

Regulatory Conference, March 17, 2005 Kewaunee Nuclear Power Plant Containment Equipment Hatch Interference

Agenda

Introduction Background Risk Analysis Corrective Actions Conclusion **Craig Lambert**

Kevin Davison

Tom Breene

Kevin Davison

Craig Lambert

Background

- •Reactor Pressure Vessel (RPV) head replacement - Fall 2004 outage.
- •Temporary transport (rail) system required to move RPV head into/out of containment.
- •Two piece system to facilitate hatch closure.
- Interference identified during closure for refueling integrity.
- •Although we believe the risk from this issue to be very low, this was a significant event for Kewaunee.

Success Paths

- Successfully completing any of the following would end the exposure time
 - Restore off-site power
 - Restore "B" Emergency Diesel Generator
 - Restore the Station Blackout (SBO) Diesel Generator
 - Close the equipment hatch

Topics

- Event Timeline
- Methodology
- Dominant Risk Sequence
- Differences between final NMC analysis and NRC choice letter
- Probability of Hatch Closure
- Summary of the Risk Analysis

Background Timeline

Methodology

- Used dominant risk sequences from shutdown PRA
- Examined basis for recovery actions
- Assessed the time available for hatch closure
- Calculated human error probabilities

Dominant Risk Sequence

- Loss of off-site power.
- Loss of emergency diesel generator B.
- Loss of charging via the SBO diesel generator.
- Failure to close equipment hatch.
- A/C Power is not recovered.

Risk Value Detail

Failure	NMC	NRC
	Revised	SERP
Loss of offsite power during shutdown (per year)	0.189	0.189
Emergency Diesel generator B fails	0.0108	0.0546
Core uncovery before flow restoration	0.068	0.131
Charging via SBO diesel fails	0.0661	0.0899
Equipment hatch closure fails	0.37	1.00
Exposure time (years)	0.00748	0.00765
Total large early release frequency (△ LERF)	2.5x10 ⁻⁸	9.3x10 ⁻⁷

Differences Between Preliminary NRC Choice Letter and Final NMC Assessment

- EDG diesel generator failure probability
 - Plant specific failure data updated through January 2005
 - Removed double-counting of diesel air supply and exhaust failure
 - A recovery probability was applied
 - Mission time was updated

Differences Between Preliminary NRC Choice Letter and Final NMC Assessment

- SBO diesel generator failure probability
 - Plant specific failure data updated through January 2005
 - Removed double-counting of diesel air supply and exhaust failure
 - Mission time was updated
 - Removed the Test and Maintenance probability term
 - Increased the assumed stress level for charging alignment

Differences Between Preliminary NRC Choice Letter and Final NMC Assessments

- Time to core uncovery
 - 5.4 hours pressurizer safety valve removed case
 - >9.0 hours pressurizer safety removed and head detensioned case

Sensitivity

- Assuming a probability of 1.0 for failure to close the hatch.
 - Δ LERF becomes 6.9 x 10⁻⁸
 - Very low risk significance (Green)

Habitability of Containment

Temperature

-< 70 degrees at open hatch.

-Increases at hatch closure.

Radiation levels

-Within 10CFR20 limit.

Noise

-Hearing protection adequate.

Lighting

-Portable generators outside

-Portable handheld lights inside.

Risk Analysis Hatch Closure Timeline

Human Error Probability

Execution Error	<u>0.05</u>
	<u>0.05</u> 0.37

- •Cognitive error assumes decisions made at Control Room or Outage Control Center
- •Execution error assumes containment habitability conditions.

Cognitive Error For Moving The Rail

- •Type of response is skill based
- Complexity of response is complex
- Environment is habitable
- Stress is extreme

Key Analysis Conservatisms

- Diesel generator B successfully tested three hours prior to DG A being taken out of service.
- •Used conservative decay heat assumptions.
- Kewaunee Steam Generators have 26% more primary side volume than those used in our analysis.
- •Kewaunee reactor vessel water level was 9 inches higher than those used in our analysis.

NN

Kewaunee analyses validated by industry experts

•PRA results reviewed by NMC PRA peers

- •PRA results reviewed by Scientech and Erin Engineering
- Habitability conditions analysis reviewed by Enercon Services

Review results incorporated in final NMC analysis

19

Summary

 The Change in Large Early Release Frequency (Δ LERF of 2.5 x 10⁻⁸) has a very low risk significance (Green).

•Assuming no hatch closure, the Δ LERF is 6.9 x 10⁻⁸, which is also very low risk significance (Green).

Root Cause

Root Cause

- Failure to recognize a potentially risk significant condition outside of the technical specifications or licensing basis.
- Incomplete incorporation of industry guidance.

Cornerstone Affected

Barrier Integrity

Corrective Actions

- Reviewed this O/E with the NMC Fleet and INPO
- Independent Review Group / Engineering effectiveness
- •Reviewed NUMARC 91-06, GL 97-12 and GL 88-17 to identify any additional vulnerabilities.
- •Revise procedural controls for containment closure to assure that closure can be accomplished in a time commensurate with plant conditions (time to boil).

Conclusion

Summary

- Actions have been taken to correct deficiencies.
- Actions are ongoing to find other documents with inadequate reviews.
- •Without crediting hatch closure this finding is of very low safety significance (6.9 x 10⁻⁸).
- •With credit for hatch closure this finding is of very low safety significance (2.5 x 10⁻⁸).

