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THE ANSI/ANS STANDARD 58.2-1988:  TWO-PHASE JET MODEL 
 
Graham Wallis   September 15, 2004 
 
Introduction  
 
For some time I have been curious about the origins of the two-phase jet 
model that appears in Appendix C of the ANSI/ANS Standard1.  It is given 
there as a set of formulae, with almost no technical explanation. 
 
The key reference is to an EPRI report, NP-4418 (Healzer and Singh, 1986).  
Ralph Caruso asked EPRI for a copy and was told that they could not locate 
one.  There is no copy in the ANL library and ANL were unable to obtain 
one through interlibrary loan.  Perhaps this report only existed in draft form 
and was never formally issued. 
 
Ralph found another related report2, (Healzer and Elias, EPRI NP-4362, 
1986) which is the final report of work performed under EPRI Project 
Manager Avtar Singh.  The equations given in the Standard are not derived 
in this report, but there is a good presentation of the modeling of an 
expanding supersonic jet using the method of characteristics.  This is 
combined with a shock wave model to predict the pressure distributions on 
targets in the Marviken tests. 
 
Bill Shack found an earlier report3 (Elias et al, 1984) also describing a jet 
model based on the method of characteristics. 
 
Another useful reference is the Sandia report4, (Weigand et al) NUREG/CR-
2913) that was discussed in the ACRS letter of …..   The approximate model 
presented there for the initial stage of the jet appears to be the same as that 
adopted in the Standard. 
 
Victor Ransom has been conducting a parallel critique9.  It provides some 
nice pictures of the reality of supersonic jets and makes some comments 
generally in agreement with mine. 
 
This memo critiques the methods described in the Standard, compares them  
with the referenced technical models and the probable reality, and also with 
independent calculations.  The work has been performed quickly in order to 
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provide input to the forthcoming ACRS Thermal/hydraulics Subcommittee 
meeting and may contain errors or misunderstandings.  
 
It is concluded that there are (at least) several problematic areas with the 
methods in the Standard: 
 
1.   The overall description of the jet flow pattern is at odds with the reality 
of supersonic jet flow. 
 
2.  The "jet pressure" is not defined.  It seems to mean different things in 
different "Regions" of the jet.  Some of the assumed profiles are inconsistent 
with reality, giving the inverse of what actually occurs in parts of the jet that 
are overexpanded.  The impact pressures in the far field may be 
overestimated. 
 
3.   The use of one-dimensional assumptions leads to errors in predicting the 
"asymptotic plane" where supersonic effects are supposed to end.  Besides 
the fact that such a plane does not exist and supersonic effects persist to 
many more L/Ds, these assumptions lead to a spread by a factor of four in 
the prediction, depending on how the assumptions are manipulated. 
 
4.   The use of stagnation conditions to compute the quality in the flow at the 
"asymptotic plane" is erroneous.  The mixture  is actually traveling at high 
Mach Number when atmospheric pressure is reached on the average  for the 
first time.  
 
 
The Sandia Report 
 
Sandia4 performed CFD calculations of a jet issuing into a space between 
two parallel planes.  They assumed the two-phase flow to be homogeneous 
and in thermodynamic equilibrium.  They derived contours of constant 
pressure, velocity vectors and pressures on the large target, as shown in the 
attached figures for a discharge of water initially saturated at 150bar.  This is 
a confined jet and not the free jet expected from a break following a LOCA.  
The analysis is quite complete and impressive but detailed results are only 
presented for L/D =2.  It is therefore not shown how the flow behaves when 
the plate is far enough away from the nozzle for the flow to behave more 
like what would be obtained with a free jet. 
 



 3

Figure 1 shows a "core" region in which there is no depressurization, rather 
than the usual situation where choking occurs at the exit plane.  This may be 
a real effect as there is evidence from the Marviken tests of a region near the 
break where the stagnation pressure is fully recoverable; it doesn't matter for 
the far field at large distances from the break.  
 
 

 
Figure 1   Pressure contours for a jet issuing between two discs4 
 
The jet is able to turn 900 and follow the inner wall, executing the familiar 
Prandtl-Meyer expansion.  The contours of constant pressure near the nozzle 
resemble those from a point source to some extent. 
 
Figure 2 shows the corresponding velocity vectors.  The supersonic flow 
undergoes a shock as it approaches the target plate.  The shock is normal 
near the stagnation point and oblique further out.   The calculation is not 
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continued to the "outside world" at large radius, but presumably there would 
have to be another shock wave to enable the flow to get out of the disc-like 
slot into an atmosphere at 1bar. 

 
Figure 2   Velocity vectors corresponding to Figure 1 
 
Figure 3 shows the pressure distribution on the large target disc.   The 
pressure is seen to fall off with radius.  Since the flow is inviscid in this 
model, the streamlines from the stagnation point flow along the surface, 
conserving stagnation pressure.  This would be the maximum pressure felt 
by an object placed anywhere close to the target surface and it would be the 
same at all radii.  For example, at R/D =2, the static pressure on the target 
plate is about 5bar, but an object near the plate would experience the full 
stagnation pressure of 18bar.  
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Figure 3    Pressure distribution along the target plate4 

 
 
 
Sandia4 also discuss the problem of a free jet issuing for a tube, rather than 
from a hole in a disc.  This is not analyzed using CFD but an approximate 
solution is presented.  It is assumed, without much explanation (p.89) that 
the jet "has a well-defined boundary described by a 450 expansion angle".  
This is despite the 900 turning angle obtained with the confined jet. 
 
It is assumed that the flow can be treated as one-dimensional in the 450 cone 
(this is a stretch of one-dimensionality).  This enables the velocity and 
thermodynamic properties to be computed, assuming an isentropic 
expansion.  Then the pressure on the plate is determined by using the normal 
shock relations at the stagnation point and oblique shock relations further 
out along the plate (which is at odds with the one-dimensional model used to 
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calculate the velocity.  The explanation of this is not particularly clear).  The 
calculated pressures come quite close to experimental measurements for L/D 
less than about 5.  They also seem to be quite close to the pressures 
computed on the plate in the confined jet situation, though this appears to be 
a somewhat different problem.  As pointed out in our letter, the pressures 
recorded on a large plate at some radius are not the same as the pressures 
that would be encountered by a small object placed at the same position, in 
the absence of a plate. 
 
In a region close to the nozzle, the confined jet and the free jet would be 
expected to behave the same.  This is because the flow is supersonic and the 
free jet core "doesn't know" the conditions on the free boundary or at the 
target until waves have propagated in from those boundaries to convey the 
information that they are there. 
 
 
The ANSI/ANS Standard  
 
A very brief description of the model is presented in Appendix C.  Figure C-
1 delineates three regions, shown here in Figure 4.  
 
Region 1 is the core region, as in the Sandia report.  Its length appears to be 
described by using a correlation developed in reference 4.  The length 
depends on the upstream subcooling.  
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Figure 4   Jet model in the ANSI/ANS Standard 
 
Region 2 follows the 450 cone assumed by Sandia.  It ends at an "asymptotic 
area".  For low subcooling this is where the pressure is predicted to be 
atmospheric.  The area, Aa of the jet at this plane is computed from  
 
 Aa/Ae = Ge

2 /(ρa CT P0)                     (C-3) 
 
(I refuse to include a units factor gc!) 
 
The symbols have their usual meaning.  The thrust coefficient times the 
stagnation pressure, CTP0 , is the same as the momentum flux in the jet, or  
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Aaρava
2.  Since from continuity, Aaρava = Aeρaeve, and Ge = ρeve , (C-3) is the 

same as the continuity equation  
 
  Aaρava = Aeρaeve                     (1) 
 
Use of (1) is the same as using the simple one-dimensional equations for 
isentropic flow to compute the area where the pressure drops to atmospheric. 
 
From geometry, for the assumed 450 jet boundary, the distance from the 
break plane to the asymptotic plane is  
 
 La/De = 1/2 ((Aa/Ae)0.5 - 1) = 1/2 (Da/De -1)         (C-5) 
 
In Region 3, "interaction with the surrounding environment is assumed to 
start" and the jet is then assumed to expand with a 10 degree exterior half-
angle after the "asymptotic plane".  There is no discussion of shock waves 
forming in front of obstacles.  The assumption seems to be that all 
supersonic effects are over at the end of Region 2 and the jet behavior is 
thereafter governed by turbulent mixing with the surrounding fluid. 
 
The concept that supersonic expansion stops at an "asymptotic plane" is not 
consistent with observation.   In the Marviken tests, and according to theory, 
the mean pressure in the jet reaches ambient pressure at dimensionless 
distances from the nozzle, L/De or z/Dc, between 1 and 2.   Figure 5 shows a 
schlieren photo of a supersonic jet expanding with about the same pressure 
ratio, p0/pa, as at the start of a LOCA.  The jet expands for about 7 L/D then 
begins to contract and passes through a shock wave at around 10 L/D (it is 
unclear what the inside diameter of the pipe was).  At much lower pressure 
ratios, as in the later stages of a LOCA, the jet initially expands much less, 
but it then passes through several shock diamonds, again out to around 
L/D~10 (Figure 6). 
 
Some more complete pictures are given in Vic Ransom's report9. 
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Figure 5   Expansion of a supersonic jet at high pressure ratio p0/pa 
(reference 5) 

 
 
Figure 6    Expansion of a supersonic jet at low p0/pa (reference 6) 
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EPRI NP-4362 
 
An expanding free two-phase steam-water jet is analyzed in EPRI NP-43622 
using the method of characteristics.   Figure 7 shows a typical characteristics 
net from that report.  It can be seen to capture several of the features shown 
in Figure 5.   Expansion of the jet continues to L/D about 12 before the 
envelope begins to contract. 
 

 
 
Figure 7   Characteristics net used in reference 2 
 
The predicted axial static pressure variation compared quite well with 
measurements taken at Marviken.  Quite good comparisons were also made 
with impingement pressures recorded on radial instrument arms, assuming 
that a shock wave occurred normal to the instrument arm, as well as 
pressures recorded on targets placed in the flow up to an axial distance z/Dc 
= 4. 
 
Apart from effects of drag and mixing with the surrounding air this analysis 
would seem to be the most realistic of the three under present discussion for 
describing the actual behavior of a free jet. 
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The flow is not one-dimensional.  Unless there is mixing with the 
surrounding fluid, the surface of the jet is always at the ambient pressure and 
the conditions there are what would be predicted from isentropic expansion 
to ambient.  They do not change along the jet.  Therefore a small object 
placed just inside the jet boundary would experience exactly the same net 
force no matter where is was located relative to the nozzle. 
 
It is useful to compare the flow field with what would be predicted for one-
dimensional isentropic expansion.   In the Marviken test with p0 =5Mpa and 
a subcooling of 34C, the stagnation enthalpy is close to what would be 
obtained by starting with saturated water at 3Mpa, h=1008.4 KJ/kg, and 
compressing reversibly to 5MPa to add an additional enthalpy 2x103kPa x 
0.0012m3/kg = 2.4kJ/kg to obtain h0=1010.8 kJ/kg.  The stagnation entropy 
would still be the value for saturated water at 3Mpa, s0 = 2.6462kJ/kg.K.  
(These properties should be checked with tables for compressed water if 
greater accuracy is desired.  The overall results below should not change 
much). 
 
The critical pressure ratio from may be estimated from Figure 3.2   in my 
book7 (this is for the Moody model but I assume it gives about the same 
critical pressure as the homogeneous model) as about 2/3 for saturated water 
at 3Mpa, namely 2Mpa.  This ignores the overpressure at stagnation.  The 
result is therefore approximate and predicts a lower choking pressure than in 
reference 4.   From the usual isentropic relationships I computed the 
conditions at the nozzle exit to be a velocity of 106.8m/s and a density of 
192.6kg/m3.  It is not too important to get the choking pressure right if one is 
only interested in the calculation of flow areas.  What matters is the flow per 
unit area at the nozzle, which is a maximum at choking and is insensitive to 
the assumed pressure. 
 
The conditions at a series of pressures downstream were then computed.  
Using the continuity relationship, (1) I could then compute D/De.  These 
predictions are tabulated in Table 1. 
 
 
 
p(MPa)     5    2   0.2   0.1   0.04  0.02    0.01   0.004 
v(m/s)          0         107    367    430    505      558      604     660 
ρ kg/m3       -          193    5.65    2.65  1.026   0.51    0.256   0.104 
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D/De           -           1       3.15    4.25    6.3      8.5       11.5    17.3 
pw(Mpa)                --       0.96     0.59    0.3     0.18      0.103   0.049   
 
Table 1   One-dimensional isentropic expansion of subcooled water from 
5MPa and about 30C subcooling. 
 
The last row in the table is the approximate pressure, pw, behind a shock 
wave for upstream conditions given above it in the table. This is estimated 
by converting all the momentum flux, ρv2 to pressure and adding it to the 
static pressure, which is a reasonable approximation at high Mach Number. 
 
Reference 2 does not give the values for the ambient pressure in the 
Marviken tests.  From the plots in reference 3 it would appear to be around 
2bar, though there was a large open area connecting the jet chamber to the 
atmosphere.  In the calculations below, I took the ambient pressure to be 
1bar. 
 
At atmospheric pressure the jet is predicted to have expanded to a radius of 
0.299x4.25/2 = 0.635m.  To compare with Figure 3-4 from reference 2 we 
need to account for the angle of the jet surface, where the axial component 
of velocity is only about 1/2 of the net speed.  Then the mean jet pressure 
might be about atmospheric at somewhere near 2 L/De, a little farther than 
would be predicted from the one-dimensional assumption (C-5), 1.625 L/De , 
that defines the end of Region 2 in the ANS standard.   Figures 4-2 and 4-3 
of reference 2 show the pressure on the axis reaching ambient from L/Dc = 
1.5 to 2, depending on the upstream stagnation conditions.  Apparently, the 
ANSI/ANS standard provides a reasonable approximation.   The pressure 
then drops below ambient, recovering to ambient at around L/Dc= 7.   In 
reference 2 the calculations appear to have been carried out to about L/Dc= 
10.   In the earlier publication3 , including some of the same authors, the 
characteristics net appeared to terminate at z/D = 3, in most cases. 
 
At L/De =4 in Figure 3-4 the jet radius is about 1.5m, or D/De = 10.  This 
would correspond in Table 1 to a mean.pressure of about 0.015MPa. Since 
the outside of the jet is still at 0.1MPa, if the ambient pressure is 1bar, it 
would appear that the centerline must be at an even lower pressure than the 
average value, perhaps around 0.01MPa.  This occurs because expansion 
waves keep arriving on the axis from both sides.  Similarly, at L=1.7m, 
L/De=5.7, the jet radius is 2m, D/De=13.3 and the average jet pressure is 
below 0.01MPa while at L=3.5m, D/De =16.7 and the average pressure is 
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down to near 0.004MPa. Apparently, were this center streamline brought to 
rest, the pressure achieved would be sub-atmospheric on a small object.  If 
the target were large, there would have to be a shock wave standing off far 
from the target in order to achieve a stagnation pressure greater than 
atmospheric and allow the impacted mixture to escape. Yet the outer layer of 
the jet still has the conditions pertinent to 0.1MPa and, if it were to hit a 
small object, would achieve a pressure of 0.59MPa, perhaps enough to cause 
damage.  If the jet were unstable and wobbling this large pressure would be 
available over a larger area than just the surface of a stable steady jet.  A 
one-dimensional model cannot represent these large variations in properties 
across the jet 
 
After a distance of 4m the jet begins to contract.  Some of the characteristics 
cross, indicating the formation of shock waves.  If these are weak, the jet 
will collapse to conditions resembling those close to the nozzle, in the 
absence of other dissipative effects, as compression waves reflected from the 
free surface recompress the fluid.  Then the impact pressures on targets will 
increase with distance from the nozzle.  However, it appears from Figures 5 
and 7, that there will be a normal shock at about L/D = 16 which will limit 
further significant refocusing of the jet energy and momentum.  
 
It seems likely that suitable computer program, such as FLUENT, could 
model these phenomena.  FLUENT has already been used to compute a 
series of shock diamonds in a supersonic jet used in a combustion 
application. 
 
Table 1 shows that, if the ambient pressure is atmospheric, the density of the 
mixture at the jet boundary is 2.65kg/m3.  As this is not all that much more 
than the density of a normal atmospheric environment, 1.2kg/m3, it is likely 
that mixing and friction will have significant effects when the jet length of 
interest is several L/Des.   FLUENT can also model this, though an 
appropriate turbulence model would have to be chosen to get accurate 
results.  Absent any other explanation, it appears that the ANSI/ANS 
Standard recommends a 10 degree half-angle jet growth as a result of this 
mixing.  This prediction ignores the strong forces tending to collapse the jet 
inward, as a result of the high level of overexpansion and very low static 
pressures on the axis. 
 
If I use the 45 degree assumption, (C-5), and Table 1, a static pressure of 
0.1MPa occurs at L/D = 1.625 and the impact pressure is 0.59MPa.  
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0.04MPa occurs at L/D of 2.65 and the impact pressure is 0.3MPa.  0.02MPa 
occurs at L/D=5.25 and the impact pressure is 0.18MPa.   From Figure 2-6 
of reference 2, the impact pressures are higher than these in the subcooled 
regime, probably because of the persistence of the subcooled core.  In the 
"saturated liquid regime", with an upstream stagnation pressure of 3MPa, the 
impact pressures are 1.14MPa at L/D =1.2; 0.48MPa at L/D =2 and 0.24MPa 
at L/D =4.   These fit into the sequence calculated from Table 1. So, the 
approximate model described in reference 4 is not too bad in this particular 
example and can apparently be extended beyond the "asymptotic plane" to 
some extent. 
 
While the approximate model presented in reference 4 has received some 
confirmation from experimental data at low L/Ds, up to 4 or 5, I have not 
seen experimental data at large L/Ds.  The emphasis of tests has been mostly 
on the very large forces and pressures encountered on large targets close to 
the break.   Though supersonic effects probably persist to at least L/D ~10 
and the jets may still be quite potent for greater distances (I note that the 
LANL knowledge base report8 describes damage from steam jets at L/D =25 
and from air jets at L/Ds as large as 100!)  I have not seen any thorough 
analysis of jet behavior in this "far field".    
 
The ANSI/ANS approach that all is over at an "asymptotic plane" at the end 
of Region 2, around L/D =1.5 or 2, does not seem to correspond to reality.  
Continued expansion at a half-angle of 10 degrees in Region 3 also appears 
to have no clear justification and may predict too low an impact pressure at 
high L/Ds. It would perhaps be desirable to make suitable CFD predictions, 
and compare with experimental results, for longer L/Ds than have been used 
so far. 
 
Confined and free jets 
 
Figure 1 shows pressure (static:  I will use "pressure" with no adjective to 
describe the static or thermodynamic pressure) contours, or isobars, for a jet 
confined between two walls.   Figure 7 shows the characteristics net for a 
free jet.  Unfortunately, the only isobar shown (I believe that Vic has some 
for a similar problem) is the jet boundary, which is at atmospheric pressure.  
 
These two problems are quite different.   This is shown clearly by the 
velocity vectors in Figure 2.   The only region where the two flow fields are 
the same is in a small region close to the nozzle that is unaffected by waves 
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reflected from the jet boundary.  Even the corner flow seems different, with 
the free jet breaking out at an angle of about 600 while the confined jet is 
attached to the wall. 
 
In both cases the flow is isentropic through out the whole region until the 
flow passes through a shock wave.   Therefore the pressure, density and 
velocity are related by the usual one-dimensional isentropic relations in 
these regions. 
 
The simple model developed in reference 4 to represent the Marviken results 
at low L/D appears to draw on the confined jet results.   This is the only 
source that I have found for a model that appears to resemble that used for  
the Region 2 model in the ANSI/ANS Standard.  The model may be 
reasonable as an approximation for impingement pressures on a large flat 
plate close to the nozzle, but it appears to be a stretch to use it for a free jet. 
 
Jet Pressure 
 
The Standard uses a "jet pressure", Pj , without giving a definition.  It first 
appears in (D-4) where the force on a target is given by 
 
   Fjt = ∫PjdAt                           (D-4) 
 
For a large target that diverts all of the flow sideways perpendicular to the 
jet axis (an approximation) the net force is the same as the "jet blowdown 
force" give by (D-1) and (D-2), neglecting the ambient pressure, 
 
  Fj=Fb=CTP0 Ae= Ge

2Ae/ρe +AePe =Ae(ρeve
2 + Pe)          (2) 

 
A momentum balance for a free jet in the z-direction of the axis is 
 
  Fj = Ae(ρeve

2 + Pe) = ∫ (ρvz
2 + P – Pa) dAj             (3) 

 
This resembles (D-4) but it is not the same.  Pj , the pressure on the plate, is 
a quite different animal from the pressure in a free jet or the maximum 
pressure which a free jet would exert on a small object in the flow. 
 
In Region 3 the jet is assumed to be all at ambient pressure and the velocity 
is approximately in the z-direction, so (3) reduces to 
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   Fj = ∫ ρv2  dAj                           (4) 
 
Examining (D-12 ) and (D-13) we find that the "jet pressure" has been 
assumed to vary linearly with distance from the axis such that  
 
   Pj = Pjc(1 – r/rj)                           (5) 
 
with the centerline "pressure" given by 
 
  Fj = ∫ Pj  dAj = (Pjc/3) Aj                      (6) 
 
Comparing with (4) it appears that Pj in this region is the same as the 
momentum flux, ρv2.   Now, this is not the same as the stagnation pressure, 
or the maximum pressure when the flow is brought to rest against an object.  
For moderate subsonic velocities, the stagnation pressure exceeds the 
ambient pressure by 1/2 ρv2 so there appears to be an overestimation by a 
factor of two.  Moreover, (6) shows that the peak "jet pressure" on the 
centerline is three times the average value.  If there is little mixing with the 
surrounding air, the jet profile would probably be fairly flat, so the potential 
overestimate is a factor of six.  Mixing with surrounding air at the same 
density as the jet (another limiting case) might produce the sort of velocity 
profile characteristic of a turbulent jet, shown in Figure 24.9  on page 749 of 
Schlichting's "Boundary Layer Theory", which might conceivably be shown 
to be approximated by (D-12).   The actual degree of mixing would depend 
on the density of the containment atmosphere. 
 
In Regions 1 and 2 the formula for the "jet pressure" is more complicated 
but it has a radial dependency that brings it to zero at the outer boundary.  
For example, (D-9) has Pj varying as (1 – r/rj)2 and (D-10) has it proportional 
to (1-r/rj)(1-br/rj) where b is a further geometrical factor.  These pressure 
distributions are quite different from those that actually occur in a real jet.  
As discussed earlier, in the absence of mixing there is a region where both 
the static pressure and the pressure behind a local shock wave attain 
maximum values  on the outer boundary of the jet, a pattern that is the 
inverse of what is assumed. 
 
Even thought the radial pressure distribution may be wrongly modeled, there 
is some basis for using a "jet pressure".  Comparing (D-4) and (3) the 
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pressure on a target may be equated to properties in the jet flow field if the 
jet pressure is defined as  
 
   Pj = (ρvz

2 + P – Pa)              (7) 
 
This will be the effective pressure difference between the front and back of 
the target if the pressure on the front is (ρvz

2 + P), which is an approximation 
to the pressure behind the shock wave shown in Figure 1 if the shock is 
almost parallel to the wall and is strong enough so that the velocity behind 
the shock can be neglected.  This is what was done earlier in deriving pw in 
Table 1 and appears to be the basis of the simple model in reference 4. 
 
An Example 
 
I tried to follow the methods described in the standard for a special case of 
discharge from saturated conditions at 2000psia. 
 
Using the isentropic homogeneous equilibrium model, which tends to be 
valid for large pipe diameters, because the flow at the same velocity has a 
longer distance to travel to come to equilibrium, I deduced the values in 
Table 2. 
 
P(psia)    2000  1600   1400  1200  14.96 
v(ft/s)      0    357    470    581  2422 
ρ(lb/ft3)            23.1    17.7  13.45  0.0978 
ρv(lb/ft2.s)   0   8246   8332  7816  241.9 
P+ρv2(psi)    2000  2235  2245 
 
Table 2      One-dimensional isentropic discharge from 2000psia, saturated 
water. 
 
The maximum mass flux occurs  around 1400psia, close enough.  The thrust 
coefficient is 2245/2000 = 1.125, which is low compared with 1.2 from 
figures B-3 and B-5 at stagnation pressures up to 1000psia and fL/D=0.    
Figure B-6 would appear to give a value closer to 1.17 at 2000psia.  These 
values depend on the choked follow model.  I am not too concerned with a 
difference of around 5%. 
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If the flow expanded entirely one-dimensionally, which appears to be the 
assumption in reference 4, the area at which atmospheric pressure would be 
achieved is given by the ratio of mass fluxes in Table 2 and is  
 
   Aa/Ae = 8332/241.9 = 34.45               (8) 
 
The question now is how the authors of the standard achieved the value of 
around 85 for the same problem in the top figure C-4. 
 
One idea is that they used the overall momentum balance for the jet.  When 
the pressure is atmospheric, it is simply, from (4) with a uniform velocity 
profile, 
 
  Ft = CT P0Ae = Ae(ρeve

2 + Pe) = Aaρv2                       (9) 
 
Putting in the numbers gives 
 
  Aa/Ae = 2245 x 32.2 x144/2472/241.9 = 17.4 
 
which is even further from the value in the standard. 
 
The reason for the discrepancy between (8) and (9) is that the momentum 
flux obtained for a jet in a nozzle that encloses the flow and extends from the 
hole in the pipe to the atmospheric plane exceeds the impulse (or jet force) 
from the break itself by the amount of impulse given by the force 
distribution on the nozzle walls.  Then the momentum in the jet from a flow 
confined in the enclosed nozzle is about twice what it would be in the 
unconfined case. The only way to get twice the momentum from the same 
density and velocity is to have twice the area.   
 
It will then appear that conservation of mass is violated, since twice the area 
would give twice the flow.  The answer lies in the velocity and pressure 
distribution across the jet, as well as the direction of the velocity vector, 
since only the z-component contributes to the z-direction momentum and 
mass transport.   An enclosed flow in a nozzle may be made to be close to 
one-dimensional, so that the simple control volume methods work out quite 
well.  The expansion from a hole is far from one-dimensional, with some of 
the velocity vectors at perhaps 600, typically, from the z-axis, contributing 
only one half of the mass flux and one quarter of the momentum flux in the 
z-direction that they would if they were pointed along the jet axis.  The 
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pressure distribution across the jet is also far from uniform (the isobars 
follow the constant Mach Number contours in the part of the flow shown in 
Vic's report, before a shock is passed through). 
 
We may now try to manipulate (9) using the one-dimensional continuity 
equation (with all its approximations!), in the form already given in (1).  The 
velocity va may be eliminated between (1) and (9) to get 
 
  Aa/Ae = ve

2ρe
2 /(ρaCTP0)                  (10) 

 
which is the form used in the Standard as (C-3).  Substituting the numbers 
gives   
 Aa/Ae = (8332)2 / 32.2/0.0978/2245/144 = 68       (11) 
 
The factor of two that made (9) one half of (8) has now been inverted to 
make the predicted area now twice what was predicted by (8).  It is the same  
"correction factor" for non-one-dimensional effects, but because of the 
manipulations, which involve squaring (1) and multiplying (9), it has been 
transferred form numerator to denominator.   The point is that using overly 
simple one-dimensional flow concepts in a situation involving very strong 
two-dimensional effects can lead to substantial errors in either direction, 
depending on how the errors are made to combine.     
 
As far as I can make out, the area predicted by (9) is the one used in 
reference 4 and it differs form what is shown in Figure C-4 of the standard 
by a factor of 5. 
 
We still have not achieved the area ratio in Figure C-4.  In order to do so we 
need to look carefully at the definition of the atmospheric plane density 
below (C-3).  There, the quality of the steam/water mixture is said to be 
calculated at the pressure Pa and the stagnation enthalpy, which is the 
enthalpy that the fluid has in the reactor vessel and would be the value of the 
enthalpy if the flow were brought to rest at a stagnation point.   Working this 
out for constant enthalpy expansion from 2000psia, saturated, to atmospheric 
pressure I got x= 0.5068 and a density ρa of 0.0736, compared with the 
corresponding isentropic values of x=0.381 and ρa = 0.0978.   Using this 
value of density in (10) yielded an area ratio of 90.  It appears that the 
framers of the Standard did indeed follow their own instructions in deriving 
that figure.   
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This makes no sense.  The jet flow at the (supposed) "atmospheric plane" 
has a high velocity of over 2000ft/s and is anything but "at rest" where 
stagnation conditions would hold.  The model has become confused between 
that of a free jet and that of an impinging jet.  The same problem occurs in 
Figure 1-4 in the Appendix 1 to the SER where the sketch defies reality. 
 
To summarize:  there are two difficulties in computing the conditions at the 
"asymptotic plane". The first is due to the inconsistent assumptions of one-
dimensionality that can create an error of a factor of two either way in the 
effective flow area, depending on how the equations are combined.  The 
extreme cases differ by a factor of 4.  The second problem is the use of quite 
the wrong definition of the average density at this plane.  The combined 
effect appears to be a factor of 5 between what I interpret to be the method 
in reference 4 and the one used in the Standard. 
 
This is all quite independent of the observation that the supersonic effects 
are not "over" as some "asymptotic plane", as clearly shown in Vic's nice 
sketches of jets in his report9.  So, it is not a good concept, as well as being 
poorly computed. 
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