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Section 1.0 Introduction

1.0 INTRODUCTION.

This document provides background information on the parameters and data
sources used in EPA’s Composite Model for Leachate Migration with Transformation
Products (EPACMTP). EPACMTP is a subsurface fate and transport model used by -
EPA's Office of Solid Waste in the RCRA program to establish regulatory levels for
concentrations of constituents in wastes managed in land-based units. This
document describes the EPACMTP input parameters, data sources and default
parameter values and distributions that EPA has assembled for its use of EPACMTP
as a ground-water assessment tool. EPA has also developed a complementary
document, the EPACMTP Technical Background Document (U.S. EPA, 2003a),
which presents the mathematical formulation, assumptions and solution methods
underlying the EPACMTP. These two documents together are the primary reference
documents for EPACMTP, and are intended to be used together.

The remainder of this section describes how this background.document is
organized. The parameters and data are documented in six main categories, as
follows:

u Section 2 describes the Waste Management Unit (Source)
Parameters;

Section 3 describes the Waste and Constituent Parameters;

Section 4 describes the Infiltration and Recharge Parameters;
Section 5 describes the Subsurface Parameters;

Section 6 describes the Ground-water Well Location Parameters; and
Section 7 provides a list of References

Several appendices provide complete listings of data distributions for a
number of the EPACMTP input parameters.

To facilitate the cross-referencing of information between this document and
the EPACMTP Technical Background Document (U.S. EPA, 2003a), each section
begins with a table that lists the parameters described in that section, and provides,
for each parameter, a reference to the equation(s) and/or section number in the
EPACMTP Technical Background Document (U.S. EPA, 2003a) that describes how
each parameter is used in the EPACMTP computer code.
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Section 2.0 Waste Management Unit (Source) Parameters

2.0 WASTE MANAGEMENT UNIT (SOURCE) PARAMETERS

EPACMTP can simulate the subsurface migration of leachate from four
different types of waste management units (WMUs). Each of the four unit types
reflects waste management practices that are likely to occur at industrial Subtitle D
facilities. The WMU can be a landfill, a waste pile, a surface impoundment, or a land
application unit. The latter is also sometimes called a land treatment unit. Figure
2.1 presents schematic diagrams of the different types of WMUs modeled in
EPACMTP.

Landfill. Landfills (LFs) are facilities for the final disposal of solid waste on
land. EPACMTP is typically used to model closed LFs with an earthen cover. LFs
may be unlined, or they may have some type of engineered liner, but the model
assumes no leachate collection system exists underneath the liner. The LF is filled
with waste during the unit’s operational life. Upon closure of the LF, the waste is left
in place, and a final soil cover is installed. The starting point for the EPACMTP
simulation is the time at which the LF is closed, i.e., the unit is at maximum capacity.
The release of waste constituents into the soil and ground water underneath the LF
is caused by dissolution and leaching of the constituents due to precipitation which
percolates through the LF. The type of liner that is present (if any) controls, to a
large extent, the amount of leachate that is released over time from the unit. LFs
are modeled in EPACMTP as WMUs with a rectangular footprint and a uniform
depth. The EPACMTP model does not explicitly account for any loss processes
occurring during the unit's active life (for example, due to leaching, volatilization,
runoff or erosion, or biochemical degradation), however these processes will be
taken into account if the input value for leachate concentration is based on a site-
specific chemical analysis of the waste (such as results from a Toxicity
Characteristic Leaching Procedure (TCLP) or Synthetic Precipitation Leaching
Procedure (SPLP) analysis). The leachate concentration used as a model input is
the expected initial leachate concentration when the waste is 'fresh’. Because the
LF is closed, the concentration of the waste constituents will diminish with time due
to depletion of the landfilled wastes; the model is equipped to simulate this
“depleting source” scenario for LFs, but other source options are available, and are
explained in Section 2.3.

Surface Impoundment. A surface impoundment (Sl) is a WMU which is
designed to hold liquid waste or wastes containing free liquid. Sls may be either
ground level or below ground level flow-through units. They may be unlined, or they
may have some type of engineered liner. Release of leachate is driven by the
ponding of water in the impoundment, which creates a hydraulic head gradient
across the barrier underneath the unit. The EPACMTP model considers a Sl to be a
temporary WMU with a finite operational life. At the end of the unit’s operational life,
we assume there is no further release of waste constituents to the ground water
(that is, there is a clean closure of the Sl). Sls are modeled as pulse-type sources;
leaching occurs at a constant leachate concentration over a fixed period of time
equal to the unit’s operating life. The EPACMTP model assumes a constant
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ponding depth (depth of waste water in Sl) during the operational life (see Section
2.2.4).

Waste Pile. Waste piles (WPs) are typically used as temporary storage or
treatment units for solid wastes. Due to their temporary nature, they are typically not
covered. Similar to LFs, WPs may be unlined, or they may have some type of
engineered liner. EPACMTP assumes that WPs have a fixed operational life, after
which the WP is removed. Thus, WPs are modeled as pulse-type sources; leaching
occurs at a constant leachate concentration over a fixed period of time which is
equal to the unit’s operating life (see Section 2.5.2).

Land Application Unit. Land application units (LAUs) (or land treatment units)
are areas of land receiving regular applications of waste that is either tilled directly
into the soil or sprayed onto the soil and then tilled. EPACMTP models the leaching
of wastes after they have been tilled with soil. EPACMTP does not account for the
losses due to volatilization during or after waste application. LAUs are only
evaluated for the no-liner scenario because liners are not typically used at this type
of facility. EPACMTP assumes that an LAU is a temporary WMU with a fixed
operational life, after which the waste is no longer land-applied. Thus, LAUs are
modeled in EPACMTP as a constant pulse-type leachate source, with a leaching
duration equal to the unit’s operational life (see Section 2.6.2).

2-2
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APPENDIX A .
DETERMINATION OF INFILTRATION AND RECHARGE RATES

A.1 INFILTRATION AND RECHARGE RATES

EPACMTP requires the input of the rate of downward percolation of water
" and leachate through the unsaturated zone to the water table. The model
distinguishes between two types of percolation as infiltration and recharge:

n Infiltration (WMU leakage rate) is defined as water percolating
through the WMU - including a liner if present — to the underlying soil.

n Recharge is water percolating through the soil to the aquifer outside
the WMU.

Infiltration is one of the key parameters affecting the leaching of waste
constituents into the subsurface. For a given leachate concentration, the mass of
constituents leached is directly proportional to the infiltration rate. In EPACMTP,
using a different default liner scenario changes the modeled infiltration rate; more
protective liner designs reduce leaching by decreasing the rate of infiltration.

In contrast, recharge introduces pristine water into the aquifer. Increasing
recharge therefore tends to result in a greater degree of plume dilution and lower
constituent concentrations. High recharge rates may also affect the extent of
ground-water mounding and ground-water velocity. The recharge rate is
independent of the type and design of the WMU; rather it is a function of the climatic
and hydrogeological conditions at the WMU location, such as precipitation,
evapotranspiration, surface run-off, and regional soil type.

In developing the EPACMTP model and the accompanying databases, the
U.S. EPA used several methodologies to estimate infiltration and recharge. We
used the HELP mode! (Schroeder et al, 1994) to compute recharge rates for all
units, as well as infiltration rates for LAUs, and for LFs and WPs with no-liner and
single-liner designs. For LFs and WPs, composite liner infiltration rates were
compiled from leak-detection-system flow rates reported for actual composite-lined
waste units (TetraTech, 2001).

For unlined and single-lined Sls, infiltration through the bottom of the
impoundment is calculated internally by EPACMTP, as described in Section 4.3.4 of
this document. For composite-lined Sls, we used the Bonaparte (1989) equation to
calculate the infiltration rate assuming circular (pin-hole) leaks with a uniform leak
size of 6 mm?, and using the distribution of leak densities (number of leaks per
hectare) assembled from the survey of composite-lined units (TetraTech, 2001).

Tables A.1 through A.4 summarize the liner assumptions and infiltration rate
calculations for LFs, WPs, Sls, and LAUs. The remainder of this appendix provides
background on how we used the HELP model in conjunction with data from climate
stations across the United States to develop nationwide recharge and infiltration rate
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distributions and provides a detailed discussion of how we developed infiltration
rates for different default liner designs for each type of WMU.

A.1.1 USING THE HELP MODEL TO DEVELOP RECHARGE AND
INFILTRATION RATES

The HELP model is a quasi-two-dimensional hydrologic model for computing
water balances of LFs, cover systems, and other solid waste management facilities.
The primary purpose of the model is to assist in the comparison of design
alternatives. The HELP model uses weather, soil and design data to compute a
water balance for LF systems accounting for the effects of surface storage,
snowmelt, runoff, infiltration, evapotranspiration, vegetative growth, soil moisture
storage, lateral subsurface drainage, leachate recirculation, unsaturated vertical
drainage, and leakage through soil, geomembrane or composite liners. The HELP
model can simulate LF systems consisting of various combinations of vegetation,

“cover soils, waste cells, lateral drain layers, low permeability barrier soils, and
synthetic geomembrane liners.

HELP Versions 3.03 and 3.07 (which include WMU- and liner-specific
distributions of infiltration rates) were used to construct the EPACMTP site data files.
We started with an existing database of no-liner infiltration rates for LFs, WPs and
LAUs. Also existing were recharge rates for 97 climate stations in the lower 48
contiguous United States (ABB, 1995), that are representative of 25 specific climatic
regions (developed with HELP version 3.03). We then added five climate stations
(located in Alaska, Hawaii, and Puerto Rico) to ensure coverage throughout all of the
United States. Figure A.1 shows the locations of the 102 climate stations.

The current version of HELP (version 3.07) was used for the modeling of the
additional climate stations for the no-liner scenario. We compared the results of
Version 3.07 against Version 3.03 and found that the differences in calculated
infiltration rates were insignificant. We also used this comparison to verify a number
of counter-intuitive infiltration rates that were generated with HELP Version 3.03.

We had observed that for some climate stations located in areas of the country with
low precipitation rates, the net infiltration for unlined LFs did not always correlate
with the relative permeability of the LF cover. We found some cases in which a less
permeable cover resulted in a higher modeled infiltration rate as compared to a more
permeable cover. Examples can be seen in the detailed listing of infiltration data
that are presented in Tables A.11 to A.14. For instance, Table A.11 shows that for a
number of climate stations, including Albuquerque, Denver, and Las Vegas, the
modeled infiltration rate for LFs with a silty clay loam (SCL) cover is higher than the
values corresponding to silt loam (SLT) and sandy loam (SNL) soil covers. We
determined that in all these cases, the HELP modeling results for unlined LFs were
correct and could be explained in terms of other water balance components,
including surface run-off and evapotranspiration.




Appendix A

Determination of Infiltration and Recharge Rates

Table A.1 Methodology Used to Compute Infiltration for LFs
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a0 SingleEiners: sy
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Method

HELP model
simulations to compute
an empirical distribution
of infiltration rates for a
2 ft. thick cover of three
native soil cover types
using nationwide
coverage of climate
stations. Soil-type
specific infiltration rates
for a specific site are
assigned by using the
infiltration rates for
respective soil types at
the nearest climate
station.

HELP model
simulations to compute
an empirical
distribution of infiltration
rates through a single
clay liner using
nationwide coverage of
climate stations.
Infiltration rates for a
specific site were
obtained by using the
infiltration rate for the
nearest climate station.

Compiled from
literature sources
(TetraTech, 2001) for
composite liners

Final Cover

Monte Carlo selection
from distribution of soil
cover types. 2 ft thick
native soil (1 of 3 soil
types: silty clay loam,
silt loam, and sandy
loam) with a range of
mean hydraulic
conductivities (4.2x10°
cm/s to 7.2x10* cm/s).

3 ft thick clay cover with
a hydraulic conductivity
of 1x107 cm/sec and a
10 ft thick waste layer.
On top of the cover, a 1
ft layer of loam to
support vegetation and
drainage and a 1 ft
percolation layer.

No cover modeled; the
composite liner is the
limiting factor in
determining infiltration

Liner
Design

No liner

3 ft thick clay liner with
a hydraulic conductivity
of 1x107 cm/sec. No
leachate collection
system. Assumes
constant infiltration rate
(assumes no increase
in hydraulic conductivity
of liner) over modeling
period.

60 mil HDPE layer with
either an underlying
geosynthetic clay liner
with maximum
hydraulic conductivity of
5x10® cm/sec, or a 3-
foot compacted clay
liner with maximum
hydraulic conductivity of
1x107 cm/sec.
Assumes same
infiltration rate (i.e., no
increase in hydraulic
conductivity of liner)
over modeling period.

EPACMTP
Infiltration
Rate

Monte Carlo selection
from HELP generated
location- specific
values.

Monte Carlo selection
from HELP generated
location-specific

values.

Monte Carlo selection
from distribution of leak
detection system flow
rates.
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Table A.2 Methodology Used to Compute Infiltration for Sls
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Method

EPACMTP Sl module
for infiltration through
consolidated sludge
and native soil layers
with a unit-specific
ponding depth from
EPA’s Sl Study (EPA,
2001).

EPACMTP module for
infiltration through a
layer of consolidated
sludge and a single
clay liner with unit-
specific ponding depth
from EPA's Sl study.

Bonaparte equation
(1989) for pin-hole
leaks using distribution
of leak densities for
units installed with
formal CQA programs

Ponding
Depth

Unit-specific based on
EPA's Sl study.

Unit-specific based on
EPA’s Sl study.

Unit-specific based on
EPA's Si study.

Liner
Design

None. However,
barrier to infiltration is
provided by

layer of consolidated
sludge at the bottom of
the impoundment, and

-] alayer of clogged

native soil below the
consolidated sludge.
The sludge thickness is
assumed to be
constant over the
modeling period. The
hydraulic conductivity of
the consolidated sludge
is between 1.3x107 and
1.8x107 cm/sec. The
hydraulic conductivity of
the clogged native
material is assumed to
be 0.1 of the unaffected
native material in the
vadose zone.

3 ft thick clay liner with

‘| a hydraulic conductivity

of 1x107 cm/sec. No
leachate collection
system. Assumes no
increase in hydraulic
conductivity of liner
over modeling period.
Additional barrier is
provided by a layer of
consolidated sludge at
the bottom of the
impoundment, see no-
liner column.

60 mil HDPE layer with
either an underlying
geosynthetic clay liner
with maximum
hydraulic conductivity of
5x10® cm/sec, or a 3-
foot compacted clay
liner with maximum
hydraulic conductivity of
1x107 cm/sec.
Assumptions: 1)
constant infiltration rate
(i.e., no increase in
hydraulic conductivity of
liner) over modeling
period;

2) geomembrane liner
is limiting factor that
determines infiltration
rate.

EPACMTP
Infiltration
Rate

Calculated by
EPACMTP based on
Monte Carlo selection
of unit-specific ponding
depth.

Calculated based on
Monte Carlo selection
of unit-specific ponding
depth

Calculated based on
Monte Carlo selection
of unit-specific ponding
depth and distribution
of leak densities
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Table A.3 Methodology Used to Compute Infiltration for WPs

~

:Single’LinerEs

values.

values.

[ ING; Lineri:iiet): $icomposite Linersy|
Method HELP model HELP model Compiled from
simulations to compute | simulations to compute | literature sources
distribution of infiltration | distribution of infiltration | (TetraTech, 2001) for
rates for a 10 ft. thick rates through 10 ft. composite liners
layer of waste, using waste layer using three
three waste waste permeabilities
permeabilities (copper | and nationwide
slag, coal bottom ash, | coverage of climate
coal fly ash) and stations. Infiltration
nationwide coverage of | rates for a specific site
climate stations. were obtained by using
Waste-type-specific the infiltration rate for
infiltration rates for a the nearest climate
specific site are - station.
obtained by using the
infiltration rates for
respective waste types
at the nearest climate
station.
Cover None None None
Liner No liner. 3 ft thick clay liner with | 60 mil HDPE layer with
Design a hydraulic conductivity | either an underlying
of 1x107 cm/sec, no geosynthetic clay liner
leachate collection with maximum
system, and a 10 ft hydraulic conductivity of
thick waste layer. 5x10° cm/sec, or a 3-
Assumes no increase foot compacted clay
in hydraulic conductivity { liner with maximum
of liner over unit's hydraulic conductivity of
operational life. 1x107 cm/sec.

1) same infiltration
rate (i.e., no increase in
hydraulic conductivity of
liner) over unit’s
operational life;

2) geomembrane is
limiting factor in
determining infiltration
rate.
EPACMTP | Monte Carlo selection Monte Carlo selection Monte Carlo selection
Infiltration from HELP generated from HELP generated from distribution of leak
Rate location-specific location- specific detection system flow

rates
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Table A.4 Methodology Used to Compute Infiltration for LAUs

R

ISR | METANG Linersid s IeEisinglé Liner! | ¥ Composite’ Liner s

s

Method HELP model N/A N/A
simulations to compute
an empirical
distribution of
infiltration rates for a
0.5 ft thick sludge
layer, underlainby a 3
ft layer of three types
of native soil using
nationwide coverage of
climate stations. Soil-
type specific infiltration
rates for a specific site
are assigned by using
the infiltration rates for
respective soil types at
the nearest climate

station.
Liner No liner ) N/A N/A
Design
EPACMTP Monte Carlo selection N/A N/A
Infiltration from HELP generated
Rate location specific

values.
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