Omaha Public Power District Fort Calhoun Nuclear Station

2004

Radiological Environmental Report

OMAHA PUBLIC POWER DISTRICT FORT CALHOUN STATION RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TECHNICAL SPECIFICATION 5.9.4.b

January 01, 2004 – December 31, 2004

This report is submitted in accordance with Section 5.9.4.b of the Technical Specifications of Fort Calhoun Station Unit No. 1, Facility Operating License DPR-40 for the period January 01, 2004 through December 31, 2004.

In addition, this report provides any observations and anomalies that occurred during the monitoring period.

Reviewed by:

4-6-05

Supervisor-System Chemistry

Approved by:

me 4-7-05 Lehand Manager-Chemistre

Annual Radiological Environmental Operating Report

In accordance with Technical Specification 5.9.4.b, herein is the Fort Calhoun Station (FCS) Annual Radiological Environmental Operating Report for year 2004. The data provided is consistent with the objectives as specified in Section 5.2.2 of the Offsite Dose Calculation Manual (ODCM), "Annual Radiological Environmental Operating Report." The report is presented as follows:

- 1) An introductory discussion of the implementation of the Radiological Environmental Monitoring Program (REMP), including program observations and environmental impact relevant to the operation of FCS.
- 2) The sample class, sample collection frequency, number of sample locations, and the number of samples collected this reporting period for each parameter is delineated in Table 1.0.
- 3) A statistical evaluation of REMP data is summarized in Table 2.0, in accordance with Regulatory Guide 4.8, Table 1. For each type of sample media and analysis, Table 2.0 presents data separately for all **indicator** locations, all **control** (background) locations, and the location having the highest annual mean result. For each of these classes, Table 2.0 specifies the following:
 - a. The total number of analyses
 - b. The fraction of analyses yielding detectable results (i.e., results above the highest Lower Limit of Detection (LLD) for this period
 - c. The maximum, minimum, and average results
 - d. Locations with the highest mean are specified along with their distance and direction from the center of plant containment
- 4) Table 3.0 is a listing of missed samples and explanations
- 5) Table 4.0 is the Environmental Land Use Survey
- 6) Review of Environmental Inc. Quality Assurance Program
- 7) Appendix A describes the Interlaboratory Comparison Program
- 8) Appendix B describes the vendor Data Reporting Conventions utilized
- 9) Appendix C reports the information required when primary coolant specific activity has exceeded the limits of Technical Specification 2.1.3
- 10) Appendix D is the Sample Location Maps

INTRODUCTION

Radiological Environmental Monitoring Program (REMP) - 2004

This report gives the results of the Radiological Environmental Monitoring Program (REMP) for the year 2004. The REMP is a requirement of the Fort Calhoun Station (FCS) operating license. It was initiated prior to plant operation in 1973.

The main purpose of the REMP is to ensure public safety by monitoring plant discharges and assessing the effect, if any, of plant operations, on the environment. Samples are collected that would account for various exposure pathways such as ingestion, inhalation, adsorption and direct exposure. Samples collected on a regular basis include: air, water, milk, vegetation, fish, sediment, and food crops. Direct radiation is measured by thermoluminescent dosimeters (TLDs). These samples and TLDs are sent to an independent vendor laboratory for analysis. The vendor uses analytical methods that are sensitive enough to detect a level of activity far below that which would be considered harmful. Locations for sample collection are based on radiological and meteorological data from the Annual Effluent Release Report and information obtained from the Environmental Land Use Survey.

Most samples, particularly indicator samples, are collected in a circular area within a five-mile radius of plant containment. (However, control locations are usually outside of five miles.) This circle is divided into sixteen equal sectors, each assigned an identification letter "A" through "R" (note: letters "I" and "O" are not used, as they may be mistaken for the numbers "1" and "O"). Sector "A" is centered on North or zero degrees. Sectors are also given directional labels such as "West-Southwest" ("WSW"). Sample locations are listed by number along with their respective distances and direction from plant containment, in the Offsite Dose Calculation Manual (ODCM).

When assessing sample results, data from indicator locations (those most likely to be effected by plant operations) are compared to those from control locations (those least or not likely to be effected). Results from an indicator location which were significantly higher than those from a control location, could indicate a plant-attributable effect, and could require additional investigation.

The results of the sample analyses, as required by the FCS Offsite Dose Calculation Manual (ODCM), are presented in the attached statistical tables in accordance with Table 1 of Regulatory Guide 4.8, "Environmental Technical Specifications for Nuclear Power Plants." Sample collection was conducted by plant chemistry/environmental staff. A contract vendor (Environmental Inc., Northbrook, Illinois) performed sample analyses, preparation of monthly reports and the statistical evaluation of sample results. All vendor analysis techniques met the sensitivity requirements as stated in the ODCM. Results for 2004 were within expected ranges and compared closely with historical results. The following is a review of specific sample results.

1) <u>Ambient Gamma Radiation</u>

Ambient gamma radiation is measured by thermoluminescent dosimeters (TLDs) provided by the vendor laboratory. These dosimeters contain calcium sulfate phosphors and are processed quarterly.

All results for 2004 were within historical ranges. The indicator locations had annual means ranging from 1.2 to 1.6 mrem per week. The control location (OTD-L) had an annual mean of 1.3 mrem per week. Results from indicator locations are within the range of results from the control location. No plant-attributable results were seen.

Locations OTD-Q and OTD-R were added in June 2003 to be co-located with possible new air sample locations. These air sample locations ultimately were not needed and the TLD locations were discontinued after the first quarter of 2004.

2) <u>Milk/Pasture</u>

Milk samples are collected every two weeks from the beginning of May through September. Indicator samples are collected from a herd of milk goats located approximately 0.7 miles from the plant in Sector K (SSW). The control samples are collected from a commercial dairy cow herd located approximately 9.9 miles from the plant in Sector J (S). These locations are unchanged from last year.

All milk sample results for lodine-131, Cesium-134, Cesium-137 and other gammas were less than LLD for both indicator and control locations. No plant-related effects were seen.

Milk was unavailable from the indicator location on May 7, and June 17, 2004. Pasture grass was collected as a substitute. All results for these samples were less than LLD. No plant-related effects were seen.

3) <u>Fish</u>

Two important species for human consumption, Flathead Catfish and Common Carp, were collected specifically for their commercial and recreational value, both upstream and downstream from the plant. The upstream control location is approximately twenty river miles (RM 665-667) upstream of the indicator location which is in the vicinity of the plant (RM 644-646). Results from both locations were less than LLD for all gamma emitters. Therefore, no plant-related effects are indicated and no changes to plant operations are required.

4) Food Crops

Vegetable garden locations remain unchanged from last year. The indicator and control locations for gardens are the same as for milk samples. All results were less than LLD for all isotopes. No plant-related effects were observed.

5) <u>Sediment</u>

River sediment samples are collected twice a year at an upstream control location and a downstream indicator location. All results were less than LLD, and no plant-related effects were observed.

6) <u>Air Monitoring</u>

All results for 2004 were within historical ranges for gross beta and lodine-131. All gamma results were again less than LLD. Two Condition Reports were written in 2004 for air samples. Both were due to a timer which came loose and quit running on the air pump at location OAP-J(I). In the first instance, the I&C technician repaired the problem in the field. The following week the timer was loose again and the air pump was replaced. In both cases, the air pump itself kept running as did the backup timer which was used to obtain run-time for the sample.

No plant-related effects were observed.

7) <u>Water Samples</u>

Water samples are collected upstream of the plant (control location) as well as half-mile downstream, and at a municipal water treatment plant on the north edge of Omaha.

Detectable tritium results were seen in the first quarter downstream location with results of 702 \pm 106 pCi/L. Individual monthly results were as follows: January 1444 \pm 130 pCi/L, February 35 \pm 80 pCi/L, and March 485 \pm 98 pCi/L. No tritium was found at the downstream municipal water treatment plant.

Tritium has been detected in other winter time water samples from previous years. River flow and volume are significantly less during the winter than in summer, which results in less dilution. The average monitor tank tritium concentration for the quarter was 0.1017 μ Ci/mL. A dose calculation was performed using the quarterly discharged volume and this average tritium concentration using Genie software. The result was 8.37 E-03 mrem. A dose estimate was also performed using the equations listed in the ODCM and the positive sample result. For the determination, an adult was assumed to drink water at 702 pCi/L for one quarter at the rate listed in Table 6. The dose from that calculation was 7.67 E-03 mrem. (702 pCi/L * 730 L/Yr * .25Yr * 5.99 E-08 mrem/pCi)

In summation, no changes are required to the FCS Effluent processes due to this positive environmental result. The dose attributed to the positive result is consistent with that estimated by LADTAP software. The level of this positive sample is well below the reporting level of 20,000 pCi/L. The dose estimated represents 0.28% of the annual limit of 3 mrem.

Sample Class	Collection Frequency	Number of Sample Locations	Number of Samples Collected This Period
Background Radiation (TLDs)	Quarterly	18	63
Air Particulates	Weekly	6	312
Airborne Iodine	Weekly	6	312
Milk Pasture Grass (milk substitute)	Bi-weekly	2 2	20 2
Water	Monthly	3	36
Fish	Annually	2	5
Sediment	Semiannually	2	4
Food Crops	Annually	2	8

TOTAL

762

Table 2.0 Radiological Environmental Monitoring Program Summary

Reporting Period

January-December, 2004

14510 2.0 1455104				~	Reporting Fallod	January-Decea	1001,2004
Name o	of Facility	Fort Ca	Ihoun Nuclear Power	Station - Unit 1	Docket N	lo. 50-285	
	n of Facility		gton, Nebraska		•		
			(County,	State)	•		
Sample	Type and		Indicator Locations	Location with H Annual Me	-	Control Locations	Number Non-
Type (Units)	Number of Analyses*		Mean (F) ^c Range ^c	Location ^d	Mean (F) ^c Range ^c	Mean (F) ^c Range ^c	Routine Results [®]
Background Radiation (TLD) (mR/week)	Gamma 6	3 0.5	1.4 (58/58) (1.1-1.8)	OTD-K-(I), SE of Plant 1.07 mi. @ 139 *	1.6 (4 /4) (1.5-1.8)	1.3 (5/5) (1.2-1.4)	0
Airborne Particulates (pCi/m ³)	GB 3	2 0.005	0.027 (260/260) (0.010-0.061)	OAP-F-(C) Valley Substation #902 19.6 mi. @ 221 *	0.029 (52 /52) (0.013-0.062)	0.029 (52/52) (0.013-0.062)	0
	GS	24			1		
	Cs-134	0.001	<u.d< td=""><td>-</td><td>-</td><td><ud< td=""><td>0</td></ud<></td></u.d<>	-	-	<ud< td=""><td>0</td></ud<>	0
	Cs-137	0.001	<ud< td=""><td>•</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></ud<>	•	-	<lld< td=""><td>0</td></lld<>	0
	Other Gamm	s 0.001	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
Airborne Iodine (pCi/m ³)	1-131 3	12 0.07	< LLD		-	<lld< td=""><td>0</td></lld<>	0
Milk (pCi/L)	-131 2 GS 2		< LLD	-	-	<lld< td=""><td>0</td></lld<>	0
:	к-40	150	1653 (9/9) (1536-1763)	OFM-F-(I) Bansen Farm 0.7 mi. @ 203 °	1653 (9/9) (1536-1763)	1317 (12/12) (1190-1477)	0
	Cs-134	15	<ud< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></ud<>	-	-	<lld< td=""><td>0</td></lld<>	0
	Cs-137	15	<lld< td=""><td>-</td><td> - </td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
	Other Gamma	s 15	<lld< td=""><td>-</td><td>-</td><td>< LLD</td><td>0</td></lld<>	-	-	< LLD	0
Boohiro Cross	GS 2	1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Pasture Grass (milk substitute)	Mn-54	0.015	<lld< td=""><td></td><td></td><td>< LLD</td><td></td></lld<>			< LLD	
pCi/g wet	Co-58	0.015	<lld< td=""><td>-</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>	-		<lld< td=""><td>0</td></lld<>	0
hong mer	Co-60	0.019	<lld< td=""><td>_</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>	_		<lld< td=""><td>0</td></lld<>	0
	Fe-59	0.014	<lld< td=""><td>-</td><td></td><td>< LLD</td><td>0</td></lld<>	-		< LLD	0
	Zn-65	0.034	<lld< td=""><td>•</td><td></td><td><lld< td=""><td>0 0</td></lld<></td></lld<>	•		<lld< td=""><td>0 0</td></lld<>	0 0
	Zr-Nb-95	0.019	<lld< td=""><td>· -</td><td>] . </td><td><ud>LLD</ud></td><td>0</td></lld<>	· -] .	<ud>LLD</ud>	0
	1-131	0.030	<lld< td=""><td>-</td><td>- </td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
	Cs-134	0.014	<lld< td=""><td>-</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>	-		<lld< td=""><td>0</td></lld<>	0
	Cs-137	0.013	<lld< td=""><td>•</td><td> - </td><td><lld< td=""><td>0</td></lld<></td></lld<>	•	-	<lld< td=""><td>0</td></lld<>	0
	Ba-La-140	0.009	< LLD	•	-	<lld< td=""><td>0</td></lld<>	0

Table 2.1 Radiological Environmental Monitoring Program Summary

Reporting Period

January-December, 2004

Sample Type (Units) Water GS (pCi/L)	Type and Number of Analyses [®]	LLD®	(County, St Indicator Locations Mean (F) ^s	ate) Location with Annual I	n Highest	Control	NI
Type (Units) Water GS	Number of Analyses [®]	LLD [®]	Locations		n Highest	Control	
(Units) Water GS	Analyses		Mean (F) ^c	runual i		Locations	Number Non-
	 S 36		Range ^c	Location ^d	Mean (F) ^c Range ^c	Mean (F) ^c Range ^c	Routine Results [®]
1							
I (DG//L)	Cs-134	15	<lld< td=""><td>-</td><td>-</td><td>< LLD</td><td>o</td></lld<>	-	-	< LLD	o
	Cs-137	15	<lld< td=""><td>-</td><td>- </td><td><lld< td=""><td>Ō</td></lld<></td></lld<>	-	-	<lld< td=""><td>Ō</td></lld<>	Ō
	ner Gammas	15	<lld< td=""><td>-</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>	-		<lld< td=""><td>0</td></lld<>	0
	H-3 12	300	702 (1/8)	OSW-B-(I) Downstream 0.45 mi. @ 108 *	702 (1/4)	<lld< td=""><td>0</td></lld<>	0
Fish GS	5						
	Mn-54	0.026	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
u - V 7	Co-58	0.027	<lld< td=""><td></td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>		-	<lld< td=""><td>0</td></lld<>	0
	Co-60	0.021	< LLD	-	-	<lld< td=""><td>0</td></lld<>	0
	Fe-59	0.075	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>Ō</td></lld<></td></lld<>	-	-	<lld< td=""><td>Ō</td></lld<>	Ō
	Zn-65	0.029	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
	Ru-103	0.054	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
	Cs-134	0.018	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
	Cs-137	0.023	< LLD	-	-	< LLD	0
Sediment GS	4						
	Mn-54	0.028	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
	Co-58	0.033	<lld< td=""><td>•</td><td>-</td><td><lld< td=""><td>Ō</td></lld<></td></lld<>	•	-	<lld< td=""><td>Ō</td></lld<>	Ō
	Co-60	0.030	<lld< td=""><td>-</td><td>•</td><td><lld< td=""><td>ō</td></lld<></td></lld<>	-	•	<lld< td=""><td>ō</td></lld<>	ō
	Fe-59	0.093	<lld< td=""><td>-</td><td>-</td><td><ud></ud></td><td>o</td></lld<>	-	-	<ud></ud>	o
	Zn-65	0.075	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
	Cs-134	0.037	<lld< td=""><td>-</td><td>•</td><td><lld< td=""><td>O</td></lld<></td></lld<>	-	•	<lld< td=""><td>O</td></lld<>	O
	Cs-137	0.029	< LLD	-	-	<lld< td=""><td>0</td></lld<>	0
Food Crops GS	8						·
1	Vin-54	0.010	<lld< td=""><td>-</td><td>•</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	•	<lld< td=""><td>0</td></lld<>	0
	Co-58	0.010	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
	Co-60	0.011	< LLD	-	-	< LLD	0
1 1	-e-59	0.026	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
	Zn-65	0.023	<lld< td=""><td>-</td><td>-</td><td>< LLD</td><td>0</td></lld<>	-	-	< LLD	0
	Zr-ND-95	0.015	< LLD	-	-	<lld< td=""><td>0</td></lld<>	0
	Cs-134	0.010	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
	Cs-137	0.016	< LLD	-	-	<lld< td=""><td>0</td></lld<>	0
	3a-La-140	0.022	<lld< td=""><td>-</td><td>-</td><td>< LLD</td><td>0</td></lld<>	-	-	< LLD	0

* GB = gross beta, GS = gamma scan.

^b LLD = nominal lower limit of detection based on a 95% confidence level.

^c Mean and range are based on detectable measurements only (i.e., >LLD) Fraction of detectable measurements at specified locations is indicated in parentheses (F).

^d Locations are specified: (1) by code, (2) by name, and (3) by distance and direction relative to the Reactor Containment Building.

• Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds the typical pre-operational value for the medium or location.

Table 3.0 Listing of Missed Samples (samples scheduled but not collected)

 \cup \cup ر ا \cup \cup \cup \cup \cup \cup \cup \cup C C \cup \cup \cup \bigcirc \cup U C U С \cup \cup

し し

•1

	<u></u>	·	· · · · · · · · · · · · · · · · · · ·
Sample Type	Date	Location	Reason

All required samples for the REMP were collected as scheduled for 2004.

Table 4.0 Environmental Land Use Survey

Sector	Type of Use	Owner's Name	Coordinates (miles/degrees)	Counting Technique	Age Group	Remarks
	Nearest Residence	Riverland Park	4.57 / 349	Interview	Adult	Resident Prefers Anonymity
٨	Milk Animal	None	None	None	None	
A	Meat Animal	None	None	None	None	
	Vegetable Garden	None	None	None	None	
	Nearest Residence	J. Rand	1.93 / 12	Interview	Adult	
В	Milk Animal	None	None	None	None	
	Meat Animal	D. Dugdale	4.72 / 29	Interview	Adult, Teen, Child	
	Vegetable Garden	None	None	None	None	
	Nearest Residence	Riverside Farms	1.52 / 42	Interview	Adult, Child	Resident Prefers Anonymity
C	Milk Animal	None	None	None	None	
C	Meat Animal	None	None	None	None	
	Vegetable Garden	Riverside Farms	1.52 / 42	Interview	Adult, Child	Resident Prefers Anonymity
	Nearest Residence	G. Meade	4.79 / 63	City Directory	Adult	
_	Milk Animal	None	None	None None		
D	Meat Animal	None	None	None	None	
	Vegetable Garden	M. Borchers	4.98 / 58	Mailed Survey	Adult	

(1) Approximate age categories in receptor deck for evaluating dose commitment:

Infant Child 0-1 Yr.

1-11 Yrs. Teen 12-17 Yrs. Over 17 Yrs. Adult

Page 10 of 14

Table 4.0	Environmental Land Use Survey (continued)
-----------	---

Sector	Type of Use	Owner's Name	Coordinates (miles/degrees)	Counting Technique	Age Group	Remarks
	Nearest Residence	B. Herman	4.67 / 89	City Directory	Adult	
E	Milk Animal	None	None	None	None	
	Meat Animal	D. Brothers	4.91 / 90	Interview	Adult	
Vegetable Garde	Vegetable Garden	B. Herman	4.67 / 89	City Directory	Adult	
	Nearest Residence	Wilson Island	4.22 / 121	Interview	Adult	Resident Prefers Anonymity
F	Milk Animal	None	None	None	None	
	Meat Animal	None	None	None	None	
ļ	Vegetable Garden	None	None	None	None	
	Nearest Residence	T. Carter	1.67 / 145	Mailed Survey	Adult	
G	Milk Animal	None	None	None	None	
G	Meat Animal	None	None	None	None	
	Vegetable Garden	W. Kalin	1.74 / 145	Interview	Adult	· · · · · · · · · · · · · · · · · · ·
	Nearest Residence	S. Herber	0.65 / 163	Interview	Adult, Teen	
н	Milk Animal	None	None	None	None	
	Meat Animal	R. Hineline	1.82 / 148	Mailed Survey	Adult	
	Vegetable Garden	R. Hineline	1.82 / 148	Mailed Survey	Adult	

(1) Approximate age categories in receptor deck for evaluating dose commitment: Infant 0-1 Yr.

Child 1-11 Yrs. Teen

12-17 Yrs.

Over 17 Yrs. Adult

Sector	Type of Use	Owner's Name	Coordinates (miles/degrees)	Counting Technique	Age Group	Remarks
	Nearest Residence	J. Ellis	0.74 / 182	Interview	Adult	
J	Milk Animal	None	None	None	None	
5	Meat Animal	L. Dickes	2.60 / 170	Interview	Adult	
	Vegetable Garden	D. Boll	1.20 / 170	Mailed Survey	Adult, Teen, Child	
	Nearest Residence	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	· · · · · · · · · · · · · · · · · · ·
к	Milk Animal	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	
N	Meat Animal	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	
	Vegetable Garden	T. Bansen	0.65 / 203	Interview	Adult, Teen, Child	
	Nearest Residence	D. Robertson	0.73 / 224	Interview	Adult, Teen	
	Milk Animal	None	None	None	None	
L.	Meat Animal	D. Robertson	0.73 / 224	Interview	Adult, Teen	
	Vegetable Garden	K. Fredericksen	1.31 / 233	Mailed Survey	Adult	
	Nearest Residence	M. Bensen	1.06 / 257	City Register	Adult	
	Milk Animal	None	None	None	None	
М	Meat Animal	B. Wrich	2.42 / 250	Interview	Adult, Child	
	Vegetable Garden	D. Russell	1.21 / 246	Mailed Survey	Adult, Child	

 Table 4.0
 Environmental Land Use Survey (continued)

(1) Approximate age categories in receptor deck for evaluating dose commitment:

Infant 0-1 Yr. Child 1-11 Yrs. Teen 12-17 Yrs.

Adult Over 17 Yrs.

Sector	Type of Use	Owner's Name	Coordinates (miles/degrees)	Counting Technique	Age Group	Remarks
	Nearest Residence	D. Nielsen	1.20 / 263	Mailed Survey	Adult	
N	Milk Animal	None	None	None	None	
	Meat Animal	J. Anderson	3.25 / 281	Interview	Adult	
	Vegetable Garden	D. Nielsen	1.20 / 263	Mailed Survey	Adult	
	Nearest Residence	G. Wachter	2.27 / 302	Mailed Survey	Adult	
Р	Milk Animal	None	None	None	None	
	Meat Animal	R. Wrich	2.74 / 283	Interview	Adult, Child	
	Vegetable Garden	G. Wachter	2.27 / 302	Mailed Survey	Adult	
	Nearest Residence	R. Hansen	2.40/318	Mailed Survey	Adult	
	Milk Animal	None	None	None	None	
Q	Meat Animal	None	None	None	None	·
	Vegetable Garden	R. Hansen	2.40 / 318	Mailed Survey	Adult	
	Nearest Residence	K. Kelley	2.08 / 330	Interview	Adult, Teen	
	Milk Animal	None	None	None	None	
R	Meat Animal	None	None	None	None	
	Vegetable Garden	M. Sorensen	4.01 / 329	Mailed Survey	Adult, Teen	

Table 4.0	Environmental Land Use Survey (continued)
-----------	---

(1) Approximate age categories in receptor deck for evaluating dose commitment: Infant 0-1 Yr.

Child 1-11 Yrs. 12-17 Yrs. Teen

Over 17 Yrs. Adult

Review of Environmental Inc., Quality Assurance Program

Fort Calhoun Station contracts with Environmental Inc., Midwest Laboratory (vendor) to perform radioanalysis of environmental samples. Environmental Inc. participates in interlaboratory comparison (crosscheck) programs, as part of its quality control program. These programs are operated by agencies such as the Department of Energy which supply blind-spike environmental type samples such as milk or water containing concentrations of radionuclides unknown to the testing laboratory. This type of program provides an independent check of the testing laboratory's procedures and processes, and provides indication of possible weaknesses. In addition, Environmental Inc. has its own in-house QA program of blind-spike and duplicate analyses.

Vendor in-house QA results were slightly low for three soil samples in their mixedanalyte performance program. The vendor lab investigated their results and determined they were due to incomplete dissolution of the samples. FCS environmental samples do not include soil samples and vendor's results do not impact FCS results.

Vendor's review appears sufficient and results will continue to be reviewed for accuracy and completeness.

Environmental, hc. Mdw.estLaboratory an Alegheny Technologies Co.

> 700 Landwehr Road + Nothbrook, IL 60052-2 (847) 564-0700 fax (847) 564-4517

APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS

NOTE:

Environmental Inc., Midwest Laboratory participates in intercomparison studies administered by Environmental Resources Associates, and serves as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Results are reported in Appendix A. TLD Intercomparison results, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results are also reported. Appendix A is updated four times a year; the complete Appendix Is Included in March, June, September and December monthly progress reports only.

January through December, 2004

Appendix A

Interlaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory, formerly Teledyne Brown Engineering Environmental Services Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

Results in Table A-1 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

The results in Table A-2 list results for thermoluminescent dosimeters (TLDs), via International Intercomparison of Environmental Dosimeters, when available, and internal laboratory testing.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 list results of the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Data for previous years available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

The results in Table A-7 were obtained through participation in the Environmental Measurement Laboratory Quality Assessment Program.

Attachment A lists acceptance criteria for "spiked" samples.

Out-of-limit results are explained directly below the result.

Attachment A

ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES^a

۰.

:

.

Analysis	Level	One standard deviation for single determination
Gamma Emitters	5 to 100 pCi/liter or kg > 100 pCi/liter or kg	5.0 pCi/liter 5% of known value
Strontium-89 ^b	5 to 50 pCi/liter or kg > 50 pCi/liter or kg	5.0 pCi/liter 10% of known value
Strontium-90 ^b	2 to 30 pCi/liter or kg > 30 pCi/liter or kg	5.0 pCi/liter 10% of known value
Potassium-40	≥ 0.1 g/liter or kg	5% of known value
Gross alpha	≤ 20 pCi/liter > 20 pCi/liter	5.0 pCi/liter 25% of known value
Gross beta	≤ 100 pCi/liter > 100 pCi/liter	5.0 pCi/liter 5% of known value
Tritium	≤ 4,000 pCi/liter	± 1σ = (pCi/liter) = 169.85 x (known) ^{0.0933}
	> 4,000 pCi/liter	10% of known value
Radium-226,-228	≥ 0.1 pCi/liter	15% of known value
Plutonium	≥ 0.1 pCi/liter, gram, or sample	10% of known value
lodine-131, lodine-129 ⁵	≤ 55 pCi/liter > 55 pCi/liter	6.0 pCi/liter 10% of known value
Uranium-238, Nickel-63 ^b Technetium-99 ^b	≤ 35 pCi/liter > 35 pCi/liter	6.0 pCi/liter 15% of known value
Iron-55 ^b	50 to 100 pCi/liter > 100 pCi/liter	10 pCi/liter 10% of known value
Others ^b		20% of known value

* From EPA publication, "Environmental Radioactivity Laboratory Intercomparison Studies Program, Fiscal Year, 1981-1982, EPA-600/4-81-004.

^b Laboratory limit.

٤.,

ししししし

 \cup

 \cup

		Concentration (pCi/L)					
Lab Code	Date	Analysis	Laboratory	ERA	Control		
		·	Result ^b	Result ^c	Limits		
STW-1005	02/17/04	Sr-89	36.5 ± 6.5	44.9 ± 4.5	36.2 - 53.6		
STW-1005		Sr-90	13.4 ± 0.8	11.6 ± 1.2	2.9 - 20.3		
STW-1006		Ba-133	60.9 ± 2.8	63.2 ± 6.3	52.3 - 74.1		
STW-1006		Co-60	95.2 ± 1.5	96.4 ± 9.6	87.7 - 105.0		
STW-1006		Cs-134	71.2 ± 5.4	75.8 ± 7.6	67.1 - 84.5		
STW-1006		Cs-137	157.0 ± 6.5	155.0 ± 15.5	142.0 - 168.0		
STW-1006		Zn-65	103.0 ± 1.1	102.0 ± 10.2	84.4 - 120.0		
STW-1007		Gr. Alpha	15.6 ± 1.2	16.6 ± 1.7	7.9 - 25.3		
	02/17/04	Gr. Beta	46.3 ± 4.4	41.5 ± 4.2	32.8 - 50.2		
	02/17/04	Ra-226	8.7 ± 0.2	9.3 ± 0.0	6.9 - 11.7		
	02/17/04	Ra-228	16.6 ± 0.4	18.2 ± 1.8	10.3 - 26.1		
STW-1008		Uranium	34.2 ± 0.8	33.0 ± 3.3	27.8 - 38.2		
STW-1015	05/18/04	Sr-89	39.7 ± 3.3	45.9 ± 5.0	37.2 - 54.6		
STW-1015		Sr-90	12.4 ± 0.9	40.0 ± 0.0	2.9 - 20.3		
STW-1016		Ba-133	96.9 ± 2.4	101.0 ± 10.1	83.5 - 118.0		
STW-1016		Co-60	39.9 ± 0.5	41.6 ± 5.0	32.9 <i>-</i> 50.3		
TW-1016		Cs-134	48.8 ± 0.8	50.5 ± 5.0	41.8 - 59.2		
STW-1016		Cs-137	82.6 ± 2.3	82.5 ± 5.0	73.8 - 91.2		
TW-1016		. Zn-65	77.5 ± 1.5	75.2 ± 7.5	62.2 - 88.2		
TW-1017		Gr. Alpha	32.4 ± 2.1	38.8 ± 9.7	22.0 - 55.6		
	05/18/04	Gr. Beta	63.4 ± 3.5	59.6 ± 10.0	42.3 - 76.9		
TW-1018	05/18/04	I-131	25.2 ± 0.4	25.1 ± 3.0	19.9 - 30.3		
TW-1019	05/18/04	Ra-226	16.0 ± 1.1	17.3 ± 2.6	12.8 - 21.8		
TW-1019	05/18/04	Ra-228	12.6 ± 0.9	10.3 ± 2.6	5.8 - 14.8		
TW-1019	05/18/04	Uranium	13.0 ± 0.0	12.7 ± 3.0	7.5 - 17.9		
TW-1020	05/18/04	H-3	32043 ± 166	30900 ± 3090	25600 - 36200		
TW-1028	08/17/04	Sr-89	16.1 ± 1.9	20.0 ± 2.0	11.3 - 28.7		
TW-1028	08/17/04	Sr-90	13.4 ± 0.1	13.6 ± 1.4	4.9 - 22.3		
TW-1029	08/17/04	Ba-133	30.2 ± 3.9	32.1 ± 3.2	23.4 - 40.8		
TW-1029	08/17/04	Co-60	24.9 ± 1.9	24.0 ± 2.4	15.3 - 32.7		
TW-1029	08/17/04	Cs-134	21.4 ± 3.4	21.6 ± 2.2	12.9 - 30.3		
TW-1029	08/17/04	Cs-137	205.6 ± 4.3	193.0 ± 19.3	176.0 - 210.0		
TW-1029	08/17/04	Zn-65	145.5 ± 3.0	143.0 ± 14.3	118.0 - 168.0		
TW-1030	08/17/04	Gr. Alpha	47.7 ± 9.1	57.0 ± 5.7	32.3 - 81.7		
TW-1030	08/17/04	Gr. Beta	28.1 ± 2.5	20.0 ± 2.0	11.3 - 28.7		
TW-1030 (08/17/04	Gr. Beta	28.1 ± 2.5	20.0 ± 2.0	11.3 - 28.7		
TW-1031 (08/17/04	Ra-226	6.9 ± 0.5	6.3 ± 0.6	4.6 - 7.9		
TW-1031 (08/17/04	Ra-228	13.1 ± 1.4	14.7 ± 1.5	8.3 - 21.1		
TW-1031 (08/17/04	Uranium	6.0 ± 0.1	6.2 ± 0.6	1.0 - 11.4		

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

 \sim \mathcal{L} \mathcal{L} \smile \cup \smile \smile \cup \cup \cup \cup \cup \bigcirc \cup \cup \bigcirc \cup

·

し し

 \smile

A1-1

		Concentration (pCi/L)							
Lab Code	Date	Analysis	Laboratory Result ^b	ERA Result ^c	Control Limits				
STW-1037	11/15/04	Sr-89	42.2 ± 3.5	45.7 ± 5.0	37.0 - 51.5				
STW-1037	11/15/04	Sr-90	37.3 ± 1.3	36.6 ± 5.0	27.9 - 45.3				
STW-1038	11/15/04	Ba-133	75.5 ± 0.8	78.4 ± 7.8	64.8 - 92.0				
STW-1038	11/15/04	Co-60	12.2 ± 0.7	11.7 ± 5.0	3.0 - 20.4				
STW-1038	11/15/04	Cs-134	43.6 ± 0.5	42.9 ± 5.0	34.2 - 51.6				
STW-1038	11/15/04	Cs-137	59.5 ± 2.9	60.1 ± 5.0	51.4 - 68.8				
STW-1038	11/15/04	Zn-65	50.7 ± 3.2	50.9 ± 5.1	42.1 - 59.7				
STW-1039	11/15/04	Gr. Alpha	23.9 ± 2.2	31.7 ± 7.9	18.0 - 45.4				
STW-1039	11/15/04	Gr. Beta	35.8 ± 1.3	36.3 ± 5.0	27.6 - 45.0				
STW-1040	11/15/04	I-131	22.4 ± 1.9	22.0 ± 5.0	16.9 - 27.3				
STW-1041	11/15/04	Ra-226	9.8 ± 0.4	9.2 ± 1.4	6.8 - 11.6				
STW-1041	11/15/04	Ra-228	8.6 ± 0.3	7.1 ± 1.8	7.0 - 10.2				
STW-1041	11/15/04	Uranium	11.1 ± 0.3	11.4 ± 3.0	6.2 - 16.6				
STW-1042	11/15/04	H-3	21218.0 ± 285.0	20700.0 ± 2070.0	17100.0 - 24300.0				

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

\mathcal{I}
-
\mathcal{I}
,
\bigcirc
\cup
\smile
\cup
_ ت
\bigcirc
0
\smile
\bigcirc
\cup
-
\cup
\cup
\cup
ن ا
\cup
$\overline{}$
\cup
\cup
\sim
•
\smile
1
\cup
\smile
-
\bigcirc
.
\bigcirc
\cup
\bigcirc
$\mathbf{\tilde{\mathbf{v}}}$
\cup
\cup
\cup
-
\cup
\cup
\mathbf{U}
\cup
\cup
()
Ŭ
\cup
\cup
\bigcirc
\cup
_
\smile
. ,
\cup
\cup
\smile

			mR			
Lab Code	TLD Type	Date	<u></u>	Known	Lab Result	Control
			Description	Value	± 2 sigma	Limits
Environme	ntal. Inc.					
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 120	4.69	4.74 ± 0.54	3.28 - 6.10
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 150	3.00	3.02 ± 0.20	2.10 - 3.90
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 180	2.08	1.89 ± 0.45	1.46 - 2.70
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 180	2.08	2.11 ± 0.22	1.46 - 2.70
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 30	75.00	84.40 ± 4.87	52.50 - 97.50
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 60	18.75	19.11 ± 1.86	13.13 - 24.3
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 60	. 18.75	22.82 ± 5.41	13.13 - 24.38
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 90	8.33	9.05 ± 1.17	5.83 - 10.83
2003-1	CaSO4: Dy Cards	8/8/2003	Reader 1, 90	8.33	7.60 ± 1.08	5.83 - 10.83
Environme	ntal, Inc.					
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 30	61.96	73.50 ± 2.58	43.37 - 80.5
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 60	15.49	19.70 ± 0.51	10.84 - 20.1
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 60	15.49	16.93 ± 1.37	10.84 - 20.1
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 90	6.88	8.06 ± 0.60	4.82 - 8.94
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 90	6.88	6.64 ± 0.58	4.82 - 8.94
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 120	3.87	4.39 ± 0.17	2.71 - 5.03
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 150	2.48	2.34 ± 0.18	1.74 - 3.22
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 150	2.48	2.51 ± 0.16	1.74 - 3.22
2003-2	CaSO4: Dy Cards	1/12/2004	Reader 1, 180	1.72	2.01 ± 0.13	1.20 - 2.2 4
Environme						
2004-1	CaSO4: Dy Cards	7/12/2004	Reader 1, 30 cr	55.23	61.07 ± 4.38	38.66 - 71.8
2004-1	CaSO4: Dy Cards	7/12/2004	Reader 1, 30 cr	55.23	62.82 ± 1.75	38.66 - 71.8
2004-1	CaSO4: Dy Cards	7/12/2004	Reader 1, 60 cr	13.81	14.10 ± 0.56	9.67 - 17.9
2004-1	CaSO4: Dy Cards	7/12/2004	Reader 1, 60 cr	13.81	14.03 ± 0.48	9.67 - 17.9
2004-1	CaSO4: Dy Cards	7/12/2004	Reader 1, 90 cr	6.14	5.97 ± 0.21	4.30 - 7.98
2004-1	CaSO4: Dy Cards	7/12/2004	Reader 1, 90 cr	6.14	6.26 ± 0.14	4.30 - 7.98
2004-1	CaSO4: Dy Cards	7/12/2004	Reader 1, 120 c	3.45	4.40 ± 0.63	2.42 - 4.49
2004-1	CaSO4: Dy Cards	7/12/2004	Reader 1, 150 c	2.21	2.34 ± 0.12	1.55 - 2.87
2004-1	CaSO4: Dy Cards	7/12/2004	Reader 1, 180 c	1.53	1.65 ± 0.02	1.07 - 1.99

TABLE A-2. Crosscheck program results; Thermoluminescent Dosimetry, (TLDs).

·

.

1

TABLE A-3. In-	House "Spike'	Samples
----------------	---------------	---------

			Concentration (pCi/L)*				
Lab Code	Sample	Date	Analysis	Laboratory results	Known	Control	
· · · · · · · · · · · · · · · · · · ·	Туре		· · ·	2s, n=1 ^b	Activity	Limits ^c	
SPVE-707	Vegetation	2/20/2004	I-131(G)	5.68 ± 0.15	4.93	2.96 - 6.90	
SPCH-711	Charcoal	2/20/2004	l-131(G)	6.35 ± 0.11	6.94	-3.06 - 16.94	
SPW-721	water	2/20/2004	Ni-63	161.00 ± 13.20	169.00	101.40 - 236.60	
SPAP-733	Air Filter	2/25/2004	Gr. Beta	1.39 ± 0.02	1.48	-8.52 - 11.48	
SPW-735	water	2/25/2004	Cs-134	41.59 ± 7.02	39.10	29.10 - 49.10	
SPW-735	water	2/25/2004	Cs-137	64.11 ± 7.39	64.56	54.56 - 74.56	
SPW-735	water	2/25/2004	l-131	36.55 ± 0.48	40.08	28.08 - 52.08	
SPW-735	water	2/25/2004	I-131	41.97 ± 8.93	40.08	28.08 - 52.08	
SPMI-737	Milk	2/25/2004	Cs-134	37.40 ± 5.40	39.10	29.10 - 49.10	
SPMI-737	Milk	2/25/2004	Cs-137	69.13 ± 9.58	64.56	54.56 - 74.56	
SPMI-737	Milk	2/25/2004	I-131	45.03 ± 0.53	40.08	28.08 - 52.08	
SPMI-737	Milk	2/25/2004	I-131	44.43 ± 9.22	40.08	28.08 - 52.08	
SPW-1109	water	3/18/2004	Fe-55	39.98 ± 1.72	39.98	23.99 - 55.97	
SPW-1496	water	4/7/2004	H-3	80006.60 ± 776.00	83896.00	67116.80 - 100675.2	
SPMI-1683	Milk	4/16/2004	Sr-90	42.80 ± 1.81	43.43	34.74 - 52.12	
SPW-1683	water	4/16/2004	I-131	54.47 ± 0.73	66.60	53.28 - 79.92	
SPW-1683	water	4/16/2004	I-131(G)	65.82 ± 8.86	66.60	56.60 - 76.60	
SPMI-1685	Milk	4/16/2004	Cs-134	33.60 ± 4.24	37.29	27.29 - 47.29	
SPMI-1685	Milk	4/16/2004	Cs-137	61.77 ± 7.59	64.36	54.36 - 74.36	
SPMI-1685	Milk	4/16/2004	I-131	65.85 ± 0.79	66.60	53.28 - 79.92	
SPMI-1685	Milk	4/16/2004	l-131(G)	75.56 ± 11.86	66.60	56.60 - 76.60	
SPMI-1685	Milk	4/16/2004	Sr-90	42.56 ± 1.66	43.43	34.74 - 52.12	
SPW-1686	water	4/16/2004	Cs-134	39.31 ± 4.35	37.29	27.29 - 47.29	
SPW-1686	water	4/16/2004	Cs-137	67.73 ± 7.92	64.36	54.36 - 74.36	
SPVE-1862	Vegetation	4/26/2004	I-131(G)	1.32 ± 0.03	1.12	0.67 - 1.57	
SPCH-1886	Charcoal	4/26/2004	l-131(G)	2.90 ± 0.07	2.80	1.68 - 3.92	
SPAP-1888	Air Filter	4/27/2004	Gr. Beta	1.35 ± 0.02	1.48	-8.52 - 11.48	
SPF-1917	Fish	4/29/2004	Cs-134	1.44 ± 0.04	1.47	0.88 - 2.06	
SPF-1917	Fish	4/29/2004	Cs-137	1.33 ± 0.06	1.29	0.77 - 1.81	
SPW-3151	water	6/24/2004	Fe-55	33.85 ± 1.61	37.32	22.39 - 52.25	
SPW-4232	water	8/4/2004	H-3	80225.00 ± 785.00	82380.00	65904.00 - 98856.00	
SPAP-4234	Air Filter	8/4/2004	Gr. Beta	1.63 ± 0.02	1.46		
SPW-5712	water	10/6/2004	Cs-134	61.04 ± 2.51	63.61	53.61 - 73.61	
SPW-5712	water	10/6/2004	Cs-137	62.01 ± 2.76	63.66	53.66 - 73.66	
SPW-5712	water	10/6/2004	Sr-90	48.40 ± 2.00	42.94	34.35 - 51.53	
SPMI-5714	Milk	10/6/2004	Sr-90	41.61 ± 1.57	42.94	34.35 - 51.53	

				Concentra		
Lab Code	Sample	Date	Analysis	Laboratory results	Known	Control
	Туре		· .	2s, n=1 ^b	Activity	Limits ^c
SPMI-7418	Milk	12/22/2004	Cs-134	59.09 ± 2.59	59.25	49.25 - 69.25
SPMI-7418	Milk	12/22/2004	Cs-137	65.45 ± 5.61	63.35	53.35 - 73.35
SPW-7420	water	12/22/2004	Cs-134	58.42 ± 1.99	59.25	49.25 - 69.25
SPW-7420	water	12/22/2004	Cs-137	64.26 ± 4.18	63.35	53.35 - 73.35
SPW-7420	water	12/22/2004	Sr-89	105.26 ± 4.21	103.47	82.78 - 124.16
SPW-7420	water	12/22/2004	Sr-90	48.24 ± 1.70	42.72	34.18 - 51.26
SPAP-7437	Air Filter	12/22/2004	Gr. Beta	1.65 ± 0.02	1.45	-8.55 - 11.45
SPF-7524	Fish	12/29/2004	Cs-134	1.11 ± 0.03	1.27	0.76 - 1.78
SPF-7524	Fish	12/29/2004	Cs-137	1.21 ± 0.05	1.19	0.71 - 1.67
SPW-7526	water	12/29/2004	H-3	78615.70 ± 773.70	80543.00	64434.40 - 96651.60
SPW-7532	water	12/29/2004	Fe-55	30894.00 ± 1484.00	32752.00	26201.60 - 39302.40
SPW-7540	water	12/29/2004	Tc-99	30.28 ± 1.11	32.98	20.98 - 44.98

^c Control limits are based on Attachment A, Page A2 of this report.

NOTE: For fish, Jello is used for the Spike matrix. For Vegetation, cabbage is used for the Spike matrix.

\bigcirc
\sim
\mathbf{U}
\cup
\bigcirc
\sim
\sim
\cup
\cup
5.7
\cup
\cup
-
\smile
\bigcirc
-
\cup
1
\bigcirc
\cup
\sim
-
\cup
\cup
\cup
\mathbf{V}
Ŭ
\cup
\cup
N .
\cup
$\mathbf{\nabla}$
-
\cup
\cup
\cup
\cup
\cup
\mathbf{v}
\cup
\cup
_
\cup
\cup
\mathbf{O}
\cup
U
\cup
\cup
\cup
\mathbf{C}
-
\cup
\cup
\mathbf{U}
\cup
Ú
•
\cup
\bigcirc
\sim

TABLE A-4.	In-House	"Blank"	Samples
------------	----------	---------	---------

		Date	- Analysis	Concentration (pCi/L) ^a			
Lab Code	Sample			Laboratory results (4.66o)		Acceptance	
	Туре	<u></u>		LLD	Activity ^b	Criteria (4.66 o	
SPCH-712	Charcoal	2/20/2004	1-131(G)	0.01		0.6	
SPW-722	water	2/20/2004	Ni-63	131.80	-39.8 ± 79.000	9.6	
SPAP-734	Air Filter	2/25/2004	Gr. Beta	0.00	-0.003 ± 0.001	20	
SPW-736	water	2/25/2004	Cs-134	2.47	-0.003 ± 0.001	3.2	
SPW-736	water	2/25/2004	Cs-137	1.91		10	
SPW-736	water	2/25/2004	I-131	0.15	-0.031 ± 0.100	10	
SPW-736	water	2/25/2004	I-131(G)	3.24	-0.031 ± 0.100	[.] 0.5	
SPMI-738	Milk	2/25/2004	• •		• •	20	
	Milk		Cs-134	2.54		10	
SPMI-738	Milk	2/25/2004	Cs-137	5.34	0.074 . 0.404	10	
SPMI-738	Milk	2/25/2004	I-131	0.16	-0.071 ± 0.104	0.5	
SPMI-738		2/25/2004	I-131(G)	5.36		20	
SPW-1110	water	3/18/2004	Fe-55	0.77	0.17 ± 0.480	1000	
SPW-1497	water	4/7/2004	H-3	152.30	81.4 ± 79.400	200	
SPW-1684	water	4/16/2004	Cs-134	2.43		10	
SPW-1684	water	4/16/2004	Cs-137	2.53		10	
SPW-1684	water	4/16/2004	I-131	0.50	0.21 ± 0.260	0.5	
SPW-1684	water	4/16/2004	I-131(G)	4.49		20	
SPW-1684	water	4/16/2004	Sr-89	0.64	0.19 ± 0.520	5	
SPW-1684	water	4/16/2004	Sr-90		0.13 ± 0.310	1	
SPMI-1686	Milk	4/16/2004	Cs-134	5.00		10	
SPMI-1686	Milk	4/16/2004	Cs-137	4.16		10	
SPMI-1686	Milk	4/16/2004	I-131	0.45	0.13 ± 0.240	0.5	
SPMI-1686	Milk	4/16/2004	I-131(G)	6.53		20	
SPMI-1686	Milk	4/16/2004	Sr-89	0.71	0.11 ± 0.700	5	
SPMI-1686c	Milk	4/16/2004	Sr-90	0.71	0.66 ± 0.400	1	
SPVE-1863	Vegetation	4/26/2004	I-131(G)	0.00		20	
SPCH-1887	Charcoal	4/26/2004	I-131(G)	0.02		9.6	
SPAP-1889	Air Filter	4/27/2004	Gr. Beta	0.00	-0.003 ± 0.001	3.2	
SPF-1918	Fish	4/29/2004	Cs-134	0.01		100	
SPF-1918	Fish	4/29/2004	Cs-137	0.01		100	
SPW-3152	water	6/24/2004	Fe-55	0.79	-0.07 ± 0.470	1000	
SPW-4233	water	8/4/2004	H-3	154.23	102.67 ± 81.380	200	
SPW-5711	water	10/6/2004	Co-60	4.26		10	
SPW-5711	water	10/6/2004	Cs-134	6.02		· 10	
SPW-5711	water	10/6/2004	Cs-137	5.28		10	
SPW-5711	water	10/6/2004	Sr-90	0.61	-0.13 ± 0.270	1	
SPMI-5713	Milk	10/6/2004	Cs-134	4.60	-0.10 I U.210	10	
SPMI-5713	Milk	10/6/2004	Cs-134 Cs-137	- 1.00 - 5.81		10	

.

TABLE A-4. In-House "Blank" Samples

			Analysis) ⁸	
Lab Code	Sample	· ·		Laboratory results (4.66o)		Acceptance
	Туре			LLD	Activity ^b	Criteria (4.66 o)
SPMI-7419	Milk	12/22/2004	Cs-134	8.66		 10
SPMI-7419	Milk	12/22/2004	Cs-137	5.61		10
SPMI-7419c	Milk	12/22/2004	Sr-90	0.82	1.67 ± 0.480	1
SPW-7421	water	12/22/2004	Sr-89	1.21	0.58 ± 0.940	. 5
SPW-7421	water	12/22/2004	Sr-90	0.82	0.26 ± 0.410	1
SPAP-7438	Air Filter	12/22/2004	Gr. Beta	0.00	-0.0002 ± 0.001	3.2
SPF-7525	Fish	12/29/2004	Cs-134	0.01	۰.	100
SPF-7525	Fish	12/29/2004	Cs-137	0.01		100
SPW-7526	water	12/29/2004	H-3	164.80	-47 ± 84.600	200
SPW-7533	water	12/29/2004	Fe-55	753.00	118.6 ± 465.800	1000
SPW-7540	water	12/29/2004	Tc-99	1.19	-0.036 ± 0.720	10

* Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).

^b The activity reported is the net activity result.

^c Low levels of Sr-90 are still detected in the environment. A concentration of (1-5 pCi/L) in milk is not unusual.

TABLE A-5. In-House "Duplicate" Samples

				Concentration (pCi/L) ^a		
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	
E-30, 31	1/5/2004	Gr. Beta	1.27 ± 0.06	1.26 ± 0.05	1.27 ± 0.04	
E-30, 31	1/5/2004	K-40	1.33 ± 0.21	1.11 ± 0.20	1.22 ± 0.15	
WW-58, 59	1/5/2004	Gr. Beta	4.20 ± 1.33	4.46 ± 1.34	4.33 ± 0.94	
WW-58, 59	1/5/2004	K-40	2.30 ± 0.23	2.70 ± 0.27	2.50 ± 0.18	
TD-7889, 7890	1/5/2004	H-3	16582.00 ± 366.00	16060.00 ± 360.00	16321.00 ± 256.69	
MI-79, 80	1/7/2004	K-40	1451.50 ± 125.90	1383.60 ± 115.50	1417.55 ± 85.43	
MI-79, 80	1/7/2004	Sr-90	0.90 ± 0.31	1.05 ± 0.34	0.97 ± 0.23	
S-100, 101	1/13/2004	Cs-137	8.50 ± 0.23	8.52 ± 0.21	8.51 ± 0.16	
SW-225, 226	1/13/2004	Gr. Alpha	2.62 ± 1.26	2.05 ± 1.16	2.34 ± 0.86	
SW-225, 226	1/13/2004	Gr. Beta	6.37 ± 1.15	4.92 ± 1.06	5.65 ± 0.78	
U-304, 305	1/16/2004	Gr. Beta	5.18 ± 1.38	7.04 ± 1.53	6.11 ± 1.03	
SW-345, 346	1/27/2004	I-131	1.32 ± 0.24	1.56 ± 0.21	1.44 ± 0.16	
SWT-423, 424	1/27/2004	Gr. Beta	2.34 ± 0.54	2.38 ± 0.52	2.36 ± 0.38	
SWU-469, 470	1/27/2004	Gr. Beta	2.99 ± 0.57	3.09 ± 0.67	3.04 ± 0.44	
TD-545, 546	2/2/2004	H-3	658.40 ± 104.60	712.30 ± 106.60	685.35 ± 74.67	
MI-524, 525	2/4/2004	K-40	1240.00 ± 147.90	1265.60 ± 166.30	1252.80 ± 111.2	
MI-567, 568	2/9/2004	K-40	1322.90 ± 105.50	1340.80 ± 112.80	1331.85 ± 77.22	
MI-567, 568	2/9/2004	Sr-90	0.98 ± 0.48	0.79 ± 0.42	0.89 ± 0.32	
MI-588, 589	2/11/2004	K-40	1185.70 ± 157.80	1337.70 ± 160.00	1261.70 ± 112.3	
SWU-778, 779	2/24/2004	Gr. Beta	2.55 ± 0.54	2.53 ± 0.56	2.54 ± 0.39	
LW-1014, 1015	3/1/2004	Gr. Beta	1.78 ± 0.56	2.06 ± 0.57	1.92 ± 0.40	
SW-966, 967	3/9/2004	Gr. Alpha	2.70 ± 1.43	2.96 ± 1.63	2.83 ± 1.08	
SW-966, 967	3/9/2004	Gr. Beta	8.06 ± 1.20	7.33 ± 1.21	7.69 ± 0.85	
SW-966, 967	3/9/2004	H-3	182.04 ± 86.24	198.87 ± 86.97	190.45 ± 61.24	
SW-1249, 1250	3/31/2004	Gr. Beta	4.71 ± 1.11	5.25 ± 1.10	4.98 ± 0.78	
LW-1464, 1465	3/31/2004	Gr. Beta	2.13 ± 0.52	2.39 ± 0.53	2.26 ± 0.37	
AP-1633, 1634	3/31/2004	Be-7	0.05 ± 0.02	0.05 ± 0.02	0.05 ± 0.01	
AP-1633, 1034 AP-1714, 1715	3/31/2004	Be-7 Be-7	0.03 ± 0.02 0.04 ± 0.01	0.05 ± 0.02	0.05 ± 0.01	
TD-1489, 1490	4/1/2004	H-3	681.00 ± 110.00	709.00 ± 111.00	695.00 ± 78.14	
SWT-1299, 1300	4/2/2004	Gr. Beta	3.13 ± 0.57	3.64 ± 0.60	3.39 ± 0.41	
DW-1420, 1421	4/2/2004	Gr. Beta	1.29 ± 0.83	1.62 ± 0.87	1.46 ± 0.60	
	4/2/2004	I-131	0.68 ± 0.27	0.62 ± 0.36	0.65 ± 0.23	
DW-1510, 1511	4/2/2004	Gr. Beta	6.81 ± 1.20	6.76 ± 1.23	6.78 ± 0.86	
BS-1537, 1538	4/0/2004		6.83 ± 1.17	5.60 ± 1.12	6.21 ± 0.81	
WW-1654, 1655		Gr. Beta	2.45 ± 0.64	2.93 ± 0.62	2.69 ± 0.45	
LW-1680, 1681	4/13/2004	Gr. Beta	1384.90 ± 182.00	1408.20 ± 187.90	1396.55 ± 130.8	
MI-1735, 1736	4/14/2004	K-40		1206.30 ± 113.30		
MI-1802, 1803	4/19/2004	K-40 Sr 90	1327.50 ± 109.10	0.77 ± 0.41	1266.90 ± 78.64 0.74 ± 0.28	
MI-1802, 1803	4/19/2004	Sr-90	0.72 ± 0.40			
U-1781, 1782	4/21/2004	Gr. Alpha	0.20 ± 1.90	-0.30 ± 2.40	-0.05 ± 1.53	
SWT-1933, 1934	4/27/2004	Gr. Beta	2.60 ± 0.55	2.33 ± 0.52	2.46 ± 0.38	
F-1912, 1913	4/29/2004	H-3	8875.00 ± 250.00	9119.00 ± 253.00	8997.00 ± 177.8	
F-1912, 1913	4/29/2004	K-40	3406.90 ± 533.30	3550.60 ± 581.40	3478.75 ± 394.4	
LW-1960, 1961	4/29/2004	Gr. Beta	2.23 ± 0.55	2.38 ± 0.57	2.31 ± 0.40	

_

TABLE A-5. In-House "Duplicate" Samples

				Concentration (pCi/L) ^a	
Leb Code	Date	Analysis		0	Averaged
Lab Code		Analysis	First Result	Second Result	Result
BS-2083, 2084	5/3/2004	Be-7	1.10 ± 0.44	1.17 ± 0.20	1.14 ± 0.24
BS-2083, 2084	5/3/2004	Gr. Beta	28.44 ± 2.27	25.56 ± 2.04	27.00 ± 1.53
BS-2083, 2084	5/3/2004	K-40	6.75 ± 0.89	6.35 ± 0.53	6.55 ± 0.52
BS-2083, 2084	5/3/2004	Sr-90	0.12 ± 0.04	0.17 ± 0.05	0.15 ± 0.03
MI-2225, 2226	5/11/2004	K-40	1396.30 ± 124.20	1227.60 ± 125.40	1311.95 ± 88.25
SW-2267, 2268	5/11/2004	Gr. Alpha	2.95 ± 1.44	2.41 ± 1.37	2.68 ± 0.99
SW-2267, 2268	5/11/2004	Gr. Beta	6.80 ± 1.18	7.25 ± 1.21	7.03 ± 0.84
MI-2437, 2438	5/17/2004	K-40	1549.00 ± 123.40	1566.20 ± 118.60	1557.60 ± 85.58
MI-2437, 2438	5/17/2 004	Sr-90	1.83 ± 0.44	1.99 ± 0.42	1.91 ± 0.30
F-2413, 2414	5/20/2004	K-40	2844.60 ± 550.40	2963.00 ± 532.30	2903.80 ± 382.85
SO-2578, 2579	5/26/2004	Cs-137	0.16 ± 0.02	0.21 ± 0.05	0.18 ± 0.03
SO-2578, 2579	5/26/2004	Gr. Beta	28.07 ± 3.24	28.73 ± 3.00	28.40 ± 2.21
SO-2578, 2579	5/26/2004	K-40	19.41 ± 0.78	18.93 ± 1.04	19.17 ± 0.65
SS-2603, 2604	5/26/2004	Cs-137	0.06 ± 0.02	0.06 ± 0.02	0.06 ± 0.02
SS-2603, 2604	5/26/2004	K-40	10.18 ± 0.63	10.43 ± 0.56	10.30 ± 0.42
G-2677, 2678	6/1/2004	Be-7	1.31 ± 0.25	1.25 ± 0.23	1.28 ± 0.17
G-2677, 2678	6/1/2004	Gr. Beta	5.73 ± 0.12	5.86 ± 0.12	5.79 ± 0.09
G-2677, 2678	6/1/2004	K-40	5.56 ± 0.49	5.78 ± 0.50	5.67 ± 0.35
G-2677, 2678	6/1/2004	Sr-90	0.01 ± 0.00	0.01 ± 0.01	0.01 ± 0.00
DW-2700, 2701	6/1/2004	Gr. Beta	1.82 ± 1.01	2.66 ± 0.94	2.24 ± 0.69
TD-2876, 2877	6/1/2004	H-3	13116.00 ± 324.00	12746.00 ± 320.00	12931.00 ± 227.69
MI-2724, 2725	6/3/2004	K-40	1509.00 ± 116.10	1489.20 ± 126.10	1499.10 ± 85.70
MI-2724, 2725	6/3/2004	Sr-90	1.64 ± 0.46	1.81 ± 0.44	1.73 ± 0.32
BS-2921, 2922	6/3/2004	K-40	8.32 ± 0.63	8.55 ± 0.62	8.44 ± 0.44
TD-2876, 2877	6/4/2004	H-3	13116.00 ± 324.00	12746.00 ± 320.00	12931.00 ± 227.69
BS-2897, 2898	6/4/2004	Gr. Beta	9.31 ± 1.43	8.82 ± 1.39	9.06 ± 1.00
SWU-3092, 3093	6/9/2004	Gr. Beta	1.95 ± 0.71	2.55 ± 0.76	2.25 ± 0.52
CF-2986, 2987	6/14/2004	Be-7	0.69 ± 0.12	0.84 ± 0.19	0.76 ± 0.11
CF-2986, 2987	6/14/2004	K-40	4.50 ± 0.32	3.82 ± 0.48	4.16 ± 0.29
MI-2977, 2978	6/15/2004	K-40	1486.70 ± 120.10	1291.60 ± 167.40	1389.15 ± 103.01
vii-3007, 3008	6/15/2004	K-40	1333.90 ± 121.30	1355.80 ± 176.50	1344.85 ± 107.08
N-3031, 3032	6/18/2004	H-3	642.00 ± 108.00	562.00 ± 105.00	602.00 ± 75.31
N-3071, 3072	6/21/2004	H-3	273.00 ± 94.00	203.00 ± 92.00	238.00 ± 65.76
SW-3145, 3146	6/22/2004	I-131	0.97 ± 0.20	1.43 ± 0.20	1.20 ± 0.14
DW-3278, 3279C	6/25/2004	1-131	0.67 ± 0.26	0.48 ± 0.25	0.57 ± 0.18
AP-3922, 3923	6/28/2004	Be-7	0.08 ± 0.01	0.07 ± 0.01	0.07 ± 0.01
AP-3637, 3638	6/29/2004	Be-7	0.08 ± 0.01	0.07 ± 0.01	0.07 ± 0.01
W-3589, 3590	6/30/2004 .	Gr. Alpha	0.28 ± 0.55	1.29 ± 0.89	0.79 ± 0.53
.W-3589, 3590	6/30/2004	Gr. Beta	1.91 ± 0.64	2.86 ± 0.70	2.39 ± 0.48
.W-3589, 3590	6/30/2004	H-3	8369.20 ± 262.57	8226.01 ± 260.51	8297.61 ± 184.94
AP-3943, 3944	6/30/2004	Be-7	0.08 ± 0.02	0.09 ± 0.02	0.08 ± 0.01

-

 \smile \cup \sim \cup \cup \cup \cup \cup \cup \cup \cup \cup \bigcirc \cup \cup

 \cup

				Concentration (pCi/L) ^a	
					Averaged
Lab Code	Date	Analysis	First Result	Second Result	Result
E-3377, 3378	7/1/2004	Gr. Beta	1.21 ± 0.06	1.35 ± 0.07	1.28 ± 0.05
E-3377, 3378	7/1/2004	K-40	1.08 ± 0.20	1.30 ± 0.22	
G-3377, 3378	7/1/2004	Be-7	1.10 ± 0.13	1.16 ± 0.16	1.19 ± 0.15 1.13 ± 0.10
G-3377, 3378	7/1/2004	Gr. Beta	6.42 ± 0.19	6.28 ± 0.19	6.35 ± 0.13
G-3377, 3378	7/1/2004	K-40	5.26 ± 0.31	5.36 ± 0.28	5.35 ± 0.13 5.31 ± 0.21
VE-3681, 3682	7/13/2004	K-40 K-40	2.65 ± 0.45	2.90 ± 0.61	
CF-3707, 3708	7/13/2004	Be-7	1.97 ± 0.44	2.90 ± 0.81 2.11 ± 0.25	2.77 ± 0.38
CF-3707, 3708	7/13/2004	K-40	5.39 ± 0.44		2.04 ± 0.25
SW-3773, 3774	7/14/2004	H-3	5.39 ± 0.44 10697.20 ± 295.70	4.98 ± 0.42	5.19 ± 0.30
LW-3849, 3850	7/14/2004	Gr. Beta	2.21 ± 0.54	10689.60 ± 295.70	10693.40 ± 209.09
SWU-4307, 4308	7/14/2004	Gr. Beta		2.32 ± 0.65	2.27 ± 0.42
MI-4051, 4052	7/28/2004		3.49 ± 0.57	3.68 ± 0.61	3.59 ± 0.42
=	7/28/2004	K-40	1190.70 ± 204.60	1357.00 ± 145.90	1273.85 ± 125.65
VE-4079, 4080		K-40	4.90 ± 0.51	4.62 ± 0.61	4.76 ± 0.40
MI-4163, 4164	7/28/2004	K-40	1422.40 ± 186.50	1330.80 ± 181.00	1376.60 ± 129.9
MI-4163, 4164	7/28/2004	Sr-90	0.87 ± 0.32	1.00 ± 0.35	0.93 ± 0.24
WW-4387, 4388	8/3/2004	Gr. Beta	5.94 ± 0.76	6.28 ± 0.76	6.11 ± 0.54
MI-4286, 4287	8/4/2004	K-40	1435.20 ± 76.90	1404.70 ± 80.54	1419.95 ± 55.68
MI-4286, 4287	8/4/2004	Sr-90	1.88 ± 0.40	1.31 ± 0.35	1.59 ± 0.26
VE-4370, 4371	8/4/2004	H-3	0.54 ± 0.08	0.62 ± 0.08	0.58 ± 0.06
VE-4408, 4409	8/5/2004	K-40	2.03 ± 0.39	2.12 ± 0.32	2.08 ± 0.25
VE-4467, 4468	8/9/2004	K-40	6.28 ± 0.76	6.11 ± 0.75	6.20 ± 0.53
MI-4492, 4493	8/10/2004	K-40	1478.70 ± 116.70	1472.50 ± 105.10	1475.60 ± 78.53
MI-4492, 4493	8/10/2004	Sr-90	1.35 ± 0.40	1.08 ± 0.42	1.22 ± 0.29
MI-4518, 4519	8/11/2004	K-40	1197.30 ± 158.50	1350.20 ± 202.30	1273.75 ± 128.50
/E-4748, 4749	8/25/2004	Gr. Beta	2.31 ± 0.05	2.32 ± 0.05	2.31 ± 0.04
/E-4748, 4749	8/25/2004	K-40	1.70 ± 0.25	1.94 ± 0.31	1.82 ± 0.20
.W-4769, 4770	8/26/2004	Gr. Beta	2.00 ± 0.58	2.07 ± 0.58	2.04 ± 0.41
AE-4905, 4906	9/1/2004	Gr. Beta	3.06 ± 0.10	2.93 ± 0.10	3.00 ± 0.07
AE-4905, 4906	9/1/2004	K-40	2.33 ± 0.67	3.26 ± 0.58	2.80 ± 0.44
AI-4926, 4927	9/1/2004	K-40	1316.20 ± 115.40	1285.80 ± 117.30	1301.00 ± 82.27
Al-4926, 4927	9/1/2004	Sr-90	3.62 ± 0.52	2.07 ± 0.43	2.84 ± 0.34
/E-5027, 5028	9/2/2004	Gr. Beta	2.43 ± 0.07	2.39 ± 0.06	2.41 ± 0.05
/E-5027, 5028	9/2/2004	K-40	1.77 ± 0.20	1.94 ± 0.31	1.86 ± 0.18
W-5003, 5004	9/7/2004	I-131	1.69 ± 0.23	1.50 ± 0.25	1.59 ± 0.17
11-5050, 5051	9/7/2004	K-40	1559.40 ± 131.80	1560.70 ± 121.20	1560.05 ± 89.53
1-5050, 5051	9/7/2004	Sr-90	2.26 ± 0.52	1.61 ± 0.47	1.94 ± 0.35
VW-5072, 5073	9/7/2004	Gr. Beta	4.31 ± 0.70	4.11 ± 0.69	4.21 ± 0.49
SW-5216, 5217	9/14/2004	Gr. Alpha	4.34 ± 1.71	4.30 ± 1.77	4.32 ± 1.23
W-5216, 5217	9/14/2004	Gr. Beta	7.97 ± 1.24	8.58 ± 1.29	8.27 ± 0.89

TABLE A-5. In-House "Duplicate" Samples

 \cup \cup \sim \cup \cup \smile \cup \cup \cup \cup \cup \cup \cup \cup \sim \cup

۰.

 \cup U \cup \cup C \cup \cup \cup \cup \cup \cup C \cup \cup \cup \cup \cup \cup Ú \cup

 \cup

			•	Concentration (pCi/L) ^a	
Lab Cada	Date	Analusia	First Result	Second Result	Averaged Result
Lab Code	Date	Analysis	· Filst Result	Second Result	Result
G-5237, 5238	9/15/2004	Be-7	1.18 ± 0.23	1.28 ± 0.24	1.23 ± 0.17
G-5237, 5238	9/15/2004	K-40	7.16 ± 0.58	7.56 ± 0.55	7.36 ± 0.40
LW-5316, 5317	9/16/2004	Gr. Beta	2.76 ± 0.58	2.64 ± 0.54	2.70 ± 0.40
SS-5450, 5451	9/24/2004	K-40	10.33 ± 0.66	10.10 ± 0.74	10.22 ± 0.50
AP-6308, 6309	9/27/2004	Be-7	0.08 ± 0.01	0.08 ± 0.01	0.08 ± 0.01
SWU-5495, 5496	9/28/2004	Gr. Beta	3.38 ± 1.78	4.41 ± 1.94	3.90 [°] ± 1.32
AP-6070, 6071	9/28/2004	Be-7	0.08 ± 0.01	0.08 ± 0.01	0.08 ± 0.01
G-5516, 5517	9/29/2004	Be-7	1.81 ± 0.29	1.74 ± 0.30	1.77 ± 0.21
G-5516, 5517	9/29/2004	K-40	7.35 ± 0.70	7.43 ± 0.62	7.39 ± 0.47
AP-6258, 6259	9/29/2004	Be-7	0.07 ± 0.01	0.07 ± 0.01	0.07 ± 0.01
F-7211, 7212	9/29/2004	Cs-137	0.04 ± 0.01	0.05 ± 0.02	0.05 ± 0.01
F-7211, 7212	9/29/2004	K-40	2.76 ± 0.27	3.07 ± 0.26	2.92 ± 0.19
BS-5902, 5903	10/1/2004	Co-60	0.25 ± 0.05	0.26 ± 0.03	0.25 ± 0.03
BS-5902, 5903	10/1/2004	Co-60	2.53 ± 0.11	2.52 ± 0.06	2.52 ± 0.06
E-5654, 5655	10/4/2004	Gr. Beta	1.40 ± 0.06	1.32 ± 0.06	1.36 ± 0.04
E-5654, 5655	10/4/2004	K-40	1.32 ± 0.26	1.22 ± 0.24	1.27 ± 0.18
MI-5676, 5677	10/4/2004	K-40	1311.00 ± 122.00	1398.00 ± 125.00	1354.50 ± 87.33
SO-5756, 5757	10/4/2004	Gr. Alpha	7.12 ± 3.09	6.69 ± 2.92	6.91 ± 2.13
SO-5756, 5757	10/4/2004	Gr. Beta	19.66 ± 2.63	22.32 ± 2.65	20.99 ± 1.87
SO-5756, 5757	10/4/2004	K-40	16.45 ± 0.86	17.52 ± 0.78	16.99 ± 0.58
VE-6483, 6484	10/6/2004	K-40	9.35 ± 0.55	9.88 ± 0.23	9.61 ± 0.30
MI-5923, 5924	10/12/2004	K-40	1333.60 ± 183.50	1552.40 ± 179.20	1443.00 ± 128.24
SS-6046, 6047	10/13/2004	Cs-137	0.02 ± 0.01	0.02 ± 0.01	0.02 ± 0.01
SS-6046, 6047	10/13/2004	Gr. Beta	7.93 ± 1.72	9.57 ± 1.88	8.75 ± 1.27
SS-6046, 6047	10/13/2004	K-40	5.77 ± 0.42	5.77 ± 0.40	5.77 ± 0.29
DW-6208, 6209	10/15/2004	I-131	0.89 ± 0.26	0.65 ± 0.27	0.77 ± 0.19
BS-6694, 6695	10/19/2004	K-40	11.84 ± 0.67	12.75 ± 0.79	12.29 ± 0.52
VE-6354, 6355	10/25/2004	Gr. Beta	4.82 ± 0.14	4.76 ± 0.14	4.79 ± 0.10
VE-6354, 6355	10/25/2004	K-40	4.71 ± 0.54	4.82 ± 0.61	4.77 ± 0.41
DW-6462, 6463	10/27/2004	Gr. Beta	8.46 ± 1.27	8.22 ± 1.24	8.34 ± 0.89
LW-6377, 6378	10/28/2004	Gr. Beta	2.18 ± 0.54	2.33 ± 0.53	2.25 ± 0.38
SS-6504, 6505	10/29/2004	K-40	9.28 ± 0.61	8.51 ± 0.78	8.89 ± 0.50
LW-6762, 6763	10/31/2004	Gr. Beta	1.85 ± 0.66	1.69 ± 0.64	1.77 ± 0.46
BS-6576, 6577	11/1/2004	Gr. Beta	11.02 ± 1.54	13.77 ± 1.77	12.40 ± 1.17
BS-6576, 6577	11/1/2004	K-40	9.43 ± 0.71	8.84 ± 0.68	9.14 ± 0.49
SO-6715, 6716	11/2/2004	Cs-137	0.29 ± 0.04	0.33 ± 0.06	0.31 ± 0.04
SO-6715, 6716	11/2/2004	Gr. Alpha	10.94 ± 3.95	14.72 ± 4.16	12.83 ± 2.87
SO-6715, 6716	11/2/2004	Gr. Beta	21.33 ± 3.10	24.82 ± 3.10	23.07 ± 2.19
SO-6715, 6716	11/2/2004	K-40	10.42 ± 0.71	12.16 ± 1.06	11.29 ± 0.64
VE-6673, 6674	11/8/2004	Gr. Alpha	0.07 ± 0.04	0.14 ± 0.05	0.11 ± 0.03
VE-6673, 6674	11/8/2004	Gr. Beta	4.50 ± 0.12	4.48 ± 0.12	4.49 ± 0.09
VE-6673, 6674	11/8/2004	K-40	4.05 ± 0.49	4.65 ± 0.55	4.35 ± 0.37

TABLE A-5. In-House "Duplicate" Samples

				Concentration (pCi/L)ª	
Lab Code	Date	Analysis	First Result	Second Result	Averaged Result
SO-6820, 6821	11/10/2004	K-40	14.41 ± 1.03	15.01 ± 1.09	14.71 ± 0.75
SO-6820, 6821	11/10/2004	Sr-90	0.04 ± 0.02	0.07 ± 0.02	0.06 ± 0.02
SWU-7160, 7161	11/30/2004	Gr. Beta	4.39 ± 1.98	3.09 ± 1.77	3.74 ± 1.33
MI-7062, 7063	12/1/2004	K-40	1456.00 ± 124.80	1640.50 ± 131.40	1548.25 ± 90.61
MI-7062, 7063	12/1/2004	Sr-90	1.13 ± 0.41	0.98 ± 0.43	1.06 ± 0.30
S-7281, 7282	12/5/2004	Cs-137	0.82 ± 0.15	1.16 ± 0.20	0.99 ± 0.12
VE-7343, 7344	12/13/2004	Gr. Beta	5.25 ± 0.14	5.08 ± 0.14	5.16 ± 0.10
VE-7343, 7344	12/13/2004	K-40	4.23 ± 0.71	4.33 ± 0.69	4.28 ± 0.49
MI-7317, 7318	12/14/2004	K-40	1702.80 ± 129.70	1536.80 ± 115.10	1619.80 ± 86.70
WW-7375, 7376	12/14/2004	Gr. Beta	14.13 ± 1.03	15.22 ± 1.06	14.68 ± 0.74
SWU-7507, 7508	12/14/2004	Gr. Beta	4.48 ± 0.66	5.31 ± 0.69	4.89 ± 0.48
DW-7563, 7564	12/27/2004	Gr. Beta	1.88 ± 0.51	2.34 ± 0.52	2.11 ± 0.37
P-7698, 7699	12/27/2004	H-3	246.01 ± 95.00	259.06 ± 95.51	252.53 ± 67.35
AP-7741, 7742	12/28/2004	Be-7	0.06 ± 0.02	0.05 ± 0.02	0.05 ± 0.01

Note: Duplicate analyses are performed on every twentieth sample received in-house. Results are not listed for those analyses with activities that measure below the LLD.

* Results are reported in units of pCi/L, except for air filters (pCi/Filter), food products, vegetation, soil, sediment (pCi/g).

^b 600 minute count time or longer, resulting in lower error.

			Concentration ^b					
					Known	Control		
Lab Code	Туре	Date	Analysis	Laboratory result	Activity	Limits ^c		
•					•			
STSO-1022	soil	05/01/04	Am-241	65.90 ± 4.50	66.97 ± 6.70	46.88 - 87.06		
STSO-1022	soil	05/01/04	Co-57	388.90 ± 4.00	399.60 ± 40.00	279.72 - 519.48		
STSO-1022	soil	05/01/04	Co-60	524.80 ± 7.10	518.00 ± 51.80	362.60 - 673.40		
STSO-1022	soil	05/01/04	Cs-134	403.40 ± 4.60	414.40 ± 41.40	290.08 - 538.72		
STSO-1022	soil	05/01/04	Cs-137	829.10 ± 7.60	836.20 ± 83.62	585.34 - 1088.0		
STSO-1022	soil	05/01/04	K-40	620.60 ± 29.50	604.00 ± 60.40	422.80 - 785.20		
STSO-1022	soil	05/01/04	Ni-63	254.80 ± 8.40	357.05 ± 35.70	249.94 - 464.17		
STSO-1022		05/01/04	Tc-99	59.00 ± 6.00	117.66 ± 11.78	82.36 - 152.96		
STSO-1022		05/01/04	U-233/4	24.70 ± 3.60	37.00 ± 3.70	25.90 - 48.40		
STSO-1022		05/01/04	U-238	24.20 ± 3.50	38.85 ± 3.90	27.20 - 50.51		
STSO-1022	soil	05/01/04	Zn-65	743.00 ± 13.10	699.30 ± 69.90	489.51 - 909.09		
STAP-1023	Air Filter	05/01/04	Gr. Alpha	0.06 ± 0.02	0.40 ± 0.04	0.00 - 0.80		
STAP-1023	Air Filter		Gr. Beta	1.37 ± 0.08	1.20 ± 0.12	0.60 - 1.80		
STAP-1024	Air Filter		Am-241	0.08 ± 0.03	0.10 ± 0.01	0.07 - 0.13		
STAP-1024	Air Filter		Co-57	2.07 ± 0.06	2.40 ± 0.24	1.68 - 3.12		
STAP-1024	Air Filter	05/01/04	Co-60	2.11 ± 0.08	2.30 ± 0.23	1.61 - 2.99		
STAP-1024		05/01/04	Cs-134	1.78 ± 0.08	2.90 ± 0.29	2.03 - 3.77		
STAP-1024	Air Filter	05/01/04	Cs-137	1.76 ± 0.08	2.00 ± 0.20	1.40 - 2.60		
STAP-1024	Air Filter	05/01/04	Mn-54	2.84 ± 0.11	3.00 ± 0.30	2.10 - 3.90		
STAP-1024	Air Filter	05/01/04	Pu-238	0.12 ± 0.01	0.13 ± 0.01	0.09 - 0.17		
STAP-1024	Air Filter	05/01/04	Pu-239/40	0.08 ± 0.01	0.09 ± 0.01	0.06 - 0.12		
STAP-1024	Air Filter	05/01/04	Sr-90	0.66 ± 0.19	0.80 ± 0.08	0.56 - 1.04		
STAP-1024	Air Filter	05/01/04	U-233/4	0.23 ± 0.03	0.21 ± 0.02	0.15 - 0.27		
STAP-1024	Air Filter	05/01/04	U-238	0.23 ± 0.03	0.22 ± 0.02	0.15 - 0.29		
STAP-1024	Air Filter	05/01/04	Zn-65	3.90 ± 0.22	4.00 ± 0.40	2.80 - 5.20		
STW-1026	water	05/01/04	Am-241	0.56 ± 0.07	0.60 ± 0.06	0.42 - 0.78		
STW-1026	water	05/01/04	Co-57	184.10 ± 13.50	185.00 ± 18.50	129.50 - 240.50		
STW-1026	water	05/01/04	Co-60	164.40 ± 11.70	163.00 ± 16.30	114.10 - 211.90		
STW-1026	water	05/01/04	Cs-134	201.10 ± 14.00	208.00 ± 20.80	145.60 - 270.40		
STW-1026	water	05/01/04	Cs-137	245.50 ± 15.80	250.00 ± 25.00	175.00 - 325.00		
STW-1026	water	05/01/04	Fe-55	37.60 ± 25.30	33.00 ± 3.30	23.10 - 42.90		
STW-1026	water	05/01/04	H-3	76.50 ± 5.40	83.00 ± 8.30	58.10 - 107.90		
STW-1026	water	05/01/04	Mn-54	272.10 ± 17.50	267.00 ± 26.70	186.90 - 347.10		
STW-1026	water	05/01/04	Ni-63	94.40 ± 3.20	100.00 ± 10.00	70.00 - 130.00		
STW-1026	water	05/01/04	Pu-238	1.11 ± 0.09	1.20 ± 0.12	0.84 - 1.56		
STW-1026	water	05/01/04	Pu-239/40	0.01 ± 0.01	0.00 ± 0.00	0.00 - 0.10		
TW-1026	water	05/01/04	Sr-90	6.20 ± 1.10	7.00 ± 0.70	4.90 - 9.10		
STW-1026	water	05/01/04	Tc-99	10.70 ± 1.00	10.00 ± 1.00	7.00 - 13.00		

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

 \cup \cup \cup \cup \bigcirc \cup \bigcirc Ċ \cup \cup \cup \cup \cup \cup \bigcirc \cup \cup \cup Ċ \cup \cup \cup \cup

.*

 \cup

			Concentration ^b					
Lab Code	Туре	Type Date A		Laboratory result	Known Activity	Control		
				•		•		
STW-1026	water	05/01/04	U-233/4	0.14 ± 0.02	0.12 ± 0.01	0.08 - 0.16		
STW-1026	water	05/01/04	U-238	0.94 ± 0.05	0.90 ± 0.09	0.63 - 1.17		
STW-1026	water	05/01/04	Zn-65	219.60 ± 27.90	208.00 ± 20.80	145.60 - 270.40		
STW-1027	water	05/01/04	Gr. Alpha	1.20 ± 0.10	1.20 ± 0.12	0.00 - 2.40		
STW-1027	water	05/01/04	Gr. Beta	4.30 ± 0.10	4.10 ± 0.41	2.05 - 6.15		

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^{*}.

* Results obtained by Environmental, Inc. ,Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b All results are in Bq/kg or Bq/L as requested by the Department of Energy.

^d MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

^d The cause of the deviation seems to be incomplete dissolution of the sample.

* A spiked soil sample was prepared. Known activity; 32.98 pCi/g; laboratory result 33.47 pCi/g.

^t The sample was reanalyzed with the same results. Investigation is in progress.

^o Based on the results of gamma emitting isotopes (Cs-137 and Co-60), the filter geometry appears to be biased by -10%. Addition of the summation peak at 1400 KeV results in a recalculation of 2.12 ± 0.15 Bg/sample.

A6-2

			Concentration [®]				
			·		EML	Control	
ab Code	Туре	Date	Analysis	Laboratory results	Result ^b	Limits ^c	
	•						
STW-1009	water	03/01/04	Am-241	1.21 ± 0.02	1.31	0.66 - 1.56	
STW-1009	water	03/01/04	Co-60	152.30 ± 0.30	163.20	0.87 - 1.17	
STW-1009	water	03/01/04	Cs-137	50.40 ± 0.90	51.95	0.90 - 1.25	
STW-1009	water	03/01/04	H-3	263.50 ± 10.00	186.60	0.69 - 1.91	
STW-1009	water	03/01/04	Pu-238	1.03 ± 0.04	1.10	0.68 - 1.33	
STW-1009	water	03/01/04	Pu-239/40	2.90 ± 0.10	3.08	0.62 - 1.38	
STW-1009	water	03/01/04	Sr-90	5.20 ± 0.30	4.76	0.73 - 1.65	
STW-1009	water	03/01/04	Uranium	4.35 ± 0.21	4.62	0.40 - 1.45	
STW-1010	water	03/01/04	Gr. Alpha	208.00 ± 20.70	326.00	0.55 - 1.31	
STW-1010	water	03/01/04	Gr. Beta	1063.00 ± 27.00	1170.00	0.75 - 1.65	
STSO-1011	Soil	03/01/04	Am-241	14.10 ± 4.30	13.00	0.52 - 2.41	
STSO-1011	Soil	03/01/04	Cs-137	1292.00 ± 13.00	1323.00	0.74 - 1.40	
STSO-1011	Soil	03/01/04	K-40	563.00 ± 83.00	539.00	0.70 - 1.59	
STSO-1011	Soil	03/01/04	Pu-239/40	20.70 ± 1.10	22.82	0.62 - 1.99	
STSO-1011	Soil	03/01/04	Sr-90	72.10 ± 5.80	51.00	0.58 - 2.96	
STSO-1011	Soil	03/01/04	Uranium	139.10 ± 10.20	180.22	0.27 - 1.48	
STVE-1012	Vegetation	03/01/04	Am-241	4.50 ± 0.20	4.93	0.58 - 2.86	
STVE-1012	Vegetation	03/01/04	Co-60	14.10 ± 0.40	14.47	0.64 - 1.49	
STVE-1012	Vegetation	03/01/04	Cs-137	573.90 ± 6.00	584.67	0.75 - 1.48	
STVE-1012	Vegetation	03/01/04	K-40	709.00 ± 19.30	720.00	0.45 - 1.51	
STVE-1012	Vegetation	03/01/04	Pu-239/40	6.60 ± 0.50	6.81	0.60 - 1.98	
STVE-1012	Vegetation	03/01/04	Sr-90	766.50 ± 51.30	734.00	0.50 - 1.37	
TAP-1013	Air Filter	03/01/04	Am-241	0.11 ± 0.01	0.10	0.62 - 1.93	
TAP-1013	Air Filter	03/01/04	Co-60	30.90 ± 1.08	35.40	0.74 - 1.25	
TAP-1013 d	Air Filter	03/01/04	Cs-134	12.30 ± 1.30	18.20	0.70 - 1.21	
TAP-1013	Air Filter	03/01/04	Cs-137	24.90 ± 0.60	26.40	0.72 - 1.32	
TAP-1013	Air Filter	03/01/04	Pu-238	0.04 ± 0.01	0.04	0.61 - 1.55	
TAP-1013	Air Filter	03/01/04	Pu-239/40	0.17 ± 0.02	0.16	0.67 - 1.58	
TAP-1013	Air Filter	03/01/04	Sr-90	1.80 ± 0.20	1.76	0.62 - 2.26	
TAP-1013	Air Filter	03/01/04	Uranium	0.17 ± 0.01	0.17	0.79 - 2.88	
TAP-1014	Air Filter	03/01/04	Gr. Alpha	1.09 ± 0.06	1.20	0.82 - 1.58	
TAP-1014	Air Filter	03/01/04	Gr. Beta	2.68 ± 0.05	2.85	0.75 - 1.94	

TABLE A-7. Environmental Measurements Laboratory Quality Assessment Program (EML)

C

 \smile

し し

Ú

しし

しこ

 \cup

 \cup

 \cup

* Results are reported in Bq/L with the following exceptions: Air Filters (Bq/Filter), Soil and Vegetation (Bq/kg).

^b The EML result listed is the mean of replicate determinations for each nuclide ± the standard error of the mean.

^c Control limits are reported by EML as the ratio of Reported Value / EML value.

^d Probable effect of summation peaks and slight difference in filter geometry.

APPENDIX B

DATA REPORTING CONVENTIONS

.

Data Reporting Conventions

- 1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the end of the collection period.
- 2.0. Single Measurements

Each single measurement is reported as follows: x ± s

where:

 $\mathbf{x} = \mathbf{value}$ of the measurement;

s = 2s counting uncertainty (corresponding to the 95% confidence level).

In cases where the activity is less than the lower limit of detection L, it is reported as: <L, where L = the lower limit of detection based on 4.66s uncertainty for a background sample.

3.0. Duplicate analyses

3.1	Individual results:	For two analysis results; $x_1 \pm s_1$ and $x_2 \pm s_2$					
	Reported result:	$x \pm s$; where $x = (1/2)$	2) (x ₁ + x ₂) and s = ($1/2) \sqrt{s_1^2 + s_2^2}$			
3.2.	Individual results:	<l1, <l2<="" th=""><th>Reported result: <l,< th=""><th>where L = lower of L₁ and L₂</th></l,<></th></l1,>	Reported result: <l,< th=""><th>where L = lower of L₁ and L₂</th></l,<>	where L = lower of L ₁ and L ₂			
3.3.	Individual results:	x ± s, <l< td=""><td>Reported result:</td><td>$x \pm s$ if $x \ge L$; <l otherwise.<="" td=""></l></td></l<>	Reported result:	$x \pm s$ if $x \ge L$; <l otherwise.<="" td=""></l>			

4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average \bar{x} and standard deviation s of a set of n numbers $x_1, x_2 \dots x_n$ are defined as follows:

$$\bar{x} = \frac{1}{n} \sum x$$
 $s = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}}$

4.2 Values below the highest lower limit of detection are not included in the average.

4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.

- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
 - 4.5.1. If the number following those to be retained is less than 5, the number is dropped, and the retained number s are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - 4.5.2. If the number following those to be retained is equal to or greater than 5, the number is dropped and the last retained number is raised by 1. As an example, 11.445 is rounded off to 11.45.

APPENDIX C

 \cup Ú \cup \cup

 \cup

 \cup

 \cup

し い

TECHNICAL SPECIFICATION 2.1.3

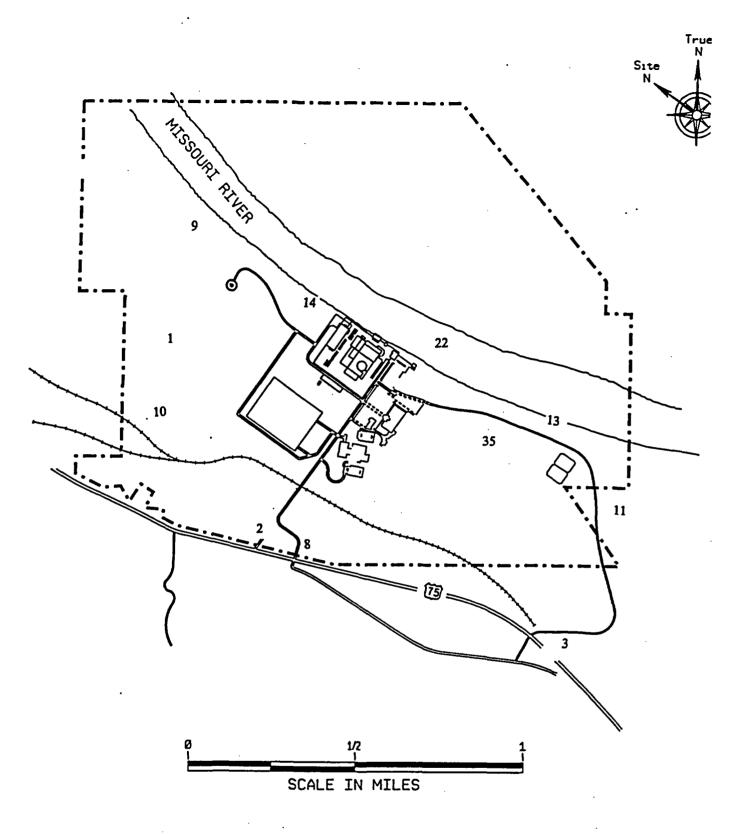
REACTOR COOLANT DOSE EQUIVALENT IODINE ABOVE TECHNICAL SPECIFICATION LIMIT

.

During the 2004 reporting period, radioactivity of primary coolant did not exceed limits of Technical Specification 2.1.3.

APPENDIX D

- -


 \sim \cup \smile \smile \cup \cup \cup \smile \cup \cup Ú \cup \cup \cup \cup

 \smile \cup \smile \cup \cup \sim \sim \cup \cup \cup \cup \cup \cup \mathcal{I} \cup \mathcal{I} \mathcal{I} \cup \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}

SAMPLE LOCATION MAPS

.

.

 \cup

 \cup

 \cup

 \cup

 \mathcal{L}

 \sim

_

Sample locations within Site Boundary/Owner Controlled Area

Locations currently discontinued are not illustrated.

ン ノ

U

 \cup