B.M. Moore to Dir., NMSS

21G-05-0068 GOV-01-55-04 ACF-05-0129 1

Attachment 4 Power Point Presentation (Non-Proprietary Information)

۰.

. ;

***** 10

Overview of Licensing Action: Subsurface DCGLs

Presented by Nuclear Fuel Services, Inc. to the United States Nuclear Regulatory Commission March 8, 2005 Rockville, Maryland

Proposed Action
Background Information
Need
Supporting Regulatory Basis
Proposed Schedule & Milestones
Technical Basis
Discussion

- NFS proposes a technical basis to adjust approved cleanup criteria
 - Based on scaling factors and limited to subsurface soils
 - Includes alternate methods (Appendix B) for conducting Final Status Survey (FSS) limited to subsurface contamination
- Cleanup criteria previously approved for surface soils are not included within the scope of this licensing action
- If approved, this methodology will be helpful to other licensees having difficulty remediating to levels allowing "unrestricted use"

Background

- North Site Decommissioning Plan approved by NRC on June 19, 2001
 - Cleanup criteria excluded drinking water pathway as inapplicable
 - Included MARSSIM-based FSS Methods
- Initially proposed use of "mixing ratio" to account for "unintentional mixing" clean with contaminated soil
 - Inadvertent intruder scenario based on Licensing Requirements for Land Disposal of Radioactive Waste, Draft Environmental Impact Statement (DEIS) for 10 CFR Part 61 (NUREG-0782), dated September 1981
- NRC agreed with conceptual approach to develop subsurface cleanup criteria, but challenged the basis of using DEIS (NFS letter dated October 19, 2000)

Cleanup Criteria Approved for the North Site

Radionuclide	DCGL pCi/g	Radionuclide	DCGL pCi/g
U-238	306	Pu-239	140
U-235	74	Pu-238	155
U-233/234	642	Am-241	130
Pu-242	148	Th-232*	3.7
Pu-241	4365	Th-230	17
Pu-240	141	Tc-99	414

* Th-232 background concentrations ranges from 1.6 to 1.7 pCi/g.

Need

- United States Government contractually responsible for providing funds for decommissioning related activities
- Completed excavating large volumes of soil/debris from North Site
 - Disposal volumes to date exceeding 4.5 million ft^3 of soil and debris
 - Depths exceeding 15-17 feet at many locations
- Former "Ponds Areas' most problematic
 - Average Th-232 concentrations ~15 pCi/g (post-remediation)
 - Excavations are several feet below water table
- Approximately 1.26 million ft³ of soil still to remediate at North Site

Aerial Photograph

7

- - --

Site Layout

8

Supporting Regulatory Basis

Provides Workable Solution for Demonstrating Compliance With License Termination Rule for Difficult Sites

• NMSS Consolidated Guidance (NUREG-1757 – Appendix G)

- When appropriate DCGLs and mixing volumes based on acceptable site-specific dose assessment are established, the FSS is performed by taking core samples to the measured depth of radioactivity.
- General Kaiser Aluminum Decommissioning Plan June 2003
 - Allowed excavation, sorting and replacement of Th-232 contaminated slag/soils at concentrations of 31.1 pCi/g at depths greater than 10 feet (See 69 FRN 110, June 9, 2003)
- Segulatory Issues Summary (RIS) 2004-08 (May 28, 2004)
 - Recommended allowing <u>intentional mixing</u> of clean with contaminated soil on a case-by-case basis (also see SECY-04-0035)

Continued

- NFS' approach is consistent with NUREG-1757, but more conservative than approach listed in RIS and that approved for Kaiser Aluminum
 - Proposal does not include re-use (emplacement) of excavated contaminated soil
 - More conservative than practice of "intentional mixing"
- Absent specific guidance, approach is technically sound and defensible
 - Technical basis includes mixing volumes based on acceptable site-specific dose assessment
 - Technical approach has attributes similar to Data Quality Objective process defined in MARSSIM

Licensing Plan of Action

- February 9, 2005 NFS submitted license amendment request
- March 8, 2005 NFS and NRC Discussion of technical basis
- May 8, 2005 NFS and NRC Conduct "Focus Group Meeting"
- June 8, 2005 NFS Submit responses to "Focus Group" questions for NRC review
- July 8, 2005 NRC Issues Request for Additional Information (if needed)
- September 8, 2005 NRC Approved license amendment request

Derivation and Application of Subsurface Soil DCGLs

NFS' North Site Decommissioning Project

OBJECTIVES

- Establish conceptual framework for the development of subsurface soil DCGLs for use at NFS' North Site Decommissioning Project
 - Describe the need for subsurface DCGLs
 - Describe the regulatory guidance and its conceptual application
 - Describe the technical approach for development of subsurface DCGLs
 - Describe the process and metrics used to demonstrate compliance with the decommissioning criteria

The Need for Subsurface DCGLs

- Characterization and remedial support surveys have confirmed the presence of residual radioactivity in subsurface soils at NFS' North Site
 - To date, NFS has conservatively chosen to apply surface soil criteria to each successive subsurface soil layer encountered during excavation
 - While average concentrations of residual radioactivity are generally low, discrete soil samples have exceeded the surface soil DCGLs, necessitating deeper excavations
 - Groundwater and boulders have been encountered in many of these excavations, precluding the direct application of surface soil criteria
 - Significant over-excavation is occurring due to the application of surface soil criteria

Applicable Regulatory Guidance for Subsurface Soil DCGLs

NUREG-1575

- MARSSIM nominally discounts its applicability to subsurface soils for Final Status Survey
 - "MARSSIM does not cover other media, including construction materials, equipment, <u>subsurface soil</u>, surface or subsurface water, biota, air, sewers, sediments or volumetric contamination." (Table 1.1)

NUREG-1757, Vol. 2

- The latest NRC decommissioning guidance, "Consolidated NMSS Decommissioning Guidance, Vol. 2—Characterization, Survey, and Determination of Radiological Criteria" does provide basic guidance on the assessment of residual radioactivity in subsurface soils.
 - Guidance is contained in Appendix G, Section G.2
 - Consistent with previous guidance contained in NUREG-1727 (Appendix E)

General Guidance from NUREG-1757

- "The [subsurface soil] DCGL may be based on the assumption the residual radioactivity [in the subsurface] may be excavated some day" and brought to the surface where exposure occurs.
- "...mixing of the residual radioactivity [in subsurface soil layers] will occur during excavation."
- Subsurface soil "DCGLs and mixing volumes should be based on an acceptable site-specific dose assessment."

NUREG-1757 Guidance Continued

- Compliance with subsurface soil criteria is based on core sampling
 - "Number of cores to be taken is initially the number (N) required for the WRS or Sign test, as appropriate"
 - "Core samples should be homogenized over a soil thickness that is consistent with the assumptions made in the dose assessment, typically not exceeding 1 meter in depth"
 - "It is not acceptable to average radionuclide concentrations over an arbitrary soil thickness."
 - "Adjustment of the grid spacing is more complicated than for surface soils because scanning is not applicable"

10 CFR 20

- The subsurface soil DCGL derivation method is a performance-based, risk-informed process, in keeping with current U.S. NRC decision-making rulemaking policy.
- It is compliant with requirements of the license termination rule for decommissioning as specified in 10 CFR 20.1402

