

Manhattan College Parkway. Riverdale, New York City, New York 10471-4098 (718) 862-7281 fax (718) 862-8015 deanengr@manhattan.edu

Office of the Dean of Engineering

February 3, 2005

U.S. Nuclear Regulatory Commission Attn: Pat Madden Mail Stop 012-G13 Washington, DC 20555-0001

Subject: Termination of Facility License R-94; Docket 50-199

Dear Mr. Madden:

Manhattan College is hereby requesting, in accordance with the provisions of the approved Decommissioning Plan, that the Possession-only license R-94 be terminated. All of the nuclear material under the license has been removed, decommissioning activites have been performed as required, and the Final Status Survey has been completed. Specifically the following has been performed:

- All of the reactor fuel was transferred in August 2004, to the University of Texas by the Department of Energy contractor personnel from the INEL (see enclosed 741 transfer form).
- The three fission chambers originally acquired by transfer from Cintichem, and covered by R-94 license amendment No. 11, were also transferred to the University of Texas in the same shipment as the fuel (same enclosed 741 transfer form).
- The CS-137 calibration source procured under R-94 license amendment No. 10, was transferred to Co - Physics Corporation in November 2004, (see enclosed Transfer of Custody agreement).
- Amendment No. 10 also deleted the license condition which permitted possession of 3.2 kgs of uranium since this material had been previously removed from our facility.
- In May 2002, the NRC transferred license No. SNM-1892 to the regulatory authority of the State of New York, New York City Department of Health. In April 2002, Region 1 had amended the license to remove the 80 gms of Pu-239 contained in the 5 sources transferred to Georgia Tech in 1998 thus reducing the quantity of Pu-239 remaining on the license to below that sufficient to form a critical mass. This, required transfer of the regulatory authority to the State of New York.

Subsequently, in December 2003 the remaining Pu-239 sources were transferred from Manhattan College to the Los Alamos National Laboratory (see enclosed

- letter, S. Leonard to Lickerman of 12/17/03 and Authorization to Transfer dated 8/21/03). Thus, all plutonium sources covered by NRC and State License have been removed from our facility.
- All of the remaining old test and check sources onsite were either transferred to Co-Physics Corporation in November 2004 (see enclosed Transfer of Custody Agreement 11/5/04); or disposed of in December 2004 using Radiac Corporation as the carrier (see enclosed Bill of Lading 76305 dated 12/9/04 and Radioactive Waste Disposal Record 76305 of 12/9/04).
- Nine small rods containing U238 of unknown origin, that had been stored in a lead box in our Facility for decades, were also disposed of in December 2004 using Radiac Corporation as the carrier (see enclosed LLW manifest Form 540 dated 12/9/04 and Radioactive Waste Disposal Record 76225 of 12/9/04)

As a result of the action described above, Manhattan College no longer possess any nuclear material originally covered by NRC License R-94 or New York City License 76-2. We will also be applying to the NYC Bureau of Radiation Control for termination of License 76-2. In addition any unlicensed nuclear material has been disposed of as waste material.

The Final Status Survey of the Nuclear Engineering Facility has been performed and documented. The results of the Survey demonstrated that the activity and exposure levels are well within the NRC limits for unrestricted use, with the great majority of the individual readings being at or near background levels. The Final Status Survey Report is enclosed.

Please contact me if any additional information is required in support of this request for termination of License R-94.

Sincerely

Robert Berlin', DPH
Acting Reactor Administrator

I declare under penalty of perjury that the foregoing is true and correct.

Executed on February 3, 2005

Richard H. Heist, Dean School of Engineering

Enclosures:

- 1. 741 transfer form for reactor fuel and fission chambers
- 2. Transfer of Custody Agreement with Co-Physics Corp.
- 3. Letter, S. Leonard to T. Lickerman
- 4. Authorization to Transfer dated 8/21/03
- 5. Bill of Lading 76305 and Radioactive Waste Disposal Record 76305
- 6. LLW Manifest Form 540 and Radioactive Waste Disposal Record 76225
- 7. Final Status Survey Report

NIEWRE FORM THE CONTROL OF STREET STATES AND STREET STATES OF THE STATES												2 12 04 10:										
a.			् क्षेत्रक्ष्मेत्		en arya	a tomerrios m	84										Ⅎ≝					
10 MINE TO SOUTH 1 ILLING B-DA 11 And the teaching 17 Ingle B-150							200		_4		. 141144	14			ISA 1	ne -	14	HALL GE	i tricke			
27E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					_1	21111212 207(1)972		2		1	. 12 th State State				No	The Benefitt	Del Service] "				
2-	poot o	F Ra	eşuaeı TreBa	-Ina i		r Engineerin		unhi mo		,	ice were	L	, m	SG	NI CONTRIBUTE	A. STATE	541	JAG	'	ZXH-	ZYŚ	-
	15 Cot		•			Research Ca		ain ring		AMB	AC I	Ral		,	184	E AS Sa			<u> </u>	773		-1-3
	oux, E		-			159, 10100 B		e ital.	\ `~			/			(aller)	4 AO US	,		├ ÷	QFA 2VS		-1 61
2.47	TENDRE M	. Re	+1 tn/s	l_Hwist *	HAD DAY	Anntis. TX	7875	P	}										 ; 	449		
1 175	orde 7	LR-A	62-731	17 (100) (100) (100)	MID-1012	8. 0'E-11-	517-	237~53	k											25(1)		۱٦,
					DO	p			11,20	OUT CALLY	TOE 1	distri	n nas	100					 	_400		7
"I	7 Pro L		Kentis	(16 full 6	loget	ial) contain	ine !	196350	u H	977	- P		NL NL	4	24 10 mm		700		,			니동
						235) and 3 F			T				<i>7</i> /1		Mare 14 ex 16		VARIO VALUETY LABOR D.,		V			٦i
						wiched in U2			<u> </u>	4_								NAME OF STREET		MUTUAL	DAY YEA	<u> </u>
	ALVA TA			-0 -00		ONLINE TRANSPORT			╅——									· DESCRIPTION	1211/16	_G3	<u>n</u> Tu	1]3
Pe	K wath	al d	incus	itons with Je	obn Gå			1 *		1								I ROTT		 	76 0	7
fer verbal discussions with John Soverrage I m [1] " of DOE and Tony Vinola or INGL.																		CACIAIPE.				4
									J4 781	AL COMM		7				- 1 34 400	1000	died frages				7
	2416		TYPE.		T		1_	Corte		145		ABIN	46	·	7				1			ᅱ ,
•	MAK MAK MAK MAK MAK MAK MAK MAK MAK MAK	既	Layan Aver Aver	CONTRACTOR STATES	蒜	Seventer NAVIER	22	5	-MACA FREE		┝╌╸	+	<u>.</u> i	ALCOHOL: Explore	WISSESS (10ml	DECEMBER OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO COLUMN THE PERSON NAMED IN COLUMN THE PERSON N	7 12	ton to	PROOF.	LOT OF	: 9
Ę					<u> </u>		<u>.</u>					-1	72.0	1	<u> </u>				. 1	_		_ i
5		01			177	JAV 4000000		380	G							19635gg		19.		3,880 22		ם:
5	<u> </u>	02			1-	702-4000000	120	880					}		!			93		Arm]ė'
F	·				┿		↓ —	 					ŧ				ì				1	
		1			4	1		1 1			\vdash	-1			 							
불					 	 	╁	 			\sqcap								二		1	
물							E												\exists			1
26. M.CO																						
24. MED				100000000000000000000000000000000000000											2							⊣ ⊽
1. 24. MICO	7 264, 2149	PPERT	BATA	simple of the same		iel.	8/4	104		*162	7a. 181	SCERV	72°3 0/	ATA EX	75 (00.01 1/11)	10 post 100 AM	WITCHACE	8-10	G 04			12-34
1 24 MID	7 26a, EHM	Ø.	BATA	station of the state of the sta	147	TAL MIDES AS	7	104	· ·	\$ 1 62	7a. R1	SCENT	722'3 0/	RTA EX				<u>8-16</u>				75
	7 264, 2541	PRAY SE	BATA	grana Allana Fores	147		7	776.4	<i>ড়</i> চ	£ 1 62	7a. 10	CENT	22.30/	NTA ST		176351 4 2		8-16		38405		12-34
	7264, 1909	Ø.	BATA	grana of the con-	147	TAL MIDES AS	7	776.4	_		7a. R2	scar	728°S Q./	RTA D		1763/1		8-16				12-34
Py Darta 1. 26. Mill	7 264, 1901	Ø.	BATA	similar of the same	147	TAL MIDES AS	7	776.4	_	\$ 162	7a. 30	SCEAN CEAN	72°3 U	ITA D		1763/1		8-16		38405		12-34
R-S DATA	7 264, 2501	Ø.	SATA	species of the second	147	TAL MIDES AS	7	776.4	_	*****	7a. 102	SCENT	728'S 0/	ITA D		1763/1		8-16		38405		12-34
CIVER'S DATA	7 264, 550	Ø.	BATA	granges of the same	147	TAL MIDES AS	7	776.4	_	*****	7a. 10	scent	728'S 0/	ATA D		1763/1		8-16		38405		12-34
CIVER'S DATA		gr.			1) NF 5	7) (100) 70C (100)	34	680	J						70	1783/1		8-10 721 73		28402		12-34
REDATA	WARN	gi gil	LSE ST	TEMENTS ON THIS	DERTIF	TAL MIDES AS	2 2 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	65°	J AND OR	GR III			ũ T≩ s	Macon	GUI ATIONAS	17637	TVOTO	8-10 121 23		38402		12-34

FH:52 4 83/84

Manhattan College Parkway Riverdale, New York City, New York 10471-4098 (718) 862-7281 fax (718) 862-8015 deanengr@manhattan.edu

Office of the Dean of Engineering

TRANSFER OF CUSTODY OF RADIOACTIVE SOURCES

Manhattan College hereby transfers custody of the following radioactive sources to Co-Physics Corporation, license No: 2691-3949.

- 1. From Manhattan College license No.: R-94; 2 m ci CS-137 source, serial No.: 404-37 dated June 1, 1992.
- 2. From Manhattan College possession;

Acknowledgement of Transfer by Manhattan College:

- A. TC-99 set of 4 sources; serial No.: 7755, 7756, 7757, 7758, undated
- B. 1 TH-230 source; serial No.: 4167, dated January 13, 1994.
- C. 1 Multi Nuclide source; serial No.: 469-80-2, dated November 1, 1994.

Official Name / Title Richard H. Heist Dean of Engineering
Name Title

Signature Date Not. 5, 2005

Acknowledgement of Receipt by Physics Corporation

Office Name / Title Theodore E. Rahon President

Name Signature Date // 5/64

Risk Reduction and Environmental Stewardship Transuranic Waste Characterization Group Off-Site Source Recovery (OSR) Project P.O. Box 1663, Mail Stop: J552 Los Alamos, New Mexico 87545

Date: December 17, 2003 Refer to: RRES-CH 03-064

Tobias Lickerman, Chief Materials Unit Bureau of Radiological Health NYC Department of Health 2 Lafayette Street 11th Floor New York, NY 10007

Dear Mr. Lickerman:

Enclosed please find a signed Authorization to Transfer/Relinquishment of Custody form concerning:

Manhattan College 3825 Corlear Avenue Bronx, NY 10463-2348

The radioactive sources described on the form have been removed from Manhattan College in Bronx, NY and are in storage at Los Alamos National Laboratory Facilities. These sources have been transferred to Department of Energy (DOE) ownership and are being stored under DOE license exemption.

This action was completed as part of the Off-Site Source Recovery (OSR) Project managed by this office. If you need any further information on this action, please contact the OSR Project Office at 505/667-6701.

Sincerely,

Shelby Leonard

Team Leader OSR Project

SL/lh

Cy: Dr. Richard H. Heist, Manhattan College Douglas Broaddus, NRC HQ Robert Campbell, DOE-HQ EM-36 Joel Grimm, DOE-AL/WMD RRES-CH File / OSRP File Doc#3109

Los Alamos NATIONAL LABORATORY

OFFICIAL NAME/TITLE

ATRC # 2003:006

Off-Site Source Recovery Project Authorization to Transfer/Relinquishment of Custody

SOURCE OWNER CONTACT NAMI ADDRESS:		ing	TELEPHON FAX: (718)	E: (718) 862-7281 862-8015				
	S. Department of Energy	versity of California at Los (DOE), to transfer the seal						
		UC/LANL, on behalf of D pt or acceptance of the sour						
SOURCE INFORMATION								
Type: 239Pu/Be	Serial No: M274	Mfg. Date: 07/17/1961	Curies: 4.650	Grams Isotopic: 74.000				
Type: 239Pu/Be	Serial No: M605	Mfg. Date: 09/01/1961	Curies: 0.933	Grams Isotopic: 14.850				
Type: 239Pu/Be	Serial No: N800P7	Mfg. Date: 06/24/1964	Curies: 4.650	Grams Isotopic: 74.000				
SOURCE CUSTO	ODIAN:							
OFFICIAL NAME	ETTIFLE RUMARD		DEAN	OF ENCINEERING (Please Print or Type)				
SIGNATURE	Did B	(Please Print or Type)	TITLE DATE					
UC/LANL AUTH	IORIZATION:			•				
SIGNATURE _	Shully & a	ard, Team Leader, Off-Site		y Project <i>8-21-03</i>				
ACKNOWLEDG	SEMENT OF RECEIPT	BY LANL:						

NAME (Please Print or Type)

NATE | 12/11/03

1 ober 12 colon 845. 251. 3 48.60

RADIAC RESEARCH CORP.

	DIOACT	BROOKLY FAX		PSAL REC	BLDG. NO	2/1/8 0 0 0	
COMPANY/I		Wash	- ' '	141	TYPE	P/U	DEL
76995		CONTAINERS	7	d stuft	5 Gallon Dry 30 Gallon Dry 30 Gallon A/P	1	DEL
				6 /	30 Gallon S/P		
					30 Gallon LSV		
					55 Gallon Dry		
					55 Gallon LSV		
I hereby cert	ify that the abov	e listed radioacti	ve wastes are properly	described, packaged	De Reg LSV		
marked and I Terms and C	abeled, in accord onditions.	dance with D.O. I	Regulations and RAD	/ / General	Cases 1 Gallon		
CUSTOMER	REP.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	R.R.C. REP	le o White	5 Gallon Liners		
ISOTOPE	ACTIVITY	ISOTOPE	ACTIVITY ACTIVITY	1	55 Gallon Liners		
1301012	7011111	1001012			Security Seals		
	}				Labels (Roll)		
					Preservative		
					Absorbent Material		
	 	<u> </u>			Miscellaneous		
ID#		Expiration	Date		ELLOW - DUPLICATE		

RWSD No		261 BROOKL	RESEARCI KENT AVENU YN, NEW YOR 718 - 963-2233	JE K 11211		No.	16	2/9/	104
		FAX:	718 - 388-5107	•		BLDG. I			-
RAD	IOACT	IVE WA	STE,DIS	SPOSAL RE	:COI	RD ROOM!			
COMPANY/II	NSTITUTION	Wau	ha tha	e Colles	C		···		
	Ģ	ONTAINERS	NUMBER			TYPE (c		P/U	DEL
7/2/	(.()	•	Exim	1 / Sull	$\frac{7}{5}$	Gallon DryC# 1			
-((->6	*>			067 7	<u> </u>	O Gallon Dry 1			<u> </u>
10	f		<u> </u>	J. 17	T + 30	O Gallon A/P	Ì		
10 64 (Hiller	scur	CC	6 100	M. 30	0 Gallon S/P			
	action	u w	E 8 12	They Her	$7/\sqrt{30}$	0 Gallon LSV			
[4]		(14 5!	5 Gallon Dry			
	. — С				<u> </u>	5 Gallon LSV			
I hereby certi	fy that the above	listed radioacti	ve wastes are pro	perly described, packaged	d	De Reg LSV			
marked and la Terms and Co		ance with D.U. I	. Regulations and	RADIAC'S General	$, \overline{C}$	ases 1 Gallon			
CUSTOMER P	EP,	Carrie of	ک در R.R.C. REI	Kuth U Mail	<u>万</u> 5	Gallon Liners			
ISOTOPE	ACTIVITY	ISOTOPE	ACTIVITY	y ipon; conjunt	5	5 Gallon Liners			
1301011	ACTIVITY	1001012	7.5	f.	S	ecurity Seals			
			,		ī	abels (Roll)			
			700		P	reservative			
					A	bsorbent Material			
 	<u> </u>				N	liscellaneous			
ID#	Site #	Expiratio	n Date	Instrument					
	WHITE CO	OPY - OFFICE	CANARY - CUSTO	OMER PINK - BILLING	YELL	OW - DUPLICATE		namen alkanonia na	alianyumban a samuntaninka n w

CONTAINS HAZARDOUS MATERIALS ***

radiae, RESEARCH CORP.

ROBERT BERLIN

Non-Negotiable STRAIGHT BILL OF LADING

800.640.7511

NYSDEC: 2A-004 43593 * DOT Reg. No: 051303 009 011LN * NRC License: 31-17528-01	0.
---	----

845.351.3486 or 2880

No. 76305

261 Kent Avenue Brooklyn, NY 11211 Phone (800) 640 - 7511 Fax (718) 388 - 5107

Notify/Contact

_1__OF_1__

	HELTOR A. MA	e105	#/09 Truck No:	N	Pailer No:
	SHIPPER (ORIGIN)	C	O N S I G N E E (DESTINA	TION)	NOTES
Name	MANHATTAN COLLEGE	Name	RADIAC RESEARCH CORP.		
Street Add	ress 3825 CORLEAR AVENUE	Street Address	s 261 KENT AVENUE		
City, State	RIVERDALE, NY 10463	City, State	BROOKLYN, NY 11211		

PARTICULARS FURNISHED BY SHIPPER

Notify/Contact JOSEPH SPEKTOR

Units	HM	Description, Proper Shipping Name	Hazardous Class	UN/NA Number	Packing Group	Weight Lbs.
1x 5 G. DRUM METAL DOT- - 7A TYPE A	>	RADIOACTIVE MATERIAL, TYPE A PACKAGE [SOLID, OXIDE, Co-60, 89.6 KBq; Na-22, 68.5 KBq; Mn-54, 72.3 KBq; Cd-109, 404 KBq; Co-57, 56 KBq; Cs-137, 105.5 KBq; Zn-65, 37 KBq; Ba-133, 91.5 KBq; Pb-210, 37 KBq; U-238, 37 KBq; Sr-90, 37 KBq; C-14, 0.37 Bq] Total activity - 1.0354 MBq DOT Label: "Radioactive WHATEST "; TI - MARINE TI - M		UN2915	NA	10

SHIPPER'S CERTIFICATIONS	Placards Required: (Furnished by Carrier) YES NO	Emergency Response Phone: ERG No.: 163
This is to certify that the above-named materials packaged, marked and labeled, and are in prope to the applicable regulations of the Department of	r condition for transportation according	fdeed E Delu
Special Instruction:		
SHIPPER:	CARRIER: RADIAC RESEARCH CO	Received in good order, count and condition unless otherwise noted above. CONSIGNEE:
COBERT F. BELL (Bright Name) (Seed E. Poller 13)	40 HELTOR A. MARTA	(Print Name)
(Authorized Signature) (D.	ate) (Authorized Signature)	(Authorized Signature) (Date)

FORM 540 RADIAC RESEARCH CORP UNIFORM LOW-LEVEL RADIOACTIVE			MANHATTAN COLLEGE				SHIPMENT I.D. NUMBER NA		7. FORM 540 AND 540A PAGE 1 OF 1 PAGE(S) FORM 541 AND 541A 1 PAGE(S)			MANIFEST NUMBER (Use this number on all continuation pages) 76225		
• • • • • • • • • • • • • • • • • • • •	MANIFEST		3825 CORLEA RIVERDALE,			i		PROCESSOR		ORM 542 AND 542A ODITIONAL INFORMA		None PAGE(S) None PAGE(S)	7622	5
	ING PAPER		Permit#: NA		SHIPME	NT NUMBER	X	GENERATOR TYPE (Specify) A		ONSIGNEE - Name an		CONTACT JOSEPH SPEK	TOR	
EMERGENCY TELEPHONE NUMBER (Included) 424 - 9300	de Area Code)	:	CONTACT				TELEPHONE NUMBER			NAC RESEARC		TELEPHONE NUMBER (Include Area Code)		
ORGANIZATION CHEMTREC			ROBERT BERLIN				(Include 845.	361.3486 or 2880	BRO	KENT AVENUE DOKLYN, NY 1	1211	718 963 - 2233		
2. IS THIS AN "EXCLUSIVE USE" SHIPMENT? 3. TOTAL NUMBER OF				6. CARRIER - Name and Address RADIAC RESEARCH CORP. Truck #: /09). NUMBER 9178296	SIGN	IATURE - Authorized	d consignee acknowle	dging waste receipt	DATE	
YES	PACKAGES IDENTIFIED ON THIS MANIFEST	1		261 KENT AVE. BROOKLYN, NY 11211		SHIPPI	NG DATE). CERTIFICATION	- 		
4. DOES EPA REGULATED WASTE REQUIRING A MANIFEST ACCOMPANY WAS	EPA MANIFEST NUMBER	1	CONTACT	IUR GREEN			TELER	HONE NUMBER Area Code) 963 - 2233	This is in proper certified dispose	to certify that the here er condition for transp s that the materials are all as described in acco	in-named materials ar ortation according to to oclassified, packaged ordance with the requi	re properly classified, de he applicable regulation , marked, and labeled a rements of 10 CFR Par	sscribed, packaged, marke is of the Department of Tra ind are in proper condition is 20 and 61, or equivalent	d, and labeled and are insportation. This also for transportation and state regulations.
MANIFEST ACCOMPANY X NO THIS SHIPMENT? If "Yes," provide Manifest Number =====>	NA		SIGNATURE	Authorized certier of triffin	violating waste	receipt	DATE	19/0/	AUTH	HORIZED SIGNATUR	E	TITLE		DATE
U.S. DEPARTMENT OF TRANSPORTATION (Including proper shipping name, hazard class and any additional information	UN ID number,	12. DOT LABEL "RADIOACTIVE"	13. TRANSPORT INDEX	1/3. PHYSICAL ANI CHEMICAL FOR	D RM		IN RADI	15. DIVIDUAL ONUCLIDES	16. TOTAL PACKAGE ACTIVITY MBq mCi			17. LSA/SCO CLASS	18. TOTAL WEIGHT OR VOLUME (Use appropriate units)	19. IDENTIFICATION NUMBER OF PACKAGE
Radioactive material, Type A package, URANIUM FUEL SLUGS	7, UN2915 / 9	Yellow III	1.5	Solid 9 URANIUM SLUGS	FUEL	U-238			2.6640E+02 7.2000E+00 NA		NA .	50. LBS; 0.67 FT3	76225-01	
														SGS-04-11-116
										-				
												1		
					_				_			(
									_			(
FOR CONSIGNEE USE ONLY				1 6	seen prepared	in accordance wi	th current	"RADIAC Acceptance	Criteria".	, federal and state regi	ulations, including the		manifest. The waste des EPA and applicable agree or disposal method*.	
					Date				Signature	·				
								Te	elephone ,			-		
												ļ		

FORM 540 (10-96)

1. MANIFEST TOTALS **FORM 541** RADIAC RESEARCH CORP. 2. MANIFEST NUMBER SPECIAL NUCLEAR MATERIAL (grams) NUMBER OF PACKAGES/ 76225 NET WASTE NET WASTE DISPOSAL VOLUME WEIGHT U-233 U-235 Pu TOTAL UNIFORM LOW-LEVEL RADIOACTIVE CONTAINERS 3. PAGE 1 OF 1 PAGE(S) 0.0190 kg 22.6796 **WASTE MANIFEST** NP NP NP 50,0000 4. SHIPPER NAME 0.6700 lb **CONTAINER AND WASTE DESCRIPTION** ACTIVITY MANHATTAN COLLEGE SOURCE ALL NUCLIDES TRITIUM C-14 Tc-99 **L129** Additional Nuclear Regulatory Commission (NRC) Requirements for Control, Transfer and Disposal of Radioactive Waste 2.6640E+02 2.1620E+01 SHIPMENT ID NUMBER MBq (kas) 7.2000E+00 NP (lbs) 4.7664E+01 mCi DISPOSAL CONTAINER DESCRIPTION WASTE DESCRIPTION FOR EACH WASTE TYPE IN CONTAINER 16.WASTE PHYSICAL DESCRIPTION 14. CHEMICAL DESCRIPTION RADIOLOGICAL DESCRIPTION CLASSIFI 6.CONTAINER DESCRIPTION 8. WASTE SURFACE 12. APPROXIMATE 13. CATION AS-Class SURFACE CONTAMINATION SOLIDIFICATION OF CONTAINER (See Note 1) AND WASTE WASTE WEIGHT INDIVIDUAL RADIONUCLIDES AND ACTIVITY AND Stable AU-Class STABILIZATION VOLUME CONTAINER RADIATION DESCRIPTOR VOLUME(S) IN CHEMICAL FORM PROCESS REQUESTED MBg/100 cm2 dpm/100 cm2 IDENTIFICATION CONTAINER TOTAL; OR TOTAL ACTIVITY
AND RADIONUCLIDE PERCENT CHELATING AGENT CHELATING (See Note 1A) WEIGHT LEVEL (See Note 2) CONTAINER MEDIA NUMBER / Unstable BURIAL/DISPOSITION AGENT **GENERATOR** (m3) (See Note 3) B-Class B (kg) (lb) mSv/hr ID NUMBER (See Note 2A) ALPHA C-Class C GAMMA RADIONUCLIDES mrem/hr U-238 2.6640E+02 7.2000E+00 76225-01/MCLG 59-OTHER. 9 URANIUM FUEL [2.1620E+01 kgs] 0.0190 22.6796 1.5000E-01 <3.3400E-06 <3.3400E-05 0.0190 SLUGSANP 0 NP Subtotal 2.6640E+02 7.2000E+00 7.2000E+00 <2.000E+02 Total 2.6640E+02 <2.000E+03 0.6700 50.0000 1.5000E+01 0.6700 Source: [2.1620E+01 kgs] Source: [2.1620E+01 kgs] 2.6640E+02 7.2000E+00 **Shipment Totals** 0.0190 22,6798 0.6700 50.0000

NOTE 1: Container Description Codes. For containers/ waste requiring disposal in approved structural over-packs the numerical code must be followed by "-OP."

- . Wooden Box or Crate
- 9. Demineralizer 2. Metal Box 10. Gas Cylinder
- 3. Plastic Drum or Pail
- 4. Metal Drum or Pail
- . Metal Tank or Liner 3. Concrete Tank or Liner 19. Other, Describe in Item 6.
- 11. Bulk, Unpackaged Waste 12. Unpackaged Components 13. High Integrity Container
- or additional page. Polyethiene Tank or Liner
- B. Fibergiass Tank or Liner

- Note 1A: Process Requested

 - Steam Reforming
 - Direct Incineration
 - Sort & Incinerate D. Decon
 - Green is Clean
 - Motal Molt
 - Trans-Ship
- Liquid for Incineration Oil for Incineration
- Other (describe) O.

- - 20. Charcoal 21. Incinerator Ash
 - 22. Soil
 - 23. Gas 24. Oil
 - 25. Aqueous Liquid 26. Filter Media
 - 27. Mechanical Filter 28. EPA or State Hazardous
- NOTE 2: Waste Descriptor Codes. (Choose up to three which predominate by volume.)
 - 29. Demolition Rubble 30. Cation Ion-exchange Media 31. Anion Ion-exchange Media
 - 32. Mixed Bed Ion-exchange Media 33. Contaminated Equipment 34. Organic Liquid (except oil)
 - 35. Glassware or Labware 36. Seeled Source/Device 37. Paint or Plating
- 38. Evaporator Bottoms/Skidges/ Concentrates 39. Compactible Trash 40, Noncompactible Trash
- 41. Animal Carcass 42. Biological Material (except
- animal carcass) 43. Activated Material
- 59. Other. Describe in item 11, or additional page

Note 2A: Burial/Disposition Site

- Bernwell Waste Management Facility
- E Envirocare
- R Richland, WA
- PR Process and Return
- O Other

Note 3: Solidification and Stabilization Media Codes. (Choose up to three which predominate by volume. For media meeting disposal site structural stability requirements, the numerical code must be followed by "-S" and the media vendor and brand name must also be identified in Item 13. Code 100=NONE REQUIRED.

100. None Required.

Solidification

93. Vinyl Chloride

90. Cement 94. Vinvi Exter Styrene 91. Concrete 99. Other, Describe in item 13, or (encapeulation) 92 Bitumen additional page

FORM 541 (10-96)

FINAL STATUS SURVEY REPORT REACTOR FACILITY MANHATTAN COLLEGE SCHOOL OF ENGINEERING

PREPARED FOR:
MANHATTAN COLLEGE

DECEMBER 2004

PREPARED BY:
ROBERT E. BERLIN D.P.H.

TABLE OF CONTENTS

No.			Page No
1.0	Back	ground Information	1
2.0	Site	Information	.2
	2.1 2.2	Site Description Facility Conditions at Time of Final Survey	2
	2.3	Identity of Potential Contaminants and Release Guidelines	3
3.0	Final	3	
	3.1	Survey Objectives	3
	3.2	Organization and Responsibilities	4
	3.3	Instrumentation	5
	3.4	Survey Procedures	5
		3.4.1 Area Classification	5
		3.4.2 Survey Units and Reference Grids	5
		3.4.3 Surface Scans	6
		3.4.4 Surface Activity Measurements	6
	2 E	•	7
	3.5	Background Level Determination	8
	3.6	Data Interpretation	
	3.7	Quality Control	8
	3.8	Records	8
4.0	SUR	YEY FINDINGS AND RESULTS	8
	4.1	Background Levels / MDA	9
	4.2	Nuclear Engineering Facility Survey	9
		4.2.1 Surface Activity Measurements	9
		4.2.2 Exposure Rates	9
	4.3	Data Evaluation	9
	4.4	Quality Control	10
5.0	SUMI	MARY	10
APP	ENDIC	E S	
1	Samp	le Survey Forms	37 - 39
2	Calibr	ation Methodology	40 - 41

LIST OF TABLES

No.		Page No.
3-1	Radiation Survey Instruments	17
4-1	Background Measurements and MDA's	18
4-2	Final Status Survey – Survey Unit 1	19 - 24
4-3	Final Status Survey – Survey Unit 2	25 - 29
4-4	Final Status Survey – Survey Unit 3	30 - 33
4-5	Quality Control Report - Survey Unit 1	34
4-6	Quality Control Report – Survey Unit 2	35
4-7	Quality Control Report – Survey Unit 3	36

LIST OF FIGURES

No.		Page No.
1-1	Plan of Manhattan College Campus	11
1-2	Plan of First Floor of the Leo Engineering Building	12
1-3	Plan of Second Floor of the Leo Engineering Building	13
3-1	Sub - Critical Reactor Lab	14
3-2	MCZPR Lab	15
3-3	Fuel and Source Storage Room	16

1.0 BACKGROUND INFORMATION

The Manhattan College Zero Power Reactor (MCZPR) was constructed in 1964 and operated under Reactor License R-94. The Reactor was a 0.1 watt swimming pool reactor whose core contained 15 full assemblies and one partial fuel assembly. The Reactor was situated in a Nuclear Engineering Facility within the Leo Engineering Building of Manhattan College. The Reactor operated using 92 percent enriched uranium (High Enriched or HEU fuel) until 1992 when the fuel was replaced with new fuel assemblies using 19 percent enriched uranium (Low Enriched or LEU fuel). Operation resumed in 1995 after maintenance on the reactor tank and ceased in 1996. The fuel and plutonium sources were then removed from the Reactor and placed in storage. The plutonium sources were packaged and transported to the Los Alamos National Laboratory in December, 2003 and the fuel assemblies were sent to the University of Texas in August, 2004.

In addition to the MCZPR, the Nuclear Engineering Facility also contained a graphite moderated sub critical reactor, and a light water moderated sub critical reactor. Both sub critical reactors were removed from the Facility in the late 1990's.

A Decommissioning Plan and Final Radiological Status Survey Plan for the Facility were prepared and approved by the Nuclear Regulatory Commission (NRC) in 1998. The approved Survey Plan is based on the requirements of NUREG/CR-5849, "Manual for Conducting Radiological Surveys in Support of License Termination". This Final Status Survey Report describes the procedure and criteria followed and provides the results of the Final Status Survey. The results of the Survey demonstrate that the radiation levels in the Nuclear Engineering Facility satisfy NRC residual contamination guidelines established for release of formerly licensed sites to unrestricted use.

2.0 SITE INFORMATION

2.1 Site Description

Manhattan College's main campus is situated along Manhattan College Parkway on the heights above Van Cortland Park, in the Riverdale section of the Bronx, New York City, just a few blocks south of the Yonkers city line.

The Nuclear Engineering Facility is located on the first floor of the Leo Engineering Building (two blocks from the main campus) on Corlear Avenue between 238th and 240th Streets. This building has been owned and occupied by Manhattan College since 1963. The Leo Engineering Building provides classrooms, laboratories, and faculty offices and may be occupied by as many as 600 persons at any one time. The location of the building and its relationship to its surroundings is shown in Figure 1-1. As shown, the Leo building is readily accessible from Interstate Highway 87 and the Henry Hudson Parkway by connecting roads. Municipal Transit Authority trains run regularly on elevated tracks on Broadway, one block from Corlear Avenue.

The complex of rooms comprising the former Nuclear Engineering Facility are located near the southeast corner of the Leo Engineering building. The floor plans for the first and second floors of the building are shown in Figures 1-2 and 1-3 respectively, with the facility areas shaded.

The Nuclear Engineering Facility consists of 3 separate areas. Room 221 contained the MCZPR and the 2 sub critical reactors. The MCZPR was separated from the sub critical reactors by a wall. The wall dividing the room will be used to separate room 221 into 2 areas thus creating survey units 1 and 2. The third survey area is in room 109 directly below room 221 where the fuel and sources were stored.

2.2 Facility Conditions at Time of Final Survey

As part of the decommissioning activities, reactor components (base plate, control rods, control rod drives) have been removed and shipped to the University of Texas. The fuel assembly and source storage containers, and other empty containers and non-radioactive equipment had been removed. At the time of the Final Survey, only the reactor console, reactor and critical experiment tanks, and piping from the water purification systems remained in the Facility. No contaminated surfaces existed.

2.3 Identity of Potential Contamination and Release Guidelines

The two critical experiments utilized natural uranium as fuel and the reactor fuel was enriched uranium, both low and high enrichment over the lifetime of the reactor. Thus, potential contamination would be the uranium isotopes UNAT, U238 and U235. Repeated wipes of the plutonium sources and testing of the moderater water prior to release have show that there was no potential for contamination from the plutonium.

Therefore based on the combination of uranium isotopes, the acceptable residual surface contamination release guidelines values (alpha and beta – gamma emitters) are;

5000 dpm / 100 cm², average over 1 m² 15000 dpm / 100 cm², maximum over 100 cm² 1000 dpm / 100 cm², removable over 100 cm²

3.0 FINAL STATUS SURVEY OVERVIEW

3.1 Survey Objectives

The purpose of the Final Status Survey was to demonstrate that the residual radiological conditions in the Manhattan College Nuclear Engineering Facility satisfy NRC guidelines (see section 2.3 above) and that the Facility can, therefore, be released for unrestricted future use

(no radiological controls). The specific objectives of the Final Status Survey for the Facility are to show that:

- Average Total direct (fixed and removable) surface contamination levels are within the guideline values defined in Section 2.3.
- Small areas of residual activity, known as "hot spots" do not exceed three times the guideline value, when averaged over a surface region of 100 cm², and provided that the average level within a 1 m² area containing the hot spot is within the guideline value.
- Removable activity in any 100 cm² area does not exceed 20% of the average surface activity guideline.
- External exposure rates do not exceed 5 ^{ur}/h above background at 1 m above the surface where averaged over a 100 m² grid area. Maximum exposure rates over any discrete area may not exceed 10 ^{ur}/h above background.

A 95% minimum level of confidence that the above conditions have been met was to be demonstrated. The rooms in the Nuclear Engineering Facility were divided into 3 survey units (see section 3.4) and the 95% level of confidence was to be applied to each survey unit separately.

3.2 Organization and Responsibilities

The Final Status Survey was conducted by Dr. Robert Berlin, the Acting Reactor Administrator. Dr. Berlin had conducted previous scans and surveys of the Facility and of other facilities under decommissioning. He was assisted by Manhattan College engineering students Paul Larocque, Robert Brancazzio, and Kathryn Vega. Each of the students was provided a training session prior to their participation which covered facility history, survey program purpose and parameters, radiological measurements, and use of the instruments. Dr. Berlin monitored the students activities, performed the bulk of the measurements, and analyzed the surface smears.

3.3 Instrumentation

The instruments that were used to take the measurements are listed in Table 3-1. The table also describes the specific use of each instrument and provides the detection (conversion) efficiency (E) as measured at the most recent calibration for the alpha and beta surface measurement instruments. Each instrument had been calibrated to NIST – traceable standards by either Eberline or Ludlum as appropriate. Operational checks were performed each day that an instrument was used.

3.4 Survey Procedures

Survey planning and procedure were conducted in accordance with the Manual for Conducting Radiological Surveys in Support of License Termination, NUREG/CR-5849, as reflected in the Manhattan College Zero Power Reactor Final Radiological Status Survey Plan (the "Plan")

3.4.1 Area Classification

As stated in the Plan prior scans and surveys of the Facility had indicated that there was no evidence of surface contamination in the Facility. All areas were therefore classified as unaffected areas.

3.4.2 Survey Units and Reference Grids

The Facility was divided into 3 surveys units based on physical layout and prior history as shown in figure 3-1 to 3-3 and as below;

			Approximate	Found on
Survey Unit	<u>Description</u>	Room	<u>Size</u>	<u>Figure</u>
1	Sub critical Reactor Lab	221	28′ X 25′	3-1
2	MCZPR Lab	221	28' x 18'	3-2
3	Fuel & Source			
	storage room	109	29'x38'	3-3

While the Facility had been classified as unaffected, and a preliminary scan had verified that there were no area of elevated activity (hot spots), a reference grid system was established using chalk lines that provided measurement coverage consistant with assuring that no residual contamination existed at any location (as provided in the Plan). A grid interval of 1 meter by 1 meter was used on all floor surfaces and walls up to 2 meters from the floor. The system of grid labeling for identifications purposes is shown on Figures 3-1 to 3-3.

3.4.3 Surface Scan

A preliminary scan of approximately 10% of the floor and lower wall surface area was performed using the ESP-2 instruments in the rate meter mode to verify that there were no hot spots. In addition, the entire area of Survey Unit 3 under the overhang (see figure 3-3) that has not been used for fuel and source storage was scanned and verified to contain no residual contamination. No further measurements were made in this separate area.

3.4.4 Surface Activity Measurements

Surface direct measurements of alpha and beta activity were performed at the center of each grid block using the instrumentation described in the scalar mode in Table 3-1. A one minute count time was used. The measurements were made at approximately 1 cm above the surface.

Removable alpha and beta contamination was measured by taking 100 cm² swipes (smears) at the center of each survey block. The swipes were placed in labeled glassine envelopes and the ID No. of the swipe correlated with the location designation on the data sheet. Swipes were read using the instruments described in Table 3-1.

Gamma exposure rates were measured at one meter from the floor or wall surface at the center of each survey block using the Bicron Micro Rem meter described in Table 3-1. Sample survey forms are provided in Appendix 1.

3.5 Background Level Determinations

Background measurements were taken in an area adjacent to the Facility in the Leo Engineering Building that had similar surface characteristics and materials as in the Facility. These locations had no history of radioactive material use. The following background surfaces were separately sampled.

- (1) Floor surfaces in the building stairwell and selected corridors having concrete surfaces comparable to the floor and exposed wall in areas in the Facility.
- (2) Painted cinderblock wall and door surfaces in corridors whose surfaces were comparable to the majority of walls in the Facility.
- (3) Painted brick surfaces in the Mechanical Engineering Laboratory whose surface was comparable to a small part of the wall surface in the Facility.
- (4) Painted metal walls in a storage area adjacent to Survey unit 3 comparable to a similar wall in Survey unit 3.

The same instruments were used to take the background measurements as were used in the measurements in the Facility. A minimum of 8-10 measurements was taken for each background parameter. Background removable activity measurements were made on a blank swipe. Statistical procedure described in NUREG/CR-5849 were used to assess that the averages determined for each parameter were representative of true average background levels.

3.6 Data Interpretation

Survey results for fixed measurements were recorded on data sheets. The data conversion and statistical analysis techniques in NUREG/CR-5849 were used to convert the reported data into a form that permitted a direct comparison with residual contamination guidelines. The calculational methodology is shown in Appendix 2 of this Report and the analyzed data is provided in Tables 4-2 to 4-4. Surface unit measurement were converted to units of dpm/100 cm², and exposure rates are represented in uR/h. The effective activity and exposure rates reported in Tables 4-2 to 4-4 have been adjusted by subtracting the natural background levels.

3.7 Quality Control

Every tenth measurement and swipe was repeated to provide a basis for comparison with the original measurement and thus assure that measurement program accuracy and repeatability was being maintained.

3.8 Records

All original survey data records and swipes have been archived at Manhattan College and will be held until such time as authorized by the NRC for disposal.

4.0 SURVEY FINDINGS AND RESULTS

4.1 Background Levels / MDA

Background average surface activity measurements are provided in Table 4-1 for both total (direct) and removable measurements. The MDA values provided in the table were calculated using the procedure in section 5.2 of NUREG/CR-5849. In each case the MDA is less than 25% of the guideline value for average levels (or 1250 dpm/100 cm² alpha and 1250 dpm/100 cm² beta).

4.2 Nuclear Engineering Facility Survey

4.2.1 Surface Activity Measurement

Tables 4-2 to 4-4 present the results of the final surface activity measurements in the 3 survey units. The measured counts and the corresponding converted effective activity are provided with the calculated uncertainties at the 95% confidence level. All individual measurement values were well within the average total residual contamination guidelines of 5000 dpm/100 cm² and removable contamination is well within 20% of the guidelines of 1000 dpm/ 100 cm². Many of the measurements were below the sensitivity levels of the procedures. There were no hot spots.

4.2.2 Exposure Rates

Exposure rates inside each of the survey units are provided in Tables 4-2 to 4-4. All individual readings do not exceed 5 ^{ur}/h above background, the guideline value.

4.3 Data Evaluation

Using the analytical approach in NUREG/CR-5849, a comparison of the average values for the activity and exposure rate measurement with the guidelines showed that the guidelines were satisfied at the 95% confidence level.

4.4 Quality Control

Original and duplicate measurements of the total and removable alpha and beta activity at every tenth location are provided in Table 4-5 to 4-7. The uncertainty (standard deviation) on the activity was calculated for the original and duplicate measurement. When the resultant bounding limits were determined for each pair of values (original and duplicate), all of the pairs for each parameter fell within the boundary limits (overlapped).

5.0 SUMMARY

Results of the final status survey of the three survey units in the Nuclear Engineering Facility demonstrate that the activity and exposure levels are within the NRC limits for unrestricted use. This will provide the basis for applying for license termination.

Manhattan College

MUMERICAL 1 - Memorial Hall

2 . De La Salle Hall 3 · Manhattan Hall

4 - Hayden Hall 5 · Cardinal Hayes Library

6 - Smith Auditorium/ Chapel of De La Salle and His Brothers

7 · Chrysostom Hall

8 - Alumni Hall

9 - Draddy Gymnasium

0 - Jasper Hall

1 - Thomas Hall (Student Center)

2 · Solomon House

3 - Lavelle Hall (Alumni & 42 - Dowling Hall College Relations Offices) 9 - Draddy Gymnasium

1 · Scars Hall (Development Office) 5 · Christian Brothers

Center 0 - Paulian Hall

1 - Leo Engineering Building

2 · Farrell Hall

3 - Neumann House 1 · Christian Brothers'

Residence (1) 5 · Christian Brothers'

Residence (2)

3 · Granville Hall D . Lloyd Hall

1 · Mundelein Hall 2 · Birches Cottage

3 · Mitty Hall 7 - St. Josephi's Hall

3 - Rock Ledge

1 - Christian Brothers' Residence (3)

J - Broderick Hall

: · Galway House 2 · Dowling Hall

1 · Bluff Collage

1 - Donohue Hall

5 · Sullivan Hall · · Overlook Manor

8 - Alumni Hall

32 · Birches Couage 43 · Blull Cottage

40 · Broderick Hall

5 · Cardinal Hayes Library

ALPHABETICAL

15 - Christian Brothers Center 24 - Christian Brothers'

Residence (1) 25 · Christian Brothers' Residence (2)

39 · Christian Brothers' Residence (3)

7 · Chrysostom Hall

2 . De La Salle Hall 44 - Donohue Hali

22 · Farrell Hall 41 - Galway House

28 - Granville Hall 4 · Hayden Hall

10 · Jasper Hall 13 - Lavelle Hall (Alumni & College Relations

Offices) 21 - Leo Engineering Building

30 · Lloyd Hall 3 · Manhattan Hall 1 - Memorial Hall

33 · Mitty Hall 31 · Mundelein Hall

23 - Neumann House 46 · Overlook Manor

20 · Paulian Hall 38 - Rock Ledge 37 · St Joseph's Hall

14 · Sears Hall (Development Office)

6 · Smith Auditorium/Chapel of De La Salle and His Brothers

12 · Solomon House

45 · Sullivan Hall

11 - Thomas Hall (Student Center)

Figure 1.1. Plan of Manhattan College Campus

FIGURE 1-2
PLAN OF FIRST FLOOR OF THE LEO ENGINEERING BUILDING

FIGURE 1-3
PLAN OF SECOND FLOOR OF THE LEO ENGINEERING BUILDING

FIGURE 3-1
SUB_CRITICAL REACTOR LAB

TABLE 3-1 RADIATION SURVEY INSTRUMENTS

INSTRUMENT DESCRIPTION	APPLICABILITY	DETECTION ⁽¹⁾ EFFICIENCY (E)
Eberline ESP-2 "Smart Portable" in the Scalar mode with Eberline Alpha Scintillation Probe Model AC-3.	Alpha surface activity	0.38
Eberline ESP-2 in the Scalar Mode with Eberline Pancake GM probe Model HP-260	Beta-Gamma surface activity	0.39
Ludlum Model 1000 Scalar with Ludlum Model 43-10 Alpha Sample Counter	Alpha activity on Smears	
Bicron Micro Rem Tissue Equivalent Survey Meter	Exposure Rates	

⁽¹⁾ E measured in counts per disintegrations

TABLE 4-1
BACKGROUND MEASUREMENTS AND MDAs

	AVERAG	E BACKGROUND	ACTIVITY	(dpm/100 cm ²) ⁽¹⁾	M	DA (dpm/)	BACKGROUND (1)	
SURFACE		ALPHA	BETA-GAMMA		ALPHA	BETA-GAMMA		EXPOSURE RATE (µlVhr)
	TOTAL	REMOVABLE	TOTAL	REMOVABLE	TOTAL	TOTAL	REMOVABLE	
Painted cinderblock wall and metal doors (2)	13/4 (6)	0	562/116	546/116	48	493	487	6
Painted brick wall (3)	9/5	0	1390/152	546/116	37	750	487	8
Concrete floor and walls (4)	4/4	0	860/195	546/116	33	600	487	8,5
Painted metal wall (5)	13/4	0	562/116	546/116	48	493	487	5

NOTES

- (1) Average of 8-10 readings. In each case the average level accurately represents the true background average to within \pm 20% accuracy at the 95% confidence level using calculation approach in section 8.5.5 of NUREG/CR-5849.
- (2) Measurements made in corridor of Leo Engineering Building
- (3) Measurements made in Mechanical Engineering Laboratory
- (4) Measurements made in stairwell and in corridor in machine shop except for exposure rate measurement of 5 ui/hr which was made in separate storage room adjoining the fuel storage area.
- (5) Made in separate storage room adjoining the fuel storage area
- (6) Values provided for alpha and beta-gamma background are activity / uncertainty
- (7) MDAs calculated

	TAE	BLE 4-2			. ATUS SL	JRVEY		SURVEY U., T 1			
GRID	· · · ·	TOT	AL ACTIVITY	(dpm / 100 CM				REMOVABLE ACTIVITY (dpm/100 CM ²)			
POINT	ALPHA BE			TA	GAMMA	IN uR/hr	SMEAR #		PHA		GAMMA
	COUNTS / M	ACT. / UNCERT ⁽²⁾	COUNTS / M	ACT / UNCERT.	TOTAL	ABOVE bkg	<u> </u>	COUNTS/M	ACT./ UNCERT.	COUNTS/M	ACT. / UNCERT.
			,		F	LOOR					
C ₃	0	-4/8	37	-248/306	8	0	32	0	0/0	28	-66/251
D ₃	3	9/17	50	-33/327	7	-1	31	0	0/0	38	99/271
E ₃	0	-4/8	28	-397/290	6	-2	30	0	0/0	37	83/269
F ₃	1	0/12	48	-66/324	7	-1	33	0	0/0	34	33/263
G ₃	2	4/15	35	-281/302	66	-2	34	0	0/0	33	17/261
H ₃	1	0/12	41	-182/313	5	-3	35	0	0/0	34	33/263
l ₃	1	0/12	51	-17/329	6	-2	36	0	0/0	26	-99/247
J ₃	1	0/12	33	-314/299	6	-2	37	0	0/0	24	-132/243
K ₃	1	0/12	44	-132/318	7	-1	38	0	0/0	38	99/271
C ₄	1	0/12	48	-66/324	6	-2	98	0	0/0	36	66/267
D ₄	3	9/17	52	0/331	8	0	99	0	0/0	31	-17/257
E ₄	1	0/12	37	-248/306	6	-2	29	0	0/0	22	-165/238
F ₄	1	0/12	41	-182/313	6	-2	45	0	0/0	33	17/261
G ₄	1	0/12	48	-66/324	7	-1	43	0	0/0	40	132/275
H ₄	3	9/17	54	33/334	7	-1	44	0	0/0	22	-165/238
14	1	0/12	40	-198/311	7	-1	41	0	0/0	32	0/259
J ₄	2	4/15	54	33/334	6	-2	40	0	0/0	29	50/253
K ₄	0	-4/8	41	-182/313	7	-1	39	0	0/0	44	198/283
C ₅	0	-4/8	71	314/360	9	1	1A	0	0/0	38	99/271
D ₅	3	9/17	67	248/354	10	2	2A	0	0/0	34	33/263
E ₅	1	0/12	33	-314/299	6	-2	28	0	0/0	37	83/269
F ₅	0	-4/8	35	-281/302	5	-3	46	0	0/0	44	198/283
G ₅	0	-4/8	32	-331/297	5	-3	47	0	0/0	28	-66/251
H ₅	1	0/12	39	-215/309	6	-2	48	0	0/0	28	-66/251
I _{5A}	0	-4/8	37	-248/306	5	-3	49	0	0/0	30	-33/255
J _{5A}	0	-4/8	30	-364/294	5	-3	50	0	0/0	30	-33/255
K _{5A}	2	4/15	58	99/340	6	-2	51	0	0/0	30	-33/255
I _{5B}	0	-4/8	28	-397/290	5	-3	76	0	0/0	30	-33/255
J _{5B}	1	0/12	42	-165/314	6	-2	82	0	0/0	41	149/277
K _{5B}	0	-4/8	38	-232/308	5	-3	84	0	0/0	44	198/283

•	TALLE 4-2					ATUS SU	JRVEY		SURVEY U.IT 1			
GRID			AL ACTIVITY	(dpm / 100 CM ²)) ^{(1) (3)}			REMOVABLE ACTIVITY (dpm/100 CM ²)				
POINT	ALPHA		BETA		GAMMA IN uR/hr		SMEAR#		PHA		GAMMA	
	COUNTS / M	ACT. / UNCERT ⁽²⁾		ACT / UNCERT.	TOTAL	ABOVE bkg	<u> </u>	COUNTS / M	ACT./ UNCERT.		ACT. / UNCERT	
C ₆	1	0/12	45	-116/319	13	5	3A	0	0/0	41	149/277	
D ₆	0	-4/8	63	182/348	13	5	4A	0	0/0	35	50/265	
E ₆	0	-4/8	36	-265/304	8	0	27	0	0/0	46	232/287	
E _{6A}	1	0/12	39	-215/309	6	-2	56	0	0/0	39	116/273	
F ₆	1	0/12	37	-248/306	7	-1	57	0	0/0	31	-17/257	
G ₆	1	0/12	22	-498/279	7	-1	58	0	0/0	19	-215/232	
H ₆	0	-4/8	23	-480/281	5	-3	59	0	0/0	44	198/283	
I _{6A}	0	-4/8	42	-165/314	9	1	60	0	0/0	32	0/259	
J ₆	0	-4/8	37	-248/306	8	0	83	0	0/0	28	-66/251	
K _{6A}	0	-4/8	40	-198/311	7	-1	52	0	0/0	28	-66/251	
I _{6B}	1	0/12	34	-298/301	6	-2	77	0	0/0	33	17/261	
K _{6B}	2	4/15	42	-165/314	6	-2	85	0	0/0	36	66/267	
C ₇	0	-4/8	48	-66/324	13	5	5A	0	0/0	42	165/279	
D_7	3	9/17	61	149/345	12	5	6A	0	0/0	20	-198/234	
E _{7A}	1	0/12	31	-347/295	5	-3	65	0	0/0	30	-33/255	
C ₈	1	0/12	46	-99/321	9	1	7A	0	0/0	26	-99/247	
D ₈	1 .	0/12	41	-182/313	9	1	8A	0	0/0	39	116/273	
E _{8A}	0	-4/8	43	-149/316	6	-2	66	0	0/0	28	-66/251	
F _{8A}	0	-4/8	31	-347/295	7	-1	69	0	0/0	32	0/259	
G _{8A}	3	9/17	37	-248/306	6	-2	71	0	0/0	34	33/263	
H _{8A}	1	0/12	36	-265/304	7	-1	73	0	0/0	30	-33/255	
I _{8A}	2	4/15	17	-579/269	6	-2	75	0	0/0	28	-66/251	
J _{8A}	0	-4/8	40	-198/311	7	-1	1D	0	0/0	32	0/259	
K _{8A}	2	4/15	44	-132/318	6	-2	54	0	0/0	45	215/285	
F _{8B}	1	0/12	42	-165/314	7	-1	68	0	0/0	35	50/265	
G _{8B}	0	-4/8	44	-132/318	6	-2	70	0	0/0	26	-99/247	
H _{8B}	2	4/15	37	-248/306	7	-1	72	0	0/0	36	66/267	
I _{8B}	3	9/17	42	-165/314	8	0	74	0	0/0	27	-83/249	
I _{8C}	3	9/17	43	-149/316	6	-2	81	0	0/0	38	99/271	
J ₈	1	0/12	33	-314/299	6	-2	88	0	0/0	35	50/265	
D ₉	0	-4/8	39	-215/309	9	1	10	0	0/0	38	99/271	

	TALLE 4-2	CONTIN	JED		FINAL	ATUS SL	JRVEY		SU	RVEY U	T 1
CDID		ТОТ	AL ACTIVITY	(dpm / 100 CM ²)	dpm / 100 CM ²) ^{(1) (3)}			REMOVABLE ACTIVITY (dpm/100 CM ²)			
GRID POINT	ALPHA		BE	BETA		GAMMA IN uR/hr		ALI	PHA	BETA -GAMMA	
POINT	COUNTS / M	ACT. / UNCERT(2)	COUNTS / M	ACT / UNCERT.	TOTAL	ABOVE bkg]	COUNTS / M	ACT./ UNCERT.	COUNTS / M	ACT. / UNCERT.
E ₉	0	-4/8	40	-198/311	9	1	12	0	0/0	38	99/271
F ₉	2	4/15	40	-198/311	8	0	13	0	0/0	40	165/275
G ₉	1	0/12	48	-66/324	8	0	14	0	0/0	31	-17/257
H ₉	2	4/15	46	-99/321	8	0	15	0	0/0	34	33/263
19	0	-4/8	44	-132/318	6	-2	16	0	0/0	28	-66/251
J ₉	0	-4/8	38	-232/308	8	0	17	0	0/0	29	-50/253
K ₉	1	0/12	37	-248/306	7	-1	18	0	0/0	27	-83/249
D ₁₀	1	0/12	49	-50/326	8	0	9	0	0/0	31	-17/257
E ₁₀	0	-4/8	35	-281/302	7	-1	8	0	0/0	26	-99/247
F ₁₀	0	-4/8	49	-50/326	8	0	7	0	0/0	28	-66/251
G ₁₀	0	-4/8	45	-116/319	8	0	24	0	0/0	42	-99/247
H ₁₀	3	9/17	47	-83/324	9	1	23	0	0/0	35	50/265
I ₁₀	0	-4/8	54	33/334	9	1	21	0	0/0	40	165/275
J ₁₀	1	0/12	43	-149/316	9	<u> </u>	20	0	0/0	44	198/283
K ₁₀	1	0/12	55	50/336	9	1	19	0	0/0	28	-66/251
E ₁₁	0	-4/8	40	-198/311	5	-3	5	0	0/0	31	-17/257
F ₁₁	0	-4/8	50	-33/327	9	1	6	0	0/0	25	-116/245
	1	0/12	43	-149/316	8	0	4	0	0/0	29	-50/253
E ₁₂	1	.		 					+		
F ₁₂	0	-4/8	40	-198/311	7	-1	3	0	0/0	45	215/285
E ₁₃	1	0/12	42	-165/314	6	-2	1	0	0/0	26	-99/247
F ₁₃	0	-4/8	42	-165/314	6	-2	2	0	0/0	28	-66/251
<u> </u>		0::5		00/055		TANK	1	,			00/000
1	1 2	0/12	28	-99/255	7	-1	89	0	0/0	37	83/269
3	3	-4/8 9/17	32	-33/263 -17/265	<u>6</u> 7	-2 -1	91 92	0	0/0	30 20	-33/255 -198/234
4	1	0/12	33	-17/265	7	-1	93	0	0/0	34	33/263
5	2	4/15	40	99/279	' 7	-1	94	0	0/0	20	-198/234
6	1	0/12	30	-66/259	6	-2	95	0	0/0	19	-215/232
7	2	4/15	38	66/275	5	-3	96	0	0/0	29	-50/253
8	2	4/15	34	0/267	7	-1	97	0	0/0	42	165/279
			-4			WALLS			 		
C1	4	4/23	48	232/294	9	3	30A	0	0/0	28_	-66/251
D1	1	-9/17	37	50/273	9	3	29A	0	0/0	28	-66/251

	TALLE 4-2	CONTINU	JED		ATUS SL	JRVEY		SURVEY UNIT 1			
GRID				(dpm / 100 CM		(3)		REMOVABLE ACTIVITY (dpm/100 CM ²)			
POINT	ALPHA E		BI	ETA GAMMA IN uR/hr			SMEAR #		PHA		GAMMA
	COUNTS / M	ACT. / UNCERT ⁽²⁾	COUNTS / M	ACT / UNCERT.	TOTAL	ABOVE bkg	<u> </u>	COUNTS/M	ACT./ UNCERT.	COUNTS / M	ACT. / UNCERT.
E ₁	2	-4/20	48	232/294	8	2	34A	0	0/0	25	-116/245
F ₁	0	-13/15	29	-66/257	7	1	36A	0	0/0	27	-83/249
G ₁	2	-4/20	42	132/283	7	1	38A	0	0/0	32	0/259
H ₁	2	-4/20	36	33/271	7	1	40A	0	0/0	26	-99/247
l ₁	3	0/21	30	-66/259	6	0	42A	0	0/0	30	-33/255
J ₁	3	0/21	46	198/290	6	0	45A	0	0/0	32	0/259
**K ₁	3	0/20	26	-132/251	7	1	47A	0	0/0	33	17/261
C ₂	3	0/21	36	33/271	8	2	31A	0	0/0	28	-66/251
D_2	2	-4/20	36	33/271	7	1	32A	0	0/0	30	-33/255
E ₂	2	-4/20	27	-116/253	7	1	35A	0	0/0	27	-83/249
F ₂	3	0/20	29	-83/257	8	2	37A	0	0/0	24	-132/243
G ₂	3	0/21	36	33/271	5	-1	39A	0	0/0	28	-66/251
H ₂	1	-9/17	24	-165/247	7	1	41A	0	0/0	32	0/259
l ₂	5	9/25	29	-83/257	6	0	43A	0	0/0	25	-116/245
J ₂	3	0/21	28	-99/255	7	1	46A	0	0/0	39	116/273
**K ₂	3	0/21	28	-99/255	8	2	48A	0	0/0	36	66/267
A ₃	5	19/23	95	198/434	10	2	28A	0	0/0	32	0/259
B ₃	2	-4/20	34	0/267	9	3	27A	0	0/0	41	149/277
L ₃	5	9/25	28	-99/255	5	-1	50A	0	0/0	30	-33/255
M ₃	2	-4/20	30	-66/259	5	-1	49A	0	0/0	32	0/259
*A ₄	3	4/20	93	149/431	9	1	26A	0	0/0	36	66/267
B₄	1	-9/17	49	248/296	7	1	25A	0	0/0	32	0/259
A ₅	2	-4/20	38	66/275	8	2	24A	0	0/0	36	66/267
B ₅	2	-4/20	43	149/285	8	2	18A	0	0/0	28	-66/251
D _{5A}	4	4/23	40	99/279	8	2	23A	0	0/0	40	132/275
L ₅	3	0/21	32	-33/263	5	-1	54A	0	0/0	36	66/267
M ₅	2	-4/20	33	-17/265	6	0	53A	0	0/0	29	-50/253
B ₆	2	-4/20	33	-17/265	9	3	17A	0	0/0	22	-165/238
A ₆	5	9/23	41	116/281	7	1	1C	0	0/0	32	0/259
D _{6A}	0	-13/15	49	248/296	10	4	21A	0	0/0	48	265/291

	TALLE 4-2				FINAL	ATUS SL	JRVEY		SU	RVEY U.	T 1
GRID		TOT	AL ACTIVITY	(dpm / 100 CM ²) ^{(1) (3)}				OVABLE ACTIV		
POINT	ALP	'HA	B	ETA	GAMMA	IN uR/hr	SMEAR#		PHA		GAMMA
				ACT / UNCERT.	TOTAL	ABOVE bkg			ACT./ UNCERT.		ACT. / UNCERT.
D _{6B}	2	-4/20	40	99/279	8	2	22A	0	0/0	30	-33/255
L ₆	5	9/25	34	0/267	4	-2	56A	0	0/0	20	-198/234
M ₆	2	-4/20	39	83/277	5	-1	55A	0	0/0	32	0/259
D _{7A}	3	0/21	40	99/279	11	5	19A	0	0/0	38	99/271
D _{7B}	5	9/25	53	314/302	9	3	20A	0	0/0	38	99/271
L ₇	2	-4/20	20	-232/238	5	-1	59A	0	0/0	28	-66/251
M ₇	2	-4/20	32	-33/263	6	0	58A	0	0/0	30	-33/255
D _{8A}	4	4/23	55	347/304	9	3	15A	0	0/0	26	-99/247
D _{8B}	1	-9/17	37	50/273	7	1	16A	0	0/0	40	132/275
L ₈	2	-4/20	29	-83/257	6	0	61A	0	0/0	31	-17/257
M ₈	3	0/21	39	83/277	7	<u> 1</u>	60A	0	0/0	34	33/263
*A ₉	2	0/17	79	-83/414	11	3	100A	0	0/0	30	-33/255
Cg	1	-9/17	51	281/300	7	1	10A	0	0/0	30	-33/255
D ₉	2	-4/20	44	165/287	<u>7</u>	1	13A	0	0/0	36	66/267
L ₉	4	4/23	41	116/281	7	1	63A	0	0/0	30	-33/255
M ₉	4	4/23	38	66/275	7	1	62A	0	0/0	24	-132/243
*B ₁₀	2	-4/20	81	99/416	10	4	98A	0	0/0	28	-66/251
*C ₁₀	2	0/17	62	-198/392	12	4	12A	0	0/0	37	83/269
D ₁₀	0	-13/15	43	182/285	6	0	14A	0	0/0	30	-33/255
L ₁₀	2	-4/20	59	413/313	9	3	65A	0	0/0	40	132/275
M ₁₀	3	0/21	43	149/285	9	3	64A	0	0/0	42	165/279
C ₁₁	1	-9/17	44	165/287	8	2	95A	0	0/0	42	165/279
D ₁₁	2	-4/20	35	17/269	9	3	96A	0	0/0	24	-132/243
**E _{11A}	0	-9/17	39	83/277	6	0	93A	0	0/0	32	0/259
**E _{11B}	2	-4/20	35	17/269	7	1	94A	0	0/0	40	132/275
F _{11A}	3	0/21	34	0/267	7	1	78A	0	0/0	29	-50/253
F _{11B}	1	-9/17	48	232/294	7	1	79A	0	0/0	26	-99/247
*G ₁₁	0	-9/12	104	331/445	10	2	75A	0	0/0	26	-99/247
*H ₁₁	1	-4/15	70	-232/402	11	3	73A	0	0/0	29	-50/253
*111	4	9/21	110	430/452	11	3	71A	0	0/0	37	83/269
*J ₁₁	2	0/17	74	-165/408	11	3	69A	0	0/0	24	-132/243

						.ATUS SU	JRVEY		SU	RVEY U.	T 1
GRID		TOT	AL ACTIVITY	(dpm / 100 CM ²	2)(1)(3)				OVABLE ACTI	<u> </u>	
POINT				ETA		N uR/hr	SMEAR #		PHA		GAMMA
		ACT. / UNCERT ⁽²⁾			TOTAL	ABOVE bkg	<u> </u>		ACT./ UNCERT.		ACT. / UNCERT.
*K ₁₁	4	9/21	80	-66/415	13	5	67A	0	0/0	29	-50/253
E _{12A}	1	-9/17	39	83/277	4	-2	91A	0	0/0	28	-66/251
E _{12B}	4	4/23	42	132/283	5	-1	92A	0	0/0	33	17/261
F _{12A}	4	4/23	40	99/279	6	0	80A	0	0/0	32	0/259
F _{12B}	2	-4/20	30	-66/259	6	0	81A	0	0/0	46	232/287
*G ₁₂	0	-9/12	87	50/424	12	4	76A	0	0/0	28	-66/251
*H ₁₂	2	0/17	73	-182/407	13	5	74A	0	0/0	32	0/259
*112	2	0/17	90	99/428	12	4	72A	00	0/0	26	-99/247
*J ₁₂	3	4/20	69	-248/401	12	4	70A	0	0/0	32	0/259
*K ₁₂	2	0/17	101	-281/441	12	4	68A	0	0/0	32	0/259
E _{13A}	1	-9/17	41	116/281	6	0	89A	0	0/0	28	-66/251
E _{13B}	1	-9/17	40	99/279	7	1	90A	0	0/0	26	-99/247
**E ₁₄	2	-4/20	40	99/279	7	1	86A	0	0/0	36	66/267
F ₁₅	1	-9/17	29	-83/257	7	1	84A	0	0/0	30	-33/255
**E ₁₅	0	-9/17	40	99/279	9	3	88A	0	0/0	32	0/259
F ₁₅	3	0/21	34	0/267	7	1	85A	0	0/0	40	132/275
**DOWN- STAIRS	4	4/23	40	99/279	7	1	1D			36	66/267
	ed brick walls (er block)								
** Paint	ed metal doors	; 							<u> </u>		
(1) Coli	Imns containing	n values in don	n/100cm² are	reported with ba	ckaround sub	dracted			<u></u>		
(2) Unc	ertainties are c	aclulated at the	e 95% confide	nce level (1.96x and calculated N	standard dev						
	Table 3-1 for c										
									 		
											<u> </u>

	TAB	LE 4-3			FINAL S	ATUS SU	JRVEY		SU	RVEY U	T 2
GRID		ТОТ	AL ACTIVITY	(dpm / 100 CM ²) ^{(1) (3)}				OVABLE ACTIV		
POINT	ALP	HA	BE	TA	GAMMA	IN uR/hr	SMEAR #		PHA		GAMMA
	COUNTS/M	ACT. / UNCERT(2)	COUNTS / M	ACT / UNCERT.	TOTAL	ABOVE bkg		COUNTS / M	ACT./ UNCERT.	COUNTS / M	ACT. / UNCERT.
						ETE FLOOF				T	1
H ₃	2	4/15	44	-132/318	7	-1	27	0	0/0	36	66/267
H ₄	2	4/15	43	-149/316	5	-3	26	0	0/0	34	33/263
H ₅	2	4/15	47	-83/324	6	-2	25	0	0/0	30	-33/255
H ₆	0	-4/8	48	-66/324	5	-3	23	0	0/0	34	33/263
H ₇	1	0/12	32	-331/297	5	-3	22	0	0/0	38	99/271
H ₈	2	4/15	32	-331/297	8	0	21	0	0/0	33	17/261
l ₃	3	9/17	40	-198/311	6	-2	15	0	0/0	26	-99/247
14	2	4/15	34	-298/301	6	-2	16	0	0/0	30	-33/255
15	2	4/15	48	-66/324	5	-3	17	0	0/0	40	132/275
l ₆	2	4/15	42	-165/314	7	-1	18	0	0/0	43	182/281
17	2	4/15	46	-99/321	7	-1	19	0	0/0	39	116/273
18	1	0/12	45	-116/319	6	-2	20	0	0/0	28	-66/251
J ₃	1	0/12	61	149/345	6	-2	14	0	0/0	21	-182/236
J_4	2	4/15	50	-33/327	7	-1	12	0	0/0	38	99/271
J ₅	0	-4/8	46	-99/321	5	-3	11	0	0/0	30	-33/255
J ₆	3	9/17	45	-116/319	6	-2	10	0	0/0	32	0/259
J ₇	0	-4/8	51	-17/329	7	-1	9	0	0/0	28	-66/251
J ₈	1	0/12	35	-281/302	7	-1	8	0	0/0	34	33/263
K ₃	1	0/12	53	17/332	5	-3	2	0	0/0	30	-33/255
K ₄	0	-4/8	54	33/334	6	-2	3	0	0/0	26	-99/247
K ₅	0	-4/8	38	-232/308	6	-2	4	0	0/0	31	-17/257
K ₆	0	-4/8	31	-347/295	7	-1	5	0	0/0	36	66/267
K ₇	0	-4/8	42	-165/314	6	-2	6	0	0/0	42	165/279
K ₈	0	-4/8	47	-83/324	7	-1	7	0	0/0	32	0/259
		I		·	METAL	PLATFORM	/				
C ₃	2	4/15	41	-182/313	10	2	52	0	0/0	24	-132/243
C ₄	2	4/15	54	33/334	10	2	53	0	0/0	50	298/295
C ₅	6	22/23	46	-99/321	8	0	54	0	0/0	32	0/259
C ₆	4	13/20	45	-116/319	9	1	55	0	0/0	28	-66/251
C ₇	2	4/15	34	-298/301	7	-1	56	0	0/0	36	66/267

	TALLE 4-3					ATUS SL	JRVEY		SU	RVEY U	T 2
GRID		TOT	AL ACTIVITY	(dpm / 100 CM ²) ^{(1) (3)}				OVABLE ACTIV		
POINT	ALF			TA		A IN uR/hr	SMEAR #		PHA		GAMMA
		ACT. / UNCERT ⁽²⁾		ACT / UNCERT.	TOTAL	ABOVE bkg			ACT./ UNCERT.		ACT. / UNCERT
C ₈	2	4/15	43	-149/316	9	1	58	0	0/0	22	-165/238
D ₃	1	0/12	36	-265/304	9	1 1	51	0	0/0	39	116/273
D ₄	2	4/15	49	-50/326	9	1	50	0	0/0	26	-99/247
D ₅	1	0/12	35	-281/302	9	1	49	0	0/0	28	-66/251
D ₆	2	4/15	44	-116/318	9	1	48	0	0/0	32	0/259
D ₇	2	4/15	35	-281/302	9	1	46	0	0/0	35	50/265
D ₈	2	4/15	37	-248/306	6	-2	45	0	0/0	30	-33/255
E ₃	2	4/15	43	-149/316	8	0	40	0	0/0	32	0/259
E ₄	0	-4/8	44	-132/318	88	0	41	0	0/0	26	-99/247
E ₅	2	4/15	54	33/334	8	0	42	0	0/0	34	33/263
E ₇	3	9/17	44	-132/318	8	0	43	0	0/0	40	132/275
E ₈	2	4/15	32	-331/297	7	-1	44	0	0/0	35	50/265
F ₃	1	0/12	38	-232/308	7	-1	39	0	0/0	30	-33/255
F ₄	1	0/12	50	-33/327	88	0	38	0	0/0	36	66/267
F ₆	2	4/15	41	-182/313	10	2	37	0	0/0	44	198/283
F ₈	1	0/12	33	-314/299	88	0	34	0	0/0	28	-66/251
G₃	1	0/12	29	-380/292	6	-2	28	0	0/0	40	132/275
G₄	3	9/17	44	-132/318	8	0	29	0	0/0	32	0/259
G ₅	2	4/15	37	-248/306	8	0	30	0	0/0	24	-132/243
G_6	2	4/15	38	-232/308	9	11	31	0	0/0	28	-66/251
G ₇	1	0/12	20	-529/277	8	0	32	0	0/0	37	83/269
G ₈	4	13/20	22	-496/279	7	-1	33	0	0/0	41	149/277
						WALL					
*A ₃	1	-4/15	83	-17/419	11	3	2A	0	0/0	29	-50/253
*A ₄	1	-4/15	92	132/430	13	5	100	0	0/0	32	0/259
*A ₅	2	0/17	82	-33/418	13	5	98	0	0/0	36	66/267
*A ₆	4	9/21	80	-66/415	12	4	96	0	0/0	44	198/283
*A ₇	4	9/21	83	-17/419	12	4	94	0	0/0	40	132/275
*A ₈	6	18/25	80	-66/415	11	3	92	0	0/0	32	0/259
B ₃	4	4/23	35	17/269	11	3	3A	0	0/0	37	83/269
B ₄	2	-4/20	39	83/277	13	5	1A	0	0/0	26	-99/247

7	TAL_E 4-3					ATUS SU	JRVEY		SU	RVEY U	T 2
GRID		TOT		(dpm / 100 CM ²) ^{(1) (3)}				OVABLE ACTI		
POINT	ALF			ETA		N uR/hr	SMEAR#		PHA		GAMMA
	COUNTS / M	ACT. / UNCERT(2)		ACT / UNCERT.	TOTAL	ABOVE bkg			ACT./ UNCERT.		
B ₅	11	-9/17	39	83/277	12	4	99	0	0/0	32	0/259
B ₆	1	-9/17	40	99/279	13	5	97	0	0/0	18	-232/230
B ₇	2	-4/20	36	33/271	11	3	95	0	0/0	21	-182/236
B ₈	1	-9/17	41	116/281	11	3	36A	0	0/0	34	33/263
C ₁	3	0/21	51	281/300	11	5	4A	0	0/0	36	66/267
C ₂	11	-9/17	36	33/271	7	11	5A	0	0/0	39	116/273
C ₉	4	4/23	34	0/267	10	4	89	0	0/0	28	-66/251
C ₁₀	3	0/21	46	198/290	12	5	91	0	0/0	24	-132/243
D ₁	0	-13/15	50	265/298	7	1	6A	0	0/0	24	-132/243
D ₂	2	-4/20	46	198/290	8	2	7A	0	0/0		66/287
D ₉	4	4/23	42	132/283	7	1	87	0	0/0	42	165/279
D ₁₀	2	-4/20	40	99/279	8	2	88	0	0/0	30	-33/255
E ₁	3	0/21	42	132/283	88	2	8A	0	0/0	34	33/263
E ₂	1	-9/17	37	50/273	8	2	9A	0	0/0	22	-165/238
E ₉	3	0/21	36	33/271	9	3	85	0	0/0	24	-132/243
E ₁₀	1	-9/17	44	165/287	8	2	86	0	0/0	22	-165/238
F ₁	2	-4/20	38	66/275	7	1	10A	0	0/0	32	0/259
F ₂	2	-4/20	34	0/267	6	0	12A	0	0/0	40	132/275
F ₉	4	4/23	46	198/290	10	4	83	0	0/0	34	33/263
F ₁₀	2	-4/20	34	0/267	9	3	84	0	0/0	26	-99/247
G ₁	1	-9/17	32	-33/263	7	1	13A	0	0/0	36	66/267
G ₂	0	-13/15	39	83/277	7	1	14A	0	0/0	38	99/271
G ₉	1	-9/17	29	-83/257	11	5	81	0	0/0	41	149/277
G ₁₀	2	-4/20	40	99/279	10	4	82	0	0/0	32	0/259
H ₁	1	-9/17	34	0/267	6	0	15A	0	0/0	30	-33/255
H ₂	3	0/21	46	198/290	6	0	16A	0	0/0	22	-165/238
H ₉	2	-4/20	41	116/281	8	2	78	0	0/0	32	0/259
H ₁₀	3	0/21	31	-50/261	9	3	80	0	0/0	35	50/265
11	2	-4/20	46	198/290	7	1	17A	0	0/0	36	66/267
l ₂	2	-4/20	50	265/298	8	2	18A	0	0/0	38	99/271
l ₉	0	-13/15	33	-17/265	9	3	76	0	0/0	30	-33/255

7	TAL_E 4-3					ATUS SU	JRVEY		SU	RVEY U	T 2
GRID		TOT	AL ACTIVITY	(dpm / 100 CM ²) ^{(1) (3)}				OVABLE ACTIV		
POINT	ALP			TA	·	N uR/hr	SMEAR#		PHA		GAMMA
		ACT. / UNCERT(2)		ACT / UNCERT.	TOTAL	ABOVE bkg			ACT./ UNCERT.		
I ₁₀	3	0/21	38	66/275	9	3	77	0	0/0	32	0/259
*J ₁	4	9/21	70	-232/402	9	11	19A	0	0/0	28	-66/251
J_2	2	-4/20	36	33/271	6	0	20A	0	0/0	26	-99/247
J ₉	1	-9/17	36	33/271	9	3	74	0	0/0	40	132/275
J ₁₀	0	-13/15	40	99/279	8	2	75	0	0/0	30	-33/255
K₁	6	13/25	46	198/290	7	1	21A	0	0/0	44	198/283
K ₂	11	-9/17	52	298/300	6	0	23A	0	0/0	22	-165/238
**K ₉	3	0/21	26	-132/251	7	1	72	0	0/0	44	198/283
**K ₁₀	2	-4/20	44	165/287	10	4	73	0	0/0	21	-182/236
L ₁	3	0/21	44	165/287	6	0	24A	0	0/0	36	66/267
L_2	1	-9/17	40	99/279	6	0	25A	0	0/0	38	99/271
L ₃	6	13/25	31	-50/261	7	1	59	0	0/0	46	232/287
L ₄	4	4/23	36	33/271	5	-1	61	0	0/0	34	33/263
L ₅	3	0/21	36	33/271	6	0	63	0	0/0	30	-33/255
L ₆	3	0/21	37	50/273	6	0	65	0	0/0	24	-132/243
L ₇	4	4/23	26	-132/251	7	1	67	0	0/0	20	-198/234
L ₈	1	-9/17	32	-33/263	10	4	70	0	0/0	28	-66/251
M ₃	2	-4/20	44	165/287	7	1	60	0	0/0	48	265/291
M ₄	2	-4/20	36	33/271	7	1	62	0	0/0	22	-165/238
M ₅	2	-4/20	32	-33/263	7	1	64	0	0/0	27	-83/249
M ₆	4	-4/23	31	-50/261	7	1	66	0	0/0	28	-66/251
M ₇	2	-4/20	39	83/277	8	2	69	0	0/0	34	33/263
M ₈	2	-4/20	32	-33/263	9	3	71	0	0/0	25	-116/245
					·						
					REACTOR	TANK INTER	RIOR				
BASE- PLATE CORNER	1	-9/17	29	-83/257	6	0	26A	0	0/0	24	-132/243
BASE- PLATE CENTER	1	-9/17	16	-298/229	5	-1	27A	0	0/0	24	-132/243
BOTTOM 4	1	-9/17	30	-66/259	6	0	31A	0	0/0	38	99/271

	ГАЬ_E 4-3					ATUS SL	JRVEY		SU	RVEY UIVI	T 2
GRID		TOT	AL ACTIVITY	(dpm / 100 CM ²) ^{(1) (3)}				OVABLE ACTIV		
POINT	ALF	PHA	BE	TA	GAMMA	N uR/hr	SMEAR #	ALF			GAMMA
	COUNTS / M	ACT. / UNCERT ⁽²⁾	COUNTS / M	ACT / UNCERT.	TOTAL	ABOVE bkg		COUNTS / M	ACT./ UNCERT.	COUNTS / M	ACT. / UNCER
SOTTOM 5	2	-4/20	24	-165/247	6	0	28A	0	0/0	30	-33/255
6 6	2	-4/20	32	-33/263	6	0	29A	0	0/0	22	-165/238
OTTOM 7	0	-13/15	24	-165/247	6	0	30A	0	0/0	40	132/275
SIDE 2	5	9/25	23	-182/245	5	-1	32A	0	0/0	29	-50/253
SIDE 10	2	-4/20	24	-165/247	8	2	34A	0	0/0	32	0/259
SIDE WEST 2	2	-4/20	26	-132/251	5	-1	35A	0	0/0	32	0/259
					CC	NSOLE	<u>. </u>	-			
FRONT	4	4/23	31	-50/261	5	-1		0	0/0	28	-66/251
RT. SIDE	0	-13/15	27	-116/253	6	0		0	0/0	34	33/263
LT. SIDE	4	4/23	33	-17/265	6	0		0	0/0	29	-50/253
REAR	5	9/25	22	-198/243	6	0		0	0/0	32	0/259
	ed brick walls (a		er block)								
* Painte	ed metal doors	,									
		<u> </u>	L								
				reported with ba							
				nce level (1.96 >		viation)					
				ind calculated M	I.D.A.S.						
4) See	Table 3-1 for d	letection efficie	encies (F) of in	etrumonte							
			2110103 (L) 01 II	Struttletits			·		1		
				struments							
			THORS (E) OF II	Struments							
			Thorse (L) of it	Struments							
				Stuffents							
			Indica (L) of it	Struttents							
				Stuffields							
			indices (L) of it	Struments							
			Troces (L) of the	Struments							
				Struments							
				Struments							
				Struments							
				Struments							
				Struttents							

	TAB	LE 4-4			FINAL	ATUS SI	JRVEY		SU	RVEY U.	T 3
GRID		TOT	AL ACTIVITY	(dpm / 100 CM ²)) ^{(1) (3)}				OVABLE ACTI		
POINT	ALP	PHA	BI	ETA	GAMMA	IN uR/hr	SMEAR #		PHA		GAMMA
	COUNTS / M			ACT / UNCERT.	TOTAL	ABOVE bkg	<u> </u>	COUNTS / M	ACT./ UNCERT.		ACT. / UNCERT.
A ₃	1	0/12	45	-116/319	6	1	49	0	0/0	39	116/273
A ₄	2	4/15	37	-248/306	5	0	50	0	0/0	32	0/259
A ₅	1	0/12	28	-397/290	7	2	51	0	0/0	28	-66/251
A ₆	1	0/12	28	-397/290	5	0	77	0	0/0	26	-99/247
A ₇	1	0/12	46	-99/321	5	0	78	0	0/0	35	50/265
A ₈	0	-4/8	52	0/331	4	-1	79	0	0/0	38	99/271
B ₃	0	-4/8	30	-364/294	6	1	80	0	0/0	28	-66/251
B ₄	0	-4/8	35	-281/302	4	-1	81	0	0/0	39	116/273
B ₅	3	9/17	34	-298/301	5	0	52	0	0/0	30	-33/255
B ₆	0	-4/8	45	-116/319	7	2	53	0	0/0	40	132/275
B ₇	0	-4/8	38	-232/308	6	1	54	0	0/0	36	66/267
B ₈	1	0/12	34	-298/304	5	0	82	0	0/0	38	99/271
C ₃	3	9/17	30	-364/294	5	0	83	0	0/0	28	-66/251
C ₄	1	0/12	49	-50/326	6	1	84	0	0/0	32	0/259
C ₅	2	4/15	47	-83/324	5	0	85	0	0/0	27	-83/249
C ₆	1	0/12	32	-331/297	7	2	86	0	0/0	36	66/267
C ₇	3	9/17	42	-165/314	6	1	55	0	0/0	31	-17/257
C ₈	2	4/15	44	-132/318	5	0	56	0	0/0	37	83/289
D ₃	0	-4/8	41	-182/313	6	1	87	0	0/0	35	50/265
D ₄	4	13/20	41	-182/313	4	-1	57	0	0/0	23	-149/240
D ₅	2	4/15	37	-248/306	6	1	58	0	0/0	38	99/271
D ₆	0	-4/8	42	-165/314	4	-1	88	0	0/0	26	-99/247
D_7	0	-4/8	41	-182/313	4	-1	89	0	0/0	28	-66/251
D ₈	2	4/15	36	-265/304	4	-1	90	0	0/0	32	0/259
E ₃	2	4/15	48	-66/324	6	1	91	0	0/0	30	-33/255
E ₄	1	0/12	36	-265/304	4	-1	59	0	0/0	37	83/269
E ₅	0	-4/8	40	-198/311	4	-1	60	0	0/0	24	-132/243
E ₆	1	0/12	41	-182/313	5	0	92	0	0/0	34	33/263
E ₇	0	-4/8	30	-364/294	6	1	93	0	0/0	28	-66/251
E ₈	0	-4/8	40	-198/311	5	0	94	0	0/0	38	99/271
F ₃	1	0/12	44	-132/318	6	1 1	95	0	0/0	40	132/275

-	ΓAL_E 4-4	CONTINU	JED		FINAL S	ATUS SU	JRVEY	 	SU	RVEY U	T 3
				(dpm / 100 CM ²				REM	OVABLE ACTIV		
GRID POINT	ALP	PHA	BE	TA	GAMMA	. IN uR/hr	SMEAR#		PHA		GAMMA
POINT	COUNTS / M	ACT. / UNCERT ⁽²⁾	COUNTS / M	ACT / UNCERT.	TOTAL	ABOVE bkg	<u> </u>	COUNTS / M	ACT./ UNCERT.	COUNTS / M	ACT. / UNCERT.
F ₄	0	-4/8	49	-50/326	6	0	96	0	0/0	34	33/263
F ₅	1	0/12	54	33/334	5	0	97	0	0/0	30	-33/255
F ₆	1	0/12	34	-298/301	6	1	98	0	0/0	24	-132/243
F ₇	1 ·	0/12	33	-314/299	6	1	99	0	0/0	30	-33/255
F ₈	1	0/12	43	-149/316	6	1	99	0	0/0	30	-33/255
G ₅	2	4/15	49	-50/326	5	0	100	0	0/0	26	-99/247
G ₆	1	0/12	31	-347/295	6	1	1A	0	0/0	38	99/271
G ₇	0	-4/8	33	-314/299	5	0	2A	0	0/0	32	0/259
G ₈	1	0/12	43	-149/316	5	0	3A	0	0/0	40	132/275
H ₅	0	-4/8	35	-281/302	4	-1	61	0	0/0	34	33/263
H ₆	0	-4/8	53	17/332	5	0	62	0	0/0	35	50/265
H _{6A}	3	9/17	33	-314/299	5	0	12A	0	0/0	40	132/275
H _{6B}	3	9/17	30	-364/294	6	1	72	0	0/0	39	116/273
H ₇	0	-4/8	46	-99/321	6	1	4A	0	0/0	38	99/271
H ₈	1	0/12	41	-182/313	6	1	5A	0	0/0	30	-33/255
I _{3A}	3	9/17	32	-331/297	5	0	6A	0	0/0	24	-132/243
I _{3B}	2	4/15	35	-281/302	5	0	7A	0	0/0	26	-99/247
14	0	-4/8	38	-232/308	4	-1	8A	0	0/0	32	0/259
I _{4A}	2	4/15	39	-215/309	6	1	17A	0	0/0	26	-99/247
I _{4B}	2	4/15	32	-331/297	6	1	18A	0	0/0	32	0/259
l ₅	3	9/17	28	-397/290	5	0	9A	0	0/0	32	0/259
I _{5A}	1	0/12	39	-215/309	4	-1	10A	0	0/0	28	-66/251
I _{5B}	1	0/12	32	-331/297	5	0	73	0	0/0	26	-99/247
I ₆	1	0/12	34	-298/301	5	0	11A	0	0/0	38	99/271
I _{6A}	4	13/20	38	-232/308	5	0	13A	0	0/0	36	66/267
I _{6B}	2	4/15	35	-281/302	4	-1	14A	0	0/0	32	0/259
J _{6A}	4	13/20	40	-198/311	5	0	15A	0	0/0	24	-132/243
J _{6B}	3	9/17	44	-132/318	5	0	16A	0	0/0	28	-66/251
					SLOPING C	ONCRETE V	VALL				
A ₁	3	0/21	46	-99/321	7	2	50A	0	0/0	32	0/259
A ₂	1	-9/17	40	-198/311	6	1	63	0	0/0	40	132/275

,	TAL_E 4-4					ATUS SI	JRVEY		SU	RVEY U	T 3
GRID		ТОТ	AL ACTIVITY	(dpm / 100 CM ²	?) ^{(1) (3)}				OVABLE ACTIV		
POINT	ALF			ETA		N uR/hr	SMEAR #		PHA		GAMMA
				ACT / UNCERT.	TOTAL	ABOVE bkg	<u> </u>		ACT./ UNCERT.		ACT. / UNCERT.
B ₁	1	-9/17	38	-232/308	6	1	51A	0	0/0	34	33/263
B ₂	1	-9/17	42	-165/314	6	1	64	0	0/0	39	116/273
C ₁	0	-13/15	46	-99/321	6	1	52A	0	0/0	30	-33/255
C ₂	1	-9/17	46	-99/321	5	0	53A	0	0/0	38	99/271
D ₁	1	-9/17	40	-198/311	5	0	54A	0	0/0	28	-66/251
D ₂	0	-13/15	36	-265/304	6	11	65	0	0/0	37	83/269
E ₁	2	-4/20	34	-298/301	6	1	55A	0	0/0	26	-99/247
E ₂	2	-4/20	39	-215/309	6	1	56A	0	0/0	42	165/279
			T		CONCRE	TE COLUMN					
E _{3A}	3	0/21	39	-215/309	5	0	19A	0	0/0	34	33/263
E _{3B}	2	-4/20	43	-149/316	6	11	20A	0	0/0	29	-50/253
E _{4A}	1	-9/17	35	-281/302	6	11	21A	0	0/0	27	-83/249
E _{4B}	2	-4/20	33	-314/299	5	0	22A	0	0/0	31	-17/257
F _{8A}	4	4/23	37	-248/306	4	-1	23A	0	0/0	28	-66/251
F _{8B}	2	-4/20	37	-248/306	5	0	24A	0	0/0	32	0/259
G _{8A}	0	-13/15	34	-298/301	6	1	25A	0	0/0	26	-99/247
G _{8B}	2	-4/20	42	-165/314	5	0	71	0	0/0	24	-132/243
H _{6A1}	1	-9/17	39	-215/309	7	2	26A	0	0/0	38_	99/271
H _{6B2}	3	0/21	41	-182/313	5	0	27A	0	0/0	34	33/263
					CONC	RETE BEAM					
B _{E1}	2	-4/20	43	-149/316	5	0	28A	0	0/0	27	-83/249
B _{E2}	2	-4/20	40	-198/311	6	1	29A	0	0/0	30	-33/255
B _{E3}	3	0/21	48	-66/324	5	0	30A	0	0/0	24	-132/243
B _{E4}	4	4/23	44	-132/318	4	-1	31A	0	0/0	29	-50/253
B _{E5}	1	-9/17	44	-132/318	6	1	32A	0	0/0	33	17/261
				·	MET	AL WALL		-	•	·	
A _{1A}	2	-4/20	36	33/271	5	0	33A	0	0/0	32	0/259
A _{2A}	4	4/23	30	-66/259	4	-1	34A	0	0/0	28	-66/251
A _{2B}	2	-4/20	35	17/269	5	0	35A	0	0/0	34	33/263
A _{3A}	0	-13/15	38	66/275	5	0	36A	0	0/0	26	-99/247
A _{3B}	1	-9/17	35	17/269	4	-1	37A	0	0/0	22	-165/238

	TAL_E 4-4					ATUS SL	JRVEY		SU	RVEY U	T 3
GRID		TOT	AL ACTIVITY	(dpm / 100 CM ²	(1) (3)				OVABLE ACTIV		
POINT	ALF	PHA	BE	TA	GAMMA	A IN uR/hr	SMEAR#		PHA		GAMMA
	COUNTS / M	ACT. / UNCERT ⁽²⁾	COUNTS / M	ACT / UNCERT.	TOTAL	ABOVE bkg		COUNTS / M	ACT./ UNCERT.	COUNTS/M	ACT. / UNCERT
A _{4A}	2	-4/20	31	-50/261	6	1	38A	0	0/0	30	-33/255
A _{4B}	3	0/21	27	-16/253	5	0	67	0	0/0	32	0/259
A _{5A}	2	-4/20	34	0/267	5	0	39A	0	0/0	39	116/273
A _{5B}	3	0/21	24	-165/247	4	-1	40A	0	0/0	26	-99/247
A _{6A}	2	-4/20	32	-33/263	4	-1	67	0	0/0	37	83/269
A _{6B}	2	-4/20	27	-116/253	4	-1	41A	0	0/0	32	0/259
A _{7A}	4	4/23	31	-50/261	5	0	42A	0	0/0	35	50/265
A _{7B}	1	-9/17	26	-132/251	5	0	43A	0	0/0	23	-149/240
A _{8A}	3	0/21	35	17/269	5	0	44A	0	0/0	32	0/259
A _{8B}	3	0/21	31	-50/261	5	0	45A	0	0/0	28	-66/251
05		L	L]		CEILING DUC		I	1		
1	2	-4/20	26	-132/251	5	0	68	0	0/0	30	-33/255
2	3	0/21	29	-83/257	4	-1	46A	0	0/0	24	-132/243
3	2	-4/20	23	-182/245	4	-1	69	0	0/0	18	-232/230
4	2	-4/20	37	50/273	4	-1	47A	0	0/0	26	-99/247
5	0	-13/15	42	132/283	5	0	70	0	0/0	29	-50/253
				F	REACTOR	TANK EXTE	RIOR				
T1	3	0/21	30	-66/259	5	0	74	0	0/0	29	-50/253
T2	0	-13/15	27	-116/253	6_	1	48A	0	0/0	30	-33/255
T3	3	0/21	30	-66/259	6	11	75	0	0/0	29	-50/253
T4	4	4/23	32	-33/263	7_	2	76	0	0/0	32	0/259
T5	3	0/21	35	17/269	6	11	49A	0	0/0	24	-132/243
1) Colu	mne containin	yalues in der	n/100cm ² are	reportred with b	ackaround cu	btracted	<u> </u>	! L			<u></u>
				nce level (1.96 x		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	Table 4-1 for ba										
	Table 3-1 for de										
4) 366	Table 3-1 lot di	etection emicie	Ticles (L) Of III	Struttletits				1	<u> </u>	-	T
	-	-			_	-			 		
									<u> </u>		
						1	 				
											<u> </u>

	_				TA\	E <u>4-</u> 5				
				C	QUALITY CO	NTROL REP	ORT			
					SURV	EY UNIT 1			•	
ALPHA		RECT PROBE N						VABLE CONTA		
GRID		om / 100 CM ²)		m / 100 CM ²)	BETA GRID	SMEAR#	ALPHA (dpm/10			//A (dpm/100 CM ²)
POINT			ORIGINAL	DUPLICATE	POINT	ORIG / DUP	ORIGINAL	DUPLICATE	ORIGINAL	DUPLICATE
K ₄	-4/8	-4/8	-182/313	-66/324	K4	10/11	0/0	0/0	99/271	-33/255
D ₅	9/17	18/20	248/354	66/338	D5	21/22	0/0	0/0	165/275	-66/251
E ₆	-4/8	-4/8	-215/305	-298/301	H5	32/32	0/0	0/0	99/271	-66/251
K ₉	0/12	0/12	-298/301	-380/292	16B	42/44	0/0	0/0	-99/247	-165/238
F ₁₂	-4/8	4/5	-99/321	-314/299	G7	54/55	0/0	0/0	215/285	116/273
I _{8C}	9/17	4/15	-165/314	-66/324	I8B	65/67	0/0	0/0	-33/255	66/267
G _{8B}	-4/8	4/15	-248/306	-165/314	K9	76/79	0/0	0/0	-33/255	-66/251
G _{8A}	9/17	0/12	-83/324	-50/326	H10	89/90	0/0	0/0	83/269	265/324
E ₁₅	-9/17	-4/20	-215/309	-50/326	D9	99/100	0/0	0/0	-17/257	33/269
C ₁₀	0/17	0/17	165/287	99/279	C11	10A/11A	0/0	0/0	-33/255	-33/255
L ₁₀	-4/20	4/23	-66/259	132/283	F12B	21A/22A	0/0	0/0	265/291	-33/255
H ₂	-9/17	-4/20	-165/408	132/430	J11	32A/33A	0/0	0/0	-33/255	17/261
C ₁	4/23	-4/20	-33/263	99/279	M7	43A/44A	0/0	0/0	-116/245	-116/245
C ₉	-9/17	9/25	-132/251	-99/255	K1	54A/57A	0/0	0/0	66/267	0/259
D _{5A}	4/23	4/23	-66/257	232/294	F1	65A/68A	0/0	0/0	132/275	-116/245
	(1) Original a	nd duplicate va			certainty	IL			1	
				ļ						-
				 						
		 								
ļ				-				-	<u> </u>	
									 	
										

					TA	£ 4-6				
					QUALITY CO	NTROL REPO	ORT			
					SURV	EY UNIT 2		•		
ALPHA	DIRECT PROBE MEASUREMENTS					REMOVABLE CONTAMINATION				
GRID POINT		om / 100 CM ²) DUPLICATE (1)	BETA (dp ORIGINAL	m / 100 CM²) DUPLICATE	BETA GRID	SMEAR#	ALPHA (dpm/1			MA (dpm/100 CM²)
	0/12	-4/8	-281/302	-314/299	POINT	ORIG / DUP	ORIGINAL	DUPLICATE	ORIGINAL	DUPLICATE
D ₅	0/12	4/15	-33/327	-314/299	D5 F4	11/13 23/24	0/0	0/0	-33/255	-66/251
H ₆	-4/8	4/15	-66/324	-98/321	H6	34/35	0/0	0/0	33/263 -66/251	-182/236 0/259
J ₈	0/12	-4/8	-281/302	-248/306	J8	45/47	0/0	0/0	-33/255	50/265
K ₇	-4/8	13/20	-165/314	-182/313	K7	56/57	0/0	0/0	66/267	-33/255
B ₇	-4/20	-13/15	33/271	-38/263	B7	67/68	0/0	0/0	-198/234	-66/251
F ₉	4/23	-9/17	198/290	-83/257	F9	78/79	0/0	0/0	0/259	99/271
K ₉	0/21	0/21	-132/251	-182/245	K9	89/90	0/0	0/0	-66/251	33/263
L ₄	4/23	-9/17	33/271	0/267	L4	100/41A	0/0	0/0	0/259	66/267
l ₂	-4/20	0/21	265/298	116/281	12	10A/11A	0/0	0/0	0/259	-33/255
D ₂	-4/20	4/23	198/290	116/281	D2	21A/22A	0/0	0/0	198/283	-17/257
Tank Bottom	-4/20	-4/20	-132/251	-50/261	Tank Bottom	32A/33A	0/0	0/0	-50/253	149/277
(1) Origi	nal and Duplic	cate values are	given as Activ	vity / Ūncertain	ty					
					 					+
		1								
					-					+
										
		-								
		<u> </u>	<u> </u>	<u> </u>						

					TA	£ 4-7				
				C	QUALITY CO	NTROL REPO	RT			
					SURV	EY UNIT 3				
ALPHA	DIR	ECT PROBE	MEASUREME	NTS			REMOVABLE CONTAMINATION			
GRID		om / 100 CM ²)	BETA (dp	m / 100 CM ²)	BETA GRID	SMEAR#	ALPHA (dpm/100 CM²)		BETA -GAMMA (dpm/100 CM ²)	
POINT	ORIGINAL (1)	DUPLICATE (1)	ORIGINAL	DUPLICATE	POINT	ORIG / DUP	ORIGINAL	DUPLICATE	ORIGINAL	DUPLICATE
B ₅	9/17	4/15	-298/301	-314/299	B5	52/57A	0/0	0/0	-33/255	66/267
D_7	-4/8	0/12	-182/313	-198/311	D7	58/58A	0/0	0/0	99/271	0/259
E ₈	-4/8	-4/8	-198/311	-232/308	E8	60/59A	0/0	0/0	-132/243	-66/251
G ₈	0/12	0/12	-149/316	-298/301	G8	62/60A	0/0	0/0	50/265	-33/255
A _{1A}	-4/20	0/21	33/271	-83/257	A1A	67/61A	0/0	0/0	83/269	-66/251
A _{7B}	-9/17	-9/17	-132/251	-66/259	A7B	69/62A	0/0	0/0	-232/230	-99/247
T ₃	0/21	-4/20	-66/259	-116/253	Т3	75/63A	0/0	0/0	-50/253	50/265
I _{6B}	4/15	0/12	-281/302	-281/302	I6B	73/64A	0/0	0/0	-99/247	-33/255
F _{8B}	-4/20	0/21	-248/306	-281/302	F8B	71/65A	0/0	0/0	-132/243	0/259
A _{3A}	-13/15	-9/17	66/275	17/269	A3A	36A/66A	0/0	0/0	-99/247	-66/251
(1) Orig	inal and Duplic	ate values are	given as Activ	vity / Uncertaint	ty					

APPENDIX 1

SAMPLE SURVEY FORMS

Final Status Survey: Gamma Dose Rate

Manhattan College Survey Data Leo Engineering Building

Date:	
Room Number:Surfaces Survey	ed:
Name of Surveyor:	
nstrument Type and Model:	·
nstrument Serial Number:	Calibration Date:
Background Level:	

		
Grid Location	Gamma Dose Rate, (w/ background) μR/hr	Gamma Dose Rate, (w/out background) μR/hr
	!	
<u> </u>	·	

Final Status Survey

Manhattan College Survey Data Leo Engineering Building

			•	
Date:		Survey Type: Alpha	or Beta / Direct or R	emovable
Room Number:		_ Surfaces Surveyed:_		
Name of Survey	/or:		- · · · · · · · · · · · · · · · · · · ·	
Instrument Typ	e and Model:		Probe:	
Instrument Seri	ial Number:		Probe Serial Number:_	
Calibration Date	e:	Efficie	ncy (c/d):	
Background (Cl	PM):	Count	Time:	
Minimum Detec	table Activity (dpm/100 sq. cm):		
Grid Location Measured Counts		Measured Activity, dpm/100 sq. cm	Effective Activity, dpm/100 sq. cm	1.96*Standar Deviation

Grid Location	Measured	Measured Activity,	Effective Activity,	1.96*Standard
Ond Eccanon	Counts	dpm/100 sq. cm	dpm/100 sq. cm	Deviation
[
				
İ		ĺ		
		1		
		 		
	· · · · · · · · · · · · · · · · · · ·			
l				
		<u> </u>		
		1		
				
l				
j				
!				
				ł

MANHATTAN COLLEGE ZERO POWER REACTOR HEALTH PHYSICS SURVEY WIPE TEST

ANALYSIS D	ATE:		TYPE:	ALPHA	BETA	
Instrument: Serial #: Calibration:			- -	Probe: Serial #:		
BACKGROU	ND Background (counts) Background Rate	ERR	срт	Count Tin	ne (min)	
EFFICENCY	Source Strength Source Counts Source Count Time Average Efficiency	ERR ERR	dpm min	Standard]	

SAMPLE #	SAMPLE LOCATION	SAMPLE DATE	GROSS COUNTS	Count Time (min)	Average Rate (cpm)	Net Rate (cpm)	Removable Activity (dpm/100 cm2)
					ERR	ERR	ERR
							hwani
						11 (43 F18 1 4 Million	ide (tt
·						The second	
	-						
					4.4		
	·						
					7.1. A.1		
							Take and graduated the second
					F 4 W 1 W 1		
						tahi kitik	
	7						

APPENDIX 2

CALCULATIONAL APPROACH

CALCULATIONAL APPROACH (1)

1. Background Determinations

$$X_{B} = \frac{(1/N) \sum^{N} X_{i}}{S_{B}}$$

$$S_{B} = \sqrt{\frac{\sum^{N} (X_{B} - X_{i})^{2}}{N-1}}$$

$$N_{B} = \left[\frac{t95.5\%, df \cdot S_{B}}{0.2 \cdot X_{B}}\right]^{2}$$

Where

 X_B = mean of the individual background measurements (X_i)

N = total number of measurements

S_B = standard deviation of background Measurements

N_B = total number of background measurements needed to assure that average background measured is representative of true background averages to within <u>+</u> 20% at a 95% confidence level.

t95.5%, df = t statistic for 95.5% confidence at N-1 degrees of freedom

2. Surface Activity

$$\frac{\text{dpm}}{100 \text{ cm}^2} = \frac{\text{(c/m - B/m)}}{\text{E}} \frac{100}{\text{A}}$$

 \underline{dpm} = Surface activity in 100 cm² disintegrations per 100 cm²

E = Instrument efficiency

A = Active surface area of detector

C/m = Total counts per minute

B/m = Average background counts per minute = X_B

(1) Methodology from NUREG / CR-5849, Sections 5 and 8

3. Minimum Detectable Activity (MDA)

$$MDA = \underbrace{2.71 + 4.65 \sqrt{\frac{B}{m} \cdot t}}_{t \cdot E \cdot A}$$

MDA in dpm/100cm² t = Count time = 1 minute

4. Measurement Uncertainty (2 sigma error)

1.96
$$S_r = 1.96 \sqrt{\frac{c}{t^2 + \frac{b}{t_B^2}}}$$

 $E \cdot A$
100

$$t = t_B = 1$$

Sr = standard deviation in count rate in dpm/100cm²