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REPORT SUMMARY 

 
This report documents results of a study to determine the impacts of the revised structural 
integrity performance criterion (SIPC) on steam generator tube integrity evaluations. The report 
provides guidance for addressing loads other than pressure that must be considered in the revised 
steam generator tube SIPC of Nuclear Energy Institute (NEI) 97-06. Examples of load impacts 
are given. 

Background 
SIPC has been the subject of industry and Nuclear Regulatory Commission (NRC) discussions 
for several years, and several draft versions of SIPC have been proposed. The version addressed 
in this report was accepted by industry and NRC staff representatives on May 14, 2004. SIPC 
requires consideration of loading conditions associated with design basis accidents or 
combination of accidents in accordance with the design and licensing basis. These loads include 
axial and bending loads on steam generator tubes. Guidance for considering some of these loads 
has not previously been available. Current guidelines require consideration of loads other than 
pressure but lack detailed guidance or a recommended methodology for assessing other loads. 

Objectives 
• To provide a method for addressing all loading conditions as required by the revised SIPC. 

• To assess the impact of the revised SIPC on the structural limits of tube degradation. 

• To establish criteria for the magnitude of loads for which the traditional three-times-normal 
operation differential pressure would continue to govern. 

• To discuss the impact of the revised SIPC on in situ testing criteria. 

Approach 
The project team identified types of potential tube degradation addressed by the revised SIPC. 
Tube loading conditions to be addressed also were identified. The team identified or proposed 
methods for considering each type of loading on each type of degradation. Several examples are 
given to illustrate the methods and to evaluate the impact of the revised SIPC on the structural 
limits developed. 

Results 
Current methods for assessing axial degradation are unchanged by the revised SIPC. A method 
for assessing circumferential degradation has been demonstrated. The impact of the revised SIPC 
is shown to be significant in only a small number of situations. 



EPRI Perspective 
NRC’s expectation has been that loads other than pressure should be included in assessing tube 
rupture. In response, the NEI Steam Generator Task Force (SGTF) has defined a revised SIPC 
that considers non-pressure loads, and EPRI has carried out the impact study to determine if 
combined loadings due to pressure and transient conditions could reduce the burst pressure of 
tubes. The SGTF and EPRI efforts were done in parallel, and the NRC was kept informed of 
each effort’s progress. 

The revised SIPC provides a generic and universal criterion that applies to all steam generator 
designs and will be included in NEI 97-06 Revision 2 and in the-soon-to-be-published Revision 
2 of the Steam Generator Integrity Assessment Guidelines. It also will appear in the soon-to-be-
published Generic Licensing Change Package (GLCP) SGTF has produced a white paper that 
provides the rationale for the revised SIPC. 

Keywords 
Nuclear steam generators 
Structural integrity performance criterion (SIPC) 
NEI 97-06 implementation 
Integrity assessment 
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ABSTRACT 

An assessment of the impact of the proposed structural integrity performance criterion (SIPC) 
that was tentatively accepted by industry representatives and the NRC staff during a meeting 
held at the NRC offices on May 14, 2004, for the evaluation of degraded steam generator tubes 
in nuclear power plants was performed. The impact of the revised structural integrity 
performance criterion statement on condition monitoring and operational assessment limits with 
respect to currently accepted criteria was quantified. Uniform thinning evaluations are usually 
performed using the criteria of the ASME Code and explicitly consider the effects of additional 
loading conditions on the operating stresses. Comparisons are made against the design 
requirements of the ASME Code. The application of stress limits vis-à-vis load limits for the 
evaluation of degraded steam generator tubes is usually not directly meaningful and empirically 
verified models based on loads are used for the evaluation of degraded tube acceptability. 
Available data indicate that the burst pressure of tubes with axial cracks is not meaningfully 
affected by applied bending loads; however, the same is not necessarily true for tubes with 
circumferential cracks. Insight into the relationship between applied bending moments and the 
burst pressure of tubes with circumferential cracks was obtained from the results of a test 
program that was part of this project. Using this insight, the SIPC was applied to a number of 
example plants with significant seismic and postulated accident loads. The effect of tubes being 
locked into their supports, e.g., by corrosion products, was also addressed. The impact of the 
revised SIPC on in situ testing criteria was found to be significant in only a few situations. 
Although the application of a bending load will tend to reduce the structural limits, the reduction 
was found to be significant in only a few specific situations. 
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1  
INTRODUCTION 

This report documents the results of a study to determine the impacts of the revised structural 
integrity performance criterion (SIPC) on steam generator tube integrity evaluations.  The 
previous version of the SIPC appears in Revision 1 of NEI 97-06, “Steam Generator Program 
Guidelines,” [1] which establishes the framework for managing the US Nuclear Industry’s steam 
generator (SG) programs.  It specifies performance criteria for addressing structural integrity, 
accident induced leakage and operational leakage of steam generator tubes.  Supplementary 
information is also provided in the EPRI report on Steam Generator Integrity Assessment 
Guidelines [2].  The SIPC applies factors of safety both to the normal operating differential 
pressure and the pressure differential that would result in the event of a design basis accident that 
depressurizes a steam generator, and reads as follows in each document: 

“Steam generator tubing shall retain structural integrity over the full range of normal 
operating conditions (including startup, operation in the power range, hot standby, and 
cool down and all anticipated transients included in the design specification) and design 
basis accidents. This includes retaining a safety factor of 3.0 against burst under normal 
steady state full power operation and a safety factor of 1.4 against burst under the 
limiting design basis accident. Any additional loading combinations shall be included as 
required by existing design and licensing basis.” 

1.1 The Revised SIPC  

Although this criterion is conservative, it has been the NRC’s expectation, and is backed up by a 
requirement in the Steam Generator Integrity Assessment Guidelines [2] that loads other than 
pressure should be included in assessing tube rupture. In response, the NEI Steam Generator 
Task Force (SGTF) has defined a revised SIPC that considers the non-pressure loads and EPRI 
has carried out the impact study to determine if combined loadings due to pressure and transient 
conditions could result in a reduction in the burst pressure of the tubes.  The SGTF and EPRI 
efforts were done in parallel, and the NRC was kept informed of the progress of each effort 
throughout. 

The revised SIPC is as follows: 

“All in-service steam generator tubes shall retain structural integrity over the full range 
of normal operating conditions (including startup, operation in the power range, hot 
standby, and cool down and all anticipated transients included in the design 
specification) and design basis accidents. This includes retaining a safety factor of 3.0 
against burst under normal steady state full power operation primary-to-secondary 
pressure differential and a safety factor of 1.4 against burst applied to the design basis 
accident primary-to-secondary pressure differentials. Apart from the above requirements, 
additional loading conditions associated with the design basis accidents, or combination 
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of accidents in accordance with the design and licensing basis, shall also be evaluated to 
determine if the associated loads contribute significantly to burst or collapse. In the 
assessment of tube integrity, those loads that do significantly affect burst or collapse 
shall be determined and assessed in combination with the loads due to pressure with a 
safety factor of 1.2 on the combined primary loads and 1.0 on axial secondary loads.” 

This definition, which provides a generic and universal criterion that applies to all steam 
generator designs, will be included in NEI 97-06 Revision 2 and in Revision 2 of the Steam 
Generator Integrity Assessment Guidelines.  It will also appear in the Generic Licensing Change 
Package (GLCP).  A White Paper, which has been produced by the SGTF to provide the 
rationale for the revised SIPC, is reproduced in Appendix A of this report. 

The SGTF White Paper presents historical documentation and technical information to 
demonstrate that there has been a consistent industry and regulatory approach to defining 
structural integrity and associated margins against tube burst. It provides a link between the 
revised loading definition and ASME Code definitions and requirements, historical regulatory 
requirements, and industry protocols previously approved by the NRC Staff.  It demonstrates that 
the recommended criterion is consistent with past practices and meets the intent of the original 
design basis for steam generator tube integrity. Meeting this definition ensures the nuclear safety 
of in-service steam generator tubing and associated repairs, and minimizes the potential for 
adversely impacting the design function of the steam generator. 

The following key changes have been made to the SIPC: 

  The limiting design basis accident conditions were expanded from just faulted conditions to 
include all design basis accidents.  

  Those loads that are found to significantly affect burst shall be determined and assessed in 
combination with the loads due to pressure with a safety factor of 1.2 on the combined 
primary loads and 1.0 on axial secondary loads that contribute significantly to burst. 

  Similarly, those loads that are found to significantly affect collapse shall be determined and 
assessed in combination with the loads due to pressure with a safety factor of 1.2 on the 
combined primary loads and 1.0 on axial secondary loads.  The definition of collapse as used 
in the SIPC, and agreed upon by the industry and the NRC staff representatives, is as follows: 
“Collapse - For the load displacement curve for a given structure, collapse occurs at the top 
of the load versus displacement curve where the slope of the curve becomes zero.” 
For example, collapse occurs at the load corresponding to the ultimate tensile strength in a 
material tensile test.   

1.2 Phase I Impact Study 

The EPRI project was completed in two phases.  Phase I was an impact study to determine how 
the revised SIPC would affect Condition Monitoring and Operational Assessment limits for 
various plants.  Three vendor companies (B&W Canada, Framatome ANP, and Westinghouse) 
determined what the impacts of the non-pressure loads would be on their steam generators.  In 
addition, major issues were identified that would have to be resolved before the revised SIPC 
could be implemented. 
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The Phase I impact study showed that there are no major problems for most plants.  In general, 
structural limits remain controlled by differential pressure loading for most degradation modes 
and bundle locations. 

1. For once-through steam generators (OTSG) and replacement once-through steam generator 
(ROTSG) designs there was no significant impact from the requirements of the revised SIPC, 
and only minor document updates may be required. 

2. For Combustion Engineering recirculating steam generator (CE-RSG) designs there also was 
no significant impact (again minor document updates may be required). 

3. For CE replacement recirculating steam generator (RRSG) designs, little or no impact was 
expected but a need to quantify conservatisms in design analysis was identified. 

4. For Westinghouse recirculating steam generator (W-RSG) designs, there was no impact for 
most plants; however, for plants with high seismic loads a potential impact from bending 
loads was identified if there is circumferential degradation in U-bend region.  In this case 
bending moments from seismic loads may reduce the structural limits.  Locked tube 
scenarios may also result in lower structural limits. 

It was further established that there is no industry model for computing burst condition when 
bending loads are present (i.e., combined axial and bending load case).  It was clear from the 
study that the different approaches used by vendors produced significantly different burst results.  
A burst pressure model for combined membrane plus bending loads was proposed and applied in 
Phase I, but this model had not been validated.  It was also determined that the design basis 
calculations may not be adequate (too conservative) for use with SIPC evaluations.   

Two issues in particular were identified in Phase I that needed to be resolved in Phase II: 

1. An Industry model was needed to account for the effects of combined membrane and 
bending loads on the burst pressure of damaged tubes; and 

2. Existing plant design analyses may not contain sufficient detail to provide the load 
information needed to apply the revised SIPC. 

1.3 Phase II: Revised SIPC Implementation 

Phase II addressed the outstanding issues and provided a path for successful implementation of 
the revised SIPC.  In order to develop the Industry model it was necessary to implement a testing 
program to measure the reduction in tube burst pressure as a function of the applied bending 
load.  The resulting information led to the formulation of an empirical correlation that is simple 
to use, yet firmly supported by data. 

The Phase II implementation procedure consisted of the following: 

1. A test program that led to a validated burst pressure model for combined membrane and 
bending loads.  This test program also addressed the collapse issue.  Appendix B is a 
complete report on the test program, including the test configuration, the results obtained, 
and the validated burst pressure model. 
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2. A guide for obtaining and understanding the existing design basis information, (i.e., 
conservatisms in the design analysis calculations, availability of results required for burst 
calculations, etc.).  Appendices C and D develop this guidance. 

3. Methods for evaluating contributing loads and their significance to tube integrity.  
Appendices C and D describe these methoda and contain examples on how to evaluate these 
loads. 

4. Screening limits for bending loads so plants not affected or with limited design information 
can apply criterion with minimal impact.  These limits are discussed in Appendices B, C, and 
D. 

5. Guidelines for in situ pressure testing when contributing loads are significant and lead to 
reduced structural limits.  Guidance is provided in Appendices C and D. 

Section 2 contains a summary of the burst and collapse tests.  A detailed description is provided 
in Appendix B.  An evaluation of the test results and the burst model that has been developed is 
summarized in Section 3.  The details are provided in Section 7 of Appendix B.  Results of the 
impact study are summarized in Section 4, for CE and Westinghouse U-tube steam generators, 
and for B&W Canada replacement steam generators.  Details are provided in Appendix C for CE 
and Westinghouse steam generators, and Appendix D for B&W Canada replacement steam 
generators.  An example of how the revised structural limit can be obtained is given in Section 4 
of this report.  The major conclusions from the test program and the impact study are 
summarized in Section 5. 
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To produce the desired bending stresses on the test specimens it was decided to use a static 
weight system consisting of Olympic weight disks, steel bars, and a loading device.  Two 
different loading devices were constructed, one for U-bend tests and one for straight tube tests. 
Details are provided in Section 5 of Appendix B.  

Several instruments were used to assist in measuring pertinent test parameters and results and to 
aid in the documentation of the test results.  Instruments included scales, rulers, pressure gages 
and transducers.  A camera capable of both video and still shots was used to capture images 
during the testing process.  These are all described in Section 5 of Appendix B. 

2.1 Burst and Collapse Test Results 

The collapse and burst test results are documented in detail in Section 6 of Appendix B.  The 
major findings are summarized below. 

2.1.1 Collapse Test Results 

As a result of reviews and comments on the industry proposed SIPC statement, the NRC 
requested that the SIPC statement be revised to incorporate wording to deal with “collapse”.  The 
description of the collapse tests of both straight tubes and large radius u-bend tubes follows. 

2.1.1.1 Straight Tube Collapse Test Results 

Collapse tests of both flawed and unflawed 45.5 inch long straight tube specimens were 
performed.  The tubes were loaded into the test frame, the loading device was then hung from the 
tube at mid-span by use of a cable, and the weights were gradually added.  The vertical 
displacement of the mid span of the tube and the axial movement of the tube within the tube 
support plate were measured after each increase in load.  The axial force required to 
accommodate the measured axial movement in a full length OTSG tube was calculated and 
provided for reference.  In addition, a second set of collapse tests were performed with an 
eyebolt (with load cell) in place of the TSP support.  Results of the tests are shown on Figure 6-3 
of Appendix B. The results show the straight tube with prototypical TSP support did not 
collapse, even with loads far in excess of the targeted upper bound 50 ksi bending stress for the 
tubes.  

2.1.1.2 U-Bend Collapse Test Results 

Collapse tests of both flawed and unflawed 36” radius U-bend tubes also were conducted.  The 
tubes were loaded into the test frame with both legs of the u-bend clamped in place with use of 
the split blocks.  The loading device was then hung from the bend apex by use of a cable and the 
weights were gradually added.  The vertical displacement of the tube apex and displacement of 
the u-bend straight legs (~3” from the split block) were measured after each increase in load.   
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2.1.2 Burst Test Results 

2.1.2.1 Straight Tube Burst Test Results 
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Figure 2-1 
Straight Tube Burst Pressure vs Bending Stress 

2.1.2.2 Burst Test of U-Bend Tubes 
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3  
EVALUATIONS OF THE TEST RESULTS 

3.1 Finite Element Analyses of Collapse and Burst Tests 

3.1.1 Collapse Analysis for Tubes Loaded in Bending 

  

3-1 



 
Evaluations of the Test Results 

 

 

3-2 

ppha002
Text Box



 
Evaluations of the Test Results 

3.1.2 Burst Test Simulations 

3.2 Development of a Validated Burst Model 

3.2.1 Development of the Empirical Model  
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3.3 Extending the Empirical Model to Other Tube Sizes 
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3.3.1 Finite Element Analysis of a Very Large Radius U-bend 
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4  
ASSESSING IMPACTS OF THE REVISED SIPC 

This Section summarizes the work reported in Appendices C and D on assessing the impacts of 
the revised SIPC.  Appendix C focuses on original steam generators designed by Westinghouse 
and CE, and Appendix D focuses on replacement steam generators designed by B&W Canada.  
These appendices provide information and methods to the utilities that: 

  increase understanding of design basis information,  

  can be used to evaluate contributing loads and assess their significance to tube integrity,  

  provide screening limits for bending loads such that plants with limited design information 
can apply the criterion with minimal impact, and  

  recommend criteria for in situ pressure testing when contributing loads are significant and 
lead to reduced structural limits. 

In addition to summarizing the results, the Diablo Canyon cases for throughwall circumferential 
cracks are also described in Section 4.3 below, as examples illustrating how to calculate the 
revised structural limit using the contributing loads information and the test equations.   

4.1 CE and Westinghouse Steam Generator Results  

4.1.1 CE Steam Generator Results 
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4.1.2 Westinghouse Steam Generator Results 
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4.2 Replacement Steam Generator Results  

4.2.1 CE Replacement Steam Generator Results 
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4.2.2 OTSG Replacement Steam Generator Results 
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4.2.3 Assessment of Impact on Catawba 1 Flaw Sizes 

4.3 Diablo Canyon Example: Throughwall Circumferential Cracks 
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4.3.1 Structural Limit Considering Pressure Only 
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4.3.2 Effect of Moment and Axial Load: Unlocked Tubes 
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4.3.3 Effect of Moment and Axial Load: Locked Tubes 
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5  
CONCLUSIONS 

5.1 Plastic Collapse in Bending 

5.2 Effect of Bending Loads on Burst Pressure 
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5.3 General Significance of Bending Loads on Burst Pressure 

5.4 Impact of Revised SIPC on Specific Steam Generators 
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7  
ABBREVIATIONS AND ACRONYMS 

The following is a list of abbreviations and acronyms used in this report. 

ASME American Society of Mechanical Engineers 
BWC Babcock & Wilcox (B&W) Canada 
CE Combustion Engineering (now Westinghouse Electric Company) 
CM Condition Monitoring 
CMTR Certified Mill Test Report 
DA Degradation Assessment 
FANP Framatome Advanced Nuclear Power (now AREVA) 
FLB Feed Line Break 
ID Inside Diameter 
kips Kilo-pounds 
LOCA Loss of Coolant Accident 
MSLB Main Steam Line Break 
NOP Normal Operation or Normal Operating Pressure 
NODP Normal Operating Differential Pressure 
NRC United States Nuclear Regulatory Commission 
OA Operational Assessment 
OD Outside Diameter 
ODSCC Outside Diameter Stress Corrosion Cracking 
OTSG Once-Through Steam Generator 
PDA Percent Degraded Area 
RSG Recirculating Steam Generator 
SIPC Structural Integrity Performance Criterion 
SLB Steam Line Break 
SSE Safe Shutdown Earthquake 
TSP Tube Support Plate 
TTS Top of the tubesheet 



 
Abbreviations and Acronyms 
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TW Throughwall 
W Westinghouse 
WOG Westinghouse Owners Group 

 



8  
NOMENCLATURE 

English Letter Variables 

F Force 
Fp Axial force from the internal pressure, 
Fz Externally applied axial load, usually zero, 
Fc Axial force due to pressure on the crack flanks 
Fr Reaction load from the tube remaining area 
k Empirical factor for adjusting the  
M  Moment 
N Normal distribution, e.g., N(0, •) is normal with mean 0 and standard deviation • 
P Internal pressure 
Pb Tube burst pressure 
PbR Burst pressure reduction 
PFLB Internal pressure associated with the FLB event (2650 psi) 

PSLB Internal pressure associated with the SLB event ( 2400 to 2560 psi) 
RB U-bend radius 
Ri Tube inside radius 
Rm Tube mean radius 
Ro Tube outside radius 
t Tube wall thickness 
y Axis normal to the centerline of a tube 
z Axis parallel to the centerline of a tube 
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Greek Letter Variables 

α Crack half-angle 

⇓ Angle to the neutral axis from the center of the crack 

. PNOp Differential pressure during normal operation 

ε Statistical error 

.  Factor relating the pressure loading on the crack flanks 

σ Standard deviation 

σb Axial stress due to bending of the tube 

σp Axial pressure stress in a tube 

σf Material flow stress 

σp Axial stress due to internal pressure 

σy Material yield stress 

σu Material ultimate tensile stress 

.  Degraded area fraction (PDA/100) 
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1.0 INTRODUCTION 

2.0 STRUCTURAL INTEGRITY PERFORMANCE CRITERION 
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2.4 Limits on Yield Strength 

3.0 ASME CODE REVIEW 

3.1 Minimum Wall Requirements 
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3.2.2 Section XI Pipe Flaw Assessments 

 

 

 

 

 

A-7 

ppha002
Text Box



 
Appendix A: White Paper on Deterministic Structural Integrity Performance Criterion Definition 

 
 

 

 

A-8 

ppha002
Text Box



 
Appendix A: White Paper on Deterministic Structural Integrity Performance Criterion Definition 

3.3 Secondary Loads from Accident Events 

3.3.1 Definition of Secondary Loads 

 

3.3.2 Code Practice 
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3.4 Summary of Code Considerations  

4.0 HISTORICAL REGULATORY PERSPECTIVE 
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5.0 ASSESSMENT OF CONTRIBUTING LOADS 
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5.1 Primary Loads 

5.2 Axial Membrane Loads in OTSG Tubing 
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5.3 Axial Membrane Loads in RSG Tubing 
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5.4 Treatment of Axial Thermal Loads 
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6.0 ALLOWABLE STRUCTURAL LIMITS 

6.1 Tube Burst Condition 
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6.2 Plastic Collapse Under Tension and Bending 

6.3 Circumferential Degradation 
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ABSTRACT 

The nuclear industry has been working for several years on establishing a program to address the 
complete care of the steam generators.  The program includes everything from inspection 
techniques and intervals to repair criteria.  One of the open items to be resolved is the completion 
of specific requirements to be considered in the evaluation of structural integrity of steam 
generator tubing.  The general requirements for structural evaluations have been outlined in a 
statement referred to as the “Structural Integrity Performance Criteria” (SIPC).  The SIPC 
defines the various types of loading conditions that must be considered and the appropriate 
factors of safety that must be applied. 

One of the last unresolved issues prior to getting the SIPC approved by the Nuclear Regulatory 
Commission (NRC) is the treatment of bending loads (contributing loads) and their appropriate 
safety factor.  Although bending loads have been considered in past tube integrity evaluations, 
there is no specific test data to benchmark (validate) the existing bending failure models.  In 
order to benchmark the models, SIPC program representatives have contracted AREVA to 
perform the necessary benchmark testing.  This document provides the results of that testing 
program. 
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ABBREVIATIONS & ACRONYMS 

BWC B&W Canada 

BWOG B&W Owner’s Group 

CMTR Certified Material Test Report 

EDM Electrical Discharge Machining 

FANP Framatome Advanced Nuclear Power, an AREVA company 

FE Finite Element 

ID Inside Diameter 

MSLB Main Steam Line Break 

NRC Nuclear Regulatory Commission 

OD Outer Diameter 

OTSG Once-Through Steam Generator 

PDA Percent Degraded Area 

RSG Re-circulating Steam Generator 

SG Steam Generator 

SIPC Structural Integrity Performance Criteria 

SSE Safe Shutdown Earthquake 

Su Ultimate Strength 

Sy Yield Strength 

TSP Tube Support Plate 

TW Through-Wall 
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DEFINITIONS 

 

BURST Gross structural failure of the tube wall.  The condition typically corresponds to 
an unstable opening displacement (e.g., opening area increased in response to 
constant pressure) accompanied by ductile (plastic) tearing of the tube material 
at the ends of the degradation.  The definition is taken from Appendix M of 
Rev 1 of Steam Generator Integrity Assessment Guidelines, EPRI Report 
TR-107621-R1, March 2000 

COLLAPSE “For the load displacement curve for a given structure, collapse occurs at the 
top of the load versus displacement curve where the slope of the curve becomes 
zero.”  The definition is taken from an industry presentation to the NRC on May 
14, 2004 on the status of the SIPC and will be incorporated into Tech Spec 
Bases. 
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1  
INTRODUCTION AND BACKGROUND 

1.1 Purpose 

The purpose of this document is to provide the results of an EPRI sponsored program to 
determine the effect bending loads have on the burst pressure of steam generator (SG) tubes 
containing circumferential degradation.  The program involves burst testing of tubes containing 
circumferential degradation with applied bending loads for both Once-Through Steam Generator 
(OTSG) and Re-circulating Steam Generator (RSG) tube configurations.  In addition, a 
secondary task was executed to address the potential for bending collapse of both OTSG and 
RSG tubes. 

1.2 Background 

The nuclear industry has been working for several months on defining specific requirements that 
must be considered in the evaluation of structural integrity of steam generator tubing.  The 
general requirements for the evaluation are being outlined in a statement referred to as the 
“Structural Integrity Performance Criteria”.  The SIPC defines the various types of loading 
conditions that must be considered and the appropriate factors of safety that must be applied. 

One of the last items to be resolved is the treatment of bending loads (contributing loads) and 
their appropriate safety factor.  Although bending loads have been considered in past tube 
integrity evaluations, there is no specific test data to benchmark (validate) the existing bending 
failure models.  AREVA has been contracted to perform a testing program to benchmark the 
existing bending failure models and if necessary define a new bending failure model.  This 
document provides the results of that testing program. 
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PROGRAM DESCRIPTION 
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3  
TEST PARAMETERS 

3.1 Tube Material 

3.2 Design Bending Loads 
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3.3 Test Configurations 

45.5” Straight Tube 

Large U-Bend 
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Small U-Bend 

3.4 Flaw Geometry 

3.5 Test Loads 
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Figure 3-1 
FE Model of 36” U-Bend  
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Figure 3-2 
FE Model of 45.5” Straight Tube  
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4  
SAMPLE PREPARATION 

4.1 Tube Material 

4.2 Forming U-bends 
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TEST EQUIPMENT 
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Figure 6-2 
CMTR Verification Specimens – As Burst 
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serial 
# 

flaw 
size 
(deg) 

foil 
thick 
(mils) 

applied 
load 
(lbs) 

moment 
(in-lbs) 

bending 
stress 
(psi) 

burst 
pressure 

(psi) comments 
s10 245 6 0 8 790 6866 thin foil, no impact due to low bending stress 
s11 245 6 0 8 790 6908 thin foil, no impact due to low bending stress 
s2 245 8 0 8 790 6804  
s13 245 8 0 8 790 7032  
s19 245 8 0 8 790 6671 invalid – eyebolt, not representative of SG 
s17 245 none 0 8 790 4491 invalid – missed foil 
s4 245 8 0 8 790 7014 invalid – eyebolt, not representative of SG 
s1 245 8 17.37 156 15517 6661  
s5 245 8 17.37 156 15517 6632  
s16 245 8 17.37 156 15517 6733  
s20 245 6 27.37 241 23995 6000 invalid – thin foil, insufficient burst (tearing) 
s21 245 6 37.37 327 32473 5900 invalid – thin foil, insufficient burst (tearing) 
s6 245 8 37.37 327 32473 6400  
s8 245 8 37.37 327 32473 5833  
s12 245 8 37.37 327 32473 6385  
s14 245 8 55.83 484 48124 3763 invalid – eyebolt, not representative of SG 
s9 245 6 56.03 486 48293 5572 invalid – thin foil, insufficient burst (tearing) 
s3 245 8 56.03 486 48293 6085  
s7 245 8 56.03 486 48293 5966  
s15 245 8 56.03 486 48293 5933  

s18 245 8 2@ 
32.84 

487 48392 6142 distributed load -- two loads used to 
generate equivalent bending stress 

s35 180 8 55.83 484 48124 6999 supplemental test – smaller flaw, small 
tearing 

s33 180 8 0 8 790 8023 supplemental test – smaller flaw, small 
tearing 

s31 180 8 0 8 790 7484 invalid – missed foil, damaged resealing for 
retest 

s30 180      untested 
s32 180      untested 
s34 180      untested 
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REPORT SUMMARY 

 
This report provides guidance for addressing loads in addition to pressure that are required to be 
considered in the revised steam generator tube Structural Integrity Performance Criterion (SIPC) 
of NEI 97-06. Examples of the impact of these loads are given. 

Background  
The Structural Integrity Performance Criterion has been the subject of Industry and NRC 
discussions for several years, and several draft versions of the SIPC have been proposed. The 
version addressed in this report was accepted by industry and NRC staff representatives on May 
14, 2004. The SIPC requires consideration of loading conditions associated with the design basis 
accidents, or combination of accidents in accordance with the design and licensing basis. These 
loads include axial and bending loads on the steam generator tubes. Guidance for consideration 
of some of these loads has not previously been available. 

Objectives  
  To provide a method for addressing all loading conditions as required by the revised SIPC. 

  To assess the impact of the revised SIPC on the structural limits of tube degradation. 

  To establish criteria for the magnitude of loads for which the traditional three times normal 
operation differential pressure would continue to govern. 

  To discuss the impact of the revised SIPC on in situ testing criteria. 

Approach  
The types of potential tube degradation addressed by the revised SIPC are identified. Tube 
loading conditions to be addressed are also identified. Methods for consideration of each type of 
loading on each type of degradation are identified or proposed. Several examples are given to 
illustrate the methods and to evaluate the impact of the revised SIPC on the structural limits 
developed. 

Results  
Methods for the assessment of axial degradation are readily available. A method for the 
assessment of circumferential degradation based on previous EPRI sponsored research has been 
proposed and demonstrated. The impact of the revised SIPC is shown to be significant in only a 
small number of situations. 
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ABSTRACT 

An assessment of the impact of the proposed structural integrity performance criterion (SIPC) 
that was tentatively accepted by industry representatives and the NRC staff during a meeting 
held at the NRC offices on May 14, 2004, for the evaluation of degraded steam generator tubes 
in nuclear power plants was performed. The impact of the revised structural integrity 
performance criterion statement on condition monitoring and operational assessment limits with 
respect to currently accepted criteria was quantified. Uniform thinning evaluations are usually 
performed using the criteria of the ASME Code and explicitly consider the effects of additional 
loading conditions on the operating stresses. Comparisons are made against the design 
requirements of the ASME Code. The application of stress limits vis-à-vis load limits for the 
evaluation of degraded steam generator tubes is usually not directly meaningful and empirically 
verified models based on loads are used for the evaluation of degraded tube acceptability. 
Available data indicate that the burst pressure of tubes with axial cracks is not meaningfully 
affected by applied bending loads; however, the same is not necessarily true for tubes with 
circumferential cracks. Insight into the relationship between applied bending moments and the 
burst pressure of tubes with circumferential cracks was obtained from the results of a recent test 
program. Using this insight, the SIPC was applied to two example plants with significant seismic 
and postulated accident loads. The effect of tubes being locked into their supports, e.g., by 
corrosion products, was also addressed. The impact of the revised SIPC on in situ testing criteria 
was found to be significant in only a few situations. Although the application of a bending load 
will tend to reduce the structural limits, the reduction was found to be significant in only a few 
specific situations. 
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1  

Revision 1 of NEI 97-06, “Steam Generator Program Guidelines,” Reference 1, establishes the 
framework for managing steam generator (SG) programs, and specifies the performance criteria 
for addressing the structural integrity, accident induced leakage and operational leakage of steam 
generator tubes. In response to regulatory questions regarding whether all loads that could 
potentially affect the burst capability of tubes were considered, an industry study was sponsored 
by EPRI to review the normal operating and accident loading conditions and to determine if the 
combined loading due to pressure and transient conditions could result in a reduction in the burst 
capability of the tubes. This report summarizes the results of the program, which was performed 
in two phases: 1) Evaluation of membrane and bending stresses and secondary stress effect on 
tube burst capability, and 2) update of the initial analysis based on specific test data provided by 
others to determine the magnitude of the accident loads on the burst capability, and development 
of specific instructions for recovering the necessary loads from plant-specific design documents. 
The report integrates the  

1.1 Background 

The objective of this study was to address a revision to the structural integrity performance 
criteria (SIPC) statement. The SIPC as delineated in NEI 97-06 is: 

“Steam generator tubing shall retain structural integrity over the full range of normal 
operating conditions (including startup, operation in the power range, hot standby, and 
cooldown and all anticipated transients included in the design specification) and design 
basis accidents. This includes retaining a safety factor of 3.0 against burst under normal 
steady state full power operation and a safety factor of 1.4 against burst under the 
limiting design basis accident. Any additional loading combinations shall be included as 
required by existing design and licensing basis.” 

Various revisions of the SIPC have been proposed for clarification and to ensure consistent 
application of the criteria. A preliminary evaluation, designated as Phase 1, of the impact of the 
changes to the SIPC was documented in Reference 2. The Reference 2 report concluded that the 
most severe loading conditions to be addressed for the bounding plant analyzed, Diablo Canyon, 
were feedwater line break in conjunction with the specified safe-shutdown earthquake (SSE). 
The revision of the criterion statement that is addressed in this report, designated as Phase 2, was 
tentatively accepted by industry and NRC staff representatives during a meeting held on May 14, 
2004, Reference 3, and is nearly the same as that considered in Reference 21. The final draft of 

                                                           
1  The version of Reference 2 was discussed with the NRC staff. Changes were made during the Phase 2 program, 
leading to the final version as quoted in this report. 
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the criterion statement was subsequently transmitted to industry representatives for review and 
comment via Reference 4 as follows: 

“All in-service steam generator tubes shall retain structural integrity over the full range 
of normal operating conditions (including startup, operation in the power range, hot 
standby, and cool down and all anticipated transients included in the design 
specification) and design basis accidents. This includes retaining a safety factor of 3.0 
against burst under normal steady state full power operation primary-to-secondary 
pressure differential and a safety factor of 1.4 against burst applied to the design basis 
accident primary-to-secondary pressure differentials. Apart from the above requirements, 
additional loading conditions associated with the design basis accidents, or combination 
of accidents in accordance with the design and licensing basis, shall also be evaluated to 
determine if the associated loads contribute significantly to burst or collapse. In the 
assessment of tube integrity, those loads that do significantly affect burst or collapse 
shall be determined and assessed in combination with the loads due to pressure with a 
safety factor of 1.2 on the combined primary loads and 1.0 on axial secondary loads.” 

The definition of collapse as used in the SIPC, and agreed upon by the industry and the NRC 
staff representatives, also per Reference 4, is as follows: 

“Collapse - For the load displacement curve for a given structure, collapse occurs at the 
top of the load versus displacement curve where the slope of the curve becomes zero.” 

For example, collapse occurs at the load corresponding to the ultimate tensile strength in a 
material tensile test.  

The following key changes are noted from the rewording of the SIPC statement from that of the 
Reference 1: 

  The limiting design basis accident conditions were expanded from just faulted (Level D) 
conditions to include all design basis accidents (Levels C and D). It is noted that the original 
documented regulatory basis for the evaluation of the integrity of degraded SG tubes, that is, 
draft Regulatory Guide (RG) 1.121, does not include specific provisions for the treatment of 
Emergency (Level C) loading conditions as their severity with regard to the potential for 
bursting the SG tubes was assumed to be bounded by the Faulted (Level D) loading 
conditions. 

  Those loads that are found to significantly affect burst shall be determined and assessed in 
combination with the loads due to pressure with a safety factor of 1.2 on the combined 
primary loads and 1.0 on axial secondary loads. 

  Similarly, those loads that are found to significantly affect collapse shall be determined and 
assessed in combination with the loads due to pressure with a safety factor of 1.2 on the 
combined primary loads and 1.0 on axial secondary loads. 
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1.3 Report Organization 

In order to carry out the required evaluations the report was organized to address the structural 
limits and the Phase 1 model. Sections 2 discusses the definition of the structural limit and 
discusses the impact of this study on tube integrity assessments (Degradation Assessments and 
Condition Monitoring and Operational Assessments). Section 3 analyzes the relationship of tube 
degradation to burst. The identification of loads affecting SIPC compliance is provided Section 
4, and the identification of load information from SG reports is considered in Section 5. Section 
6 covers the calculation of SG tube structural limits using Diablo Canyon and Catawba 2 as 
specific examples, using a updated model developed from test data provided by another project 
participant. Section 7 addresses consideration of in situ testing to account for the additional 
loads, and Section 8 develops the threshold bending moment that will determine if non-pressure 
loads need to be considered in the calculation of the structural limit.  

1.4 Project Overview  

The objective of the first task was to specify how a plant can extract loads data from existing 
stress reports and document the basis for understanding of the adequacy of existing design 
analyses to provide the required accident loads affecting tube integrity is needed. A review of the 
stress reports for key plant SG designs was performed, to include Diablo Canyon and Catawba 2 
as a minimum. The following aspects of the review process were performed to address the 
following subtasks: 

1. Identification of Loads that Significantly Influence Burst—Identify the loads other than 
pressure loads that can influence the allowable level of tube degradation with regard to 
meeting the SIPC. The intent of this task was to utilize experience from the SIPC Phase 1 
program of Reference 2 and to include additional evaluations beyond that available from 
Phase 1 activities, namely the data from the burst tests of circumferentially cracked tubes of 
Reference 6. The results of this evaluation are provided in Section 4 of this report. 

2. Review of Existing Documents for Necessary Loads—Review existing design 
documentation, such as stress reports, provided with the SGs to determine if the necessary 
loads are available in the design documentation. Since no generic analysis method was 
utilized during the design of the SGs, there is no assurance that examination of only a sample 
(i.e., Diablo Canyon and Catawba) of the reports will provide a definitive answer to this 
question. Therefore, a larger sample (15) of the available reports was examined for both 
Westinghouse and CE design SGs for all models and vintages of the designs, with greater 
emphasis on those plants without a RG 1.121 analysis, to provide reasonable input as to the 
availability of the necessary loads in the existing reports. 

3. Process for Identifying the Necessary Loads—Develop a process to obtain the necessary 
loads, whether, or not, they are available in existing design documentation. For necessary 
loads that are NOT available in existing design documentation, the analysis requirements to 
provide the loads are specified. A possible recommendation resulting from this effort may be 
to perform, or repeat, the seismic and LOCA analyses for specific plants. The plants 
requiring this from among the 15 plants reviewed are identified. 
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It is not possible to determine the level of conservatism in existing loads without significant 
effort for several reasons. Some plants were analyzed based on generic seismic spectra. 
These are construed to be “bounding” inputs to the analysis. Other plants were designed 
using plant-specific seismic spectra. While the analytical models are believed to be 
inherently conservative, consistent with good design practice, the actual factors of safety 
cannot be identified. For the plants designed using generic input loading, the only method 
available to identify the degree of conservatism is to repeat the analyses using plant-specific 
input loads. 

4. Demonstration Example—Using Catawba Unit 2 and Diablo Canyon data as examples, 
demonstrate the process of subtasks 1-3 above. It is recognized that a potentially significant 
limitation of this approach is that these two plants may not be representative of the larger 
population of plants. For example, a significant level of analysis work has been performed 
since the original design analyses for both plants so that the design information required for 
SIPC is generally available. 
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2  
STEAM GENERATOR TUBE STRUCTURAL LIMITS 
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3  
RELATIONSHIP OF TUBE DEGRADATION TO BURST 
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support. Relative to the effects on axial cracks, it was noted in Reference 9 that 
bending stresses at TSP will not affect the tube burst strength so long as the bending 
stress is less than 34,000 psi. 
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Figure 3-1 
Effect of Axial Stress on Effective Stress 

Reference 11 also provided information to demonstrate that plastic hinges must form before the 
axial load can significantly affect the burst pressure. Therefore, applied axial loads are concluded 
to not significantly affect the burst pressure if the axial and bending loads would not cause 
significant tube yielding. 

3.2 Effect of Axial Membrane and Bending Loads on Circumferential 
Cracks 

3.2.1 Analytical Model 

EPRI published a model for combining the effects of pressure and bending on burst of 
circumferential cracks in 1997, Reference 12. The model presented accounts for the internal 
pressure in the tube and the resistance to bending provided by a remote support, e.g., a tube 
support plate (TSP), in presenting an analytic prediction for the burst pressure. The following 
information recreates the derivation of that model by including consideration of the addition of 
an imposed axial load and an imposed external moment presented therein. The configuration 
analyzed is illustrated on Figure 3-2.  

 

ppha002
Text Box



 
Appendix C: Scoping Study on the Impact of NEI 97-06 Structural Integrity Performance Criterion 

C-19 

ppha002
Text Box



 
Appendix C: Scoping Study on the Impact of NEI 97-06 Structural Integrity Performance Criterion 

C-20 

 

ppha002
Text Box



 
Appendix C: Scoping Study on the Impact of NEI 97-06 Structural Integrity Performance Criterion 

C-21 
 



 
Appendix C: Scoping Study on the Impact of NEI 97-06 Structural Integrity Performance Criterion 

C-22 

F0 

ppha002
Text Box



 

C-23 

 the moments are 
taken about the x axis from Figure 3-1 considering a right-handed coordinate system, i.e., the x 
axis goes into the plane of the paper, 

 
 0p c r aM M M M+ + + = . (3-11) 
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b m
m y

There is no moment about the x-axis from the application of an external axial load. The moment 
acting to open the crack due to the pressure on the crack flanks is,
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4  
IDENTIFICATION OF LOADS AFFECTING SIPC COMPLIANCE 

This section deals with the identification and consideration of non-pressure loads that may affect 
the level of degradation that is in compliance with the structural integrity performance criteria. 
The intent is to assess the conditions under which the limiting level of circumferential 
degradation will be less for 1.2 times the combined postulated accident differential pressure plus 
imposed bending moment than for three times the normal operation differential pressure. The 
section treats Westinghouse and Combustion Engineering designed SGs separately. 
 



 

C-30 
 
 



 
Appendix C: Scoping Study on the Impact of NEI 97-06 Structural Integrity Performance Criterion 

C-31 



 
Appendix C: Scoping Study on the Impact of NEI 97-06 Structural Integrity Performance Criterion 

C-32 

ppha002
Text Box



 
Appendix C: Scoping Study on the Impact of NEI 97-06 Structural Integrity Performance Criterion 

C-33 

)

 

 

Table 4-1 
Summary of Maximum Hot-to-Cold Pressure Drops from LOCA Rarefaction Loading 

Transient Tube 
Tube Radius 

(in) 

Minimum 
Hot-to-Cold 

Pressure Drop 
(psi) 

Maximum 
Hot-to-Cold 

Pressure Drop 
(psi) 

Minimum 2.19 -3.19 7.14 

Average 25.92 -20.77 48.67 
Accumulator 
Line 

Maximum 59.84 -46.25 106.45 

Minimum 2.19 -5.75 4.60 

Average 25.82 -38.15 31.25 
Residual Heat 
Removal 
Line 

Maximum 59.84 -81.88 65.50 
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Figure 4-3 
Three-Tube Finite Element Model for LOCA Rarefaction Wave Analysis 

When evaluating LOCA events, the varying nature of the tube/TSP interface with increasing tube 
deflection is accounted for by evaluating three sets of boundary conditions. For the first case, the 
tube is assumed to be laterally supported at the TSP, but is free to rotate. This is designated as 
the "continuous" condition, and the finite element model for this case models the tube down to 
the second TSP. As the tube is loaded, it moves laterally and rotates within the TSP. After a 
finite amount of rotation, the tube will become wedged within the TSP and is no longer able to 
rotate. Thus, the second set of boundary conditions considers the tube to be fixed at the top TSP 
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Table 4-3 
Accident Moment Loading Conditions for CE SG Example 

Mechanical 
Bending Load 

Source 

Rarefaction or 
Flow Moment 

(in-lbs) 

LOCA or MSLB 
Shaking 
(in-lbs) 

SSE 
Moment 
(in-lbs) 

Combined 
Moment 
( in-lbs) 

Maximum Axial 
Bending Stress

(ksi) 

LOCA 272 38.5 318 444 25.4 

LBB 32     

MSLB 102 100 47.3 207 11.8 
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Figure 4-5 
Structural Limit for Throughwall Circumferential Cracks for the CE SG Example for 1.2 
times the MSLB Pressure Plus Applied Moment Loads 

During a MSLB event, fluid can flow across the tubesheet and exit the bundle through the 
downcomer, producing cross flow to the tubes at the tubesheet. The effect was calculated for 
Maine Yankee as a bending moment of 31 in-lbs and a stress of 7.2 ksi on the tube. At the time 
of the maximum cross flow velocity the combined flow stress and pressure stress (40.0 ksi) was 
less than the maximum MSLB pressure stress (47.3 ksi). This result calculated for Maine Yankee 
is approximately valid for SONGS 3.  

Similarly, using all the same data and a LOCA differential pressure of 906 psi2 based on a factor 
of 1.2 on an applied 755 psi, becomes the moment to cause burst is given in Figure 4-6. The 
applied moment of 1.2 times 444 in-lbs is below the moment required for burst. Therefore this 
loading condition does not affect the structural limit. As expected, this result shows that the 
moment in that can be tolerated is large. Therefore, this loading condition does not affect the 
structural limit.  

 

                                                           
2  For the CE SG the LOCA can result in the primary-to-secondary differential pressures discussed in this section. 
This occurs when the primary pressure is prevented from dropping too far. LOCA events in Westinghouse plants 
result in a large compressive stress on the tubing and similar considerations are not required. 
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Figure 4-7 
Structural Limit for Symmetric Part-Throughwall OD Circumferential Cracks for the 
CE SG Example at 1.2 Times the LOCA Pressure Plus Applied Moment Loads 

In summary, for CE designed SGs, calculations show that there are no non-pressure loads that 
will reduce the pressure retaining capability of the tubes.  
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5  
LOAD INFORMATION FROM SG REPORTS 
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6  
CALCULATION OF SG TUBE STRUCTURAL LIMITS 
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NOP  2250 759 1491 

Time = 0 sec 2250 759 1491 
LOCA 

Time > 0.2 sec 1800 759 1041 

FLB 2665 15 2650 
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Figure 6-3  
Structural Limit Considering Moment: Diablo Canyon Unlocked Tube Case 
Test Equation Results Throughwall Crack 

6.1.2.2 Effect of Moment and Axial Load: Locked Tubes 

The Hernalsteen model of a throughwall cracked section was used for the locked tube case with 
the same benchmarked stiffness index, k, of 1.35. Given this value and the tube size and material 
properties selected, the moment in addition to that required for restraint as a function of PDA 
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Figure 6-4 
Structural Limit Considering Moment: Diablo Canyon Locked Tube Case 
Hernalsteen Model Throughwall Crack 
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Figure 6-5 
Structural Limit Considering Moment: Diablo Canyon Locked Tube Case 
Test Equation Results Throughwall Crack 
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Figure 6-6 
Structural Limit Considering Moment: Diablo Canyon Unlocked Tube Case 
Hernalsteen Model Part Throughwall Crack 
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accidents and safe-shutdown earthquake (SSE) computed for Catawba Unit 2 are taken from the 
Reference 12. Tube locking due to corrosion products does not have to be addressed because the 
Catawba Unit 2 SGs have stainless steel TSPs. The membrane and bending stresses are shown in 
Table 6-4. The combined bending moments and forces are determined by working backwards 
from the combined stress values. The maximum stress values in the tables are for the tube region 
with the highest combined load in each corresponding location category. 
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Figure 6-8 
Structural Limit Pressure Only Catawba 2 

6.2.2 Effect of Moment and Axial Load on Throughwall Cracks 

The Hernalsteen model of a throughwall cracked section was benchmarked to the handbook 
solution of Section 6.2.1 by selecting a stiffness index, . , of 1.33. Given this value and the tube 
size and material properties selected, the moment in addition to that required for restraint as a 
function of PDA was computed. To address the 1.2 factor for the U-bend region, the pressure of 
1.2·SLB = 1.2 ⋅ 2560 = 3072 psi and 1.2 times the maximum seismic membrane load of 28.7 
lbs, that is 34.4 lbs, was used. The moment to burst was calculated using the Hernalsteen 
approach and is shown on Figure 6-9. The maximum combined moment of 1.2 ⋅ 354 = 425 
in-lbs occurs in a high row U-bend so based on the results of Figure 3-2, 40% of this moment is 
presumed to apply to the cracked section. The applied moment to consider therefore is 
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Figure 6-9 
Structural Limit Considering Moment: Catawba 2 Case 
Hernalsteen Model Throughwall Crack 
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Figure 6-10 
Structural Limit Considering Moment: Catawba 2 Case 
Test Equation Results Throughwall Crack 

6.2.3 Effect of Moment and Axial Load on Part-Throughwall Cracks 

The Hernalsteen model for a 360 degree symmetric part-throughwall circumferential crack is 
again used to compute the moment to cause burst as a function of PDA. To address the 1.2 factor 
for the U-bend region, the pressure of 1.2 ⋅ SLB = 1.2 ⋅ 2560 = 3072 psi and 1.2 times the 
maximum seismic membrane load of 28.7 lbs, that is 34.4 lbs, was used. The moment to burst 
was calculated using the Hernalsteen approach and is shown on Figure 6-11. The maximum 
combined moment of 1.2 ⋅ 354 = 425 in-lbs occurs in a high row U-bend. This applied moment 
results in a structural limit of about 62% PDA which is lower than the limit for 3·NOP. Therefore 
the inclusion of the axial and bending moments with the safety factor of 1.2 is limiting for part-
throughwall circumferential cracks for the most limiting load case. 
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Figure 6-11 
Structural Limit Considering Moment: Catawba 2 Case 
Hernalsteen Model Part -Throughwall Crack 
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7  
IN SITU TEST CRITERIA 





 
Appendix C: Scoping Study on the Impact of NEI 97-06 Structural Integrity Performance Criterion 

C-65 

8  
BENDING MOMENT LIMITS 
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9  
CONCLUSIONS 
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10  
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11  
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ABSTRACT 

This report summarizes a scoping assessment done to evaluate the impact of revised structural 
integrity performance criterion on the tube flaw size limits in nuclear steam generators. The 
assessment is performed for a bounding U-tube replacement steam generator design (RSG) and a 
bounding replacement once-through steam generator design (ROTSG). The assessment of a 
Westinghouse plant RSG is performed as well. Tube loads are extracted from the Design reports 
and, in some cases, recalculated to reduce the conservatism. Three bounding generic flaw types 
are considered, namely uniform wall thinning and two types of circumferential flaws. The basis 
for the structural integrity performance criterion is discussed, both with respect to the existing 
flawed tube analysis following NRC Regulatory Guide 1.121 (RG 1.121) and to the new 
criterion. The result of tube assessments based on the revised structural integrity performance 
criterion is compared to the tube performance limits. Since the most severe defect is shown to be 
the throughwall circumferential crack, the effect of combined bending moment and pressure 
loads on this flaw type is investigated with finite element and classical methods. The impact of 
the new criterion is examined in detail. To facilitate the extension of the results to other steam 
generators of similar design, the report includes a discussion of the factors contributing to the 
trends seen in the results. The potential impact on the operation of the stations is assessed. The 
report also includes discussions on plant-specific screening for the impact of the revised SIPC 
and on changes to in situ pressure testing criteria. 
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1  

The current industry-accepted structural integrity performance criterion (SIPC) for steam 
generator (SG) tubing is contained in Revision 1 of NEI-97-06 [1], with supplementary 
information provided in the EPRI report on Steam Generator Assessment Guidelines [2]. The 
regulatory position in the US has progressed from NRC Regulatory Guide 1.121 [3] to Draft 
Regulatory Guide 1074 [4], which proposes that loads other than pressure be included in 
assessing tube rupture. In the light of these developments, the SIPC has undergone some 
revisions to address regulatory and industry questions, and to clarify the application of the rules. 
The newly proposed criterion is given below: 

“All in-service steam generator tubes shall retain structural integrity over the full range 
of normal operating conditions (including startup, operation in the power range, hot 
standby, and cool down and all anticipated transients included in the design 
specification) and design basis accidents. This includes retaining a safety factor of 3.0 
against burst under normal steady state full power operation primary-to-secondary 
pressure differential and a safety factor of 1.4 against burst applied to the design basis 
accident primary-to-secondary pressure differentials. Apart from the above requirements, 
additional loading conditions associated with the design basis accidents, or combination 
of accidents in accordance with the design and licensing basis, shall also be evaluated to 
determine if the associated loads contribute significantly to burst or collapse. In the 
assessment of tube integrity, those loads that do significantly affect burst or collapse 
shall be determined and assessed in combination with the loads due to pressure with a 
safety factor of 1.2 on the combined primary loads and 1.0 on axial secondary loads.” 

The rewording includes the following key changes: 

a) Limiting accident conditions were expanded from just faulted conditions to all design basis 
accidents, 

b) For treatment of non-pressure accident loads, a third requirement has been explicitly added 
whereby tube burst shall be assessed under a combined load basis with a factor of 1.2 on 
primary loads (PL) and 1.0 on axial secondary loads (ASL) that contribute significantly to 
burst, 

c) An additional stipulation has been discussed in the definition of contributing loads where the 
axial secondary system loads are to be determined under elastic material behavior. This 
requirement has been dropped from the criterion. 

The present report investigates the impact of the changes in the SIPC on the existing tube 
integrity analysis for Babcock & Wilcox Canada (BWC) Replacement Steam Generators. One 
bounding U-tube (CE type plant) and one once-through steam generator design are investigated 
fully. A partial analysis is performed for another (Westinghouse plant) U-tube design. The 
review includes the tasks listed below: 
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  A general review of plants was performed to identify a specific plant or SG design that would 
be most adversely affected by the new SIPC.  

  The plant designs are selected and generic bounding flaw geometries are used for assessing 
the impact of new requirements.  

  For the most bounding circumferential through-wall cracks under mixed pressure and 
bending loads, the structural integrity of typical tube arrangements is analyzed and a 
comparison to experimental data and proposed models is made. 

  The loading conditions are identified and an assessment is performed to identify contributing 
non-pressure loads (e.g. seismic, cross-flow, etc.). The extraction of these loads from the 
design reports is discussed for two (U-tube) examples, and some loads are recalculated to 
avoid some of the conservatism in the Design calculations. 

  For the two bounding SG designs, scoping calculations determine whether changing the 
criterion to the new wording, specifically 1.2PL+1.0ASL, will impact existing past analyses 
or future methods of analysis. If there is any impact to structural calculations, the aspect of 
the new criterion that caused the impact is explained.  

  The impact of including non-pressure loads on in-situ pressure testing is discussed. 

  A list of factors that would make a plant more susceptible to reanalysis and/or backfit is 
developed (e.g., high seismic loads, etc.). 

  An approximate cost impact (cost of new/added analysis) is provided for the worst-case 
scenario, as well as for the typical case and its approximate cost for review/analysis. 

  The assessment is discussed, and calculations, significant findings, and conclusions regarding 
the impact of the new SIPC are summarized. 
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Figure 2-1  
Effect of Increase in Displacement on Tube Stress above Yield (Schematic)  
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Figure 2-2  
Stepped Bar Illustrating Strain Concentration at a Short Flaw in a Long Tube 

 

          

 
 

 
 

 
 

                     Figure 2-3  
                     Behavior of Stepped Bar Under Axial Load, a) Moderately Weakened Section, b) Severely 
                     Weakened Section 
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3  
EVALUATION OF TUBES WITH CIRCUMFERENTIAL 
THROUGH-WALL CRACKS UNDER COMBINED PRIMARY 
AXIAL AND BENDING LOADS 
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Figure 3-7  
FE Model of the U-Tube Arrangement 
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Figure 3-9  
AREVA Test Results and Finite Element Simulation – 36” U-Bend Bending Load / 
Deflection Curve 
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Figure 3-10  
AREVA Test Results and Finite Element Simulation – Straight Tube Bending Load / 
Deflection Curve (Eyebolt Test) 
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Figure 3-11  
FE Bilinear Representation of the Actual Stress-Strain Curve 

The reactions at the simple support (eyebolt) were measured during the straight tube test. This 
allows the reaction moment at the fixed to be calculated. In the flawed tube, the flaw is located 
very close to the fixed support, so that the flaw moment is approximately the same as the 
reaction moment. The reactions from the FE run are compared to the experimental values in 
Table 3-8 for the unflawed tube and in Table 3-9 for the flawed tube. 
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a spread of about +/-10%, which is fairly consistent with the spread of the experimental burst 
pressures. This measure will therefore be used in the FE-only assessment of the burst of a very 
large U-bend tube. 
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Figure 3-12  
Large U-bend Evolution of Flaw Element Stress with Pressure (40.3 ksi Bending Stress) 
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equation for the interaction diagram has the form 
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An example application of the above formulas is shown in Figure 3-13. Clearly, for the s
loading the throughwall crack is more severe than the uniform partial throughwall crack 
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Figure 3-14  
Effect of Moment Loading on the Axial Load Capacity of Tubes – Experimental Results

The results in Figure 3-14 show an approximately linear drop of the axial load capacity w
elastically calculated bending stress in an unflawed tube. Note that the interaction diagra
(Figure 3-13) support an approximately linear effect of bending on the axial load carryin
capacity at low to moderate bending moments. The results in Figure 3-14 show an effect
bend radius, with larger bend radii having a larger drop in load capacity at the same bend
stress. For the straight tubes, the boundary condition at the supported end is not importan
pressure (axial) loading only, but becomes important when a moment is applied. The sam
that were supported in a broached plate would lock up to form a fixed support under mom
loading, whereas the hinged eyebolt support had a very significantly lower load capacity

A linear relationship between the axial load capacity and the applied bending moment is 
assumed as proposed by Begley and Costa [9], and the slopes for the loss in axial load ca
of the various configurations are obtained from a linear regression of the experimental re
The slopes are summarized in Table 3-13. The equation for the axial stress at burst, σax_b,
function of the elastically calculated bending stress in the unflawed tube, σben, and the axi
at burst for zero applied moment, σax_b0, is given by 

ben0b_axb_ax m)momentzero( σ+σ=σ  
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Figure 3-15  
Comparison of Burst Predictions from Eq. (28) to Experimental [9] and FE U-bend Data.  

The model curves in Figure 3-15 use the burst pressure from the EPRI Flaw Handbook [7] as the 
starting point at zero moment, and therefore bound the experimental results and the FE point 
conservatively. The model that was presented is a slightly extended version of the model 
proposed by Begley and Costa [9]. 

The second model that was proposed for the description of the effect of a tube bending moment 
on burst is based on the Hernalsteen model [8], which was extended by Ayres [11] to include an 
applied bending moment term. The model consists of two equations that need to be solved 
simultaneously for a burst load (when the flaw size is given) or for the circumferential through-
wall crack size, α, at which tube burst would occur (when the loads are given). The two 
equations of the Ayres-Hernalsteen model are 
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