -    | (0/12)                   | -     | -                     | < LLD                                      | (0/4)                  |                               |
|                                        | Co-58  | 16          | 15   | (0/12)                   | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                  |                               |
|                                        | Co-60  | 16          | 15   | (0/12)                   | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                  |                               |
|                                        | Cr-51  | 16          | -    | (0/12)                   | -     | -                     | < LLD                                      | (0/4)                  |                               |
|                                        | Cs-134 | 16          | 15   | (0/12)                   | -     | -                     | < LLD                                      | (0/4)                  |                               |
|                                        | Cs-137 | 16          | 18   | (0/12)                   | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                  |                               |
|                                        | Fe-59  | 16          | 30   | (0/12)                   | -     | -                     | < LLD                                      | (0/4)                  |                               |
|                                        | H-3    | 16          | 2000 | 828 (7/12)<br>(243-1660) | 32    |                       | 828 (7/12)<br>(243-1660)                   | (0/4)                  |                               |
|                                        | I-131  | 16          | 15   | (0/12)                   | -     | -                     | < LLD                                      | (0/4)                  |                               |
|                                        | K-40   | 16          | -    | 288 (11/12)<br>(255-320) | 32    |                       | 288 (11/12)<br>(255-320)                   | 281 (3/4)<br>(241-337) |                               |
|                                        | La-140 | 16          | 15   | (0/12)                   | -     | -                     | < LLD                                      | (0/4)                  |                               |
|                                        | Mn-54  | 16          | 15   | (0/12)                   | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                  |                               |
|                                        | Nb-95  | 16          | 15   | (0/12)                   | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                  |                               |
|                                        | Ru-103 | 16          | -    | (0/12)                   | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                  |                               |

Page 9 of 16

| Medium or<br>Pathway           | Analy   | rsis        | *    | Indicator<br>Locations        | Locat | tion with Hig         | hest Mean                                  | Control<br>Locations      | Non-<br>Routine               |
|--------------------------------|---------|-------------|------|-------------------------------|-------|-----------------------|--------------------------------------------|---------------------------|-------------------------------|
| Sampled<br>(Units)             | Туре    | Total<br>No | LLD  | Mean<br>Range                 | Name  | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range             | Reported<br>Measure-<br>ments |
| Sea Water<br>(pCi/L)           | Ru-106  | 16          | -    | (0/12)                        | -     | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                     |                               |
|                                | Sb-125  | 16          | -    | (0/12)                        | -     | -                     | < LLD                                      | (0/4)                     |                               |
|                                | Th-228  | 16          | -    | (0/12)                        | -     | -                     | < LLD                                      | (0/4)                     |                               |
|                                | Zn-65   | 16          | 30   | (0/12)                        | -     | -                     | < LLD                                      | (0/4)                     |                               |
|                                | Zr-95   | 16          | 30   | (0/12)                        | -     | -                     | < LLD                                      | (0/4)                     |                               |
| Bottom Sediment<br>(pCi/g dry) | Ag-110m | 25          | -    | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                     |                               |
| (porg ary)                     | Be-7    | 25          | -    | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                     |                               |
|                                | Co-58   | 25          | -    | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                     |                               |
|                                | Co-60   | 25          | -    | 0.089 (2/23)<br>(0.083-0.094) | 39-X  | 0.8 mi<br>NE          | 0.089 (2/4)<br>(0.083-0.094)               | (0/2)                     |                               |
|                                | Cr-51   | 25          | -    | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                     |                               |
|                                | Cs-134  | 25          | 0.15 | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                     |                               |
|                                | Cs-137  | 25          | 0.18 | 0.105 (5/23)<br>(0.028-0.195) | 67-X  | 4.5 mi<br>NNW         | 0.147 (2/2)<br>(0.098-0.195)               | (0/2)                     |                               |
|                                | Fe-59   | 25          | -    | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                     |                               |
|                                | I-131   | 25          | -    | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                     |                               |
|                                | K-40    | 25          | -    | 13.8 (23/23)<br>(7.83-17)     | 36-X  | 3 mi<br>WSW           | 16.4 (1/1)<br>(16.4-16.4)                  | 15.6 (2/2)<br>(14.8-16.3) |                               |
|                                | Mn-54   | 25          | •    | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                     |                               |
|                                | Nb-95   | 25          | -    | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                     |                               |
|                                | Ru-103  | 25          | -    | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                     |                               |
|                                | Ru-106  | 25          | -    | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                     |                               |

Page 10 of 16

| Medium or<br>Pathway           | Analy   | sis         | *   | Indicator<br>Locations        | Locat | tion with Hig         | hest Mean                                  | Control<br>Locations        | Non-<br>Routine               |
|--------------------------------|---------|-------------|-----|-------------------------------|-------|-----------------------|--------------------------------------------|-----------------------------|-------------------------------|
| Sampled<br>(Units)             | Туре    | Total<br>No | LLD | Mean<br>Range                 | Name  | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range               | Reported<br>Measure-<br>ments |
| Bottom Sediment<br>(pCi/g dry) | Sb-125  | 25          | -   | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                       |                               |
|                                | Th-228  | 25          | -   | 0.959 (22/23)<br>(0.204-4.21) | 31    | 1.8 mi<br>NW          | 3.47 (2/2)<br>(2.72-4.21)                  | 0.477 (2/2)<br>(0.263-0.69) |                               |
|                                | Zn-65   | 25          | -   | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                       |                               |
|                                | Zr-95   | 25          | -   | (0/23)                        | -     | -                     | < LLD                                      | (0/2)                       |                               |
| Aquatic Flora (pCi/g wet)      | Ag-110m | 18          | -   | (0/18)                        | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                       |                               |
| • •                            | Be-7    | 18          | -   | 0.189 (2/18)<br>(0.138-0.24)  | 36-X  | 3 mi<br>WSW           | 0.24 (1/3)<br>(0.24-0.24)                  | (0/0)                       |                               |
|                                | Co-58   | 18          | -   | (0/18)                        | -     | -                     | < LLD                                      | (0/0)                       |                               |
|                                | Co-60   | 18          | -   | (0/18)                        | -     | -                     | < LLD                                      | (0/0)                       |                               |
|                                | Cr-51   | 18          | -   | (0/18)                        | -     | -                     | < LLD                                      | (0/0)                       |                               |
|                                | Cs-134  | 18          | -   | (0/18)                        | -     | -                     | < LLD                                      | (0/0)                       |                               |
|                                | Cs-137  | 18          | -   | (0/18)                        | -     | -                     | < LLD                                      | (0/0)                       |                               |
|                                | Fe-59   | 18          | -   | (0/18)                        | -     | -                     | < LLD                                      | (0/0)                       |                               |
|                                | I-131   | 18          | -   | 0.021 (1/18)<br>(0.021-0.021) | 36-X  | 3 mi<br>WSW           | 0.021 (1/3)<br>(0.021-0.021)               | (0/0)                       |                               |
|                                | K-40    | 18          | -   | 6.55 (18/18)<br>(4.83-9.01)   | 32-X  |                       | 7.28 (4/4)<br>(5.51-9.01)                  | (0/0)                       |                               |
|                                | Mn-54   | 18          | -   | (0/18)                        | -     | -                     | < LLD                                      | (0/0)                       |                               |
|                                | Nb-95   | 18          | -   | (0/18)                        | -     | -                     | < LLD                                      | (0/0)                       |                               |
|                                | Ru-103  | 18          | -   | (0/18)                        | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                       |                               |
|                                | Ru-106  | 18          | -   | (0/18)                        | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                       |                               |
|                                | Sb-125  | 18          | -   | (0/18)                        | -     | -                     | < LLD                                      | (0/0)                       |                               |

Page 11 of 16

| Medium or<br>Pathway         | Analy   | rsis        | *    | Indicator<br>Locations        | Locat | tion with Hig         | hest Mean                                  | Control<br>Locations | Non-<br>Routine               |
|------------------------------|---------|-------------|------|-------------------------------|-------|-----------------------|--------------------------------------------|----------------------|-------------------------------|
| Sampled<br>(Units)           | Туре    | Total<br>No | LLD  | Mean<br>Range                 | Name  | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range        | Reported<br>Measure-<br>ments |
| Aquatic Flora<br>(pCi/g wet) | Th-228  | 18          | -    | 0.044 (1/18)<br>(0.044-0.044) | 36-X  | 3 mi<br>WSW           | 0.044 (1/3)<br>(0.044-0.044)               | (0/0)                |                               |
|                              | Zn-65   | 18          | -    | (0/18)                        | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Zr-95   | 18          | -    | (0/18)                        | -     | -                     | < LLD                                      | (0/0)                |                               |
| Fish-Flounder<br>(pCi/g wet) | Ag-110m | 6           | -    | (0/6)                         | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                              | Be-7    | 6           | -    | (0/6)                         | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Co-58   | 6           | 0.13 | (0/6)                         | •     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Co-60   | 6           | 0.13 | (0/6)                         | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                              | Cr-51   | 6           | -    | (0/6)                         | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Cs-134  | 6           | 0.13 | (0/6)                         | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Cs-137  | 6           | 0.15 | (0/6)                         | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Fe-59   | 6           | 0.26 | (0/6)                         | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | I-131   | 6           | -    | (0/6)                         | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | K-40    | 6           | -    | 3.46 (6/6)<br>(2.89-4.09)     | 35    | 0.3 mi<br>WNW         | 3.79 (3/3)<br>(3.57-4.09)                  | (0/0)                |                               |
|                              | Mn-54   | 6           | 0.13 | (0/6)                         | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Nb-95   | 6           | -    | (0/6)                         | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Ru-103  | 6           | -    | (0/6)                         | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Ru-106  | 6           | -    | (0/6)                         | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                              | Sb-125  | 6           | -    | (0/6)                         | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                              | Th-228  | 6           | -    | (0/6)                         | -     | -                     | < LLD                                      | (0/0)                |                               |

Page 12 of 16

| Medium or<br>Pathway         | Analy   | sis .       | * Indicator Locations |                             | Loca | tion with Hig         | hest Mean                                  | Control<br>Locations | Non-<br>Routine               |
|------------------------------|---------|-------------|-----------------------|-----------------------------|------|-----------------------|--------------------------------------------|----------------------|-------------------------------|
| Sampled<br>(Units)           | Туре    | Total<br>No | LLD                   | Mean<br>Range               | Name | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range        | Reported<br>Measure-<br>ments |
| Fish-Flounder<br>(pCi/g wet) | Zn-65   | 6           | 0.26                  | (0/6)                       | -    | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                              | Zr-95   | 6           | -                     | (0/6)                       | -    | -                     | < LLD                                      | (0/0)                |                               |
| Fish-Other<br>(pCi/g wet)    | Ag-110m | 12          | -                     | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |
|                              | Be-7    | 12          | -                     | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |
|                              | Co-58   | 12          | 0.13                  | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |
|                              | Co-60   | 12          | 0.13                  | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |
|                              | Cr-51   | 12          | -                     | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |
|                              | Cs-134  | 12          | 0.13                  | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |
|                              | Cs-137  | 12          | 0.15                  | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |
|                              | Fe-59   | 12          | 0.26                  | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |
|                              | I-131   | 12          | -                     | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |
|                              | K-40    | 12          | -                     | 3.18 (12/12)<br>(1.48-4.22) | 40-X |                       | 3.52 (4/4)<br>(2.9-4.03)                   | (0/0)                |                               |
|                              | Mn-54   | 12          | 0.13                  | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |
|                              | Nb-95   | 12          | -                     | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |
|                              | Ru-103  | 12          | -                     | (0/12)                      | -    | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                              | Ru-106  | 12          | -                     | (0/12)                      | -    | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                              | Sb-125  | 12          | -                     | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |
|                              | Th-228  | 12          | -                     | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |
|                              | Zn-65   | 12          | 0.26                  | (0/12)                      | -    | -                     | < LLD                                      | (0/0)                |                               |

Page 13 of 16

| Medium or<br>Pathway   | Analy   | rsis        | *    | Indicator<br>Locations    | Locat | ion with Hig          | hest Mean                                  | Control<br>Locations | Non-<br>Routine               |
|------------------------|---------|-------------|------|---------------------------|-------|-----------------------|--------------------------------------------|----------------------|-------------------------------|
| Sampled<br>(Units)     | Туре    | Total<br>No | LLD  | Mean<br>Range             | Name  | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range        | Reported<br>Measure-<br>ments |
| Fish-Other (pCi/g wet) | Zr-95   | 12          | -    | (0/12)                    | _     | <u>.</u>              | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
| Mussels<br>(pCi/g wet) | Ag-110m | 8           | -    | (0/8)                     | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                        | Be-7    | 8           | -    | (0/8)                     | -     | -                     | < LLD                                      | (0/0)                |                               |
|                        | Co-58   | 8           | 0.13 | (0/8)                     | -     | -                     | < LLD                                      | (0/0)                |                               |
|                        | Co-60   | 8           | 0.13 | (0/8)                     | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                        | Cr-51   | 8           | -    | (0/8)                     | -     | -                     | < LLD                                      | (0/0)                |                               |
|                        | Cs-134  | 8           | 0.13 | (0/8)                     | -     | -                     | < LLD                                      | (0/0)                |                               |
|                        | Cs-137  | 8           | 0.15 | (0/8)                     | -     | -                     | < LLD                                      | (0/0)                |                               |
|                        | Fe-59   | 8           | 0.26 | (0/8)                     | -     | -                     | < LLD                                      | (0/0)                |                               |
|                        | I-131   | 8           | -    | (0/8)                     | -     | -                     | < LLD                                      | (0/0)                |                               |
|                        | K-40    | 8           | -    | 1.76 (8/8)<br>(1.39-2.03) | 30    | 1.5 mi<br>NNW         | 1.79 (4/4)<br>(1.51-2.03)                  | (0/0)                |                               |
|                        | Mn-54   | 8           | 0.13 | (0/8)                     | -     | •                     | < LLD                                      | (0/0)                |                               |
|                        | Nb-95   | 8           | -    | (0/8)                     | -     | -                     | < LLD                                      | (0/0)                |                               |
|                        | Ru-103  | 8           | -    | (0/8)                     | -     | -                     | < LLD                                      | (0/0)                |                               |
|                        | Ru-106  | 8           | -    | (0/8)                     | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                        | Sb-125  | 8           | -    | (0/8)                     | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                        | Th-228  | 8           | -    | (0/8)                     | -     | -                     | < LLD                                      | (0/0)                |                               |
|                        | Zn-65   | 8           | 0.26 | (0/8)                     | -     | -                     | < LLD                                      | (0/0)                |                               |
|                        | Zr-95   | 8           | -    | (0/8)                     | -     | -                     | < LLD                                      | (0/0)                |                               |

Page 14 of 16

| Medium or<br>Pathway   | Analysis |             | *    | 1 Locations                   |      | tion with Hig         | hest Mean                                  | Control<br>Locations      | Non-<br>Routine<br>Reported   |
|------------------------|----------|-------------|------|-------------------------------|------|-----------------------|--------------------------------------------|---------------------------|-------------------------------|
| Sampled<br>(Units)     | Type     | Total<br>No | LLD  | Mean<br>Range                 | Name | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range             | Reported<br>Measure-<br>ments |
| Oysters<br>(pCi/g wet) | Ag-110m  | 23          | -    | 0.082 (6/19)<br>(0.042-0.136) | 40-X |                       | 0.091 (4/4)<br>(0.057-0.136)               | (0/4)                     |                               |
|                        | Be-7     | 23          | -    | (0/19)                        | -    | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                     |                               |
|                        | Co-58    | 23          | 0.13 | (0/19)                        | -    | -                     | < LLD                                      | (0/4)                     |                               |
|                        | Co-60    | 23          | 0.13 | (0/19)                        | -    | -                     | < LLD                                      | (0/4)                     |                               |
|                        | Cr-51    | 23          | -    | (0/19)                        | -    | -                     | < LLD                                      | (0/4)                     |                               |
|                        | Cs-134   | 23          | 0.13 | (0/19)                        | -    | -                     | < LLD                                      | (0/4)                     |                               |
|                        | Cs-137   | 23          | 0.15 | (0/19)                        | -    | -                     | < LLD                                      | (0/4)                     |                               |
|                        | Fe-59    | 23          | 0.26 | (0/19)                        | -    | -                     | < LLD                                      | (0/4)                     |                               |
|                        | I-131    | 23          | -    | (0/19)                        | -    | -                     | < LLD                                      | (0/4)                     |                               |
|                        | K-40     | 23          | -    | 1.71 (19/19)<br>(1.29-2.94)   | 32   |                       | 2.01 (4/4)<br>(1.37-2.94)                  | 1.73 (4/4)<br>(1.63-1.87) |                               |
|                        | Mn-54    | 23          | 0.13 | (0/19)                        | -    | -                     | < LLD                                      | (0/4)                     |                               |
|                        | Nb-95    | 23          | -    | (0/19)                        | -    | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                     |                               |
|                        | Ru-103   | 23          | -    | (0/19)                        | -    | -                     | < LLD                                      | (0/4)                     |                               |
|                        | Ru-106   | 23          | -    | (0/19)                        | -    | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                     |                               |
|                        | Sb-125   | 23          | -    | (0/19)                        | -    | -                     | <lld< td=""><td>(0/4)</td><td></td></lld<> | (0/4)                     |                               |
|                        | Th-228   | 23          | -    | (0/19)                        | -    | -                     | < LLD                                      | (0/4)                     |                               |
|                        | Zn-65    | 23          | 0.26 | (0/19)                        | -    | -                     | < LLD                                      | (0/4)                     |                               |
|                        | Zr-95    | 23          | -    | (0/19)                        | -    | -                     | < LLD                                      | (0/4)                     |                               |

Page 15 of 16

| Medium or<br>Pathway | Analy   | sis         | *    | Indicator<br>Locations      | Locat | ion with Hig          | hest Mean                                  | Control<br>Locations | Non-<br>Routine               |
|----------------------|---------|-------------|------|-----------------------------|-------|-----------------------|--------------------------------------------|----------------------|-------------------------------|
| Sampled<br>(Units)   | Type    | Total<br>No | LLD  | Mean<br>Range               | Name  | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range        | Reported<br>Measure-<br>ments |
| Clams<br>(pCi/g wet) | Ag-110m | 16          |      | (0/16)                      | -     | •                     | < LLD                                      | (0/0)                |                               |
|                      | Be-7    | 16          | -    | (0/16)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                      | Co-58   | 16          | 0.13 | (0/16)                      | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                      | Co-60   | 16          | 0.13 | (0/16)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                      | Cr-51   | 16          | -    | (0/16)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                      | Cs-134  | 16          | 0.13 | (0/16)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                      | Cs-137  | 16          | 0.15 | (0/16)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                      | Fe-59   | 16          | 0.26 | (0/16)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                      | I-131   | 16          | -    | (0/16)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                      | K-40    | 16          | -    | 1.76 (16/16)<br>(1.28-2.22) | 29    | 0.4 mi<br>NNE         | 1.89 (4/4)<br>(1.52-2.22)                  | (0/0)                |                               |
|                      | Mn-54   | 16          | 0.13 | (0/16)                      | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                      | Nb-95   | 16          | -    | (0/16)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                      | Ru-103  | 16          | -    | (0/16)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                      | Ru-106  | 16          | -    | (0/16)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                      | Sb-125  | 16          | -    | (0/16)                      | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                      | Th-228  | 16          | -    | (0/16)                      | -     | •                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                      | Zn-65   | 16          | 0.26 | (0/16)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                      | Zr-95   | 16          | -    | (0/16)                      | -     | -                     | < LLD                                      | (0/0)                |                               |

Page 16 of 16

| Medium or<br>Pathway         | Analy   | rsis        | *    | Indicator<br>Locations      | Locat | tion with Hig         | hest Mean                                  | Control<br>Locations | Non-<br>Routine               |
|------------------------------|---------|-------------|------|-----------------------------|-------|-----------------------|--------------------------------------------|----------------------|-------------------------------|
| Sampled<br>(Units)           | Туре    | Total<br>No | LLD  | Mean<br>Range               | Name  | Distance<br>Direction | Mean<br>Range                              | Mean<br>Range        | Reported<br>Measure-<br>ments |
| Lobsters (Crabs) (pCi/g wet) | Ag-110m | 12          | •    | (0/12)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Be-7    | 12          | -    | (0/12)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Co-58   | 12          | 0.13 | (0/12)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Co-60   | 12          | 0.13 | (0/12)                      | -     | <u>.</u> .            | < LLD                                      | (0/0)                |                               |
|                              | Cr-51   | 12          | -    | (0/12)                      | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                              | Cs-134  | 12          | 0.13 | (0/12)                      | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                              | Cs-137  | 12          | 0.15 | (0/12)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Fe-59   | 12          | 0.26 | (0/12)                      | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                              | I-131   | 12          | -    | (0/12)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | K-40    | 12          | -    | 2.05 (12/12)<br>(1.42-2.45) | 37-X  | 3.5 mi<br>WSW         | 2.17 (4/4)<br>(2-2.31)                     | (0/0)                |                               |
|                              | Mn-54   | 12          | 0.13 | (0/12)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Nb-95   | 12          | -    | (0/12)                      | •     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Ru-103  | 12          | -    | (0/12)                      | •     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Ru-106  | 12          | -    | (0/12)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Sb-125  | 12          | -    | (0/12)                      | -     | -                     | < LLD                                      | (0/0)                |                               |
|                              | Th-228  | 12          | -    | (0/12)                      | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                              | Zn-65   | 12          | 0.26 | (0/12)                      | -     | -                     | <lld< td=""><td>(0/0)</td><td></td></lld<> | (0/0)                |                               |
|                              | Zr-95   | 12          | -    | (0/12)                      | -     | -                     | < LLD                                      | (0/0)                |                               |

#### **NOTES FOR TABLE 3-1**

\* For gamma measurements the (Minimum Detectable Level) MDL <u>responds</u> LLD / 2.33. For all others, MDL = 2 x (the standard deviation of the background). These MDL's are based on the absence of large amounts of interfering activity (excluding naturally occurring radionuclides). Deviations by about factors of 3 to 4 can occur.

The LLD at a confidence level of 95% is the smallest concentration of radioactive material in a sample that will be detected with a 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66 \, S_b}{E * V * 2.22 * Y * \exp(-\lambda \Delta t)}$$

where,

LLD is the lower limit of detection as defined above (as pCi per unit mass or volume)

S<sub>b</sub> is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute)

E is the counting efficiency (as counts per transformation)

*V* is the sample size (in units of mass or volume)

2.22 is the number of transformation per minute per picoCurie

Y is the fractional radiochemical yield (when applicable)

λ is the radioactive decay constant for the particular radionuclide

 $\Delta t$  is the elapsed time between sample collection (or end of the sample collection period) and time of counting

The LLD is a defined a priori (before the fact) limit representing the capability of a measurement system and not an a posteriori (after the fact) limit for a particular measurement.

Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally background fluctuations, unavoidably small sample sizes, the presence of interfering nuclides, or other uncontrollable circumstances may render these a priori LLDs unachievable. In such cases, the contributing factors will be identified and described in the Annual Radiological Environmental Operating Report. As shown in the equation above, for composite samples taken over a period of time (e.g., seawater), the LLD is decayed to the end of the sample period (especially important for I-131, Ba-140 and La-140).

The listed value for I-131 in Fruits and Vegetables is only applicable for leafy vegetables.

#### 3.2. Data Tables

The data reported in this section are strictly counting statistics. The reported error is two times the standard deviation  $(2\sigma)$  of the net activity. Unless otherwise noted, the overall error (counting, sample size, chemistry, errors, etc.) is estimated to be 2 to 5 times that listed. Results are considered positive when the measured value exceeds 1.5 times the listed  $2\sigma$  error (i.e., the measured value exceeds  $3\sigma$ ).

Because of counting statistics, negative values, zeros and numbers below the Minimum Detectable Level (MDL) are statistically valid pieces of data. For the purposes of this report, in order to indicate any background biases, all the valid data are presented. This practice is recommended by HASL ("Reporting of Analytical Results from HASL," letter by Leo B. Higginbotham) and NUREG/CR-4007 (Sept. 1984). In instances where zeros are listed after significant digits, this is an artifact of the computer data-handling program.

Data are given according to sample type (numbers listed below correspond to Table number) as indicated below.

- 1. Gamma Exposure Rate
- 2. Air Particulates, Gross Beta Radioactivity
- 3. Air Particulates, Weekly I-131
- 4. Air Particulates, Quantitative Gamma Spectra
- 5. Air Particulates, Quarterly Strontium\*
- 6. Soil
- 7. Milk Dairy Farms\*
- 8. Milk Goat Farms
- 9. Pasture Grass
- 10.Well Water
- 11.Reservoir Water\*
- 12.Fruits & Vegetables
- 13.Broad Leaf Vegetation
- 14.Seawater
- 15.Bottom Sediment
- 16.Aquatic Flora
- 17.Fin Fish
- 18.Mussels
- 19.Oysters
- 20.Clams
- 21.Scallops\*
- 22.Lobster (and Crabs)
- \* This type of sampling or analysis was not performed; therefore there is no table.

Table 1, Quarterly TLD Gamma Exposure Rate (uR/hr)

| Location<br>Number | First<br>Quarter | Second<br>Quarter | Third<br>Quarter                 | Fourth<br>Quarter                  | Average ± 2 s.d.                   |
|--------------------|------------------|-------------------|----------------------------------|------------------------------------|------------------------------------|
| 01                 | 0.74   0.22      | *                 | $8.90 \pm 0.23$                  | 024 1 024                          | 0.66 1.0.47                        |
| 01                 | $8.74 \pm 0.33$  | •                 |                                  | $8.34 \pm 0.24$                    | $8.66 \pm 0.47$                    |
| 02                 | $10.33 \pm 0.27$ |                   | $10.83 \pm 0.30$                 | $9.81 \pm 0.25$                    | $10.32 \pm 0.83$                   |
| 03                 | $7.55 \pm 0.49$  |                   | $6.91 \pm 0.24$                  | $6.33 \pm 0.23$                    | $6.93 \pm 1.00$<br>$8.48 \pm 1.10$ |
| 04                 | $8.79 \pm 0.32$  |                   | $8.94 \pm 0.28$ $10.22 \pm 0.31$ | $7.71 \pm 0.21$<br>$9.03 \pm 0.26$ | $8.48 \pm 1.10$ $9.58 \pm 0.98$    |
| 05                 | 9.49 ± 0.40      |                   |                                  |                                    |                                    |
| 06                 | $8.87 \pm 0.28$  |                   | $8.98 \pm 0.40$                  | $8.18 \pm 0.35$                    | $8.68 \pm 0.71$                    |
| 07                 | $5.88 \pm 0.20$  |                   | $5.39 \pm 0.15$                  | $4.41 \pm 0.30$                    | $5.23 \pm 1.22$                    |
| 08                 | $11.96 \pm 0.48$ |                   | $12.72 \pm 0.34$                 | $11.30 \pm 0.54$                   | $11.99 \pm 1.16$                   |
| 09                 | $9.62 \pm 0.22$  |                   | $10.14 \pm 0.47$                 | $9.12 \pm 0.22$                    | $9.63 \pm 0.83$                    |
| 10                 | $8.62 \pm 0.19$  |                   | $8.98 \pm 0.39$                  | $8.34 \pm 0.38$                    | $8.65 \pm 0.52$                    |
| 11                 | $7.39 \pm 0.18$  |                   | $7.65 \pm 0.27$                  | $7.18 \pm 0.24$                    | $7.41 \pm 0.38$                    |
| 12-C               | $7.73 \pm 0.33$  |                   | $8.17 \pm 0.39$                  | 7.67 ± 0.44                        | $7.86 \pm 0.45$                    |
| 13-C               | $8.93 \pm 0.39$  |                   | $9.09 \pm 0.27$                  | $8.14 \pm 0.40$                    | $8.72 \pm 0.83$                    |
| 14-C               | $9.60 \pm 0.31$  |                   | $10.38 \pm 0.37$                 | $9.55 \pm 0.37$                    | $9.84 \pm 0.76$                    |
| 15-C               | $7.99 \pm 0.19$  |                   | $8.74 \pm 0.44$                  | $7.69 \pm 0.51$                    | $8.14 \pm 0.88$                    |
| 16-C               | $6.84 \pm 0.91$  |                   | $7.25 \pm 0.33$                  | $5.52 \pm 0.23$                    | $6.54 \pm 1.48$                    |
| 27                 | $9.40 \pm 0.22$  |                   | $9.78 \pm 0.35$                  | $8.67 \pm 0.35$                    | $9.28 \pm 0.92$                    |
| 41                 | $7.10 \pm 0.43$  |                   | $7.69 \pm 0.46$                  | $6.41 \pm 0.19$                    | $7.07 \pm 1.05$                    |
| 42                 | $8.18 \pm 0.24$  |                   | $8.75 \pm 0.22$                  | $7.46 \pm 0.37$                    | $8.13 \pm 1.06$                    |
| 43                 | $6.80 \pm 0.26$  |                   | $7.50 \pm 0.21$                  | $6.38 \pm 0.23$                    | $6.89 \pm 0.92$                    |
| 44                 | $9.09 \pm 0.60$  |                   | $10.32 \pm 0.44$                 | $8.29 \pm 0.28$                    | $9.23 \pm 1.67$                    |
| 45                 | $7.40 \pm 0.25$  |                   | $8.03 \pm 0.20$                  | $6.82 \pm 0.19$                    | $7.42 \pm 0.99$                    |
| 46                 | $8.02 \pm 0.42$  |                   | $8.40 \pm 0.23$                  | $7.62 \pm 0.38$                    | $8.01 \pm 0.64$                    |
| 47                 | $7.62 \pm 0.21$  |                   | $8.64 \pm 0.30$                  | $7.46 \pm 0.26$                    | $7.91 \pm 1.05$                    |
| 48                 | $9.90 \pm 0.32$  |                   | $10.43 \pm 0.63$                 | $9.37 \pm 0.37$                    | $9.90 \pm 0.87$                    |
| 49                 | $7.33 \pm 0.24$  |                   | $8.20 \pm 0.20$                  | $6.75 \pm 0.34$                    | $7.43 \pm 1.19$                    |
| 50                 | $7.72 \pm 0.18$  |                   | $8.61 \pm 0.31$                  | $7.10 \pm 0.18$                    | $7.81 \pm 1.24$                    |
| 51                 | $6.46 \pm 0.39$  |                   | $7.16 \pm 0.43$                  | $5.50 \pm 0.17$                    | $6.37 \pm 1.36$                    |
| 52                 | $7.24 \pm 0.36$  |                   | $7.82 \pm 0.22$                  | $6.86 \pm 0.40$                    | $7.31 \pm 0.79$                    |
| 53                 | $8.11 \pm 0.27$  |                   | $8.67 \pm 0.29$                  | $7.42 \pm 0.28$                    | $8.07 \pm 1.02$                    |
| 55                 | $7.99 \pm 0.27$  |                   | $7.98 \pm 0.23$                  | $7.15 \pm 0.17$                    | $7.71 \pm 0.79$                    |
| 56                 | $7.30 \pm 0.42$  |                   | $7.13 \pm 0.23$                  | $6.39 \pm 0.48$                    | $6.94 \pm 0.79$                    |
| 57                 | $7.62 \pm 0.31$  |                   | $8.06 \pm 0.31$                  | $6.90 \pm 0.24$                    | $7.53 \pm 0.96$                    |
| 59                 | $7.83 \pm 0.27$  |                   | $9.10 \pm 0.24$                  | $7.83 \pm 0.39$                    | $8.25 \pm 1.20$                    |
| 60                 | $8.16 \pm 0.49$  |                   | $8.09 \pm 0.22$                  | $7.13 \pm 0.34$                    | $7.79 \pm 0.94$                    |
| 61                 | $7.82 \pm 0.18$  |                   | $8.27 \pm 0.32$                  | $7.42 \pm 0.34$                    | $7.84 \pm 0.69$                    |
| 62                 | $8.12 \pm 0.23$  |                   | $8.92 \pm 0.30$                  | $7.98 \pm 0.43$                    | $8.34 \pm 0.83$                    |
| 63                 | $9.43 \pm 0.38$  |                   | $9.65 \pm 0.35$                  | $9.13 \pm 0.30$                    | $9.40 \pm 0.43$                    |
| 64                 | $7.91 \pm 0.26$  |                   | $7.99 \pm 0.26$                  | $7.41 \pm 0.23$                    | $7.77 \pm 0.51$                    |
| 65                 | $7.74 \pm 0.48$  |                   | $8.20 \pm 0.23$                  | $7.27 \pm 0.26$                    | $7.74 \pm 0.76$                    |
| 66-X               | $7.56 \pm 0.24$  |                   | $7.42 \pm 0.23$                  | $6.47 \pm 0.20$                    | $7.15 \pm 0.97$                    |
| 73-X               | $10.10 \pm 0.46$ |                   | $9.88 \pm 0.23$                  | $9.26 \pm 0.34$                    | $9.75 \pm 0.71$                    |

## Table 1, Quarterly TLD Gamma Exposure Rate (uR/hr)

| Location<br>Number | First<br>Quarter | Second<br>Quarter | Third<br>Quarter | Fourth<br>Quarter | Average ± 2 s.d. |
|--------------------|------------------|-------------------|------------------|-------------------|------------------|
| 74-X               | 7.42 ± 0.25      |                   | $8.24 \pm 0.24$  | $7.54 \pm 0.19$   | $7.73 \pm 0.72$  |
| 75-X               | $7.03 \pm 0.30$  |                   | $7.37 \pm 0.35$  | $6.83 \pm 0.29$   | $7.08 \pm 0.45$  |

03/22 - 03/28

 $Qtr Avg \pm 2 sd$ 

 $22.5 \pm 4.6$ 

 $22.6 \pm 11.9$ 

 $25.3 \pm 4.8$ 

 $23.4 \pm 12.2$ 

Table 2, Air Particulate Gross Beta Radioactivity (pCi/m3 x 1000)

| Collection<br>Date |                |                | Locations      |                |                |                |
|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| JANUARY_           | 01             | 02             | 03             | 04             | 10             | 11             |
| 12/29 - 01/04      | 31.9 ± 4.0 #   | 33.3 ± 4.2     | $33.4 \pm 4.3$ | $33.9 \pm 3.7$ | $35.3 \pm 4.1$ | $37.1 \pm 4.1$ |
| 01/05 - 01/11      | $25.3 \pm 3.6$ | $24.1 \pm 3.7$ | $26.4 \pm 3.9$ | $21.4 \pm 3.1$ | $22.7 \pm 3.4$ | $23.9 \pm 3.6$ |
| 01/12 - 01/18      | $20.2 \pm 4.0$ | $19.3 \pm 4.2$ | $16.6 \pm 4.2$ | $16.1 \pm 3.4$ | $16.7 \pm 3.7$ | $18.0 \pm 3.9$ |
| 01/19 - 01/25      | $22.3 \pm 3.6$ | $17.0 \pm 3.6$ | $20.0 \pm 3.9$ | $21.6 \pm 3.4$ | $20.7 \pm 3.6$ | $17.7 \pm 3.7$ |
| <b>FEBRUARY</b>    | 01             | 02             | 03             | 04             | 10             | <b>11</b>      |
| 01/26 - 02/01      | 16.1 ± 3.4     | 16.1 ± 3.6     | 19.9 ± 3.9     | $18.4 \pm 3.2$ | $19.0 \pm 3.5$ | $20.8 \pm 3.7$ |
| 02/02 - 02/08      | $11.9 \pm 4.3$ | $16.8 \pm 7.7$ | $15.0 \pm 4.8$ | $13.9 \pm 3.9$ | $13.4 \pm 4.2$ | $14.4 \pm 4.4$ |
| 02/09 - 02/15      | $31.8 \pm 4.4$ | $27.6 \pm 4.5$ | $34.6 \pm 4.8$ | $26.8 \pm 3.8$ | $31.5 \pm 4.5$ | $34.2 \pm 4.5$ |
| 02/16 - 02/22      | $28.9 \pm 3.7$ | $26.9 \pm 3.9$ | $29.7 \pm 4.0$ | $31.8 \pm 3.5$ | $31.9 \pm 4.0$ | $32.1 \pm 3.9$ |
| 02/23 - 02/29      | $24.4 \pm 4.3$ | $25.5 \pm 4.6$ | $25.8 \pm 4.7$ | $25.4 \pm 3.8$ | $25.2 \pm 4.5$ | $21.8 \pm 4.3$ |
| <b>MARCH</b>       | 01             | 02             | 03             | 04             | 10             | 11             |
| 03/01 - 03/07      | $16.9 \pm 3.5$ | $16.1 \pm 3.7$ | $16.7 \pm 3.7$ | $16.7 \pm 3.1$ | $17.8 \pm 3.7$ | $15.6 \pm 3.5$ |
| 03/08 - 03/14      | $18.9 \pm 3.4$ | $16.0 \pm 3.5$ | $17.2 \pm 3.5$ | $15.5 \pm 2.8$ | $19.0 \pm 3.4$ | $16.7 \pm 3.3$ |
| 03/15 - 03/21      | $20.7 \pm 3.9$ | $14.4 \pm 3.6$ | $17.1 \pm 3.7$ | $17.0 \pm 3.0$ | $16.5 \pm 3.5$ | $19.0 \pm 3.6$ |
| 03/22 - 03/28      | $18.0 \pm 4.1$ | $18.8 \pm 4.3$ | $21.0 \pm 4.4$ | $23.3 \pm 3.7$ | $23.4 \pm 4.2$ | $24.9 \pm 4.3$ |
| Qtr Avg ± 2 sd     | 22.1 ± 11.8    | 20.9 ± 11.3    | 22.6 ± 12.9    | 21.7 ± 12.2    | 22.5 ± 12.9    | 22.8 ± 14.2    |
| <u>JANUARY</u>     | 15-C           | 27             |                |                |                |                |
| 12/29 - 01/04      | $35.0 \pm 4.4$ | $33.9 \pm 4.3$ |                |                |                |                |
| 01/05 - 01/11      | $25.6 \pm 3.9$ | $23.1 \pm 3.8$ |                |                |                |                |
| 01/12 - 01/18      | $16.3 \pm 4.3$ | $18.4 \pm 4.2$ |                |                |                |                |
| 01/19 - 01/25      | $21.7 \pm 4.1$ | $20.8 \pm 4.1$ |                |                |                |                |
| <b>FEBRUARY</b>    | 15-C           | 27             |                |                |                |                |
| 01/26 - 02/01      | $19.4 \pm 3.9$ | $19.6 \pm 3.9$ |                |                |                |                |
| 02/02 - 02/08      | $17.2 \pm 4.9$ | $14.1 \pm 4.8$ |                |                |                |                |
| 02/09 - 02/15      | $34.0 \pm 5.0$ | $33.5 \pm 4.8$ |                |                |                |                |
| 02/16 - 02/22      | $27.0 \pm 4.0$ | $32.2 \pm 4.2$ |                |                |                |                |
| 02/23 - 02/29      | $21.0 \pm 4.6$ | $25.7 \pm 4.9$ |                |                |                |                |
| <b>MARCH</b>       | 15-C           | 27             |                |                |                |                |
| 03/01 - 03/07      | $18.3 \pm 4.0$ | $19.0 \pm 4.1$ |                | _              |                |                |
| 03/08 - 03/14      | $17.5 \pm 3.7$ | $19.4 \pm 3.8$ |                | •              |                |                |
| 03/15 - 03/21      | $18.0 \pm 3.9$ | $19.2 \pm 4.1$ |                |                |                |                |
|                    | 00.5 . 4.5     | 050.40         |                |                |                |                |

 $Qtr Avg \pm 2 sd$ 

 $17.7 \pm 8.9$ 

 $17.3 \pm 8.8$ 

Table 2, Air Particulate Gross Beta Radioactivity (pCi/m3 x 1000)

| Collection<br>Date |                         |                | Locations      |                |                |                |
|--------------------|-------------------------|----------------|----------------|----------------|----------------|----------------|
| APRIL              | 01                      | 02             | 03             | 04             | 10             | 11             |
| 03/29 - 04/04      | $8.4 \pm 3.0$           | $7.6 \pm 3.1$  | $8.5 \pm 3.1$  | $8.9 \pm 2.6$  | $7.7 \pm 3.0$  | $6.8 \pm 2.8$  |
| 04/05 - 04/11      | $16.3 \pm 3.6$          | $17.5 \pm 4.0$ | $14.3 \pm 3.8$ | $17.6 \pm 3.3$ | $13.9 \pm 3.6$ | $16.2 \pm 3.7$ |
| 04/12 - 04/18      | $17.9 \pm 3.5$          | $19.1 \pm 3.4$ | $20.3 \pm 3.4$ | $21.1 \pm 3.1$ | $19.3 \pm 3.3$ | $27.2 \pm 5.9$ |
| 04/19 - 04/25      | $17.0 \pm 3.6$          | $14.3 \pm 2.9$ | $17.5 \pm 3.1$ | $15.8 \pm 3.0$ | $17.4 \pm 3.0$ | $15.4 \pm 2.9$ |
| MAY                | 01                      | 02             | 03             | 04             | 10             | 11             |
| 04/26 - 05/02      | $17.1 \pm 4.3$          | $17.7 \pm 3.5$ | $17.4 \pm 3.6$ | $16.9 \pm 3.6$ | $15.4 \pm 3.4$ | $17.7 \pm 3.6$ |
| 05/03 - 05/09      | $19.3 \pm 4.0$          | $20.8 \pm 3.3$ | $21.3 \pm 4.3$ | $23.2 \pm 3.5$ | $21.4 \pm 3.3$ | $22.9 \pm 3.4$ |
| 05/10 - 05/16      | $22.4 \pm 4.1$          | $18.2 \pm 3.2$ | $22.0 \pm 3.4$ | $23.8 \pm 3.5$ | $25.1 \pm 3.4$ | $27.2 \pm 3.5$ |
| 05/17 - 05/23      | $21.1 \pm 4.2$          | $17.2 \pm 3.2$ | $19.6 \pm 4.1$ | $19.9 \pm 3.4$ | $20.3 \pm 3.3$ | $19.6 \pm 4.1$ |
| 05/24 - 05/30      | $12.8 \pm 4.9$          | $12.1 \pm 3.8$ | $11.6 \pm 3.9$ | $15.0 \pm 4.0$ | $12.9 \pm 3.8$ | $12.0 \pm 3.8$ |
| <u>JUNE</u>        | 01                      | 02             | 03             | 04             | 10             | 11             |
| 05/31 - 06/06      | $9.1 \pm 3.9$           | $9.6 \pm 3.1$  | $12.3 \pm 3.4$ | $11.2 \pm 3.3$ | $10.4 \pm 3.1$ | $10.2 \pm 3.1$ |
| 06/07 - 06/13      | $19.1 \pm 4.0$          | $14.3 \pm 3.1$ | $16.4 \pm 3.3$ | $15.2 \pm 3.2$ | $14.7 \pm 3.1$ | $16.7 \pm 3.2$ |
| 06/14 - 06/20      | $15.4 \pm 4.5$          | $14.1 \pm 3.6$ | $17.3 \pm 3.9$ | $14.3 \pm 3.7$ | $16.0 \pm 3.6$ | $15.2 \pm 3.6$ |
| 06/21 - 06/27      | $23.8 \pm 4.0$          | $17.6 \pm 3.1$ | $20.8 \pm 3.3$ | $18.2 \pm 3.2$ | $22.1 \pm 3.3$ | $23.2 \pm 3.3$ |
| $Qtr Avg \pm 2 sd$ | $16.9 \pm 8.9$          | $15.4 \pm 7.4$ | $16.9 \pm 8.0$ | $17.0 \pm 8.4$ | $16.7 \pm 9.5$ | 17.7 ± 11.9    |
| APRIL_             | 15-C                    | 27             |                |                |                |                |
| 03/29 - 04/04      | $8.8 \pm 3.3$           | 8.1 ± 3.4      |                |                |                |                |
| 04/05 - 04/11      | 6.6 ± 5.5<br>19.5 ± 4.3 | 19.6 ± 4.4     |                |                |                |                |
| 04/12 - 04/18      | $21.6 \pm 3.4$          | $20.7 \pm 3.4$ |                |                |                |                |
| 04/19 - 04/25      | $14.6 \pm 2.8$          | $15.7 \pm 2.9$ |                |                |                |                |
| MAY                | 15-C                    | 27             |                |                |                |                |
| 04/26 - 05/02      | $17.1 \pm 3.4$          | $18.7 \pm 3.7$ |                |                |                |                |
| 05/03 - 05/09      | $21.7 \pm 3.3$          | $24.1 \pm 3.6$ |                |                |                |                |
| 05/10 - 05/16      | $24.5 \pm 3.4$          | $24.5 \pm 3.6$ |                |                |                |                |
| 05/17 - 05/23      | $18.8 \pm 3.2$          | $16.3 \pm 3.3$ |                |                |                |                |
| 05/24 - 05/30      | $13.8 \pm 3.8$          | $15.4 \pm 4.1$ |                |                |                |                |
| <u>JUNE</u>        | 15-C                    | 27             |                |                |                |                |
| 05/31 - 06/06      | $11.1 \pm 3.1$          | $11.2 \pm 3.3$ |                |                |                |                |
| 06/07 - 06/13      | $16.8 \pm 3.1$          | $16.0 \pm 3.3$ |                |                |                |                |
| 06/14 - 06/20      | $19.0 \pm 3.8$          | $15.7 \pm 3.9$ |                |                |                |                |
| 06/21 - 06/27      | $22.6 \pm 3.1$          | $18.4 \pm 3.3$ |                |                |                |                |

09/20 - 09/26

 $Qtr Avg \pm 2 sd$ 

 $34.5 \pm 4.6$ 

 $17.7 \pm 13.3$ 

 $33.3 \pm 4.6$ 

 $16.9 \pm 12.1$ 

Table 2, Air Particulate Gross Beta Radioactivity (pCi/m3 x 1000)

Page 3 of 4

| Collection<br>Date |                 |                 | Locations         |                | <del> </del>    |                |
|--------------------|-----------------|-----------------|-------------------|----------------|-----------------|----------------|
| <u>JULY</u>        | 01              | 02              | 03                | 04             | 10              | 11             |
| 06/28 - 07/04      | $17.1 \pm 3.7$  | $16.4 \pm 3.0$  | $15.5 \pm 3.1$    | $18.2 \pm 3.1$ | $19.5 \pm 3.1$  | $23.1 \pm 6.0$ |
| 07/05 - 07/11      | $9.9 \pm 4.1$   | $9.9 \pm 3.2$   | $10.0 \pm 3.4$    | $8.7 \pm 3.3$  | $7.4 \pm 3.3$   | $11.8 \pm 3.4$ |
| 07/12 - 07/18      | $10.9 \pm 3.5$  | $11.0 \pm 2.8$  | $-8.0 \pm 78.0$ C | $10.2 \pm 2.8$ | $12.1 \pm 2.8$  | $13.2 \pm 2.9$ |
| 07/19 - 07/25      | $21.5 \pm 3.2$  | $16.6 \pm 3.1$  | $21.0 \pm 3.7$    | $19.4 \pm 3.2$ | $18.5 \pm 3.1$  | $20.9 \pm 3.3$ |
| <u>AUGUST</u>      | 01              | 02              | 03                | 04             | 10              | 11             |
| 07/26 - 08/01      | $8.0 \pm 3.2$   | 12.2 ± 3.6      | $10.3 \pm 3.6$    | 10.4 ± 3.4     | $10.2 \pm 3.4$  | $8.7 \pm 3.4$  |
| 08/02 - 08/08      | $16.3 \pm 3.6$  | $14.6 \pm 3.6$  | $15.8 \pm 3.8$    | $17.8 \pm 3.8$ | $13.9 \pm 3.6$  | $15.0 \pm 3.8$ |
| 08/09 - 08/15      | $12.1 \pm 3.2$  | $14.3 \pm 3.3$  | $15.8 \pm 3.5$    | $12.0 \pm 3.4$ | $15.0 \pm 3.5$  | $13.1 \pm 3.5$ |
| 08/16 - 08/22      | $23.7 \pm 3.5$  | $22.4 \pm 3.7$  | $23.3 \pm 3.7$    | $21.9 \pm 3.5$ | $24.5 \pm 3.6$  | $25.0 \pm 3.7$ |
| 08/23 - 08/29      | $14.9 \pm 3.7$  | $16.2 \pm 3.9$  | $19.5 \pm 4.2$    | $17.5 \pm 4.0$ | $15.8 \pm 3.9$  | $19.4 \pm 4.2$ |
| <u>SEPTEMBER</u>   | <b>–</b> 01     | 02              | 03                | 04             | 10              | 11             |
| 08/30 - 09/05      | 16.2 ± 3.9      | 14.1 ± 3.9      | $16.8 \pm 4.1$    | $15.1 \pm 4.0$ | 13.7 ± 4.0      | 16.1 ± 4.1     |
| 09/06 - 09/12      | $14.9 \pm 4.0$  | $15.5 \pm 3.9$  | $14.6 \pm 4.2$    | $11.2 \pm 4.0$ | $13.7 \pm 4.1$  | $16.7 \pm 4.4$ |
| 09/13 - 09/19      | 9.9 ± 3.2       | $11.2 \pm 3.4$  | $8.3 \pm 3.4$     | $10.1 \pm 3.3$ | $10.4 \pm 3.5$  | $10.0 \pm 3.4$ |
| 09/20 - 09/26      | $30.6 \pm 4.0$  | $29.6 \pm 4.1$  | $31.1 \pm 4.3$    | $27.9 \pm 4.1$ | $32.4 \pm 4.4$  | $32.4 \pm 4.3$ |
| Qtr Avg ± 2 sd     | $15.8 \pm 12.2$ | $15.7 \pm 10.1$ | 16.8 ± 12.1       | 15.4 ± 10.9    | $15.9 \pm 12.8$ | 17.3 ± 12.9    |
| TY17 37            |                 |                 |                   |                |                 |                |
| <u>JULY</u>        | 15-C            | 27              |                   |                |                 |                |
| 06/28 - 07/04      | $21.0 \pm 3.2$  | $18.3 \pm 3.2$  |                   |                |                 |                |
| 07/05 - 07/11      | $9.8 \pm 3.3$   | $10.2 \pm 3.5$  |                   |                |                 |                |
| 07/12 - 07/18      | $10.5 \pm 2.7$  | $13.8 \pm 3.0$  |                   |                |                 |                |
| 07/19 - 07/25      | $18.6 \pm 3.2$  | $20.5 \pm 3.3$  |                   |                |                 |                |
| AUGUST             | 15-C            | 27              |                   |                |                 |                |
| 07/26 - 08/01      | $11.7 \pm 3.7$  | 12.5 ± 4.4      |                   |                |                 |                |
| 08/02 - 08/08      | $14.7 \pm 3.8$  | $13.6 \pm 3.4$  |                   |                |                 |                |
| 08/09 - 08/15      | $16.7 \pm 3.7$  | $15.1 \pm 3.9$  |                   |                |                 |                |
| 08/16 - 08/22      | $25.8 \pm 3.9$  | $24.2 \pm 3.9$  |                   |                |                 |                |
| 08/23 - 08/29      | $20.7 \pm 4.5$  | $17.0 \pm 4.3$  |                   |                |                 |                |
| <u>SEPTEMBER</u>   | – 15-C          | 27              |                   |                |                 |                |
| 08/30 - 09/05      | 19.5 ± 4.3      | 17.4 ± 4.4      |                   |                |                 |                |
| 09/06 - 09/12      | $15.3 \pm 4.3$  | $13.1 \pm 4.5$  |                   |                |                 |                |
| 09/13 - 09/19      | $11.6 \pm 3.8$  | $10.6 \pm 3.7$  |                   |                |                 |                |
| 0000 0000          | 245 + 46        | 22.2 + 4.6      |                   |                |                 |                |

 $Qtr Avg \pm 2 sd$ 

Ann  $Avg \pm 2 sd$ 

 $18.9 \pm 12.8$ 

 $19.2 \pm 12.5$ 

 $19.2 \pm 11.2$ 

 $19.2 \pm 12.3$ 

Table 2, Air Particulate Gross Beta Radioactivity (pCi/m3 x 1000)

Page 4 of 4

|                                                 |                 | •               |                 | • -              | •                                     |                |
|-------------------------------------------------|-----------------|-----------------|-----------------|------------------|---------------------------------------|----------------|
| Collection<br>Date                              |                 |                 | Locations       |                  | · · · · · · · · · · · · · · · · · · · |                |
| <u>OCTOBER</u>                                  | 01              | 02              | 03              | 04               | 10                                    | 11             |
| 09/27 - 10/03                                   | 17.3 ± 3.7      | $16.3 \pm 3.7$  | $20.9 \pm 4.0$  | 19.2 ± 3.9       | 17.7 ± 3.9                            | $18.6 \pm 4.0$ |
| 10/04 - 10/10                                   | $23.0 \pm 3.4$  | $25.1 \pm 3.4$  | $22.1 \pm 3.5$  | $23.6 \pm 3.4$   | $25.2 \pm 3.6$                        | $28.8 \pm 3.7$ |
| 10/11 - 10/17                                   | $17.7 \pm 3.7$  | $16.5 \pm 3.7$  | $14.8 \pm 3.9$  | 13.9 ± 3.8       | $14.0 \pm 4.0$                        | $14.0 \pm 3.9$ |
| 10/18 - 10/24                                   | $10.6 \pm 2.5$  | $11.6 \pm 2.6$  | $9.9 \pm 2.7$   | $10.9 \pm 2.6$   | $11.6 \pm 2.7$                        | $12.4 \pm 2.8$ |
| 10/25 - 10/31                                   | $17.8 \pm 3.6$  | $17.1 \pm 3.6$  | $20.8 \pm 4.0$  | $20.1 \pm 3.7$   | $19.0 \pm 4.0$                        | $16.0 \pm 3.8$ |
| NOVEMBER                                        | 01              | 02              | 03              | 04               | 10                                    | 11             |
| 11/01 11/07                                     |                 |                 |                 |                  |                                       | 16.3 ± 3.3     |
| 11/01 - 11/07                                   | 17.1 ± 3.3      | $16.0 \pm 3.3$  | 15.5 ± 3.2      | 15.8 ± 3.7       | $11.5 \pm 3.1$                        |                |
| 11/08 - 11/14                                   | 20.8 ± 3.8      | $17.9 \pm 3.8$  | 19.5 ± 3.8      | 22.8 ± 3.8       | 19.7 ± 3.9                            | 21.6 ± 4.0     |
| 11/15 - 11/21                                   | $35.8 \pm 6.3$  | $31.8 \pm 6.2$  | $30.4 \pm 6.0$  | $34.4 \pm 5.9$   | $33.5 \pm 6.4$                        | $34.6 \pm 6.3$ |
| 11/22 - 11/28                                   | $13.3 \pm 3.7$  | $15.0 \pm 4.0$  | $16.3 \pm 3.9$  | $17.9 \pm 3.7$   | $18.4 \pm 4.2$                        | $16.2 \pm 4.0$ |
| <u>DECEMBER</u>                                 | 01              | 02              | 03              | 04               | 10                                    | 11             |
| 11/29 - 12/05                                   | $20.8 \pm 4.0$  | $20.2 \pm 4.2$  | $20.0 \pm 4.1$  | $22.3 \pm 4.0$   | $22.2 \pm 4.4$                        | $19.9 \pm 4.2$ |
| 12/06 - 12/12                                   | $10.2 \pm 3.0$  | $11.2 \pm 3.2$  | $12.1 \pm 3.1$  | $10.8 \pm 8.5$ D | $11.3 \pm 3.2$                        | $10.3 \pm 3.1$ |
| 12/13 - 12/19                                   | $23.7 \pm 3.9$  | $24.1 \pm 4.0$  | $24.8 \pm 4.1$  | $27.6 \pm 4.0$   | $22.9 \pm 4.1$                        | $19.8 \pm 3.9$ |
| 12/20 - 12/26                                   | $22.3 \pm 4.0$  | $23.6 \pm 4.2$  | $21.7 \pm 4.2$  | $16.8 \pm 3.5$   | $22.5 \pm 3.7$                        | $17.6 \pm 3.9$ |
| Qtr Avg ± 2 sd                                  | $19.3 \pm 12.7$ | $19.0 \pm 11.2$ | $19.1 \pm 10.5$ | $20.4 \pm 12.1$  | $19.2 \pm 12.2$                       | 18.9 ± 12.6    |
| Ann Avg $\pm 2$ sd                              | $18.5 \pm 12.5$ | 17.7 ± 11.1     | $18.9 \pm 12.0$ | $18.6 \pm 12.1$  | $18.6 \pm 13.0$                       | 19.2 ± 13.6    |
| OCTORER                                         |                 |                 |                 |                  |                                       |                |
| <u>OCTOBER</u>                                  | 15-C            | 27              |                 |                  |                                       |                |
| 09/27 - 10/03                                   | $16.6 \pm 4.0$  | $16.8 \pm 4.1$  |                 |                  |                                       |                |
| 10/04 - 10/10                                   | $24.1 \pm 3.7$  | $26.6 \pm 3.9$  |                 |                  |                                       |                |
| 10/11 - 10/17                                   | $15.5 \pm 4.3$  | $17.9 \pm 4.5$  |                 |                  |                                       |                |
| 10/18 - 10/24                                   | $11.1 \pm 2.9$  | $11.3 \pm 3.0$  |                 |                  |                                       |                |
| 10/25 - 10/31                                   | $19.0 \pm 4.2$  | $15.9 \pm 4.2$  |                 |                  |                                       |                |
| NOVEMBER                                        | 15-C            | 27              |                 |                  |                                       |                |
| 11/01 - 11/07                                   | $12.9 \pm 3.4$  | $13.8 \pm 3.5$  |                 |                  |                                       |                |
| 11/08 - 11/14                                   | $20.6 \pm 4.2$  | $18.8 \pm 4.2$  |                 |                  |                                       |                |
| 11/15 - 11/21                                   | $32.4 \pm 6.6$  | $32.1 \pm 6.6$  |                 |                  |                                       |                |
| 11/22 - 11/28                                   | $17.6 \pm 4.4$  | $17.6 \pm 4.4$  |                 |                  |                                       |                |
| DECEMBER                                        |                 |                 |                 |                  |                                       |                |
|                                                 | 15-C            | 27              |                 |                  |                                       |                |
| 11/29 - 12/05                                   |                 | 000.45          |                 |                  |                                       |                |
|                                                 | $24.7 \pm 4.8$  | $22.9 \pm 4.7$  |                 |                  |                                       |                |
| 12/06 - 12/12                                   | $7.1 \pm 3.3$   | $12.9 \pm 3.6$  |                 |                  |                                       |                |
| 12/06 - 12/12<br>12/13 - 12/19<br>12/20 - 12/26 |                 |                 |                 |                  |                                       |                |

Table 3, Airborne Iodine I-131 (pCi/m3 x 1000)

| Collection<br>Date |              |              | Locations    |              |              |              |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| JANUARY            |              |              |              |              | <u>-</u> :   | _            |
|                    | 01           | 02           | 03           | 04           | 10           | 11           |
| 12/29 - 01/04      | 3 ± 20 #     | 4 ± 23       | -1 ± 23      | $20 \pm 20$  | $-17 \pm 20$ | 9 ± 24       |
| 01/05 - 01/11      | -1 ± 26      | -12 ± 29     | -8 ± 25      | $-30 \pm 22$ | 2 ± 24       | $-7 \pm 24$  |
| 01/12 - 01/18      | 1 ± 16       | -1 ± 17      | $-15 \pm 16$ | $-4 \pm 13$  | $3 \pm 16$   | $-11 \pm 14$ |
| 01/19 - 01/25      | $-14 \pm 16$ | $3 \pm 31$   | $17\pm30$    | $-18 \pm 25$ | $-25 \pm 27$ | $20 \pm 30$  |
| FEBRUARY           | _            |              |              |              |              |              |
|                    | 01           | 02           | 03           | 04           | 10           | 11           |
| 01/26 - 02/01      | $3 \pm 20$   | 8 ± 22       | $14 \pm 22$  | $20 \pm 21$  | -5 ± 18      | $-12 \pm 22$ |
| 02/02 - 02/08      | $-3 \pm 18$  | $14 \pm 38$  | 1 ± 25       | -9 ± 17      | $-16 \pm 16$ | $-1 \pm 18$  |
| 02/09 - 02/15      | $8 \pm 26$   | -5 ± 27      | $-3 \pm 30$  | $6 \pm 23$   | $-13 \pm 23$ | $2 \pm 24$   |
| 02/16 - 02/22      | $-6 \pm 26$  | $2 \pm 25$   | $-23 \pm 25$ | $-2 \pm 16$  | $-9 \pm 23$  | $-15 \pm 22$ |
| 02/23 - 02/29      | $-6 \pm 18$  | $14\pm20$    | $-11 \pm 16$ | $3 \pm 14$   | $-2 \pm 13$  | $-2 \pm 20$  |
| <b>MARCH</b>       |              |              |              |              |              |              |
|                    | 01           | 02           | 03           | 04           | 10           | 11           |
| 03/01 - 03/07      | $-11 \pm 21$ | $-12 \pm 22$ | $-6 \pm 17$  | 8 ± 14       | 6 ± 19       | $-4 \pm 18$  |
| 03/08 - 03/14      | $-14 \pm 23$ | $-15 \pm 24$ | $3 \pm 27$   | $-6 \pm 20$  | $-10 \pm 17$ | $22 \pm 17$  |
| 03/15 - 03/21      | $13 \pm 22$  | $3 \pm 22$   | $22 \pm 23$  | $-15 \pm 18$ | $4 \pm 22$   | $6 \pm 21$   |
| 03/22 - 03/28      | $6 \pm 20$   | $1 \pm 28$   | $26 \pm 37$  | $27 \pm 27$  | $3 \pm 31$   | $-32 \pm 30$ |
| <b>JANUARY</b>     |              |              |              |              |              |              |
|                    | 15-C         | 27           |              |              |              |              |
| 12/29 - 01/04      | $-12 \pm 29$ | 5 ± 26       |              |              |              |              |
| 01/05 - 01/11      | $6 \pm 31$   | $18 \pm 28$  |              |              | •            |              |
| 01/12 - 01/18      | 8 ± 12       | $-7 \pm 11$  |              |              |              |              |
| 01/19 - 01/25      | $27 \pm 30$  | $-10 \pm 34$ |              |              |              |              |
| <b>FEBRUARY</b>    | -            |              |              |              |              |              |
|                    | 15-C         | 27           |              |              |              |              |
| 01/26 - 02/01      | $16 \pm 24$  | $-11 \pm 19$ |              |              |              |              |
| 02/02 - 02/08      | $8 \pm 23$   | $8 \pm 22$   |              |              |              |              |
| 02/09 - 02/15      | $25 \pm 29$  | $-2 \pm 31$  |              |              |              |              |
| 02/16 - 02/22      | $9 \pm 21$   | $-3 \pm 28$  |              |              |              |              |
| 02/23 - 02/29      | $2 \pm 20$   | $16 \pm 21$  |              |              |              |              |
| <b>MARCH</b>       |              |              |              |              |              |              |
|                    | 15-C         | 27           |              |              |              |              |
| 03/01 - 03/07      | $-6 \pm 23$  | $-16 \pm 27$ |              |              |              |              |
| 03/08 - 03/14      | $-16 \pm 17$ | $-12 \pm 21$ |              |              |              |              |
| 03/15 - 03/21      | $-4 \pm 21$  | $-4 \pm 23$  |              |              |              |              |
| 03/22 - 03/28      | $41 \pm 33$  | $3 \pm 20$   |              |              |              |              |

Table 3, Airborne Iodine I-131 (pCi/m3 x 1000)

| Collection<br>Date |              |              | Locations    |              |              |              |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| APRIL              |              |              |              |              |              |              |
|                    | 01           | 02           | 03           | 04           | 10           | 11           |
| 03/29 - 04/04      | 5 ± 23       | 18 ± 25      | 10 ± 23      | -3 ± 20      | 14 ± 25      | 4 ± 23       |
| 04/05 - 04/11      | $10 \pm 28$  | 13 ± 22      | $-1 \pm 21$  | $13 \pm 19$  | $20 \pm 23$  | 20 ± 23      |
| 04/12 - 04/18      | $-14 \pm 21$ | $-7 \pm 20$  | 9 ± 17       | $15 \pm 16$  | 8 ± 17       | 25 ± 25 A    |
| 04/19 - 04/25      | $-4 \pm 19$  | 5 ± 15       | 3 ± 14       | $-3 \pm 14$  | 2 ± 17       | -2 ± 15      |
| MAY                |              |              |              |              |              |              |
|                    | 01           | 02           | 03           | 04           | 10           | 11           |
| 04/26 - 05/02      | $14 \pm 21$  | 0 ± 19       | -4 ± 17      | 3 ± 18       | -9 ± 16      | $-6 \pm 17$  |
| 05/03 - 05/09      | $14 \pm 31$  | $6 \pm 23$   | 0 ± 18       | $-2 \pm 21$  | $16 \pm 25$  | $4 \pm 22$   |
| 05/10 - 05/16      | 8 ± 15       | 6 ± 15       | $0 \pm 17$   | $-10 \pm 16$ | $0 \pm 15$   | $0 \pm 12$   |
| 05/17 - 05/23      | $12 \pm 23$  | -6 ± 21      | 2 ± 22       | $-15 \pm 17$ | -2 ± 4 E     | $2 \pm 20$   |
| 05/24 - 05/30      | $-5 \pm 28$  | $6 \pm 21$   | -3 ± 19      | 16 ± 22      | $-18 \pm 20$ | $17 \pm 19$  |
| JUNE               |              |              |              |              |              |              |
|                    | 01           | 02           | 03           | 04           | 10           | 11           |
| 05/31 - 06/06      | $-12 \pm 23$ | 12 ± 17      | $-10 \pm 16$ | $11 \pm 14$  | $3 \pm 11$   | $-8 \pm 17$  |
| 06/07 - 06/13      | $3 \pm 28$   | -2 ± 25      | $1 \pm 20$   | $-4 \pm 22$  | $-6 \pm 21$  | $1 \pm 24$   |
| 06/14 - 06/20      | $-10 \pm 23$ | 2 ± 19       | $0 \pm 17$   | -3 ± 19      | 6 ± 16       | $-6 \pm 16$  |
| 06/21 - 06/27      | $-11 \pm 24$ | $-6 \pm 21$  | $-12 \pm 20$ | -1 ± 16      | $-3 \pm 16$  | $-21 \pm 17$ |
| <u>APRIL</u>       |              |              |              |              |              |              |
|                    | 15-C         | 27           |              |              |              |              |
| 03/29 - 04/04      | $29 \pm 28$  | $0 \pm 26$   |              |              |              |              |
| 04/05 - 04/11      | $-10 \pm 19$ | 3 ± 22       |              |              |              |              |
| 04/12 - 04/18      | $-18 \pm 17$ | $3 \pm 20$   |              |              |              |              |
| 04/19 - 04/25      | 5 ± 14       | 7 ± 17       |              |              | •            |              |
| MAY                |              |              |              |              |              |              |
|                    | 15-C         | 27           |              |              |              |              |
| 04/26 - 05/02      | $1 \pm 16$   | $-9 \pm 18$  |              |              |              |              |
| 05/03 - 05/09      | $-8 \pm 21$  | $19 \pm 26$  |              |              |              |              |
| 05/10 - 05/16      | $3 \pm 16$   | 2 ± 17       |              |              |              |              |
| 05/17 - 05/23      | $0 \pm 19$   | $-11 \pm 16$ |              |              |              |              |
| 05/24 - 05/30      | 1 ± 18       | $21 \pm 28$  |              |              |              |              |
| JUNE_              |              |              |              |              |              |              |
|                    | 15-C         | 27           |              |              |              |              |
| 05/31 - 06/06      | 10 ± 14      | 6 ± 19       |              |              |              |              |
| 06/07 - 06/13      | $9 \pm 20$   | $-7 \pm 20$  |              |              |              |              |
| 06/14 - 06/20      | $13 \pm 15$  | $14 \pm 20$  |              |              |              |              |
| 06/21 - 06/27      | $11 \pm 20$  | $-3 \pm 17$  |              |              |              |              |

09/20 - 09/26

 $2 \pm 17$ 

 $-15 \pm 17$ 

Table 3, Airborne Iodine I-131 (pCi/m3 x 1000)

Page 3 of 4

| Collection<br>Date |              |              | Locations      |              |              |              |
|--------------------|--------------|--------------|----------------|--------------|--------------|--------------|
| JULY_              |              |              |                |              |              |              |
| <del></del>        | 01           | 02           | 03             | 04           | 10           | 11           |
| 06/28 - 07/04      | 19 ± 34      | $-15 \pm 21$ | $-17 \pm 25$   | $-14 \pm 21$ | $17 \pm 27$  | 10 ± 26 B    |
| 07/05 - 07/11      | $-6 \pm 17$  | 5 ± 14       | 10 ± 13        | 8 ± 19       | 0 ± 15       | 3 ± 15       |
| 07/12 - 07/18      | $-7 \pm 28$  | $-14 \pm 18$ | $10 \pm 740$ C | $-3 \pm 18$  | $-10 \pm 25$ | $0 \pm 27$   |
| 07/19 - 07/25      | 3 ± 17       | 5 ± 14       | $0 \pm 18$     | $3 \pm 17$   | -20 ± 14     | $3 \pm 16$   |
| <u>AUGUST</u>      |              |              |                |              |              |              |
|                    | 01           | 02           | 03             | 04           | 10           | 11           |
| 07/26 - 08/01      | $0 \pm 14$   | 8 ± 15       | -2 ± 13        | $-6 \pm 14$  | $-6 \pm 13$  | 9 ± 15       |
| 08/02 - 08/08      | $4 \pm 16$   | 7 ± 18       | 15 ± 19        | 7 ± 16       | $-3 \pm 14$  | $23 \pm 19$  |
| 08/09 - 08/15      | $-16 \pm 15$ | $-2 \pm 17$  | $-6 \pm 18$    | $11 \pm 21$  | $-9 \pm 18$  | $-13 \pm 19$ |
| 08/16 - 08/22      | $-10 \pm 15$ | $-7 \pm 19$  | $-18 \pm 20$   | $-7 \pm 22$  | $11 \pm 17$  | $-12 \pm 17$ |
| 08/23 - 08/29      | $19 \pm 22$  | $-6 \pm 20$  | $12 \pm 17$    | $15 \pm 20$  | $-8 \pm 18$  | -9 ± 22      |
| <b>SEPTEMBE</b>    | R_           |              |                |              |              |              |
|                    | 01           | 02           | 03             | 04           | 10           | 11           |
| 08/30 - 09/05      | $-17 \pm 16$ | $3 \pm 16$   | $0 \pm 14$     | 5 ± 15       | 5 ± 16       | $11 \pm 18$  |
| 09/06 - 09/12      | $-12 \pm 19$ | $-6 \pm 19$  | $27 \pm 23$    | $-11 \pm 18$ | $12 \pm 18$  | $-8 \pm 18$  |
| 09/13 - 09/19      | $3 \pm 15$   | $-7 \pm 18$  | $-4 \pm 16$    | -21 ± 19     | $-7 \pm 18$  | $-16 \pm 16$ |
| 09/20 - 09/26      | 1 ± 13       | 8 ± 17       | $-5 \pm 18$    | $-2 \pm 15$  | $0 \pm 17$   | $-10 \pm 17$ |
| <b>JULY</b>        |              |              |                |              |              |              |
|                    | 15-C         | 27           |                |              |              |              |
| 06/28 - 07/04      | $-8 \pm 21$  | $-1 \pm 24$  |                |              |              |              |
| 07/05 - 07/11      | $-9 \pm 15$  | 7 ± 18       |                |              |              |              |
| 07/12 - 07/18      | $-7 \pm 23$  | $5 \pm 27$   |                |              | •            |              |
| 07/19 - 07/25      | $-7 \pm 15$  | 2 ± 16       |                |              |              |              |
| AUGUST             |              |              |                |              |              |              |
|                    | 15-C         | 27           |                |              |              |              |
| 07/26 - 08/01      | $6 \pm 14$   | $-22 \pm 20$ |                |              |              |              |
| 08/02 - 08/08      | $-5 \pm 20$  | $1 \pm 17$   |                |              |              |              |
| 08/09 - 08/15      | $-4 \pm 19$  | $-2 \pm 15$  |                |              |              |              |
| 08/16 - 08/22      | $6 \pm 21$   | $-6 \pm 19$  |                |              |              |              |
| 08/23 - 08/29      | $10\pm21$    | -14 ± 19     |                |              |              |              |
| <b>SEPTEMBE</b>    | <u>R_</u>    |              |                |              |              |              |
|                    | 15-C         | 27           |                |              |              |              |
| 08/30 - 09/05      | $10 \pm 14$  | $-10 \pm 20$ |                |              |              |              |
| 09/06 - 09/12      | $2 \pm 20$   | $9 \pm 24$   |                |              |              |              |
| 09/13 - 09/19      | $-13 \pm 22$ | 1 ± 21       |                |              |              |              |
| 0000 0000          | 0 : 15       | 15.15        |                |              |              |              |

12/06 - 12/12

12/13 - 12/19

12/20 - 12/26

 $-11 \pm 28$ 

 $20 \pm 22$ 

 $3 \pm 20$ 

Table 3, Airborne Iodine I-131 (pCi/m3 x 1000)

Page 4 of 4

11 5 ± 26 -4 ± 24 -7 ± 26 -1 ± 18 6 ± 22

| Collection<br>Date |              |              | Locations   |             |              |
|--------------------|--------------|--------------|-------------|-------------|--------------|
| OCTOBER            |              |              |             | ,           |              |
|                    | 01           | 02           | 03          | 04          | 10           |
| 09/27 - 10/03      | -3 ± 19      | -4 ± 21      | 20 ± 23     | 9 ± 22      | $-22 \pm 17$ |
| 10/04 - 10/10      | -9 ± 26      | $-9 \pm 21$  | $0 \pm 27$  | -27 ± 24    | $-11 \pm 25$ |
| 10/11 - 10/17      | $-35 \pm 29$ | -9 ± 33      | $12 \pm 26$ | 6 ± 26      | $14 \pm 27$  |
| 10/18 - 10/24      | 9 ± 21       | $13 \pm 21$  | 7 ± 18      | 2 ± 21      | $23 \pm 20$  |
| 10/25 - 10/31      | -2 ± 19      | $-9 \pm 21$  | $21 \pm 21$ | -2 ± 18     | $-10 \pm 22$ |
| NOVEMBER           | <u>2</u>     |              |             |             |              |
|                    | 01           | 02           | 03          | 04          | 10           |
| 11/01 - 11/07      | $12 \pm 21$  | $13 \pm 20$  | $-3 \pm 20$ | 13 ± 24     | 5 ± 18       |
| 11/08 - 11/14      | $0 \pm 21$   | 0 ± 21       | $-5 \pm 23$ | $-8 \pm 22$ | $17 \pm 25$  |
| 11/15 - 11/21      | -3 ± 17      | -2 ± 18      | 8 ± 17      | 2 ± 17      | $-14 \pm 18$ |
| 11/22 - 11/28      | $-1 \pm 24$  | $-19 \pm 22$ | $8 \pm 23$  | -4 ± 19     | $-3 \pm 19$  |
| DECEMBER           | <b>L</b>     |              |             |             |              |
|                    | 01           | 02           | 03          | 04          | 10           |
| 11/29 - 12/05      | 6 ± 15       | -9 ± 18      | 7 ± 17      | -16 ± 17    | $-7 \pm 20$  |
| 12/06 - 12/12      | $-7 \pm 25$  | 2 ± 26       | -9 ± 24     | 3 ± 38 D    | $0 \pm 22$   |
| 12/13 - 12/19      | 18 ± 19      | -17 ± 15     | 7 ± 12      | 6 ± 16      | $-6 \pm 17$  |
| 12/20 - 12/26      | $-4 \pm 18$  | $-1 \pm 21$  | $4 \pm 20$  | $-3 \pm 15$ | 9 ± 17       |
| OCTOBER            |              |              |             |             |              |
|                    | 15-C         | 27           |             |             |              |
| 09/27 - 10/03      | -2 ± 23      | -5 ± 25      |             |             |              |
| 10/04 - 10/10      | $3 \pm 31$   | $-11 \pm 22$ |             |             |              |
| 10/11 - 10/17      | 24 ± 28      | 12 ± 22      |             |             |              |
| 10/18 - 10/24      | $-8 \pm 24$  | 1 ± 21       |             |             |              |
| 10/25 - 10/31      | $-12 \pm 24$ | $2 \pm 23$   |             |             |              |
| <u>NOVEMBEF</u>    | <u> </u>     |              |             |             |              |
|                    | 15-C         | 27           |             |             |              |
| 11/01 - 11/07      | $12 \pm 22$  | $10 \pm 20$  |             |             |              |
| 11/08 - 11/14      | $1 \pm 26$   | $-8 \pm 26$  |             |             |              |
| 11/15 - 11/21      | -1 ± 17      | 0 ± 19       |             |             |              |
| 11/22 - 11/28      | 5 ± 21       | $0 \pm 23$   |             |             |              |
| <b>DECEMBER</b>    | <u>L</u>     |              |             |             |              |
|                    | <br>15-C     | 27           |             |             |              |
| 11/29 - 12/05      | $0 \pm 18$   | $-20 \pm 23$ |             |             |              |
|                    |              |              |             |             |              |

 $-15 \pm 27$ 

 $-6 \pm 24$ 

 $3 \pm 21$ 

Table 4-A, Air Particulates Gamma Spectra - Quarter 1 (pCi/m3 x 1000)

| Location |                  |                  |                | Isotope         | <del></del>    |                 |                  |
|----------|------------------|------------------|----------------|-----------------|----------------|-----------------|------------------|
|          | Ba-140           | Be-7             | Ce-141         | Ce-144          | Co-58          | Co-60           | Cr-51            |
| 01       | $12.0 \pm 52.0$  | $91.0 \pm 42.0$  | $-2.3 \pm 6.8$ | $2.2 \pm 6.0$   | $0.0 \pm 2.5$  | $0.5 \pm 1.0$   | $0.0 \pm 54.0$   |
| 02       | $0.0 \pm 63.0$   | $62.0 \pm 35.0$  | $2.0 \pm 7.0$  | $2.9 \pm 6.9$   | $0.6 \pm 2.2$  | $-0.9 \pm 1.3$  | $61.0 \pm 51.0$  |
| 03       | $51.0 \pm 51.0$  | $104.0 \pm 48.0$ | $5.9 \pm 7.1$  | $-5.3 \pm 7.0$  | $0.1 \pm 3.1$  | $-0.4 \pm 1.3$  | $39.0 \pm 59.0$  |
| 04       | $10.0 \pm 35.0$  | $45.0 \pm 36.0$  | $3.1 \pm 6.1$  | $-6.1 \pm 4.8$  | $-0.7 \pm 1.7$ | $0.4 \pm 1.1$   | $13.0 \pm 52.0$  |
| 10       | $-23.0 \pm 57.0$ | $63.0 \pm 35.0$  | $-0.9 \pm 6.7$ | $1.8 \pm 5.9$   | $-0.3 \pm 2.6$ | $-1.1 \pm 1.3$  | $-10.0 \pm 53.0$ |
| 11       | $-35.0 \pm 41.0$ | $103.0 \pm 42.0$ | $-2.8 \pm 7.7$ | $4.0 \pm 6.2$   | $-1.0 \pm 2.4$ | $0.1 \pm 1.7$   | $71.0 \pm 59.0$  |
| 15-C     | $-53.0 \pm 65.0$ | $118.0 \pm 43.0$ | $2.0 \pm 7.2$  | $-10.0 \pm 7.3$ | $0.3 \pm 2.6$  | $1.9 \pm 1.6$   | $17.0 \pm 63.0$  |
| 27       | $0.0 \pm 53.0$   | $108.0 \pm 48.0$ | $-1.6 \pm 8.0$ | $-2.5 \pm 6.8$  | $-1.6 \pm 2.1$ | $1.6 \pm 1.6$   | $-40.0 \pm 57.0$ |
|          | Cs-134           | Cs-137           | Mn-54          | Nb-95           | Ru-103         | Ru-106          | Zr-95            |
| 01       | $0.8 \pm 1.2$    | $-1.3 \pm 1.4$   | $-1.1 \pm 1.3$ | $0.5 \pm 6.3$   | $-0.5 \pm 3.9$ | $-5.0 \pm 13.0$ | $-1.1 \pm 4.9$   |
| 02       | $0.8 \pm 1.4$    | $-1.1 \pm 1.4$   | $0.3 \pm 1.2$  | $-0.2 \pm 6.8$  | $0.5 \pm 5.0$  | $15.0 \pm 13.0$ | $-2.1 \pm 4.5$   |
| 03       | $-0.6 \pm 1.4$   | $-0.1 \pm 1.2$   | $-0.2 \pm 1.4$ | $-2.0 \pm 5.2$  | $-1.0 \pm 4.4$ | $-3.0 \pm 13.0$ | $-0.2 \pm 4.3$   |
| 04       | $0.4 \pm 1.0$    | $-1.7 \pm 1.2$   | $-0.2 \pm 1.0$ | $2.6 \pm 4.7$   | $2.0 \pm 2.9$  | $-1.0 \pm 10.0$ | $0.4 \pm 3.6$    |
| 10       | $-0.9 \pm 1.2$   | $-1.2 \pm 1.5$   | $-0.1 \pm 1.2$ | $-2.9 \pm 5.8$  | $-1.9 \pm 3.5$ | $-2.0 \pm 13.0$ | $1.0 \pm 4.0$    |
| 11       | $0.9 \pm 1.3$    | $-0.9 \pm 1.0$   | $0.1 \pm 1.3$  | $-0.6 \pm 4.5$  | $1.4 \pm 3.9$  | $-5.0 \pm 14.0$ | $-0.2 \pm 4.0$   |
| 15-C     | $-0.7 \pm 0.9$   | $0.6 \pm 1.2$    | $-1.8 \pm 1.5$ | $-5.6 \pm 6.2$  | $-0.5 \pm 3.5$ | $2.0 \pm 12.0$  | $-2.4 \pm 3.2$   |
| 27       | $-0.1 \pm 1.3$   | $0.4 \pm 1.2$    | $0.7 \pm 1.4$  | $2.2 \pm 4.6$   | $-3.2 \pm 4.2$ | $-1.0 \pm 16.0$ | $2.9 \pm 2.9$    |

Table 4-B, Air Particulates Gamma Spectra - Quarter 2 (pCi/m3 x 1000)

| Location |                  |                  | <del></del>    | Isotope        |                |                 |                  |
|----------|------------------|------------------|----------------|----------------|----------------|-----------------|------------------|
|          | Ba-140           | Be-7             | Ce-141         | Ce-144         | Co-58          | Co-60           | Cr-51            |
| 01       | $30.0 \pm 43.0$  | $106.0 \pm 49.0$ | $5.7 \pm 5.6$  | $1.2 \pm 6.9$  | $-0.3 \pm 3.0$ | $0.5 \pm 1.9$   | $24.0 \pm 54.0$  |
| 02       | $0.0 \pm 25.0$   | $83.0 \pm 38.0$  | $0.6 \pm 4.0$  | $1.3 \pm 6.9$  | $-0.9 \pm 2.3$ | $-1.4 \pm 1.6$  | $-17.0 \pm 40.0$ |
| 03       | $0.0 \pm 38.0$   | $104.0 \pm 47.0$ | $4.6 \pm 5.1$  | $1.4 \pm 6.4$  | $-0.1 \pm 3.7$ | $1.6 \pm 1.9$   | $31.0 \pm 43.0$  |
| 04       | $-6.0 \pm 21.0$  | $117.0 \pm 42.0$ | $2.6 \pm 5.0$  | $-1.2 \pm 6.3$ | $1.2 \pm 2.2$  | $-0.4 \pm 1.2$  | $7.0 \pm 39.0$   |
| 10       | $6.0 \pm 33.0$   | $89.0 \pm 39.0$  | $-2.1 \pm 4.4$ | $0.9 \pm 5.7$  | $-0.8 \pm 1.8$ | $0.6 \pm 1.5$   | $-3.0 \pm 39.0$  |
| 11       | $0.0 \pm 32.0$   | $119.0 \pm 50.0$ | $-0.2 \pm 5.2$ | $0.7 \pm 5.5$  | $1.3 \pm 2.1$  | $0.1 \pm 1.3$   | $-37.0 \pm 39.0$ |
| 15-C     | $-12.0 \pm 30.0$ | $132.0 \pm 50.0$ | $-1.3 \pm 5.0$ | $-1.8 \pm 6.5$ | $1.2 \pm 1.9$  | $-0.9 \pm 1.6$  | $-11.0 \pm 37.0$ |
| 27       | $13.0 \pm 26.0$  | $95.0 \pm 47.0$  | $0.6 \pm 4.5$  | $4.6 \pm 5.5$  | $0.5 \pm 2.4$  | $-1.2 \pm 1.8$  | $2.0 \pm 36.0$   |
|          | Cs-134           | Cs-137           | Mn-54          | Nb-95          | Ru-103         | Ru-106          | Zr-95            |
| 01       | $0.1 \pm 1.9$    | $2.4 \pm 3.5$    | $0.1 \pm 1.6$  | $-1.4 \pm 5.6$ | $0.5 \pm 4.2$  | $-8.0 \pm 13.0$ | $-1.4 \pm 5.7$   |
| 02       | $1.1 \pm 1.6$    | $-1.0 \pm 2.4$   | $0.2 \pm 1.6$  | $0.8 \pm 4.4$  | $-0.4 \pm 4.1$ | $-9.4 \pm 9.9$  | $1.6 \pm 3.8$    |
| 03       | $0.1 \pm 1.7$    | $0.4 \pm 2.6$    | $0.5 \pm 1.2$  | $1.1 \pm 6.5$  | $0.4 \pm 4.4$  | $-5.0 \pm 15.0$ | $-0.5 \pm 4.8$   |
| 04       | $-0.8 \pm 1.5$   | $0.5 \pm 2.2$    | $-1.4 \pm 1.5$ | $0.1 \pm 4.5$  | $1.2 \pm 3.2$  | $-6.0 \pm 14.0$ | $-0.9 \pm 3.4$   |
| 10       | $-0.8 \pm 1.5$   | $-0.4 \pm 2.5$   | $-0.8 \pm 1.6$ | $-0.2 \pm 6.0$ | $1.6 \pm 3.8$  | $4.6 \pm 9.2$   | $-4.3 \pm 4.6$   |
| 11       | $1.2 \pm 1.6$    | $0.1 \pm 2.8$    | $0.2 \pm 1.7$  | $0.6 \pm 5.6$  | $1.7 \pm 3.7$  | $3.0 \pm 13.0$  | $0.7 \pm 5.4$    |
| 15-C     | $0.3 \pm 1.2$    | $-0.1 \pm 2.2$   | $1.3 \pm 1.6$  | $-0.4 \pm 4.3$ | $-2.0 \pm 3.4$ | $3.0 \pm 13.0$  | $-2.2 \pm 3.9$   |
| 27       | $0.6 \pm 1.4$    | $-0.1 \pm 2.6$   | $-0.7 \pm 1.3$ | $0.7 \pm 5.3$  | $2.1 \pm 4.0$  | $16.0 \pm 11.0$ | $-1.0 \pm 4.1$   |

Table 4-C, Air Particulates Gamma Spectra - Quarter 3 (pCi/m3 x 1000)

| Location | Isotope          |                  |                |                |                |                  |                  |  |  |  |  |
|----------|------------------|------------------|----------------|----------------|----------------|------------------|------------------|--|--|--|--|
|          | Ba-140           | Be-7             | Ce-141         | Ce-144         | Co-58          | Co-60            | Cr-51            |  |  |  |  |
| 01       | $-15.0 \pm 36.0$ | $73.0 \pm 37.0$  | $2.5 \pm 4.6$  | $-2.5 \pm 6.3$ | $0.5 \pm 2.5$  | $0.9 \pm 2.0$    | $-12.0 \pm 39.0$ |  |  |  |  |
| 02       | $14.0 \pm 40.0$  | $89.0 \pm 39.0$  | $0.1 \pm 4.5$  | $-1.7 \pm 5.4$ | $1.9 \pm 2.6$  | $-0.5 \pm 1.5$   | $-10.0 \pm 31.0$ |  |  |  |  |
| 03       | $-8.0 \pm 43.0$  | $94.0 \pm 42.0$  | $3.6 \pm 6.0$  | $0.2 \pm 6.2$  | $-0.6 \pm 2.5$ | $-0.9 \pm 1.1$   | $-10.0 \pm 41.0$ |  |  |  |  |
| 04       | $0.0 \pm 41.0$   | $103.0 \pm 42.0$ | $-3.4 \pm 4.8$ | $0.7 \pm 5.2$  | $1.7 \pm 1.9$  | $0.5 \pm 1.4$    | $-42.0 \pm 40.0$ |  |  |  |  |
| 10       | $15.0 \pm 29.0$  | $57.0 \pm 36.0$  | $1.3 \pm 4.6$  | $-2.2 \pm 5.6$ | $-1.3 \pm 2.5$ | $-0.5 \pm 1.3$   | $-17.0 \pm 36.0$ |  |  |  |  |
| 11       | $-8.0 \pm 15.0$  | $90.0 \pm 44.0$  | $-3.1 \pm 5.7$ | $0.8 \pm 6.4$  | $-0.6 \pm 2.6$ | $0.5 \pm 1.4$    | $-23.0 \pm 46.0$ |  |  |  |  |
| 15-C     | $0.0 \pm 37.0$   | $114.0 \pm 43.0$ | $1.2 \pm 5.1$  | $-1.7 \pm 5.6$ | $-0.2 \pm 2.2$ | $-1.4 \pm 1.5$   | $34.0 \pm 39.0$  |  |  |  |  |
| 27       | $16.0 \pm 32.0$  | $74.0 \pm 43.0$  | $-0.6 \pm 4.9$ | $-1.3 \pm 6.9$ | $0.6 \pm 2.5$  | $-0.8 \pm 1.9$   | $1.0 \pm 36.0$   |  |  |  |  |
|          | Cs-134           | Cs-137           | Mn-54          | Nb-95          | Ru-103         | Ru-106           | Zr-95            |  |  |  |  |
| 01       | $-0.6 \pm 1.3$   | $-0.4 \pm 2.5$   | $-0.1 \pm 1.2$ | $2.4 \pm 3.7$  | $-1.3 \pm 3.7$ | $-3.0 \pm 15.0$  | $3.7 \pm 3.6$    |  |  |  |  |
| 02       | $-0.1 \pm 1.4$   | $0.9 \pm 2.4$    | $-0.8 \pm 1.3$ | $1.6 \pm 3.9$  | $0.0 \pm 3.1$  | $5.0 \pm 13.0$   | $-1.1 \pm 4.7$   |  |  |  |  |
| 03       | $0.1 \pm 1.6$    | $-0.5 \pm 2.7$   | $0.6 \pm 1.6$  | $1.1 \pm 4.2$  | $0.0 \pm 4.0$  | $-4.0 \pm 11.0$  | $-3.5 \pm 5.3$   |  |  |  |  |
| 04       | $0.1 \pm 1.3$    | $-0.4 \pm 2.2$   | $0.6 \pm 0.9$  | $-2.3 \pm 3.6$ | $-0.4 \pm 3.0$ | $-9.0 \pm 14.0$  | $-2.4 \pm 4.1$   |  |  |  |  |
| 10       | $-0.9 \pm 1.7$   | $-1.7 \pm 2.4$   | $-0.4 \pm 1.4$ | $-1.1 \pm 4.5$ | $-4.2 \pm 3.7$ | $-16.0 \pm 12.0$ | $-0.3 \pm 3.8$   |  |  |  |  |
| 11       | $1.6 \pm 1.9$    | $0.4 \pm 2.5$    | $0.1 \pm 1.2$  | $0.3 \pm 4.7$  | $-2.2 \pm 3.7$ | $2.0 \pm 14.0$   | $0.2 \pm 5.1$    |  |  |  |  |
| 15-C     | $0.3 \pm 1.4$    | $-1.1 \pm 2.7$   | $0.3 \pm 1.2$  | $-2.5 \pm 4.7$ | $-0.4 \pm 3.1$ | $2.0 \pm 12.0$   | $-1.7 \pm 4.0$   |  |  |  |  |
| 27       | $-0.2 \pm 1.7$   | $0.7 \pm 2.7$    | $-1.1 \pm 1.5$ | $-1.0 \pm 3.9$ | $-1.8 \pm 2.6$ | $5.0 \pm 14.0$   | $-0.4 \pm 4.6$   |  |  |  |  |

Table 4-D, Air Particulates Gamma Spectra - Quarter 4 (pCi/m3 x 1000)

| Location |                   | Isotope          |                |                |                |                  |                  |  |  |  |  |
|----------|-------------------|------------------|----------------|----------------|----------------|------------------|------------------|--|--|--|--|
|          | Ba-140            | Be-7             | Ce-141         | Ce-144         | Co-58          | Co-60            | Cr-51            |  |  |  |  |
| 01       | $-31.0 \pm 47.0$  | $77.0 \pm 38.0$  | $1.4 \pm 5.3$  | $0.6 \pm 5.6$  | $-1.0 \pm 2.2$ | $1.2 \pm 1.8$    | $-1.0 \pm 57.0$  |  |  |  |  |
| 02       | $-11.0 \pm 48.0$  | $101.0 \pm 40.0$ | $7.4 \pm 5.6$  | $-1.7 \pm 6.6$ | $0.6 \pm 2.5$  | $-0.7 \pm 1.8$   | $15.0 \pm 42.0$  |  |  |  |  |
| 03       | $-11.0 \pm 58.0$  | $93.0 \pm 36.0$  | $0.1 \pm 6.6$  | $2.0 \pm 5.9$  | $-0.3 \pm 2.8$ | $1.2 \pm 1.9$    | $-39.0 \pm 45.0$ |  |  |  |  |
| 04       | $-11.0 \pm 38.0$  | $105.0 \pm 46.0$ | $-5.9 \pm 6.5$ | $-1.2 \pm 6.6$ | $-1.0 \pm 2.0$ | $-0.5 \pm 1.1$   | $-24.0 \pm 50.0$ |  |  |  |  |
| 10       | $22.0 \pm 31.0$   | $28.0 \pm 29.0$  | $2.8 \pm 5.8$  | $3.4 \pm 5.2$  | $-1.0 \pm 2.4$ | $1.0 \pm 1.9$    | $-34.0 \pm 48.0$ |  |  |  |  |
| 11       | $33.0 \pm 74.0$   | $77.0 \pm 43.0$  | $4.6 \pm 7.0$  | $4.5 \pm 6.0$  | $-1.0 \pm 2.4$ | $0.7 \pm 1.6$    | $8.0 \pm 48.0$   |  |  |  |  |
| 15-C     | $0.0 \pm 48.0$    | $93.0 \pm 43.0$  | $1.3 \pm 5.8$  | $-5.9 \pm 6.9$ | $-1.0 \pm 2.2$ | $-0.8 \pm 1.8$   | $-12.0 \pm 52.0$ |  |  |  |  |
| 27       | $-20.0 \pm 110.0$ | $46.0 \pm 52.0$  | $-6.4 \pm 7.3$ | $2.1 \pm 7.1$  | $0.2 \pm 3.2$  | $-0.5 \pm 1.3$   | $20.0 \pm 72.0$  |  |  |  |  |
|          | Cs-134            | Cs-137           | Mn-54          | Nb-95          | Ru-103         | Ru-106           | Zr-95            |  |  |  |  |
| 01       | $2.2 \pm 1.6$     | $-0.1 \pm 2.5$   | $0.3 \pm 1.3$  | $0.4 \pm 4.0$  | $1.4 \pm 4.0$  | $3.0 \pm 12.0$   | $2.6 \pm 3.3$    |  |  |  |  |
| 02       | $-1.3 \pm 1.7$    | $-1.7 \pm 2.3$   | $-0.2 \pm 1.7$ | $-1.9 \pm 4.5$ | $-1.4 \pm 3.2$ | $3.0 \pm 13.0$   | $-0.3 \pm 4.1$   |  |  |  |  |
| 03       | $-1.1 \pm 1.9$    | $1.4 \pm 2.5$    | $0.0 \pm 1.9$  | $-3.7 \pm 5.2$ | $0.5 \pm 4.5$  | $-2.0 \pm 14.0$  | $1.1 \pm 4.7$    |  |  |  |  |
| 04       | $-0.8 \pm 1.4$    | $-1.4 \pm 2.5$   | $-0.3 \pm 1.4$ | $-2.4 \pm 6.8$ | $0.0 \pm 4.2$  | $-21.0 \pm 14.0$ | $0.3 \pm 4.9$    |  |  |  |  |
| 10       | $1.5 \pm 1.6$     | $-1.7 \pm 2.4$   | $-0.9 \pm 1.2$ | $-0.7 \pm 6.0$ | $-2.5 \pm 4.7$ | $7.0 \pm 11.0$   | $2.6 \pm 4.6$    |  |  |  |  |
| 11       | $0.2 \pm 1.0$     | $-0.3 \pm 2.5$   | $1.4 \pm 1.8$  | $1.2 \pm 4.5$  | $-3.0 \pm 5.0$ | $0.0 \pm 15.0$   | $0.2 \pm 5.4$    |  |  |  |  |
| 15-C     | $0.8 \pm 1.7$     | $0.8 \pm 2.5$    | $0.1 \pm 1.3$  | $-4.0 \pm 5.6$ | $-1.1 \pm 4.0$ | $-7.0 \pm 14.0$  | $-4.5 \pm 5.0$   |  |  |  |  |
| 27       | $-0.9 \pm 1.4$    | $0.6 \pm 2.8$    | $0.6 \pm 1.6$  | $0.2 \pm 7.2$  | $1.8 \pm 5.8$  | $7.0 \pm 14.0$   | $2.1 \pm 5.8$    |  |  |  |  |

# Table 6, Soil (pCi/g dry)

| Location | Collection<br>Date |                  |                                    | Isotope                              |                                      |                                      |                                    |
|----------|--------------------|------------------|------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|
| 03       |                    | Be-7             | Ce-141                             | Ce-144                               | Co-58                                | Co-60                                | Cr-51                              |
|          | 03/30/04           | $0.15 \pm 0.48$  | $-0.05 \pm 0.09$                   | $0.19 \pm 0.21$                      | $-0.05 \pm 0.03$                     | $0.02 \pm 0.04$                      | $0.02 \pm 0.57$                    |
|          | 06/29/04           | $-0.17 \pm 0.46$ | $0.05 \pm 0.07$                    | $-0.24 \pm 0.24$                     | $-0.03 \pm 0.03$<br>$-0.01 \pm 0.04$ | $0.02 \pm 0.04$<br>$0.00 \pm 0.05$   | $0.10 \pm 0.48$                    |
|          | 09/20/04           | $0.14 \pm 0.45$  | $-0.04 \pm 0.07$                   | $-0.14 \pm 0.27$                     | $-0.01 \pm 0.04$                     | $0.01 \pm 0.05$                      | $-0.08 \pm 0.46$                   |
|          | 11/16/04           | $0.51 \pm 0.61$  | $-0.04 \pm 0.12$                   | $-0.20 \pm 0.28$                     | $-0.05 \pm 0.05$                     | $-0.02 \pm 0.05$                     | $0.52 \pm 0.72$                    |
|          |                    | Cs-134           | Cs-137                             | Fe-59                                | K-40                                 | Mn-54                                | Nb-95                              |
|          | 03/30/04           | $-0.01 \pm 0.04$ | $0.97 \pm 0.11$                    | $0.03 \pm 0.10$                      | $8.10 \pm 1.10$                      | $-0.03 \pm 0.04$                     | $0.01 \pm 0.06$                    |
|          | 06/29/04           | $0.01 \pm 0.03$  | $1.02 \pm 0.12$                    | $-0.01 \pm 0.11$                     | $9.40 \pm 1.30$                      | $0.02 \pm 0.05$                      | $-0.04 \pm 0.05$                   |
|          | 09/20/04           | $0.01 \pm 0.05$  | $1.23 \pm 0.14$                    | $0.06 \pm 0.08$                      | $7.90 \pm 1.40$                      | $0.00 \pm 0.04$                      | $-0.02 \pm 0.06$                   |
|          | 11/16/04           | $-0.01 \pm 0.05$ | $0.81 \pm 0.13$                    | $-0.03 \pm 0.13$                     | $6.30 \pm 1.20$                      | $-0.03 \pm 0.04$                     | $-0.02 \pm 0.07$                   |
|          |                    | Ru-103           | Ru-106                             | Sb-125                               | Th-228                               | Zn-65                                | Zr-95                              |
|          | 03/30/04           | $0.01 \pm 0.05$  | $-0.09 \pm 0.35$                   | $0.08 \pm 0.10$                      | $0.63 \pm 0.16$                      | $0.01 \pm 0.09$                      | $-0.01 \pm 0.06$                   |
|          | 06/29/04           | $0.03 \pm 0.05$  | $-0.07 \pm 0.39$                   | $0.04 \pm 0.11$                      | $0.64 \pm 0.19$                      | $-0.09 \pm 0.10$                     | $0.00 \pm 0.08$                    |
|          | 09/20/04           | $-0.02 \pm 0.05$ | $0.12 \pm 0.41$                    | $-0.01 \pm 0.13$                     | $0.62 \pm 0.21$                      | $0.04 \pm 0.20$                      | $-0.20 \pm 0.11$                   |
|          | 11/16/04           | $-0.06 \pm 0.08$ | $-0.41 \pm 0.38$                   | $-0.01 \pm 0.13$                     | $0.48 \pm 0.19$                      | $-0.02 \pm 0.12$                     | $-0.08 \pm 0.13$                   |
| 04       |                    | Be-7             | Ce-141                             | Ce-144                               | Co-58                                | Co-60                                | Cr-51                              |
|          | 03/30/04           | $0.34 \pm 0.36$  | $-0.03 \pm 0.08$                   | $-0.20 \pm 0.20$                     | $0.02 \pm 0.03$                      | $0.02 \pm 0.03$                      | $-0.07 \pm 0.46$                   |
|          | 06/29/04           | $0.44 \pm 0.34$  | $0.03 \pm 0.06$                    | $0.09 \pm 0.16$                      | $-0.02 \pm 0.04$                     | $0.05 \pm 0.04$                      | $0.06 \pm 0.31$                    |
|          | 09/21/04           | $0.40 \pm 0.34$  | $-0.01 \pm 0.06$                   | $0.00 \pm 0.20$                      | $-0.04 \pm 0.03$                     | $0.01 \pm 0.03$                      | $-0.06 \pm 0.30$                   |
|          | 11/16/04           | $0.59 \pm 0.49$  | $0.06 \pm 0.08$                    | $0.07 \pm 0.22$                      | $0.02 \pm 0.04$                      | $0.02 \pm 0.03$                      | $-0.29 \pm 0.51$                   |
|          |                    | . Cs-134         | Cs-137                             | Fe-59                                | K-40                                 | Mn-54                                | Nb-95                              |
|          | 03/30/04           | $0.01 \pm 0.03$  | $0.44 \pm 0.06$                    | $0.02 \pm 0.09$                      | $12.53 \pm 0.98$                     | $0.03 \pm 0.03$                      | $-0.01 \pm 0.05$                   |
|          | 06/29/04           | $0.02 \pm 0.03$  | $0.51 \pm 0.07$                    | $-0.06 \pm 0.08$                     | $12.50 \pm 1.20$                     | $0.03 \pm 0.04$                      | $0.04 \pm 0.05$                    |
|          | 09/21/04           | $0.01 \pm 0.03$  | $0.50 \pm 0.06$                    | $-0.03 \pm 0.07$                     | $11.86 \pm 0.95$                     | $-0.01 \pm 0.03$                     | $-0.01 \pm 0.06$                   |
|          | 11/16/04           | $-0.01 \pm 0.03$ | $0.48 \pm 0.07$                    | $0.02 \pm 0.09$                      | $10.70 \pm 1.10$                     | $0.00 \pm 0.03$                      | $-0.04 \pm 0.06$                   |
|          |                    | Ru-103           | Ru-106                             | Sb-125                               | Th-228                               | Zn-65                                | Zr-95                              |
|          | 03/30/04           | $0.03 \pm 0.04$  | $-0.14 \pm 0.26$                   | $0.00 \pm 0.07$                      | $1.21 \pm 0.12$                      | $0.07 \pm 0.11$                      | $-0.01 \pm 0.06$                   |
|          | 06/29/04           | $0.01 \pm 0.04$  | $0.15 \pm 0.30$                    | $-0.03 \pm 0.09$                     | $1.04 \pm 0.15$                      | $0.01 \pm 0.17$                      | $-7.30 \pm 7.40$                   |
|          | 09/21/04           | $0.03 \pm 0.04$  | $0.03 \pm 0.28$                    | $0.04 \pm 0.09$                      | $1.10 \pm 0.14$                      | $0.10 \pm 0.15$                      | $-0.04 \pm 0.10$                   |
|          | 11/16/04           | $-0.02 \pm 0.05$ | $-0.16 \pm 0.29$                   | $-0.03 \pm 0.08$                     | $1.00 \pm 0.15$                      | $-0.06 \pm 0.14$                     | $-12.30 \pm 8.60$                  |
| 14-C     |                    | Be-7             | Ce-141                             | Ce-144                               | Co-58                                | Co-60                                | Cr-51                              |
|          | 03/30/04           | $0.60 \pm 0.51$  | $0.09 \pm 0.12$                    | $0.02 \pm 0.22$                      | $0.01 \pm 0.04$                      | $-0.03 \pm 0.03$                     | $0.26 \pm 0.49$                    |
|          | 06/29/04           | $0.36 \pm 0.16$  | $0.09 \pm 0.12$<br>$0.03 \pm 0.05$ | $-0.02 \pm 0.22$                     | $-0.01 \pm 0.04$                     | $-0.03 \pm 0.03$<br>$-0.01 \pm 0.02$ | $0.20 \pm 0.49$<br>$0.07 \pm 0.27$ |
|          | 09/20/04           | $0.63 \pm 0.10$  | $0.09 \pm 0.08$                    | $-0.07 \pm 0.13$<br>$-0.15 \pm 0.27$ | $-0.07 \pm 0.02$                     | $0.00 \pm 0.02$                      | $0.10 \pm 0.40$                    |
|          | 11/16/04           | $0.65 \pm 0.88$  | $-0.09 \pm 0.10$                   | $-0.18 \pm 0.27$                     | $-0.06 \pm 0.04$                     | $0.01 \pm 0.03$                      | $-0.07 \pm 0.61$                   |
|          |                    | Cs-134           | Cs-137                             | Fe-59                                | K-40                                 | Mn-54                                | Nb-95                              |
|          | 03/30/04           | $0.01 \pm 0.03$  | $1.46 \pm 0.09$                    | $0.02 \pm 0.08$                      | $12.40 \pm 1.00$                     | $0.01 \pm 0.04$                      | $-0.02 \pm 0.08$                   |
|          | 06/29/04           | $0.05 \pm 0.08$  | $1.66 \pm 0.07$                    | $-0.02 \pm 0.05$                     | $11.70 \pm 0.65$                     | $0.01 \pm 0.02$                      | $-0.01 \pm 0.03$                   |
|          | 09/20/04           | $-0.02 \pm 0.04$ | $1.60 \pm 0.12$                    | $-0.04 \pm 0.08$                     | $13.00 \pm 1.30$                     | $0.00 \pm 0.04$                      | $-0.06 \pm 0.07$                   |
|          | 11/16/04           | $-0.05 \pm 0.13$ | $1.37 \pm 0.10$                    | $-0.04 \pm 0.09$                     | $10.20 \pm 1.00$                     | $0.01 \pm 0.03$                      | $0.08 \pm 0.06$                    |

# Table 6, Soil (pCi/g dry)

| Location 14-C | n Collection Isotope Date |                  |                  |                  |                 |                  |                    |  |  |  |
|---------------|---------------------------|------------------|------------------|------------------|-----------------|------------------|--------------------|--|--|--|
|               |                           | Ru-103           | Ru-106           | Sb-125           | Th-228          | Zn-65            | Zr-95              |  |  |  |
|               | 03/30/04                  | $0.03 \pm 0.05$  | $0.05 \pm 0.31$  | $-0.05 \pm 0.09$ | $1.32 \pm 0.14$ | $-0.07 \pm 0.14$ | $0.01 \pm 0.07$    |  |  |  |
|               | 06/29/04                  | $-0.02 \pm 0.03$ | $0.06 \pm 0.20$  | $-0.01 \pm 0.07$ | $1.32 \pm 0.09$ | $-0.01 \pm 0.09$ | $-10.20 \pm 4.30$  |  |  |  |
|               | 09/20/04                  | $-0.01 \pm 0.05$ | $-0.44 \pm 0.38$ | $0.07 \pm 0.11$  | $1.55 \pm 0.17$ | $0.12 \pm 0.16$  | $-15.00 \pm 11.00$ |  |  |  |
|               | 11/16/04                  | $-0.01 \pm 0.05$ | $-0.01 \pm 0.31$ | $-0.02 \pm 0.11$ | $1.18 \pm 0.16$ | $0.07 \pm 0.14$  | $-0.12 \pm 0.14$   |  |  |  |

## Table 8, Goat Milk (pCi/L)

| Location | Collection<br>Date   |                                      |                                    | Isotope                            |                                      |                                              |                                      |
|----------|----------------------|--------------------------------------|------------------------------------|------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|
| 21       |                      | Ba-140                               | Cs-134                             | Cs-137                             | I-131                                | K-40                                         | La-140                               |
|          | 04/15/04             | $1.10 \pm 5.40$                      | $0.00 \pm 3.40$                    | $2.30 \pm 3.20$                    | $0.03 \pm 0.25$                      | 1630.00 ± 120.00                             | $1.30 \pm 6.20$                      |
|          | 04/28/04             | $7.80 \pm 7.90$                      | $0.30 \pm 4.10$                    | $2.60 \pm 4.60$                    | $0.08 \pm 0.27$                      | $1460.00 \pm 150.00$                         | $9.00 \pm 9.10$                      |
|          | 05/11/04             | $1.80 \pm 5.00$                      | $0.10 \pm 3.00$                    | $0.50 \pm 3.50$                    | $0.03 \pm 0.23$                      | $1220.00 \pm 110.00$                         | $2.10 \pm 5.70$                      |
|          | 05/20/04             | $-0.60 \pm 6.50$                     | $0.50 \pm 4.50$                    | $3.30 \pm 4.50$                    | $-0.04 \pm 0.02$                     | $1520.00 \pm 150.00$                         | $-0.70 \pm 7.50$                     |
|          | 06/02/04             | $10.70 \pm 8.00$                     | $-3.70 \pm 4.80$                   | $-4.30 \pm 4.60$                   | $0.04 \pm 0.21$                      | $1610.00 \pm 130.00$                         | $12.30 \pm 9.10$                     |
|          | 06/15/04             | $-0.40 \pm 5.40$                     | $3.10 \pm 4.00$                    | $1.30 \pm 3.40$                    | $-0.05 \pm 0.02$                     | $1620.00 \pm 130.00$                         | $-0.50 \pm 6.20$                     |
|          | 07/13/04             | $1.90 \pm 4.30$                      | $-1.00 \pm 2.50$                   | $10.00 \pm 3.40$                   | $0.24 \pm 0.46$                      | $1920.00 \pm 99.00$                          | $2.20 \pm 4.90$                      |
|          | 07/27/04             | $0.00 \pm 5.90$                      | $-0.60 \pm 4.50$                   | $11.30 \pm 5.60$                   | $-0.06 \pm 0.02$                     | $1410.00 \pm 150.00$                         | $0.00 \pm 6.80$                      |
|          | 08/10/04             | $0.00 \pm 3.00$                      | $-0.10 \pm 2.40$                   | $5.30 \pm 2.80$                    | $0.10 \pm 0.32$                      | $1730.00 \pm 85.00$                          | $0.00 \pm 3.50$                      |
|          | 08/30/04             | $5.10 \pm 5.50$                      | $1.30 \pm 3.70$                    | $2.20 \pm 4.10$                    | $-0.05 \pm 0.05$                     | $1500.00 \pm 120.00$                         | $5.80 \pm 6.30$                      |
|          |                      | Sr-89                                | Sr-90                              |                                    |                                      |                                              |                                      |
|          | 06/15/04             | $6.30 \pm 4.70$                      | $1.24 \pm 0.73$                    |                                    |                                      |                                              |                                      |
|          | 08/30/04             | $0.00 \pm 6.10$                      | $0.93 \pm 0.95$                    |                                    |                                      |                                              |                                      |
|          |                      |                                      |                                    |                                    |                                      |                                              |                                      |
| 22       |                      | Ba-140                               | Cs-134                             | Cs-137                             | I-131                                | K-40                                         | La-140                               |
|          | 03/23/04             | $-3.50 \pm 6.10$                     | $-2.30 \pm 3.30$                   | $4.60 \pm 3.90$                    | $0.27 \pm 0.38$                      | $1710.00 \pm 120.00$                         | $-4.10 \pm 7.00$                     |
|          | 04/14/04             | $-0.80 \pm 3.20$                     | $-0.10 \pm 2.10$                   | $1.10 \pm 2.00$                    | $0.13 \pm 0.33$                      | $1754.00 \pm 77.00$                          | $-0.90 \pm 3.60$                     |
|          | 04/28/04             | $0.20 \pm 4.50$                      | $-0.40 \pm 2.50$                   | $2.20 \pm 2.30$                    | $0.10 \pm 0.33$                      | $1760.00 \pm 96.00$                          | $0.30 \pm 5.10$                      |
|          | 05/11/04             | $-0.60 \pm 4.90$                     | $0.00 \pm 3.50$                    | $6.40 \pm 4.60$                    | $0.05 \pm 0.26$                      | $1630.00 \pm 120.00$                         | $-0.70 \pm 5.70$                     |
|          | 05/19/04             | $1.80 \pm 3.20$                      | $-0.80 \pm 2.20$                   | $11.70 \pm 2.80$                   | $0.08 \pm 0.26$                      | $1773.00 \pm 80.00$                          | $2.10 \pm 3.70$                      |
|          |                      | Sr-89                                | Sr-90                              |                                    |                                      |                                              |                                      |
|          | 03/23/04             | $-3.90 \pm 6.60$                     | $6.20 \pm 1.10$                    |                                    |                                      |                                              |                                      |
|          |                      | $-16.00 \pm 16.00$                   | $8.10 \pm 1.30$                    |                                    |                                      |                                              |                                      |
|          |                      |                                      |                                    |                                    |                                      |                                              |                                      |
| 24-C     |                      | Ba-140                               | Cs-134                             | Cs-137                             | I-131                                | K-40                                         | La-140                               |
|          | 04/28/04             | $6.50 \pm 7.20$                      | $-4.50 \pm 5.50$                   | $5.50 \pm 5.00$                    | $0.08 \pm 0.28$                      | $1670.00 \pm 170.00$                         | $7.40 \pm 8.30$                      |
|          | 05/12/04             | $2.50 \pm 3.80$                      | $-0.40 \pm 3.20$                   | $2.50 \pm 3.30$                    | $-0.01 \pm 0.06$                     | $1550.00 \pm 120.00$                         | $2.90 \pm 4.40$                      |
|          | 05/20/04             | $0.50 \pm 6.40$                      | $0.90 \pm 4.30$                    | $4.00 \pm 3.90$                    | $-0.05 \pm 0.02$                     | $1730.00 \pm 150.00$                         | $0.50 \pm 7.30$                      |
|          | 06/02/04             | $2.70 \pm 6.40$                      | $5.10 \pm 3.50$                    | $3.70 \pm 3.70$                    | $-0.06 \pm 0.03$                     | $1560.00 \pm 130.00$                         | $3.10 \pm 7.30$                      |
|          | 06/15/04             | $0.00 \pm 6.00$                      | $1.10 \pm 4.20$                    | $0.50 \pm 4.00$                    | $-0.05 \pm 0.02$                     | $1690.00 \pm 140.00$                         | $0.00 \pm 6.90$                      |
|          | 07/13/04             | $0.00 \pm 5.30$                      | $1.40 \pm 4.60$                    | $3.00 \pm 4.10$                    | $0.05 \pm 0.33$                      | $1620.00 \pm 160.00$                         | $0.00 \pm 6.10$                      |
|          | 07/27/04             | $-0.70 \pm 5.80$                     | $0.20 \pm 4.60$                    | $1.20 \pm 4.60$                    | $-0.09 \pm 0.03$                     | $1610.00 \pm 150.00$                         | $-0.80 \pm 6.70$                     |
|          | 08/10/04<br>08/30/04 | $-0.60 \pm 6.10$<br>$-3.60 \pm 3.80$ | $1.40 \pm 4.50$<br>$2.10 \pm 3.50$ | $2.40 \pm 4.50$<br>$3.80 \pm 4.40$ | $0.10 \pm 0.33$ $-0.05 \pm 0.07$     | $1630.00 \pm 160.00$<br>$1780.00 \pm 140.00$ | $-0.70 \pm 7.00$<br>$-4.10 \pm 4.30$ |
|          | 09/22/04             | $-1.90 \pm 6.30$                     | $1.50 \pm 4.90$                    | $9.00 \pm 6.20$                    | $-0.05 \pm 0.07$<br>$-0.06 \pm 0.02$ | $1780.00 \pm 140.00$<br>$1880.00 \pm 180.00$ | $-4.10 \pm 4.30$<br>$-2.20 \pm 7.20$ |
|          | . — .                | Sr-89                                | Sr-90                              |                                    |                                      |                                              |                                      |
|          | 06/15/04             | £ 20 1 £ 00                          | 1 70 / 0.03                        |                                    |                                      |                                              |                                      |
|          | 06/15/04             | 5.30 ± 5.90                          | $1.78 \pm 0.93$                    |                                    |                                      |                                              |                                      |
|          | 09/22/04             | $-0.40 \pm 4.40$                     | $1.62 \pm 0.95$                    |                                    |                                      |                                              |                                      |

#### Table 9, Pasture Grass (pCi/g wet)

| Location | Collection<br>Date   |                                         |                                         | Isotope                                  | · · · · · · · · · · · · · · · · · · ·    |                                          | <del></del>                              |
|----------|----------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| 21       |                      | Ba-140                                  | Be-7                                    | Ce-141                                   | Ce-144                                   | Co-58                                    | Co-60                                    |
|          |                      | $-0.091 \pm 0.072 \mathrm{F}$           | $0.460 \pm 0.280$                       | $-0.012 \pm 0.034$                       | $0.060 \pm 0.088$                        | $0.027 \pm 0.031$                        | $-0.015 \pm 0.035$                       |
|          |                      | $-0.024 \pm 0.040 \mathrm{F}$           | $0.290 \pm 0.220$                       | $-0.004 \pm 0.024$                       | $0.023 \pm 0.077$                        | $0.001 \pm 0.025$                        | $0.002 \pm 0.031$                        |
|          |                      | $0.080 \pm 0.120 \mathrm{F}$            | $0.180 \pm 0.360$                       | $0.018 \pm 0.057$                        | $0.030 \pm 0.150$                        | $-0.013 \pm 0.040$                       | $-0.033 \pm 0.035$                       |
|          | 09/22/04<br>09/29/04 | $0.011 \pm 0.048$                       | $0.910 \pm 0.430$                       | $0.019 \pm 0.031$                        | $-0.010 \pm 0.079$                       | $-0.013 \pm 0.032$                       | $0.013 \pm 0.036$                        |
|          | 10/11/04             | $0.030 \pm 0.045$<br>$0.007 \pm 0.038$  | $1.770 \pm 0.380$<br>$3.580 \pm 0.420$  | $0.002 \pm 0.023$<br>$0.026 \pm 0.028$   | $-0.004 \pm 0.056$<br>$0.006 \pm 0.092$  | $0.007 \pm 0.021$<br>-0.005 \pm 0.021    | $0.000 \pm 0.028$<br>$0.002 \pm 0.022$   |
|          |                      | $0.007 \pm 0.036$<br>$0.021 \pm 0.036$  | $2.220 \pm 0.420$                       | $0.020 \pm 0.028$<br>$0.005 \pm 0.028$   | $-0.000 \pm 0.092$                       | $0.003 \pm 0.021$<br>$0.004 \pm 0.023$   | $0.002 \pm 0.022$<br>$0.008 \pm 0.023$   |
|          |                      | $-0.049 \pm 0.061$                      | $3.860 \pm 0.450$                       | $-0.033 \pm 0.023$                       | $-0.020 \pm 0.077$<br>$-0.090 \pm 0.100$ | $-0.020 \pm 0.023$                       | $-0.016 \pm 0.025$                       |
|          |                      | $-0.030 \pm 0.140 \mathrm{F}$           | $-0.260 \pm 0.260$                      | $0.027 \pm 0.041$                        | $-0.036 \pm 0.087$                       | $0.018 \pm 0.033$                        | $0.014 \pm 0.032$                        |
|          |                      | Cr-51                                   | Cs-134                                  | Cs-137                                   | Fe-59                                    | I-131                                    | K-40                                     |
|          | 01/27/04             | $-0.130 \pm 0.210$                      | $-0.002 \pm 0.031$                      | $0.035 \pm 0.027$                        | $0.027 \pm 0.095$                        | $0.042 \pm 0.073$                        | $12.100 \pm 1.000$                       |
|          |                      | $-0.130 \pm 0.160$                      | $-0.004 \pm 0.028$                      | $0.088 \pm 0.033$                        | $0.043 \pm 0.080$                        | $-0.004 \pm 0.035$                       | $12.000 \pm 0.900$                       |
|          | 03/24/04 09/22/04    | $-0.190 \pm 0.430$<br>$0.040 \pm 0.230$ | $0.025 \pm 0.035$<br>-0.001 \pm 0.029   | $0.029 \pm 0.032$<br>$0.026 \pm 0.029$   | $-0.040 \pm 0.140$<br>$-0.037 \pm 0.091$ | $0.200 \pm 0.280$<br>$0.006 \pm 0.012$   | $14.600 \pm 1.200$<br>$5.100 \pm 1.000$  |
|          |                      | $-0.030 \pm 0.140$                      | $0.001 \pm 0.029$<br>$0.004 \pm 0.018$  | $0.020 \pm 0.029$<br>$0.010 \pm 0.022$   | $0.057 \pm 0.091$<br>$0.057 \pm 0.063$   | $-0.000 \pm 0.012$<br>$-0.002 \pm 0.014$ | $3.620 \pm 0.850$                        |
|          | 10/11/04             | $0.140 \pm 0.190$                       | $-0.004 \pm 0.018$                      | $0.010 \pm 0.022$<br>$0.015 \pm 0.019$   | $-0.013 \pm 0.005$                       | $-0.002 \pm 0.014$<br>$-0.001 \pm 0.009$ | $5.930 \pm 0.000$                        |
|          | 10/27/04             | $0.070 \pm 0.180$                       | $-0.014 \pm 0.029$                      | $0.010 \pm 0.024$                        | $0.049 \pm 0.075$                        | $0.005 \pm 0.028$                        | $5.410 \pm 0.940$                        |
|          |                      | $-0.030 \pm 0.270$                      | $0.007 \pm 0.024$                       | $0.015 \pm 0.024$                        | $0.030 \pm 0.076$                        | $0.020 \pm 0.029$                        | $6.860 \pm 0.770$                        |
|          | 12/15/04             | $0.000 \pm 0.290$                       | $0.005 \pm 0.030$                       | $0.162 \pm 0.041$                        | $0.050 \pm 0.110$                        | $0.060 \pm 0.200$                        | $12.050 \pm 0.960$                       |
|          |                      | La-140                                  | Mn-54                                   | Nb-95                                    | Ru-103                                   | Ru-106                                   | Sb-125                                   |
|          |                      | $-0.105 \pm 0.083$                      | $-0.020 \pm 0.027$                      | $0.002 \pm 0.036$                        | $-0.005 \pm 0.028$                       | $-0.170 \pm 0.210$                       | $0.008 \pm 0.061$                        |
|          |                      |                                         | $-0.009 \pm 0.025$                      | $-0.019 \pm 0.027$                       | $-0.003 \pm 0.022$                       | $-0.030 \pm 0.210$                       | $0.032 \pm 0.061$                        |
|          |                      | $-0.090 \pm 0.140$                      | $0.017 \pm 0.035$                       | $-0.001 \pm 0.055$                       | $0.051 \pm 0.048$                        | $0.040 \pm 0.340$                        | $-0.029 \pm 0.077$                       |
|          | 09/22/04<br>09/29/04 | $0.012 \pm 0.055$<br>$0.035 \pm 0.052$  | $0.005 \pm 0.030$<br>-0.011 $\pm 0.018$ | $0.020 \pm 0.029$<br>-0.010 \pm 0.023    | $0.011 \pm 0.024$<br>-0.002 \pm 0.017    | $0.220 \pm 0.250$<br>$0.040 \pm 0.130$   | $0.006 \pm 0.052$<br>$0.029 \pm 0.043$   |
|          | 10/11/04             | $0.033 \pm 0.032$<br>$0.009 \pm 0.044$  | $0.005 \pm 0.019$                       | $0.008 \pm 0.028$                        | $0.002 \pm 0.017$<br>$0.004 \pm 0.021$   | $-0.130 \pm 0.200$                       | $0.029 \pm 0.043$<br>$0.016 \pm 0.050$   |
|          | 10/27/04             | $0.024 \pm 0.042$                       | $-0.007 \pm 0.024$                      | $-0.019 \pm 0.035$                       | $-0.013 \pm 0.023$                       | $-0.100 \pm 0.180$                       | $-0.031 \pm 0.060$                       |
|          | 11/10/04             | $-0.056 \pm 0.070$                      | $-0.026 \pm 0.025$                      | $0.004 \pm 0.035$                        | $0.015 \pm 0.033$                        | $-0.070 \pm 0.230$                       | $-0.023 \pm 0.058$                       |
|          | 12/15/04             | $-0.030 \pm 0.160$                      | $0.025 \pm 0.029$                       | $0.015 \pm 0.045$                        | $-0.016 \pm 0.035$                       | $-0.020 \pm 0.210$                       | $0.076 \pm 0.069$                        |
|          |                      | Th-228                                  | Zn-65                                   | Zr-95                                    |                                          |                                          |                                          |
|          |                      | $0.110 \pm 0.120$                       | $0.018 \pm 0.066$                       | $0.023 \pm 0.054$                        |                                          |                                          |                                          |
|          |                      |                                         | $0.021 \pm 0.058$                       | $-0.043 \pm 0.046$                       |                                          |                                          |                                          |
|          | 03/24/04<br>09/22/04 | $0.020 \pm 0.140$<br>-0.020 \pm 0.110   | $0.020 \pm 0.083$<br>$0.000 \pm 0.075$  | $-0.074 \pm 0.069$<br>$0.023 \pm 0.055$  |                                          |                                          |                                          |
|          |                      | $0.113 \pm 0.085$                       | $0.000 \pm 0.073$<br>$0.000 \pm 0.054$  | $-0.008 \pm 0.035$                       |                                          |                                          |                                          |
|          | 10/11/04             | $0.010 \pm 0.083$                       | $0.000 \pm 0.054$<br>$0.002 \pm 0.053$  | $0.011 \pm 0.038$                        |                                          |                                          |                                          |
|          | 10/27/04             | $0.060 \pm 0.130$                       | $-0.063 \pm 0.062$                      | $0.011 \pm 0.035$                        |                                          |                                          |                                          |
|          | 11/10/04             | $0.020 \pm 0.110$                       | $-0.074 \pm 0.062$                      | $-0.033 \pm 0.039$                       |                                          |                                          |                                          |
|          | 12/15/04             | $-0.040 \pm 0.120$                      | $-0.037 \pm 0.076$                      | $-0.008 \pm 0.056$                       |                                          |                                          |                                          |
|          |                      |                                         |                                         |                                          |                                          |                                          |                                          |
| 22       |                      | Ba-140                                  | Be-7                                    | Ce-141                                   | Ce-144                                   | Co-58                                    | Co-60                                    |
|          |                      | $0.018 \pm 0.047 \mathrm{F}$            | $0.400 \pm 0.250$                       | $-0.021 \pm 0.028$                       | $-0.030 \pm 0.100$                       | $0.002 \pm 0.025$                        | $-0.019 \pm 0.028$                       |
|          |                      | $0.008 \pm 0.041 \mathrm{F}$            | $0.080 \pm 0.190$                       | $-0.003 \pm 0.026$                       | $-0.003 \pm 0.074$                       | $0.011 \pm 0.025$                        | $0.012 \pm 0.027$                        |
|          |                      | $0.019 \pm 0.026$                       | $0.860 \pm 0.240$                       | $-0.012 \pm 0.021$                       | $-0.022 \pm 0.068$                       | $0.006 \pm 0.016$                        | $0.002 \pm 0.016$                        |
|          |                      | $-0.042 \pm 0.048$                      | $0.620 \pm 0.330$                       | $-0.010 \pm 0.029$                       | $-0.014 \pm 0.072$                       | $-0.007 \pm 0.026$                       | $-0.011 \pm 0.028$                       |
|          |                      | $-0.029 \pm 0.038$<br>$0.000 \pm 0.024$ | $1.700 \pm 0.410$ $1.190 \pm 0.310$     | $-0.025 \pm 0.036$<br>$-0.016 \pm 0.021$ | $0.010 \pm 0.120$<br>$0.003 \pm 0.063$   | $0.000 \pm 0.026$<br>$0.011 \pm 0.024$   | $0.032 \pm 0.026$<br>$0.019 \pm 0.027$   |
|          | 08/11/04             | $0.000 \pm 0.024$<br>$0.010 \pm 0.038$  | $1.190 \pm 0.310$<br>$1.140 \pm 0.340$  | $-0.010 \pm 0.021$<br>$-0.012 \pm 0.030$ | $-0.066 \pm 0.003$                       | $0.011 \pm 0.024$<br>$0.025 \pm 0.022$   | $-0.019 \pm 0.027$<br>$-0.003 \pm 0.028$ |
|          | 08/30/04             | $0.020 \pm 0.038$                       | $0.950 \pm 0.330$                       | $-0.012 \pm 0.030$<br>$-0.002 \pm 0.031$ | $-0.035 \pm 0.066$                       | $-0.025 \pm 0.022$                       | $0.013 \pm 0.028$                        |
|          | 22.20/01             | VIIIV                                   | 0., 00 - 0., 00                         | U.UUZ - U.UU1                            | J.J.J. — V.000                           | J.550 - V.V23                            | 0.020 - 0.021                            |

Table 9, Pasture Grass (pCi/g wet)

| Location | Collection<br>Date                                                                                                               |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                 | Isotope                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              |
|----------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22       |                                                                                                                                  | Ba-140                                                                                                                                                                                                                                                                                     | Be-7                                                                                                                                                                                                                                                                                            | Ce-141                                                                                                                                                                                                                                                                                     | Ce-144                                                                                                                                                                                                                                                                                      | Co-58                                                                                                                                                                                                                                                                                     | Co-60                                                                                                                                                                                                                                                                                        |
|          | 09/22/04<br>09/29/04<br>10/11/04                                                                                                 | $0.012 \pm 0.037$<br>$0.000 \pm 0.063$<br>$0.013 \pm 0.053$                                                                                                                                                                                                                                | $1.960 \pm 0.430$<br>$3.210 \pm 0.600$<br>$2.450 \pm 0.460$                                                                                                                                                                                                                                     | $0.034 \pm 0.032$<br>-0.028 \pm 0.032<br>$0.017 \pm 0.036$                                                                                                                                                                                                                                 | $0.000 \pm 0.110$<br>-0.011 ± 0.086<br>-0.010 ± 0.120                                                                                                                                                                                                                                       | $-0.002 \pm 0.022$<br>$-0.042 \pm 0.030$<br>$-0.009 \pm 0.024$                                                                                                                                                                                                                            | $0.031 \pm 0.030$<br>$0.016 \pm 0.018$<br>$0.015 \pm 0.027$                                                                                                                                                                                                                                  |
|          | 10/27/04                                                                                                                         |                                                                                                                                                                                                                                                                                            | $4.090 \pm 0.580$<br>$4.360 \pm 0.550$                                                                                                                                                                                                                                                          | $-0.025 \pm 0.037$ $0.010 \pm 0.035$                                                                                                                                                                                                                                                       | $-0.010 \pm 0.130$<br>$0.023 \pm 0.093$                                                                                                                                                                                                                                                     | $0.003 \pm 0.024$ $-0.015 \pm 0.036$                                                                                                                                                                                                                                                      | $-0.003 \pm 0.035$<br>$0.010 \pm 0.034$                                                                                                                                                                                                                                                      |
|          |                                                                                                                                  | Cr-51                                                                                                                                                                                                                                                                                      | Cs-134                                                                                                                                                                                                                                                                                          | Cs-137                                                                                                                                                                                                                                                                                     | Fe-59                                                                                                                                                                                                                                                                                       | I-131                                                                                                                                                                                                                                                                                     | K-40                                                                                                                                                                                                                                                                                         |
|          | 01/27/04<br>02/18/04<br>06/03/04<br>06/16/04<br>07/14/04<br>07/28/04<br>08/11/04<br>08/30/04<br>09/22/04<br>09/29/04<br>10/11/04 | $\begin{array}{c} -0.180 \pm 0.240 \\ 0.020 \pm 0.170 \\ 0.040 \pm 0.140 \\ 0.090 \pm 0.200 \\ 0.080 \pm 0.230 \\ -0.040 \pm 0.160 \\ 0.060 \pm 0.190 \\ 0.190 \pm 0.230 \\ 0.100 \pm 0.210 \\ 0.010 \pm 0.200 \\ 0.110 \pm 0.240 \\ \end{array}$                                          | $\begin{array}{c} \text{-}0.004 \pm 0.025 \\ 0.009 \pm 0.025 \\ \text{-}0.003 \pm 0.015 \\ 0.026 \pm 0.023 \\ 0.014 \pm 0.025 \\ 0.001 \pm 0.026 \\ 0.002 \pm 0.022 \\ \text{-}0.001 \pm 0.023 \\ \text{-}0.012 \pm 0.025 \\ 0.004 \pm 0.028 \\ \text{-}0.005 \pm 0.028 \end{array}$            | $\begin{array}{c} -0.008 \pm 0.021 \\ 0.003 \pm 0.023 \\ 0.020 \pm 0.016 \\ 0.000 \pm 0.019 \\ 0.007 \pm 0.027 \\ 0.015 \pm 0.024 \\ 0.007 \pm 0.022 \\ 0.026 \pm 0.025 \\ 0.017 \pm 0.023 \\ 0.013 \pm 0.023 \\ 0.002 \pm 0.029 \end{array}$                                              | $\begin{array}{c} 0.003 \pm 0.070 \\ -0.022 \pm 0.082 \\ 0.035 \pm 0.047 \\ 0.033 \pm 0.079 \\ 0.038 \pm 0.070 \\ 0.071 \pm 0.065 \\ 0.045 \pm 0.063 \\ -0.075 \pm 0.097 \\ 0.000 \pm 0.062 \\ 0.045 \pm 0.072 \\ -0.089 \pm 0.089 \end{array}$                                             | $\begin{array}{c} -0.023 \pm 0.077 \\ -0.016 \pm 0.039 \\ -0.013 \pm 0.004 \\ -0.001 \pm 0.022 \\ 0.015 \pm 0.027 \\ -0.004 \pm 0.011 \\ -0.004 \pm 0.004 \\ -0.011 \pm 0.004 \\ 0.004 \pm 0.010 \\ -0.005 \pm 0.002 \\ 0.002 \pm 0.013 \end{array}$                                      | $11.910 \pm 0.770$ $14.200 \pm 0.890$ $4.250 \pm 0.600$ $3.880 \pm 0.890$ $3.290 \pm 0.710$ $2.660 \pm 0.710$ $5.190 \pm 0.770$ $4.370 \pm 0.850$ $4.520 \pm 0.780$ $3.380 \pm 0.920$ $5.870 \pm 0.890$                                                                                      |
|          | 10/27/04<br>11/10/04<br>12/15/04                                                                                                 | $-0.260 \pm 0.290$<br>$0.190 \pm 0.250$                                                                                                                                                                                                                                                    | $0.016 \pm 0.033$<br>-0.003 \pm 0.031                                                                                                                                                                                                                                                           | $0.047 \pm 0.034$<br>$0.036 \pm 0.039$                                                                                                                                                                                                                                                     | $-0.006 \pm 0.085$<br>$0.063 \pm 0.086$                                                                                                                                                                                                                                                     | $-0.009 \pm 0.021$<br>$-0.002 \pm 0.018$                                                                                                                                                                                                                                                  | $4.340 \pm 0.880$<br>$7.600 \pm 1.000$                                                                                                                                                                                                                                                       |
|          |                                                                                                                                  | La-140                                                                                                                                                                                                                                                                                     | Mn-54                                                                                                                                                                                                                                                                                           | Nb-95                                                                                                                                                                                                                                                                                      | Ru-103                                                                                                                                                                                                                                                                                      | Ru-106                                                                                                                                                                                                                                                                                    | Sb-125                                                                                                                                                                                                                                                                                       |
|          | 10/27/04                                                                                                                         | $\begin{array}{c} -0.021 \pm 0.054 \\ 0.009 \pm 0.048 \\ 0.022 \pm 0.029 \\ -0.048 \pm 0.056 \\ -0.033 \pm 0.044 \\ 0.000 \pm 0.028 \\ 0.011 \pm 0.044 \\ 0.020 \pm 0.130 \\ 0.013 \pm 0.042 \\ 0.000 \pm 0.072 \\ 0.015 \pm 0.061 \\ -0.016 \pm 0.062 \\ -0.032 \pm 0.097 \\ \end{array}$ | $\begin{array}{c} -0.015 \pm 0.022 \\ -0.003 \pm 0.025 \\ 0.000 \pm 0.011 \\ -0.005 \pm 0.026 \\ -0.014 \pm 0.025 \\ -0.023 \pm 0.020 \\ -0.012 \pm 0.022 \\ -0.019 \pm 0.022 \\ -0.014 \pm 0.026 \\ 0.015 \pm 0.027 \\ -0.007 \pm 0.023 \\ -0.013 \pm 0.023 \\ \end{array}$                    | $\begin{array}{c} 0.034 \pm 0.030 \\ 0.001 \pm 0.028 \\ -0.007 \pm 0.021 \\ 0.012 \pm 0.029 \\ -0.029 \pm 0.030 \\ 0.002 \pm 0.020 \\ -0.014 \pm 0.027 \\ -0.001 \pm 0.030 \\ 0.004 \pm 0.022 \\ 0.012 \pm 0.025 \\ 0.019 \pm 0.034 \\ -0.001 \pm 0.031 \\ -0.051 \pm 0.039 \end{array}$   | $\begin{array}{c} -0.019 \pm 0.027 \\ -0.008 \pm 0.022 \\ -0.004 \pm 0.016 \\ -0.003 \pm 0.024 \\ 0.020 \pm 0.025 \\ -0.002 \pm 0.019 \\ -0.013 \pm 0.024 \\ -0.008 \pm 0.024 \\ -0.020 \pm 0.021 \\ 0.006 \pm 0.024 \\ 0.007 \pm 0.030 \\ -0.010 \pm 0.030 \\ 0.009 \pm 0.031 \end{array}$ | $\begin{array}{c} 0.110 \pm 0.220 \\ 0.080 \pm 0.180 \\ -0.100 \pm 0.130 \\ -0.040 \pm 0.170 \\ 0.160 \pm 0.230 \\ 0.090 \pm 0.140 \\ -0.260 \pm 0.200 \\ 0.040 \pm 0.170 \\ 0.150 \pm 0.170 \\ 0.000 \pm 0.240 \\ 0.050 \pm 0.250 \\ 0.150 \pm 0.250 \\ -0.100 \pm 0.230 \\ \end{array}$ | $\begin{array}{c} -0.007 \pm 0.053 \\ 0.034 \pm 0.060 \\ -0.024 \pm 0.035 \\ 0.024 \pm 0.047 \\ 0.016 \pm 0.060 \\ -0.021 \pm 0.043 \\ -0.003 \pm 0.050 \\ 0.017 \pm 0.039 \\ 0.015 \pm 0.048 \\ -0.018 \pm 0.063 \\ 0.029 \pm 0.061 \\ -0.038 \pm 0.068 \\ -0.057 \pm 0.062 \\ \end{array}$ |
|          |                                                                                                                                  | Th-228                                                                                                                                                                                                                                                                                     | Zn-65                                                                                                                                                                                                                                                                                           | Zr-95                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              |
|          |                                                                                                                                  | $\begin{array}{c} -0.006 \pm 0.097 \\ -0.120 \pm 0.140 \\ 0.013 \pm 0.053 \\ 0.060 \pm 0.100 \\ 0.050 \pm 0.120 \\ 0.008 \pm 0.090 \\ 0.092 \pm 0.084 \\ 0.026 \pm 0.093 \\ -0.031 \pm 0.094 \\ -0.010 \pm 0.100 \\ 0.100 \pm 0.120 \\ 0.160 \pm 0.130 \\ 0.170 \pm 0.130 \\ \end{array}$  | $\begin{array}{c} 0.001 \pm 0.084 \\ -0.023 \pm 0.058 \\ -0.048 \pm 0.047 \\ -0.064 \pm 0.059 \\ -0.066 \pm 0.069 \\ 0.000 \pm 0.039 \\ -0.041 \pm 0.056 \\ 0.000 \pm 0.060 \\ -0.004 \pm 0.057 \\ -0.055 \pm 0.058 \\ -0.014 \pm 0.073 \\ -0.001 \pm 0.058 \\ -0.076 \pm 0.074 \\ \end{array}$ | $\begin{array}{c} -0.024 \pm 0.045 \\ -0.010 \pm 0.045 \\ -0.010 \pm 0.030 \\ 0.000 \pm 0.042 \\ -0.023 \pm 0.044 \\ 0.014 \pm 0.042 \\ -0.019 \pm 0.038 \\ -0.019 \pm 0.049 \\ 0.018 \pm 0.038 \\ 0.012 \pm 0.028 \\ -0.004 \pm 0.046 \\ -0.004 \pm 0.054 \\ 0.045 \pm 0.057 \end{array}$ |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              |

#### Table 9, Pasture Grass (pCi/g wet)

Page 3 of 3

| Location | Collection<br>Date |                               |                    | Isotope            |                    |                    |                    |
|----------|--------------------|-------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 24-C     |                    | Ba-140                        | Be-7               | Ce-141             | Ce-144             | Co-58              | Co-60              |
|          |                    |                               |                    |                    |                    |                    |                    |
|          |                    | $0.007 \pm 0.058 \mathrm{F}$  | $0.750 \pm 0.290$  | $-0.008 \pm 0.037$ | $-0.040 \pm 0.110$ | $-0.007 \pm 0.028$ | $-0.012 \pm 0.028$ |
|          |                    | $0.008 \pm 0.046 \mathrm{F}$  | $0.700 \pm 0.230$  | $0.007 \pm 0.025$  | $-0.030 \pm 0.068$ | $-0.015 \pm 0.025$ | $0.005 \pm 0.026$  |
|          |                    | $0.130 \pm 0.140 \mathrm{F}$  | $0.220 \pm 0.230$  | $-0.001 \pm 0.042$ | $0.003 \pm 0.073$  | $0.015 \pm 0.030$  | $0.006 \pm 0.027$  |
|          |                    | $0.021 \pm 0.037 \mathrm{F}$  | $-0.110 \pm 0.170$ | $-0.001 \pm 0.035$ | $0.000 \pm 0.093$  | $0.000 \pm 0.021$  | $0.011 \pm 0.023$  |
|          | 09/29/04           |                               | $2.280 \pm 0.470$  | $-0.010 \pm 0.026$ | $-0.035 \pm 0.065$ | $-0.003 \pm 0.024$ | $0.002 \pm 0.027$  |
|          | 10/11/04           | $0.000 \pm 0.051$             | $1.550 \pm 0.390$  | $-0.009 \pm 0.030$ | $0.009 \pm 0.081$  | $-0.004 \pm 0.029$ | $0.011 \pm 0.028$  |
|          | 10/27/04           |                               | $2.620 \pm 0.450$  | $-0.008 \pm 0.030$ | $0.080 \pm 0.084$  | $-0.002 \pm 0.028$ | $0.041 \pm 0.032$  |
|          |                    | $-0.015 \pm 0.053$            | $4.320 \pm 0.350$  | $-0.055 \pm 0.053$ | $-0.058 \pm 0.090$ | $0.005 \pm 0.024$  | $-0.004 \pm 0.022$ |
|          | 12/15/04           | $-0.030 \pm 0.120 \mathrm{F}$ | $0.530 \pm 0.380$  | $-0.026 \pm 0.066$ | $0.040 \pm 0.130$  | $-0.015 \pm 0.034$ | $0.028 \pm 0.029$  |
|          |                    | Cr-51                         | Cs-134             | Cs-137             | Fe-59              | I-131              | K-40               |
|          | 01/27/04           | $-0.350 \pm 0.270$            | $-0.014 \pm 0.027$ | $0.056 \pm 0.034$  | $-0.026 \pm 0.082$ | $0.000 \pm 0.090$  | $9.490 \pm 0.820$  |
|          | 02/18/04           | $0.100 \pm 0.170$             | $0.019 \pm 0.025$  | $0.078 \pm 0.031$  | $0.019 \pm 0.078$  | $-0.052 \pm 0.050$ | $12.480 \pm 0.840$ |
|          | 03/24/04           | $-0.050 \pm 0.340$            | $-0.006 \pm 0.026$ | $0.079 \pm 0.032$  | $-0.040 \pm 0.120$ | $-0.030 \pm 0.280$ | $19.560 \pm 0.960$ |
|          | 04/15/04           | $-0.040 \pm 0.200$            | $0.015 \pm 0.023$  | $0.043 \pm 0.027$  | $0.018 \pm 0.068$  | $-0.007 \pm 0.003$ | $14.190 \pm 0.720$ |
|          | 09/29/04           | $0.050 \pm 0.160$             | $0.001 \pm 0.020$  | $0.018 \pm 0.018$  | $0.011 \pm 0.046$  | $0.006 \pm 0.011$  | $3.460 \pm 0.830$  |
|          | 10/11/04           | $0.020 \pm 0.180$             | $-0.007 \pm 0.030$ | $0.016 \pm 0.026$  | $0.048 \pm 0.088$  | $0.023 \pm 0.029$  | $7.600 \pm 1.100$  |
|          | 10/27/04           | $0.090 \pm 0.210$             | $-0.014 \pm 0.029$ | $0.014 \pm 0.024$  | $0.010 \pm 0.100$  | $-0.017 \pm 0.019$ | $6.100 \pm 1.000$  |
|          | 11/10/04           | $0.070 \pm 0.220$             | $-0.011 \pm 0.022$ | $-0.006 \pm 0.019$ | $-0.006 \pm 0.062$ | $0.000 \pm 0.017$  | $7.760 \pm 0.610$  |
|          | 12/15/04           | $-0.110 \pm 0.370$            | $0.012 \pm 0.032$  | $0.031 \pm 0.033$  | $-0.090 \pm 0.110$ | $0.130 \pm 0.280$  | $13.290 \pm 0.980$ |
|          |                    | La-140                        | Mn-54              | Nb-95              | Ru-103             | Ru-106             | Sb-125             |
|          | 01/27/04           | $0.008 \pm 0.066$             | $0.021 \pm 0.028$  | $0.009 \pm 0.033$  | $0.004 \pm 0.031$  | $0.310 \pm 0.230$  | $-0.014 \pm 0.061$ |
|          | 02/18/04           | $0.009 \pm 0.053$             | $0.024 \pm 0.023$  | $-0.002 \pm 0.027$ | $-0.005 \pm 0.022$ | $-0.050 \pm 0.180$ | $0.023 \pm 0.054$  |
|          | 03/24/04           | $0.150 \pm 0.160$             | $-0.004 \pm 0.024$ | $-0.019 \pm 0.043$ | $-0.011 \pm 0.032$ | $-0.040 \pm 0.180$ | $0.062 \pm 0.054$  |
|          | 04/15/04           | $0.024 \pm 0.043$             | $-0.002 \pm 0.021$ | $-0.003 \pm 0.029$ | $0.003 \pm 0.024$  | $-0.090 \pm 0.200$ | $0.034 \pm 0.049$  |
|          | 09/29/04           | $0.029 \pm 0.083$             | $0.012 \pm 0.023$  | $-0.002 \pm 0.022$ | $-0.005 \pm 0.022$ | $-0.040 \pm 0.200$ | $-0.015 \pm 0.040$ |
|          | 10/11/04           | $0.000 \pm 0.059$             | $-0.016 \pm 0.023$ | $-0.004 \pm 0.033$ | $-0.002 \pm 0.024$ | $0.030 \pm 0.180$  | $0.038 \pm 0.052$  |
|          | 10/27/04           | $-0.028 \pm 0.055$            | $0.004 \pm 0.025$  | $-0.037 \pm 0.032$ | $-0.006 \pm 0.026$ | $-0.060 \pm 0.200$ | $-0.009 \pm 0.061$ |
|          | 11/10/04           |                               | $0.012 \pm 0.021$  | $0.007 \pm 0.041$  | $-0.023 \pm 0.025$ | $-0.010 \pm 0.180$ | $0.033 \pm 0.047$  |
|          | 12/15/04           | $-0.030 \pm 0.140$            | $0.000 \pm 0.029$  | $0.007 \pm 0.052$  | $-0.038 \pm 0.043$ | $-0.010 \pm 0.270$ | $0.046 \pm 0.069$  |
|          |                    | Th-228                        | Zn-65              | Zr-95              |                    |                    |                    |
|          | 01/27/04           | $0.020 \pm 0.110$             | $-0.117 \pm 0.068$ | $0.000 \pm 0.049$  |                    |                    |                    |
|          | 02/18/04           | $0.079 \pm 0.082$             | $0.004 \pm 0.057$  | $0.040 \pm 0.041$  |                    |                    |                    |
|          | 03/24/04           | $0.106 \pm 0.089$             | $0.020 \pm 0.110$  | $0.060 \pm 0.052$  |                    |                    |                    |
|          | 04/15/04           | $0.030 \pm 0.100$             | $-0.039 \pm 0.054$ | $0.028 \pm 0.038$  |                    |                    |                    |
|          | 09/29/04           |                               | $0.007 \pm 0.067$  | $0.000 \pm 0.042$  |                    |                    |                    |
|          | 10/11/04           | $-0.069 \pm 0.093$            | $-0.092 \pm 0.063$ | $0.042 \pm 0.050$  |                    |                    |                    |
|          | 10/27/04           | $0.090 \pm 0.120$             | $0.039 \pm 0.072$  | $0.023 \pm 0.054$  |                    |                    |                    |
|          | 11/10/04           | $0.087 \pm 0.084$             | $0.115 \pm 0.081$  | $-0.025 \pm 0.041$ |                    |                    |                    |
|          | 12/15/04           | $0.020 \pm 0.120$             | $-0.037 \pm 0.071$ | $-0.028 \pm 0.062$ |                    |                    |                    |

#### Table 10, Well Water (pCi/l)

| 70-C Ba-140 Be-7 Co-58 Co-60 Cr-51 Cs-134  03/22/04 0.0±3.6 -8.0±17.0 1.0±2.2 -0.8±2.3 0.0±19.0 1.0±2.2 0.60/22/04 1.6±6.0 -13.0±21.0 0.6±2.8 0.7±3.0 -4.0±28.0 -0.3±2.8 0.67/7/04 1.5±4.4 26.0±2.00 -2.4±2.6 0.4±3.0 -8.0±19.0 0.5±2.5 10/14/04 -0.6±5.0 -2.4±0.2 0.05±2.9 0.0±2.8 2.0±32.0 1.6±2.9 12/09/04 0.9±3.7 7.4±8.5 0.0±0.9 0.1±1.1 -5.0±12.0 0.3±0.8    Cs-137 Fe-59 H.3 I-131 K.40 La-140 03/22/04 0.7±2.1 -3.3±5.3 H 0.5±4.2 16.0±32.0 0.0±4.2 0.60/22/04 -1.2±2.8 7.7±8.3 280.0±740.0 1.1±7.9 7.0±34.0 19±6.9 06/17/04 1.1±2.3 2.2±6.7 470.0±930.0 -5.2±4.8 43.0±32.0 1.7±5.1 10/14/04 -0.9±2.7 3.2±7.5 -730.0±680.0 2.9±8.5 -25.0±32.0 1.7±5.1 10/14/04 -0.9±2.7 3.2±7.5 -730.0±680.0 1.2±8.3 15.0±15.0 1.0±4.3    Mn-54 Nb-95 Ru-103 Ru-106 Sb-125 Sr-90 03/22/04 0.0±1.9 -2.2±2.6 -1.2±2.4 -7.0±19.0 -2.6±5.3 2.2±1.1 06/02/04 -0.8±2.7 5.0±5.3 -2.0±3.2 2.80±25.0 2.2±7.0 0.8±1.1 06/17/04 -3.3±2.4 -2.4±3.3 -1.8±2.5 11.0±18.0 -1.5±6.1 -0.2±1.0 10/14/04 -1.9±2.4 -3.2±3.7 -0.4±3.5 11.0±18.0 -1.5±6.1 -0.2±1.0 10/14/04 -1.9±2.4 -3.2±3.7 -0.4±3.5 11.0±18.0 -1.5±6.1 -0.2±1.0 10/14/04 -1.9±2.4 -3.2±3.7 -0.4±3.5 11.0±18.0 -1.5±6.1 -0.2±1.0 10/14/04 -2.2±8.7 2.0±11.0 3.0±11.0 5.1±5.0 10.0±2.1 -0.9±1.1 Th-228 Zn-65 Zr-95    03/22/04 7.5±7.3 6.7±8.8 0.6±3.8 0.6±3.8 0.6007/04 3.9±6.3 11.0±35.0 -1.4±3.8 2.4±4.2 -2.2±3.0 0.0±2.4 0.0017/04 -2.2±8.7 2.0±11.0 0.6±4.5 0.0±1.0 0.0±2.0 0.0±2.4 0.0±1.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0±2.0 0.0 | Location | Collection<br>Date |                |                 | Isotope           |                 |                 |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|----------------|-----------------|-------------------|-----------------|-----------------|----------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70-C     |                    | Ba-140         | Be-7            | Co-58             | Co-60           | Cr-51           | Cs-134         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 03/22/04           | 00+36          | 9 0 ± 17 0      | 10+22             | 08733           | 0.0 ± 10.0      | 10+22          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                    |                |                 |                   |                 |                 |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                    |                |                 |                   |                 |                 |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                    |                |                 |                   |                 |                 |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                    |                |                 |                   |                 |                 |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                    | Cs-137         |                 |                   |                 |                 | La-140         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 03/22/04           | 07421          | 22152           | u                 | 05±42           | 160+220         | 00+43          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                    |                |                 |                   |                 |                 |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                    |                |                 |                   |                 |                 |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                    |                |                 |                   |                 |                 |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                    |                |                 |                   |                 |                 |                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 22 05 0            |                |                 |                   |                 |                 |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                    | N1n-54         | ND-95           | Ku-103            | Ku-106          | SD-125          | Sr-90          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                    |                |                 |                   | $-7.0 \pm 19.0$ | $-2.6 \pm 5.3$  |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                    |                |                 |                   |                 |                 |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                    | $-0.3 \pm 2.4$ | $-2.4 \pm 3.3$  | $-1.8 \pm 2.5$    | $11.0 \pm 18.0$ | $-1.5 \pm 6.1$  |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                    | $-1.9 \pm 2.4$ |                 | $-0.4 \pm 3.5$    | $1.0 \pm 25.0$  | $-3.5 \pm 7.5$  | $0.9 \pm 0.8$  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 12/09/04           | $-0.3 \pm 0.8$ | $0.7 \pm 1.2$   | $-1.2 \pm 1.7$    | $-10.3 \pm 7.6$ | $0.1 \pm 2.1$   | $-0.9 \pm 1.1$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                    | Th-228         | Zn-65           | Zr-95             |                 |                 |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 03/22/04           | $7.5 \pm 7.3$  | $6.7 \pm 8.8$   | $0.6 \pm 3.8$     |                 |                 |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                    |                |                 |                   |                 |                 |                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                    |                |                 |                   |                 |                 |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                    |                |                 |                   |                 |                 |                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 12/09/04           | $0.6 \pm 4.9$  | $0.9 \pm 2.5$   |                   |                 |                 |                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                    |                |                 |                   |                 |                 |                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71       |                    | Ba-140         | Be-7            | Co-58             | Co-60           | Cr-51           | Cs-134         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                    |                |                 | $0.0 \pm 2.3$     |                 |                 |                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                    |                |                 |                   |                 |                 |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 06/17/04           | $-4.1 \pm 4.6$ | $11.0 \pm 22.0$ | $-1.9 \pm 2.6$    | $1.7 \pm 2.4$   | $15.0 \pm 24.0$ | $-0.2 \pm 2.5$ |
| Cs-137         Fe-59         H-3         I-131         K-40         La-140           03/23/04         -1.4 ± 2.7         0.1 ± 7.9         H         -3.4 ± 4.4         -8.0 ± 41.0         2.8 ± 4.9           06/07/04         1.4 ± 3.7         2.0 ± 10.0         540.0 ± 740.0         1.9 ± 7.2         37.0 ± 63.0         4.4 ± 7.2           06/17/04         -2.9 ± 2.3         1.3 ± 5.9         480.0 ± 930.0         1.1 ± 5.5         39.0 ± 28.0         -4.7 ± 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                    |                |                 |                   |                 |                 |                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 12/13/04           | $-4.9 \pm 4.4$ | $4.0 \pm 12.0$  | $-1.0 \pm 1.4$    | $0.1 \pm 1.3$   | $-1.0 \pm 17.0$ | $-1.1 \pm 1.3$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                    | Cs-137         | Fe-59           | H-3               | I-131           | K-40            | La-140         |
| $06/17/04$ $-2.9 \pm 2.3$ $1.3 \pm 5.9$ $480.0 \pm 930.0$ $1.1 \pm 5.5$ $39.0 \pm 28.0$ $-4.7 \pm 5.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 03/23/04           | $-1.4 \pm 2.7$ | $0.1 \pm 7.9$   | Н                 | $-3.4 \pm 4.4$  | $-8.0 \pm 41.0$ | $2.8 \pm 4.9$  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 06/07/04           | $1.4 \pm 3.7$  | $2.0 \pm 10.0$  | $540.0 \pm 740.0$ | $1.9 \pm 7.2$   | $37.0 \pm 63.0$ | $4.4 \pm 7.2$  |
| $09/09/04$ $1.1 \pm 2.3$ $5.5 \pm 6.8$ $-50.0 \pm 940.0$ $-1.5 \pm 5.5$ $-7.0 \pm 32.0$ $6.1 \pm 5.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 06/17/04           | $-2.9 \pm 2.3$ | $1.3 \pm 5.9$   | $480.0 \pm 930.0$ | $1.1 \pm 5.5$   | $39.0 \pm 28.0$ | $-4.7 \pm 5.3$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 09/09/04           | $1.1 \pm 2.3$  | $5.5 \pm 6.8$   | $-50.0 \pm 940.0$ | $-1.5 \pm 5.5$  | $-7.0 \pm 32.0$ | $6.1 \pm 5.7$  |
| $12/13/04$ $-0.8 \pm 1.2$ $-1.0 \pm 4.0$ $600.0 \pm 870.0$ $0.8 \pm 8.5$ $-7.0 \pm 20.0$ $-5.7 \pm 5.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 12/13/04           | $-0.8 \pm 1.2$ | $-1.0 \pm 4.0$  | $600.0 \pm 870.0$ | $0.8 \pm 8.5$   | $-7.0 \pm 20.0$ | $-5.7 \pm 5.0$ |
| Mn-54 Nb-95 Ru-103 Ru-106 Sb-125 Sr-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                    | Mn-54          | Nb-95           | Ru-103            | Ru-106          | Sb-125          | Sr-90          |
| $03/23/04$ $-0.6 \pm 2.3$ $-2.2 \pm 2.9$ $-0.7 \pm 2.5$ $2.0 \pm 22.0$ $-3.0 \pm 6.3$ $1.3 \pm 1.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 03/23/04           | $-0.6 \pm 2.3$ | $-2.2 \pm 2.9$  | $-0.7 \pm 2.5$    | $2.0 \pm 22.0$  | $-3.0 \pm 6.3$  | $1.3 \pm 1.1$  |
| $06/07/04$ $-4.4 \pm 3.7$ $-1.5 \pm 4.7$ $-2.7 \pm 4.3$ $4.0 \pm 32.0$ $5.5 \pm 9.8$ $-0.3 \pm 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                    |                |                 |                   |                 |                 |                |
| $06/17/04$ $1.3 \pm 2.3$ $1.8 \pm 2.9$ $-2.0 \pm 2.8$ $1.0 \pm 22.0$ $2.5 \pm 6.1$ $1.0 \pm 1.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                    |                |                 |                   |                 |                 |                |
| $09/09/04 -0.4 \pm 2.7$ $2.4 \pm 5.1$ $-0.1 \pm 3.0$ $-20.0 \pm 21.0$ $3.5 \pm 7.6$ $-0.1 \pm 0.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                    |                |                 |                   |                 |                 |                |
| $12/13/04$ $0.0 \pm 1.3$ $1.0 \pm 2.3$ $-1.5 \pm 2.7$ $8.0 \pm 12.0$ $-1.6 \pm 3.1$ $-0.2 \pm 0.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                    |                |                 |                   |                 |                 |                |

## Table 10, Well Water (pCi/l)

| Location | Collection<br>Date |                                  |                  | Isotope           |                  |                  |                |
|----------|--------------------|----------------------------------|------------------|-------------------|------------------|------------------|----------------|
| 71       |                    | Th-228                           | Zn-65            | <b>Zr-95</b>      |                  |                  |                |
|          | 03/23/04           | $5.0 \pm 12.0$                   | 7.4 ± 9.1        | $0.2 \pm 4.3$     |                  |                  |                |
|          | 06/07/04           | $0.0 \pm 16.0$                   | $12.0 \pm 14.0$  | $1.0 \pm 5.9$     |                  |                  |                |
|          | 06/17/04           | $6.0 \pm 10.0$<br>$6.0 \pm 11.0$ | $6.0 \pm 11.0$   | $2.3 \pm 4.1$     |                  |                  |                |
|          | 09/09/04           | $6.0 \pm 11.0$<br>$6.0 \pm 10.0$ | $11.0 \pm 14.0$  | $2.4 \pm 4.6$     |                  |                  |                |
|          | 12/13/04           | $-1.6 \pm 6.1$                   | $-1.3 \pm 2.9$   | $1.2 \pm 2.7$     |                  |                  |                |
| 72       |                    | Ba-140                           | Be-7             | Co-58             | Co-60            | Cr-51            | Cs-134         |
|          |                    | Du 140                           | De 7             | C0 20             | C0 00            | 0.01             | C3 154         |
|          | 03/23/04           | $2.3 \pm 3.3$                    | $6.0 \pm 19.0$   | $0.5 \pm 2.2$     | $-0.4 \pm 2.0$   | $9.0 \pm 20.0$   | $1.7 \pm 2.4$  |
|          | 06/07/04           | $-2.9 \pm 4.3$                   | $-23.0 \pm 22.0$ | $-2.8 \pm 2.3$    | $1.8 \pm 2.5$    | $13.0 \pm 26.0$  | $0.6 \pm 2.8$  |
|          | 06/17/04           | $0.0 \pm 4.1$                    | $-1.0 \pm 21.0$  | $-1.7 \pm 2.6$    | $1.2 \pm 2.5$    | $32.0 \pm 23.0$  | $0.0 \pm 2.7$  |
|          | 09/08/04           | $0.0 \pm 3.6$                    | $-15.0 \pm 18.0$ | $-0.5 \pm 2.4$    | $0.2 \pm 2.7$    | $8.0 \pm 23.0$   | $-0.7 \pm 2.6$ |
|          | 12/16/04           | $-2.7 \pm 3.9$                   | $3.0 \pm 13.0$   | $-1.6 \pm 1.5$    | $0.5 \pm 1.3$    | $16.0 \pm 15.0$  | $-0.8 \pm 1.4$ |
|          |                    | Cs-137                           | Fe-59            | H-3               | I-131            | K-40             | La-140         |
|          | 03/23/04           | $0.6 \pm 2.1$                    | $-2.7 \pm 5.3$   | Н                 | $-0.2 \pm 4.0$   | $16.0 \pm 37.0$  | $2.6 \pm 3.8$  |
|          | 06/07/04           | $-1.8 \pm 2.8$                   | $1.4 \pm 6.6$    | $70.0 \pm 720.0$  | $-0.5 \pm 5.3$   | $-17.0 \pm 35.0$ | $-3.4 \pm 5.0$ |
|          | 06/17/04           | $1.1 \pm 2.3$                    | $0.5 \pm 5.8$    | $760.0 \pm 800.0$ | $-3.1 \pm 5.6$   | $-28.0 \pm 35.0$ | $0.0 \pm 4.7$  |
|          | 09/08/04           | $-0.1 \pm 2.1$                   | $6.0 \pm 6.4$    | $-20.0 \pm 930.0$ | $2.3 \pm 5.8$    | $-5.0 \pm 29.0$  | $0.0 \pm 4.1$  |
|          | 12/16/04           | $-0.6 \pm 1.2$                   | $-1.8 \pm 3.7$   | $350.0 \pm 870.0$ | $-1.7 \pm 6.5$   | $9.0 \pm 22.0$   | $-3.1 \pm 4.5$ |
|          |                    | Mn-54                            | Nb-95            | Ru-103            | Ru-106           | Sb-125           | Sr-90          |
|          | 03/23/04           | $-0.4 \pm 2.2$                   | $0.5 \pm 2.5$    | $-2.7 \pm 2.4$    | $14.0 \pm 19.0$  | $-0.8 \pm 5.6$   | $1.2 \pm 0.9$  |
|          | 06/07/04           | $0.8 \pm 2.5$                    | $1.0 \pm 2.7$    | $0.6 \pm 2.6$     | $24.0 \pm 23.0$  | $-0.9 \pm 6.8$   | $0.3 \pm 1.0$  |
|          | 06/17/04           | $0.4 \pm 2.5$                    | $3.2 \pm 4.5$    | $2.4 \pm 2.8$     | $-10.0 \pm 22.0$ | $0.8 \pm 6.1$    | $1.5 \pm 1.1$  |
|          | 09/08/04           | $0.6 \pm 2.1$                    | $-0.9 \pm 3.8$   | $-1.3 \pm 2.5$    | $0.0 \pm 19.0$   | $1.0 \pm 5.8$    | $-0.3 \pm 0.9$ |
|          | 12/16/04           | $1.0 \pm 1.3$                    | $0.8 \pm 1.8$    | $-1.7 \pm 2.8$    | $3.0 \pm 12.0$   | $0.5 \pm 3.3$    | $-0.6 \pm 0.9$ |
|          |                    | Th-228                           | Zn-65            | Zr-95             |                  |                  |                |
|          | 03/23/04           | $-2.7 \pm 7.8$                   | $-2.9 \pm 9.2$   | $1.6 \pm 3.8$     |                  |                  |                |
|          | 06/07/04           | $-0.3 \pm 9.8$                   | $-2.0 \pm 11.0$  | $-0.2 \pm 4.6$    |                  |                  |                |
|          | 06/17/04           | $-9.9 \pm 9.3$                   | $8.3 \pm 9.9$    | $1.1 \pm 4.5$     |                  |                  |                |
|          | 09/08/04           | $-1.4 \pm 9.3$                   | $7.0 \pm 10.0$   | $0.2 \pm 4.0$     |                  |                  |                |
|          | 12/16/04           | $1.3 \pm 5.8$                    | $-1.3 \pm 4.4$   | $1.8 \pm 2.6$     |                  |                  |                |

# Table 12, Fruits & Vegetables (pCi/g wet)

| Location | Collection<br>Date   | Sample Type    |                                         |                                          | Isotope                                  |                                          |                                          |
|----------|----------------------|----------------|-----------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| 25       |                      |                | Ba-140                                  | Be-7                                     | Ce-141                                   | Ce-144                                   | Co-58                                    |
|          | 06/15/04             | LETTUCE -      | $-0.004 \pm 0.013$                      | $0.170 \pm 0.078$                        | $-0.008 \pm 0.008$                       | $0.012 \pm 0.026$                        | $0.000 \pm 0.006$                        |
|          | 06/15/04             | STRAWBERRIES - |                                         | $-0.008 \pm 0.041$                       | $0.001 \pm 0.009$                        | $-0.023 \pm 0.023$                       | $0.001 \pm 0.005$                        |
|          | 09/13/04             | SWISS CHARD .  | $-0.004 \pm 0.011$                      | $0.206 \pm 0.073$                        | $-0.006 \pm 0.008$                       | $0.010 \pm 0.028$                        | $-0.004 \pm 0.007$                       |
|          | 09/21/04             | CABBAGE        | $0.013 \pm 0.019$                       | $-0.094 \pm 0.085$                       | $-0.009 \pm 0.015$                       | $-0.023 \pm 0.048$                       | $-0.005 \pm 0.010$                       |
|          | 09/22/04             | APPLES         | $-0.024 \pm 0.020$                      | $-0.005 \pm 0.084$                       | $-0.023 \pm 0.016$                       | $0.006 \pm 0.050$                        | $0.001 \pm 0.010$                        |
|          |                      |                | Co-60                                   | Cr-51                                    | Cs-134                                   | Cs-137                                   | Fe-59                                    |
|          | 06/15/04             |                | $0.000 \pm 0.007$                       | $-0.015 \pm 0.058$                       | $0.001 \pm 0.006$                        | $0.000 \pm 0.006$                        | $-0.011 \pm 0.019$                       |
|          | 06/15/04             |                | $0.002 \pm 0.005$                       | $-0.007 \pm 0.051$                       | $0.003 \pm 0.005$                        | $-0.002 \pm 0.004$                       | $0.005 \pm 0.013$                        |
|          | 09/13/04             |                | $0.005 \pm 0.008$                       | $0.002 \pm 0.058$                        | $0.002 \pm 0.007$                        | $-0.004 \pm 0.006$                       | $-0.006 \pm 0.020$                       |
|          | 09/21/04             |                | $-0.001 \pm 0.009$                      | $0.045 \pm 0.098$                        | $0.000 \pm 0.010$                        | $0.010 \pm 0.008$                        | $0.000 \pm 0.027$                        |
|          | 09/22/04             | APPLES -       | $-0.003 \pm 0.012$                      | $0.050 \pm 0.110$                        | $-0.003 \pm 0.010$                       | $0.000 \pm 0.010$                        | $-0.003 \pm 0.033$                       |
|          | 06/15/04             | LETTUCE        | $I-131$ $0.000 \pm 0.020$               | $K-40$ $3.310 \pm 0.190$                 | $La-140$ $-0.005 \pm 0.015$              | Mn-54<br>$0.000 \pm 0.006$               | $Nb-95$ $0.005 \pm 0.007$                |
|          | 06/15/04             | STRAWBERRIES   |                                         | $0.950 \pm 0.190$                        | $-0.005 \pm 0.015$<br>$-0.006 \pm 0.011$ | $-0.000 \pm 0.000$                       | $0.003 \pm 0.007$<br>$0.002 \pm 0.008$   |
|          | 09/13/04             |                | $0.018 \pm 0.018$                       | $3.910 \pm 0.100$                        | $-0.005 \pm 0.011$<br>$-0.005 \pm 0.012$ | $-0.005 \pm 0.005$                       | $0.002 \pm 0.003$<br>$0.004 \pm 0.011$   |
|          | 09/21/04             |                | $-0.015 \pm 0.025$                      | $1.230 \pm 0.220$                        | $0.015 \pm 0.022$                        | $-0.000 \pm 0.000$                       | $-0.004 \pm 0.011$                       |
|          | 09/22/04             |                | $0.0013 \pm 0.031$<br>$0.001 \pm 0.032$ | $0.490 \pm 0.200$                        | $-0.027 \pm 0.022$                       | $-0.001 \pm 0.000$                       | $0.004 \pm 0.013$                        |
|          |                      |                | Ru-103                                  | Ru-106                                   | Sb-125                                   | Th-228                                   | Zn-65                                    |
|          | 06/15/04             | LETTUCE -      | $-0.003 \pm 0.006$                      | $0.013 \pm 0.048$                        | $0.010 \pm 0.013$                        | $-0.001 \pm 0.030$                       | $0.004 \pm 0.013$                        |
|          | 06/15/04             | STRAWBERRIES - | $-0.008 \pm 0.006$                      | $-0.040 \pm 0.043$                       | $0.000 \pm 0.011$                        | $0.001 \pm 0.022$                        | $0.000 \pm 0.016$                        |
|          | 09/13/04             | SWISS CHARD -  | $-0.005 \pm 0.006$                      | $-0.019 \pm 0.051$                       | $0.005 \pm 0.015$                        | $0.015 \pm 0.023$                        | $-0.001 \pm 0.030$                       |
|          | 09/21/04             |                | $0.003 \pm 0.011$                       | $-0.041 \pm 0.090$                       | $-0.002 \pm 0.021$                       | $0.012 \pm 0.039$                        | $-0.022 \pm 0.020$                       |
|          | 09/22/04             | APPLES         | $0.000 \pm 0.011$                       | $-0.043 \pm 0.087$                       | $0.030 \pm 0.027$                        | $0.024 \pm 0.039$                        | $0.000 \pm 0.026$                        |
|          |                      |                | Zr-95                                   |                                          |                                          |                                          |                                          |
|          | 06/15/04             |                | $0.003 \pm 0.010$                       |                                          |                                          |                                          |                                          |
|          | 06/15/04             |                | $0.007 \pm 0.009$                       |                                          |                                          |                                          |                                          |
|          | 09/13/04             |                | $0.000 \pm 0.011$                       |                                          |                                          |                                          |                                          |
|          | 09/21/04             |                | $0.003 \pm 0.018$                       |                                          |                                          |                                          |                                          |
|          | 09/22/04             | APPLES         | $0.012 \pm 0.018$                       |                                          |                                          |                                          |                                          |
|          |                      |                |                                         |                                          |                                          |                                          |                                          |
| 26-C     | 06/14/04             | I POTELIOP     | Ba-140                                  | Be-7                                     | Ce-141                                   | Ce-144                                   | Co-58                                    |
|          | 06/14/04             |                | $0.004 \pm 0.012$                       | $0.062 \pm 0.046$                        | $0.001 \pm 0.009$                        | $-0.001 \pm 0.019$                       | $-0.003 \pm 0.006$                       |
|          | 06/14/04             | STRAWBERRIES   |                                         | $0.026 \pm 0.041$                        | $0.008 \pm 0.008$                        | $-0.022 \pm 0.023$                       | $0.000 \pm 0.005$<br>-0.004 \pm 0.015    |
|          | 09/15/04<br>09/15/04 |                | $-0.008 \pm 0.021$                      | $-0.040 \pm 0.140$<br>$0.050 \pm 0.100$  | $-0.010 \pm 0.022$<br>$-0.025 \pm 0.016$ | $-0.051 \pm 0.077$<br>$-0.024 \pm 0.054$ | $-0.004 \pm 0.015$<br>$-0.003 \pm 0.015$ |
|          | 09/13/04             | CABBAGE        | $0.007 \pm 0.021$                       |                                          |                                          |                                          |                                          |
|          | 0.614.410.4          |                | Co-60                                   | Cr-51                                    | Cs-134                                   | Cs-137                                   | Fe-59                                    |
|          | 06/14/04             |                | $-0.001 \pm 0.007$                      | $-0.027 \pm 0.047$                       | $0.000 \pm 0.006$                        | $0.001 \pm 0.005$                        | $0.000 \pm 0.020$                        |
|          | 06/14/04             | STRAWBERRIES   |                                         | $-0.038 \pm 0.052$                       | $-0.001 \pm 0.005$                       | $0.004 \pm 0.005$                        | $-0.007 \pm 0.014$                       |
|          | 09/15/04             |                | $-0.003 \pm 0.018$                      | $0.040 \pm 0.150$                        | $0.009 \pm 0.016$                        | $-0.006 \pm 0.017$                       | $-0.026 \pm 0.047$                       |
|          | 09/15/04             | CABBAGE        | $0.006 \pm 0.019$                       | $-0.100 \pm 0.120$                       | $-0.006 \pm 0.016$                       | $-0.003 \pm 0.013$                       | $0.005 \pm 0.047$                        |
|          | 06/14/04             | I FAMILOS      | I-131                                   | K-40                                     | La-140                                   | Mn-54                                    | Nb-95                                    |
|          | 06/14/04             |                | $-0.005 \pm 0.018$                      | $3.060 \pm 0.190$                        | $0.004 \pm 0.014$                        | $-0.003 \pm 0.005$                       | $0.001 \pm 0.007$                        |
|          | 06/14/04             | STRAWBERRIES - |                                         | $1.150 \pm 0.110$                        | $0.007 \pm 0.013$                        | $0.003 \pm 0.004$                        | $-0.002 \pm 0.006$                       |
|          | 09/15/04             |                | $0.016 \pm 0.027$                       | $0.800 \pm 0.320$                        | $-0.010 \pm 0.025$                       | $0.002 \pm 0.014$                        | $0.000 \pm 0.020$                        |
|          | 09/15/04             | CABBAGE -      | $-0.017 \pm 0.016$                      | $1.800 \pm 0.480$                        | $0.008 \pm 0.024$                        | $0.006 \pm 0.012$                        | $0.008 \pm 0.016$                        |
|          | 06/14/04             | LETTUCE -      | Ru-103<br>-0.003 ± 0.006                | Ru-106<br>-0.014 ± 0.044                 | Sb-125                                   | $Th-228 \\ 0.002 \pm 0.026$              | $Zn-65$ $0.007 \pm 0.013$                |
|          | 06/14/04             | STRAWBERRIES - |                                         | $-0.014 \pm 0.044$<br>$-0.022 \pm 0.041$ | $0.004 \pm 0.011$ $-0.004 \pm 0.012$     | $-0.002 \pm 0.026$<br>$-0.012 \pm 0.022$ | $-0.007 \pm 0.013$<br>$-0.004 \pm 0.010$ |
|          | 00/14/04             | SIVVADERMES.   | ~.v.vv ≖ v.vv.                          | -0.022 # 0.041                           | -0.004 ± 0.012                           | -0.012 ± 0.022                           | -0.004 ± 0.010                           |

# Table 12, Fruits & Vegetables (pCi/g wet)

| Location | Collection<br>Date                           | Sample Type                                 |                                                                                     |                                          | Isotope                                          |                                            |                                          |
|----------|----------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------|
| 26-C     | 09/15/04<br>09/15/04                         | APPLES<br>CABBAGE                           | $Ru-103 \\ -0.017 \pm 0.016 \\ -0.008 \pm 0.013$                                    | Ru-106<br>0.100 ± 0.150<br>0.020 ± 0.120 | $Sb-125 \\ -0.002 \pm 0.043 \\ -0.008 \pm 0.039$ | Th-228<br>-0.020 ± 0.067<br>-0.046 ± 0.059 | Zn-65<br>0.019 ± 0.077<br>-0.014 ± 0.039 |
|          | 06/14/04<br>06/14/04<br>09/15/04<br>09/15/04 | LETTUCE<br>STRAWBERRIE<br>APPLES<br>CABBAGE | $Zr-95$ $-0.001 \pm 0.010$ S $-0.009 \pm 0.008$ $0.002 \pm 0.028$ $0.017 \pm 0.023$ |                                          |                                                  |                                            |                                          |

# Table 13, Broadleaf Vegetation (pCi/g wet)

| Location | Collection<br>Date   |                                         |                                          | Isotope                                |                                         |                                       |                                        |
|----------|----------------------|-----------------------------------------|------------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------|
| 01       |                      | Ba-140                                  | Be-7                                     | Ce-141                                 | Ce-144                                  | Co-58                                 | Co-60                                  |
|          | 05/19/04             | $0.000 \pm 0.038$                       | $0.970 \pm 0.320$                        | $-0.024 \pm 0.027$                     | $0.003 \pm 0.092$                       | $-0.002 \pm 0.022$                    | $-0.010 \pm 0.023$                     |
|          | 06/09/04             | $0.000 \pm 0.038$                       | $0.280 \pm 0.320$                        | $-0.022 \pm 0.034$                     | $-0.020 \pm 0.110$                      | $0.003 \pm 0.027$                     | $0.011 \pm 0.024$                      |
|          | 07/27/04             | $-0.005 \pm 0.022$                      | $0.320 \pm 0.230$                        | $-0.007 \pm 0.021$                     | $-0.010 \pm 0.062$                      | $0.008 \pm 0.021$                     | $-0.005 \pm 0.024$                     |
|          | 08/25/04             | $-0.008 \pm 0.035$                      | $0.230 \pm 0.180$                        | $0.009 \pm 0.034$                      | $-0.078 \pm 0.076$                      | $0.017 \pm 0.018$                     | $0.009 \pm 0.022$                      |
|          | 09/15/04             | $0.038 \pm 0.045$                       | $1.010 \pm 0.400$                        | $-0.029 \pm 0.033$                     | $0.020 \pm 0.110$                       | $0.000 \pm 0.026$                     | $0.011 \pm 0.027$                      |
|          | 10/06/04             | $0.013 \pm 0.054$                       | $0.840 \pm 0.300$                        | $0.003 \pm 0.039$                      | $-0.034 \pm 0.089$                      | $-0.014 \pm 0.022$                    | $-0.002 \pm 0.021$                     |
|          |                      | Cr-51                                   | Cs-134                                   | Cs-137                                 | Fe-59                                   | I-131                                 | K-40                                   |
|          | 05/19/04             | $-0.060 \pm 0.200$                      | $0.018 \pm 0.023$                        | $0.003 \pm 0.018$                      | $0.047 \pm 0.061$                       | $-0.021 \pm 0.052$                    | $3.630 \pm 0.750$                      |
|          | 06/09/04             | $0.110 \pm 0.280$                       | $-0.008 \pm 0.030$                       | $0.003 \pm 0.025$                      | $-0.035 \pm 0.087$                      | $0.016 \pm 0.069$                     | $2.810 \pm 0.760$                      |
|          | 07/27/04             | $0.000 \pm 0.130$                       | $0.005 \pm 0.024$                        | $0.018 \pm 0.019$                      | $-0.040 \pm 0.070$                      | $-0.028 \pm 0.029$                    | $3.520 \pm 0.710$                      |
|          | 08/25/04             | $-0.110 \pm 0.160$                      | $-0.002 \pm 0.021$                       | $0.012 \pm 0.018$                      | $-0.015 \pm 0.049$                      | $0.013 \pm 0.053$                     | $3.740 \pm 0.540$                      |
|          | 09/15/04<br>10/06/04 | $-0.020 \pm 0.220$<br>$0.100 \pm 0.260$ | $0.000 \pm 0.024$<br>-0.002 \pm 0.021    | $0.007 \pm 0.025$<br>$0.021 \pm 0.023$ | $-0.034 \pm 0.060$<br>$0.061 \pm 0.059$ | $0.024 \pm 0.065$<br>-0.056 \pm 0.095 | $1.630 \pm 0.670$<br>$3.100 \pm 0.600$ |
|          | 10/00/04             | 0.100 ± 0.200                           | -0.002 ± 0.021                           | 0.021 ± 0.023                          | 0.001 ± 0.039                           | -0.030 ± 0.093                        | 3.100 ± 0.000                          |
|          |                      | La-140                                  | Mn-54                                    | Nb-95                                  | Ru-103                                  | Ru-106                                | Sb-125                                 |
|          | 05/19/04             | $0.000 \pm 0.043$                       | $0.000 \pm 0.023$                        | $-0.010 \pm 0.028$                     | $0.010 \pm 0.021$                       | $-0.120 \pm 0.200$                    | $-0.031 \pm 0.050$                     |
|          | 06/09/04             | $0.000 \pm 0.044$                       | $0.032 \pm 0.028$                        | $0.021 \pm 0.032$                      | $-0.004 \pm 0.028$                      | $-0.190 \pm 0.260$                    | $0.039 \pm 0.049$                      |
|          | 07/27/04             | $-0.006 \pm 0.026$                      | $0.006 \pm 0.020$                        | $0.013 \pm 0.021$                      | $0.000 \pm 0.019$                       | $-0.130 \pm 0.150$                    | $0.032 \pm 0.048$                      |
|          | 08/25/04             | $-0.009 \pm 0.040$                      | $-0.005 \pm 0.018$                       | $-0.004 \pm 0.023$                     | $0.005 \pm 0.018$                       | $0.020 \pm 0.150$                     | $0.005 \pm 0.045$                      |
|          | 09/15/04             | $0.044 \pm 0.052$<br>$0.015 \pm 0.062$  | $-0.003 \pm 0.024$<br>$-0.015 \pm 0.019$ | $0.002 \pm 0.032$                      | $0.002 \pm 0.027$                       | $-0.110 \pm 0.230$                    | $-0.037 \pm 0.064$                     |
|          | 10/06/04             | $0.013 \pm 0.002$                       | -0.015 ± 0.019                           | $0.007 \pm 0.029$                      | $0.004 \pm 0.024$                       | $-0.280 \pm 0.190$                    | $0.012 \pm 0.047$                      |
|          |                      | Th-228                                  | Zn-65                                    | <b>Zr-95</b>                           |                                         |                                       |                                        |
|          | 05/19/04             | $-0.012 \pm 0.098$                      | $-0.036 \pm 0.050$                       | $-0.004 \pm 0.037$                     |                                         |                                       |                                        |
|          | 06/09/04             | $0.074 \pm 0.096$                       | $-0.125 \pm 0.081$                       | $0.032 \pm 0.050$                      |                                         |                                       |                                        |
|          | 07/27/04             | $0.011 \pm 0.071$                       | $-0.014 \pm 0.053$                       | $-0.009 \pm 0.032$                     |                                         |                                       |                                        |
|          | 08/25/04             | $0.088 \pm 0.078$                       | $0.055 \pm 0.083$                        | $0.029 \pm 0.032$                      |                                         |                                       |                                        |
|          | 09/15/04<br>10/06/04 | $0.028 \pm 0.093$<br>$0.024 \pm 0.087$  | $-0.039 \pm 0.072$<br>$-0.026 \pm 0.053$ | $0.000 \pm 0.054$<br>-0.012 \pm 0.042  |                                         |                                       |                                        |
|          | 10/00/04             | 0.024 ± 0.007                           | -0.020 ± 0.033                           | -0.012 ± 0.042                         |                                         |                                       |                                        |
| 10       |                      | Ba-140                                  | Be-7                                     | Ce-141                                 | Ce-144                                  | Co-58                                 | Co-60                                  |
|          | 05/19/04             | $0.023 \pm 0.023$                       | $0.360 \pm 0.150$                        | $-0.007 \pm 0.012$                     | $0.010 \pm 0.041$                       | $-0.006 \pm 0.014$                    | $0.002 \pm 0.012$                      |
|          | 06/09/04             | $0.007 \pm 0.025$                       | $0.340 \pm 0.210$                        | $-0.009 \pm 0.018$                     | $0.025 \pm 0.051$                       | $0.003 \pm 0.013$                     | $0.011 \pm 0.023$                      |
|          | 07/27/04             | $0.000 \pm 0.023$                       | $0.130 \pm 0.200$                        | $-0.004 \pm 0.018$                     | $-0.044 \pm 0.071$                      | $0.009 \pm 0.018$                     | $0.008 \pm 0.024$                      |
|          | 08/25/04             | $0.028 \pm 0.034$                       | $0.120 \pm 0.160$                        | $0.011 \pm 0.019$                      | $-0.062 \pm 0.053$                      | $-0.007 \pm 0.017$                    | $0.004 \pm 0.020$                      |
|          | 09/21/04             | $0.013 \pm 0.029$                       | $0.750 \pm 0.240$                        | $-0.025 \pm 0.025$                     | $0.031 \pm 0.085$                       | $0.012 \pm 0.017$                     | $0.002 \pm 0.022$                      |
|          | 10/06/04             | $0.000 \pm 0.050$                       | $0.310 \pm 0.260$                        | $0.017 \pm 0.027$                      | $0.023 \pm 0.072$                       | $-0.021 \pm 0.027$                    | $-0.007 \pm 0.027$                     |
|          |                      | Cr-51                                   | Cs-134                                   | Cs-137                                 | Fe-59                                   | I-131                                 | K-40                                   |
|          | 05/19/04             | $0.040 \pm 0.110$                       | $-0.010 \pm 0.013$                       | $0.014 \pm 0.015$                      | $-0.035 \pm 0.050$                      | $-0.001 \pm 0.027$                    | $2.590 \pm 0.570$                      |
|          | 06/09/04             | $0.050 \pm 0.110$                       | $0.001 \pm 0.017$                        | $0.015 \pm 0.020$                      | $-0.043 \pm 0.065$                      | $-0.020 \pm 0.039$                    | $1.360 \pm 0.480$                      |
|          | 07/27/04             | $-0.010 \pm 0.180$                      | $-0.003 \pm 0.028$                       | $-0.006 \pm 0.021$                     | $-0.086 \pm 0.092$                      | $0.002 \pm 0.035$                     | $3.060 \pm 0.850$                      |
|          | 08/25/04             | $0.040 \pm 0.140$                       | $-0.019 \pm 0.021$                       | $-0.001 \pm 0.018$                     | $-0.065 \pm 0.069$                      | $-0.016 \pm 0.041$                    | $3.690 \pm 0.620$                      |
|          | 09/21/04             | $0.050 \pm 0.150$                       | $-0.004 \pm 0.019$                       | $0.005 \pm 0.016$                      | $0.002 \pm 0.052$                       | $0.012 \pm 0.050$                     | $3.490 \pm 0.590$                      |
|          | 10/06/04             | $0.020 \pm 0.160$                       | $0.003 \pm 0.022$                        | $0.007 \pm 0.026$                      | $-0.022 \pm 0.088$                      | $0.008 \pm 0.066$                     | $2.100 \pm 0.690$                      |

## Table 13, Broadleaf Vegetation (pCi/g wet)

| Location | Collection<br>Date   |                    |                    | Isotope            |                                          |                    |                                          |
|----------|----------------------|--------------------|--------------------|--------------------|------------------------------------------|--------------------|------------------------------------------|
| 10       |                      | La-140             | Mn-54              | Nb-95              | Ru-103                                   | Ru-106             | Sb-125                                   |
|          | 05/19/04             | $0.026 \pm 0.026$  | $0.002 \pm 0.012$  | $0.000 \pm 0.016$  | $-0.001 \pm 0.013$                       | $0.000 \pm 0.092$  | $-0.021 \pm 0.024$                       |
|          | 06/09/04             | $0.008 \pm 0.028$  | $-0.002 \pm 0.012$ | $-0.008 \pm 0.021$ | $-0.001 \pm 0.015$<br>$-0.007 \pm 0.015$ | $-0.050 \pm 0.052$ | $-0.021 \pm 0.024$<br>$-0.018 \pm 0.043$ |
|          | 07/27/04             | $0.000 \pm 0.027$  | $-0.027 \pm 0.027$ | $0.005 \pm 0.021$  | $-0.019 \pm 0.021$                       | $-0.210 \pm 0.180$ | $-0.049 \pm 0.054$                       |
|          | 08/25/04             | $0.032 \pm 0.039$  | $-0.008 \pm 0.017$ | $-0.012 \pm 0.025$ | $0.006 \pm 0.018$                        | $-0.010 \pm 0.130$ | $-0.040 \pm 0.036$                       |
|          | 09/21/04             | $0.015 \pm 0.034$  | $-0.015 \pm 0.017$ | $-0.005 \pm 0.024$ | $0.006 \pm 0.019$                        | $-0.060 \pm 0.180$ | $0.025 \pm 0.045$                        |
|          | 10/06/04             | $0.000 \pm 0.057$  | $-0.010 \pm 0.025$ | $0.011 \pm 0.030$  | $0.010 \pm 0.026$                        | $0.040 \pm 0.160$  | $-0.024 \pm 0.048$                       |
|          |                      | Th-228             | Zn-65              | Zr-95              |                                          |                    |                                          |
|          | 05/19/04             | $0.021 \pm 0.054$  | $0.000 \pm 0.031$  | $0.001 \pm 0.021$  |                                          |                    |                                          |
|          | 06/09/04             | $0.018 \pm 0.046$  | $-0.011 \pm 0.045$ | $0.004 \pm 0.030$  |                                          |                    |                                          |
|          | 07/27/04             | $0.024 \pm 0.085$  | $0.000 \pm 0.055$  | $0.019 \pm 0.036$  |                                          |                    |                                          |
|          | 08/25/04             | $-0.010 \pm 0.067$ | $0.043 \pm 0.082$  | $-0.007 \pm 0.033$ |                                          |                    |                                          |
|          | 09/21/04             | $0.071 \pm 0.080$  | $0.012 \pm 0.050$  | $0.008 \pm 0.034$  |                                          |                    |                                          |
|          | 10/06/04             | $0.024 \pm 0.087$  | $-0.014 \pm 0.050$ | $-0.031 \pm 0.050$ |                                          |                    |                                          |
| 17       |                      | Ba-140             | Be-7               | Ce-141             | Ce-144                                   | Co-58              | Co-60                                    |
|          | 05/19/04             | $0.009 \pm 0.045$  | $0.450 \pm 0.230$  | $0.010 \pm 0.019$  | $0.020 \pm 0.059$                        | -0.001 ± 0.015     | $-0.001 \pm 0.021$                       |
|          | 06/09/04             | $0.026 \pm 0.067$  | $0.310 \pm 0.290$  | $-0.020 \pm 0.034$ | $-0.050 \pm 0.110$                       | $0.006 \pm 0.028$  | $0.021 \pm 0.033$                        |
|          | 07/27/04             | $-0.005 \pm 0.034$ | $0.410 \pm 0.220$  | $0.002 \pm 0.019$  | $-0.004 \pm 0.062$                       | $-0.011 \pm 0.024$ | $0.028 \pm 0.027$                        |
|          | 08/25/04             | $-0.018 \pm 0.034$ | $0.950 \pm 0.280$  | $-0.033 \pm 0.028$ | $0.009 \pm 0.083$                        | $-0.009 \pm 0.019$ | $-0.013 \pm 0.021$                       |
|          | 09/15/04             | $0.008 \pm 0.046$  | $0.570 \pm 0.270$  | $-0.010 \pm 0.024$ | $0.009 \pm 0.073$                        | $0.011 \pm 0.019$  | $-0.022 \pm 0.027$                       |
|          | 10/06/04             | $-0.016 \pm 0.071$ | $2.230 \pm 0.390$  | $-0.017 \pm 0.028$ | $0.037 \pm 0.069$                        | $0.006 \pm 0.023$  | $0.004 \pm 0.030$                        |
|          |                      | Cr-51              | Cs-134             | Cs-137             | Fe-59                                    | I-131              | K-40                                     |
|          | 05/19/04             | $-0.050 \pm 0.150$ | $0.008 \pm 0.013$  | $0.019 \pm 0.019$  | $0.004 \pm 0.076$                        | $-0.002 \pm 0.040$ | $3.390 \pm 0.770$                        |
|          | 06/09/04             | $-0.180 \pm 0.250$ | $0.027 \pm 0.031$  | $0.016 \pm 0.024$  | $0.026 \pm 0.065$                        | $0.000 \pm 0.080$  | $1.860 \pm 0.660$                        |
|          | 07/27/04             | $0.100 \pm 0.150$  | $-0.011 \pm 0.024$ | $0.048 \pm 0.029$  | $0.015 \pm 0.069$                        | $0.016 \pm 0.031$  | $2.080 \pm 0.630$                        |
|          | 08/25/04             | $-0.040 \pm 0.210$ | $0.000 \pm 0.021$  | $0.051 \pm 0.028$  | $-0.031 \pm 0.063$                       | $-0.034 \pm 0.061$ | $2.060 \pm 0.520$                        |
|          | 09/15/04<br>10/06/04 | $-0.120 \pm 0.140$ | $0.012 \pm 0.027$  | $0.002 \pm 0.020$  | $-0.005 \pm 0.059$                       | $0.003 \pm 0.038$  | $3.440 \pm 0.750$                        |
|          | 10/06/04             | $-0.030 \pm 0.180$ | $-0.003 \pm 0.024$ | $-0.009 \pm 0.022$ | $0.014 \pm 0.079$                        | $-0.002 \pm 0.075$ | $2.050 \pm 0.550$                        |
|          |                      | La-140             | Mn-54              | Nb-95              | Ru-103                                   | Ru-106             | Sb-125                                   |
|          | 05/19/04             | $0.010 \pm 0.052$  | $0.006 \pm 0.018$  | $0.014 \pm 0.019$  | $0.003 \pm 0.018$                        | $-0.160 \pm 0.170$ | $-0.014 \pm 0.037$                       |
|          | 06/09/04             | $0.030 \pm 0.077$  | $0.022 \pm 0.028$  | $0.020 \pm 0.036$  | $0.015 \pm 0.031$                        | $-0.200 \pm 0.210$ | $-0.016 \pm 0.052$                       |
|          | 07/27/04             | $-0.006 \pm 0.039$ | $0.008 \pm 0.020$  | $-0.018 \pm 0.025$ | $-0.016 \pm 0.021$                       | $-0.040 \pm 0.130$ | $0.017 \pm 0.046$                        |
|          | 08/25/04             | $-0.021 \pm 0.039$ | $0.003 \pm 0.019$  | $0.011 \pm 0.026$  | $0.002 \pm 0.024$                        | $0.050 \pm 0.190$  | $0.038 \pm 0.050$                        |
|          | 09/15/04             | $0.009 \pm 0.053$  | $0.001 \pm 0.024$  | $-0.002 \pm 0.027$ | $0.004 \pm 0.019$                        | $-0.040 \pm 0.150$ | $-0.025 \pm 0.047$                       |
|          | 10/06/04             | $-0.018 \pm 0.082$ | $-0.003 \pm 0.021$ | $0.012 \pm 0.029$  | $0.016 \pm 0.023$                        | $-0.070 \pm 0.160$ | $-0.009 \pm 0.049$                       |
|          |                      | Th-228             | Zn-65              | Zr-95              |                                          |                    |                                          |
|          | 05/19/04             | $0.049 \pm 0.072$  | $-0.007 \pm 0.041$ | $-0.025 \pm 0.037$ |                                          |                    |                                          |
|          | 06/09/04             | $0.049 \pm 0.094$  | $-0.105 \pm 0.075$ | $0.041 \pm 0.044$  |                                          |                    |                                          |
|          | 07/27/04             | $0.028 \pm 0.082$  | $-0.010 \pm 0.044$ | $-0.028 \pm 0.036$ |                                          |                    |                                          |
|          | 08/25/04             | $-0.045 \pm 0.065$ | $-0.039 \pm 0.051$ | $0.005 \pm 0.036$  |                                          |                    |                                          |
|          | 09/15/04             | $0.010 \pm 0.094$  | $-0.025 \pm 0.056$ | $0.027 \pm 0.049$  |                                          |                    |                                          |
|          | 10/06/04             | $-0.028 \pm 0.089$ | $-0.018 \pm 0.050$ | $0.004 \pm 0.044$  |                                          |                    |                                          |

#### Table 14, Sea Water (pCi/L)

| Location | Collection<br>Date   |                                  |                                   | Isotope                          |                                    |                                 |                                 |
|----------|----------------------|----------------------------------|-----------------------------------|----------------------------------|------------------------------------|---------------------------------|---------------------------------|
| 32       |                      | Ba-140                           | Be-7                              | Co-58                            | Co-60                              | Cr-51                           | Cs-134                          |
|          | 01/27/04             | $1.6 \pm 2.9$                    | $-7.0 \pm 17.0$                   | $-1.5 \pm 2.0$                   | $-1.9 \pm 2.6$                     | $6.0 \pm 19.0$                  | $1.6 \pm 2.1$                   |
|          | 02/24/04             | $0.0 \pm 3.0$                    | $0.0 \pm 19.0$                    | $-2.1 \pm 2.0$                   | $1.5 \pm 1.8$                      | $-2.0 \pm 19.0$                 | $1.4 \pm 2.4$                   |
|          | 03/30/04             | $1.8 \pm 4.1$                    | $18.0 \pm 21.0$                   | $0.2 \pm 2.2$                    | $1.6 \pm 2.8$                      | $18.0 \pm 23.0$                 | $-1.8 \pm 2.3$                  |
|          | 04/27/04             | $0.5 \pm 3.0$                    | $-19.0 \pm 19.0$                  | $-1.2 \pm 2.3$                   | $-1.9 \pm 2.5$                     | $3.0 \pm 24.0$                  | $0.0 \pm 2.1$                   |
|          | 05/25/04             | $-2.9 \pm 4.1$                   | $0.0 \pm 17.0$                    | $0.6 \pm 1.7$                    | $-2.0 \pm 1.9$                     | $18.0 \pm 21.0$                 | $1.1 \pm 1.7$                   |
|          | 06/29/04             | $-1.5 \pm 4.2$                   | $-1.0 \pm 23.0$                   | $-1.2 \pm 2.5$                   | $-1.2 \pm 2.7$                     | $4.0 \pm 28.0$                  | $0.2 \pm 2.9$                   |
|          | 07/27/04             | $0.0 \pm 4.2$                    | $-4.0 \pm 17.0$                   | $-1.1 \pm 1.9$                   | $0.5 \pm 2.3$                      | $20.0 \pm 23.0$                 | $-0.7 \pm 1.9$                  |
|          | 08/31/04             | $0.0 \pm 4.5$                    | $8.0 \pm 14.0$                    | $-0.5 \pm 1.8$                   | $-0.3 \pm 2.1$                     | $-5.0 \pm 19.0$                 | $-1.5 \pm 2.2$                  |
|          | 09/28/04             | $0.5 \pm 2.6$                    | $-2.0 \pm 14.0$                   | $-0.9 \pm 1.5$                   | $0.4 \pm 1.9$                      | $-5.0 \pm 18.0$                 | $0.6 \pm 2.0$                   |
|          | 10/26/04             | $-2.4 \pm 4.5$                   | $-12.0 \pm 26.0$                  | $0.2 \pm 2.5$                    | $-1.2 \pm 1.8$                     | $3.0 \pm 26.0$                  | $0.2 \pm 2.3$<br>$0.0 \pm 2.4$  |
|          | 11/30/04<br>12/28/04 | $0.4 \pm 2.6$<br>-1.1 \pm 5.8    | $7.0 \pm 20.0$<br>$-3.0 \pm 18.0$ | $-0.4 \pm 2.4$<br>$0.1 \pm 2.4$  | $-1.5 \pm 1.9$<br>$0.4 \pm 2.6$    | $12.0 \pm 23.0$<br>-16.0 ± 24.0 | $-1.0 \pm 2.4$                  |
|          |                      | Cs-137                           | Fe-59                             | H-3                              | I-131                              | K-40                            | La-140                          |
|          | 01/27/04             | $-0.2 \pm 2.2$                   | $-3.1 \pm 6.0$                    | $380.0 \pm 180.0$                | $1.8 \pm 4.1$                      | $285.0 \pm 55.0$                | $1.8 \pm 3.3$                   |
|          | 02/24/04             | $-0.5 \pm 1.8$                   | $-0.7 \pm 4.9$                    | $1000.0 \pm 190.0$               | $3.1 \pm 3.8$                      | $302.0 \pm 55.0$                | $0.0 \pm 3.4$                   |
|          | 03/30/04             | $-0.2 \pm 2.8$                   | $-2.3 \pm 6.7$                    | $1660.0 \pm 180.0$               | $0.0 \pm 4.5$                      | $273.0 \pm 67.0$                | $2.1 \pm 4.7$                   |
|          | 04/27/04             | $-0.2 \pm 2.4$                   | $5.0 \pm 6.6$                     | $980.0 \pm 230.0$                | $-5.9 \pm 5.0$                     | $255.0 \pm 56.0$                | $0.5 \pm 3.4$                   |
|          | 05/25/04             | $0.3 \pm 1.9$                    | $1.3 \pm 5.6$                     | $220.0 \pm 190.0$                | $-0.7 \pm 5.5$                     | $315.0 \pm 50.0$                | $-3.4 \pm 4.7$                  |
|          | 06/29/04             | $-2.6 \pm 2.9$                   | $7.7 \pm 6.2$                     | $1050.0 \pm 180.0$               | $0.5 \pm 5.4$                      | $290.0 \pm 64.0$                | $-1.7 \pm 4.9$                  |
|          | 07/27/04             | $-0.2 \pm 2.4$                   | $-0.1 \pm 6.8$                    | $180.0 \pm 170.0$                | $-0.8 \pm 5.2$                     | $300.0 \pm 58.0$                | $0.0 \pm 4.8$                   |
|          | 08/31/04             | $-1.0 \pm 1.9$                   | $3.2 \pm 5.5$                     | $190.0 \pm 180.0$                | $4.7 \pm 5.8$                      | $21.0 \pm 33.0$                 | $0.0 \pm 5.2$                   |
|          | 09/28/04             | $-0.3 \pm 1.7$                   | $-3.6 \pm 5.2$                    | $-30.0 \pm 130.0$                | $1.4 \pm 3.5$                      | $320.0 \pm 46.0$                | $0.6 \pm 3.0$                   |
|          | 10/26/04             | $0.1 \pm 2.4$                    | $1.0 \pm 7.5$                     | $108.0 \pm 82.0$                 | $0.0 \pm 7.3$                      | $264.0 \pm 67.0$                | $-2.8 \pm 5.2$                  |
|          | 11/30/04             | $0.0 \pm 2.4$                    | $-2.8 \pm 6.7$                    | $243.0 \pm 86.0$                 | $3.2 \pm 4.5$                      | $283.0 \pm 59.0$                | $0.4 \pm 3.0$                   |
|          | 12/28/04             | $-1.2 \pm 2.9$                   | $2.4 \pm 8.4$                     | $480.0 \pm 210.0$                | $2.3 \pm 7.3$                      | $285.0 \pm 62.0$                | $-1.3 \pm 6.7$                  |
|          |                      | Mn-54                            | Nb-95                             | Ru-103                           | Ru-106                             | Sb-125                          | Th-228                          |
|          | 01/27/04             | $0.3 \pm 1.9$                    | $-0.4 \pm 2.2$                    | $0.8 \pm 2.2$                    | $10.0 \pm 18.0$                    | $3.6 \pm 5.5$                   | $-0.9 \pm 9.7$                  |
|          | 02/24/04             | $-1.0 \pm 1.8$                   | $0.3 \pm 2.4$                     | $1.1 \pm 2.4$                    | $20.0 \pm 20.0$                    | $1.5 \pm 5.7$                   | $-3.5 \pm 8.6$                  |
|          | 03/30/04             | $1.1 \pm 2.3$                    | $-0.6 \pm 2.4$                    | $-1.1 \pm 2.6$                   | $10.0 \pm 19.0$                    | $1.9 \pm 6.4$                   | $-3.7 \pm 8.4$                  |
|          | 04/27/04             | $-1.1 \pm 2.1$                   | $0.6 \pm 2.4$                     | $-1.4 \pm 2.3$                   | $10.0 \pm 21.0$                    | $2.8 \pm 5.8$                   | $5.2 \pm 7.7$                   |
|          | 05/25/04             | $-0.7 \pm 1.5$                   | $-0.9 \pm 2.2$                    | $-1.9 \pm 2.0$                   | $1.0 \pm 16.0$                     | -0.2 ± 5.1<br>-1.7 ± 7.6        | $6.7 \pm 5.8$                   |
|          | 06/29/04             | $-0.4 \pm 2.5$                   | $-0.3 \pm 2.9$                    | $0.3 \pm 3.0$ -0.3 \pm 2.5       | $14.0 \pm 22.0$<br>$3.0 \pm 22.0$  | $1.7 \pm 7.0$ $1.7 \pm 5.0$     | $-2.6 \pm 8.7$<br>$3.0 \pm 8.3$ |
|          | 07/27/04<br>08/31/04 | -0.4 ± 2.2<br>0.1 ± 1.5          | 0.1 ± 2.6<br>-0.1 ± 2.4           | $-0.3 \pm 2.5$<br>$0.5 \pm 2.0$  | $-8.0 \pm 22.0$<br>$-8.0 \pm 17.0$ | $1.7 \pm 3.0$<br>$-1.0 \pm 4.1$ | $3.0 \pm 6.3$<br>-1.5 ± 9.9     |
|          | 08/31/04             | $-0.7 \pm 1.7$                   | -0.1 ± 2.4<br>-0.4 ± 1.9          | $-1.1 \pm 1.7$                   | $0.0 \pm 17.0$<br>$0.0 \pm 14.0$   | $4.0 \pm 4.1$<br>$4.0 \pm 4.6$  | $6.2 \pm 6.0$                   |
|          | 10/26/04             | $-0.7 \pm 1.7$<br>$-0.2 \pm 2.5$ | $0.3 \pm 3.1$                     | $-1.1 \pm 1.7$<br>$-1.8 \pm 3.3$ | $-8.0 \pm 25.0$                    | $2.8 \pm 6.0$                   | $8.2 \pm 9.2$                   |
|          | 11/30/04             | $-0.2 \pm 2.3$<br>$-0.3 \pm 2.2$ | $-0.5 \pm 2.8$                    | $-1.8 \pm 3.3$<br>$-1.2 \pm 2.7$ | $17.0 \pm 21.0$                    | $-2.9 \pm 5.5$                  | $4.2 \pm 7.7$                   |
|          | 12/28/04             | $1.1 \pm 2.4$                    | $-0.7 \pm 2.9$                    | $-1.0 \pm 2.6$                   | $-4.0 \pm 22.0$                    | $-4.7 \pm 6.0$                  | $3.3 \pm 7.9$                   |
|          |                      | Zn-65                            | Zr-95                             |                                  |                                    |                                 |                                 |
|          | 01/27/04             | $-6.8 \pm 4.6$                   | $-1.1 \pm 3.6$                    |                                  |                                    |                                 |                                 |
|          | 02/24/04             | $1.4 \pm 5.2$                    | $1.3 \pm 3.6$                     |                                  |                                    |                                 |                                 |
|          | 03/30/04             | $-3.8 \pm 5.5$                   | $-1.0 \pm 4.2$                    |                                  |                                    |                                 |                                 |
|          | 04/27/04             | $-1.8 \pm 5.1$                   | $-2.3 \pm 3.8$                    |                                  |                                    |                                 |                                 |
|          | 05/25/04             | $-3.6 \pm 4.6$                   | $-3.2 \pm 3.0$                    |                                  |                                    |                                 |                                 |
|          | 06/29/04             | $-1.6 \pm 6.3$                   | $-1.6 \pm 4.9$                    |                                  |                                    |                                 |                                 |
|          | 07/27/04             | $-5.1 \pm 4.7$                   | $-0.9 \pm 3.9$                    |                                  |                                    |                                 |                                 |
|          | 08/31/04             | $1.9 \pm 3.7$                    | $1.4 \pm 3.3$                     |                                  |                                    |                                 |                                 |
|          | 09/28/04             | $0.2 \pm 3.5$                    | $0.3 \pm 2.9$                     |                                  |                                    |                                 |                                 |
|          | 10/26/04             | $3.6 \pm 5.6$                    | $-2.9 \pm 4.6$                    |                                  |                                    |                                 |                                 |
|          | 11/30/04             | $9.3 \pm 8.9$                    | $0.6 \pm 4.1$                     |                                  |                                    |                                 |                                 |
|          | 12/28/04             | $-2.3 \pm 4.9$                   | $3.4 \pm 4.8$                     |                                  |                                    |                                 |                                 |
|          |                      |                                  |                                   |                                  |                                    |                                 |                                 |

# Table 14, Sea Water (pCi/L)

| Location | Collection<br>Date   |                                |                                  | Isotope                          |                                |                                   | ·                              |
|----------|----------------------|--------------------------------|----------------------------------|----------------------------------|--------------------------------|-----------------------------------|--------------------------------|
| 37-C     |                      | Ba-140                         | Be-7                             | Co-58                            | Co-60                          | Cr-51                             | Cs-134                         |
|          | 03/09/04<br>06/08/04 | $1.8 \pm 4.7$<br>$2.0 \pm 3.5$ | $5.0 \pm 20.0$<br>$4.0 \pm 16.0$ | $-1.4 \pm 2.2$<br>$-1.8 \pm 1.9$ | $0.3 \pm 2.1$<br>$0.2 \pm 1.6$ | $19.0 \pm 23.0$ $12.0 \pm 21.0$   | $0.3 \pm 2.3$ $-0.1 \pm 1.6$   |
|          | 09/07/04             | $1.0 \pm 3.4$                  | $4.0 \pm 10.0$<br>$0.0 \pm 14.0$ | $-1.8 \pm 1.9$<br>$-1.3 \pm 1.9$ | $0.2 \pm 1.0$<br>$0.8 \pm 2.5$ | $12.0 \pm 21.0$<br>$3.0 \pm 15.0$ | $0.2 \pm 2.1$                  |
|          | 11/16/04             | $3.8 \pm 5.9$                  | $16.0 \pm 25.0$                  | $-1.3 \pm 1.9$<br>$-1.3 \pm 2.6$ | $1.4 \pm 3.0$                  | $-3.0 \pm 13.0$                   | $0.2 \pm 2.1$<br>$0.2 \pm 2.8$ |
|          |                      | Cs-137                         | Fe-59                            | H-3                              | I-131                          | K-40                              | La-140                         |
|          | 03/09/04             | $-1.8 \pm 2.0$                 | $-2.6 \pm 6.4$                   | $150.0 \pm 840.0$                | $-8.0 \pm 7.6$                 | $265.0 \pm 55.0$                  | $2.0 \pm 5.4$                  |
|          | 06/08/04             | $-2.8 \pm 1.8$                 | $1.9 \pm 4.8$                    | $240.0 \pm 920.0$                | $1.3 \pm 6.5$                  | $241.0 \pm 36.0$                  | $2.3 \pm 4.0$                  |
|          | 09/07/04             | $0.1 \pm 1.8$                  | $2.4 \pm 4.8$                    | $-40.0 \pm 170.0$                | $0.8 \pm 3.0$                  | $-18.0 \pm 34.0$                  | $1.2 \pm 3.9$                  |
|          | 11/16/04             | $-1.3 \pm 3.1$                 | $-0.5 \pm 8.9$                   | $-430.0 \pm 670.0$               | $-4.7 \pm 7.5$                 | $337.0 \pm 74.0$                  | $4.4 \pm 6.8$                  |
|          |                      | Mn-54                          | Nb-95                            | Ru-103                           | Ru-106                         | Sb-125                            | Th-228                         |
|          | 03/09/04             | $-2.0 \pm 1.9$                 | $-1.4 \pm 2.5$                   | $-1.3 \pm 2.5$                   | $18.0 \pm 21.0$                | $0.3 \pm 5.0$                     | $0.2 \pm 7.5$                  |
|          | 06/08/04             | $0.5 \pm 1.5$                  | $1.3 \pm 3.3$                    | $0.0 \pm 1.9$                    | $5.0 \pm 14.0$                 | $-1.1 \pm 5.1$                    | $1.6 \pm 5.8$                  |
|          | 09/07/04             | $-0.4 \pm 2.0$                 | $0.2 \pm 2.6$                    | $-1.6 \pm 2.0$                   | $-1.0 \pm 16.0$                | $2.3 \pm 5.0$                     | $3.2 \pm 9.6$                  |
|          | 11/16/04             | $-1.4 \pm 2.5$                 | $-1.9 \pm 3.3$                   | $1.5 \pm 3.0$                    | $-15.0 \pm 23.0$               | $0.0 \pm 6.3$                     | $-6.0 \pm 11.0$                |
|          |                      | Zn-65                          | Zr-95                            |                                  |                                |                                   |                                |
|          | 03/09/04             | $-0.4 \pm 4.4$                 | $-5.5 \pm 4.4$                   |                                  |                                |                                   |                                |
|          | 06/08/04             | $12.0 \pm 8.0$                 | $-2.4 \pm 3.0$                   |                                  |                                |                                   |                                |
|          | 09/07/04             | $0.0 \pm 4.3$                  | $-0.3 \pm 3.6$                   |                                  |                                |                                   |                                |
|          | 11/16/04             | $-7.2 \pm 6.4$                 | $2.1 \pm 4.6$                    |                                  |                                |                                   |                                |

#### Table 15, Bottom Sediment (pCi/g dry)

| Location | Collection<br>Date                           |                                                                                                           |                                                                                                           | Isotope                                                                           |                                                                                     |                                                                                     | <u>_</u>                                                                           |
|----------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 29       |                                              | Ag-110m                                                                                                   | Be-7                                                                                                      | Co-58                                                                             | Co-60                                                                               | Cr-51                                                                               | Cs-134                                                                             |
|          | 07/20/04<br>12/09/04                         | $0.011 \pm 0.031$<br>$0.006 \pm 0.020$                                                                    | $0.280 \pm 0.250$<br>$0.300 \pm 0.260$                                                                    | $-0.022 \pm 0.024$<br>$-0.019 \pm 0.020$                                          | $0.021 \pm 0.025$<br>$0.004 \pm 0.013$                                              | $0.210 \pm 0.260$<br>-0.230 $\pm 0.280$                                             | $-0.005 \pm 0.024$<br>$0.030 \pm 0.054$                                            |
|          |                                              | Cs-137                                                                                                    | Fe-59                                                                                                     | I-131                                                                             | K-40                                                                                | Mn-54                                                                               | Nb-95                                                                              |
|          | 07/20/04<br>12/09/04                         | $0.030 \pm 0.027$<br>$0.028 \pm 0.018$                                                                    | $-0.044 \pm 0.054$<br>$0.013 \pm 0.049$                                                                   | $0.076 \pm 0.075$<br>$0.040 \pm 0.290$                                            | $13.040 \pm 0.890$<br>$15.150 \pm 0.580$                                            | $-0.003 \pm 0.024$<br>$-0.007 \pm 0.012$                                            | $-0.018 \pm 0.030$<br>$-0.032 \pm 0.042$                                           |
|          |                                              | Ru-103                                                                                                    | Ru-106                                                                                                    | Sb-125                                                                            | Th-228                                                                              | Zn-65                                                                               | Zr-95                                                                              |
|          | 07/20/04<br>12/09/04                         | $-0.010 \pm 0.024 \\ -0.008 \pm 0.025$                                                                    | $0.030 \pm 0.220$<br>$0.040 \pm 0.140$                                                                    | $0.047 \pm 0.059$<br>-0.008 $\pm 0.040$                                           | $0.950 \pm 0.100$ $1.138 \pm 0.063$                                                 | $0.080 \pm 0.110$ $-0.057 \pm 0.072$                                                | -5.400 ± 5.400<br>0.040 ± 0.170                                                    |
| 31       |                                              | Ag-110m                                                                                                   | Be-7                                                                                                      | Co-58                                                                             | Co-60                                                                               | Cr-51                                                                               | Cs-134                                                                             |
|          | 05/04/04<br>11/09/04                         | $0.006 \pm 0.027$<br>$0.020 \pm 0.042$                                                                    | $0.040 \pm 0.220$<br>$0.060 \pm 0.360$                                                                    | $-0.001 \pm 0.023$<br>$0.006 \pm 0.035$                                           | $0.012 \pm 0.022$<br>$0.008 \pm 0.025$                                              | $0.030 \pm 0.280$<br>-0.150 \pm 0.420                                               | $0.048 \pm 0.085$<br>-0.003 $\pm 0.032$                                            |
|          |                                              | Cs-137                                                                                                    | Fe-59                                                                                                     | I-131                                                                             | K-40                                                                                | Mn-54                                                                               | Nb-95                                                                              |
|          | 05/04/04<br>11/09/04                         | $-0.013 \pm 0.028$<br>$-0.027 \pm 0.037$                                                                  | $-0.029 \pm 0.067$<br>$-0.010 \pm 0.069$                                                                  | $-0.008 \pm 0.053$<br>$-0.060 \pm 0.110$                                          | $12.970 \pm 0.770$ $12.820 \pm 0.970$                                               | $-0.013 \pm 0.019$<br>$-0.014 \pm 0.041$                                            | $-0.014 \pm 0.030$<br>$0.024 \pm 0.047$                                            |
|          |                                              | Ru-103                                                                                                    | Ru-106                                                                                                    | Sb-125                                                                            | Th-228                                                                              | Zn-65                                                                               | Zr-95                                                                              |
|          | 05/04/04<br>11/09/04                         | $0.001 \pm 0.024$<br>-0.009 \pm 0.044                                                                     | $0.100 \pm 0.230$<br>-0.330 $\pm 0.330$                                                                   | $0.000 \pm 0.074$<br>$0.054 \pm 0.096$                                            | $2.720 \pm 0.120$<br>$4.210 \pm 0.190$                                              | $0.000 \pm 0.100$ $-0.060 \pm 0.120$                                                | $0.190 \pm 0.210$<br>$0.240 \pm 0.450$                                             |
| 32       |                                              | Ag-110m                                                                                                   | Be-7                                                                                                      | Co-58                                                                             | Co-60                                                                               | Cr-51                                                                               | Cs-134                                                                             |
|          | 02/24/04<br>05/25/04<br>07/20/04<br>12/09/04 | -0.005 ± 0.025<br>-0.003 ± 0.025<br>-0.008 ± 0.034<br>0.015 ± 0.029                                       | $0.020 \pm 0.150$<br>$0.030 \pm 0.150$<br>$-0.050 \pm 0.230$<br>$0.120 \pm 0.280$                         | $-0.012 \pm 0.017$ $-0.007 \pm 0.019$ $0.022 \pm 0.029$ $-0.002 \pm 0.032$        | $0.024 \pm 0.021$<br>$0.019 \pm 0.020$<br>$-0.003 \pm 0.030$<br>$0.007 \pm 0.028$   | $0.030 \pm 0.170$<br>$-0.030 \pm 0.200$<br>$-0.150 \pm 0.260$<br>$-0.150 \pm 0.360$ | $0.023 \pm 0.072$<br>$-0.045 \pm 0.073$<br>$0.000 \pm 0.023$<br>$-0.005 \pm 0.019$ |
|          |                                              | Cs-137                                                                                                    | Fe-59                                                                                                     | I-131                                                                             | K-40                                                                                | Mn-54                                                                               | Nb-95                                                                              |
|          | 02/24/04<br>05/25/04<br>07/20/04<br>12/09/04 | $\begin{array}{c} -0.004 \pm 0.022 \\ -0.009 \pm 0.022 \\ 0.020 \pm 0.029 \\ 0.016 \pm 0.026 \end{array}$ | $0.012 \pm 0.040$<br>-0.049 ± 0.046<br>-0.028 ± 0.068<br>-0.036 ± 0.081                                   | $0.000 \pm 0.035$<br>$0.027 \pm 0.056$<br>$0.046 \pm 0.072$<br>$-0.150 \pm 0.350$ | $12.910 \pm 0.790$<br>$7.830 \pm 0.730$<br>$15.700 \pm 1.100$<br>$12.300 \pm 0.970$ | $0.017 \pm 0.019$<br>$0.014 \pm 0.018$<br>$0.020 \pm 0.030$<br>$0.015 \pm 0.025$    | $-0.010 \pm 0.020$ $0.022 \pm 0.038$ $-0.047 \pm 0.042$ $-0.009 \pm 0.059$         |
|          |                                              | Ru-103                                                                                                    | Ru-106                                                                                                    | Sb-125                                                                            | Th-228                                                                              | Zn-65                                                                               | Zr-95                                                                              |
|          | 02/24/04<br>05/25/04<br>07/20/04<br>12/09/04 | -0.004 ± 0.018<br>-0.009 ± 0.020<br>-0.017 ± 0.028<br>-0.003 ± 0.035                                      | $\begin{array}{c} -0.020 \pm 0.180 \\ -0.030 \pm 0.160 \\ 0.030 \pm 0.220 \\ 0.310 \pm 0.220 \end{array}$ | $0.033 \pm 0.048$ $-0.011 \pm 0.049$ $0.056 \pm 0.067$ $-0.011 \pm 0.060$         | $0.690 \pm 0.077$<br>$0.478 \pm 0.083$<br>$1.190 \pm 0.110$<br>$0.990 \pm 0.100$    | $0.087 \pm 0.088$<br>$0.050 \pm 0.090$<br>$0.050 \pm 0.140$<br>$0.010 \pm 0.130$    | $-0.051 \pm 0.075$ $-3.800 \pm 4.900$ $-7.300 \pm 3.500$ $-6.200 \pm 6.600$        |

## Table 15, Bottom Sediment (pCi/g dry)

| Location | Collection<br>Date                           |                                                                                                          |                                                                                                            | Isotope                                                                       |                                                                                     |                                                                                                          |                                                                                       |
|----------|----------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 33       |                                              | Ag-110m                                                                                                  | Be-7                                                                                                       | Co-58                                                                         | Co-60                                                                               | Cr-51                                                                                                    | Cs-134                                                                                |
|          | 05/05/04<br>10/27/04                         | $0.003 \pm 0.028$<br>-0.006 \pm 0.029                                                                    | $0.180 \pm 0.150$ $-0.070 \pm 0.200$                                                                       | $0.000 \pm 0.023$<br>$0.003 \pm 0.022$                                        | $0.012 \pm 0.023$<br>$0.001 \pm 0.028$                                              | $0.000 \pm 0.140$<br>-0.080 $\pm 0.220$                                                                  | $-0.003 \pm 0.017$<br>$-0.008 \pm 0.029$                                              |
|          |                                              | Cs-137                                                                                                   | Fe-59                                                                                                      | I-131                                                                         | K-40                                                                                | Mn-54                                                                                                    | Nb-95                                                                                 |
|          | 05/05/04<br>10/27/04                         | $0.002 \pm 0.020$<br>-0.007 \pm 0.022                                                                    | $0.009 \pm 0.055$<br>$0.044 \pm 0.060$                                                                     | $-0.019 \pm 0.028$<br>$0.037 \pm 0.051$                                       | $16.900 \pm 1.100$<br>$13.800 \pm 1.100$                                            | $-0.007 \pm 0.020$<br>$-0.003 \pm 0.024$                                                                 | $0.000 \pm 0.039$<br>-0.003 $\pm 0.024$                                               |
|          |                                              | Ru-103                                                                                                   | Ru-106                                                                                                     | Sb-125                                                                        | Th-228                                                                              | Zn-65                                                                                                    | Zr-95                                                                                 |
|          | 05/05/04<br>10/27/04                         | $0.003 \pm 0.018$<br>-0.005 \pm 0.023                                                                    | $-0.080 \pm 0.180$<br>$0.120 \pm 0.190$                                                                    | $-0.035 \pm 0.052$<br>$0.018 \pm 0.048$                                       | $0.207 \pm 0.081$<br>$0.204 \pm 0.097$                                              | $-0.019 \pm 0.062$<br>$-0.035 \pm 0.061$                                                                 | $-0.056 \pm 0.056$<br>$-0.048 \pm 0.056$                                              |
| 34       |                                              | Ag-110m                                                                                                  | Be-7                                                                                                       | Co-58                                                                         | Co-60                                                                               | Cr-51                                                                                                    | Cs-134                                                                                |
|          | 05/05/04<br>10/27/04                         | $0.002 \pm 0.021$<br>-0.015 \pm 0.034                                                                    | $0.060 \pm 0.140$<br>$0.170 \pm 0.210$                                                                     | $-0.009 \pm 0.016$<br>$0.003 \pm 0.022$                                       | $-0.001 \pm 0.016$<br>$0.036 \pm 0.026$                                             | $0.020 \pm 0.150$<br>$0.020 \pm 0.200$                                                                   | $0.008 \pm 0.061$<br>$0.012 \pm 0.023$                                                |
|          |                                              | Cs-137                                                                                                   | Fe-59                                                                                                      | I-131                                                                         | K-40                                                                                | Mn-54                                                                                                    | Nb-95                                                                                 |
|          | 05/05/04<br>10/27/04                         | $0.009 \pm 0.017$<br>-0.004 ± 0.023                                                                      | $-0.005 \pm 0.038$<br>$-0.027 \pm 0.063$                                                                   | $0.012 \pm 0.026$<br>$0.000 \pm 0.055$                                        | $16.350 \pm 0.850$ $13.200 \pm 1.200$                                               | $-0.006 \pm 0.016$<br>$0.015 \pm 0.023$                                                                  | $-0.003 \pm 0.018$<br>$-0.019 \pm 0.026$                                              |
|          |                                              | Ru-103                                                                                                   | Ru-106                                                                                                     | Sb-125                                                                        | Th-228                                                                              | Zn-65                                                                                                    | Zr-95                                                                                 |
|          | 05/05/04<br>10/27/04                         | $0.003 \pm 0.018$<br>$0.020 \pm 0.021$                                                                   | $-0.100 \pm 0.150$<br>$-0.100 \pm 0.190$                                                                   | $-0.027 \pm 0.041$<br>$-0.028 \pm 0.053$                                      | $0.205 \pm 0.065$<br>$0.110 \pm 0.110$                                              | $-0.068 \pm 0.050$<br>$-0.070 \pm 0.066$                                                                 | $-0.041 \pm 0.035$<br>$-0.049 \pm 0.058$                                              |
| 35-X     |                                              | Ag-110m                                                                                                  | Be-7                                                                                                       | Co-58                                                                         | Co-60                                                                               | Cr-51                                                                                                    | Cs-134                                                                                |
|          | 02/24/04<br>05/25/04<br>07/20/04<br>12/09/04 | -0.008 ± 0.029<br>-0.005 ± 0.030<br>0.014 ± 0.039<br>0.034 ± 0.041                                       | $0.130 \pm 0.190$<br>$0.100 \pm 0.240$<br>$0.000 \pm 0.240$<br>$0.090 \pm 0.310$                           | $0.000 \pm 0.024$<br>-0.019 \pm 0.021<br>-0.020 \pm 0.025<br>-0.031 \pm 0.033 | $0.000 \pm 0.026$<br>$0.003 \pm 0.026$<br>$0.022 \pm 0.032$<br>$0.011 \pm 0.029$    | $-0.090 \pm 0.180$<br>$-0.280 \pm 0.280$<br>$0.170 \pm 0.300$<br>$0.180 \pm 0.450$                       | $0.001 \pm 0.020$<br>$0.019 \pm 0.021$<br>$0.014 \pm 0.025$<br>$-0.003 \pm 0.025$     |
|          |                                              | Cs-137                                                                                                   | Fe-59                                                                                                      | I-131                                                                         | K-40                                                                                | Mn-54                                                                                                    | Nb-95                                                                                 |
|          | 02/24/04<br>05/25/04<br>07/20/04<br>12/09/04 | $\begin{array}{c} 0.040 \pm 0.032 \\ 0.039 \pm 0.028 \\ 0.037 \pm 0.035 \\ 0.006 \pm 0.031 \end{array}$  | $-0.044 \pm 0.055$ $0.017 \pm 0.054$ $0.019 \pm 0.070$ $0.015 \pm 0.088$                                   | 0.032 ± 0.038<br>0.040 ± 0.068<br>-0.064 ± 0.095<br>0.100 ± 0.420             | $14.300 \pm 1.000$<br>$9.540 \pm 0.950$<br>$14.100 \pm 1.100$<br>$13.600 \pm 1.100$ | $\begin{array}{c} 0.013 \pm 0.026 \\ 0.003 \pm 0.024 \\ 0.022 \pm 0.027 \\ -0.004 \pm 0.026 \end{array}$ | $-0.015 \pm 0.031$<br>$-0.005 \pm 0.030$<br>$-0.016 \pm 0.037$<br>$-0.029 \pm 0.051$  |
|          |                                              | Ru-103                                                                                                   | Ru-106                                                                                                     | Sb-125                                                                        | Th-228                                                                              | Zn-65                                                                                                    | Zr-95                                                                                 |
|          | 02/24/04<br>05/25/04<br>07/20/04<br>12/09/04 | $\begin{array}{c} 0.012 \pm 0.021 \\ -0.006 \pm 0.028 \\ 0.026 \pm 0.032 \\ 0.033 \pm 0.039 \end{array}$ | $\begin{array}{c} -0.050 \pm 0.190 \\ -0.070 \pm 0.240 \\ -0.040 \pm 0.270 \\ 0.080 \pm 0.250 \end{array}$ | -0.002 ± 0.062<br>0.000 ± 0.064<br>0.036 ± 0.067<br>-0.003 ± 0.069            | $0.790 \pm 0.092$<br>$0.500 \pm 0.100$<br>$0.870 \pm 0.120$<br>$0.850 \pm 0.110$    | $0.036 \pm 0.060$<br>$0.010 \pm 0.120$<br>$0.090 \pm 0.140$<br>$-0.020 \pm 0.140$                        | $-4.700 \pm 4.300$<br>$-0.084 \pm 0.088$<br>$-0.130 \pm 0.100$<br>$-10.300 \pm 8.200$ |

Table 15, Bottom Sediment (pCi/g dry)

Page 3 of 4

| Location | Collection<br>Date                           |                                                                                                           |                                                                                                            | Isotope                                                                              |                                                                                                             |                                                                                    |                                                                                                            |
|----------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 36-X     |                                              | Ag-110m                                                                                                   | Be-7                                                                                                       | Co-58                                                                                | Co-60                                                                                                       | Cr-51                                                                              | Cs-134                                                                                                     |
|          | 05/04/04                                     | $-0.026 \pm 0.024$                                                                                        | $0.140 \pm 0.160$                                                                                          | $-0.007 \pm 0.020$                                                                   | $-0.005 \pm 0.019$                                                                                          | $0.240 \pm 0.170$                                                                  | $0.009 \pm 0.017$                                                                                          |
|          |                                              | Cs-137                                                                                                    | Fe-59                                                                                                      | I-131                                                                                | K-40                                                                                                        | Mn-54                                                                              | Nb-95                                                                                                      |
|          | 05/04/04                                     | $0.004 \pm 0.019$                                                                                         | $-0.024 \pm 0.048$                                                                                         | $0.005 \pm 0.032$                                                                    | $16.400 \pm 0.920$                                                                                          | $0.003 \pm 0.018$                                                                  | $-0.023 \pm 0.022$                                                                                         |
|          |                                              | Ru-103                                                                                                    | Ru-106                                                                                                     | Sb-125                                                                               | Th-228                                                                                                      | Zn-65                                                                              | Zr-95                                                                                                      |
|          | 05/04/04                                     | $0.006 \pm 0.018$                                                                                         | $-0.100 \pm 0.180$                                                                                         | $-0.032 \pm 0.046$                                                                   | $0.311 \pm 0.078$                                                                                           | -0.034 ± 0.094                                                                     | $-0.009 \pm 0.045$                                                                                         |
| 37-C     |                                              | Ag-110m                                                                                                   | Be-7                                                                                                       | Co-58                                                                                | Co-60                                                                                                       | Cr-51                                                                              | Cs-134                                                                                                     |
|          | 05/04/04<br>11/09/04                         | $0.010 \pm 0.036$<br>-0.015 \pm 0.031                                                                     | $0.400 \pm 0.320$<br>$0.040 \pm 0.170$                                                                     | $0.008 \pm 0.025$<br>$0.010 \pm 0.023$                                               | $-0.008 \pm 0.031$<br>$0.015 \pm 0.025$                                                                     | $-0.360 \pm 0.260$<br>$-0.200 \pm 0.210$                                           | $0.012 \pm 0.028$<br>$0.006 \pm 0.020$                                                                     |
|          |                                              | Cs-137                                                                                                    | Fe-59                                                                                                      | I-131                                                                                | K-40                                                                                                        | Mn-54                                                                              | Nb-95                                                                                                      |
|          | 05/04/04<br>11/09/04                         | $0.003 \pm 0.032$<br>$0.002 \pm 0.020$                                                                    | $-0.017 \pm 0.067$<br>$0.033 \pm 0.060$                                                                    | $-0.005 \pm 0.051$<br>$-0.008 \pm 0.056$                                             | $16.300 \pm 1.300$<br>$14.800 \pm 1.000$                                                                    | $0.011 \pm 0.035$<br>$0.000 \pm 0.022$                                             | $0.003 \pm 0.031$<br>$0.007 \pm 0.026$                                                                     |
|          |                                              | Ru-103                                                                                                    | Ru-106                                                                                                     | Sb-125                                                                               | Th-228                                                                                                      | Zn-65                                                                              | <b>Zr-9</b> 5                                                                                              |
|          | 05/04/04<br>11/09/04                         | $0.003 \pm 0.028$<br>-0.003 \pm 0.025                                                                     | $-0.290 \pm 0.260$<br>$-0.060 \pm 0.190$                                                                   | $0.030 \pm 0.069 \\ 0.003 \pm 0.053$                                                 | $0.690 \pm 0.130$<br>$0.263 \pm 0.092$                                                                      | $-0.066 \pm 0.073$<br>$0.040 \pm 0.110$                                            | $-0.050 \pm 0.100$ $0.002 \pm 0.052$                                                                       |
| 39-X     |                                              | Ag-110m                                                                                                   | Be-7                                                                                                       | Co-58                                                                                | Co-60                                                                                                       | Cr-51                                                                              | Cs-134                                                                                                     |
|          | 02/24/04<br>05/25/04<br>07/20/04<br>12/09/04 | $\begin{array}{c} -0.005 \pm 0.033 \\ -0.001 \pm 0.037 \\ 0.006 \pm 0.033 \\ 0.036 \pm 0.051 \end{array}$ | $0.150 \pm 0.200$<br>$0.050 \pm 0.260$<br>$0.080 \pm 0.200$<br>$0.310 \pm 0.380$                           | $-0.019 \pm 0.023$<br>$-0.002 \pm 0.031$<br>$-0.011 \pm 0.024$<br>$-0.022 \pm 0.039$ | $ \begin{array}{l} -0.001 \pm 0.028 \\ -0.002 \pm 0.033 \\ 0.094 \pm 0.028 \\ 0.083 \pm 0.037 \end{array} $ | $0.150 \pm 0.230$<br>-0.030 \pm 0.260<br>$0.110 \pm 0.250$<br>-0.210 \pm 0.550     | $\begin{array}{c} -0.003 \pm 0.023 \\ -0.020 \pm 0.023 \\ 0.002 \pm 0.023 \\ -0.016 \pm 0.027 \end{array}$ |
|          |                                              | Cs-137                                                                                                    | Fe-59                                                                                                      | I-131                                                                                | K-40                                                                                                        | Mn-54                                                                              | Nb-95                                                                                                      |
|          | 02/24/04<br>05/25/04<br>07/20/04<br>12/09/04 | $0.028 \pm 0.029$<br>$0.026 \pm 0.032$<br>$0.106 \pm 0.036$<br>$0.096 \pm 0.053$                          | $\begin{array}{c} -0.051 \pm 0.056 \\ 0.006 \pm 0.075 \\ -0.014 \pm 0.062 \\ -0.030 \pm 0.110 \end{array}$ | $0.012 \pm 0.045$<br>$0.012 \pm 0.080$<br>$0.002 \pm 0.068$<br>$-0.580 \pm 0.510$    | $13.700 \pm 0.980$<br>$10.400 \pm 1.200$<br>$16.440 \pm 0.990$<br>$17.000 \pm 1.400$                        | $0.010 \pm 0.023$<br>$0.020 \pm 0.034$<br>$-0.001 \pm 0.026$<br>$-0.035 \pm 0.037$ | $-0.011 \pm 0.030$ $-0.026 \pm 0.046$ $-0.035 \pm 0.034$ $-0.015 \pm 0.059$                                |
|          |                                              | Ru-103                                                                                                    | Ru-106                                                                                                     | Sb-125                                                                               | Th-228                                                                                                      | Zn-65                                                                              | Zr-95                                                                                                      |
|          | 02/24/04<br>05/25/04<br>07/20/04<br>12/09/04 | -0.006 ± 0.024<br>-0.009 ± 0.028<br>0.006 ± 0.026<br>0.005 ± 0.048                                        | $0.140 \pm 0.240$<br>$0.050 \pm 0.220$<br>$-0.010 \pm 0.210$<br>$0.020 \pm 0.300$                          | $-0.020 \pm 0.063$ $-0.004 \pm 0.071$ $-0.015 \pm 0.062$ $-0.025 \pm 0.084$          | $0.980 \pm 0.110$<br>$0.810 \pm 0.150$<br>$0.694 \pm 0.089$<br>$0.580 \pm 0.150$                            | $0.130 \pm 0.110$ $-0.027 \pm 0.068$ $0.030 \pm 0.120$ $-0.050 \pm 0.160$          | $-0.035 \pm 0.093$ $-0.060 \pm 0.110$ $-5.100 \pm 5.100$ $-0.120 \pm 0.140$                                |
| 67-X     |                                              | Ag-110m                                                                                                   | Be-7                                                                                                       | Co-58                                                                                | Co-60                                                                                                       | Cr-51                                                                              | Cs-134                                                                                                     |
|          | 05/05/04<br>10/27/04                         | 0.008 ± 0.047<br>0.025 ± 0.049                                                                            | $0.160 \pm 0.320$<br>$0.220 \pm 0.300$                                                                     | $0.024 \pm 0.037$<br>$0.032 \pm 0.032$                                               | $-0.034 \pm 0.041$<br>$-0.035 \pm 0.040$                                                                    | $0.150 \pm 0.340$<br>$0.070 \pm 0.360$                                             | $0.007 \pm 0.051$<br>-0.016 $\pm 0.045$                                                                    |

## Table 15, Bottom Sediment (pCi/g dry)

Page 4 of 4

| Location | Collection<br>Date |                   |                    | Isotope            |                    |                    |                    |
|----------|--------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 67-X     |                    | Cs-137            | Fe-59              | I-131              | K-40               | Mn-54              | Nb-95              |
|          | 05/05/04           | $0.195 \pm 0.065$ | $0.000 \pm 0.085$  | $0.036 \pm 0.065$  | $16.900 \pm 1.700$ | $0.042 \pm 0.039$  | $0.004 \pm 0.043$  |
|          | 10/27/04           | $0.098 \pm 0.042$ | $-0.095 \pm 0.081$ | $0.029 \pm 0.080$  | $12.500 \pm 1.500$ | $0.020 \pm 0.033$  | $-0.016 \pm 0.039$ |
|          |                    | Ru-103            | Ru-106             | Sb-125             | Th-228             | Zn-65              | Zr-95              |
|          | 05/05/04           | $0.013 \pm 0.034$ | $-0.290 \pm 0.390$ | $0.052 \pm 0.091$  | $1.120 \pm 0.180$  | $-0.125 \pm 0.088$ | $-0.110 \pm 0.170$ |
|          | 10/27/04           | $0.008 \pm 0.036$ | $-0.030 \pm 0.320$ | $-0.067 \pm 0.084$ | $0.600 \pm 0.170$  | $0.007 \pm 0.097$  | $-0.090 \pm 0.100$ |

## Table 16, Aquatic Flora - Fucus (pCi/g wet)

| Location | Collection<br>Date                           |                                                                                                            |                                                                                                           | Isotope                                                                                                     | ···                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                        |                                                                                                            |
|----------|----------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 29       |                                              | Ag-110m                                                                                                    | Be-7                                                                                                      | Co-58                                                                                                       | Co-60                                                                             | Cr-51                                                                                                        | Cs-134                                                                                                     |
|          | 02/24/04<br>05/25/04<br>08/24/04<br>11/10/04 | $0.002 \pm 0.009$<br>$0.002 \pm 0.011$<br>$0.011 \pm 0.016$<br>$-0.011 \pm 0.024$                          | $\begin{array}{c} -0.086 \pm 0.080 \\ 0.117 \pm 0.093 \\ -0.083 \pm 0.087 \\ 0.060 \pm 0.150 \end{array}$ | $0.007 \pm 0.007$<br>-0.002 \pm 0.007<br>$0.000 \pm 0.012$<br>$0.008 \pm 0.017$                             | $0.002 \pm 0.007$<br>$0.002 \pm 0.007$<br>$0.006 \pm 0.017$<br>$0.001 \pm 0.018$  | $ \begin{array}{l} -0.017 \pm 0.055 \\ -0.067 \pm 0.069 \\ 0.030 \pm 0.078 \\ -0.070 \pm 0.170 \end{array} $ | -0.004 ± 0.007<br>0.005 ± 0.009<br>-0.005 ± 0.012<br>-0.001 ± 0.018                                        |
|          |                                              | Cs-137                                                                                                     | Fe-59                                                                                                     | I-131                                                                                                       | K-40                                                                              | Mn-54                                                                                                        | Nb-95                                                                                                      |
|          | 02/24/04<br>05/25/04<br>08/24/04<br>11/10/04 | $0.005 \pm 0.006$<br>$0.000 \pm 0.007$<br>$0.012 \pm 0.010$<br>$-0.002 \pm 0.019$                          | $\begin{array}{c} -0.009 \pm 0.026 \\ 0.010 \pm 0.024 \\ 0.004 \pm 0.049 \\ -0.019 \pm 0.078 \end{array}$ | $\begin{array}{c} -0.014 \pm 0.014 \\ -0.001 \pm 0.017 \\ -0.022 \pm 0.038 \\ -0.022 \pm 0.059 \end{array}$ | $4.830 \pm 0.350$<br>$5.110 \pm 0.400$<br>$8.060 \pm 0.660$<br>$8.090 \pm 0.970$  | $0.004 \pm 0.007$<br>-0.003 ± 0.007<br>0.004 ± 0.011<br>-0.001 ± 0.015                                       | $\begin{array}{c} -0.002 \pm 0.007 \\ 0.005 \pm 0.011 \\ -0.021 \pm 0.016 \\ -0.003 \pm 0.022 \end{array}$ |
|          |                                              | Ru-103                                                                                                     | Ru-106                                                                                                    | Sb-125                                                                                                      | Th-228                                                                            | Zn-65                                                                                                        | Zr-95                                                                                                      |
|          | 08/24/04                                     | -0.003 ± 0.006<br>-0.004 ± 0.007<br>0.001 ± 0.011<br>-0.007 ± 0.017                                        | $-0.020 \pm 0.055$ $0.033 \pm 0.060$ $0.007 \pm 0.086$ $0.030 \pm 0.140$                                  | $0.002 \pm 0.013$ $-0.002 \pm 0.015$ $0.010 \pm 0.020$ $-0.035 \pm 0.028$                                   | $0.044 \pm 0.034$<br>$0.030 \pm 0.032$<br>$0.051 \pm 0.045$<br>$-0.013 \pm 0.070$ | $0.012 \pm 0.017$ $0.007 \pm 0.021$ $-0.011 \pm 0.029$ $-0.020 \pm 0.048$                                    | $-0.003 \pm 0.012$ $-0.005 \pm 0.013$ $0.000 \pm 0.023$ $-0.022 \pm 0.034$                                 |
| 32-X     |                                              | Ag-110m                                                                                                    | Be-7                                                                                                      | Co-58                                                                                                       | Co-60                                                                             | Cr-51                                                                                                        | Cs-134                                                                                                     |
|          | 02/24/04<br>05/25/04<br>08/24/04<br>11/10/04 | $0.001 \pm 0.010$<br>$-0.003 \pm 0.011$<br>$-0.008 \pm 0.017$<br>$0.009 \pm 0.028$                         | $0.026 \pm 0.051$<br>$0.027 \pm 0.070$<br>$0.010 \pm 0.110$<br>$0.100 \pm 0.130$                          | $0.004 \pm 0.007$<br>-0.005 \pm 0.008<br>-0.002 \pm 0.011<br>0.001 \pm 0.017                                | $0.000 \pm 0.007$<br>$0.003 \pm 0.009$<br>$0.003 \pm 0.020$<br>$-0.005 \pm 0.020$ | $-0.005 \pm 0.059$<br>$-0.040 \pm 0.069$<br>$0.010 \pm 0.110$<br>$0.040 \pm 0.160$                           | $0.006 \pm 0.007$<br>$0.006 \pm 0.008$<br>$0.010 \pm 0.013$<br>$-0.007 \pm 0.016$                          |
|          |                                              | Cs-137                                                                                                     | Fe-59                                                                                                     | I-131                                                                                                       | K-40                                                                              | Mn-54                                                                                                        | Nb-95                                                                                                      |
|          |                                              | $\begin{array}{c} -0.003 \pm 0.006 \\ 0.006 \pm 0.008 \\ -0.006 \pm 0.013 \\ -0.001 \pm 0.018 \end{array}$ | $0.004 \pm 0.023$<br>-0.007 \pm 0.025<br>$0.020 \pm 0.041$<br>$0.001 \pm 0.082$                           | $0.016 \pm 0.016$<br>-0.005 \pm 0.019<br>$0.016 \pm 0.049$<br>-0.005 \pm 0.066                              | $5.510 \pm 0.350$<br>$5.830 \pm 0.400$<br>$8.780 \pm 0.700$<br>$9.010 \pm 0.920$  | $0.003 \pm 0.007$<br>-0.004 ± 0.007<br>0.007 ± 0.012<br>-0.001 ± 0.014                                       | $\begin{array}{c} -0.002 \pm 0.007 \\ -0.002 \pm 0.007 \\ 0.011 \pm 0.015 \\ -0.022 \pm 0.018 \end{array}$ |
|          |                                              | Ru-103                                                                                                     | Ru-106                                                                                                    | Sb-125                                                                                                      | Th-228                                                                            | Zn-65                                                                                                        | Zr-95                                                                                                      |
|          | 05/25/04<br>08/24/04                         | -0.001 ± 0.007<br>0.007 ± 0.007<br>-0.008 ± 0.014<br>0.010 ± 0.014                                         | $-0.026 \pm 0.058$ $0.008 \pm 0.062$ $0.020 \pm 0.100$ $-0.060 \pm 0.120$                                 | $0.009 \pm 0.014$<br>$0.006 \pm 0.018$<br>$0.005 \pm 0.026$<br>$0.020 \pm 0.037$                            | $0.034 \pm 0.032$<br>$0.032 \pm 0.029$<br>$0.070 \pm 0.054$<br>$0.063 \pm 0.073$  | $0.007 \pm 0.016$<br>$-0.016 \pm 0.021$<br>$0.012 \pm 0.034$<br>$0.001 \pm 0.089$                            | $\begin{array}{c} -0.003 \pm 0.012 \\ 0.001 \pm 0.012 \\ 0.009 \pm 0.020 \\ 0.008 \pm 0.030 \end{array}$   |
| 33-X     |                                              | Ag-110m                                                                                                    | Be-7                                                                                                      | Co-58                                                                                                       | Co-60                                                                             | Cr-51                                                                                                        | Cs-134                                                                                                     |
|          | 05/05/04<br>05/25/04<br>10/27/04             | $0.000 \pm 0.006$<br>$0.003 \pm 0.012$<br>$0.007 \pm 0.015$                                                | $0.138 \pm 0.054$<br>$0.057 \pm 0.086$<br>$0.083 \pm 0.074$                                               | $-0.001 \pm 0.005$<br>$-0.002 \pm 0.009$<br>$0.003 \pm 0.010$                                               | $-0.001 \pm 0.005$<br>$0.007 \pm 0.011$<br>$0.009 \pm 0.010$                      | $-0.007 \pm 0.038$<br>$-0.014 \pm 0.066$<br>$0.014 \pm 0.084$                                                | $0.000 \pm 0.005$<br>-0.004 \pm 0.010<br>$0.001 \pm 0.010$                                                 |
|          |                                              | Cs-137                                                                                                     | Fe-59                                                                                                     | I-131                                                                                                       | K-40                                                                              | Mn-54                                                                                                        | Nb-95                                                                                                      |
|          | 05/25/04                                     | $0.002 \pm 0.004$<br>$0.003 \pm 0.009$<br>$-0.003 \pm 0.010$                                               | $0.003 \pm 0.014$<br>$0.019 \pm 0.029$<br>$0.003 \pm 0.036$                                               | $0.008 \pm 0.007$<br>$0.019 \pm 0.020$<br>$0.008 \pm 0.020$                                                 | $5.360 \pm 0.220$<br>$5.210 \pm 0.530$<br>$7.240 \pm 0.570$                       | $0.000 \pm 0.005$<br>$0.004 \pm 0.010$<br>$0.009 \pm 0.010$                                                  | $-0.002 \pm 0.005$<br>$0.003 \pm 0.010$<br>$-0.008 \pm 0.010$                                              |

# Table 16, Aquatic Flora - Fucus (pCi/g wet)

| Location | Collection<br>Date                           |                                                                                             |                                                                                                            | Isotope                                                                           |                                                                                  |                                                                                 |                                                                                            |
|----------|----------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 33-X     |                                              | Ru-103                                                                                      | Ru-106                                                                                                     | Sb-125                                                                            | Th-228                                                                           | Zn-65                                                                           | Zr-95                                                                                      |
|          | 05/05/04<br>05/25/04<br>10/27/04             | 0.001 ± 0.005<br>0.000 ± 0.007<br>-0.005 ± 0.009                                            | -0.010 ± 0.044<br>-0.027 ± 0.078<br>-0.053 ± 0.084                                                         | $0.001 \pm 0.011$ $-0.002 \pm 0.019$ $-0.009 \pm 0.023$                           | $0.034 \pm 0.024$<br>$0.041 \pm 0.039$<br>$0.045 \pm 0.049$                      | $-0.011 \pm 0.013$ $-0.018 \pm 0.027$ $0.002 \pm 0.027$                         | $0.002 \pm 0.009$<br>-0.019 ± 0.021<br>$0.022 \pm 0.016$                                   |
| 35-X     |                                              | Ag-110m                                                                                     | Be-7                                                                                                       | Co-58                                                                             | Co-60                                                                            | Cr-51                                                                           | Cs-134                                                                                     |
|          | 02/24/04<br>05/25/04<br>08/24/04<br>11/10/04 | $0.004 \pm 0.008$<br>$-0.014 \pm 0.014$<br>$0.009 \pm 0.013$<br>$0.002 \pm 0.017$<br>Cs-137 | $0.007 \pm 0.046$<br>$0.109 \pm 0.089$<br>$0.057 \pm 0.095$<br>$0.060 \pm 0.099$<br>Fe-59                  | $0.001 \pm 0.006$<br>$0.008 \pm 0.011$<br>$0.004 \pm 0.012$<br>$-0.003 \pm 0.013$ | $0.003 \pm 0.007$ $-0.007 \pm 0.010$ $0.002 \pm 0.018$ $-0.003 \pm 0.014$ K-40   | $-0.003 \pm 0.035$ $0.032 \pm 0.080$ $-0.030 \pm 0.100$ $0.040 \pm 0.130$ Mn-54 | $-0.003 \pm 0.006$<br>$0.005 \pm 0.010$<br>$0.001 \pm 0.010$<br>$0.011 \pm 0.013$<br>Nb-95 |
|          | 02/24/04<br>05/25/04<br>08/24/04<br>11/10/04 |                                                                                             | $0.009 \pm 0.021$<br>$0.023 \pm 0.033$<br>$-0.029 \pm 0.045$<br>$0.026 \pm 0.051$                          | $0.014 \pm 0.012$ $0.014 \pm 0.022$ $0.006 \pm 0.043$ $0.007 \pm 0.043$           | $4.870 \pm 0.320$<br>$5.930 \pm 0.570$<br>$6.610 \pm 0.630$<br>$7.530 \pm 0.730$ | $0.006 \pm 0.005$ $-0.001 \pm 0.010$ $0.011 \pm 0.011$ $0.001 \pm 0.011$        | 0.000 ± 0.007<br>0.005 ± 0.013<br>-0.013 ± 0.015<br>-0.005 ± 0.018                         |
|          |                                              | Ru-103                                                                                      | Ru-106                                                                                                     | Sb-125                                                                            | Th-228                                                                           | Zn-65                                                                           | Zr-95                                                                                      |
|          |                                              | -0.002 ± 0.005<br>-0.005 ± 0.009<br>0.001 ± 0.011<br>-0.001 ± 0.012                         | $\begin{array}{c} -0.008 \pm 0.040 \\ 0.011 \pm 0.088 \\ -0.030 \pm 0.110 \\ -0.040 \pm 0.110 \end{array}$ | $-0.006 \pm 0.011$ $-0.007 \pm 0.021$ $0.005 \pm 0.023$ $-0.013 \pm 0.028$        | $0.028 \pm 0.024$<br>$0.037 \pm 0.051$<br>$0.079 \pm 0.062$<br>$0.085 \pm 0.058$ | $-0.009 \pm 0.013$ $-0.007 \pm 0.030$ $0.023 \pm 0.029$ $0.021 \pm 0.038$       | $0.004 \pm 0.010$<br>$0.005 \pm 0.018$<br>$0.026 \pm 0.022$<br>$0.009 \pm 0.026$           |
| 36-X     |                                              | Ag-110m                                                                                     | Be-7                                                                                                       | Co-58                                                                             | Co-60                                                                            | Cr-51                                                                           | Cs-134                                                                                     |
|          | 05/05/04<br>05/25/04<br>11/09/04             | $0.004 \pm 0.010$<br>$0.008 \pm 0.007$<br>$-0.006 \pm 0.024$                                | $0.240 \pm 0.091$<br>$0.069 \pm 0.057$<br>$0.160 \pm 0.160$                                                | $0.005 \pm 0.007$<br>$0.003 \pm 0.005$<br>$0.006 \pm 0.016$                       | $-0.001 \pm 0.009$<br>$0.004 \pm 0.005$<br>$-0.029 \pm 0.029$                    | $0.038 \pm 0.072$<br>-0.043 ± 0.048<br>$0.060 \pm 0.190$                        | $0.010 \pm 0.009$<br>$0.003 \pm 0.006$<br>$-0.009 \pm 0.022$                               |
|          |                                              | Cs-137                                                                                      | Fe-59                                                                                                      | I-131                                                                             | K-40                                                                             | Mn-54                                                                           | Nb-95                                                                                      |
|          | 05/25/04                                     | $-0.007 \pm 0.008$<br>$-0.001 \pm 0.005$<br>$-0.006 \pm 0.016$                              | $0.006 \pm 0.029$<br>$0.003 \pm 0.018$<br>$0.009 \pm 0.080$                                                | $0.021 \pm 0.007$<br>$0.012 \pm 0.013$<br>$-0.019 \pm 0.076$                      | $6.320 \pm 0.450$<br>$5.070 \pm 0.270$<br>$8.600 \pm 1.000$                      | $0.003 \pm 0.008$<br>$0.005 \pm 0.005$<br>$0.002 \pm 0.014$                     | -0.001 ± 0.009<br>0.004 ± 0.006<br>0.026 ± 0.030                                           |
|          |                                              | Ru-103                                                                                      | Ru-106                                                                                                     | Sb-125                                                                            | Th-228                                                                           | Zn-65                                                                           | Zr-95                                                                                      |
|          | 05/05/04<br>05/25/04<br>11/09/04             | $0.000 \pm 0.005$                                                                           | $-0.046 \pm 0.075$<br>$0.019 \pm 0.044$<br>$0.010 \pm 0.140$                                               | $-0.006 \pm 0.020$<br>$0.000 \pm 0.012$<br>$-0.030 \pm 0.036$                     | $0.061 \pm 0.045$<br>$0.044 \pm 0.028$<br>$0.014 \pm 0.067$                      | $-0.004 \pm 0.021$<br>$0.006 \pm 0.014$<br>$-0.026 \pm 0.060$                   | $-0.003 \pm 0.013$<br>$0.010 \pm 0.008$<br>$-0.004 \pm 0.038$                              |

# Table 17-A, Fish - Flounder (pCi/g wet)

| Location | Collection<br>Date |                    | <del></del>        | Isotope            |                    |                    |                    |
|----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 32       |                    | Ag-110m            | Be-7               | Co-58              | Co-60              | Cr-51              | Cs-134             |
|          | 03/31/04           | I                  |                    |                    |                    |                    |                    |
|          |                    | $-0.004 \pm 0.013$ | $-0.026 \pm 0.077$ | $-0.003 \pm 0.009$ | $0.003 \pm 0.010$  | $0.070 \pm 0.100$  | $0.000 \pm 0.009$  |
|          | 08/09/04           | $-0.014 \pm 0.037$ | $0.150 \pm 0.250$  | $-0.006 \pm 0.026$ | $0.000 \pm 0.033$  | $0.060 \pm 0.320$  | $-0.006 \pm 0.025$ |
|          | 10/19/04           | $-0.015 \pm 0.049$ | $-0.090 \pm 0.300$ | $0.003 \pm 0.037$  | $-0.007 \pm 0.041$ | $-0.210 \pm 0.340$ | $0.034 \pm 0.034$  |
|          |                    | Cs-137             | Fe-59              | I-131              | K-40               | Mn-54              | Nb-95              |
|          | 03/31/04           |                    |                    |                    |                    |                    |                    |
|          | 06/15/04           | $0.002 \pm 0.009$  | $0.004 \pm 0.027$  | $0.021 \pm 0.043$  | $2.930 \pm 0.280$  | $-0.002 \pm 0.008$ | $0.009 \pm 0.012$  |
|          | 08/09/04           | $0.011 \pm 0.029$  | $-0.040 \pm 0.110$ | $0.006 \pm 0.081$  | $3.560 \pm 0.870$  | $-0.012 \pm 0.029$ | $-0.021 \pm 0.037$ |
|          | 10/19/04           | $0.007 \pm 0.038$  | $-0.040 \pm 0.110$ | $0.010 \pm 0.110$  | $2.890 \pm 0.830$  | $-0.003 \pm 0.036$ | $0.065 \pm 0.045$  |
|          |                    | Ru-103             | Ru-106             | Sb-125             | Th-228             | Zn-65              | Zr-95              |
|          | 03/31/04           |                    |                    |                    |                    |                    |                    |
|          |                    | $-0.001 \pm 0.011$ | $-0.018 \pm 0.078$ | $0.025 \pm 0.020$  | $0.013 \pm 0.038$  | $0.013 \pm 0.020$  | $0.008 \pm 0.017$  |
|          | 08/09/04           | $0.031 \pm 0.028$  | $-0.100 \pm 0.250$ | $-0.018 \pm 0.074$ | $-0.030 \pm 0.091$ | $0.070 \pm 0.150$  | $0.012 \pm 0.045$  |
|          | 10/19/04           | $-0.037 \pm 0.031$ | $-0.020 \pm 0.310$ | $0.014 \pm 0.091$  | $0.060 \pm 0.130$  | $-0.031 \pm 0.091$ | $0.064 \pm 0.066$  |
| 35       |                    | Ag-110m            | Be-7               | Co-58              | Co-60              | Cr-51              | Cs-134             |
| 55       |                    | -                  | BC-1               | C0-50              | C0 00              | CI-DI              | C3 15 (            |
|          | 03/31/04           | I                  |                    |                    |                    |                    |                    |
|          | 04/21/04           | $0.024 \pm 0.028$  | $-0.110 \pm 0.210$ | $0.000 \pm 0.035$  | $-0.008 \pm 0.028$ | $0.230 \pm 0.240$  | $0.010 \pm 0.030$  |
|          | 08/09/04           | $-0.020 \pm 0.042$ | $0.180 \pm 0.270$  | $-0.007 \pm 0.024$ | $-0.010 \pm 0.041$ | $0.080 \pm 0.270$  | $-0.002 \pm 0.018$ |
|          | 11/15/04           | $0.000 \pm 0.010$  | $0.045 \pm 0.072$  | $0.000 \pm 0.008$  | $-0.007 \pm 0.008$ | $-0.002 \pm 0.096$ | $0.001 \pm 0.008$  |
|          |                    | Cs-137             | Fe-59              | I-131              | K-40               | Mn-54              | Nb-95              |
|          | 03/31/04           |                    |                    |                    |                    |                    |                    |
|          | 04/21/04           | $0.000 \pm 0.018$  | $0.031 \pm 0.089$  | $-0.027 \pm 0.084$ | $3.570 \pm 0.980$  | $-0.009 \pm 0.033$ | $-0.017 \pm 0.042$ |
|          | 08/09/04           | $0.002 \pm 0.030$  | $0.081 \pm 0.079$  | $0.020 \pm 0.090$  | $4.090 \pm 0.930$  | $0.000 \pm 0.023$  | $-0.007 \pm 0.031$ |
|          | 11/15/04           | $-0.002 \pm 0.007$ | $0.017 \pm 0.027$  | $0.043 \pm 0.049$  | $3.700 \pm 0.240$  | $-0.001 \pm 0.007$ | $0.007 \pm 0.012$  |
|          |                    | Ru-103             | Ru-106             | Sb-125             | Th-228             | Zn-65              | Zr-95              |
|          | 03/31/04           |                    |                    |                    |                    |                    |                    |
|          | 04/21/04           | $-0.002 \pm 0.030$ | $-0.210 \pm 0.160$ | $0.007 \pm 0.059$  | $-0.040 \pm 0.100$ | $-0.010 \pm 0.054$ | $-0.005 \pm 0.047$ |
|          | 08/09/04           | $0.015 \pm 0.031$  | $0.040 \pm 0.260$  | $0.019 \pm 0.063$  | $0.020 \pm 0.130$  | $0.000 \pm 0.065$  | $-0.002 \pm 0.039$ |
|          | 11/15/04           | $-0.016 \pm 0.010$ | $-0.008 \pm 0.072$ | $0.004 \pm 0.018$  | $-0.003 \pm 0.035$ | $-0.010 \pm 0.019$ | $-0.003 \pm 0.019$ |

# Table 17-B, Fish - Other (pCi/g wet)

| Location | Collection<br>Date                           | Sample Type                                                  |                                                                                                                                                |                                                                                                                                                                | Isotope                                                                                                                                                 |                                                                                                                                     | <u>.</u>                                                                                                                                       |
|----------|----------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 32       | 01/12/04<br>06/11/04<br>08/04/04<br>10/27/04 | SKATE<br>BLUEFISH<br>TAUTOG<br>STRIPED BASS                  | $Ag-110m \\ -0.006 \pm 0.025 \\ 0.001 \pm 0.012 \\ 0.002 \pm 0.021 \\ -0.005 \pm 0.042$                                                        | $\begin{array}{c} \textbf{Be-7} \\ 0.070 \pm 0.190 \\ 0.016 \pm 0.076 \\ -0.010 \pm 0.120 \\ 0.190 \pm 0.240 \end{array}$                                      | $\begin{array}{c} \textbf{Co-58} \\ \textbf{-0.003} \pm 0.023 \\ \textbf{-0.003} \pm 0.010 \\ 0.015 \pm 0.017 \\ \textbf{-0.023} \pm 0.026 \end{array}$ | $\begin{array}{c} \textbf{Co-60} \\ 0.008 \pm 0.020 \\ 0.004 \pm 0.011 \\ -0.004 \pm 0.022 \\ 0.008 \pm 0.028 \end{array}$          | $Cr-51$ $-0.040 \pm 0.230$ $-0.060 \pm 0.100$ $0.080 \pm 0.130$ $-0.100 \pm 0.270$                                                             |
|          | 01/12/04<br>06/11/04<br>08/04/04<br>10/27/04 | SKATE<br>BLUEFISH<br>TAUTOG<br>STRIPED BASS                  | $Cs-134 \\ 0.002 \pm 0.019 \\ -0.009 \pm 0.009 \\ -0.003 \pm 0.018 \\ 0.000 \pm 0.025$                                                         | $Cs-137 \\ -0.004 \pm 0.019 \\ 0.011 \pm 0.009 \\ 0.012 \pm 0.016 \\ 0.008 \pm 0.032$                                                                          | Fe-59<br>$-0.079 \pm 0.073$<br>$-0.015 \pm 0.035$<br>$-0.022 \pm 0.065$<br>$0.008 \pm 0.072$                                                            | $I-131$ $-0.040 \pm 0.180$ $0.017 \pm 0.056$ $-0.003 \pm 0.041$ $0.059 \pm 0.065$                                                   | $K-40$ $1.900 \pm 0.570$ $3.560 \pm 0.310$ $3.750 \pm 0.600$ $4.220 \pm 0.970$                                                                 |
|          | 01/12/04<br>06/11/04<br>08/04/04<br>10/27/04 | SKATE<br>BLUEFISH<br>TAUTOG<br>STRIPED BASS                  | $\begin{array}{c} \textbf{Mn-54} \\ 0.022 \pm 0.023 \\ -0.003 \pm 0.008 \\ -0.002 \pm 0.016 \\ 0.007 \pm 0.019 \end{array}$                    | $\begin{array}{c} \textbf{Nb-95} \\ 0.008 \pm 0.037 \\ 0.005 \pm 0.012 \\ -0.012 \pm 0.021 \\ 0.001 \pm 0.032 \end{array}$                                     | $Ru-103 \\ -0.010 \pm 0.027 \\ 0.004 \pm 0.010 \\ -0.004 \pm 0.018 \\ -0.006 \pm 0.033$                                                                 | $Ru-106 \\ 0.020 \pm 0.170 \\ 0.012 \pm 0.081 \\ -0.040 \pm 0.140 \\ -0.210 \pm 0.240$                                              | $\begin{array}{c} \textbf{Sb-125} \\ 0.040 \pm 0.055 \\ -0.019 \pm 0.020 \\ -0.032 \pm 0.040 \\ 0.007 \pm 0.077 \end{array}$                   |
|          | 01/12/04<br>06/11/04<br>08/04/04<br>10/27/04 | SKATE<br>BLUEFISH<br>TAUTOG<br>STRIPED BASS                  | $\begin{array}{c} \textbf{Th-228} \\ \textbf{-0.007} \pm 0.068 \\ \textbf{-0.014} \pm 0.037 \\ 0.051 \pm 0.061 \\ 0.000 \pm 0.110 \end{array}$ | $Zn-65$ $-0.052 \pm 0.051$ $0.003 \pm 0.019$ $-0.004 \pm 0.041$ $-0.050 \pm 0.082$                                                                             | $Zr-95$ $-0.025 \pm 0.051$ $0.001 \pm 0.016$ $0.004 \pm 0.035$ $0.019 \pm 0.052$                                                                        |                                                                                                                                     |                                                                                                                                                |
| 35       | 01/12/04<br>05/18/04<br>08/23/04<br>11/15/04 | SKATE<br>SKATE<br>TAUTOG<br>SKATE                            | Ag-110m<br>0.003 ± 0.029<br>0.002 ± 0.018<br>0.004 ± 0.032<br>-0.010 ± 0.010                                                                   | $Be-7$ $-0.020 \pm 0.160$ $-0.010 \pm 0.110$ $0.040 \pm 0.200$ $-0.012 \pm 0.070$                                                                              |                                                                                                                                                         | $Co-60$ $0.009 \pm 0.018$ $0.001 \pm 0.023$ $-0.008 \pm 0.028$ $0.002 \pm 0.007$                                                    | $Cr-51$ $0.000 \pm 0.270$ $-0.020 \pm 0.120$ $-0.040 \pm 0.240$ $0.057 \pm 0.096$                                                              |
|          | 01/12/04<br>05/18/04<br>08/23/04<br>11/15/04 | SKATE<br>SKATE<br>TAUTOG<br>SKATE                            |                                                                                                                                                |                                                                                                                                                                | Fe-59 $-0.008 \pm 0.082$ $0.023 \pm 0.040$ $-0.013 \pm 0.059$ $0.005 \pm 0.025$                                                                         | I-131<br>-0.120 $\pm$ 0.260 J<br>0.006 $\pm$ 0.024<br>-0.069 $\pm$ 0.080<br>0.012 $\pm$ 0.052                                       | $K-40$ $1.480 \pm 0.520$ $2.530 \pm 0.470$ $4.100 \pm 0.590$ $2.590 \pm 0.200$                                                                 |
|          | 01/12/04<br>05/18/04<br>08/23/04<br>11/15/04 | SKATE<br>SKATE<br>TAUTOG<br>SKATE                            | $\begin{array}{c} \textbf{Mn-54} \\ 0.005 \pm 0.018 \\ 0.011 \pm 0.016 \\ -0.001 \pm 0.025 \\ 0.000 \pm 0.007 \end{array}$                     | Nb-95<br>$0.002 \pm 0.035$<br>$0.001 \pm 0.018$<br>$0.038 \pm 0.045$<br>$-0.001 \pm 0.010$                                                                     | $Ru-103 \\ 0.000 \pm 0.029 \\ 0.005 \pm 0.014 \\ -0.013 \pm 0.030 \\ 0.006 \pm 0.009$                                                                   | $Ru-106$ $-0.090 \pm 0.190$ $0.060 \pm 0.120$ $-0.150 \pm 0.220$ $-0.006 \pm 0.066$                                                 | $\begin{array}{c} \textbf{Sb-125} \\ 0.000 \pm 0.055 \\ \textbf{-0.008} \pm 0.034 \\ \textbf{-0.024} \pm 0.056 \\ 0.005 \pm 0.020 \end{array}$ |
|          | 01/12/04<br>05/18/04<br>08/23/04<br>11/15/04 | SKATE<br>SKATE<br>TAUTOG<br>SKATE                            | $Th-228  -0.014 \pm 0.074  0.027 \pm 0.053  -0.021 \pm 0.088  0.012 \pm 0.032$                                                                 | $Zn-65$ $-0.043 \pm 0.050$ $-0.021 \pm 0.038$ $-0.010 \pm 0.100$ $0.038 \pm 0.029$                                                                             | $Zr-95$ $-0.027 \pm 0.041$ $-0.003 \pm 0.029$ $0.043 \pm 0.042$ $0.006 \pm 0.014$                                                                       |                                                                                                                                     | · ·                                                                                                                                            |
| 40-X     | 02/04/04<br>05/19/04<br>08/02/04<br>11/18/04 | STRIPED BASS<br>STRIPED BASS<br>STRIPED BASS<br>STRIPED BASS | $Ag-110m \\ 0.026 \pm 0.042 \\ 0.003 \pm 0.022 \\ -0.022 \pm 0.029 \\ 0.010 \pm 0.013$                                                         | $\begin{array}{c} \textbf{Be-7} \\ \textbf{-0.110} \pm 0.340 \\ \textbf{-0.030} \pm 0.120 \\ \textbf{0.020} \pm 0.150 \\ \textbf{0.118} \pm 0.085 \end{array}$ |                                                                                                                                                         | $\begin{array}{c} \textbf{Co-60} \\ 0.005 \pm 0.029 \\ \textbf{-0.002} \pm 0.017 \\ 0.000 \pm 0.027 \\ 0.005 \pm 0.013 \end{array}$ | $Cr-51$ $0.080 \pm 0.400$ $-0.010 \pm 0.120$ $-0.160 \pm 0.170$ $0.000 \pm 0.100$                                                              |

# Table 17-B, Fish - Other (pCi/g wet)

Page 2 of 2

| Location | Collection<br>Date | Sample Type  | Isotope            |                    |                    |                              |                   |  |  |
|----------|--------------------|--------------|--------------------|--------------------|--------------------|------------------------------|-------------------|--|--|
| 40-X     |                    |              | Cs-134             | Cs-137             | Fe-59              | I-131                        | K-40              |  |  |
|          | 02/04/04           | STRIPED BASS | $0.003 \pm 0.029$  | $0.018 \pm 0.029$  | $0.020 \pm 0.100$  | $-0.290 \pm 0.300 \text{ J}$ | $2.900 \pm 1.000$ |  |  |
|          | 05/19/04           | STRIPED BASS | $0.003 \pm 0.018$  | $0.020 \pm 0.017$  | $-0.018 \pm 0.054$ | $-0.007 \pm 0.029$           | $3.820 \pm 0.540$ |  |  |
|          | 08/02/04           | STRIPED BASS | $-0.003 \pm 0.021$ | $0.001 \pm 0.019$  | $0.037 \pm 0.057$  | $0.000 \pm 0.050$            | $3.330 \pm 0.620$ |  |  |
|          | 11/18/04           | STRIPED BASS | $-0.003 \pm 0.009$ | $0.001 \pm 0.010$  | $0.027 \pm 0.037$  | $-0.054 \pm 0.048$           | $4.030 \pm 0.340$ |  |  |
|          |                    |              | Mn-54              | Nb-95              | Ru-103             | Ru-106                       | Sb-125            |  |  |
|          | 02/04/04           | STRIPED BASS | $-0.018 \pm 0.036$ | $-0.003 \pm 0.039$ | $-0.005 \pm 0.043$ | $0.110 \pm 0.280$            | $0.017 \pm 0.073$ |  |  |
|          | 05/19/04           | STRIPED BASS | $-0.005 \pm 0.014$ | $-0.008 \pm 0.016$ | $-0.003 \pm 0.014$ | $0.020 \pm 0.140$            | $0.006 \pm 0.035$ |  |  |
|          | 08/02/04           | STRIPED BASS | $0.007 \pm 0.018$  | $0.010 \pm 0.026$  | $0.000 \pm 0.018$  | $-0.160 \pm 0.190$           | $0.024 \pm 0.043$ |  |  |
|          | 11/18/04           | STRIPED BASS | $-0.009 \pm 0.009$ | $-0.009 \pm 0.012$ | $0.016 \pm 0.011$  | $0.016 \pm 0.088$            | $0.009 \pm 0.023$ |  |  |
|          |                    |              | Th-228             | Zn-65              | Zr-95              |                              |                   |  |  |
|          | 02/04/04           | STRIPED BASS | $0.100 \pm 0.150$  | $0.000 \pm 0.072$  | $0.014 \pm 0.055$  |                              |                   |  |  |
|          | 05/19/04           | STRIPED BASS | $0.009 \pm 0.069$  | $0.020 \pm 0.039$  | $0.004 \pm 0.025$  |                              |                   |  |  |
|          | 08/02/04           | STRIPED BASS | $0.029 \pm 0.075$  | $-0.034 \pm 0.049$ | $0.005 \pm 0.029$  |                              |                   |  |  |
|          | 11/18/04           | STRIPED BASS | $0.034 \pm 0.036$  | $0.000 \pm 0.022$  | $-0.017 \pm 0.017$ |                              |                   |  |  |

# Table 18, Mussels (pCi/g wet)

Page 1 of 1

| Location | Collection<br>Date | <del></del>        |                    | Isotope            |                    | <del></del>        |                    |
|----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 28       |                    | Ag-110m            | Be-7               | Co-58              | Co-60              | Cr-51              | Cs-134             |
|          | 03/26/04           | -0.018 ± 0.016     | $0.170 \pm 0.120$  | $-0.007 \pm 0.012$ | $-0.001 \pm 0.014$ | $-0.040 \pm 0.170$ | $0.008 \pm 0.013$  |
|          | 06/09/04           | $0.002 \pm 0.019$  | $0.170 \pm 0.160$  | $0.003 \pm 0.017$  | $0.016 \pm 0.019$  | $-0.100 \pm 0.160$ | $-0.016 \pm 0.020$ |
|          | 07/22/04           | $0.013 \pm 0.022$  | $0.050 \pm 0.130$  | $0.002 \pm 0.014$  | $0.015 \pm 0.021$  | $-0.120 \pm 0.140$ | $-0.004 \pm 0.014$ |
|          | 12/09/04           | $-0.008 \pm 0.017$ | $0.040 \pm 0.120$  | $-0.009 \pm 0.014$ | $0.012 \pm 0.012$  | $0.100 \pm 0.140$  | $-0.004 \pm 0.014$ |
|          |                    | Cs-137             | Fe-59              | I-131              | K-40               | Mn-54              | Nb-95              |
|          | 03/26/04           | $-0.004 \pm 0.010$ | $0.002 \pm 0.043$  | $-0.020 \pm 0.100$ | $1.850 \pm 0.310$  | $0.001 \pm 0.011$  | $0.007 \pm 0.019$  |
|          | 06/09/04           | $0.001 \pm 0.014$  | $-0.002 \pm 0.040$ | $0.011 \pm 0.030$  | $1.960 \pm 0.490$  | $0.003 \pm 0.016$  | $0.002 \pm 0.021$  |
|          | 07/22/04           | $0.001 \pm 0.016$  | $0.002 \pm 0.041$  | $-0.010 \pm 0.038$ | $1.740 \pm 0.440$  | $0.000 \pm 0.015$  | $-0.004 \pm 0.018$ |
|          | 12/09/04           | $0.003 \pm 0.010$  | $-0.023 \pm 0.044$ | $0.044 \pm 0.074$  | $1.390 \pm 0.320$  | $-0.007 \pm 0.012$ | $0.006 \pm 0.016$  |
|          |                    | Ru-103             | Ru-106             | Sb-125             | Th-228             | Zn-65              | Zr-95              |
|          | 03/26/04           | $-0.004 \pm 0.018$ | $-0.010 \pm 0.110$ | $0.011 \pm 0.029$  | $0.022 \pm 0.062$  | $-0.011 \pm 0.026$ | $-0.012 \pm 0.025$ |
|          | 06/09/04           | $0.004 \pm 0.016$  | $-0.110 \pm 0.170$ | $0.040 \pm 0.048$  | $0.045 \pm 0.067$  | $-0.063 \pm 0.050$ | $0.018 \pm 0.031$  |
|          | 07/22/04           | $0.024 \pm 0.017$  | $0.060 \pm 0.160$  | $0.011 \pm 0.034$  | $0.032 \pm 0.066$  | $-0.026 \pm 0.034$ | $0.005 \pm 0.028$  |
|          | 12/09/04           | $-0.010 \pm 0.017$ | $-0.010 \pm 0.100$ | $-0.017 \pm 0.030$ | $0.048 \pm 0.054$  | $-0.021 \pm 0.026$ | $-0.019 \pm 0.025$ |
|          |                    |                    |                    |                    |                    |                    |                    |
| 30       |                    | Ag-110m            | Be-7               | Co-58              | Co-60              | Cr-51              | Cs-134             |
|          | 03/12/04           | $-0.001 \pm 0.007$ | $0.092 \pm 0.072$  | $0.003 \pm 0.006$  | $0.001 \pm 0.005$  | $0.045 \pm 0.088$  | $0.005 \pm 0.005$  |
|          | 06/09/04           | $-0.012 \pm 0.025$ | $0.190 \pm 0.170$  | $-0.009 \pm 0.017$ | $-0.011 \pm 0.019$ | $0.070 \pm 0.160$  | $-0.001 \pm 0.017$ |
|          | 08/10/04           | $0.010 \pm 0.032$  | $0.110 \pm 0.230$  | $-0.026 \pm 0.029$ | $0.014 \pm 0.029$  | $0.030 \pm 0.260$  | $-0.020 \pm 0.025$ |
|          | 12/15/04           | $0.010 \pm 0.019$  | $0.150 \pm 0.130$  | $-0.003 \pm 0.013$ | $-0.001 \pm 0.015$ | $0.080 \pm 0.130$  | $0.010 \pm 0.014$  |
|          |                    | Cs-137             | Fe-59              | I-131              | K-40               | Mn-54              | Nb-95              |
|          | 03/12/04           | $-0.003 \pm 0.004$ | $0.001 \pm 0.020$  | $0.110 \pm 0.120$  | $1.860 \pm 0.120$  | $0.001 \pm 0.005$  | $0.006 \pm 0.009$  |
|          | 06/09/04           | $0.002 \pm 0.017$  | $0.006 \pm 0.042$  | $-0.003 \pm 0.035$ | $2.030 \pm 0.500$  | $0.000 \pm 0.017$  | $-0.016 \pm 0.019$ |
|          | 08/10/04           | $-0.020 \pm 0.022$ | $0.006 \pm 0.060$  | $0.036 \pm 0.067$  | $1.770 \pm 0.580$  | $0.002 \pm 0.021$  | $-0.022 \pm 0.034$ |
|          | 12/15/04           | $-0.005 \pm 0.013$ | $-0.025 \pm 0.040$ | $-0.005 \pm 0.057$ | $1.510 \pm 0.320$  | $0.006 \pm 0.013$  | $0.025 \pm 0.017$  |
|          |                    | Ru-103             | Ru-106             | Sb-125             | Th-228             | Zn-65              | Zr-95              |
|          | 03/12/04           |                    | $-0.011 \pm 0.046$ | $0.005 \pm 0.010$  | $-0.009 \pm 0.022$ | $-0.004 \pm 0.011$ | $0.000 \pm 0.011$  |
|          | 06/09/04           | $-0.011 \pm 0.017$ | $0.110 \pm 0.180$  | $-0.033 \pm 0.047$ | $-0.004 \pm 0.055$ | $0.033 \pm 0.092$  | $0.003 \pm 0.034$  |
|          | 08/10/04           | $-0.006 \pm 0.026$ | $-0.080 \pm 0.220$ | $-0.027 \pm 0.053$ | $-0.030 \pm 0.100$ | $0.130 \pm 0.110$  | $0.017 \pm 0.046$  |
|          | 12/15/04           | $-0.002 \pm 0.014$ | $-0.010 \pm 0.110$ | $-0.012 \pm 0.031$ | $-0.002 \pm 0.051$ | $-0.013 \pm 0.033$ | $0.003 \pm 0.021$  |

# Table 19, Oysters (pCi/g wet)

Page 1 of 3

| Location | Collection<br>Date                           |                                                                                   |                                                                                                             | Isotope                                                                                                   |                                                                                    |                                                                                                            |                                                                                      |
|----------|----------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 31       |                                              | Ag-110m                                                                           | Be-7                                                                                                        | Co-58                                                                                                     | Co-60                                                                              | Cr-51                                                                                                      | Cs-134                                                                               |
|          | 03/24/04<br>06/28/04<br>09/22/04<br>12/14/04 | $-0.003 \pm 0.023$<br>$0.016 \pm 0.020$                                           | $0.080 \pm 0.120$<br>$0.130 \pm 0.190$<br>$0.010 \pm 0.120$<br>$0.078 \pm 0.074$                            | $-0.002 \pm 0.012$<br>$0.001 \pm 0.019$<br>$-0.007 \pm 0.014$<br>$0.003 \pm 0.010$                        | $-0.010 \pm 0.013$<br>$0.001 \pm 0.018$<br>$-0.019 \pm 0.022$<br>$0.004 \pm 0.009$ | $0.050 \pm 0.170$<br>$0.090 \pm 0.180$<br>$0.030 \pm 0.130$<br>$0.029 \pm 0.092$                           | $0.006 \pm 0.013$ $-0.007 \pm 0.016$ $-0.021 \pm 0.015$ $0.005 \pm 0.009$            |
|          |                                              | Cs-137                                                                            | Fe-59                                                                                                       | I-131                                                                                                     | K-40                                                                               | Mn-54                                                                                                      | Nb-95                                                                                |
|          | 03/24/04<br>06/28/04<br>09/22/04<br>12/14/04 | $-0.002 \pm 0.012$<br>$0.000 \pm 0.023$<br>$0.003 \pm 0.015$<br>$0.001 \pm 0.008$ | $ \begin{array}{c} -0.013 \pm 0.047 \\ 0.001 \pm 0.073 \\ -0.027 \pm 0.051 \\ 0.003 \pm 0.027 \end{array} $ | $-0.010 \pm 0.110$<br>$-0.013 \pm 0.053$<br>$-0.004 \pm 0.023$<br>$0.019 \pm 0.039$                       | $1.400 \pm 0.290$<br>$1.440 \pm 0.510$<br>$1.480 \pm 0.370$<br>$1.290 \pm 0.190$   | $\begin{array}{c} -0.007 \pm 0.011 \\ -0.001 \pm 0.021 \\ 0.000 \pm 0.014 \\ -0.004 \pm 0.009 \end{array}$ | $-0.004 \pm 0.017$<br>$-0.009 \pm 0.022$<br>$-0.005 \pm 0.014$<br>$0.012 \pm 0.012$  |
|          |                                              | Ru-103                                                                            | Ru-106                                                                                                      | Sb-125                                                                                                    | Th-228                                                                             | Zn-65                                                                                                      | Zr-95                                                                                |
|          | 03/24/04<br>06/28/04<br>09/22/04<br>12/14/04 | $0.002 \pm 0.016$ $-0.004 \pm 0.019$ $0.004 \pm 0.016$ $0.001 \pm 0.010$          | $-0.020 \pm 0.110$ $-0.110 \pm 0.190$ $0.010 \pm 0.120$ $-0.035 \pm 0.078$                                  | $-0.014 \pm 0.026$ $0.000 \pm 0.051$ $-0.027 \pm 0.037$ $-0.005 \pm 0.020$                                | $-0.022 \pm 0.049$ $0.071 \pm 0.072$ $-0.008 \pm 0.056$ $0.001 \pm 0.033$          | $-0.023 \pm 0.029$ $-0.017 \pm 0.046$ $-0.006 \pm 0.032$ $-0.017 \pm 0.020$                                | $0.010 \pm 0.022$<br>$0.012 \pm 0.032$<br>$-0.013 \pm 0.021$<br>$-0.002 \pm 0.016$   |
| 32       |                                              | Ag-110m                                                                           | Be-7                                                                                                        | Co-58                                                                                                     | Co-60                                                                              | Cr-51                                                                                                      | Cs-134                                                                               |
|          | 03/18/04<br>06/23/04<br>09/17/04<br>12/14/04 | $0.042 \pm 0.005$<br>$0.089 \pm 0.010$<br>$0.015 \pm 0.064$<br>$0.014 \pm 0.012$  | $-0.00\dot{4} \pm 0.058$<br>$0.036 \pm 0.077$<br>$-0.100 \pm 0.460$<br>$0.019 \pm 0.077$                    | $0.004 \pm 0.007$<br>$0.000 \pm 0.008$<br>$-0.044 \pm 0.047$<br>$-0.001 \pm 0.009$                        | -0.001 ± 0.005<br>0.007 ± 0.008<br>0.042 ± 0.046<br>0.005 ± 0.009                  | $0.049 \pm 0.089$<br>$-0.022 \pm 0.098$<br>$-0.290 \pm 0.420$<br>$0.017 \pm 0.098$                         | 0.005 ± 0.005<br>0.001 ± 0.008<br>-0.001 ± 0.043<br>0.004 ± 0.011                    |
|          |                                              | Cs-137                                                                            | Fe-59                                                                                                       | I-131                                                                                                     | K-40                                                                               | Mn-54                                                                                                      | Nb-95                                                                                |
|          | 03/18/04<br>06/23/04<br>09/17/04<br>12/14/04 | $0.011 \pm 0.012$ $-0.018 \pm 0.023$ $0.028 \pm 0.043$ $-0.007 \pm 0.009$         | $-0.007 \pm 0.019$ $-0.009 \pm 0.024$ $-0.073 \pm 0.097$ $-0.008 \pm 0.027$                                 | $\begin{array}{c} -0.029 \pm 0.096 \\ 0.000 \pm 0.038 \\ 0.030 \pm 0.110 \\ -0.020 \pm 0.041 \end{array}$ | $2.130 \pm 0.140$<br>$1.590 \pm 0.190$<br>$2.940 \pm 0.980$<br>$1.370 \pm 0.210$   | $\begin{array}{c} -0.001 \pm 0.005 \\ 0.000 \pm 0.008 \\ -0.017 \pm 0.042 \\ -0.003 \pm 0.008 \end{array}$ | $0.005 \pm 0.014$<br>$0.014 \pm 0.015$<br>$0.023 \pm 0.056$<br>$0.012 \pm 0.015$     |
|          |                                              | Ru-103                                                                            | Ru-106                                                                                                      | Sb-125                                                                                                    | Th-228                                                                             | Zn-65                                                                                                      | Zr-95                                                                                |
|          | 03/18/04<br>06/23/04<br>09/17/04<br>12/14/04 | $0.006 \pm 0.009$<br>$0.002 \pm 0.009$<br>$0.040 \pm 0.058$<br>$-0.002 \pm 0.011$ | $0.018 \pm 0.048$<br>$0.035 \pm 0.074$<br>$-0.220 \pm 0.500$<br>$0.033 \pm 0.080$                           | $0.002 \pm 0.012$<br>-0.001 ± 0.021<br>$0.030 \pm 0.120$<br>$0.001 \pm 0.021$                             | $0.008 \pm 0.023$<br>$-0.006 \pm 0.030$<br>$0.090 \pm 0.160$<br>$-0.012 \pm 0.045$ | $-0.004 \pm 0.012$ $-0.025 \pm 0.018$ $-0.120 \pm 0.110$ $-0.016 \pm 0.021$                                | $0.001 \pm 0.012$<br>$0.015 \pm 0.015$<br>$0.006 \pm 0.096$<br>$0.008 \pm 0.017$     |
| 34-X     |                                              | Ag-110m                                                                           | Be-7                                                                                                        | Co-58                                                                                                     | Co-60                                                                              | Cr-51                                                                                                      | Cs-134                                                                               |
|          | 06/28/04<br>09/21/04                         | $-0.005 \pm 0.007$ $0.005 \pm 0.017$ $-0.009 \pm 0.021$ $-0.020 \pm 0.023$        | $-0.018 \pm 0.060$ $-0.010 \pm 0.130$ $0.090 \pm 0.150$ $0.120 \pm 0.180$                                   | $0.000 \pm 0.006$<br>-0.003 ± 0.015<br>$0.019 \pm 0.016$<br>-0.029 ± 0.023                                | $-0.001 \pm 0.006$ $-0.006 \pm 0.014$ $-0.002 \pm 0.023$ $-0.005 \pm 0.017$        | $\begin{array}{c} -0.030 \pm 0.084 \\ 0.040 \pm 0.150 \\ 0.070 \pm 0.140 \\ -0.100 \pm 0.220 \end{array}$  | $0.003 \pm 0.006$ $-0.003 \pm 0.015$ $-0.002 \pm 0.021$ $-0.009 \pm 0.019$           |
|          |                                              | Cs-137                                                                            | Fe-59                                                                                                       | I-131                                                                                                     | K-40                                                                               | Mn-54                                                                                                      | Nb-95                                                                                |
|          | 03/24/04<br>06/28/04<br>09/21/04<br>12/14/04 | $0.001 \pm 0.006$<br>-0.004 \pm 0.014<br>$0.005 \pm 0.017$<br>$0.000 \pm 0.018$   | $0.000 \pm 0.021$<br>-0.005 \pm 0.040<br>$0.036 \pm 0.060$<br>-0.008 \pm 0.053                              | $0.044 \pm 0.065$<br>$0.000 \pm 0.047$<br>$-0.009 \pm 0.025$<br>$-0.045 \pm 0.092$                        | $1.540 \pm 0.140$<br>$1.850 \pm 0.400$<br>$1.880 \pm 0.540$<br>$1.430 \pm 0.460$   | $0.000 \pm 0.005$<br>-0.002 \pm 0.015<br>-0.001 \pm 0.022<br>0.003 \pm 0.017                               | $-0.003 \pm 0.009$<br>$-0.004 \pm 0.017$<br>$-0.015 \pm 0.018$<br>$-0.013 \pm 0.026$ |

# Table 19, Oysters (pCi/g wet)

Page 2 of 3

| Location — | Collection<br>Date                           |                                                                                                          | ····                                                                                                     | Isotope                                                                           |                                                                                                           |                                                                                                            |                                                                                                           |
|------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 34-X       |                                              | Ru-103                                                                                                   | Ru-106                                                                                                   | Sb-125                                                                            | Th-228                                                                                                    | Zn-65                                                                                                      | <b>Z</b> r-95                                                                                             |
|            | 03/24/04<br>06/28/04<br>09/21/04<br>12/14/04 | -0.001 ± 0.007<br>-0.002 ± 0.015<br>0.003 ± 0.016<br>0.001 ± 0.022                                       | $-0.068 \pm 0.054$ $0.030 \pm 0.150$ $-0.110 \pm 0.160$ $0.080 \pm 0.180$                                | $-0.001 \pm 0.014$ $-0.016 \pm 0.038$ $0.023 \pm 0.039$ $-0.018 \pm 0.047$        | $0.001 \pm 0.024$ $-0.034 \pm 0.052$ $-0.029 \pm 0.078$ $0.005 \pm 0.060$                                 | $-0.008 \pm 0.012$ $0.004 \pm 0.036$ $-0.014 \pm 0.040$ $-0.032 \pm 0.040$                                 | $-0.009 \pm 0.012$ $-0.005 \pm 0.029$ $0.008 \pm 0.030$ $-0.041 \pm 0.040$                                |
| 36         |                                              | Ag-110m                                                                                                  | Be-7                                                                                                     | Co-58                                                                             | Co-60                                                                                                     | Cr-51                                                                                                      | Cs-134                                                                                                    |
|            | 03/25/04<br>06/16/04<br>09/21/04<br>12/15/04 | -0.004 ± 0.016<br>0.010 ± 0.015<br>0.015 ± 0.015<br>K                                                    | $0.010 \pm 0.110$ $-0.110 \pm 0.100$ $0.010 \pm 0.100$                                                   | -0.002 ± 0.015<br>-0.002 ± 0.010<br>0.001 ± 0.012                                 | $0.008 \pm 0.016$<br>$0.005 \pm 0.013$<br>$0.003 \pm 0.010$                                               | $-0.020 \pm 0.140$ $-0.050 \pm 0.120$ $-0.010 \pm 0.110$                                                   | $0.002 \pm 0.015$<br>$0.000 \pm 0.012$<br>$0.002 \pm 0.013$                                               |
|            |                                              | Cs-137                                                                                                   | Fe-59                                                                                                    | I-131                                                                             | K-40                                                                                                      | Mn-54                                                                                                      | Nb-95                                                                                                     |
|            | 03/25/04<br>06/16/04<br>09/21/04             | $0.004 \pm 0.012$<br>-0.001 \pm 0.011<br>$0.006 \pm 0.012$                                               | $-0.030 \pm 0.058$<br>$0.021 \pm 0.033$<br>$-0.035 \pm 0.036$                                            | $0.008 \pm 0.087$<br>-0.008 \pm 0.045<br>-0.015 \pm 0.022                         | $1.540 \pm 0.370$<br>$1.840 \pm 0.300$<br>$1.580 \pm 0.340$                                               | $0.006 \pm 0.015$<br>$0.008 \pm 0.011$<br>$0.006 \pm 0.012$                                                | $0.008 \pm 0.022$<br>-0.001 \pm 0.013<br>-0.002 \pm 0.014                                                 |
|            |                                              | Ru-103                                                                                                   | Ru-106                                                                                                   | Sb-125                                                                            | Th-228                                                                                                    | Zn-65                                                                                                      | Zr-95                                                                                                     |
|            | 03/25/04<br>06/16/04<br>09/21/04             | $-0.024 \pm 0.016$<br>$0.008 \pm 0.012$<br>$0.004 \pm 0.011$                                             | $0.030 \pm 0.120$<br>$0.047 \pm 0.097$<br>$0.000 \pm 0.130$                                              | $0.002 \pm 0.031$<br>-0.002 \pm 0.023<br>$0.018 \pm 0.034$                        | $-0.014 \pm 0.044$ $0.005 \pm 0.046$ $0.037 \pm 0.049$                                                    | $-0.028 \pm 0.035$ $0.006 \pm 0.022$ $-0.021 \pm 0.033$                                                    | $0.003 \pm 0.025$<br>-0.003 \pm 0.018<br>-0.003 \pm 0.023                                                 |
| 37-C       |                                              | Ag-110m                                                                                                  | Be-7                                                                                                     | Co-58                                                                             | Co-60                                                                                                     | Cr-51                                                                                                      | Cs-134                                                                                                    |
|            | 03/25/04<br>06/16/04<br>09/21/04<br>12/15/04 | $\begin{array}{c} -0.007 \pm 0.018 \\ 0.005 \pm 0.011 \\ 0.005 \pm 0.015 \\ 0.000 \pm 0.021 \end{array}$ | $0.010 \pm 0.110$<br>$0.046 \pm 0.076$<br>$0.029 \pm 0.090$<br>$-0.050 \pm 0.160$                        | $0.001 \pm 0.013$<br>$0.005 \pm 0.010$<br>$0.009 \pm 0.012$<br>$-0.004 \pm 0.016$ | $\begin{array}{c} -0.002 \pm 0.011 \\ 0.012 \pm 0.011 \\ 0.003 \pm 0.014 \\ -0.003 \pm 0.015 \end{array}$ | $\begin{array}{c} -0.230 \pm 0.190 \\ 0.024 \pm 0.083 \\ -0.030 \pm 0.100 \\ -0.050 \pm 0.220 \end{array}$ | $\begin{array}{c} -0.003 \pm 0.011 \\ 0.000 \pm 0.010 \\ 0.003 \pm 0.012 \\ 0.005 \pm 0.018 \end{array}$  |
|            |                                              | Cs-137                                                                                                   | Fe-59                                                                                                    | I-131                                                                             | K-40                                                                                                      | Mn-54                                                                                                      | Nb-95                                                                                                     |
|            | 09/21/04                                     | $0.004 \pm 0.013$<br>$0.013 \pm 0.009$<br>$-0.001 \pm 0.012$<br>$-0.001 \pm 0.016$                       | $\begin{array}{c} -0.022 \pm 0.044 \\ 0.018 \pm 0.034 \\ 0.025 \pm 0.032 \\ 0.036 \pm 0.046 \end{array}$ | $0.000 \pm 0.110$<br>$0.022 \pm 0.032$<br>$-0.010 \pm 0.020$<br>$0.016 \pm 0.078$ | $1.870 \pm 0.330$<br>$1.630 \pm 0.250$<br>$1.630 \pm 0.330$<br>$1.790 \pm 0.440$                          | $0.001 \pm 0.014$<br>-0.002 \pm 0.010<br>-0.004 \pm 0.012<br>-0.013 \pm 0.014                              | $0.009 \pm 0.019$<br>$0.003 \pm 0.013$<br>$-0.004 \pm 0.015$<br>$0.011 \pm 0.027$                         |
|            |                                              | Ru-103                                                                                                   | Ru-106                                                                                                   | Sb-125                                                                            | Th-228                                                                                                    | Zn-65                                                                                                      | Zr-95                                                                                                     |
|            | 03/25/04<br>06/16/04<br>09/21/04<br>12/15/04 | $0.000 \pm 0.016$<br>$0.001 \pm 0.010$<br>$0.005 \pm 0.013$<br>$0.001 \pm 0.021$                         | $-0.050 \pm 0.120$ $-0.126 \pm 0.079$ $-0.110 \pm 0.120$ $-0.050 \pm 0.140$                              | $-0.008 \pm 0.030$ $-0.008 \pm 0.020$ $-0.003 \pm 0.025$ $-0.013 \pm 0.041$       | $0.051 \pm 0.049$ $0.023 \pm 0.031$ $-0.027 \pm 0.038$ $0.013 \pm 0.061$                                  | $0.019 \pm 0.037$ $0.008 \pm 0.021$ $-0.023 \pm 0.028$ $-0.003 \pm 0.045$                                  | $\begin{array}{c} 0.002 \pm 0.025 \\ -0.003 \pm 0.018 \\ 0.000 \pm 0.022 \\ -0.006 \pm 0.031 \end{array}$ |
| 40-X       |                                              | Ag-110m                                                                                                  | Be-7                                                                                                     | Co-58                                                                             | Co-60                                                                                                     | Cr-51                                                                                                      | Cs-134                                                                                                    |
|            | 03/30/04<br>06/10/04<br>09/22/04<br>11/17/04 | $0.097 \pm 0.025$<br>$0.136 \pm 0.017$<br>$0.073 \pm 0.020$<br>$0.057 \pm 0.011$                         | $0.170 \pm 0.160$<br>$0.100 \pm 0.120$<br>$-0.020 \pm 0.120$<br>$0.019 \pm 0.081$                        | $0.004 \pm 0.021$<br>-0.015 \pm 0.015<br>-0.006 \pm 0.012<br>-0.003 \pm 0.009     | $-0.001 \pm 0.024$<br>$-0.005 \pm 0.013$<br>$-0.001 \pm 0.017$<br>$-0.003 \pm 0.010$                      | $0.120 \pm 0.200$<br>-0.010 ± 0.180<br>$0.060 \pm 0.120$<br>-0.059 ± 0.082                                 | $0.008 \pm 0.022$<br>$0.003 \pm 0.012$<br>$-0.006 \pm 0.015$<br>$0.010 \pm 0.010$                         |

# Table 19, Oysters (pCi/g wet)

Page 3 of 3

| Location | Collection<br>Date_ |                    |                    | Isotope            |                   |                    |                    |
|----------|---------------------|--------------------|--------------------|--------------------|-------------------|--------------------|--------------------|
| 40-X     |                     | Cs-137             | Fe-59              | I-131              | K-40              | Mn-54              | Nb-95              |
|          | 03/30/04            | $-0.006 \pm 0.059$ | $0.040 \pm 0.051$  | $-0.030 \pm 0.084$ | $1.960 \pm 0.500$ | $0.001 \pm 0.023$  | $0.021 \pm 0.032$  |
|          | 06/10/04            | $0.003 \pm 0.038$  | $0.018 \pm 0.039$  | $0.040 \pm 0.110$  | $1.340 \pm 0.270$ | $0.003 \pm 0.011$  | $-0.004 \pm 0.029$ |
|          | 09/22/04            | $-0.002 \pm 0.051$ | $0.009 \pm 0.036$  | $-0.011 \pm 0.025$ | $1.790 \pm 0.390$ | $-0.003 \pm 0.015$ | $-0.007 \pm 0.018$ |
|          | 11/17/04            | $0.012 \pm 0.024$  | $0.013 \pm 0.031$  | $-0.022 \pm 0.041$ | $2.190 \pm 0.250$ | $0.002 \pm 0.008$  | $-0.003 \pm 0.014$ |
|          |                     | Ru-103             | Ru-106             | Sb-125             | Th-228            | Zn-65              | Zr-95              |
|          | 03/30/04            | $0.017 \pm 0.024$  | $-0.040 \pm 0.160$ | $0.000 \pm 0.045$  | $0.051 \pm 0.056$ | $-0.028 \pm 0.044$ | $0.023 \pm 0.036$  |
|          | 06/10/04            | $-0.011 \pm 0.019$ | $0.110 \pm 0.110$  | $0.000 \pm 0.029$  | $0.006 \pm 0.043$ | $-0.012 \pm 0.028$ | $0.017 \pm 0.025$  |
|          | 09/22/04            | $-0.003 \pm 0.014$ | $0.010 \pm 0.150$  | $-0.020 \pm 0.039$ | $0.025 \pm 0.064$ | $-0.034 \pm 0.038$ | $0.003 \pm 0.022$  |
|          | 11/17/04            | $-0.004 \pm 0.010$ | $-0.023 \pm 0.072$ | $-0.007 \pm 0.020$ | $0.000 \pm 0.038$ | $-0.004 \pm 0.018$ | $-0.001 \pm 0.017$ |

# Table 20, Clams (pCi/g wet)

Page 1 of 2

| Location | Collection<br>Date                           |                                                                                    |                                                                                                            | Isotope                                                                                                    |                                                                                                           |                                                                                                               |                                                                                                           |
|----------|----------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 29       |                                              | Ag-110m                                                                            | Be-7                                                                                                       | Co-58                                                                                                      | Co-60                                                                                                     | Cr-51                                                                                                         | Cs-134                                                                                                    |
|          | 03/03/04<br>06/10/04<br>08/04/04<br>11/02/04 | $-0.007 \pm 0.030$<br>$0.004 \pm 0.010$<br>$0.002 \pm 0.024$<br>$-0.008 \pm 0.031$ | $-0.040 \pm 0.200$<br>$0.024 \pm 0.078$<br>$-0.040 \pm 0.130$<br>$0.050 \pm 0.160$                         | $0.003 \pm 0.027$<br>$-0.005 \pm 0.008$<br>$-0.001 \pm 0.015$<br>$0.001 \pm 0.027$                         | $0.005 \pm 0.025$<br>$0.007 \pm 0.007$<br>$-0.008 \pm 0.017$<br>$0.018 \pm 0.028$                         | $-0.270 \pm 0.320$<br>$-0.030 \pm 0.110$<br>$-0.220 \pm 0.170$<br>$-0.200 \pm 0.210$                          | -0.008 ± 0.024<br>-0.004 ± 0.008<br>-0.001 ± 0.018<br>0.011 ± 0.029                                       |
|          |                                              | Cs-137                                                                             | Fe-59                                                                                                      | I-131                                                                                                      | K-40                                                                                                      | Mn-54                                                                                                         | Nb-95                                                                                                     |
|          | 03/03/04<br>06/10/04<br>08/04/04<br>11/02/04 | $0.020 \pm 0.024$<br>$-0.001 \pm 0.008$<br>$0.010 \pm 0.015$<br>$-0.030 \pm 0.026$ | $0.045 \pm 0.092$ $-0.002 \pm 0.029$ $0.011 \pm 0.048$ $-0.039 \pm 0.092$                                  | $0.180 \pm 0.310$<br>$0.010 \pm 0.061$<br>$-0.022 \pm 0.047$<br>$0.023 \pm 0.037$                          | $2.220 \pm 0.630$<br>$1.930 \pm 0.210$<br>$1.890 \pm 0.410$<br>$1.520 \pm 0.800$                          | $0.017 \pm 0.021$ $-0.002 \pm 0.007$ $-0.015 \pm 0.015$ $-0.004 \pm 0.030$                                    | $0.018 \pm 0.039$<br>$-0.006 \pm 0.011$<br>$0.008 \pm 0.021$<br>$-0.032 \pm 0.035$                        |
|          |                                              | Ru-103                                                                             | Ru-106                                                                                                     | Sb-125                                                                                                     | Th-228                                                                                                    | Zn-65                                                                                                         | Zr-95                                                                                                     |
|          | 03/03/04<br>06/10/04<br>08/04/04<br>11/02/04 | -0.009 ± 0.026<br>0.004 ± 0.009<br>0.006 ± 0.018<br>-0.006 ± 0.028                 | $\begin{array}{c} 0.050 \pm 0.220 \\ -0.003 \pm 0.073 \\ -0.050 \pm 0.140 \\ -0.030 \pm 0.230 \end{array}$ | $0.030 \pm 0.049$<br>$0.002 \pm 0.019$<br>$-0.044 \pm 0.042$<br>$0.008 \pm 0.065$                          | $-0.094 \pm 0.081$ $-0.017 \pm 0.029$ $0.019 \pm 0.069$ $-0.033 \pm 0.073$                                | $0.006 \pm 0.048$<br>$-0.016 \pm 0.018$<br>$-0.040 \pm 0.048$<br>$0.000 \pm 0.059$                            | $0.023 \pm 0.050$<br>$0.006 \pm 0.016$<br>$0.010 \pm 0.032$<br>$-0.006 \pm 0.048$                         |
| 35-X     |                                              | Ag-110m                                                                            | Be-7                                                                                                       | Co-58                                                                                                      | Co-60                                                                                                     | Cr-51                                                                                                         | Cs-134                                                                                                    |
|          | 03/03/04<br>06/22/04<br>08/04/04<br>11/02/04 | $0.014 \pm 0.021$                                                                  | $\begin{array}{c} -0.240 \pm 0.240 \\ 0.060 \pm 0.170 \\ 0.050 \pm 0.130 \\ 0.000 \pm 0.230 \end{array}$   | $\begin{array}{c} -0.027 \pm 0.029 \\ 0.004 \pm 0.016 \\ -0.001 \pm 0.015 \\ -0.017 \pm 0.025 \end{array}$ | $\begin{array}{c} -0.003 \pm 0.034 \\ 0.006 \pm 0.022 \\ 0.004 \pm 0.016 \\ -0.015 \pm 0.032 \end{array}$ | $ \begin{array}{l} -0.100 \pm 0.390 \\ -0.010 \pm 0.210 \\ -0.040 \pm 0.170 \\ -0.040 \pm 0.200 \end{array} $ | $\begin{array}{c} 0.007 \pm 0.026 \\ -0.004 \pm 0.017 \\ 0.000 \pm 0.013 \\ 0.008 \pm 0.033 \end{array}$  |
|          |                                              | Cs-137                                                                             | Fe-59                                                                                                      | I-131                                                                                                      | K-40                                                                                                      | Mn-54                                                                                                         | Nb-95                                                                                                     |
|          | 03/03/04<br>06/22/04<br>08/04/04<br>11/02/04 |                                                                                    | $\begin{array}{c} -0.065 \pm 0.092 \\ -0.024 \pm 0.056 \\ -0.034 \pm 0.043 \\ 0.041 \pm 0.082 \end{array}$ | $\begin{array}{c} -0.170 \pm 0.340 \\ -0.087 \pm 0.094 \\ 0.016 \pm 0.044 \\ -0.012 \pm 0.036 \end{array}$ | $1.810 \pm 0.730$ $1.950 \pm 0.560$ $1.730 \pm 0.370$ $1.550 \pm 0.730$                                   | $0.010 \pm 0.027$<br>$0.014 \pm 0.018$<br>$-0.002 \pm 0.013$<br>$-0.013 \pm 0.021$                            | $-0.004 \pm 0.043$<br>$-0.003 \pm 0.025$<br>$0.001 \pm 0.019$<br>$0.016 \pm 0.031$                        |
|          |                                              | Ru-103                                                                             | Ru-106                                                                                                     | Sb-125                                                                                                     | Th-228                                                                                                    | Zn-65                                                                                                         | Zr-95                                                                                                     |
|          | 03/03/04<br>06/22/04<br>08/04/04<br>11/02/04 | -0.021 ± 0.040<br>0.014 ± 0.022<br>0.003 ± 0.016<br>0.003 ± 0.026                  | $0.050 \pm 0.260$<br>$0.050 \pm 0.180$<br>$-0.110 \pm 0.130$<br>$0.150 \pm 0.300$                          | $0.006 \pm 0.061$<br>-0.011 ± 0.049<br>$0.006 \pm 0.038$<br>-0.015 ± 0.071                                 | $-0.050 \pm 0.100$ $0.012 \pm 0.059$ $-0.004 \pm 0.058$ $-0.008 \pm 0.089$                                | $0.028 \pm 0.066$<br>-0.021 \pm 0.043<br>$0.036 \pm 0.052$<br>$0.010 \pm 0.074$                               | $-0.040 \pm 0.039$ $-0.003 \pm 0.032$ $-0.006 \pm 0.027$ $0.011 \pm 0.044$                                |
| 38       |                                              | Ag-110m                                                                            | Be-7                                                                                                       | Co-58                                                                                                      | Co-60                                                                                                     | Cr-51                                                                                                         | Cs-134                                                                                                    |
|          | 03/03/04<br>06/22/04<br>08/04/04<br>11/02/04 | $-0.016 \pm 0.021$<br>$-0.008 \pm 0.025$                                           | $0.210 \pm 0.250$<br>$-0.070 \pm 0.150$<br>$0.070 \pm 0.130$<br>$0.210 \pm 0.220$                          | $-0.007 \pm 0.026$ $-0.005 \pm 0.018$ $-0.011 \pm 0.019$ $-0.012 \pm 0.026$                                | $0.003 \pm 0.028$ $-0.008 \pm 0.022$ $0.017 \pm 0.020$ $0.004 \pm 0.032$                                  | $-0.170 \pm 0.360$ $-0.050 \pm 0.150$ $0.070 \pm 0.150$ $0.040 \pm 0.210$                                     | $\begin{array}{c} 0.013 \pm 0.022 \\ -0.013 \pm 0.020 \\ 0.011 \pm 0.016 \\ -0.013 \pm 0.028 \end{array}$ |
|          |                                              | Cs-137                                                                             | Fe-59                                                                                                      | I-131                                                                                                      | K-40                                                                                                      | Mn-54                                                                                                         | Nb-95                                                                                                     |
|          | 03/03/04<br>06/22/04<br>08/04/04<br>11/02/04 | $0.019 \pm 0.027$<br>$0.009 \pm 0.017$<br>$0.008 \pm 0.018$<br>$0.028 \pm 0.034$   | $0.094 \pm 0.084$<br>$0.003 \pm 0.063$<br>$0.039 \pm 0.050$<br>$-0.021 \pm 0.081$                          | $0.070 \pm 0.420$<br>$0.014 \pm 0.071$<br>$-0.006 \pm 0.048$<br>$0.009 \pm 0.036$                          | $1.880 \pm 0.710$<br>$1.580 \pm 0.520$<br>$2.190 \pm 0.480$<br>$1.360 \pm 0.740$                          | $ \begin{array}{l} -0.016 \pm 0.026 \\ -0.010 \pm 0.019 \\ 0.007 \pm 0.018 \\ -0.004 \pm 0.024 \end{array} $  | $\begin{array}{c} -0.005 \pm 0.037 \\ -0.007 \pm 0.025 \\ 0.005 \pm 0.022 \\ 0.016 \pm 0.031 \end{array}$ |

# Table 20, Clams (pCi/g wet)

Page 2 of 2

| Location | Collection<br>Date |                    |                    | Isotope            |                    |                    |                    |
|----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 38       |                    | Ru-103             | Ru-106             | Sb-125             | Th-228             | Zn-65              | Zr-95              |
|          | 03/03/04           | $0.017 \pm 0.039$  | $0.060 \pm 0.230$  | $0.083 \pm 0.064$  | $0.050 \pm 0.120$  | $0.018 \pm 0.058$  | $0.013 \pm 0.049$  |
|          | 06/22/04           | $-0.012 \pm 0.020$ | $-0.030 \pm 0.150$ | $0.000 \pm 0.042$  | $0.035 \pm 0.059$  | $0.041 \pm 0.041$  | $-0.037 \pm 0.040$ |
|          | 08/04/04           | $0.001 \pm 0.018$  | $-0.110 \pm 0.180$ | $-0.021 \pm 0.043$ | $-0.043 \pm 0.063$ | $-0.014 \pm 0.044$ | $-0.004 \pm 0.034$ |
|          | 11/02/04           | $0.023 \pm 0.028$  | $0.090 \pm 0.290$  | $0.008 \pm 0.052$  | $0.011 \pm 0.098$  | $0.050 \pm 0.072$  | $0.026 \pm 0.052$  |
| 39-X     |                    | Ag-110m            | Be-7               | Co-58              | Co-60              | Cr-51              | Cs-134             |
|          | 02/02/04           | $-0.002 \pm 0.017$ | $0.040 \pm 0.160$  | $-0.002 \pm 0.014$ | $-0.005 \pm 0.020$ | $0.030 \pm 0.180$  | $-0.006 \pm 0.021$ |
|          | 06/08/04           | $0.013 \pm 0.026$  | $0.030 \pm 0.150$  | $0.007 \pm 0.019$  | $0.005 \pm 0.021$  | $0.010 \pm 0.200$  | $0.007 \pm 0.019$  |
|          | 09/08/04           | $0.013 \pm 0.020$  | $-0.020 \pm 0.140$ | $-0.019 \pm 0.022$ | $-0.008 \pm 0.023$ | $0.010 \pm 0.120$  | $-0.001 \pm 0.013$ |
|          | 11/02/04           | $-0.021 \pm 0.033$ | $-0.140 \pm 0.230$ | $-0.029 \pm 0.034$ | $-0.009 \pm 0.032$ | $-0.060 \pm 0.200$ | $0.008 \pm 0.026$  |
|          |                    | Cs-137             | Fe-59              | I-131              | K-40               | Mn-54              | Nb-95              |
|          | 02/02/04           | $0.002 \pm 0.019$  | $0.019 \pm 0.046$  | $0.032 \pm 0.039$  | $2.060 \pm 0.490$  | $-0.009 \pm 0.018$ | $-0.004 \pm 0.021$ |
|          | 06/08/04           | $-0.006 \pm 0.022$ | $0.010 \pm 0.065$  | $-0.021 \pm 0.043$ | $1.710 \pm 0.550$  | $-0.002 \pm 0.023$ | $0.003 \pm 0.026$  |
|          | 09/08/04           | $0.005 \pm 0.018$  | $-0.027 \pm 0.042$ | $-0.011 \pm 0.018$ | $1.280 \pm 0.470$  | $0.012 \pm 0.018$  | $0.005 \pm 0.021$  |
|          | 11/02/04           | $0.012 \pm 0.034$  | $0.045 \pm 0.090$  | $-0.020 \pm 0.036$ | $1.460 \pm 0.800$  | $-0.007 \pm 0.026$ | $0.014 \pm 0.039$  |
|          |                    | Ru-103             | Ru-106             | Sb-125             | Th-228             | Zn-65              | Zr-95              |
|          | 02/02/04           | $0.007 \pm 0.019$  | $-0.170 \pm 0.200$ | $0.008 \pm 0.046$  | $-0.017 \pm 0.067$ | $0.004 \pm 0.038$  | $0.028 \pm 0.037$  |
|          | 06/08/04           | $0.000 \pm 0.023$  | $0.090 \pm 0.200$  | $0.009 \pm 0.055$  | $-0.077 \pm 0.083$ | $0.017 \pm 0.040$  | $-0.006 \pm 0.034$ |
|          | 09/08/04           | $-0.006 \pm 0.018$ | $-0.080 \pm 0.170$ | $-0.011 \pm 0.048$ | $-0.029 \pm 0.058$ | $-0.025 \pm 0.044$ | $0.010 \pm 0.029$  |
|          | 11/02/04           | $0.007 \pm 0.034$  | $-0.170 \pm 0.290$ | $0.033 \pm 0.081$  | $0.060 \pm 0.120$  | $-0.057 \pm 0.075$ | $0.009 \pm 0.057$  |

# Table 22, Lobsters (pCi/g wet)

Page 1 of 2

| Location | Collection<br>Date |                                        |                                          | Isotope                                  |                    |                                          |                                        |
|----------|--------------------|----------------------------------------|------------------------------------------|------------------------------------------|--------------------|------------------------------------------|----------------------------------------|
| 32       |                    | Ag-110m                                | Be-7                                     | Co-58                                    | Co-60              | Cr-51                                    | Cs-134                                 |
|          | 03/24/04           | $-0.004 \pm 0.015$                     | $-0.010 \pm 0.100$                       | $0.009 \pm 0.013$                        | $0.002 \pm 0.010$  | $0.030 \pm 0.150$                        | $0.003 \pm 0.011$                      |
|          | 06/01/04           | $0.010 \pm 0.031$                      | $0.030 \pm 0.200$                        | $-0.007 \pm 0.018$                       | $0.005 \pm 0.022$  | $0.160 \pm 0.220$                        | $-0.005 \pm 0.018$                     |
|          | 08/23/04           | $0.010 \pm 0.026$                      | $0.070 \pm 0.140$                        | $-0.002 \pm 0.017$                       | $-0.007 \pm 0.020$ | $0.130 \pm 0.170$                        | $-0.007 \pm 0.016$                     |
|          | 10/20/04           | $0.022 \pm 0.046$                      | $-0.080 \pm 0.260$                       | $-0.005 \pm 0.025$                       | $0.010 \pm 0.022$  | $0.140 \pm 0.360$                        | $0.006 \pm 0.036$                      |
|          |                    | Cs-137                                 | Fe-59                                    | I-131                                    | K-40               | Mn-54                                    | Nb-95                                  |
|          | 03/24/04           | $0.008 \pm 0.011$                      | $-0.001 \pm 0.036$                       | $0.110 \pm 0.120$                        | $2.140 \pm 0.290$  | $-0.006 \pm 0.011$                       | $0.023 \pm 0.018$                      |
|          | 06/01/04           | $0.022 \pm 0.028$                      | $0.052 \pm 0.073$                        | $0.017 \pm 0.073$                        | $2.220 \pm 0.620$  | $-0.016 \pm 0.021$                       | $-0.015 \pm 0.025$                     |
|          | 08/23/04           | $-0.008 \pm 0.018$                     | $0.016 \pm 0.053$                        | $-0.003 \pm 0.051$                       | $1.860 \pm 0.450$  | $-0.001 \pm 0.015$                       | $-0.016 \pm 0.019$                     |
|          | 10/20/04           | $-0.012 \pm 0.030$                     | $-0.030 \pm 0.110$                       | $0.040 \pm 0.110$                        | $2.450 \pm 0.830$  | $-0.011 \pm 0.025$                       | $-0.009 \pm 0.037$                     |
|          |                    | Ru-103                                 | Ru-106                                   | Sb-125                                   | Th-228             | Zn-65                                    | Zr-95                                  |
|          | 03/24/04           | $-0.009 \pm 0.017$                     | $0.010 \pm 0.100$                        | $0.016 \pm 0.026$                        | $0.042 \pm 0.045$  | $-0.014 \pm 0.026$                       | $0.007 \pm 0.023$                      |
|          | 06/01/04           | $0.018 \pm 0.023$                      | $-0.230 \pm 0.240$                       | $-0.045 \pm 0.057$                       | $-0.027 \pm 0.078$ | $0.006 \pm 0.053$                        | $-0.003 \pm 0.037$                     |
|          | 08/23/04           | $-0.018 \pm 0.018$                     | $0.010 \pm 0.150$                        | $-0.011 \pm 0.039$                       | $0.025 \pm 0.058$  | $0.000 \pm 0.037$                        | $0.017 \pm 0.033$                      |
|          | 10/20/04           | $0.004 \pm 0.031$                      | $-0.090 \pm 0.210$                       | $-0.014 \pm 0.071$                       | $0.007 \pm 0.097$  | $-0.094 \pm 0.065$                       | $-0.013 \pm 0.056$                     |
| 35       |                    | Ag-110m                                | Be-7                                     | Co-58                                    | Co-60              | Cr-51                                    | Cs-134                                 |
|          | 03/11/04           | $0.004 \pm 0.005$                      | $0.019 \pm 0.048$                        | $0.003 \pm 0.005$                        | -0.002 ± 0.004     | $-0.077 \pm 0.082$                       | $0.002 \pm 0.004$                      |
|          | 06/01/04           | $0.007 \pm 0.003$                      | $0.040 \pm 0.180$                        | $-0.025 \pm 0.024$                       | $-0.002 \pm 0.031$ | $-0.030 \pm 0.190$                       | $-0.002 \pm 0.020$                     |
|          | 08/23/04           | $-0.003 \pm 0.017$                     | $0.110 \pm 0.120$                        | $-0.010 \pm 0.013$                       | $0.012 \pm 0.014$  | $-0.050 \pm 0.110$                       | $0.009 \pm 0.014$                      |
|          | 10/20/04           | $0.011 \pm 0.038$                      | $0.000 \pm 0.190$                        | $-0.030 \pm 0.022$                       | $0.018 \pm 0.022$  | $0.120 \pm 0.250$                        | $0.020 \pm 0.023$                      |
|          |                    | Cs-137                                 | Fe-59                                    | I-131                                    | K-40               | Mn-54                                    | Nb-95                                  |
|          | 03/11/04           | $0.005 \pm 0.004$                      | $-0.015 \pm 0.018$                       | $-0.040 \pm 0.110$                       | $1.630 \pm 0.150$  | $0.000 \pm 0.004$                        | $0.005 \pm 0.008$                      |
|          | 06/01/04           | $0.005 \pm 0.018$                      | $0.030 \pm 0.071$                        | $-0.008 \pm 0.059$                       | $2.100 \pm 0.630$  | $-0.006 \pm 0.021$                       | $0.005 \pm 0.032$                      |
|          | 08/23/04           | $0.004 \pm 0.014$                      | $-0.012 \pm 0.049$                       | $-0.013 \pm 0.036$                       | $2.130 \pm 0.450$  | $-0.004 \pm 0.013$                       | $-0.004 \pm 0.020$                     |
|          | 10/20/04           | $-0.002 \pm 0.023$                     | $0.000 \pm 0.072$                        | $-0.011 \pm 0.097$                       | $1.420 \pm 0.510$  | $0.003 \pm 0.019$                        | $-0.020 \pm 0.032$                     |
|          |                    | Ru-103                                 | Ru-106                                   | Sb-125                                   | Th-228             | Zn-65                                    | Zr-95                                  |
|          | 03/11/04           | $0.002 \pm 0.007$                      | $-0.025 \pm 0.038$                       | $0.003 \pm 0.010$                        | $0.024 \pm 0.040$  | $-0.007 \pm 0.010$                       | $0.003 \pm 0.010$                      |
|          | 06/01/04           | $0.001 \pm 0.021$                      | $0.040 \pm 0.190$                        | $-0.015 \pm 0.042$                       | $0.026 \pm 0.077$  | $-0.055 \pm 0.058$                       | $-0.001 \pm 0.042$                     |
|          | 08/23/04           | $-0.004 \pm 0.014$                     | $0.030 \pm 0.100$                        | $0.005 \pm 0.037$                        | $-0.004 \pm 0.047$ | $0.000 \pm 0.036$                        | $-0.006 \pm 0.030$                     |
|          | 10/20/04           | $0.007 \pm 0.023$                      | $-0.090 \pm 0.190$                       | $0.045 \pm 0.056$                        | $0.080 \pm 0.110$  | $0.050 \pm 0.110$                        | $-0.008 \pm 0.043$                     |
| 37-X     |                    | Ag-110m                                | Be-7                                     | Co-58                                    | Co-60              | Cr-51                                    | Cs-134                                 |
|          | 03/16/04           | $0.003 \pm 0.008$                      | $0.044 \pm 0.062$                        | -0.003 ± 0.008                           | $0.004 \pm 0.007$  | $-0.037 \pm 0.099$                       | $0.001 \pm 0.007$                      |
|          | 05/16/04 06/04/04  | $0.003 \pm 0.008$<br>$0.016 \pm 0.034$ | $-0.044 \pm 0.002$<br>$-0.040 \pm 0.170$ | $-0.005 \pm 0.008$<br>$-0.005 \pm 0.023$ | $-0.010 \pm 0.021$ | $-0.037 \pm 0.039$<br>$-0.030 \pm 0.220$ | $0.001 \pm 0.007$<br>$0.014 \pm 0.020$ |
|          | 09/20/04           | $0.010 \pm 0.034$<br>$0.006 \pm 0.026$ | $-0.100 \pm 0.170$                       | $0.006 \pm 0.025$                        | $0.025 \pm 0.029$  | $-0.030 \pm 0.220$<br>$-0.070 \pm 0.200$ | $0.008 \pm 0.022$                      |
|          | 11/09/04           |                                        | $-0.040 \pm 0.130$                       | $0.002 \pm 0.018$                        | $-0.004 \pm 0.017$ | $0.010 \pm 0.190$                        | $-0.015 \pm 0.017$                     |
|          |                    | Cs-137                                 | Fe-59                                    | I-131                                    | K-40               | Mn-54                                    | Nb-95                                  |
|          | 03/16/04           | $0.007 \pm 0.006$                      | $-0.023 \pm 0.029$                       | $-0.024 \pm 0.094$                       | $2.160 \pm 0.180$  | $0.004 \pm 0.006$                        | $-0.011 \pm 0.012$                     |
|          | 06/04/04           | $-0.010 \pm 0.025$                     | $0.004 \pm 0.077$                        | $0.024 \pm 0.049$                        | $2.220 \pm 0.660$  | $-0.003 \pm 0.019$                       | $0.002 \pm 0.029$                      |
|          | 09/20/04           |                                        | $0.007 \pm 0.075$                        | $-0.015 \pm 0.046$                       | $2.000 \pm 0.580$  | $0.000 \pm 0.018$                        | $-0.024 \pm 0.030$                     |
|          | 11/09/04           | $-0.002 \pm 0.018$                     | $-0.025 \pm 0.057$                       | $0.000 \pm 0.075$                        | $2.310 \pm 0.450$  | $0.011 \pm 0.018$                        | $0.007 \pm 0.036$                      |

# Table 22, Lobsters (pCi/g wet)

Page 2 of 2

| Location | Collection<br>Date | on Isotope         |                    |                    |                    |                    |                    |  |  |
|----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|--|
| 37-X     |                    | Ru-103             | Ru-106             | Sb-125             | Th-228             | Zn-65              | Zr-95              |  |  |
|          | 03/16/04           | $-0.005 \pm 0.009$ | $0.013 \pm 0.048$  | $0.001 \pm 0.014$  | $0.002 \pm 0.027$  | $-0.002 \pm 0.016$ | $0.001 \pm 0.014$  |  |  |
|          | 06/04/04           | $-0.014 \pm 0.021$ | $-0.030 \pm 0.190$ | $-0.066 \pm 0.056$ | $0.008 \pm 0.076$  | $0.000 \pm 0.065$  | $0.028 \pm 0.038$  |  |  |
|          | 09/20/04           | $-0.013 \pm 0.022$ | $-0.090 \pm 0.220$ | $-0.029 \pm 0.057$ | $-0.010 \pm 0.100$ | $-0.069 \pm 0.055$ | $0.006 \pm 0.046$  |  |  |
|          | 11/09/04           | $0.009 \pm 0.018$  | $0.010 \pm 0.130$  | $0.013 \pm 0.039$  | $0.052 \pm 0.064$  | $0.009 \pm 0.080$  | $-0.005 \pm 0.028$ |  |  |

# **NOTES FOR DATA TABLES**

| *           | All Second Quarter TLD's were lost (CR-04-07177, also see       |
|-------------|-----------------------------------------------------------------|
|             | Section 2.2 for more details)                                   |
| #           | Collection Dates for Air Particulates and Iodines are listed as |
|             | Monday -Sunday, however the typical change-out days are         |
| <u> </u>    | on Tuesdays                                                     |
| A           | Low volume (6337 cubic feet) caused by GFI failure (see CR-     |
| <u> </u>    | 04-04034)                                                       |
| В           | Low volume (6275 cubic feet) caused by power outage (see        |
|             | AFI #1, REMP Self Assessment Report MP-SA-04-09)                |
| C           | Low volume (392 cubic feet) caused by blown fuse (CR-04-        |
|             | 07008)                                                          |
| D           | Low volume (4020 cubic feet) due to GFI breaker trip (CR-04-    |
|             | 1114)                                                           |
| E           | Low error since sensitivity was increased due to overnight      |
|             | count                                                           |
| F           | Hay samples                                                     |
| G           | No samples of hay obtained in December since property and       |
|             | goats were sold                                                 |
| H           | Only 1 liter of sample obtained in March. Insufficient size to  |
|             | perform all analyses, therefore vendor did not perform H-3      |
|             | analyses. Onsite analysis of the water from these wells         |
|             | indicated H-3 was less than 1740 pCi/liter (LLD value, 4.66     |
| ļ           | σ)                                                              |
| I           | First Quarter flounder samples were not available (18 trawls    |
| <del></del> | made without any fish six inches or larger being obtained)      |
| J           | High error due to inadequate sample analysis scheduling         |
| 75          | (Framatome CR)                                                  |
| K           | During December the sample tray located at Black Point was      |
|             | missing. High winds and stormy sea conditions caused tray       |
|             | to be ripped from its chain bridle; tray found washed-up on     |
|             | shore and badly damaged. All oysters were lost.                 |

## 4. DISCUSSION OF RESULTS

This section summarizes the results of the analyses of environmental media sampled. DNC has carefully examined the data throughout the year and has presented in this section all cases where station related radioactivity could be detected. The results are compared with previous environmental surveillance data. Few impacts of the station operation on the environment were observed. Sub-sections contain a description of each particular media or potential exposure pathway.

Naturally occurring nuclides such as Be-7, K-40, and Th-228 were detected in numerous samples. Be-7, which is produced by cosmic processes, was observed predominantly in airborne and vegetation samples. Th-228 results were variable and are generally at levels higher than plant related radionuclides.

Cs-137 and Sr-90 were observed at levels similar to those of past years. The levels of Cs-137 and Sr-90 detected were the result of atmospheric nuclear weapons testing in the 1960's.

## 4.1. Gamma Exposure Rate (Table 1)

Gamma exposure rate is determined from the integrated exposure measured over a quarter using  $CaSO_4(Tm)$  Panasonic model UD-804 ASx thermoluminescent dosimeters (TLDs). In 2000, the TLDs (Victoreen glass bulb  $CaF_2(Mn)$ ), which historically were used to measure radioactivity around Millstone for over 20 years, were replaced with the Panasonic TLDs.

The dosimeters are strategically placed at a number of on-site locations, as well as at inner and outer off-site locations. Starting in 2001, the collection of TLDs was changed from monthly to quarterly and additional measurement locations were incorporated into the REMODCM. Three more locations were added in mid-2003 to prepare for monitoring the potential effect of ISFSI (Independent Spent Fuel Storage Installation – Dry Cask Storage).

Three more locations (73X, 74X and 75X were added in mid-2003 to prepare for monitoring the potential effect of the Independent Spent Fuel Storage Installation – Dry Cask Storage (ISFSI). Two storage containers are scheduled to be loaded with spent fuel assemblies in the first quarter of 2005. The exposure backgrounds from these three locations will be used to determine the radiological effects in the vicinity of the ISFSI by comparing to future measurements. The average exposure rate measured over the one and a half years at these locations was: 9.5 uC/hr at location 73X; 7.6  $\mu$ R/hr at location 74X; and 6.9  $\mu$ R/hr at location 75X.

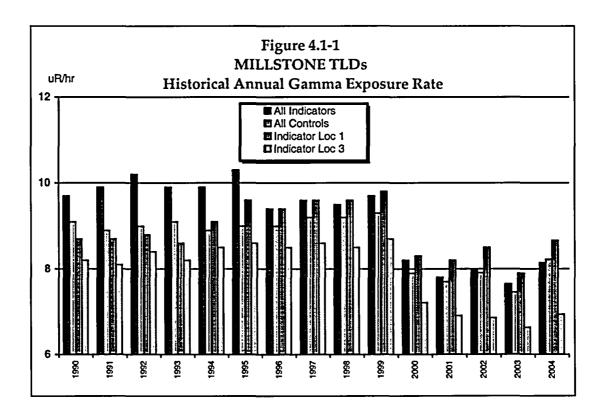
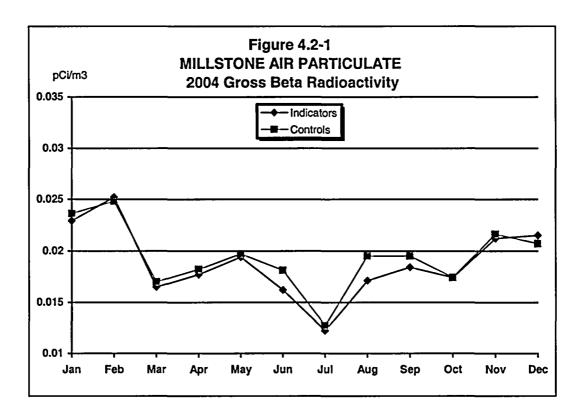

Table 1 lists the exposure rate measurements for all 44 monitored locations. Trends similar to those of past years are apparent. These measurements demonstrate the general variations in background radiation between the various on-site and off-site locations and include gamma exposure from all sources of radioactivity. For example, the Weather Shack (location 02), MP3 Discharge (location 05), Environmental Laboratory (location 08), Corey Road (location 48) and Site Switchyard Fence (location 73X) experience higher exposure rates due to their proximity to granite beds and stonewalls. In addition, the Ledyard control location (location 14C) experiences relatively higher background exposure rate than the other control locations at Mystic, Norwich, and Old Lyme (locations 13C, 15C, and 16C). The only appreciable effect seen in the TLD data is that attributable to the variation in the background radiation that is consistent with previous years.

Figure 4.1-1 shows a historical trend of TLD exposure rate measurements, comparing an annual average of all indicator TLDs, an annual average of all control TLDs, and the annual average of the two most critical indicator locations which are used to represent the two closest site boundary residences in the Northnorthwest and Northeast directions. Examination of the average measurements since 1990, shows interesting site changes and site characteristics. For example, the average of all indicator locations for the period when Unit 1 was still in operation (through 1995) display the effects of N-16 BWR turbine building sky-shine to immediate areas onsite. As discussed in previous annual reports, the effects of sky-shine at onsite monitoring stations were increases as high as 6 µR/hr at certain onsite locations. Sky-shine decreased rapidly with distance and was indistinguishable from normal background measurements at even the nearest offsite monitoring stations. Also apparent in Figure 4.1-1 is the replacement of the historical Victoreen TLD monitoring system with the Panasonic system in year 2000. The difference in response between the two systems is very apparent, with the new Panasonic TLDs reading 15% to 20% lower. This lower response is consistent for all locations, including both indicator and control locations.

The figure also relates the difference in critical indicator locations (1) and (3) and the annual average of all indicator TLDs to the annual average of the control TLDs collected and measured during coincident periods throughout the year. As discussed earlier, the exposure measurements of many indicator locations onsite are influenced by natural background exposure differences caused by the many granite out-croppings typical of the Millstone area. As shown in Figure 4.1-1, the annual average of the critical indicator

location is slightly higher in gamma exposure rate than the average control gamma exposure rate. This difference is the result of the nearby granite. For conservatism, if the difference was the result of plant operation (e.g., storage of radioactive waste on-site, gaseous effluents, etc.) an assessment of the resulting dose consequence, assuming constant year-round residency, is shown in Section 5 as not exceeding 3.9 mrem.


The Second Quarter TLDs were lost in transit to the vendor. Millstone also uses Area Monitoring TLDs around various areas of the RCA boundary as an indication of possible changes in site exposure. A review of the all four quarters of data from this independent program indicated a slight decrease in levels from 2003. Therefore, no effects of the plant were likely during the time frame when the environmental program TLDs were lost.



#### 4.2. Air Particulate Gross Beta Radioactivity (Table 2)

Air is continuously sampled at one outer ring and seven inner ring locations by passing it through glass fiber particulate filters. These are collected weekly and analyzed for gross beta radioactivity. Results are shown on Figure 4.2-1 and Table 2. Gross beta activity remained at levels similar to that seen over the last decade. Inner and outer ring monitoring locations continue to show no

significant variation in measured activities (see Figure 4.2-2). This indicates that any station contribution is not measurable.





#### 4.3. Airborne Iodine (Table 3)

Charcoal cartridges are included at all of the air particulate monitoring stations for the collection of atmospheric iodine. These cartridges are analyzed on a weekly basis for I-131. No detectable levels of I-131 were seen in the 2004 charcoal samples.

#### 4.4. Air Particulate Gamma (Table 4A-D)

The air particulate samples that are utilized for the weekly gross beta analyses are composited quarterly and analyzed for gamma emitting isotopes. The results, as shown in Tables 4A - 4D, indicate the presence of naturally occurring Be-7, which is produced by cosmic processes. No other positive results were seen. These analyses indicate the absence of station effects.

## 4.5. Air Particulate Strontium (Table 5)

Table 5 in past years was used to report the measurement of Sr-89 and Sr-90 in quarterly composite air particulate filters. Because previous data has shown the lack of detectable station activity in this media, the requirement for these measurements was removed from the Radiological Effluent Monitoring Manual (REMM) and analyses have been discontinued. The fact that milk samples are a much more sensitive indicator of fission product existence in the environment, prompted the decision for discontinuation. In the event of widespread station related contamination or special events such as the Chernobyl incident, these measurements may be made. Historically, when world events created conditions that caused detectable measurements of these nuclides, no difference was noted between indicator and control locations. This further confirms that these detectable levels were not plant related.

#### 4.6. Soil (Table 6)

Millstone resumed collection of soil as a required media type in 2001. Prior to 2001, it had not been sampled for over fifteen years. The discontinuance of these samples was largely due to the fact that, previous sample results never indicated any detectable station activity. Similarly, no station detectable activity has been seen in soil samples taken since the resumption of these samples. The results of these samples, also allows for the determination of baseline activity levels in soil. This is particularly important for Cs-137, since significant levels from past weapons testing fallout

remain in the soil. Baseline levels will prove useful years from now when site characterization and decommissioning of the station become the focus during preparations for License termination. This media is collected quarterly from one control and two indicator locations.

#### 4.7. Cow Milk (Table 7)

The most sensitive indicator of fission product existence in the terrestrial environment is usually milk samples. combination with the fact that milk is a widely consumed food, results in this pathway usually being one of the most critical pathways. Since 1996 all dairy (cow) farms close enough to Millstone to be considered an indicator location (i.e. within 10 miles) have been out of business. Therefore, the sampling of cow milk has been discontinued until such time that a new dairy farm starts business. Each year a Land Use Census is used to identify locations of milk animals that should be included in the monitoring program. It is performed annually and is maintained by observations, door-to-door surveys and consulting with local agriculture authorities. The 2004 census can be seen in Appendix A. If a new dairy farm is identified within a distance from Millstone to be considered an indicator location, the collection of cow milk will resume.

#### 4.8. Goat Milk (Table 8)

These samples are collected when milk is available for consumption. The frequency is twice per month during grazing season (April through October) and once per month the remaining year. Each sample is analyzed for I-131 and gamma emitting nuclides. The samples collected within each quarter are composited for each sample location and analyzed for Strontium.

Goat milk samples are typically a more sensitive indicator of fission products in the terrestrial environment than cow milk samples. The uptake of radionuclides in milk is dependent on a number of parameters, including: metabolism of these animals, feeding habits, and feed type. Similar to previous years, Cs-137 and Sr-90 were observed in goat milk. During past weapons testing periods, samples taken at certain milk locations indicated higher uptake of fallout than others. This was especially apparent in past samples collected in the immediate area around Millstone (see previous Annual Operating Reports). One of these sites, location 22 (5.2 Mi. NNE, sampled only since1994), exhibits this trend showing higher

Sr-90 and Cs-137 concentrations than at some other locations, including ones closer to Millstone. The presence of Sr-90 and Cs-137 is the result of residual radioactivity deposited into the environment from the fallout of past nuclear weapons testing. The facts that lead to this conclusion are presented in Section 6.0. These include: effluent release totals for these isotopes show insufficient quantities to account for such measurements; Sr-89 and Cs-134 which are chemically similar and generally released in comparable quantities were not detected, and a trend since the early 1960's that shows a consistent declining presence of Cs-137 and Sr-90 in milk produced in Connecticut.

The results indicate no detectable I-131 in this media. No plant related detectable levels of I-131 have been seen in goat milk samples for approximately 20 years. The only other occasions where I-131 was detected were the Chinese Weapons Tests of the mid to late 1970's and the fallout from Chernobyl.

Goat milk was unavailable at all locations both early and late in the year. Per requirements, pasture grass or feed is collected as a substitute when milk cannot be collected (see 4.9. Pasture Grass and Feed).

## 4.9. Pasture Grass and Feed (Table 9)

When the routine milk samples are unavailable, samples of pasture grass are required as a replacement. These samples may also be taken to further investigate the levels of radioactivity in milk. During the winter months and early spring, insufficient growth often prohibits sampling of pasture grass. Feed (e.g., hay) is typically sampled whenever pasture grass is unavailable.

No station effects were seen in pasture grass and feed samples. Cosmic produced Be-7 was observed in the majority of the pasture grass samples and the fourth quarter hay samples. Due to its relatively short half-life (52 days), it was not detected in the hay samples. The K-40 (naturally occurring nuclide) was a factor of two times higher in hay (compared to pasture grass). Similar to goat milk, the Cs-137 values at indicator and control locations are comparable and would indicate that the levels observed are the result of residual weapons testing fallout.

#### 4.10. Well Water (Table 10)

Millstone resumed collection of well water as a required media type in the fourth quarter of 2003. It was discontinued in 1986 since

no detectable station activity was ever observed. However, to better assure prompt indication of any potential effects of plant operation, the analysis of these samples has resumed. No station detectable activity is seen in the well water samples taken in 2004.

## 4.11. Reservoir Water (Table 11)

Reservoir water samples are special samples not required by the REMM. Previous data has shown the lack of detectable station activity in this media. This fact, and the extremely unlikely possibility of observing routine station effluents in this media have resulted in discontinuing these samples. In the event of widespread station related contamination, these samples may be collected.

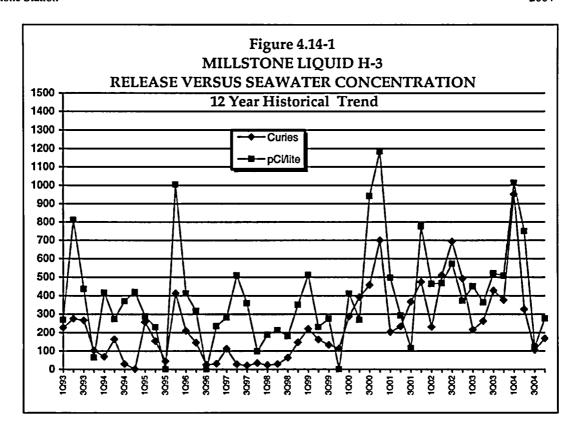
# 4.12. Fruits and Vegetables (Table 12)

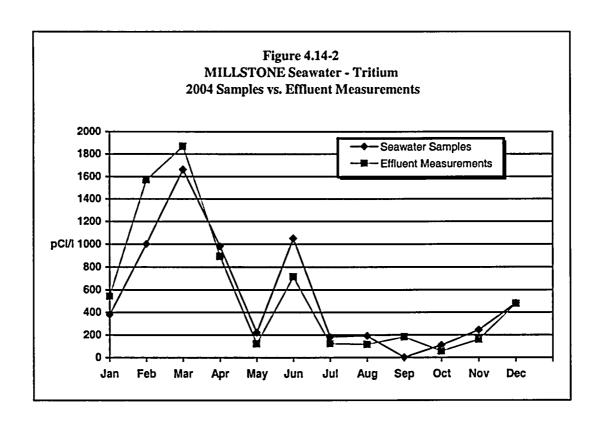
Consistent with past years, this media did not show any station effects. Cosmic produced Be-7 was noted in the indicator lettuce and swiss chard samples. Naturally occurring K-40 was detected in all samples.

#### 4.13. Broad Leaf Vegetation (Table 13)

This media can be an early and sensitive indicator of releases from the station from both unplanned releases and normal operations. Therefore, to enhance program-monitoring effectiveness, samples of broadleaf vegetation are collected monthly during the growing season, April - October, even though requirements are to collect twice a year.

Most samples had detectable levels of cosmic produced Be-7. Positive indications of Cs-137 were observed in two samples. The levels are due to fallout and are comparable to those observed in past years. This media did not show any station effects.


#### 4.14 Seawater (Table 14)


Seawater samples from the Vicinity of Discharge (32) are obtained from a continuous sampler located at the end of the quarry (where the station discharge is undiluted). The samples from this location are collected weekly and composited for monthly analyses. Samples from Giants Neck (37C) are quarterly composites of weekly grab samples. Millstone increased the required sampling

frequency for composite samples from the Vicinity of Discharge to a monthly basis to increase monitoring effectiveness. In 2003, the LLD for H-3 was lowered by approximately a factor of four to further enhance monitoring effectiveness. This lower LLD was continued in 2004.

Naturally occurring K-40 was seen all but two of the samples. Measured plant related levels of H-3 in seawater from the immediate vicinity of discharge (location 32) were observed in seven of the 12 samples (slightly less frequent then in 2003). As discussed above, this sample is taken directly from liquid effluent flow prior to dilution into the Long Island Sound. Dilution studies performed on this discharge have determined that a dilution factor of 3 is appropriate to estimate concentrations immediately outside the quarry within a near-field area.

Tritium builds up in the reactor coolant in each fuel cycle. It is generated during operation from fission and neutron reactions. For approximately the last 10 years, H-3 has typically been below detectable levels because of the change in analysis technique. Figure 4.14-1 shows a ten-year trend of tritium releases in Millstone liquid effluents versus measured environmental concentrations from the vicinity of discharge location. As can be noted from the figure, since the restart of Unit 3 in 1998 and Unit 2 in 1999, tritium releases in liquid effluents have risen to levels at, or above, those observed during the pre-shutdown period. A review of previous years' trends indicated that lowering the LLD for tritium for location 32 would make an enhancement to the monitoring program. The lower LLD enables a direct comparison of effluent monitoring to environmental monitoring for this exposure pathway. Figure 4.14-2 shows this comparison. This comparison is also more accurate than Figure 4.14-1 since it takes into account the dilution flow during each month. This flow can change substantially during plant outages. By plotting the data monthly, the resolution of the comparison is also enhanced.





#### 4.15. Bottom Sediment (Table 15)

Similar to last year, Cs-137 was detected in the samples from Golden Spur (67X). This is an estuarine area at the mouth of a small brook where sediments are covered with freshwater during ebb tides nearly every day. The levels of Cs-137 at this location are comparable to those observed in past river water sediments taken from the Connecticut River. Because of the relative distance and direction of the Golden Spur location from the station and comparable levels are seen at even much farther locations, the Cs-137 detected at Golden Spur is from weapons testing fallout.

Cs-137 was also detected once (fourth quarter sample) in samples from West Jordan Cove (29) and twice (third and fourth quarter "extra" samples) in the samples from Jordon Cove Bar (39X). The levels at Jordan Cove Bar are similar to those at Golden Spur and likely exhibit the effect of the fresh water drainage from Jordan Brook. The levels at West Jordan Cove were significantly less. Although these levels may be the result of fallout, the samples from Jordan Cove Bar also indicated detectable quantities of Co-60.

Therefore, these levels are considered plant related activity. Excluding the even smaller levels that were detected last year, plant related activity has not been detected in bottom sediment for over a decade. The levels detected are comparable to the levels observed in 1990. Bottom sediment is not a dose pathway to man and therefore the presence of radioactivity in bottom sediment does not pose any dose consequences. Examinations of aquatic media sampled from the same sampling locations (discussions that follow) do not show any detectable Co-60 or Cs-137.

#### 4.16. Aquatic Flora (Table 16)

Sampling of this media provides useful information since it is very sensitive to station discharges. However, similar to the last several years, no station related radioactivity was detected in aquatic flora in 2004. Although one sample from Black Point (36) had a positive indication of I-131, it was not detected at any of the locations closer to the station (locations 29,32 and 35) and not detected in follow-up samples taken three weeks later. The vendor noted that this sample had an unusual odor indicating that it may have been contaminated with some type of waste. Therefore, this unusual positive result is suspected to be the result of contamination with residual activity from the medical administration of this nuclide.

#### 4.17. Fish (Tables 17A and 17B)

#### 4.17.1. Flounder (Table 17A)

The activity in Flounder is the same as that seen for the past decade. No activity was observed except for the naturally occurring nuclides.

#### 4.17.2. Fish - Other (Table 17B)

The activity in other fish is the same as that seen for the past decade. No activity was observed in this media except for naturally occurring nuclides, including samples taken from within the quarry.

#### 4.18. Mussels (Table 18)

Similar to the last several years, this sampling media showed no station related radioactivity at all locations.

#### 4.19. Oysters (Table 19)

All locations, except for the quarry, utilize oysters stocked in trays. These oysters have been obtained from location 68Z for the last several years. To enhance the program, the oysters from location 68Z have also been analyzed. Trays are kept at most sampling areas to guarantee samples and facilitate sample collection. Native oysters are sampled at the Quarry (40X), which is an extra location.

Station related Ag-110m was observed in only two of the four samples from within the Vicinity of Discharge (32) and all four samples from the Quarry (40X). Although location 32 is labeled as the Vicinity of Discharge, for this sample type the actual location is actually at the end of the quarry (where the discharge water is still undiluted). No station related activity was observed in samples from beyond the station discharge area.

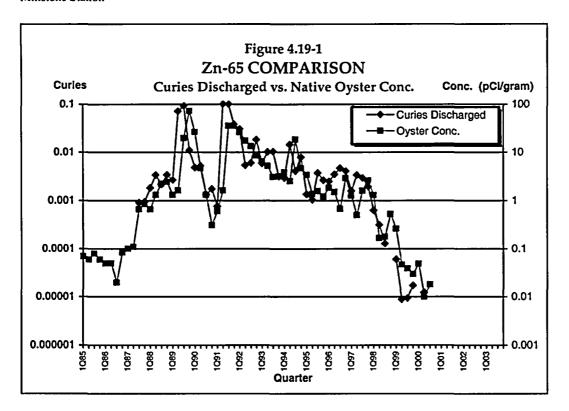
In years past, high levels of Zn-65 were typically observed in oysters caused by their high capacity for accumulating zinc. Studies have shown that oysters can accumulate as much as 50 times or more the amount of zinc compared to most other seafood (Wolfe, 1979). A remarkable correlation exists between the Zn-65 concentration measured in the native quarry oysters and the amount of Zn-65 discharged into the environment. However, since the permanent shutdown of Millstone Unit 1 in 1996, the

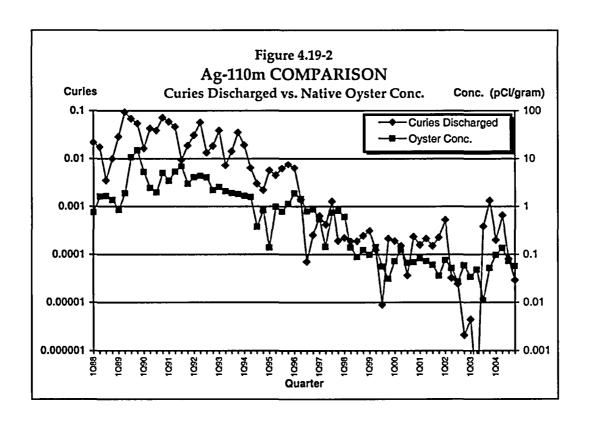
discharges of Zn-65 in liquid effluents have dropped to no detectable activity in station discharges. Starting in 2001, no Zn-65 has been released in liquid effluents and no Zn-65 has been detected in oysters. Figure 4.19-1, shows the historical trend that existed between Zn-65 releases and measured concentrations in quarry oysters. The decreasing trend in effluent radioactive releases is apparent in both the curies released and the measured concentrations in oysters.

Figure 4.19-2 shows a similar trend of Ag-110m concentration in quarry oysters compared with liquid effluent curies of Ag-110m discharged. Again, the dependency between Ag-110m discharged and the Ag-110m concentration measured in the native quarry ovsters is apparent. The historical sensitivity between station measured effluent discharges of Zn-65 and Ag-110m when compared to environmental measured concentrations has provided a basis for Millstone to adjust the bioaccumulation factors for Zn-65 and Ag-110m used in the standard industry effluent dose consequence codes. See Section 5 of this year's and previous years' Annual Radiological Environmental Operating Reports for a comparison of the two methods which has allowed for such adjustments in the past (i.e., dose from the station's measured radioactive discharges input into conservative models versus actual measurements of the concentrations of radioactivity in environmental media to calculate annual dose commitment from consumption).

Because no station activity was observed at locations beyond the station discharge area and since the two locations in the quarry are on-site and not available for public use, the actual concentration of the nuclides in oysters available for public consumption is much less. The near-field dilution factor for liquid discharges from the Millstone quarry discharge is a factor of 3. The dose consequence of the station related radioactivity via this pathway is discussed in **Section 5.0**.

#### 4.20. Clams (Table 20)


Occasionally this media indicates the presence of station related radioactivity. No station related radioactivity was observed in any of the clam samples taken in 2004.


## **4.21.** Scallops (Table 21)

Scallops are not required by the REMM. However, attempts are made to sample this media to confirm station effects because scallops are available for public consumption. No scallop samples were available in 2004.

## 4.22. Lobsters (Table 22)

Like the last several years, no station related radioactivity was detected in this sample media in 2004.





# 5. OFFSITE DOSE EQUIVALENT COMMITMENTS

The off-site dose consequences (dose equivalent commitments) of the stations' radioactive liquid and airborne effluents have been evaluated using two methods.

The first method utilizes calculations of direct dose from sources onsite and the stations' measured radioactive discharges as input parameters into conservative models to simulate the transport mechanism through the environment to man. This results in the calculation of the maximum dose consequences to individuals. The results of these computations have been submitted to the NRC in the Radioactive Effluent Release Report written in accordance with the Radiological Effluent Monitoring Manual, Section I.F.2. This method, which is usually conservative (i.e., computes higher doses than that which actually occur), has the advantage of approximating an upper bound to the dose consequences. This is important in those cases where the actual dose consequence cannot be measured because they are so small as to be well below the capabilities of conventional monitoring techniques.

The second method utilizes the actual measurements of the concentrations of radioactivity in various environmental media (e.g., fish, shellfish) and then computes the dose consequences resulting from the consumption of these foods.

The results of both methods are compared in Table 5.1 for those pathways where a potential dose consequence exists and a comparison is possible. The doses presented in this table are calculated at the location of maximum effect from the station effluents for that pathway and for the critical age group. For example, the external gamma dose from gaseous effluents is calculated for the site boundary location which is not only the nearest but also has the greatest directional wind frequency and fish and shellfish doses are calculated assuming they are from an area within 500 feet of the station discharge.

Summarizing the data in Table 5.1:

MAXIMUM TOTAL INDIVIDUAL DOSES:

WHOLE BODY = 0.17 mrem

GI(LLI) = 0.011 mrem

The organ GI(LLI) (Gastrointestinal Tract, Lower Large Intestine) dose is essentially all attributable to the liquid pathway. The majority of the whole body dose is due to a conservative determination of dose (~0.14 mrem) to the nearest resident as a result of direct radiation from on-site radioactive waste operation/storage facilities and continuous occupancy. The whole body and maximum organ dose attributable from station effluents includes conservative assessments using Method 2.

Dominion Nuclear Connecticut, Inc. Millstone Station

Since the maximum dose consequence to an individual is at the location of highest dose consequence, doses will be less for all other locations. The average whole body dose to an individual within 50 miles historically is on the order of 1000 times less than the maximum individual whole body dose.

To provide perspective on the doses in Table 5.1, the standards for 2004 on the allowable maximum dose to an individual of the general public are given in 40CFR190 as 25 mrem whole body, 75 mrem thyroid, and 25 mrem to any other organ. These standards are a fraction of the normal background radiation dose of approximately 284 mrem per year and are designed to be inconsequential in regard to public health and safety. Since station related doses are even a smaller fraction of natural background, they have insignificant public health consequences. In fact, the station related doses to the maximum individual are less than 10% of the variation in natural background in Connecticut.

# TABLE 5.1 COMPARISON OF DOSE CALCULATION METHODS MILLSTONE POWER STATION 2004 Annual Dose (millirem)

|                         |                    |            |                 | Meth            | od 1 <sup>(1)</sup> | rania (h. 1997)<br>1902 - Maria Maria (h. 1997)<br>1903 - Maria (h. 1908) | Method 2 <sup>(1)</sup> |
|-------------------------|--------------------|------------|-----------------|-----------------|---------------------|---------------------------------------------------------------------------|-------------------------|
| Pathway                 | Individual         | Organ      | Unit 1<br>(BWR) | Unit 2<br>(PWR) | Unit 3<br>(PWR)     | Station<br>Total                                                          | Station                 |
| Airborne Effluents      |                    |            |                 |                 |                     |                                                                           |                         |
| External Gamma     Dose | Max <sup>(2)</sup> | Whole Body | 0.0024          | 0.0019          | 0.022               | 0.026                                                                     | NDØ                     |
| Direct Dose             |                    |            |                 |                 |                     |                                                                           |                         |
| Nearest Residence       | Max <sup>(2)</sup> | Whole Body | N/A             | N/A             | N/A                 | ~0.14(4)                                                                  | <3.9 <sup>(5)</sup>     |

TABLE 5.1 (Cont.)

# COMPARISON OF DOSE CALCULATION METHODS

## MILLSTONE POWER STATION

# 2004 Annual Dose (millirem)

|                  | Max                      |                             |                                  | Method                           | [10]                          |                               | Method 2 <sup>(1)</sup>                         |
|------------------|--------------------------|-----------------------------|----------------------------------|----------------------------------|-------------------------------|-------------------------------|-------------------------------------------------|
| Pathway          | Individual               | Organ                       | Unit 1<br>(BWR)                  | Unit 2<br>(PWR)                  | Unit 3<br>(PWR)               | Station<br>Total              | Station                                         |
| Liquid Effluents |                          |                             |                                  |                                  |                               |                               |                                                 |
| 1. Fish          | * Adult<br>Teen<br>Child | Whole Body<br>"             | 0.000004<br>0.000002<br>0.000001 | 0.00012<br>0.00010<br>0.00010    | 0.00063<br>0.00057<br>0.00059 | 0.00076<br>0.00067<br>0.00069 | ND <sup>(3)</sup>                               |
|                  | * Adult<br>Teen<br>Child | GI(LLI) <sup>(6)</sup><br>" | 0.000001<br>0.000001<br>0.000001 | 0.00076<br>0.00055<br>0.000023   | 0.0047<br>0.0034<br>0.0014    | 0.0055<br>0.0040<br>0.0016    | ND                                              |
|                  | Adult<br>* Teen<br>Child | Liver<br>"<br>"             | 0.000005<br>0.000005<br>0.000004 | 0.00022<br>0.00021<br>0.00019    | 0.0013<br>0.0013<br>0.0012    | 0.0015<br>0.0015<br>0.0014    | ND                                              |
| 2. Shellfish     | * Adult<br>Teen<br>Child | Whole Body<br>"             | 0.000001<br>0.000000<br>0.000000 | 0.000080<br>0.000076<br>0.000094 | 0.00056<br>0.00056<br>0.00068 | 0.00064<br>0.00064<br>0.00078 | 0.000013 <sup>(8)</sup><br>0.000014<br>0.000015 |
|                  | * Adult<br>Teen<br>Child | GI(LLI)<br>"<br>"           | -<br>-<br>-                      | 0.0010<br>0.0007<br>0.0003       | 0.0041<br>0.0029<br>0.0011    | 0.0051<br>0.0036<br>0.0014    | 0.0091 <sup>(8)</sup><br>0.0063<br>0.0022       |
|                  | Adult<br>* Teen<br>Child | Liver<br>"                  | 0.000001<br>0.000001<br>0.000001 | 0.00023<br>0.00023<br>0.00024    | 0.0016<br>0.0017<br>0.0016    | 0.0018<br>0.0019<br>0.0019    | 0.000022 <sup>(8)</sup><br>0.000022<br>0.000019 |

#### Notes:

- 1. Except for direct dose, method 1 uses measured station discharges and meteorological data as input parameters to transport-to-man models that conservatively calculate dose to people; method 2 uses actual measured concentrations in environmental media to estimate the dose.
- 2. Maximum individual The maximum individual dose is the dose to the most critical age group at the location of maximum concentration of station related activity. The dose to the average individual is much less than the maximum individual dose.
- 3. ND Not Detectable No station related activity could be detected above natural background or above the minimum detectable level (MDL).
- 4. The dominant source of direct dose from the station is from operation/storage of radioactive waste facilities. Storage of radioactive waste in areas designated onsite is limited by design and operation to ensure that the maximum direct dose from each area at the site boundary does not exceed one millirem. Actual exposure from each facility throughout the year was maintained much less than this operational limit. Each facility is monitored onsite by the Radiation Protection Department using TLDs. The exposure measured for each facility TLD was corrected for distance to the nearest site boundary residence. The resultant exposure was conservatively multiplied by 1.5 to account for skyshine. These maximum estimated doses from each facility were summed for a cumulative site commitment of approximately 0.14 millirem. The whole body dose from liquid effluents was 0.00175, which results in a total estimated whole body dose to the maximum individual of 0.168 mrem (0.14+.0261+.00175).
- 5. Measured dose was derived from quarterly TLD readings. There are two residences that qualify as the closest residence; each has a TLD near enough to use as an estimate to each residence. The one with the highest average dose rate was used to estimate the direct dose to the closest residence. A background dose rate was subtracted. This background was derived from the average of the five control TLD locations. This method is very conservative assuming natural exposure influences, such as granite, are actually plant related exposure. This method provides a bounding high value. The exposure measurements of the select indicator locations are influenced by natural background exposure differences caused by the many granite out-croppings typical of the Millstone area. Historical data evaluation has shown that TLD sample locations in the vicinity of granite can be dramatically influenced by natural radioactivity contained within the granite.
- 6. GI (LLI) Gastrointestinal Tract Lower Large Intestine.
- 7. ND Not Detectable measurements for 2004 show no detectable station related activity. TLD's cannot detect levels that are such a small fraction of natural background.
- 8. Based on measured levels in quarry oysters. A measured near field dilution factor of 3 was used to adjust for the fact that these oysters are on-site and inaccessible to the public. This factor adjusts the measured on-site concentration to that which could occur to a public accessible off-site location after dilution of the effluent by the Long Island Sound.

## 6. DISCUSSION

The evaluation of the effects of station operation on the environment requires the careful consideration of many factors. Those factors depend upon the media being affected. They include station release rates, effluent dispersion, occurrence of nuclear weapons tests, seasonal variability of fallout, local environment, and locational variability of fallout. Additional factors affecting the uptake of radionuclides in milk include soil conditions (mineral content, pH, etc.), quality of fertilization, quality of land management (e.g., irrigation), pasturing habits of animals, and type of pasturage. Any of these factors could cause significant variations in the measured radioactivity. A failure to consider these factors could cause erroneous conclusions.

Consider, for example, the problem of deciphering the effect of station releases on the radioactivity measured in milk samples. This is an important problem because this product is widely consumed and several fission products readily concentrate in this media. Some of these fission products, such as I-131 and Sr-89 are relatively short-lived. Therefore they result from either station effluents, nuclear weapons tests or nuclear incidents (e.g. Chernobyl). Sr-89's lifetime is longer than I-131's, therefore it must be remembered that it will remain around for much longer periods of time. The even longer-lived fission products, Sr-90 and Cs-137, cause more of a problem. These isotopes are still remaining from the weapons testing era of the 1960's. This results in measurable amounts of Sr-90 and Cs-137 appearing in some milk samples. Distinguishing between this "background" of fallout activity and station effects is a difficult problem.

In reviewing the historical and present Sr-90 and Cs-137 measured in cow and goat milk in the areas around Millstone station, a casual observer could notice that in some cases the levels of these isotopes are higher at farms closer to the station than at those further away from the station. The station's effluents might at first appear to be responsible. However, the investigation of the following facts proves this conclusion wrong.

- (1) The stations accurately measure many fission products, including Sr-90 and Cs-137 in their releases. Based on these measurements and proven models developed by the Nuclear Regulatory Commission, concentrations in the environment can be calculated. These calculations (generally conservative, see Section 5.0) show that insufficient quantities of Sr-90 and Cs-137 have been released from the plants to yield the measured concentrations in milk.
- (2) Over the many years of station operation, Sr-89 has often been released in comparable quantity to Sr-90. Since they are chemically similar, comparable levels should have been detected in milk if the Sr-90 was station related. No station related Sr-89 has ever been detected in milk samples.

- (3) Similar to Sr-89, Cs-134 can be used as an indication of station related Cs-137. Although not as conclusive as Sr-89, the lack of any measurable Cs-134 in any of the milk samples suggests that the Cs-137 is not station related. This is further confirmed by the evaluation of the air particulate data. The only occurrences of detectable Cs-134 in milk resulted from the Chernobyl incident.
- (4) Dairy milk sampling in Connecticut began in the 1960's, several years prior to nuclear station operation. The highest levels of weapons fallout related Sr-90 and Cs-137 (see Figures 6-1 and 6-2), were measured in the years prior to station operation. Samples taken in the immediate station areas have always shown higher levels of weapons related fallout than samples taken from the Central Connecticut Region (CT Pooled Milk). Radioactivity levels of fallout related Sr-90 and Cs-137 have decreased significantly since the 1964 Nuclear Test Ban Treaty due to decay.
- (5) Local variability of Sr-90 and Cs-137 in milk is common throughout the United States. Due to the variability in soil conditions, pasturing methods, rainfall, etc., it is the rule rather than the exception. Therefore, it is not surprising that certain farms have higher levels of radioactivity than other farms. In fact, in the past there are some cases where the farms further from the station have higher Sr-90 and Cs-137 values than the farms that are closer to the station.
- (6) In the past when a goat farm operated near Millstone (2.0 Mi ENE), the highest levels of Sr-90 and Cs-137 were typically indicated. This same farm also experienced the highest levels of short-lived activity from the 1976 and 1977 Chinese Tests and the 1986 Chernobyl accident. This indicates that for some unknown reason this farm had the ability for higher reconcentration. Special studies performed at this and other farms failed to find any link to the station.

Based on these facts, the observation that the station effluents are responsible is obviously false. The cause must be one or more of the other variables.

Dominion has carefully examined the data throughout the years and has presented in this report all cases where station related radioactivity could be detected. An analysis of the potential exposure to the maximum individual from any station related activity has been performed and shows that in all cases the exposure is insignificant.

The Connecticut Department of Environmental Protection performs an independent check on certain environmental program analyses. The results of their analyses are comparable to the results from this program's analyses. These comparisons can be used as a cross-reference to verify measured station activity.

Figure 6-1 Strontium-90 in Milk

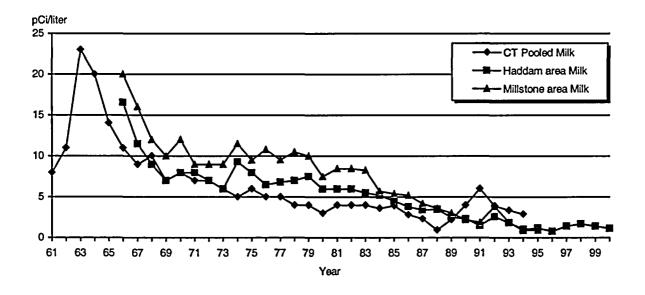
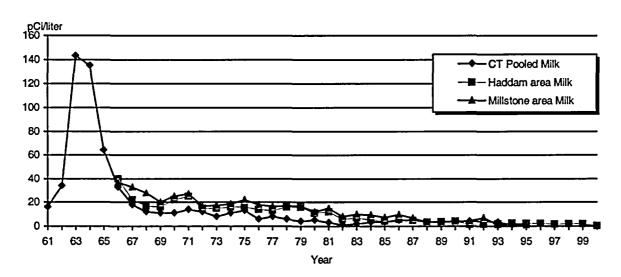




Figure 6-2 Cesium-137 in Milk



Dairy milk is no longer available in the Millstone area, Haddam Neck no longer collects milk, and CT Pooled milk has not been collected by the State of CT since 1994. Graphs provided to show historical trends.

CY Start-up occurred: July 24, 1967 MP2 Start-up occurred: December, 1975 MP3 Start-up occurred: January 23, 1986

# APPENDIX A

# **LAND USE CENSUS FOR 2004**

TABLE A-1

Dairy Cows Within 15 miles of Millstone Point- 2004

| Direction | Distance | # of Cows |
|-----------|----------|-----------|
| N         | 14 Mi    | 55        |
| NE        | 13.5 Mi  | 50        |
| WNW       | 11 Mi    | 80        |
| NNW       | 13 Mi    | 230*      |
| NW        | 10.3 Mi  | 9         |

Note: No cow farms on this list are used for sampling, all farms are greater than ten miles from plant.

A-2

<sup>\*</sup> Last year's numbers, unable to contact

TABLE A-2 Dairy Goats Within 20 miles of Millstone Point-2004

| Direction | Distance | Sample Location | # of Goats |
|-----------|----------|-----------------|------------|
| N         | 2 Mi     | LOCATION 21     | 6/5*       |
| N         | 20 Mi    |                 | 2/2        |
| NNE       | 5.2 Mi   | LOCATION 22     | 8/4        |
| NE        | 2.7 Mi   |                 | 4/0        |
| ENE       | 2 Mi     |                 | 1/0        |
| ENE       | 13 Mi    |                 | 2/0        |
| ENE       | 13.1 Mi  |                 | 5/1        |
| ENE       | 16.4 Mi  |                 | 16/10      |
| WNW       | 18.1 Mi  |                 | 6/2        |
| NW        | 14.1 Mi  |                 | 3/3        |
| NW        | 17.3     |                 | 6/3        |
| NNW       | 18.5 Mi  |                 | 28/8       |
| NNW       | 20.7 Mi  |                 | 6/2        |
| NNW       | 29 Mi    | LOCATION 24     | 68/22      |

Number of Goats/Number of Milkers Unable To Contact As Of This Time

 $\frac{\text{TABLE A-3}}{\text{2004 Resident/Garden Survey}^{\Theta}}$ 

| Downwind Direction | Distance to<br>Closest<br>Resident<br>(meters) | Distance to Closest Garden (meters) |
|--------------------|------------------------------------------------|-------------------------------------|
| N                  | 1500                                           | 1490                                |
| NNE                | 860                                            | 870                                 |
| NE                 | <b>7</b> 90                                    | 740                                 |
| ENE                | 1580                                           | 1580                                |
| E                  | 1500                                           | 1650                                |
| ESE                | 1690                                           | 1990                                |
| SE                 | *                                              | *                                   |
| SSE                | *                                              | *                                   |
| S                  | *                                              | *                                   |
| SSW                | *                                              | *                                   |
| SW                 | 3700                                           | 3840                                |
| WSW                | 3190                                           | 3210                                |
| W                  | 2870                                           | 2950                                |
| WNW                | 2470                                           | 2470                                |
| NW                 | <i>77</i> 0                                    | 2180                                |
| NNW                | 740                                            | 1020                                |

<sup>\*</sup> N/A - not applicable (over water sector)

<sup>&</sup>lt;sup>6</sup> Distances were measured in 2003 using GPS.

### **APPENDIX B**

## **DNC QA PROGRAM**

#### INTRODUCTION

Dominion Nuclear Connecticut (DNC) maintains an independent non-required quality assurance (QA) program as part of the radiological environmental monitoring program (REMP). The QA program consists of contractor appraisals and quality control samples. This independent program is applicable to all Dominion nuclear facilities because they share a joint contract with Framatome ANP DE&S Environmental Laboratory.

#### DNC QA PROGRAM

The DNC independent QA Program includes spikes of various sample media and duplicate samples. Sample spikes are a check on the accuracy of results of the contractor's radioanalyses. Duplicate samples tests the contractor's precision, or reproducibility of results, by comparing analytical results of split samples. The number and type of DNC QA Program quality control samples are defined in Millstone Nuclear Power Station Health Physics Operations Procedure RPM 2.9.13, "Quality Control of Radiological Environmental Monitoring Program Sample Analyses" and RPM 2.9.12, "Quality Control of the Environmental TLD Monitoring Program." An investigation is conducted on any result or trend that does not satisfy acceptance criteria.

### OTHER QA PROGRAMS

The DNC Independent QA Program is not the only QA Program which monitors REMP radioanalysis performance. Other programs include:

- 1. Contractor lab's internal QA program. In addition to the Millstone quality control samples, the radioanalysis contractor has it's own quality control samples. In total, at least five percent of the contractor's sample analyses include quality control samples.
- 2. Contractor lab's interlaboratary comparison program with an independent third party, Analytics, Inc. Results of the Analytics intercomparison are contained in Appendix C. Primary contractor participation in an interlaboratory comparison program is required by station Technical Specifications. The Analytics comparison satisfies this requirement.
- 3. Contractor lab's participation in the National Institute of Standards and Technology (NIST) Measurement Assurance Program (MAP), the Environmental Resource Associates (ERA) Proficiency Test (PT) Program, the Department of Energy (DOE) Quality Assessment Program (QAP), and the Mixed Analyte performance Evaluation Program (MAPEP). The lab participates in these interlaboratory QA programs because of other clients' needs, not because of nuclear power station environmental sample analyses. However, some of these intercomparison samples are also applicable to nuclear power environmental samples.

## RESULTS OF MILLSTONE QA PROGRAM FOR CONTRACTOR RADIOANALYSES

Criteria for passing QA sample analysis is that the result be within 20% of the known spike except in the case of Sr-89 or Sr-90 spikes in milk which have to be within 30% of the known spike. To allow more tolerance for lower activity spikes an alternate criterion may be used. If the two sigma error range of the analyzed result includes the known spike value the result passes.

The Millstone QA Program indicated that the contractor lab's environmental radiological analysis program was adequate in 2004. Results are shown on Table 2. All of the TLD spike tests satisfied procedural criteria. individual nuclide analysis results on QA samples, 79 passed the acceptance criteria, a 76% success rate. Since this is an unusually low success rate, the program was investigated. Two of the failures were for tritium analyses; one was just outside the two sigma acceptance criteria (difference was 2.09 sigma) and the other was a factor of two too low (seems to indicate half the spike was missed, since the routine results for seawater samples track remarkable well with the measured effluents, see Figure 4.14-2). Eighteen of the twenty-three other failures were noted for the gamma in water spikes. Self Assessment MP-SA-04-09noted this deficiency (AFI#7 in self assessment report). Followup review of the spiking process and sample preparation indicated a low bias (consistent with the low results) for the low range (adjustable) micropipette. The results for the December spikes significantly improved. Procedures have been revised to minimize the errors associated with pipette use.

TABLE 1 2004 QUALITY CONTROL SAMPLES

| SAMPLE TYPE                                    | OC SAMPLES (Note 1) | ROUTINE SAMPLES  |  |  |
|------------------------------------------------|---------------------|------------------|--|--|
| TLD Spike                                      | 16 (Note 2)         | 160              |  |  |
| Milk - Strontium                               | 2 (Note 3)          | 12               |  |  |
| Milk - Iodine                                  | 2                   | ~30              |  |  |
| Milk - Gamma                                   | (Note 4)            | ~30              |  |  |
| Pasture Grass/Hay - Gamma (Milk Substitute)    | 0                   | ~30              |  |  |
| Water - Gamma                                  | 12                  | 28               |  |  |
| Water - Tritium                                | 4                   | 28               |  |  |
| Fish/Invertebrate - Gamma                      | 4                   | 80               |  |  |
| Vegetation/Aquatic Flora/Sediment/Soil - Gamma | 0                   | 81               |  |  |
| Air Particulate - Gross Beta - Iodine - Gamma  | 6<br>2<br>4         | 416<br>416<br>32 |  |  |

#### FOOTNOTE (Table 1):

- 1. All samples are spikes except fish/invertebrate which are duplicate oyster samples.
- 2. A set of four TLDs are spike quarterly for readout during the routine quarterly readout.
- 3. One sample with Sr-89 and Sr-90 and one sample with Sr-90 only.
- 4. Gamma in water QA spikes are treated as milk surrogates.

TABLE 2 **RESULTS OF 2004 QUALITY CONTROL SAMPLE ANALYSES** 

|                  |   | TOTALS     | TLDs: 12    | TLDs: 0     |
|------------------|---|------------|-------------|-------------|
|                  | • | Gamma      | 15          | 4           |
|                  | - | Iodine     | 2           | 0           |
| Air Particulate  | - | Gross Beta | 6           | 0           |
| Oysters - Gamma  |   |            | 3           | 1           |
| Water - Tritium  |   |            | 2           | 2           |
| Water - Gamma    |   |            | 46 (Note 1) | 18 (Note 1) |
| Milk - Iodine    |   | (          | 2           | 0           |
| Milk - Strontium |   |            | 3 (Note 1)  | 0           |
| TLD Spike        |   |            | 12          | 0           |

Individual Nuclides: 79

Individual Nuclides: 25

(Note 2)

#### FOOTNOTE (Table 2):

1. To provide a more detailed comparison of pass versus failure, each nuclide was considered for the gamma and strontium analyses.

2. Self Assessment MP-SA-04-09 noted a significant failure rate for water spikes. The investigation noted a problem with the low range micropipette. Follow-up spikes resulted in a significant reduction in the failure rate.

### APPENDIX C

## **SUMMARY OF INTERLABORATORY COMPARISONS**

#### INTRODUCTION

This appendix covers the Intercomparison Program of the Framatome ANP Environmental Laboratory as required by technical specifications for each Millstone unit. Framatome uses QA/QC samples provided by Analytics, Inc to monitor the quality of analytical processing associated with the Radiological Environmental Monitoring Program (REMP). The suite of Analytics QA/QC samples are designed to be comparable with the pre-1996 US EPA Interlaboratory Cross-Check Program in terms of sample number, matrices, and nuclides. It was modified to more closely match the media mix presently being processed by Framatome and includes:

- > milk for gamma (10 nuclides) and low-level (LL) Iodine-131 analyses once per quarter,
- > milk for Sr-89 and Sr-90 analyses during the 1st and 3rd quarters,
- > water for gamma (10 nuclides) and low-level (LL) Iodine-131 analyses during the 1st and 3rd quarters,
- > water for Sr-89 and Sr-90 analyses during the 4th quarter,
- > water tritium analysis during the 2nd and 4th quarters,
- > air filter for gamma (9 nuclides) analyses during the 2nd quarter, and
- > air filter for gross beta analysis during the 1st and 3rd quarters.

In addition to the Analytics Intercomparison Program, Framatome also participates in other intercomparsion programs which include radionuclides and media similar to those required by the Millstone program. These programs are the National Institute of Standards and Technology (NIST) Measurement Assurance Program (MAP), the Environmental Resource Associates (ERA) Proficiency Test (PT) Program, the Department of Energy (DOE) Quality Assessment Program (QAP), and the Mixed Analyte Performance Evaluation Program (MAPEP).

#### RESULTS

Intercomparison program results are evaluated using FRAMATOME's internal bias acceptance criterion. The criterion is defined as within 25% of the known strontium value for samples containing both Sr-89 and Sr-90 and within 15% of the known value for other radionuclides, or within two sigma of the known value. Any sample analysis result which does not pass the criteria is investigated by FRAMATOME.

Analytics Intercomparison Program results are included on pages C-3 through C-6 for 2004. A total of 111 analysis results were obtained with 111 passing criteria, a 100% success rate.

## FRAMATOME ANP ENVIRONMENTAL LABORATORY ANALYTICS RADIOLOGICAL ENVIRONMENTAL CROSS-CHECK PERFORMANCE EVALUATION

|           |                |        |             |        |          |       | Ratio     |            |
|-----------|----------------|--------|-------------|--------|----------|-------|-----------|------------|
| Sample    | Quarter/       | Sample |             |        | Reported | Known | E-LAB/    |            |
| Number    | Year           | Media  | Nuclide     | Units  | Value    | Value | Analytics | Evaluation |
| E4057-162 | 1st/04         | Water  | Gross Alpha | pCi/L  | 72.3     | 74.5  | 0.97      | Acceptable |
| E4057-162 | 1st/04         | Water  | Gross Beta  | pCi/L  | 285.7    | 301   | 0.95      | Acceptable |
| E4058-162 | 1st/04         | Water  | 1-131       | pCi/L  | 94       | 90.2  | 1.04      | Acceptable |
| E4058-162 | 1st/04         | Water  | I-131LL     | pCi/L  | 88.7     | 90.2  | 0.98      | Acceptable |
| E4058-162 | 1st/04         | Water  | Ce-141      | pCi/L  | 87.5     | 85    | 1.03_     | Acceptable |
| E4058-162 | 1st/04         | Water  | Cr-51       | pCi/L_ | 335      | 326   | 1.03      | Acceptable |
| E4058-162 | 1st/04         | Water  | Cs-134      | pCi/L  | 86       | 89.7  | 0.96_     | Acceptable |
| E4058-162 | 1st/04         | Water  | Cs-137      | pCi/L  | 185.6    | 185   | 1.00      | Acceptable |
| E4058-162 | 1st/04         | Water  | Co-58       | pCi/L  | 113.2    | 112   | 1.01      | Acceptable |
| E4058-162 | 1st/04         | Water  | Mn-54       | pCi/L  | 112.3    | 114   | 0.99      | Acceptable |
| E4058-162 | 1st/0 <u>4</u> | Water  | Fe-59       | pCi/L  | 60.8     | 56.7  | 1.07      | Acceptable |
| E4058-162 | 1st/04         | Water  | Zn-65       | pCi/L  | 149.1    | 143   | 1.04      | Acceptable |
| E4058-162 | 1st/04         | Water  | Co-60       | pCi/L  | 151.4    | 153   | 0.99      | Acceptable |
| E4059-162 | 1st/04         | Water  | Sr-89       | pCi    | 107.7    | 123   | 0.88      | Acceptable |
| E4059-162 | 1st/04         | Water  | Sr-90       | pCi    | 14.85    | 14.5  | 1.02      | Acceptable |
| E4060-162 | 1st/04         | Filter | Gross Alpha | pCi/L  | 48.09    | 58.9  | 0.82      | Acceptable |
| E4060-162 | 1st/04         | Filter | Gross Beta  | pCi/L  | 231.1    | 218   | 1.06_     | Acceptable |
| E4061-162 | 1st/04         | Milk   | I-131       | pCi/L  | 77.73    | 77.7  | 1.00      | Acceptable |
| E4061-162 | 1st/04         | Milk   | I-131LL     | pCi/L  | 83.6     | 77.7  | 1.08      | Acceptable |
| E4061-162 | 1st/04         | Milk   | Ce-141      | pCi/L  | 92       | 85.2  | 1.08      | Acceptable |
| E4061-162 | 1st/04         | Milk   | Cr-51       | pCi/L  | 314      | 327   | 0.96      | Acceptable |
| E4061-162 | 1st/04         | Milk   | Cs-134      | pCi/L  | 88.7     | 90    | 0.99      | Acceptable |
| E4061-162 | 1st/04         | Milk   | Cs-137      | pCi/L  | 188.6    | 185   | 1.02      | Acceptable |
| E4061-162 | 1st/04         | Milk   | Co-58       | pCi/L  | 115      | 112   | 1.03      | Acceptable |
| E4061-162 | 1st/04         | Milk   | Mn-54       | pCi/L  | 114.7    | 114   | 1.01      | Acceptable |
| E4061-162 | 1st/04         | Milk   | Fe-59       | pCi/L  | 59.7     | 56.8  | 1.05_     | Acceptable |
| E4061-162 | 1st/04         | Milk   | Zn-65       | pCi/L  | 145.5    | 143   | 1.02      | Acceptable |
| E4061-162 | 1st/04         | Milk   | Co-60       | pCi/L  | 154.8    | 153   | 1.01      | Acceptable |
| E4062-162 | 1st/04         | Milk   | Sr-89       | рСi    | 86.2     | 103   | 0.84      | Acceptable |
| E4062-162 | 1st/04         | Milk   | Sr-90       | pCi    | 12.7     | 12.1  | 1.05      | Acceptable |

# FRAMATOME ANP ENVIRONMENTAL LABORATORY ANALYTICS ENVIRONMENTAL CROSS CHECK PROGRAM PERFORMANCE EVALUATION

| Sample             | Quarter/ | Sample |             |       | Reported | Known | Ratio<br>E-LAB/ |               |  |
|--------------------|----------|--------|-------------|-------|----------|-------|-----------------|---------------|--|
| Number             | Year     | Media  | Nuclide     | Units | Value    | Value | Analytics       | Evaluation    |  |
| E4182-162          | 2nd/04   | Water  | H-3         | pCi/L | 11680    | 11900 | 0.98            | Agreement     |  |
| E4183-162          | 2nd/04   | Filter | Gross Alpha | pCi   | 46.8     | 48.8  | 0.96            | Agreement     |  |
| E4183-162          | 2nd/04   | Filter | Gross Beta  | pCi   | 156      | 160   | 0.98            | Agreement     |  |
| E4184A-162         | 2nd/04   | Filter | Ce-141      | pCi   | 86       | 88.3  | 0.97            | Agreement     |  |
| E4184A-162         | 2nd/04   | Filter | Cr-51       | pCi   | 127      | 128   | 0.99            | Agreement     |  |
| E4184A-162         | 2nd/04   | Filter | Cs-134      | pCi   | 54       | 56.9  | 0.94            | Agreement     |  |
| E4184A-162         | 2nd/04   | Filter | Cs-137      | pCi   | 90       | 87.8  | 1.03            | Agreement     |  |
| E4184A-162         | 2nd/04   | Filter | Co-58       | pCi   | 27       | 26    | 1.03            | Agreement     |  |
| E4184A-162         | 2nd/04   | Filter | Mn-54       | pCi   | 42       | 39.7  | 1.06            | Agreement     |  |
| E4184A-162         | 2nd/04   | Filter | Fe-59       | pCi   | 27       | 25.1  | 1.09            | Agreement     |  |
| E4184A-162         | 2nd/04   | Filter | Zn-65       | pCi   | 62       | 56    | 1.11            | Agreement     |  |
| E4184A-162         | 2nd/04   | Filter | Co-60       | pCi_  | 92       | 96.8  | 0.95            | Agreement     |  |
| E4185-162          | 2nd/04   | Filter | Sr-89       | pCi   |          |       |                 | (1)           |  |
| E4185-162          | 2nd/04   | Filter | Sr-90       | pCi   |          |       |                 | (1)           |  |
| E4186-162          | 2nd/04   | Milk   | 1-131       | pCi/L | 55       | 58.2  | 0.95            | Agreement     |  |
| E4186-162          | 2nd/04   | Milk   | 1-131LL     | pCi/L | 59       | 58.2  | 1.01            | Agreement     |  |
| E4186-162          | 2nd/04   | Milk   | Ce-141      | pCi/L | 165      | 157   | 1.06            | Agreement     |  |
| E4186-162          | 2nd/04   | Milk   | Cr-51       | pCi/L | 241      | 228   | 1.06            | Agreement     |  |
| E4186-162          | 2nd/04   | Milk   | Cs-134      | pCi/L | 99       | 101   | 0.98            | Agreement     |  |
| E4186-162          | 2nd/04   | Milk   | Cs-137      | pCi/L | 157      | 156   | 1.01            | Agreement     |  |
| E4186-162          | 2nd/04   | Milk   | Co-58       | pCi/L | 46       | 46.2  | 1.00            | Agreement     |  |
| E4186-162          | 2nd/04   | Milk   | Mn-54       | pCi/L | 73       | 70.5  | 1.04            | Agreement     |  |
| E4186-162          | 2nd/04   | Milk   | Fe-59       | pCi/L | 48       | 44.5  | 1.08            | Agreement     |  |
| E4186-162          | 2nd/04   | Milk   | Zn-65       | pCi/L | 100      | 99.3  | 1.01            | Agreement     |  |
| E4186-162          | 2nd/04   | Milk   | Co-60       | pCi/L | 175      | 172   | 1.02            | Agreement     |  |
| MAPEP-04-<br>RdF12 | May-04   | Filter | Sr-90       | pCi   | 20.3     | 22.4  | 0.91            | Agreement (2) |  |

<sup>(1) -</sup> Problems encountered in filter dissolution, filter re-ordered.

<sup>(2) -</sup> Replacement filter for first half 2004 from DOE MAPEP

## FRAMATOME ANP ENVIRONMENTAL LABORATORY ANALYTICS RADIOLOGICAL ENVIRONMENTAL CROSS-CHECK PERFORMANCE EVALUATION

|           |           |        |             |       |          |             | Ratio     |            |
|-----------|-----------|--------|-------------|-------|----------|-------------|-----------|------------|
| Sample    | Quarter/  | Sample | ]           |       | Reported | Known       | E-LAB/    |            |
| Number    | Year      | Media  | Nuclide     | Units | Value    | Value       | Analytics | Evaluation |
| E4269-162 | 3rd/2004  | Water  | Gross Alpha | pCi/L | 41.3     | 42.7        | 0.97      | Agreement  |
| E4269-162 | 3rd/2004  | Water  | Gross Beta  | pCi/L | 214      | 225         | 0.95      | Agreement  |
| E4270-162 | 3rd/2004  | Water  | I-131LL     | pCi/L | 67.8     | 70.8        | 0.96      | Agreement  |
| E4270-162 | 3rd/2004  | Water  | I-131       | pCi/L | 70.5     | 70.8        | 1.00      | Agreement  |
| E4270-162 | 3rd/2004  | Water  | Ce-141      | pCi/L | 258      | 250         | 1.03      | Agreement  |
| E4270-162 | 3rd/2004  | Water  | Cr-51       | pCi/L | 230      | 223         | 1.03      | Agreement  |
| E4270-162 | 3rd/2004  | Water  | Cs-134      | pCi/L | 93.4     | 96.4        | 0.97      | Agreement  |
| E4270-162 | 3rd/2004  | Water  | Cs-137      | pCi/L | 217      | 215         | 1.01      | Agreement  |
| E4270-162 | 3rd/2004  | Water  | Co-58       | pCi/L | 93.4     | 94.6        | 0.99      | Agreement  |
| E4270-162 | 3rd/2004  | Water  | Mn-54       | pCi/L | 181      | 181         | 1.00      | Agreement  |
| E4270-162 | 3rd/2004  | Water  | Fe-59       | pCi/L | 95.2     | 91.6        | 1.04      | Agreement  |
| E4270-162 | 3rd/2004  | Water  | Zn-65       | pCi/L | 180      | 178         | 1.01      | Agreement  |
| E4270-162 | 3rd/2004  | Water  | Co-60       | pCi/L | 126      | 125         | 1.01      | Agreement  |
| E4271-162 | 3rd/2004  | Filter | Gross Alpha | _pCi  | 38.3     | 36.8        | 1.04      | Agreement  |
| E4271-162 | 3rd/2004  | Filter | Gross Beta  | _pCi  | 191      | 194         | 0.98      | Agreement  |
| E4272-162 | 3rd/2004  | Milk   | I-131LL     | pCi/L | 79.4     | 83.5        | 0.95      | Agreement  |
| E4272-162 | 3rd/2004  | Milk   | I-131       | pCi/L | 81.1     | 83.5        | 0.97      | Agreement  |
| E4272-162 | 3rd/2004  | Milk   | Ce-141      | pCi/L | 240      | 235         | 1.02      | Agreement  |
| E4272-162 | 3rd/2004  | Milk   | Cr-51       | pCi/L | 214      | 210         | 1.02      | Agreement  |
| E4272-162 | 3rd/2004  | Milk   | Cs-134      | pCi/L | 89.5     | 90.6        | 0.99      | Agreement  |
| E4272-162 | 3rd/2004  | Milk   | Cs-137      | pCi/L | 204      | 202         | 1.01      | Agreement  |
| E4272-162 | 3rd/2004  | Milk   | Co-58       | pCi/L | 90.9     | 89          | 1.02      | Agreement  |
| E4272-162 | 3rd/2004  | Milk_  | Mn-54       | pCi/L | 173      | 171         | 1.01      | Agreement  |
| E4272-162 | 3rd/2004  | Milk_  | Fe-59       | pCi/L | 91.3     | 86.1        | 1.06      | Agreement  |
| E4272-162 | 3rd/2004  | Milk   | Zn-65       | pCi/L | 169      | 16 <u>7</u> | 1.01      | Agreement  |
| E4272-162 | 3rd/2004  | Milk   | Co-60       | pCi/L | 116      | 118         | 0.98_     | Agreement  |
| E4273-162 | 3rd/2004  | Milk   | Sr-89       | pCi/L | 99.2     | 102         | 0.97      | Agreement  |
| E4273-162 | 3rd/2004  | Milk   | Sr-90       | pCi/L | 23.4     | 24.5        | 0.96      | Agreement  |
| E4340-162 | 3rd/2004* | Filter | Sr-89       | pCi/L | 151      | 152         | 1.00      | Agreement  |
| E4340-162 | 3rd/2004* | Filter | Sr-90       | pCi/L | 53.5     | 58.8        | 0.91      | Agreement  |

<sup>\* -</sup> Replacement filter for lost 2nd quarter filter.

## FRAMATOME ANP ENVIRONMENTAL LABORATORY ANALYTICS RADIOLOGICAL ENVIRONMENTAL CROSS-CHECK PERFORMANCE EVALUATION

|             |          |        |             |       | -        |       | Ratio     |            |
|-------------|----------|--------|-------------|-------|----------|-------|-----------|------------|
| Sample      | Quarter/ | Sample |             |       | Reported | Known | E-LAB/    |            |
| Number      | Year     | Media  | Nuclide     | Units | Value    | Value | Analytics | Evaluation |
| <del></del> |          |        |             |       |          |       |           |            |
| E4380-162   | 4th/2004 | Water  | H-3         | pCi/L | 8327     | 8060  | 1.03      | Agreement  |
| E4381-162   | 4th/2004 | Filter | Sr-89       | pCi   | 87.7     | 92.3  | 0.95      | Agreement  |
| E4381-162   | 4th/2004 | Filter | Sr-90       | pCi   | 8.78     | 10.6  | 0.83      | Agreement  |
| E4382-162   | 4th/2004 | Filter | Gross Alpha | pCi   | 24.9     | 29.5  | 0.84      | Agreement  |
| E4382-162   | 4th/2004 | Filter | Gross Beta  | pCi   | 233      | 204   | 1.09      | Agreement  |
| E4383-162   | 4th/2004 | Filter | Ce-141      | pCi_  | 75.6     | 80.3  | 0.94      | Agreement  |
| E4383-162   | 4th/2004 | Filter | Cr-51       | pCi   | 201      | 189   | 1.06      | Agreement  |
| E4383-162   | 4th/2004 | Filter | Cs-134      | pCi   | 82.4     | 84.7  | 0.97      | Agreement  |
| E4383-162   | 4th/2004 | Filter | Cs-137      | pCi   | 68.8     | 62.9  | 1.09      | Agreement  |
| E4383-162   | 4th/2004 | Filter | Co-58       | pCi   | 75.3     | 72.9  | 1.03      | Agreement  |
| E4383-162   | 4th/2004 | Filter | Mn-54       | pCi   | 76.3     | 67.7  | 1.13      | Agreement  |
| E4383-162   | 4th/2004 | Filter | Fe-59       | pCi   | 69.8     | 60.5  | 1,15      | Agreement  |
| E4383-162   | 4th/2004 | Filter | Zn-65       | pCi   | 109      | 97.7  | 1.12      | Agreement  |
| E4383-162   | 4th/2004 | Filter | Co-60       | pCi   | 85.1     | 87.1  | 0.98      | Agreement  |
| E4384-162   | 4th/2004 | Milk   | I-131LL     | pCi/L | 64.2     | 66.7  | 0.96      | Agreement  |
| E4384-162   | 4th/2004 | Milk   | I-131       | pCi/L | 69.0     | 66.7  | 1.03      | Agreement  |
| E4384-162   | 4th/2004 | Milk   | Ce-141      | pCi/L | 154      | 155   | 0.99      | Agreement  |
| E4384-162   | 4th/2004 | Milk   | Cr-51       | pCi/L | 385      | 379   | 1.02      | Agreement  |
| E4384-162   | 4th/2004 | Milk   | Cs-134      | pCi/L | 167      | 170_  | 0.98      | Agreement  |
| E4384-162   | 4th/2004 | Milk   | Cs-137      | pCi/L | 132      | 126   | 1.05      | Agreement  |
| E4384-162   | 4th/2004 | Milk   | Co-58       | pCi/L | 147      | 146   | 1.01      | Agreement  |
| E4384-162   | 4th/2004 | Milk   | Mn-54       | pCi/L | 144      | 136   | 1.06      | Agreement  |
| E4384-162   | 4th/2004 | Milk   | Fe-59       | pCi/L | 129      | 121   | 1.07      | Agreement  |
| E4384-162   | 4th/2004 | Milk   | Zn-65       | pCi/L | 197      | 196   | 1.01      | Agreement  |
| E4383-162   | 4th/2004 | Milk   | Co-60       | pCi/L | 177      | 175   | 1.01      | Agreement  |
| E4412-162   | 4th/2004 | Water  | Sr-89       | pCi/L | 90.9     | 98.1  | 0.93      | Agreement  |
| E4412-162   | 4th/2004 | Water  | Sr-90       | pCi/L | 9.33     | 11.3  | 0.83      | Agreement  |

## APPENDIX D

## **ERRATA FOR 2003**

TABLE 8
GOAT MILK
(PCI/L)

|          | COLLECTION |      |       |       |       |      |       |       |       |      |       |      |       |      |       |      |       |
|----------|------------|------|-------|-------|-------|------|-------|-------|-------|------|-------|------|-------|------|-------|------|-------|
| LOCATION | DATE       | K-4  |       | SR    | -89   | SR   | -90   | r-    | 131   | cs-  |       | cs-  |       | BA-  | 140   | LA-1 |       |
|          |            |      | (+/-) |       | (+/-) |      | (+/-) |       | (+/-) |      | (+/-) |      | (+/-) |      | (+/-) |      | (+/-) |
| 21       | 05/06/03   | 1685 | 94    |       |       |      |       | -0.01 | 0.21  | 1.6  | 2.5   | 7.0  | 3.4   | 0.0  | 3.0   | 0.0  | 3.5   |
|          | 05/21/03   | 1650 | 120   |       |       |      |       | 0.17  | 0.34  | -0.7 | 3.2   | 5.7  | 4.0   | 4.0  | 4.6   | 4.5  | 5.3   |
|          | 06/10/03   | 1930 | 100   |       |       |      |       | 0.03  | 0.21  | -0.5 | 2.6   | 1.5  | 2.3   | -3.9 | 3.1   | -4.5 | 3.6   |
|          | 06/24/03   | 1610 | 180   | 3.1   | 5.7   | 0.00 | 0.98  | -0.02 | 0.22  | 2.7  | 5.3   | 2.1  | 4.9   | 2.3  | 6.9   | 2.6  | 7.9   |
|          | 07/08/03   | 1690 | 120   |       |       |      |       | -0.10 | 0.04  | 0.5  | 3.3   | 3.7  | 3.2   | -1.7 | 4.0   | -1.9 | 4.6   |
|          | 07/22/03   | 1321 | 86    |       |       |      |       | 0.46  | 0.50  | 1.3  | 2.5   | 2.7  | 2.4   | -0.4 | 3.1   | -0.5 | 3.6   |
|          | 08/06/03   | 1420 | 110   |       |       |      |       | 0.45  | 0.48  | 2.7  | 3.2   | 3.4  | 4.0   | -2.6 | 3.5   | -3.0 | 4.1   |
|          | 08/19/03   | 1730 | 65    |       |       |      |       | 0.45  | 0.55  | 1.7  | 1.8   | 3.9  | 2.0   | -0.1 | 3.5   | -0.2 | 4.0   |
|          | 09/10/03   | 2070 | 140   |       |       |      |       | 0.00  | 0.11  | -1.2 | 3.8   | 4.6  | 4.4   | -0.4 | 5.7   | -0.4 | 6.5   |
|          | 09/23/03   | 1470 | 150   | 3.4   | 5.5   | 0.6  | 1.1   | -0.10 | 0.04  | 3.3  | 4.0   | 11.4 | 5.8   | -2.8 | 5.6   | -3.2 | 6.4   |
| 22       | 04/23/03   | 1700 | 140   |       |       |      |       | -0.04 | 0.16  | -1.6 | 3.2   | 0.9  | 3.8   | -0.5 | 4.8   | -0.6 | 5.5   |
|          | 05/06/03   | 1536 | 88    |       |       |      |       | 0.22  | 0.30  | 0.3  | 2.3   | 5.1  | 3.6   | -4.3 | 3.4   | -5.0 | 3.9   |
|          | 05/21/03   | 1540 | 150   |       |       |      |       | 0.11  | 0.33  | 1.7  | 3.9   | 8.5  | 5.0   | 2.4  | 6.0   | 2.7  | 6.9   |
|          | 06/10/03   | 1351 | 87    |       |       |      |       | -0.08 | 0.03  | -1.2 | 2.5   | 14.0 | 3.5   | 0.4  | 3.3   | 0.4  | 3.8   |
|          | 06/24/03   | 1390 | 160   | -8.2  | 5.7   | 9.2  | 1.2   | 0.14  | 0.35  | 0.0  | 3.7   | 17.3 | 6.4   | 0.0  | 6.2   | 0.0  | 7.1   |
|          | 07/08/03   | 1770 | 110   |       |       |      |       | 0.07  | 0.15  | 0.1  | 2.8   | 21.7 | 4.4   | 1.0  | 3.7   | 1.1  | 4.2   |
|          | 07/22/03   | 1530 | 110   |       |       |      |       | 0.09  | 0.28  | -0.2 | 3.3   | 24.8 | 5.1   | -0.6 | 4.5   | -0.7 | 5.2   |
|          | 08/07/03   | 1128 | 89    |       |       |      |       | 0.03  | 0.18  | 1.3  | 2.8   | 20.3 | 4.4   | 3.8  | 4.2   | 4.3  | 4.9   |
|          | 08/19/03   | 1213 | 86    | 6     | 12    | 14.5 | 1.8   | 0.09  | 0.04  | 1.8  | 2.5   | 19.8 | 3.8   | 0.5  | 4.9   | 0.6  | 5.6   |
| 24C      | 05/22/03   | 1710 | 150   |       |       |      |       | -0.08 | 0.03  | 1.5  | 3.6   | 5.5  | 3.9   | .3.6 | 6.2   | -4.1 | 7.1   |
|          | 06/11/03   | 1790 | 120   |       |       |      |       | 0.03  | 0.20  | -1.7 | 3.3   | 7.3  | 4.1   | -4.4 | 4.4   | -5.1 | 5.1   |
|          | 06/25/03   | 1700 | 190   | -7.9  | 5.0   | -1.5 | 1.1   | 0.12  | 0.25  | 1.1  | 4.9   | ~2.5 | 4.7   | 2.2  | 6.8   | 2.5  | 7.8   |
|          | 07/08/03   | 1660 | 100   |       |       |      |       | 0.05  | 0.23  | 1.1  | 2.6   | 3.2  | 3.1   | -2.6 | 3.5   | -3.0 | 4.1   |
|          | 07/22/03   | 1752 | 96    |       |       |      |       | -0.04 | 0.02  | 1.7  | 2.5   | 3.6  | 2.8   | 2.6  | 3.4   | 2.9  | 3.9   |
|          | 08/05/03   | 1840 | 120   |       |       |      |       | 0.36  | 0.45  | 1.0  | 3.0   | 2.7  | 3.3   | -3.7 | 4.7   | -4.3 | 5.4   |
|          | 08/19/03   | 1966 | 67    |       |       |      |       | 0.03  | 0.28  | -0.1 | 1.7   | 3.9  | 1.9   | -0.2 | 3.3   | -0.2 | 3.8   |
|          | 09/09/03   | 2060 | 120   |       |       |      |       | 0.08  | 0.17  | 0.6  | 3.0   | 5.2  | 3.9   | 0.3  | 5.6   | 0.4  | 6.4   |
|          | 09/23/03   | 1900 | 180   | 2.2   | 5.3   | 1.4  | 1.1   | 0.03  | 0.24  | -0.3 | 4.6   | -2.6 | 4.4   | -3.3 | 5.2   | -3.8 | 5.9   |
|          | 10/09/03   | 2060 | 110   | -11.0 | 11.0  | 2.8  | 1.0   | -0.20 | 0.07  | 0.6  | 2.9   | 2.2  | 2.6   | -1.2 | 5.2   | -1.4 | 6.0   |

PASTURE GRASS, HAY OR FEED WAS SAMPLED AS A SUBSTITUTE FOR UNAVAILABLE GOAT MILK STRONTIUM ANALYSES ARE COMPOSITES OF ALL MILK SAMPLED FROM A GIVEN LOCATION DURING THE QUARTER