

Tornado Licensing Basis and Mitigation Strategy – Kick-off Meeting

Oconee Nuclear Station March 17, 2005

Agenda

- □ Introductions
- Objectives

۰.

- Oconee Licensing Basis Insights
- □ Safety Review
- Design Basis Upgrade Initiative
 - Summary
- Potential Modifications
- **Closing Remarks**

Goals & Objectives

- Engage with NRC to find and implement an effective solution to the Oconee Tornado licensing basis and mitigation issues
- Provide an overview of licensing basis insights from an Oconee perspective
- Communicate results of the Safety Review performed relative to the list of NRC concerns
- Move beyond differences in interpretation of the Oconee current licensing basis

Goals & Objectives

Establish a framework of cooperative issue resolution with NRC

- ✓ What changes will bring our two views of the Current Licensing Basis (CLB) closer together?
- ✓ Craft a LB both Duke and NRC agree on, and most importantly, stands the test of time.
- Provide an overview of modifications under consideration to eliminate or decrease tornado vulnerabilities
- Provide periodic status to NRC of Duke activities to strengthen the licensing basis both in the short-term and long-term. Establish a schedule to support these discussions

Oconee Licensing Basis Insights

Original LB (1973 - Unit 1; 1974 - Units 2 and 3)

- ✓ Oconee's initial operating license pre-dates the GDCs, SRPs and the NRC (AEC).
- \checkmark several diverse and physically separated power sources
- \checkmark abundant supply of water (up to 37 days)
- ✓ protected station ASW pump and power supply
- ✓ no single failure requirements
- ✓ tornado does not occur with nor can not cause a LOCA
- □ Issues not addressed with respect to tornadoes in original FSAR/SER:
 - ✓ Primary make-up capabilities
 - ✓ RCP seal LOCAs
 - ✓ PORV/PRV failures
 - ✓ SG tube stresses

Oconee Licensing Basis Insights

LB: 1974-1994

✓ NUREG 0737, II.E.1.1, "Short-term Auxiliary Feedwater System Evaluation"

- ✓ SSF begins operation
- 🖵 LB: 1995
 - Primary make-up capabilities added to UFSAR due to industry RCP seal LOCA concerns.
 - SSF RCMU
 - HPI pump fed from BWST or SFP
- LB: 1998 present
 - ✓ Added clarification to UFSAR 3.2.2 based on IPEEE risk results.

Results of Safety Review

- A Safety Review was performed for each issue identified in the "Licensing Basis Discrepancy" document received from NRC.
- □ The Oconee position is that we are in compliance with CLB. Therefore, an operability determination in accordance with GL 91-18 did not apply.
- □ The CLB is based on diversity and defense in depth, not deterministic.
 - ✓ Concerns articulated by NRC are tornado vulnerabilities, not licensing basis conformance deviations
 - ✓ GL 88-20 drove non-SRP plants to perform IPEEE evaluations
 - ✓ The IPEEE Technical Evaluation Report (TER) for Oconee accepted the IPEEE's conclusion that Oconee had no severe accident vulnerabilities that needed to be addressed via the 10CFR 50.109 backfit process
 - ✓ GL 95-04, System Evaluation Process (SEP), contains a table that supports the Oconee position regarding IPEEE tornado strategy

Results of Safety Review

- □ NRC concerns list evaluated
 - ✓ Results:
 - Safety evaluation performed. Based primarily on low-risk impact of the items from the list, Oconee is safe.
 - UFSAR needs to be clarified.
 - ✓ Action:
 - Submit an LAR to clarify/strengthen UFSAR Section 3.2.2
- LAR Details
 - ✓ Traditional LAR submittal w/risk insights (but not a classic risk informed LAR per RG 1.174)
 - ✓ Clarify actual mitigation strategy
 - Limitations are described/quantified using risk
 - Overall tornado risk discussed

- Presentation addresses phase I of the mod process
 - ✓ Investigate design concepts
 - ✓ Evaluate feasibility and constructability
 - ✓ Develop order of magnitude cost estimates
- □ Mod proposals outlined in this presentation
 - ✓ Developed as an aid for the vendors
 - The optimum design concept resulting from phase I of the mod process may differ significantly from the modification proposals outlined in this presentation

Scope

- ✓ Enhance natural phenomena barriers
- ✓ Improved alternate safe shutdown path
 - Using Station ASW and HPI
 - Upgraded power supplies
 - Control from the main control room
 - Significantly reduces tornado damage frequency

□ Scope (cont'd)

- ✓ Enhance natural phenomena barriers
 - Upgrade north Unit 3 Control Room Wall
 - Missiles addressed via TORMIS submittal
 - > Wind/DP to be addressed with additional shielding
 - Upgrade elevated SSF trench to withstand missiles
 - Upgrade west pen and cask decon room walls for missiles, wind, and DP

Sensitive Information (withheld per SECY 04-0191)

□ Sensitive Information (withheld per SECY 04-0191)

14

Sensitive Information (withheld per SECY 04-0191)

- □ Scope (cont'd)
 - ✓ Alternate safe shutdown path
 - Station ASW
 - Upgrade Station ASW to high pressure system
 - Eliminates need to manually operate atmospheric dumps
 - Improves tube to shell differential temperatures
 - Provide start and flow control and indication in control room
 - Response time reduced from 40 minutes to less than 15 minutes
 - Eliminates PORV, PSV challenge
 - Improves three unit control capability

.

κ

.....

Proposed Station ASW Upgrade

17

□ Sensitive Information (withheld per SECY 04-0191)

- □ Scope (cont'd)
 - New Station ASW switchgear loads
 - High pressure ASW pump & system
 - Isolation Valves
 - Flow control valves
 - ➢ Flow instrumentation
 - One HPI pump per unit & system
 - Provide remote transfer to new ASW switchgear for one HPI pump/unit
 - Provide sufficient power and cubicles for future equipment (next slide)

- Scope (cont'd)
 - ✓ Alternate safe shutdown path (cont'd)
 - HPI (to follow Station ASW and electrical upgrades)
 - > Provide hardened power supply and remote control for
 - BWST suction valves
 - RCP seal flow control valves
 - Reactor head and high point vent valves for letdown
 - Pressurizer heaters

- Proposed Schedule
 - ✓ Duke completes phase I of the mod process
 - Natural phenomena barriers
 - Complete design concepts- May 2005
 - ➢ Test of concepts if necessary- End of 2005
 - Station ASW and electrical enhancement- End of 2005
 - HPI upgrade- to follow Station ASW and Electrical Upgrades
 - ✓ Duke initiates final design package- early 2006

Status

- ✓ Natural phenomena barriers
 - Contracted Fluor to develop design concept
 - Past experience at Hanford
 - Design concept, feasibility, order of magnitude cost on target for completion by May 2005
 - Testing targeted for completion by end of 2005 if necessary

Status (cont'd)

✓ Station ASW

STATISTICS STATISTICS AND ADDRESS

- ONS mod teams in place (PM, lead design eng, risk reduction eng, system eng)
- Technical Scope Requirement document completed
- Request for quotes sent to vendors this week
- ✓ Upgrade power supplies
 - ONS mod teams in place
 - Draft Technical Scope Requirement document completed
 - Request for quotes to vendors to be sent out by the end of March

Challenges

✓ Accelerated schedule

A COLORADO AND A COMPANY

- Feasibility/design for SG Replacement took several years
- Large, complex project
- Scarce resources for oversight
- Working with new vendors
- ✓ Technical Challenges
 - Providing alternate or upgraded power supply to new ASW SWGR
 - New cable runs to cable spread room
 - Avoiding adverse impact on existing SSCs
 - Implementation- CT5, Standby Bus and Station ASW are 3 unit systems

24

۲.

e+ e

NRC concerns being addressed

- ✓ Natural Phenomena Barriers
 - New power supply from Station ASW Switchgear to battery chargers in Auxiliary Building
 - Upgraded west penetration and cask decon rooms
 - Upgraded unit 3 north control room wall
 - Upgraded SSF trench
 - Eliminating manual actions in turbine building to open atmospheric dumps

□ NRC concerns being addressed (cont'd)

- ✓ Mitigation system functionality
 - Reduces PORV and PSV challenge
 - Significantly reduces steam generator tube to shell differential temperatures
 - Remote and reliable flow control of station ASW to all three units
 - Provides for hot shutdown capability using HPI and alternate letdown paths (to follow Station ASW and electrical upgrades)

Closing Remarks

Oconee is safe today relative to tornado risk

- Oconee will add clarity and detail to the existing LB contained in UFSAR.
- Modifications are being aggressively pursued to address vulnerabilities and improve overall tornado mitigation strategy for the future.
- Oconee has a strong desire to proactively engage with NRC to resolve these issues and implement satisfactory solutions.
- > Questions
- ➢ Next meeting