

Hope Creek Extended Power Uprate

NRC/PSEG Nuclear Pre-Application Meeting Rockville, Maryland March 15, 2005

Hope Creek Generating Station

- GE BWR 4 Operating License in 1986 3293 MWt
- 2000 Uprated to 3339 MWt
- Requested Uprate to 3840 MWt

Project Submittal

- Technical Rigor
- Industry Lessons Learned Addressed
- Current Issues Understood
- Thorough and Encompassing

Introduction/Meeting Objectives

Objectives

- Inform NRC staff of PSEG's plans for EPU LCR (115% of CLTP)
- Discuss the NRC staff's expectations regarding the content of the EPU application

Agenda

Licensing Approach Project Status Reactor Systems Containment Mechanical & Materials Engineering Probabilistic Safety Assessment Environmental

Licensing Approach

Constant Reactor Pressure Based on CPPU LTR ELTR1 & ELTR2 for Fuel Dependent Topics

Supplemented with Mixed Core Evaluations

Hope Creek EPU Project Status

Alternative Source Term – approved

- Amendments 134 & 146
- P/T Limits approved
 - Amendment 157
- **GE14 Fuel Transition approved**
 - Amendment 158
- **ARTS/MELLLA submitted**

Plant Modifications

Hope Creek EPU Project Status

MELLLA/MELLLA+

- MELLLA
 - Prerequisite for EPU per CPPU LTR
 - Submitted 06/07/04
 - Mixed Core Evaluations Submitted 02/18/05
 - Implementation during Current Cycle 13 (on-line)
- MELLLA+
 - Not a Prerequisite for EPU (115% CLTP)
 - Not Currently Being Pursued

Hope Creek EPU Project Status

Plant Modifications

- Designed to Maintain Plant Design and Operational Margin in Selected Areas:
 - Main Turbine Replacement
 - Includes new DEHC and TSI system
 - Main Transformer Replacements
 - Moisture Separator Internals Upgrade
 - Generator Stator Cooling System Upgrade
 - GE-14 Fuel Design
 - Switchyard Upgrades
 - Cooling Tower Upgrades
 - Iso-Phase Bus Cooling Upgrade
 - MELLLA Implementation
 - Moisture Separator Relief Valve Upgrades
 - Steam Jet Air Ejector Modification
 - FWH 2/3 Dump Valve Replacements
 - EPU Implementation

Mixed Core Analyses

- Fuel Transition: Cycle 13 CLTP ELLLA
- ARTS/MELLLA Implementation: Cycle 13 CLTP
- EPU Implementation: 115% CLTP

NSSS Codes & Methods

Mixed Core Analyses

- GE14 Fuel Transition: Cycle 13, ELLLA, GNF Methods
 - Mixed Core Analysis Report
 - Stability
 - Backup Stability Protection Report report provided
 - DIVOM Report
 - Option III Setpoint Report
 - ECCS/LOCA report provided
 - Fuel Transition Report
- Fuel dependent evaluations applicable to CLTP condition
- Forms solid basis for change assessment of EPU impact on fuel & core

Mixed Core Analyses

- ARTS/MELLLA: Cycle 13, CLTP
 - ARTS/MELLLA Safety Analysis Report, Rev. 2
 - Submitted 02/18/05
 - Addresses Plant and Fuel Requirements
 - Documents Bases and Changes Due to Introduction of ARTS/MELLLA at CLTP
 - » Mixed Core (GE14 / SVEA-96+) through Full Core of GE14

- Tied to Reactor Systems EPU Technical Review

Mixed Core Analyses

- EPU Implementation: 115% CLTP
 - Power Uprate Safety Analysis Report
 - Addresses plant and fuel requirements
 - Documents bases and changes due to EPU with equilibrium core of GE14 fuel
 - Fuel Supplemental Reports
 - Mixed Core (GE14 / SVEA-96+)
 - » Fuel dependent evaluations applicable to EPU condition
 - » Based on Assumed Energy Plan
 - » GNF Reload Methodology/Process Controls
 - Mixed Core Analysis Report
 - Stability Reports
 - » Backup Stability Protection (BSP)
 - » DIVOM
 - » OPRM Option III Setpoint
 - ECCS/LOCA

- Fuel Transition Report

NSSS Codes & Methods

- SRXB Applicability of Codes & Methods in EPU Condition
- GE Proposed "Methods Interim Process"
- NRC Requested GE to Docket Process
- PSEG to Review Resolution
- LCR to Refer to "Methods Interim Process"

- CLTR is the Basis for Hope Creek CPPU Power Ascension and Test Program
- CLTR Test Program Accepted by NRC Staff, Except for the Recommendation to Eliminate Large Transient Testing of ELTR1 (i.e. MSIV Closure/Generator Load Reject)
- Guidance for Justification of Large Transient Test Program Provided in Draft SRP 14.2.1

- Evaluation in Progress Using Guidance in Draft SRP 14.2.1
 - Operating Experience and Documented Events/Transients
 - Transient Evaluations for CPPU
 - Event/Evaluation Comparisons (Margins & Conservatisms)
 - Simulator Capabilities/Operator Preparation
 - Safety Significance of Potential Testing Benefits (latent defects) versus Undesirable Transient Cycle

- LCR Attachment Will Be Submitted to Supplement PUSAR Testing Information
 - Focuses on MSIV Closure and Generator Load Rejection Events
 - Addresses Aggregate Impact of Post-modification
 Testing

Containment Topics

Containment Overpressure

- Not Required for EPU
- ECCS NPSH Still Meets RG 1.1

B Reactor Recirculation Pump Vibration Monitoring – Cycle 13

- Drywell Main Steam, Reactor Recirculation, Feedwater, Branch Lines
 - 30 Channels of Data From Accelerometers Installed on the Main Steam (18 Accelerometers) and Feedwater (12 Accelerometers) Piping Inside the Drywell
 - 58 Accelerometers Installed on the Recirculation Piping, RHR Piping, Pump Motor, and 3 Proximity Probes Installed on 3 Valves
- Turbine Building Main Steam, Feedwater, Extraction Steam
 - 34 Channels of Data from Sensors Installed on the Main Steam Piping (10 Accelerometers and 10 Strain Gage Channels), Feedwater Piping (4 Accelerometers), and Extraction Steam Piping (10 Accelerometers)

Vibration Monitoring – Cycle 13

- Data Taken at 10 Power Levels from 23% to 100% RTP
- Main Steam Line Vibration
 - Below the Stress Criteria of 7,692 PSI
- Feedwater Piping Vibration
 - Below the Stress Criteria of 7,692 PSI
- Recirculation System Vibration
 - Maximum Stresses for the Reactor Recirculation System Are Less Than 7,692 PSI for the Carbon Steel Portions and Less Than 10,880 PSI for the Stainless Steel Portions
 - Piping Vibrations an Order of Magnitude Higher Than FW or MS
 - Highest Vibration Levels on Branch and Instrument Lines

HCGS Steam Dryer Condition

- Curved Hood Design
- Regular Inspections to BWRVIP Standards
 - Minimal Indications Observed IGSCC
- Fall 2004 Inspections Performed IAW SIL 644 Supp 1
 - Observed One Additional Indication
 - Center Support Ring IGSCC
 - No Indications Observed on Most Susceptible Locations (Hoods, Cover Plates or End Plates)
 - No Vibration Induced Flaws Have Been Identified

Analytical Methods for Determining Loads

- Computational Fluid Dynamics
 - To Determine Loads Caused by Flow Exiting the Dryer Circulating Within the Steam Dome up to the Point Where It Exits the Main Steam Nozzles
 - May Also Be Applied to Steam Lines
- Acoustic Loads Model
 - To Determine Loads Caused by Acoustic Phenomena in the Main Steam Lines
- Finite Element Analysis of Steam Dryer
 - OEM to develop acceptance criteria for dryer loads
- CFD and Acoustic Models Will Make Use of Data Collected from Main Steam Strain/Vibration Instrumentation

Confirmation of Dryer Loads

- Validation of Analytical Methods
 - Data From an Instrumented Dryer Will be Utilized to Validate the Loads Models
- Instrumentation of Hope Creek Dryer
 - Contingency Will Be in Place Before Implementation
 - Will Identify Abnormal Vibration Levels if They Occur
 - Finite Element Analysis Used to Generate Acceptance Criteria for Dryer Stress

RCPB Structural Evaluations

- Augmented Inspection Program
 - IGSCC Category A
 - Risk Informed ISI
 - Categories C & E
 - Continue IAW GL 88-01 and BWRVIP-75
- Flow Accelerated Corrosion

Probabilistic Safety Assessment Topics

PRA Scope & Quality

- HC EPU Model Based on Updated (2003) PRA
 - Generally Consistent with ASME Standard (Category II)
 - Internal Flooding PRA Included
 - Resolves 1999 Peer Review Level A and B F&Os
 - HRA Uses EPRI HRA Calculator
 - Robust CCF modeling based on ASME standard
 - Self-Assessment to Compare to ASME Standard
 - Suitable to Support PRA Applications that Require ASME PRA Capability Category II

Environmental Topics

Environmental Assessment

- Updated Jan 2005 for EPU
- Scope
 - Socioeconomic
 - Non-Radiological Environmental
 - Terrestrial
 - Aquatic
 - Air Quality
 - Hydrology
 - Radiological Environmental
 - Alternatives

Environmental Topics

Permit Status

- No Land Use Permits Required
- No Modifications to Groundwater, Surface Water, or NJPDES Permits Required
- Received Prevention of Significant Deterioration Non-Applicability from USEPA - March 2004
- Submitted Application for Modification of Air Emission Permit to NJDEP - February 2004
- Completed Required Emissions Modeling and Analyses for Increased Emissions Limitation - July 2004
- NJDEP Proposed Regulatory Rulemaking to Address Emissions - Pending

Introduction/Meeting Objectives

Summary

- Inform NRC Staff of PSEG's Plans for EPU LCR (115% of CLTP)
- Discuss the NRC Staff's Expectations Regarding the Content of the EPU application

