

Framework for Replacement Topical

Evaluation of OTSG Thermal Loads
During Hot Leg LOCA

Eric Henshaw – B&WOG Analysis Committee

> The objective of the report is to eliminate consideration of the design basis LBLOCA in the hot leg for determining steam generator tube loads.

- > Recent History of BAW-2374
 - * BAW-2374 Revision 1 was withdrawn by the B&WOG in March 2003
 - * Additional material was needed to address 10CFR50.46 and 10CFR100
- > Reference May 15, 2003 NRC letter to B&WOG (ADAMS No. ML031350539)

- > BAW-2374 Revision 1
 - Evaluated using the probabilistic and deterministic guidance of RG 1.174
 - * Engineering Analysis concludes
 - Meets Current Regulations
 - Consistent with Defense-in-Depth
 - Preserves Sufficient Safety Margins
 - Change in CDF and LERF is Small

- > BAW-2374 Revision 1 (cont'd)
 - * LOCA Thermal-Hydraulic Evaluation of Maximum Tube-to-Shell Temperature Differences
 - Evaluation of Manway/Inspection
 Opening Failures
 - * Evaluation of RCS Hot Leg Piping

- > Additional Material will address:
 - Long Term Cooling
 - * Dose Consequences
 - * Secondary Pipe Integrity

- > Long Term Cooling
 - Pressure Differential as a function of Break Size
 - SG Mechanical Loads
 - Realistic Tube Flaw Distribution
 - * Secondary side Isolation
 - Loss of ECCS Inventory
 - * ECCS Pump NPSH

- > Dose Consequences
 - * Source Term Discussion
 - Clad Rupture Study
 - Dose Evaluation

Today's Presentations (Part 1)

Addressing 10CFR50.46

- > Requirements to Demonstrate Long-Term Cooling
 - J. Klingenfus
- > SG Tube Integrity Assessment
 - D. Costa and J. Begley
- > Long-Term Cooling Future Evaluation Discussion
 - J. Klingenfus and G. Wissinger

Today's Presentations (Part 2)

Addressing 10CFR100

- > Dose Consequence Approach M. Byram
- > Clad Rupture Study G. Wissinger

