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Comments Related to the "Draft Regulatory Guide DG-1 127".

My comments concern "Appendix A: General Discussion of the Response Spectrum
Method".

I find the formulation ambiguous and I suggest that a more rigorous mathematical
approach can lead to improved engineering solutions.

In the following, I mention several specific points which I find ambiguous in the
mathematical formulation of Appendix A. I also attach a document containing an
outline of a rigorous mathematical formulation of the dynamic piping analysis problem.

My first comment refers to equations (A.1)

Equation (A. 1) is given as: MX + CX + KX = -M Ubiig and it is stated that

"X=column vector of relative displacements (andx)".

The first question is: relative to what?

We may compare this formulation to the formulation of the attached document in
which the equations of motion for support movement loading are derived from the
general case of the equations of motion, with applied load f(t) = KBxB(t). K2

is the N by M boundary stiffness coupling matrix and xB (t) is the M by 1 vector
of support movements. N is the number of dynamic degrees-of-freedom and M is
the number of boundary degrees-of-freedom.

The transformation to relative coordinates is then defined in the attached
document by expression (29): x(t) = u(t) + v(t), where v(t) is defined to be the
instantaneous configuration of the structure which is in static equilibrium with the
support movements. The equivalent of equation (A. 1) is formulated in the
attached document in the expression (32): Mu(t) + Ku(t) = -MK-t KB±B (t),
where the damping has been omitted.

Comparing equation (A.1) to expression (32) we observe that for the attached
document, the mathematical definition of the relative coordinates is explicitly
stated and the conditions satisfied by both u(t) and v(t) are explained. Further,
the time dependence has been explicitly indicated.

The second question is: exactly what is the meaning of the term u g, defined as the
"ground acceleration"?
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Comments Related to the "Draft Regulatory Guide DG-1 127".

Since Ub is defined as an (mx] ) vector, the implication is that u g is a scalar, for

otherwise how could Ub be multiplied on the right by 0 g ? But if i g is a scalar
ground acceleration, which acceleration is being used? Is it X or Y or Z? And
how does equation (A.1) relate to problems where different support points have
different accelerations?

In the attached document the ground acceleration kB (t) is an M by 1 vector,
where M is the number of support degrees-of-freedom. In this notation, it is clear
that each support degree-of-freedom can have an independent support
acceleration time history and the time dependence is shown explicitly.

My next comments refer to equations (A.2) and (A.3)

Equation (A.2) is given as: X = OY, where 0 = normalized mode shape matrix,
ATMO = I, where I = (nxn) identity matrix and Y is (naxl) vector of

generalized coordinates.

We note that X is defined in (A.1) as an (nixi) vector, where in = number of
dynamic degree-of-freedom. For equation (A.2) to be coherent, 0 and Y must be
(Xmnx) and (mxl) respectively, that is they must include all in dynamic degrees-of-
freedom. They cannot be dimensioned as defined by "n = number of modes
considered".

However, both the orthogonality principle, 0"MO = I, and the equation (A.3)
are valid if 0 is defined as the rectangular matrix whose columns are a subset of
the mode shape vectors. Then 0 will be (nixn) and Y will be (nxl), where m =
number of dynamic degrees-of-freedom and n = number of modes considered.

From this notation we may infer that the components of Y of equation (A.2) are
the scalar modal amplitudes defined in expression (4) of the attached document
and that in equation (A.3) Yj is thef" component of Y which is equivalent to

yj(t) in the attached document.

The right side of equation (A.3) is given as: - J' ,i. As was previously

mentioned in discussing equation (A.1), there is an ambiguity in the definition of
Ug. Further, Fj, the "modal participation factor of mode' is defined as

OJTMUb, which appears to be the mass weighted method of calculating
participation factors, possibly single support level factors. In the attached
document, a simple form of multiple support level participation factors is given in
expression (38). These factors are support stiffness weighted.
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Comments Related to the "Draft Regulatory Guide DG-1 127".

My next comment concerns what could be termed "the mathematical understanding" of
the solution.

The key to understanding the solution is an understanding of the scalar modal
amplitudes, which are designated by the parameters )y(t) in the attached

document (and by Yj in equation (A.3)). Very useful information about these

parameters can be deduced from their representation as convolution integrals as,
for example, expression (13) in the attached document. As we see from
expression (13), the applied force acting in theyfh mode is given by
ejrf(t) = gj (t) .

This representation shows that the only modes which do not contribute to the
solution are modesj which are orthogonal or nearly orthogonal to the applied load
vector. This can occur when the significant components of a mode all
correspond to degrees-of-freedom where the applied load is zero. This situation
can arise for fluid hammer loads acting primarily in parts of a piping system
which are remote from a mode shape vector. However, in the case of support
movement loading, since supports are usually more rigid than the piping, many
high frequency modes of a piping structure may be expected to excite support
degrees-of-freedom.

There is another possibility for orthogonality. This is the case where although
significant mode shape components correspond to degrees-of-freedom where non-
zero applied load components are acting, their inner product with the mode shape
components is zero or close to zero. This can occur when the structure and the
load have related symmetries.

As an example, consider the extremely simple structure shown below.

k K k
m m

A 1 2 B

Three springs connect two mass points, each with mass m, to the boundary as
shown in the sketch. The springs connecting the boundary to the mass points,
(Al) and (B2), each have rigidity k.

This system has two degrees-of-freedom and two mode shape vectors, e, and e2 ,
shown below:
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Comments Related to the "Draft Regulatory Guide DG-1 127".

Model: e, le Mode 2: e2 =-- Jel

2 k 2 k+2KCO =0 = )
I m

The support movement loading vector is simply a 2x] column vector with
components XA(t) and XB (t) .- It follows that g, (t) = e (XA t) + xB (t)) and

gQ() = e (XA (t) -XB (0))

We see that if support points A and B are moving in parallel, which means that
XA (Q) = XB (t) for all t, then g2 (t) = 0 for all t and mode 2 cannot be excited.

If support points A and B are moving in opposite directions, so that
XA (t) = -XB (t) for all t, then g, (t) = 0 for all t and mode I cannot be excited.

For any other type of support movement, both modes will be excited.

In this example if the "included mass" of the two modes is calculated using the
usual method, all the mass will be included in mode I and mode 2 will have zero
mass. On the other hand, if the support points are moving in opposite directions,
the entire response will be in a mode with zero mass. The explanation of this
seeming paradox is that the definition of "included mass" is based on the
hypothesis of the parallel movement of all supports. This calculation of "included
mass" filters out the contribution of modes which are approximately anti-
symmetric and emphasizes the contribution of modes which are approximately
symmetric.

The same remarks apply to multi-dimensional structures. If all support points are
moving in parallel, anti-symmetric modes cannot be excited. But these modes can
be excited by other types of support movement and, indeed, by other dynamic
loads such as fluid hammers.

The conclusion is that the concept of "included mass" has physical significance
only for one type of loading: single support movement. The idea that there is a
certain quantity of mass in each mode which according to its amplitude causes
larger or smaller responses, is, quite simply, erroneous. There exist loads which
can excite any mode. For example, when (on page 10) the DRG refers to "the
residual rigid response of the missing mass modes" it isn't clear which modes are
involved.
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Comments Related to the "Draft Regulatory Guide DG-1 127".

The related concepts of "included mass" and "missing mass" should not be used
to determine the cut-off frequency (except, possibly for single support level
problems) and should not be used to construct a rigid mode correction.

There is a general and rigorous procedure for making these decisions. By
"general" I mean that it applies to all types of dynamic analysis of piping.

This procedure is as follows:

1. Use the method described in the section "Determining Cut-Off
Frequency" of the attached document (page 8). This method is based on
representing the scalar modal amplitudes, y1 (t), as convolution integrals.

To carry out this method, it is necessary to have access to the time history
loading data.

2. Use the method described in the section "Left Out Force" of the attached
document (page 7) to construct the rigid mode correction. This method
can be carried out for all types of dynamic analysis of piping: general time
history analysis, support acceleration time history analysis, single or
multi-level floor response spectrum analysis.

To end my comments on a positive note, based on the formulation in the attached
document, I derive an alternate form for the solution.

Substituting the right term of expression (19) into expression (17) and multiplying on the
left by K and using (2), we obtain

Kx(t) = f (t) + ZMejhj(t)
i=,

where

1I} Wt = _j fGj (t T,) e} f (T) d-r
H8i r=O

The scalars hij (t), which converge to zero as A} increases, determine by how much and
in which modes the solution deviates from the rigid solution. These parameters, which
depend on the derivative of the applied load, may furnish valuable information about the
solution.
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The Mathematics of Dynamic Analysis of Piping

Equations of Motion

The "equations of motion" of a multi-degree of freedom mechanical system of mass M,
damping C and stiffness K loaded by a time-dependent force f (t) is given by:

(1) Mk(t) + Ck(t) + Kx(t) = f (t)

where: M N by N mass matrix
C N by N damping matrix
K N by N stiffness matrix
f(t) N by I vector of force loads acting at mass points
x(t) N by 1 vector of displacements at mass points

The equations of motion represent a system of N simultaneous, linear second order
differential equations. The problem is to solve these equations for x(t). Once x(t) is
known, other solution parameters such as instantaneous forces, moments, stresses,
accelerations, etc. may be calculated. In most practical cases, the objective is to construct
an envelope for the solution parameters.

The solution x(t) depends on the initial conditions. In the following it is assumed that
the structure is initially at rest so that:

(1.1) X(O)= X(O)=O

By the method of "mode shapes" or "eigenvectors", it will be shown how to solve (1) and
(1.1). This method, which was first developed in the 1 9 th Century, transforms (1) into N
uncoupled scalar linear second order differential equations.

Solution by Modal Superposition

The mode shapes (or eigenvectors) are N by I vectors denoted by e} and the

corresponding scalar natural circular frequencies ao satisfy:

(2) Ke 1 = w'7 Me.

Because K and M are symmetric and positive-definite, there are always N linearly
independent mode shape vectors ej which satisfy (2).

This means that the mode shape vectors, e,, "span the space" or, in other words, that for

any N-vector A there exist scalars a,, a2,. . . , aN such that
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The Mathematics of Dynamic Analysis of Piping

N

(3) A =E ea}
J=1

In particular, at any instant of time t there exist scalars y(t) so that the instantaneous

solution x(t) satisfies

N

(4) x(t) = E e y1(t)
j=1

This expression shows that once the mode shape vectors have been determined, to solve
the equations of motion, it is sufficient to evaluate the scalars y, (t) . Since the mode

shape vectors, e1, are time and load independent, all time dependent information about

the solution is contained in the scalars y1 (t), which are called the "scalar modal
amplitudes".

Further, if the scalars fi are time-bounds for the yj (1 ), then (4) may be used to

construct bounds for the solution.

In the following, it is shown how to solve for the scalar modal amplitudes y1(t) and how

to construct bounds Yf .

Properties of Mode Shape Vectors

First, we discuss the properties of the mode shape vectors.

The mode shape vectors are orthogonal in the sense that

(5) elT M e12 = 0 for j, 1 •2

And since (2) is homogeneous in ej the mode shape vectors may be normalized so that

(6) eTMe =1

The N by N matrix E may be defined as the matrix whosefi column is ej. Then (5)

and (6) imply that

(7) ET M E = I where I is the N by N identity matrix
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The Mathematics of Dynamic Analysis of Piping

From (7), ET = (ME)-' and since inverses commute,

(8) MEET =I

and (8) may be written in the form

Al

(9) ZM e eJ =I
j=)

Expression (9) will be used to show how to accurately approximate the contribution of
the rigid modes to the total system response without actually extracting these modes.

Uncouplin2 the Equations of Motion

We are now ready to solve for the scalar modal amplitudes, yj (t) .

We assume that there exist scalars a, such that the damping matrix C satisfies

(10) Cej=2ajMej

T
We then substitute (4) into (1) and multiply on the left by ejo we obtain

(1 1) E ej, T( Mejyj Q) + Cejyj Q) + Kejyj (t) )= eJoTf (t)
J=t

Using (2) and (10) and the orthogonality conditions (5) and (6), we obtain for each jo in

the range 1 < jo < N a scalar second order linear differential equation:

(12) )J, (t) + 2aj. 9Jjo(t) + a1 
2y1 (t) = eo ff(t) = gjO (t)

Note that both ejoand f (t) are N by 1 vectors but their so-called "inner product",

eJf (t) is a scalar which is defined to be gj (t).

From the linear independence of the mode shape vectors, e1 , it follows that

(12.1) y (O) = Aj'Oj() = O
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The Mathematics of Dynamic Analysis of Piping

Convolution Inteiral

In the following, we replace the subscript jo by j in (12) and (12.1). If the function
gj(t) satisfies the condition g (0) = 0, then the solution to (12) is given by the so-called
"convolution" integral

(13) yj(t)=p fe X"sinjj(t-r)g-(r)d

where

(13.1) aj 2 + fl 2 = co2

We will use the properties of the convolution integral to investigate the solution to the
equations of motion and, in particular, we will derive the "rigid mode correction".

Rigid Alode Correction

A defect of the method described above is that it involves calculating all the modes. For
a large class of practical engineering problems, it is possible to calculate a highly
accurate approximation of the solution to the equations of motion using only the lower
modes, that is modes with natural frequencies below a cut-off frequency.

In the following, we will explain this method and also how to determine the cut-off
frequency.

We start by rewriting (4) in a different form:

(15) yj(t) = -2 ej-rer(t)
(Di

If f(0) = 0 the we define the N by 1 vector rjf (t) as the "force response" in modej as

follows:

21

(16) rjf(t)=.- | eaj(r) sinl f -(t -r) f(r) dr

r/f (t) is an N by I vector whose components of have the same units as the

corresponding components of f(t).
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The Mathematics of Dynamic Analysis of Piping

It follows that if f(O) = 0, we may write (4) in the form:

(17) x(t)== -ie eej rj(t)
j=1 CIn

Limit Theorem

The following limit theorem is the key to the rigid mode correction:

We assume that the applied load, f(t), satisfies the condition f(O) = 0. Then:

(18) lima ,- oo rjf(t) = f(t)

The limit theorem (18) is based on the following identity:

2

(19) r/f(t)=i - (e aJ(f r) sinI (t - T)f(r) dr = f(t) - co JG (t - r) f(r) dr
' r-' r=

w'here

(19.1) Gj(t)-e Jsinjt/+ jJcosJj/tJ

Domain of Validitv

Before using these results, we will show that these methods may be used to solve the
equations of motion (1) and (1.1) for any piping structure initially at rest, even if
f(O)• 0.

Define the N by 1 vector x'(t) by:

(19.2) x(t) = x'(t)+K-'f(O)

Substituting this expression for x(t) into the equations of motion (1) we obtain:

(19.3) Mx (t) + Cx' (t) + Kx' (t) = f(t) - f(O) = f' (t)
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The Mathematics of Dynamic Analysis of Piping

From this definition of f'Q(), we see that

(19.4) f'(0) = 0

If at time t=O the piping structure is at rest, it follows that

(19.5) Kx(O) = f(O) and x(O) = 0

From (19.5) and (19.2) it follows that

(19.6) x'(O) = x'(0) = O

Using (19.6) and (19.4), we see that the methods of this paper may be may be used to
solve (19.3) for x'Q). Then, using (19.2), we may construct the solution, x(t), to the
equations of motion (1).

This argument shows that the methods used in this paper apply to any dynamic problem
satisfying (1) and (1.1) which is initially at rest, even if f (O) ; 0.

Left Out Force

Let coR be a cut-off frequency. Then using (17) we may rewrite (4) in the form:

(20) x(t) = E ej y1(t)
W,<W,,

+ E 1 2 e} ejr rf (t)
W0 22a W, )

Multiplying both sides of (20) on the left by K and using (2) we obtain:

(21) Kx(t) = Z Ke y(t) +
0j,<W>

Z M ej ej r (t)
a9 2: W,

Since we have assumed f (0) = 0 then, in light of the limit theorem (18), if we choose
cOR sufficiently large, then we can approximate the last term on the right of (21) by:

(22) E Me1 ef zj(t)Z Me} ef fc't)
O.I2!ŽOR wjz2
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The Mathematics of Dynamic Analysis of Piping

Finally, we use (9) to rewrite (22) as:

(23) EM e, er f N) ( I - M e} e j) ft)
Oj2!VR Wj<O),

where I is the N by N identity matrix.

The right side of (23), which involves only modes with frequencies wj < (OR, defines an
instantaneous load (with the units of force) which when applied as a static load
approximates the response of the piping system in the modes with frequencies Wa Ž COR.
This load vector is called the "left out force" and the instantaneous solution it generates
when applied to the structure is called the "rigid mode correction".

Determining Cut-Off Frequency

To complete this general discussion of how to solve the equations of motion, we describe
a method for determining the cut-off frequency wR.

We start by choosing a set of test frequencies wi and a constant c such that for all i

(24) c = ai

c is called the "fraction of critical damping".

For each i, use (16) to calculate the force response ri (t) for each non-zero component
of the N by 1 applied force vector f (t). Compare these responses to f (t) and choose
OR as the frequency at which the responses are equal to the applied force, within

engineering accuracy, for all the components of f (t).

An important point is that the cut-off frequency coR is independent of the structure being
analyzed and depends only on the characteristics of the applied force vectorf(t). This
point suggests that concepts such as "modal mass", which are load independent and
depend only on the structure, are not useful for determining the cut-off frequency or for
constructing a rigid mode correction.
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The Mathematics of Dynamic Analysis of Piping

Constructingi Bounds

We next discuss the problem of constructing bounds for the time history solution.

One method is to calculate a solution x(t) at each time step, and to use these values to
calculate a complete solution at each time step, that is forces, moments, stresses,
accelerations, etc. Once these instantaneous solutions have been calculated, the bound
for each solution component is simply the largest absolute value that has been calculated.

Another class of methods is based on using modal bounds.

For these methods, the modal amplitudes defined in (4) are calculated at each time step or
they are estimated by another method. Then, for each mode the values Yj are:

(25) Yj = bound for yj(t) in interval 0 < t < T

We may then define bounds Xi for each modal component on the right side of (4) as:

(26) Xi = ej Yj

Xi is an N by 1 vector. Each of its N components is a bound for the corresponding

component of the N by 1 vector ej yj (t). Similarly, modal bounds, for any response

component Rj(t), may be calculated based on Yj . Denote the modal bound for a

selected response component by Rj

Combining Modal Bounds

We require a method to combine the modal bounds to construct a bound for the total
system response.

If we denote by 1? the total system response for a solution component, then a class of
methods for constructing these bounds is based on the following quadratic form:

N
(27) P2 = E 2+ 2 A CY RiR

j=l k<j

The parameters si are called the "modal correlation coefficients" for modes i andj.
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The Mathematics of Dynamic Analysis of Piping

If CU = sign (R1 Rj), then R is the absolute sum of the modal responses.

If eU = 0, then R is the SRSS sum of the modal responses.

There are two reasons why we expect the absolute sum method to be too conservative.

First, most piping systems have a large dimensionality N and therefore many mode shape
vectors. The probability that the modal maxima will coincide is small.

Second, in many cases the true maximum of any response component will be of very
short duration. To measure the effect of the load on the structure, it is plausible to seek
not the actual maximum response but rather the most probable response, which is called
the "expected value".

Example of Expected Value

To illustrate how the expected value may be calculated, we use a very simple example.
Let A, B, C denote the magnitudes of three numbers whose signs are unknown. The
problem is to derive the expected value of their sum S=A+B+C, based on the premise that
each number has equal probability of being positive or negative. We investigate this
problem by considering S2.

There are 23 = 8 sums with different sign configurations. These are:

S12 = (+A+B+C)2= A2+B2+C2+2AB+2AC+2BC

S2 = (+A+B-C)2 = A2 +B2 +C2 +2AB-2AC-2BC

S32 = (+A-B+C) 2 = A2 +B2 +C2 -2AB+2AC-2BC

S42 = (+A-B-C) 2 = A2 +B2 +C2 -2AB-2AC+2BC

S5
2 = (-A+B+C) 2 = A2+B2 +C2 -2AB-2AC+2BC

S62 = (-A+B-C)2 = A2+B2+C 2 -2AB+2AC-2BC

S7
2 = (-A-B+C)2 = A2 +B2 +C2 +2AB-2AC-2BC

Se2 = (-A-B-C)2 = A2 +B2 +C2 +2AB+2AC+2BC
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The Mathematics of Dynamic Analysis of Piping

If we multiply each of these values by its probability (=1/8) and add the resulting values,
noting that all cross-product terms add up to zero, we arrive at:

S2 (expected) = A2 + B2 + C2

It is clear that this result may be extended to any number of magnitudes A, B, C, D,....

Various methods have been used for defining the modal correlation coefficients cu.

These include the NRC Reg. Guide 1.92 double sum method, the CQC method, the GAC
methods developed by Westinghouse and others. These methods are outside the scope of
this paper.

Support Movement Load

To conclude the discussion, we explain how to solve a special case of the equations of
motion where the load is due entirely to support movements.

This type of load can be defined by:

(28) f(t) = K~xB (t)

where: KB N by M boundary coupling stiffness matrix
XB (t) M by 1 vector of displacements at support points

Note that the boundary coupling stiffness matrix is rectangular (N by M) and the vector
of applied support displacements XBQ) is M by 1. M is the number of support degrees
of freedom.

Equations of Motion in Relative Coordinates

The solution of the equations of motion would be identical to the general case except for
the fact that for both engineering and numerical analysis reasons, the equations are
transformed into a "relative" coordinate system. The transformation is defined by:

(29) x(t) = u(t) + v(t)

where v(t) is defined by:

(30) K v(t) = KB xB(t)

11



The Mathematics of Dynamic Analysis of Piping

This condition defines v(t) as the deformation which is in static equilibrium with the
instantaneous support movements. For this reason, v(t) is called the "secondary" or
" pseudo-static" part of the solution.

u(t) is the displacement with respect to v(t) due to the effects of inertia. For this
reason, u(t) is called the "primary" or the "inertial" part of the solution.

Substituting (29) into (1) and rearranging the terms, we obtain the equations of motion in
the relative coordinate system of u(t) (without damping):

(31) M i(t) + K u(t) = -MV(t) - K v(t) + KB XB (t)

Using (30), this reduces to:

(32) M ii(t) + K u(t) = -M K' KB kB (t)

And we assume that: x(O) = k(O) = u(O) = i)(0) = v(O) = i(O) = 0

jaIn analogy to (16), we define the M by 1 vector r1 (t) as the "acceleration response" in
mode], defined by:

(33) ra(t)= PL J eajt) sinBj(t -) * (r) dr

f'i 2=
The components of rja (t) have the same units as the corresponding components of

XB(t) -

In analogy to (4) we define the scalar modal amplitudes in the u-space, ye" (t), by

(34) u(t) = Z ej yu(t)
ji1

The right side of(32) is the effective applied load in the u-space. Therefore, rjfu(t), the
force response in the u-space, satisfies:

(35) rfu(t)= MK K` rja)

12



The Mathematics of Dynamic Analysis of Piping

In analogy to (15) we write:

(36) yu ()= leT (MK -' K11 r(at))
'Di

Which, using the symmetry of M and K and the rules for forming the matrix transpose
of a product, we may write in the form:

T

(37) y"(t) 2 K K-' Mej rja)

Finally, using (2) we obtain:

(38) AT"(t)= ( 4K . e 1 Ta() = E
I m=I P7 0 ?

Where [rja (t)]rn is the instantaneous acceleration response in modej at support degree-

of-freedom mn, and where P is the "participation factor" in modej at support degree-of-

freedom in.

This formulation of the participation factors differs from the usual formulation, which is
based on the so-called "single support level" case. This is the case which applies to a
sub-class of support movement problems for which all support points are moving in
parallel. For the single support level case, there are exactly three participation factors
corresponding to the X, Y, Z directions. In this case, the participation factors are usually
formulated as products of mass times mode shape component, a method I call "mass
weighted". Note that the factors in (38) are support-stiffness weighted.

Equality of Mass and Support Stiffness Weiphted Participation Factors

In the following, I will indicate why for the single support level case, the participation
factors of (38) can be reduced to the mass weighted factors.

13
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Consider the mechanical system shown below consisting of five mass points connected
by four springs with supports (Al), (B3) and (C5) acting at three of the mass points.

B..
.

. . ... . .. .. .. . .

A 1 2 3 4 5 C

Suppose e is a mode shape vector for this system with circular frequency o so that
K e = co2 M e. In expanded form, this condition may be written as:

KIA+K12 -K 12 0 0

-K 21

0

0

0

K21+K23

-K 3 2

0

0

-K 2 3 0

0

0

K32+K34 +K3B -K34  0

-K4 3  K43+K4 5  -K4 5

0 -K 54 K54+K5c

e2

e3

e4

e5

= Co2

miel

M2e2

M3e3

M4 e4

M5e5

By symmetry, Ki j = Kj i, and we see that the non-boundary stiffness terms in the

following sum add up to zero, so that:

Mnel + m 2e 2 + m3 e 3 + m4 e4 + m 5 e5 = -2 (KlAel + K3 Be3 + K5 Ce5 )

This argument can be generalized in the N-dimensional vector space.

Riiid Mode Correction in Relative Coordinates

To complete the general solution to the equations of motion in the u-space defined in
expression (32), we show how to construct the rigid mode correction.

14
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In the u-space, using (32) the right side of (23) becomes:

(39) Z -(I MejeT) MK-,KBkB(t)

The expression (39) defines an instantaneous left out force vector which when applied
as a static load in the u-space approximates the response in the modes with
frequencies wj 2 OR . This term can be rewritten in the form:

(40) -MK-'KB + Z Me, L!ISKBTejJ kE B(t)
0
"J<aIA)

This form of the left-out-force is convenient for calculations since it involves terms
directly related to the participation factors defined in (38).

The Concept of Support Levels

The preceding discussion involved the concept of "single support level". In the
following, I explain the concept of "support level" and show that although this
concept may be useful from an engineering point of view, it is not important in terms
of solving the equations of motion.

The support movement loading, XB (t), is an M by I vector. Denote by [XE (t)]rm the

,Ith component of this vector. Suppose that for two components, ml and m2, there
exists a scalar c such that:

(41) [XB(t)]rn2= C EXB(t)]mI

Components ml and m2 are called "dependent". If nil and mn2 are both components
for the same global direction (X, Y or Z) and if c 1, then the two components of the
support load are moving in parallel.

From (41), it follows that:

(42) thee)fo m2= C [fB (t)(3 t

and therefore from (33) that:

(43) [ra (t)] .2=c r(t m
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Then the contribution of the ml and O2 support degrees-of-freedom to the last term in
expression (38) is:

(44) Pn,,j Lj a(t)J ns+J 12 jVa(t)Jn 2 = ( Pnl j + cPni2j ) ra)] ml

In this case we may eliminate m2 from expression (38) as follows:

Al Al

(45) yj)'(t)= Z Pnj La(t)]nz = Z j
m=I m=I,mwm2

where

(46) P'n:l j = pl j + cPni2 j and P'nt j = P j m X ml

Similarly, all dependent components can be removed so that (38) may be written in
the form:

(47) tj" (t) = Z P' ErJ (t)] m
m=l

where M' is the number of independent groups of support points. P'ny. is the

participation factor in modej for the dependent support points in group mn. This
"group participation factor" is calculated as the algebraic sum of terms similar to (46)
for all dependent support points in the group.

Two support points are said to be "at the same level" if the movements for all three
global directions are parallel.

We have already defined a structure in which all support points are moving in parallel
as a "single support level" structure. For such a structure, there are exactly three
independent components of the support movement corresponding to the global
directions X, Y and Z and we see from expression (47) that:

(48) U ra= x Va(t)Jx +P ar(t)a y + p a (t)] z
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Influence of Earlv Methods

Historically, the first dynamic analysis of piping systems subject to support
movement loading was performed to construct bound solutions for earthquake loads.

Because it was necessary for code compliance purposes to separate primary and
secondary terms, the dynamic problem was formulated in the u-space of relative
coordinates.

Further, to simplify the numerical analysis for calculation by early computers, it was
assumed that all support points were moving in parallel. The acceleration responses
were not calculated but were taken from floor response spectra, so that the modal
bounds in the u-space were calculated by:

(49) yU= P.r.a+p.r a+p r a

where the PX.1 Pyji Pz1 are respectively X, Y and Z single level participation factors
for modej, calculated by the mass-weighted method previously discussed, and where

rxa, ryja, rjaare respectively X, Y and Z spectral accelerations corresponding to the
natural frequency of modej.

In the very early days, no rigid mode correction was made. Later, attempts were
made to use the concept of "missing mass" to deal with this problem.

This early methodology influenced the future developments in the dynamic analysis
of piping in the following ways:

* The major emphasis is on floor response spectrum methods. It is not obvious
from many formulations of the dynamic problem that all important methods
involved in solving dynamic problems are based on the formulation of the
solution for the general time history problem.

* Some formulations do not explain the role of convolution integrals in solving
the equations of motion.

* It is not obvious in some formulations that the mathematics underlying the
rigid mode correction is identical for all types of dynamic analysis, including
general and u-space time history analysis and single or multiple support level
response spectrum analysis. There are still widely used piping analysis
computer programs which do not include a valid rigid mode correction for
some types of dynamic analysis. Few programs provide a method for
determining the cut-off frequency cOR and the limit theorem (18) is not well
known.

17
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* Although most piping analysis computer programs today provide a method for
calculating multiple support level problems, the formulation in many cases is
still based on single support level mathematics, using mass-weighted
participation factors, using a definition of "included mass" which is based on
single support level participation factors, and, in some cases, using a single
support level rigid mode correction.

* It is not always apparent in the formulation of multiple support level u-space
dynamic analysis problems that u(t) is not the complete solution (or bound
solution) for the equations of motion and that it is necessary to add a solution
(or bound solution) for v(t).

* There is a general lack of rigor in theoretical documentation, which is often
ambiguous and sometimes wrong.

Summary

We may now summarize the steps described in this paper for solving the equations of
motion by the method of modal superposition.

* Using the expression (4), the solution may be calculated once the mode shape
vectors, e1, and the scalar modal amplitudes, y,(1 ), have been determined.

* The yj(t) can be calculated by the convolution integral (13) provided that the

applied load satisfies the condition f(O) = 0. It is shown how to use these
methods even if f(O) • 0, provided the piping structure is initially at rest.

* The limit theorem (18) is derived from the convolution integral and this
theorem together with the expression (9), permits the construction of an
accurate approximation for the contribution to the system response of modes
for which as} 2 c, without actually extracting these modes. This
approximation is constructed by applying the left out force defined in
expression (23) as a static load. A method is given for determining cOR. The
concept of modal mass is not used.

* Two methods for generating bounds for the solution are discussed. One
method consists of calculating a complete solution at each time step and
retaining the maximum for each solution component. A second method is to
calculate modal bounds by calculating or estimating bounds for the scalar
modal amplitudes y,(t). There are several methods, which are outside the

scope of this paper, for combining these modal bounds to construct a plausible
bound for the total system response.
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* A variation of these methods is used to calculate solutions for a special class
of problems for which (1) the load consists of support movements and (2) the
equations are solved in relative coordinates.

* For support movement loads, groups of supports which are moving in parallel
are called "support levels". If all the support points are moving in parallel, the
structure is said to be a "single support level" structure. The concept of a
single support level structure, which comes directly from the original
formulation of these problems more than 40 years ago, is probably no longer a
useful engineering hypothesis. The general concept of support levels is not
used in this paper.

* Finally, it is suggested that an increase in the level of mathematical rigor can
lead to improved engineering solutions.
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