4.3 METAL FATIGUE ANALYSIS

ltem	Locator	Comment	Justification
1	4.3.1.1.1,	Correct stated Code limit for	The Code, and many applicants CLB,
	4.3.2.1.1.2,	CUF	allow for a CFUF equal to unity over the
	4.3.3.1.1.2		service life.
2	4.3.2.1.2.2,	Allow for stress reduction	The applicant's code of record is
	4.3.3.1.2.2	factors that may differ from	bounding in their CLB. Table 4.3-1
		those in Table 4.3-1	appears to be appropriate for most
			cases, but it may not be for all cases.
4	4.3.3.2.3	Provide flexibility for future	Leaves room for improvement in the
		references for environmental	research into the phenomenon and
		life correction factors	improvements in calculational methods.

4.3 METAL FATIGUE ANALYSIS

Review Responsibilities

Primary - Branch responsible for the TLAA issues **Secondary** - None

4.3.1 Areas of Review

A metal component subjected to cyclic loading at loads less than the static design load may fail because of fatigue. Metal fatigue of components may have been evaluated based on an assumed number of transients or cycles for the current operating term. The validity of such metal fatigue analysis is reviewed for the period of extended operation.

The metal fatigue analysis review includes, as appropriate, a review of in service flaw growth analyses, reactor vessel underclad cracking analysis, reactor vessel internals fatigue analysis, postulated high energy line break, leak-before-break, RCP flywheel, and metal bellows.

4.3.1.1 Time-Limited Aging Analysis

Metal components may be designed or analyzed based on requirements in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code or the American National Standards Institute (ANSI) guidance. These codes contain explicit metal fatigue or cyclic considerations based on TLAAs.

4.3.1.1.1 ASME Section III, Class 1

ASME Class 1 components, which include core support structures, are analyzed for metal fatigue. ASME Section III (Ref. 1) requires a fatigue analysis for Class 1 components that considers all transient loads based on the anticipated number of transients. A Section III Class 1 fatigue analysis requires the calculation of the "cumulative usage factor" (CUF) based on the fatigue properties of the materials and the expected fatigue service of the component. The ASME Code limits the CUF to a value of less **or equal to** than one for acceptable fatigue design. The fatigue resistance of these components during the period of extended operation is an area of review.

4.3.1.1.2 ANSI B31.1

ANSI B31.1 (Ref. 2) applies only to piping. It does not call for an explicit fatigue analysis. It specifies allowable stress levels based on the number of anticipated thermal cycles. The specific allowable stress reductions due to thermal cycles are listed in Table 4.3-1. For example, the allowable stress would be reduced by a factor of 1.0, i.e., no reduction, for piping that is not expected to experience more than 7,000 thermal cycles during plant service, but would be reduced to half of the maximum allowable static stress for 100,000 or more thermal cycles. The fatigue resistance of these components during the period of extended operation is an area of review.

4.3.1.1.3 Other Evaluations Based on CUF

The codes also contain metal fatigue analysis rules based on a CUF calculation [the 1969 edition of ANSI B31.7 (Ref. 3) for Class 1 piping, ASME NC-3200 vessels, ASME NE-3200

Draft NUREG-1800, Rev. 1

Class MC components, and metal bellows designed to ASME NC-3649.4(e)(3), ND-3649.4(e)(3), or NE-3366.2(e)(3)]. For these components, the discussion relating to ASME Section III, Class 1 in Subsection 4.3.1.1.1 of this review plan section applies.

4.3.1.1.4 ASME Section III, Class 2 and 3

ASME Section III, Class 2 and 3 piping cyclic design requirements are similar to the guidance in ANSI B31.1. The discussion relating to B31.1 in Subsection 4.3.1.1.2 of this review plan section applies.

4.3.1.2 Generic Safety Issue

The fatigue design criteria for nuclear power plant components have changed as the industry consensus codes and standards have developed. The fatigue design criteria for a specific component depend on the version of the design code that applied to that component, i.e., the code of record. There is a concern that the effects of the reactor coolant environment on the fatigue life of components were not adequately addressed by the code of record.

The NRC has decided that the adequacy of the code of record relating to metal fatigue is a potential safety issue to be addressed by the current regulatory process for operating reactors (Refs. 4 and 5). The effects of fatigue for the initial 40-year reactor license period were studied and resolved under Generic Safety Issue (GSI)-78, "Monitoring of Fatigue Transient Limits for reactor coolant system," and GSI-166, "Adequacy of Fatigue Life of Metal Components" (Ref. 6). GSI-78 addressed whether fatigue monitoring was necessary at operating plants. As part of the resolution of GSI-166, an assessment was made of the significance of the more recent fatigue test data on the fatigue life of a sample of components in plants where Code fatigue design analysis had been performed. The efforts on fatigue life estimation and ongoing issues under GSI-78 and GSI-166 for 40-year plant life were addressed separately under a staff generic task action plan (Refs. 7 and 8). The staff documented its completion of the fatigue action plan in SECY-95-245 (Ref. 9).

SECY-95-245 was based on a study described in NUREG/CR-6260, "Application of NUREG/CR-5999 Interim Fatigue Curves to Selected Nuclear Power Plant Components" (Ref. 10). In NUREG/CR-6260, sample locations with high fatigue usage were evaluated. Conservatisms in the original fatigue calculations, such as actual cycles versus assumed cycles, were removed, and the fatigue usage was recalculated using a fatigue curve considering the effects of the environment. The staff found that most of the locations would have a CUF of less than the ASME Code limit of 1.0 for 40 years. On the basis of the component assessments, supplemented by a 40-year risk study, the staff concluded that a backfit of the environmental fatigue data to operating plants could not be justified. However, because the staff was less certain that sufficient excessive conservatisms in the original fatigue calculations could be removed to account for an additional 20 years of operation for renewal, the staff recommended in SECY-95-245 that the samples in NUREG/CR-6260 should be evaluated considering environmental effects for license renewal. GSI-190, "Fatigue Evaluation of Metal Components for 60-year Plant Life," was established to address the residual concerns of GSI-78 and GSI-166 regarding the environmental effects on fatigue of pressure boundary components for 60 years of plant operation.

The scope of GSI-190 included design basis fatigue transients. It studied the probability of fatigue failure and its effect on core damage frequency (CDF) of selected metal components for 60-year plant life. The results showed that some components have cumulative probabilities of

crack initiation and through-wall growth that approach one within the 40- to 60-year period. The maximum failure rate (through-wall cracks per year) was in the range of 10⁻² per year, and those failures were generally associated with high cumulative usage factor locations and components with thinner walls, i.e., pipes more vulnerable to through-wall cracks. In most cases, the leakage from these through-wall cracks is small and not likely to lead to core damage. It was concluded that no generic regulatory action is necessary and that GSI-190 is resolved based on results of probabilistic analyses and sensitivity studies, interactions with the industry (NEI and EPRI), and different approaches available to licensees to manage the effects of aging (Refs. 11 and 12).

However, the calculations supporting resolution of this issue, which included consideration of environmental effects, indicate the potential for an increase in the frequency of pipe leaks as plants continue to operate. Thus, the staff concluded that licensees are to address the effects of coolant environment on component fatigue life as aging management programs are formulated in support of license renewal.

The applicant's consideration of the effects of coolant environment on component fatigue life for license renewal is an area of review.

4.3.1.3 FSAR Supplement

Detailed information on the evaluation of TLAAs is contained in the renewal application. A summary description of the evaluation of TLAAs for the period of extended operation is contained in the applicant's FSAR supplement. The FSAR supplement is an area of review.

4.3.2 Acceptance Criteria

The acceptance criteria for the areas of review described in Subsection 4.3.1 of this review plan section delineate acceptable methods for meeting the requirements of the NRC's regulations in 10 CFR 54.21(c)(1).

4.3.2.1 Time-Limited Aging Analysis

Pursuant to 10 CFR 54.21(c)(1)(i) - (iii), an applicant must demonstrate one of the following:

- (i) the analyses remain valid for the period of extended operation,
- (ii) the analyses have been projected to the end of the extended period of operation, or
- (iii) the effects of aging on the intended function(s) will be adequately managed for the period of extended operation.

Specific acceptance criteria for metal fatigue are:

4.3.2.1.1 ASME Section III, Class 1

For components designed or analyzed to ASME Class 1 requirements, the acceptance criteria, depending on the applicant's choice of 10 CFR 54.21(c)(1)(i), (ii), or (iii), are:

4.3.2.1.1.1 10 CFR 54.21(c)(1)(i)

The existing CUF calculations remain valid because the number of assumed transients would not be exceeded during the period of extended operation.

4.3.2.1.1.2 10 CFR 54.21(c)(1)(ii)

The CUF calculations have been reevaluated based on an increased number of assumed transients to bound the period of extended operation. The resulting CUF remains less than **or equal to** unity for the period of extended operation.

4.3.2.1.1.3 10 CFR 54.21(c)(1)(iii)

In Chapter X of the GALL report (Ref. 13), the staff has evaluated a program for monitoring and tracking the number of critical thermal and pressure transients for the selected reactor coolant system components. The staff has determined that this program is an acceptable aging management program to address metal fatigue of the reactor coolant system components according to 10 CFR 54.21(c)(1)(iii). The GALL report may be referenced in a license renewal application and should be treated in the same manner as an approved topical report. In referencing the GALL report, the applicant should indicate that the material referenced is applicable to the specific plant involved and should provide the information necessary to adopt the finding of program acceptability as described and evaluated in the report. The applicant should also verify that the approvals set forth in the GALL report for the generic program apply to the applicant's program.

4.3.2.1.2 ANSI B31.1

For piping designed or analyzed to B31.1, the acceptance criteria, depending on the applicant's choice of 10 CFR 54.21(c)(1)(i), (ii), or (iii), are:

4.3.2.1.2.1 10 CFR 54.21(c)(1)(i)

The existing fatigue strength reduction factors remain valid because the number of cycles would not be exceeded during the period of extended operation.

4.3.2.1.2.2 10 CFR 54.21(c)(1)(ii)

The fatigue strength reduction factors have been reevaluated based on an increased number of assumed thermal cycles and *the stress reduction factors (e.g.,* Table 4.3-1) *given in the applicant's code of record* to bound the period of extended operation. The adjusted fatigue strength reduction factors are such that the component design basis remains valid during the period of extended operation.

4.3.2.1.2.3 10 CFR 54.21(c)(1)(iii)

The effects of aging on the intended function(s) will be adequately managed for the period of extended operation. The component could be replaced and the allowable stresses for the replacement will be sufficient as specified by the code during the period of extended operation.

Alternative acceptance criteria under 10 CFR 54.21(c)(1)(iii) have yet to be developed. They will be evaluated on a case-by-case basis to ensure that the aging effects will be managed such that the intended functions(s) will be maintained during the period of extended operation.

4.3.2.1.3 Other Evaluations Based on CUF

The acceptance criteria in Subsection 4.3.2.1.1 of this review plan section apply.

4.3.2.1.4 ASME Section III, Class 2 and 3

The acceptance criteria in Subsection 4.3.2.1.2 of this review plan section apply.

4.3.2.2 Generic Safety Issue

The staff recommendation for the closure of GSI-190 is contained in a December 26, 1999 memorandum from Ashok Thadani to William Travers (Ref. 11). The staff recommended that licensees address the effects of the coolant environment on component fatigue life as aging management programs are formulated in support of license renewal. One method acceptable to the staff for satisfying this recommendation is to assess the impact of the reactor coolant environment on a sample of critical components. These critical components should include, as a minimum, those selected in NUREG/CR-6260 (Ref. 10). The sample of critical components can be evaluated by applying environmental correction factors to the existing ASME Code fatigue analyses. Formulas for calculating the environmental life correction factors for carbon and low-alloy steels are contained in NUREG/CR-6583 (Ref. 14) and those for austenitic SSs are contained in NUREG/CR-5704 (Ref. 15).

4.3.2.3 FSAR Supplement

The specific criterion for meeting 10 CFR 54.21(d) is:

The summary description of the evaluation of TLAAs for the period of extended operation in the FSAR supplement is appropriate such that later changes can be controlled by 10 CFR 50.59. The description should contain information associated with the TLAAs regarding the basis for determining that the applicant has made the demonstration required by 10 CFR 54.21(c)(1).

4.3.3 Review Procedures

For each area of review described in Subsection 4.3.1, the following review procedures should be followed:

4.3.3.1 Time-Limited Aging Analysis

4.3.3.1.1 ASME Section III, Class 1

For components designed or analyzed to ASME Class 1 requirements, the review procedures, depending on the applicant's choice of 10 CFR 54.21(c)(1)(i), (ii), or (iii), are:

4.3.3.1.1.1 10 CFR 54.21(c)(1)(i)

The operating transient experience and a list of the assumed transients used in the existing CUF calculations for the current operating term are reviewed to ensure that the number of assumed transients would not be exceeded during the period of extended operation.

4.3.3.1.1.2 10 CFR 54.21(c)(1)(ii)

The operating transient experience and a list of the increased number of assumed transients projected to the end of the period of extended operation are reviewed to ensure that the transient projection is adequate. The revised CUF calculations based on the projected number of assumed transients are reviewed to ensure that the CUF remains less than **or equal to** one at the end of the period of extended operation.

The code of record should be used for the reevaluation, or the applicant may update to a later code edition pursuant to 10 CFR 50.55a. In the latter case, the reviewer verifies that the requirements in 10 CFR 50.55a are met.

4.3.3.1.1.3 10 CFR 54.21(c)(1)(iii)

The applicant may reference the GALL report in its license renewal application, as appropriate. The review should verify that the applicant has stated that the report is applicable to its plant with respect to its program that monitors and tracks the number of critical thermal and pressure transients for the selected reactor coolant system components. The reviewer verifies that the applicant has identified the appropriate program as described and evaluated in the GALL report. The reviewer also ensures that the applicant has stated that its program contains the same program elements that the staff evaluated and relied upon in approving the corresponding generic program in the GALL report. No further staff evaluation is necessary.

4.3.3.1.2 ANSI B31.1

For piping designed or analyzed to ANSI B31.1 guidance, the review procedures, depending on the applicant's choice of 10 CFR 54.21(c)(1)(i), (ii), or (iii), are:

4.3.3.1.2.1 10 CFR 54.21(c)(1)(i)

The operating cyclic experience and a list of the assumed thermal cycles used in the existing allowable stress determination are reviewed to ensure that the number of assumed thermal cycles would not be exceeded during the period of extended operation.

4.3.3.1.2.2 10 CFR 54.21(c)(1)(ii)

The operating cyclic experience and a list of the increased number of assumed thermal cycles projected to the end of the period of extended operation are reviewed to ensure that the thermal cycle projection is adequate. The revised allowable stresses based on the projected number of assumed thermal cycles and *the stress reduction factors given in the applicant's code of record* Table 4.3-1 are reviewed to ensure that they remain sufficient as specified by the code during the period of extended operation. *Typical stress reduction factors based on thermal cycles are given in Table 4.3-1*.

The *applicant's* code of record should be used for the reevaluation, or the applicant may use the criteria of 10 CFR 50.55a. In the latter case, the reviewer verifies that the requirements in 10 CFR 50.55a are met.

4.3.3.1.2.3 10 CFR 54.21(c)(1)(iii)

The applicant's proposed program to ensure that the effects of aging on the intended function(s) will be adequately managed for the period of extended operation is reviewed. If the applicant proposed a component replacement before it exceeds the assumed thermal cycles, the reviewer verifies that the allowable stresses for the replacement will remain sufficient as specified by the code during the period of extended operation. Other applicant-proposed programs will be reviewed on a case-by-case basis.

4.3.3.1.3 Other Evaluations Based on CUF

The review procedures in Subsection 4.3.3.1.1 of this review plan section apply.

4.3.3.1.4 ASME Section III, Class 2 and 3

The review procedures in Subsection 4.3.3.1.2 of this review plan section apply.

4.3.3.2 Generic Safety Issue

The reviewer verifies that the applicant has addressed the staff recommendation for the closure of GSI-190 contained in a December 26, 1999 memorandum from Ashok Thadani to William Travers (Ref. 11). The reviewer verifies that the applicant has addressed the effects of the coolant environment on component fatigue life as aging management programs are formulated in support of license renewal. If an applicant has chosen to assess the impact of the reactor coolant environment on a sample of critical components, the reviewer verifies the following:

- 1. The critical components include, as a minimum, those selected in NUREG/CR-6260 (Ref. 10).
- 2. The sample of critical components have been evaluated by applying environmental correction factors to the existing ASME Code fatigue analyses.
- Formulas for calculating the environmental life correction factors are those contained in NUREG/CR–6583 (Ref. 14) for carbon and low-alloy steels, and in NUREG/CR-5704 (Ref. 15) for austenitic SSs, or an approved technical equivalent.

4.3.3.3 FSAR Supplement

The reviewer verifies that the applicant has provided information, to be included in the FSAR supplement, that includes a summary description of the evaluation of the metal fatigue TLAA. Table 4.3-2 contains examples of acceptable FSAR supplement information for this TLAA. The reviewer verifies that the applicant has provided a FSAR supplement with information equivalent to that in Table 4.3-2. The staff expects to impose a license condition on any renewed license to require the applicant to update its FSAR to include this FSAR supplement at the next update required pursuant to 10 CFR 50.71(e)(4). As part of the license condition, until the FSAR update is complete, the applicant may make changes to the programs described in its FSAR supplement without prior NRC approval, provided that the applicant updates the FSAR to include the final FSAR supplement before the license is renewed, no condition will be necessary.

As noted in Table 4.3-2, an applicant need not incorporate the implementation schedule into its FSAR. However, the review should verify that the applicant has identified and committed in the license renewal application to any future aging management activities, including enhancements and commitments to be completed before the period of extended operation.

The staff expects to impose a license condition on any renewed license to ensure that the applicant will complete these activities no later than the committed date.

4.3.4 Evaluation Findings

The reviewer determines whether the applicant has provided sufficient information to satisfy the provisions of this review plan section and whether the staff's evaluation supports conclusions of the following type, depending on the applicant's choice of 10 CFR 54.21(c)(1)(i), (ii), or (iii), to be included in the staff's safety evaluation report:

The staff concludes that the applicant has provided an acceptable demonstration, pursuant to 10 CFR 54.21(c)(1), that, for the metal fatigue TLAA, [choose which is appropriate] (i) the analyses remain valid for the period of extended operation, (ii) the analyses have been projected to the end of the period of extended operation, or (iii) the effects of aging on the intended function(s) will be adequately managed for the period of extended operation. The staff also concludes that the FSAR supplement contains an appropriate summary description of the metal fatigue TLAA evaluation for the period of extended operation as reflected in the license condition.

4.3.5 Implementation

Except in those cases in which the applicant proposes an acceptable alternative method, the method described herein will be used by the staff in its evaluation of conformance with NRC regulations.

4.3.6 References

- 1. ASME Boiler and Pressure Vessel Code, Section III, "Rules for Construction of Nuclear Power Plant Components," American Society of Mechanical Engineers.
- 2. ANSI/ASME B31.1, "Power Piping," American National Standards Institute.
- 3. ANSI/ASME B31.7-1969, "Nuclear Power Piping," American National Standards Institute.
- 4. SECY-93-049, "Implementation of 10 CFR Part 54, 'Requirements for Renewal of Operating Licenses for Nuclear Power Plants," March 1, 1993.
- 5. Staff Requirements Memorandum from Samuel J. Chilk, dated June 28, 1993.
- 6. NUREG-0933, "A Prioritization of Generic Safety Issues," Supplement 20, July 1996.
- 7. Letter from William T. Russell of NRC to William Rasin of the Nuclear Management and Resources Council, dated July 30, 1993.

- 8. SECY-94-191, "Fatigue Design of Metal Components," July 26, 1994.
- 9. SECY-95-245, "Completion of The Fatigue Action Plan," September 25, 1995.
- 10. NUREG/CR-6260, "Application of NUREG/CR-5999 Interim Fatigue Curves to Selected Nuclear Power Plant Components," March 1995.
- 11. Letter from Ashok C. Thadani of the Office of Nuclear Regulatory Research to William D. Travers, Executive Director of Operations, dated December 26, 1999.
- 12. NUREG/CR-6674, "Fatigue Analysis of Components for 60-Year Plant Life," June 2000.
- 13. NUREG-1801, "Generic Aging Lessons Learned (GALL)," U.S. Nuclear Regulatory Commission, March 2001.
- 14. NUREG/CR-6583, "Effects of LWR Coolant Environments on Fatigue Design Curves of Carbon and Low–Alloy Steels," March 1998.
- 15. NUREG/CR-5704, "Effects of LWR Coolant Environments on Fatigue Design Curves of Austenitic Stainless Steels," April 1999.

Number of Equivalent Full Temperature Cycles	Stress Range Reduction Factor
7,000 and less	1.0
7,000 to 14,000	0.9
14,000 to 22,000	0.8
22,000 to 45,000	0.7
45,000 to 100,000	0.6
100,000 and over	0.5

Table 4.3-1. Stress Range Reduction Factors

Table 4.3-2. Example of FSAR Supplement for Metal Fatigue TLAA Evaluation

10 CFR	54.21(c)(1)(iii)	Example
--------	------------------	---------

TLAA	Description of Evaluation	Implementation Schedule*		
Metal fatigue	The aging management program monitors and tracks the number of critical thermal and pressure test transients, and monitors the cycles for the selected reactor coolant system components.	Evaluation should be completed before the period of extended		
	The aging management program will address the effects of the coolant environment on component fatigue life by assessing the impact of the reactor coolant environment on a sample of critical components that include, as a minimum, those components selected in NUREG/CR-6260. The sample of critical components can be evaluated by applying environmental correction factors to the existing ASME Code fatigue analyses. Formulas for calculating the environmental life correction factors are contained in NUREG/CR-6583 for carbon and low-alloy steels and in NUREG/CR-5704 for austenitic SSs.	operation		
* An applicant need not incorporate the implementation schedule into its FSAR. However, the reviewer should verify that the applicant has identified and committed in the license renewal application to any future aging management activities to be completed before the period of extended operation. The stafe expects to impose a license condition on any renewed license to ensure that the applicant will complete these activities no later than the committed date.				