

L. William Pearce Vice President 724-682-5234 Fax: 724-643-8069

April 19, 2005 L-05-077

U. S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555-0001

Subject: Beaver Valley Power Station, Unit No. 1

Docket No. 50-334, License No. DPR-66

Cycle 17 Core Operating Limits Report Mid-Cycle Revision

The Beaver Valley Power Station (BVPS) Unit 1 Core Operating Limits Report (COLR) was revised on April 7, 2005. Pursuant to BVPS Unit 1 Technical Specification 6.9.5.d, attached is a copy of this mid-cycle revision to the BVPS Unit 1 COLR (Revision 45).

As identified in the previous FirstEnergy Nuclear Operating Company (FENOC) letter L-04-144 dated November 19, 2004, titled "10 CFR 50.46 Report of Changes or Errors in ECCS Evaluation Models," the BVPS Unit 1 containment metal mass had been previously under-estimated, which resulted in increased Loss of Coolant Accident (LOCA) peak clad temperature (PCT) effects. A compensatory measure taken by FENOC to address this newly identified LOCA analysis effect was to reduce the core design limit, F_Q, from 2.30 to 2.20 for the BVPS Unit 1 Cycle 17 fuel, which had already been designed and manufactured when this LOCA analysis discrepancy was identified. The reduction in F_Q improved the LOCA analysis PCT results. This reduction in F_Q, however, causes a reduction in available margin for meeting the required periodic Fxy surveillances performed during BVPS Unit 1 operation in Cycle 17.

The initial Cycle 17 COLR (previously submitted to the NRC by FENOC letter L-04-147, dated November 5, 2004) provided a single set of Fxy limits which were applicable throughout the whole BVPS Unit 1 Cycle 17 operation. This mid-cycle revision splits the current Fxy limits into two parts: for core burnups ≤ 8000 MWD/MTU and for core burnups ≥ 8000 MWD/MTU. By splitting the Fxy limits into two parts, additional margin could be obtained for meeting Fxy surveillance limits during BVPS Unit 1 plant operation when core burnup is ≤ 8000 MWD/MTU.

An additional action is being considered to improve the Fxy surveillance margin for BVPS Unit 1 operation for core burnups > 8000 MWD/MTU, which may lead to another BVPS Unit 1 COLR mid-cycle revision. Any further COLR revisions will be provided to the NRC as required by BVPS Unit 1 Technical Specification 6.9.5.d.

Beaver Valley Power Station, Unit No. 1
Cycle 17 Core Operating Limits Report Mid-Cycle Revision
L-05-077
Page 2

No regulatory commitments are contained in this submittal. If there are any questions concerning this matter, please contact Mr. Larry R. Freeland, Manager, Regulatory Compliance at 724-682-4284.

Sincerely,

Attachment

c: Mr. T. G. Colburn, NRR Senior Project Manager

Mr. P. C. Cataldo, NRC Sr. Resident Inspector

Mr. S. J. Collins, NRC Region I Administrator

Mr. L. E. Ryan (BRP/DEP)

Beaver Valley Power Station, Unit No. 1 Cycle 17 Core Operating Limits Report Mid-Cycle Revision L-05-077 Page 3

bc: R. W. Fedin R. W. Huston

D. J. Schwer J. J. Hagan

D. W. Jenkins

Central File - Keywords: COLR

BVPS-1

LICENSING REQUIREMENTS MANUAL

4.1 CORE OPERATING LIMITS REPORT

This Core Operating Limits Report provides the cycle specific parameter limits developed in accordance with the NRC approved methodologies specified in Technical Specification Administrative Control 6.9.5.

Specification 3.1.3.5 Shutdown Rod Insertion Limits

The shutdown rods shall be withdrawn to at least 225 steps.*

Specification 3.1,3.6 Control Rod Insertion Limits

Control Banks A and B shall be withdrawn to at least 225 steps.*

Control Banks C and D shall be limited in physical insertion as shown in Figure 4.1-1.*

Specification 3.2.1 Axial Flux Difference

NOTE: The target band is $\pm 7\%$ about the target flux from 0% to 100% RATED THERMAL POWER.

The indicated Axial Flux Difference:

- a. Above 90% RATED THERMAL POWER shall be maintained within the $\pm 7\%$ target band about the target flux difference.
- b. Between 50% and 90% RATED THERMAL POWER is within the limits shown on Figure 4.1-2.
- c. Below 50% RATED THERMAL POWER may deviate outside the target band.

Specification 3.2.2 F_O(Z) and F_{xy} Limits

$$F_Q(Z) \le \frac{CF_Q}{P} * K(Z)$$
 for $P > 0.5$

$$F_Q(Z) \le \frac{CF_Q}{0.5} * K(Z)$$
 for $P \le 0.5$

Where:

$$CF_Q = 2.20$$
 $P = \underline{THERMAL\ POWER}$
RATED THERMAL POWER

K(Z) = the function obtained from Figure 4.1-3.

* As indicated by the group demand counter

1

1

LICENSING REQUIREMENTS MANUAL

The F_{xy} limits $[F_{xy}(L)]$ for RATED THERMAL POWER within specific core planes shall be:

$$F_{xy}(L) = F_{xy}(RTP)(1 + PF_{xy} * (1-P))$$

Where: For all core planes containing D-Bank:

 $F_{xy}(RTP) \leq 1.71$

For unrodded core planes with core burnup ≤ 8000 MWD/MTU:

 $F_{xy}(RTP) \le 1.75$ from 1.8 ft. elevation to 2.3 ft. elevation

 $F_{xy}(RTP) \le 1.75$ from 2.3 ft. elevation to 3.7 ft. elevation

 $F_{xy}(RTP) \le 1.79$ from 3.7 ft. elevation to 5.8 ft. elevation

 $F_{xy}(RTP) \le 1.81$ from 5.8 ft. elevation to 7.4 ft. elevation

 $F_{xy}(RTP) \le 1.75$ from 7.4 ft. elevation to 8.9 ft. elevation

 $F_{xy}(RTP) \le 1.74$ from 8.9 ft. elevation to 10.2 ft. elevation

For unrodded core planes with core burnup > 8000 MWD/MTU:

 $F_{xy}(RTP) \le 1.68$ from 1.8 ft. elevation to 2.3 ft. elevation

 $F_{xy}(RTP) \le 1.73$ from 2.3 ft. elevation to 3.7 ft. elevation

 $F_{xy}(RTP) \le 1.79$ from 3.7 ft. elevation to 5.8 ft. elevation

 $F_{xy}(RTP) \le 1.81$ from 5.8 ft. elevation to 7.4 ft. elevation

 $F_{xy}(RTP) \le 1.74$ from 7.4 ft. elevation to 8.9 ft. elevation

 $F_{xy}(RTP) \le 1.60$ from 8.9 ft. elevation to 10.2 ft. elevation

 $PF_{xy} = 0.2$

P = THERMAL POWER
RATED THERMAL POWER

LICENSING REQUIREMENTS MANUAL

Figure 4.1-4 provides the maximum total peaking factor times relative power $(F_Q^{T*}P_{rel})$ as a function of axial core height during normal core operation.

Specification 3.2.3 FNAH

 $F^{N}_{\Delta H} \le CF_{\Delta H} * (1 + PF_{\Delta H} (1-P))$

Where:

 $CF_{\Delta H} = 1.62$

 $PF_{\Delta H} = 0.3$

P = THERMAL POWER

RATED THERMAL POWER

BVPS-1
LICENSING REQUIREMENTS MANUAL

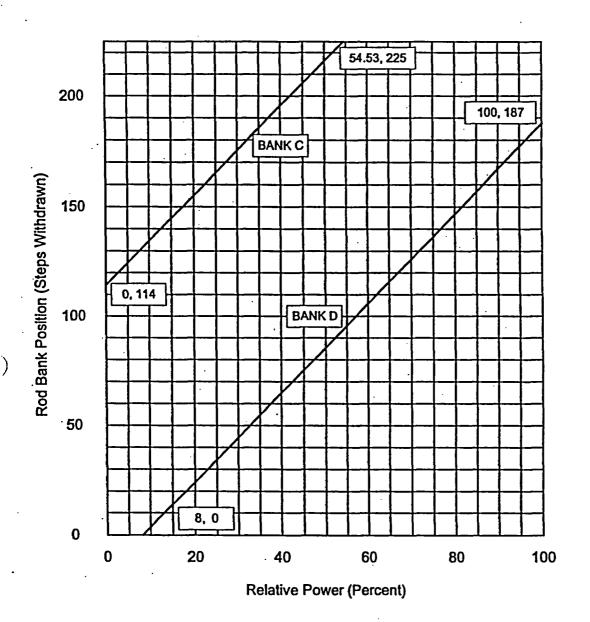


FIGURE 4.1-1 CONTROL ROD INSERTION LIMITS

BVPS-1
LICENSING REQUIREMENTS MANUAL

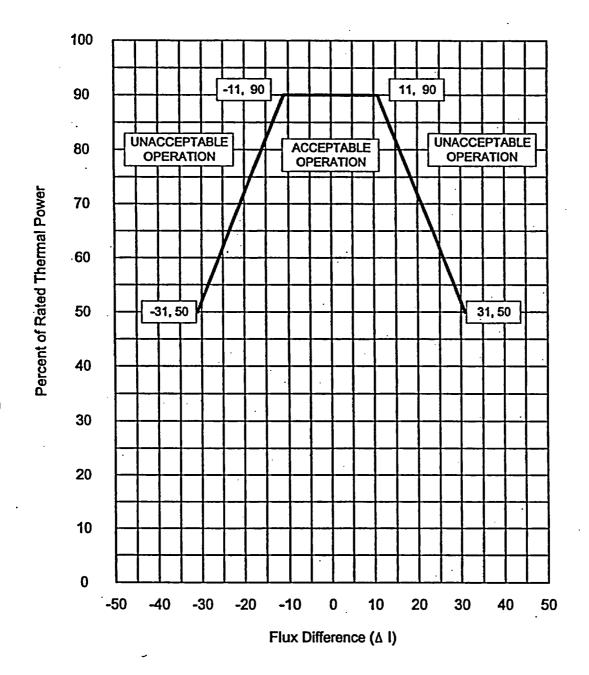


FIGURE 4.1-2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER

BVPS-1
LICENSING REQUIREMENTS MANUAL

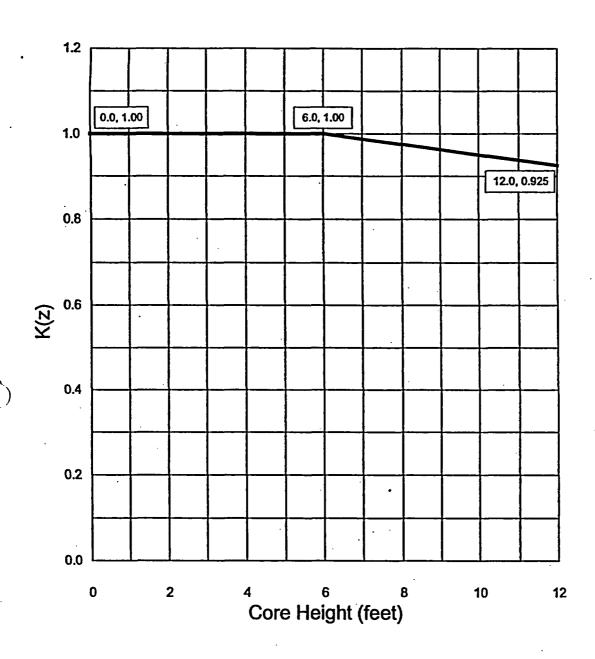
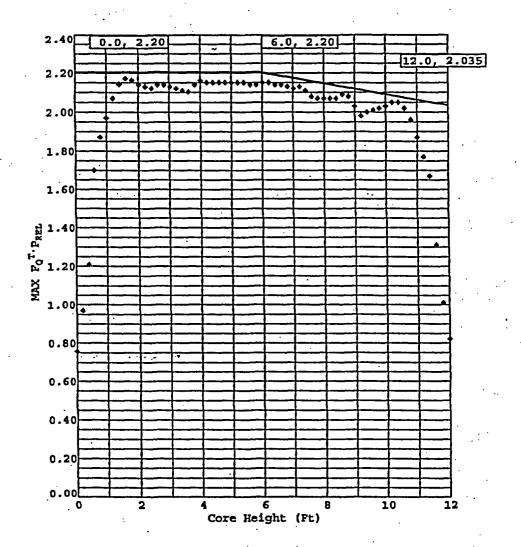



FIGURE 4.1-3
F_QT NORMALIZED OPERATING ENVELOPE, K(Z)

BVPS-1

LICENSING REQUIREMENTS MANUAL

FIGURE 4.1-4 MAXIMUM (F₀T*PREL) VS AXIAL CORE HEIGHT DURING NORMAL OPERATION

BVPS-1 LICENSING REQUIREMENTS MANUAL

Specification 3.3.1.1 Reactor Trip System Instrumentation Setpoints, Table 3.3-1 Table Notations A and B

Overtemperature ΔT Setpoint Parameter Values:

<u>Parameter</u>	<u>Value</u>
Overtemperature ΔT reactor trip setpoint	K1 ≤ 1.259
Overtemperature ΔT reactor trip setpoint Tavg coefficient	K2 ≥ 0.01655/°F
Overtemperature ΔT reactor trip setpoint pressure coefficient	$K3 \ge 0.000801/psia$
Tavg at RATED THERMAL POWER	T ≤ 576.2°F
Nominal Pressurizer Pressure	P' ≥ 2250 psia
Measured reactor vessel average temperature lead/lag time constants	$\tau_1 \ge 30 \text{ secs}$ $\tau_2 \le 4 \text{ secs}$

 $f(\Delta I)$ is a function of the indicated difference between top and bottom detectors of the power-range nuclear ion chambers; with gains to be selected based on measured instrument response during plant startup tests such that:

- (i) for $q_t q_b$ between -36 percent and +15 percent, $f(\Delta I) = 0$ (where q_t and q_b are percent RATED THERMAL POWER in the top and bottom halves of the core respectively, and $q_t + q_b$ is total THERMAL POWER in percent of RATED THERMAL POWER).
- (ii) for each percent that the magnitude of $(q_t q_b)$ exceeds -36 percent, the ΔT trip setpoint shall be automatically reduced by 2.08 percent of its value at RATED THERMAL POWER.
- (iii) for each percent that the magnitude of $(q_t q_b)$ exceeds +15 percent, the ΔT trip setpoint shall be automatically reduced by 1.59 percent of its value at RATED THERMAL POWER.

Overpower ΔT Setpoint Parameter Values:

<u>Parameter</u>	<u>Value</u>
Overpower ΔT reactor trip setpoint	K4≤1.0916
Overpower ΔT reactor trip setpoint Tavg rate/lag coefficient	K5 ≥ 0.02/°F for increasing average temperature

BVPS-1 LICENSING REQUIREMENTS MANUAL

Overpower ΔT Setpoint Parameter Values (continued):

<u>Parameter</u> <u>Value</u>

Overpower ΔT reactor trip setpoint Tavg heatup coefficient $K6 \ge 0.00128$ /°F for

T > T''K6 = 0°F for $T \le T''$

Tavg at RATED THERMAL POWER T" ≤ 576.2°F

Measured reactor vessel average temperature rate/lag time constant $\tau_3 \ge 0$ secs

Specification 3.2.5 DNB Parameters

Parameter Indicated Value

Reactor Coolant System Tavg $= 580.0^{\circ}F^{(1)}$

Pressure ≥ 2215 psia⁽²⁾

Reactor Coolant System Total Flow Rate Flow \geq 267,400 gpm⁽³⁾

⁽¹⁾ The Reactor Coolant System (RCS) T_{avg} value includes allowances for rod control operation and verification via control board indication.

⁽²⁾ The pressurizer pressure value includes allowances for pressurizer pressure control operation and verification via control board indication.

⁽³⁾ The RCS total flow rate includes allowances for normalization of the cold leg elbow taps with a beginning of cycle precision RCS flow calorimetric measurement and verification on a periodic basis via control board indication.

BVPS-1 LICENSING REQUIREMENTS MANUAL

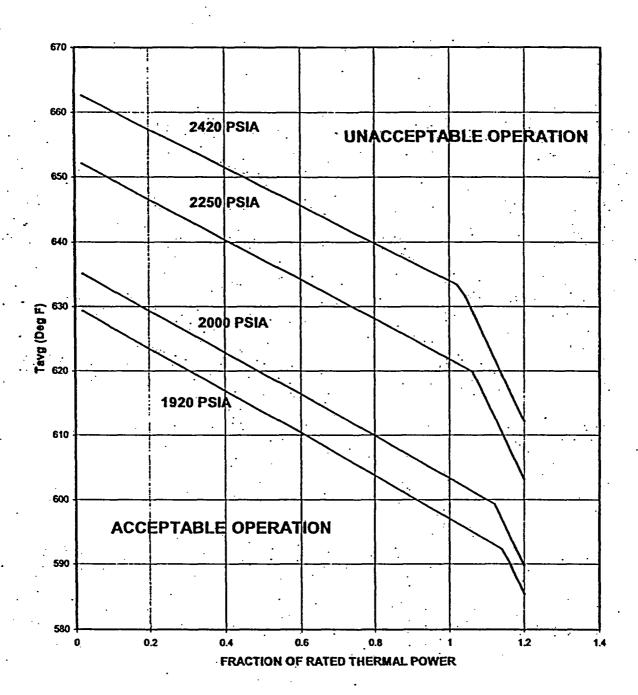


Figure 4.1-5
REACTOR CORE SAFETY LIMIT
THREE LOOP OPERATION
(Technical Specification Safety Limit 2.1.1)