
Guideline for Performing Defense-in-Depth
and Diversity Assessments for Digital
Upgrades

Applying Risk-Informed and Deterministic Methods 

Technical Report

WARNING:
Please read the Export Control
Agreement on the back cover.



 



EPRI Project Manager 
R. Torok 

EPRI • 3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 • USA 
800.313.3774 • 650.855.2121 • askepri@epri.com • www.epri.com 

Guideline for Performing Defense-
in-Depth and Diversity Assessments 
for Digital Upgrades 
Applying Risk-Informed and Deterministic Methods 

1002835 

Final Report, December 2004 

 
 

 



 

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES 

THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN 
ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH 
INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE 
ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM: 

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) 
WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR 
SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS 
FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR 
INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL 
PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S 
CIRCUMSTANCE; OR 

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER 
(INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE 
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR 
SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, 
PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT. 

ORGANIZATION(S) THAT PREPARED THIS DOCUMENT 

Applied Reliability Engineering, Inc. 

Électricité de France 

MPR Associates, Inc. 

Westinghouse Electric Company 

EPRI 

 

 

 

 

 

 

 

ORDERING INFORMATION 

Requests for copies of this report should be directed to EPRI Orders and Conferences, 1355 Willow 
Way, Suite 278, Concord, CA 94520, (800) 313-3774, press 2 or internally x5379, (925) 609-9169, 
(925) 609-1310 (fax). 

Electric Power Research Institute and EPRI are registered service marks of the Electric Power 
Research Institute, Inc. EPRI. ELECTRIFY THE WORLD is a service mark of the Electric Power 
Research Institute, Inc. 

Copyright © 2004 Electric Power Research Institute, Inc. All rights reserved. 



 

iii 

CITATIONS 

This report was prepared by EPRI under the guidance of the EPRI/NEI Working Group on Risk-
Informed Defense-in-Depth for Digital Upgrades. 

EPRI 
3412 Hillview Avenue 
Palo Alto, California 94304 

Principal Investigators 
D. Blanchard, Applied Reliability Engineering, Inc. 
R. Fink, MPR Associates, Inc. 
G. Lang, Consultant 
N. Thuy, Électricité de France 
R. Torok, EPRI 

This report describes research sponsored by EPRI.  

The report is a corporate document that should be cited in the literature in the following manner: 

Guideline for Performing Defense-in-Depth and Diversity Assessments for Digital Upgrades: 
Applying Risk-Informed and Deterministic Methods, EPRI, Palo Alto, CA: 2004. 1002835. 

 





 

v 

REPORT SUMMARY 

 
To continue meeting safety and reliability requirements while controlling operating costs, 
operators of nuclear power plants must be able to replace and upgrade equipment in a cost-
effective manner. Instrumentation and control upgrades typically involve either replacement of 
analog devices with more modern digital technology or updating existing digital equipment. The 
use of digital technology raises the issue of potential software-related common-cause failure in 
multiple trains or systems that are safety significant, and the need to ensure that the plant has 
adequate defense-in-depth and diversity (D3) to cope with such failures. This guide will help 
nuclear plant operators address D3 issues in a consistent, comprehensive manner. 

Background 
In response to growing challenges of obsolescence and increasing maintenance costs – and now 
looking ahead to license renewal – nuclear plant operators are upgrading their existing 
instrumentation and control (I&C) systems. Preferred upgrade solutions typically apply digital 
technology due to its ready availability, operational flexibility, and potential for performance and 
reliability improvements. However, the use of digital equipment has raised technical and 
licensing issues, primarily centered on the potential for new behaviors and failure modes caused 
by software or other digital system design flaws. Of particular concern is the potential for 
common-cause failures, which disable multiple equipment trains or systems that use identical 
software-based components. Current regulatory guidance recommends that a D3 evaluation be 
performed for selected upgrades to confirm that the plant has adequate coping capability for 
digital system common-cause failures. This largely deterministic approach sometimes results in 
significant utility and Nuclear Regulatory Commission (NRC) resources spent on events, 
components, and backup systems that do not 1) contribute significantly to plant risk, 2) address 
other events that may be significant contributors, and 3) improve plant safety. The industry 
needed a D3 approach for digital upgrades that would maintain a better focus on plant safety, 
while ensuring any backups added provide value in terms of plant safety or risk. 

Objective 
To help plant operators perform D3 evaluations for digital upgrades in a systematic, technically 
sound manner, with a focus on maintaining plant safety. 

Approach 
An EPRI working group comprised of utility and industry representatives oversaw development 
of the guideline. The basic approach was to extend current D3 regulatory guidance for digital 
upgrades to include use of risk-informed insights, consistent with regulatory guidance on use of 
the probabilistic risk assessment (PRA). At present, there are no consensus methods for precisely 
estimating probabilities of failure for software-based equipment. The guideline takes the position 
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that qualitative techniques can be used to make estimates that are adequate to extract the risk 
insights needed for D3 evaluations. 

Results 
This guide helps plant operators design and implement digital upgrades, perform D3 evaluations, 
and develop information to support licensing submittals. Three methods for D3 evaluation are 
presented as alternatives to the current deterministic approach: an “extended deterministic” 
method based on the current approach; a “standard risk-informed” method based on use of the 
PRA as modified to reflect the digital upgrade; and a “simplified risk-informed” method that 
uses data from the existing, unmodified PRA. Users will be able to select the most appropriate 
method on a case-by-case basis. This document also provides guidance on using digital system 
design, development process, and operating history attributes to assign digital system failure 
probabilities for PRA analysis, with examples outlining the evaluation steps. This will be helpful 
to analysts in updating PRA models to reflect digital upgrades. Where possible, the guideline 
provides a road map to relevant standards and other sources of detailed guidance. 

EPRI Perspective 
This project is part of a multi-year EPRI initiative to help plant operators design, implement, and 
license digital I&C upgrades in nuclear power plants. This guideline is particularly significant in 
that it provides a practical approach for the difficult issues of D3 evaluation and PRA modeling 
for software-based equipment. The risk-informed framework here is unique in that it considers 
not only the potential adverse behaviors of digital equipment in risk-significant applications, but 
also the characteristics and features of the new technology that lead to improvements in safety. 
Methods for modeling digital equipment in the PRA, and particularly for determining failure 
probabilities, are still evolving. However, the framework proposed here should remain valid and 
useful as more precise methods become available. In the meantime, the methods proposed here 
represent a significant improvement over the simple, but overly restrictive assumption that 
software common-cause failure happens with certainty. 

Both the industry and the NRC staff have recognized the potential for enhanced safety and 
reliability that digital systems bring to the nuclear industry. However, uncertainties in the 
licensing treatment of D3 for digital upgrades have led several plant operators to postpone 
planned upgrades. With the great majority of plants now anticipating license renewal and 
decades of continued operation, the need to replace aging I&C systems has become more 
obvious and more acute. A consensus approach between regulators and licensees is therefore 
needed to ensure that the treatment of digital technology-related issues is predictable and 
consistent. EPRI anticipates that this guideline on D3 evaluations for digital upgrades will 
receive endorsement and wide usage by the nuclear power industry. 

Keywords 
Instrumentation and Control 
Digital Upgrade 
Common-Cause Failure 
Common-Mode Failure 
Defense-in-Depth 
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1  
INTRODUCTION 

1.1 Objective 

This document provides guidance to support utilities in performing defense-in-depth and 
diversity (D3) evaluations associated with digital upgrades that affect plant instrumentation and 
control (I&C) systems. For some digital upgrades, a D3 evaluation is performed to examine 
potential vulnerability to software or other digital system failures that could simultaneously 
affect multiple trains or systems. Such failures are referred to in this report as digital common 
cause failures (digital CCFs)1. The focus of a D3 evaluation is on digital CCFs that could degrade 
plant safety. Postulated digital CCFs could compromise the redundancy built into safety systems, 
or impact defense-in-depth currently provided through the availability of independent protection, 
control and monitoring systems. 

Guidance is provided for determining when a D3 evaluation is necessary, identifying 
susceptibilities to digital failures and digital CCFs, evaluating resulting plant vulnerability, and 
determining the need for additional defense. The methods presented combine deterministic and 
risk-informed techniques. Use of risk insights can help focus the D3 effort on areas of greatest 
potential benefit in terms of plant safety. It also allows credit to be taken for the positive impacts 
of modern digital equipment on system reliability and safety. Finally, it can help justify not 
adding backup systems that do not provide benefit in controlling plant risk. 

The guidance in this document was produced by an industry Working Group including personnel 
from plants’ I&C and Probabilistic Risk Assessment (PRA) groups, equipment suppliers, and 
consultants. It is intended for use by plant engineering, licensing and management personnel who 
need to gain a basic understanding of the D3 issue and make informed decisions about how it 
will be addressed when making digital upgrades. These decisions include determining when a D3 
evaluation should be performed, what method should be used, important considerations in 
applying the method, and who should be involved in doing the evaluation (I&C designers, PRA 
analysts, etc.). System suppliers or contractors involved in performing D3 evaluations also can 
use this guidance. 

                                                           
1 These failures are often referred to as “software common mode failures” in other documents. We use digital 
common cause failure (digital CCF) in this document to more accurately describe the types of failures that are of 
concern. They result in a deterministic and systematic manner from design errors, which may occur in developing 
the requirements, the design, or the implementation (e.g., coding) of the software or the hardware-software (digital) 
system. They are common cause in that multiple pieces of equipment fail due to a single cause (the design flaw). 



 
 
Introduction 

1-2 

1.2 Background 

Nuclear utilities are now replacing and upgrading aging and obsolete I&C systems. Most of these 
replacements involve transitions from analog to digital technology, which has evolved since the 
plants were designed and built. Digital systems offer the potential to improve plant safety and 
reliability through features such as increased hardware reliability and stability, improved failure 
detection capability, and enhanced controls algorithms. Still, because of increased complexity 
and the relative newness of the technology to nuclear plants, the use of digital equipment has 
raised technical and licensing issues. These are centered on the potential for new behaviors and 
failure modes due to software or other digital system design flaws (hereafter referred to as 
“digital faults”). 

Various development practices and standards are applied that help ensure digital safety systems 
are of high quality (e.g., see References [3], [18], [22], [26]). However, in most cases, the 
potential exists that a failure due to a postulated digital flaw could disable redundant trains or 
backup systems that use identical design elements (e.g., software modules, digital components, 
or functional specification elements). 

To help establish reasonable assurance that digital failures will not lead to unacceptable results, 
the current regulatory guidance for digital upgrades (Branch Technical Position HICB-19, 
referred to as BTP-19, (see Reference [1]) recommends that a D3 evaluation be performed for 
digital upgrades to the reactor trip system (RTS) or the engineered safety features actuation 
system (ESFAS). The purpose of the evaluation is to confirm that in the event of a digital CCF, 
the plant has sufficient “coping” capability such that the plant response will be acceptable. This 
evaluation is considered beyond design-basis, and as a result may use best-estimate assumptions 
and techniques and take credit for non-safety systems, provided they are of sufficient quality.  

The NRC position concerning D3 evaluations is documented in BTP-19 and NUREG/CR-6303 
(see Reference [5]). Although it contains some risk-informed elements, the approach 
recommended is largely deterministic. Experience in applying it to actual plant upgrades, and 
scoping studies performed by EPRI to examine risk insights offered by PRAs (see Reference 
[20]), have identified a number of shortcomings. In particular, it often results in significant effort 
being spent by the licensee and NRC on events that do not contribute significantly to plant risk. 
At the same time, it does not address other events that may be significant contributors to risk, as 
indicated by the plant PRA. 

The NRC has also published a policy statement (see Reference [24]) that encourages use of PRA 
in a variety of regulatory activities, and guidelines on the use of PRA for licensing basis 
applications (Regulatory Guide 1.174, see Reference [2]). These have established a foundation 
upon which risk-informed approaches can be applied to D3 evaluations. Use of such approaches 
can help focus the D3 effort on the areas of greatest potential benefit in terms of plant risk, and 
avoid addition of unnecessary backups that add complexity but do not contribute to improving 
plant safety. Since BTP-19 was published, all nuclear power plants in the U.S. have completed 
plant-specific PRAs. 
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1.3 Scope 

• This document provides guidance for:  

• Determining if a digital upgrade project should undergo a D3 evaluation. 

• Identifying susceptibilities to digital failures and digital CCFs that should be addressed in the 
D3 evaluation. 

• Performing the D3 evaluation, using methods that combine deterministic and risk-informed 
techniques. 

• Meeting regulatory requirements and expectations for D3 evaluations.  

• Documenting the evaluation and the results. 

The guidance is intended to apply to the full range of digital upgrades, from individual 
component replacements to large-scale conversions of I&C systems to digital equipment. It also 
covers “digital-to-digital” changes, i.e., changes to, or replacement of, existing digital equipment. 
It can be used to help determine an appropriate I&C architecture from the standpoint of 
maintaining defense-in-depth and managing risk associated with digital equipment, to update the 
plant PRA to reflect the upgrade, and to assess the impact on plant risk. 

The following principles and ground rules have been established by the industry Working Group: 

• For performing D3 evaluations, plants should be able to use any method that can be shown to 
meet the original intent of BTP-19 (see Reference [1]) (that is, that adequately addresses 
vulnerabilities to digital CCFs). This may include deterministic methods, risk-informed 
methods, and methods that blend the two approaches.  

• Addition of backups to address digital CCFs should be approached judiciously. Adding new 
equipment can increase system complexity, probability of spurious trips/actuations, 
maintenance and training burden, and thus can have a negative impact on plant safety. Risk 
assessments should include consideration of risk associated with additional backups. 

• At present there are no consensus methods for precisely quantifying the impact of potential 
digital faults on the reliability of digital equipment. However, qualitative assessment 
techniques can be applied to form judgments regarding the impact of digital equipment on 
overall system reliability and plant risk. 

• Assessments of the contribution of digital equipment to plant risk should recognize that not 
all digital faults lead to unsafe system failure. Risk assessments should consider the design of 
the digital equipment and the conditions under which it will be operating when assessing the 
contribution to plant risk. 

• Assessment of risk should consider positive impacts of digital equipment on system 
reliability and plant risk, including factors such as increased hardware reliability, 
redundancy, and failure detection. 
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These principles are consistent with NRC’s approach for using risk insights in the licensing 
process. Shifting D3 evaluation to more risk-informed approaches is directly supportive of 
Commission policies on risk-informed applications and reduction in unnecessary regulatory 
burden. As stated in Regulatory Guide 1.174 (see Reference [2]), it is “…NRC’s desire to base 
its decisions on the results of traditional engineering evaluations, supported by insights (derived 
from the use of PRA methods) about the risk significance of the proposed changes. Decisions 
concerning proposed changes are expected to be reached in an integrated fashion, considering 
traditional engineering and risk information, and may be based on qualitative factors as well as 
quantitative analyses and information.”  

1.4 Relationship to Other Documents 

This guideline supplements the following related industry and regulatory guidance documents 
and should be used along with these documents when performing D3 evaluations: 

• EPRI TR-102348 Revision 1 (NEI 01-01) (see Reference [3]) – This is the industry 
guideline on licensing of digital upgrades. It describes how digital upgrades and the 
associated licensing issues can be addressed in the modification design process and in 10 
CFR 50.59 (see Reference [9]) evaluations. It also provides high-level guidance on dealing 
with the issue of digital CCFs. TR-102348 Revision 1 was endorsed by the NRC in 
Regulatory Issue Summary 2002-22 (see Reference [4]). The guidance given here is 
consistent with and supplements the guidance in TR-102348 Revision 1, specifically in the 
area of D3 evaluation and use of risk insights in performing the evaluation. 

• BTP-19 (see Reference [1]) – This Branch Technical Position, in Chapter 7 of the Standard 
Review Plan (NUREG-0800, see Reference [14]), describes the NRC position on defense-in-
depth and diversity, describes an acceptable method for performing D3 evaluations, and 
specifies acceptance criteria. The approaches described in this report meet the intent of 
BTP-19 in addressing vulnerabilities to digital CCFs. 

• NUREG/CR-6303 (see Reference [5]) – This NRC contractor report describes in detail the 
method for performing D3 evaluations that is referenced in BTP-19. It also includes guidance 
for determining whether there is sufficient diversity between different portions of a digital 
system such that they would not be subject to the same digital CCF. Section 3.1 of this report 
presents an updated approach that extends the NUREG/CR-6303 guidance to include 
consideration of digital design features and defensive measures that impact the potential for 
CCF and to incorporate the use of risk-informed insights. 

• Regulatory Guide 1.174, Revision 1 (see Reference [2]) – This NRC regulatory guide 
describes a method acceptable to the Staff for using risk-informed approaches and the plant 
PRA to support changes to the licensing basis. The guidance provided in this report makes 
use of the approach and criteria described in Regulatory Guide 1.174 to support application 
of risk insights when performing D3 evaluations. 
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1.5 Contents of This Guideline 

Section 2 of this document describes the current regulatory context for D3 evaluations, and then 
presents a risk perspective on D3, including the primary factors that should be considered in 
assessing the impact of digital upgrades on plant risk. 

Section 3 provides overall guidance on performing D3 evaluations, covering the evaluation 
process, what should be considered in identifying specific susceptibilities to digital failures and 
digital CCFs that need to be addressed, and three methods for performing the D3 evaluation. The 
three methods represent alternatives to the method described in BTP-19 (see Reference [1]). 

Section 4 provides additional guidance to support utilities in performing D3 evaluations. This 
includes more detail on digital equipment characteristics that could be examined when assessing 
susceptibility to digital failures and digital CCFs, basic principles of risk-informed analysis, and 
level of detail involved in modeling digital equipment in the PRA. Section 4 also provides 
guidance on documenting the D3 evaluation. 
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2  
D3 EVALUATION – REGULATORY CONTEXT AND 
RISK-INFORMED PERSPECTIVE 

For the purposes of this guideline, a defense-in-depth and diversity (D3) evaluation is: 

• An assessment of the susceptibility of the plant systems to digital failures and digital CCFs, 
and 

• An evaluation to determine whether the plant has sufficient coping capability to adequately 
deal with such failures in terms of their effects on plant safety. 

This section describes the regulatory context for deterministic D3 evaluations and identifies 
shortcomings of the approach described by current regulatory guidance. It then presents a risk-
informed perspective on D3 evaluations, discussing the regulatory context, the impact of digital 
upgrades on plant risk, and how the use of risk-informed techniques can address the identified 
shortcomings. 

2.1 Regulatory Context – Deterministic Approach 

2.1.1 Current Regulatory Guidance 

The NRC has expressed the concern that software design errors are a credible source of 
CCFs (see References [1], [7]) that could degrade the existing defense-in-depth provided by the 
four echelons of defense: control systems, RTS, ESFAS, and monitoring and indications. Its 
position to address this concern is stated in four points in BTP-19 (see Reference [1]): 

1. The applicant/licensee should assess the defense-in-depth and diversity of the proposed 
instrumentation and control system to demonstrate that vulnerabilities to common-mode 
failures have been adequately addressed. 

2. In performing the assessment, the vendor or applicant/licensee shall analyze each 
postulated common-mode failure for each event that is evaluated in the accident analysis 
section of the safety analysis report (SAR) using best-estimate methods. The vendor or 
applicant/licensee shall demonstrate adequate diversity within the design for each of 
these events. 

3. If a postulated common-mode failure could disable a safety function, then a diverse 
means, with a documented basis that the diverse means is unlikely to be subject to the 
same common-mode failure, should be required to perform either the same function or a 
different function. The diverse or different function may be performed by a non-safety 
system if the system is of sufficient quality to perform the necessary function under the 
associated event conditions. 
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4. A set of displays and controls located in the main control room should be provided for 
manual system-level actuation of critical safety functions and monitoring of parameters 
that support the safety functions. The displays and controls should be independent and 
diverse from the safety computer systems identified in items 1 and 3 above. 

All four points apply to advanced reactors. Points 1, 2 and 3 apply whenever an operating plant 
replaces its existing (typically analog or relay-based) RTS or ESFAS with a digital system. 
NUREG/CR-6303 (see Reference [5]) provides detailed guidance for performing a D3 
evaluation using a method (hereafter called the BTP-19 Deterministic Method) that the NRC has 
determined is acceptable. 

D3 evaluations are “beyond design-basis” (SECY-93-087, see Reference [7]). Therefore, they 
can be performed on a “best-estimate” basis. Thus, realistic initial conditions and assumptions 
can be used, as opposed to the conservative assumptions applied in the plant licensing basis 
safety analysis. This concept is also discussed in EPRI TR-102348 Revision 1 (NEI 01-01) (see 
Reference [3]).  

2.1.2 Relationship to 10 CFR 50.59 Evaluations 

The 10 CFR 50.59 regulation (see Reference [9]) specifies the criteria for determining whether a 
license amendment is needed before implementing a plant modification. As discussed in EPRI 
TR-102348 Revision 1 and NEI 96-07 Revision 1 (see Reference [15]), the only failures that 
need special consideration and NRC review based on a 10 CFR 50.59 evaluation are those that 
are as likely as the failures already considered in the plant’s licensing basis (as described in the 
SAR). 

For equipment that has been evaluated for safety applications, the likelihood of digital CCF 
should be well below the likelihood of random single failures assumed in the licensing basis. 
Therefore, although the potential for digital CCFs should be considered in the evaluation, it 
typically would not by itself lead to the need for a license amendment per 10 CFR 50.59.  

Digital CCFs and their potential D3 issues should be addressed in the design process for the 
modification (independent of the 10 CFR 50.59 evaluation). Information on the digital 
equipment design, qualification and application should be examined to ensure that the likelihood 
of digital CCF is much lower than the likelihood of random single failures assumed in the 
licensing basis. 

2.1.3 When a D3 Evaluation is Needed (Regulatory Perspective) 

D3 evaluations are not required for all digital upgrades, based on the existing regulatory 
guidance. According to the Standard Review Plan (SRP) presented in Chapter 7, Section 7.0A of 
NUREG-0800 (see Reference [14]), NRC expects a D3 evaluation to be performed for digital 
upgrades “…that involve a reactor trip system (RTS) or an engineered safety features actuation 
system (ESFAS)…” The SRP further states that D3 evaluations should be performed specifically 
for “I&C safety systems incorporating digital computer technology…” within RTS or ESFAS. 

This was reiterated in Section 5.2.1 of EPRI TR-102348 Revision 1 (see Reference [3]), which 
states that “A formal defense-in-depth and diversity analysis per BTP/HICB-19 is expected only 
for substantial digital replacements of RTS and ESFAS …” It also points out that it is sometimes 
not clear whether a system should be considered as part of ESFAS. TR-102348 Revision 1 
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recommends when in doubt, to review the SAR to determine how the system is described there 
(e.g., is it described as part of ESFAS in Section 7.3 of Chapter 7, or as an auxiliary system in 
Chapter 9?). The definitions of RTS and ESFAS in IEEE-603 (see Reference [21]) also may help 
with this determination. Note that human-system interfaces that are required to perform any 
human actions credited in the SAR are part of the RTS or ESFAS. 

As also discussed in TR-102348 Revision 1, cumulative effects of a series of upgrades or 
modifications should be considered when determining whether a D3 evaluation should be 
performed. Consideration should be given to the effects the change(s) may have collectively on 
defense-in-depth and diversity of the RTS/ESFAS functions. 

Example 2-1. Cumulative Effects of a Series of Upgrades. 

Digital technology is to be introduced into plant systems, including anticipated transient without 
scram (ATWS) and other non-safety systems, after a digital upgrade to RTS or ESFAS has 
already been implemented (and a D3 evaluation performed at that time). If equipment being 
modified was credited as a backup in the prior D3 evaluation, then the evaluation should be 
reviewed to determine the impact of the current modification. The review should determine 
whether the proposed change might invalidate the conclusions of the evaluation, and thus require 
additional mitigation measures. 

Note that a “digital-to-digital” change to RTS or ESFAS also may involve review of a previous 
D3 evaluation. If the change may affect the conclusions of the evaluation, then it should be 
reviewed and updated as necessary to ensure the conclusions are still valid. 

The flowchart of Figure 2-1 illustrates the process for determining whether a new D3 evaluation 
should be performed, or a previous evaluation reviewed as a result of a planned modification. 

2.1.4 Weaknesses of the BTP-19 Deterministic Method 

Plants and vendors who have attempted to apply the BTP-19 (see Reference [1]) Deterministic 
Method for D3 evaluations have encountered difficulties and identified a number of 
shortcomings: 

• The method addresses only the initiating events analyzed in the plant SAR, but not all the 
initiating events evaluated in the plant PRA. Consequently, it may not address significant 
contributors to risk. 

• Significant effort may be required to analyze each initiating event in the plant SAR using 
best-estimate assumptions and initial conditions. 

• The SAR events are treated as though all are equally safety-significant, and diverse backups 
are considered equally valuable for all events / systems. There is only limited recognition that 
the risk associated with these events may vary depending on the frequency of the event, and 
no recognition that that risk varies with the probability of failure of the mitigating systems. 
Meeting the acceptance criteria for some events may require the addition of diverse 
mitigating functions, even when the events are insignificant contributors to risk in the plant 
PRA. 
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Figure 2-1 
Determining When a D3 Evaluation is Needed (Regulatory Perspective) 
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• The postulated digital CCFs are assumed either to occur or not to occur (i.e., their 
probabilities are either 1 or 0), yielding either a very conservative result or a potentially non-
conservative result. The method does not allow for examination of digital equipment design 
features and other defensive measures that could justify digital CCF probabilities between 0 
and 1.  

• The method does not allow the analyst to factor into the evaluation the positive impacts of 
digital equipment on reliability of the mitigating systems. For example, no credit is taken if 
the new equipment adds internal redundancy, or the ability to detect faults in the I&C or 
other parts of the system.  

Example 2-2. Risk Insights on Large Break LOCA.  

Typically, for D3 evaluations performed per BTP-19 and NUREG/CR-6303 (see Reference [5]), 
meeting the acceptance criteria for the large break loss of coolant accident (LBLOCA) event has 
proven to be difficult when a concurrent digital CCF is assumed, even using best-estimate 
assumptions. One option to satisfy the BTP-19 acceptance criteria would be to install a diverse 
mitigation function, but this would require additional analysis, equipment and maintenance. The 
use of risk insights might show that LBLOCA is a very small contributor to plant risk and that 
adding such equipment might actually increase risk by adding new failure modes. However, 
application of risk insights might also show that some high-frequency initiating events that are 
acceptable per the BTP-19 acceptance criteria are potentially risk-significant and deserve greater 
attention. 

2.2 Risk-Informed Perspective 

2.2.1 Current Regulatory Guidance 

In Generic Letter 88-20 (see Reference [23]), the NRC requested all licensees to perform 
Individual Plant Evaluations (IPEs) to assess the vulnerability of the plant designs to severe 
accident risks. Performance of a detailed plant-specific PRA was encouraged by the NRC in 
completing the IPE requirement. Among the various benefits identified, a PRA was considered 
useful in its support of licensing actions, including the evaluation of design modifications to the 
plant. 

Subsequent to Generic Letter 88-20, the NRC published the PRA policy statement (see 
Reference [24]), in which the Commissioners stated that: 

• Because PRA considers the frequency of a broad spectrum of initiating events and combines 
them with an assessment of the reliability of mitigating systems, including the potential for 
multiple and common cause failures, it is considered an extension and enhancement of 
traditional regulation. 

• PRA techniques are most valuable when they serve to focus the traditional deterministic-
based regulations and support the defense-in-depth philosophy. 
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• The PRA approach supports the NRC’s defense-in-depth philosophy by allowing 
quantification of the levels of protection, and by helping to identify and address weaknesses 
or overly conservative regulatory requirements applicable to the nuclear industry. 

Consistent with these assertions, the Commissioners instructed the NRC and encouraged the 
industry to increase the use of PRA: 

• In all regulatory matters, to the extent supported by the state-of-the art in PRA methods and 
data, and in a manner that complements the NRC’s deterministic approach and supports the 
NRC’s traditional defense-in-depth philosophy. 

• In regulatory matters, where practical within the bounds of the state-of-the-art, to reduce 
unnecessary conservatism associated with current regulatory requirements, regulatory guides, 
license commitments, and NRC practices. 

When BTP-19 (see Reference [1]) was issued, plants had not yet developed their PRAs. 
However, all plants have now completed them. By taking advantage of information available in 
the plant PRA, this guideline both enhances and focuses existing regulatory guidance regarding 
evaluation of the plant capability to cope with digital failures. 

To be considered risk-informed, analysis of changes to the licensing basis should meet a key set 
of principles and criteria, as outlined in Regulatory Guide 1.174 (see Reference [2]). (See 
Section 4.3 for a discussion of these principles and their relationship to D3 evaluation.) The D3 
evaluation methods presented in this guideline meet the principles and criteria outlined in the 
Regulatory Guide, and therefore are considered to be risk-informed. 

2.2.2 Contribution of Digital Upgrades to Plant Risk 

From a risk-informed perspective, the digital equipment and its postulated failures are only a part 
of a larger picture. There are three factors that determine the impact of a digital upgrade on plant 
risk: 

Factor A: Impact of the upgrade on I&C channel reliability. 

Factor B: Potential for digital CCF introduced by the upgrade. 

Factor C: The design of the plant and the plant mitigating systems available to respond to 
specific events affected by the upgrade (sometimes called the plant safety model). 

It is the combined effects of these factors that determine impact on plant risk. Strength in one 
factor may compensate for weakness in another. Their relative levels of importance can vary 
with application specifics, and considering only one of them can lead the analyst to over estimate 
its relative importance. The BTP-19 Deterministic Method is significantly limited in that it 
focuses primarily on factor B, applying conservative, bounding (potentially misleading) 
assumptions. Factor A is largely ignored, and only parts of factor C are addressed, through best-
estimate evaluation of the SAR events.  
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Note that susceptibility to digital CCFs is not the same as plant risk or safety vulnerability. It is 
possible to introduce susceptibilities to digital CCFs that have negligible impact on plant risk, 
depending on the influence of factor C above. The potential digital CCFs of importance are those 
that have significant adverse impact on plant risk. A brief discussion of each of these three 
factors follows. 

Factor A. Impact of the Upgrade on I&C Channel Reliability 

This factor relates to the impact of the digital upgrade on reliability (or the complementary 
concept, probability of failure (PF)) of individual channels of I&C equipment.  

It is important to note that just because there are “bugs” in the software or flaws in the design 
does not necessarily mean that there will be digital failures. The likelihood of digital failure 
within an I&C channel depends on the number of digital faults remaining after development and 
verification, and on the likelihood that:  

• An unanticipated operational condition will occur that activates a fault. 

• This activation causes a failure (some activations lead to non-optimal but still acceptable 
results, or are overridden before they can have any functional consequences).  

It is also important to note that not all channel failures have potential consequences on risk. 
Some do not affect safety functions, do not create hazardous conditions, or occur only in 
contexts where they have no effect on safety. In this guideline, implicitly, only the potentially 
risk-significant failures are considered, and “failure” stands for “potentially risk-significant 
failure”. These may be divided into two categories:  

• Potentially unsafe failures are failures that could prevent a mitigating function from 
occurring when needed. 

• Potentially initiating failures are failures that could trigger an initiating event (e.g., failure of 
a control loop in a direction that could cause a transient that challenges the safety systems).  

A digital upgrade may introduce internal redundancy and self-checking into single channels of 
the system, which could significantly improve channel reliability. However, if such features add 
too much complexity, this could increase the potential for digital failure. 

Factor B. Potential for Digital CCF 

The second factor relates to whether digital failures become CCFs that affect multiple channels 
or multiple systems. The independence criterion of IEEE 603 (see Reference [21]) provides 
reasonable assurance that failures will not propagate from one channel or system to another. If it 
is satisfied, a digital failure of a channel can become an intra-system CCF only when the 
activating condition concurrently affects other redundant, identical channels. A digital CCF 
affecting two digital systems concurrently would depend on a number of additional conditions: 

• The activating condition that triggered digital failure of the first system also affects 
redundant channels of, and was unanticipated in, the second system. 
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• The design of the second system is such that the condition activates the same or a causally 
related digital fault, resulting in a failure. 

• The function of the second system is such that this failure could prevent necessary mitigation 
or trigger an initiating event. 

Figure 2-2 illustrates the conditions required for a digital fault to result in a failure of an I&C 
channel (Factor A), the additional conditions required for it to affect redundant channels within a 
system, and the conditions necessary for it to affect a second system (Factor B).  

Diversity, or differences in key elements of software and hardware processes and components, is 
one means of limiting the susceptibility to digital CCF, as described in NUREG/CR-6303 (see 
Reference [5]). Other types of defensive measures in the design of an upgrade also can help 
reduce the likelihood of digital CCF, even when identical hardware and software components are 
used in multiple channels or systems. Section 3.1 discusses evaluation of defensive measures as 
part of determining whether a digital upgrade may introduce susceptibilities that should be 
addressed in the D3 evaluation.  

Factor C. Plant Design / Safety Model 

The risk impact of digital failures and digital CCFs (factors A and B) depends in part on what 
initiating events are affected, and on the design of the systems available to respond to those 
events. Assessment of plant risk therefore involves consideration of the intrinsic level of D3 in 
the plant design. This is defined predominantly by the combination of the mechanical and 
electrical mitigating systems available to respond to the relevant initiating events. 

Figure 2-3 shows an example of how the various elements of the plant design and safety model 
contribute to risk for a given initiating event. For each event, there are one or more functions that 
can provide mitigation and prevent core damage. These functions may be performed by safety or 
non-safety related systems, and may include manual operator actions. Some systems may have 
internal redundancy while others have only a single train of equipment. Note that the alternate 
mitigating systems shown in the figure include both digital and mechanical/electrical equipment 
needed to perform the function. The options of using operator action or an additional (diverse) 
automatic actuation capability represent alternate ways of backing up the I&C of the mitigating 
system. 

Combining Factors A, B and C 

The impact of a digital upgrade on a given initiating event’s contribution to risk is determined 
by: 

• The impact of the upgrade on the initiating event frequency (FIE). While often dominated by 
hardware failures, factors A and B could influence the frequency of the initiating events for 
which I&C failures play a role, if they substantially change the reliability of the I&C or of the 
key hardware components. 

• The impact on reliability (or failure probability) of the digital components of a single 
mitigating system, including: 
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– The probability of potentially unsafe digital failure (PDF) of individual I&C channels 
(factor A). 

– The likelihood of a potentially unsafe digital CCF affecting redundant I&C channels. 
This is represented in PRAs by a “beta-factor” (factor B). 

– The probability of failure (PF) of any digital equipment, signals, logic, etc., that is not 
redundant in the system (factor A for digital failures, plus random hardware failures). 

• The availability of multiple mitigating functions (factor C), possibly including operator 
action and/or new mitigating functions, and the potential for inter-system digital CCF that 
could affect multiple mitigating functions (factor B). 

• The likelihood of a digital CCF that could affect the initiating event and a mitigating system 
concurrently (i.e., causing the event and at the same time preventing a mitigating system 
from operating, with an associated beta-factor for this CCF). 
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Figure 2-2 
Conditions That Must be Present for a System to be Susceptible to Potentially Unsafe Digital Failure (Factor A) and Digital CCF 
(Factor B)
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Figure 2-3 
Effects of Plant Design / Safety Model (Factor C) on Risk Associated with a Digital Failure 

2.2.3 When to Perform a D3 Evaluation (Risk-Informed Perspective) 

Evaluation of the potential failure modes and risks associated with digital upgrades should be 
performed regardless of whether a formal D3 evaluation is required from a regulatory standpoint. 
The methods described in this report can be used to support evaluation of risk for any digital 
upgrade. 
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Example 2-3. Regulatory Perspective vs. Risk-Informed Perspective. 

Digital controllers are installed in both redundant trains of an essential service water (ESW) 
system, which is initiated based on signals generated with ESFAS (example given in TR-102348 
Revision 1, see Reference [3]). Although ESW is considered an engineered safety feature in this 
example, it is not part of the actuation system (ESFAS) as defined in the plant licensing basis 
(SAR). Therefore, it is concluded that a D3 evaluation is not required from a regulatory 
perspective. 

However, from a risk-informed perspective, ESW could be an important contributor to 
mitigation of a number of accident sequences, which may be risk significant based on the plant’s 
PRA. Therefore, the utility decides to perform a D3 evaluation as part of the design effort, to 
verify that postulated digital failures do not significantly increase plant risk.  

2.2.4 Advantages and Limitations of Risk-Informed Methods 

With the increasing acceptance of PRA into the regulatory environment and the completion of 
plant-specific PRAs for all operating plants, risk-informed methods are available to complement 
the traditional deterministic methods. 

Use of risk insights can help overcome some of the shortcomings of the BTP-19 (see Reference 
[1]) Deterministic Method that are described in Section 2.1.4. In particular, use of the PRA and 
its accident sequences, which are broader in scope than the set of events considered in the SAR, 
provides a more complete assessment of the impact of digital upgrades on plant risk:  

• In addition to the design-basis events described in the SAR, the PRA also includes a number 
of beyond-design-basis events.  

• The PRA considers mitigating systems and functions that go beyond what is credited in the 
design-basis analyses.  

Risk-informed methods use acceptance criteria based on overall plant safety, with acceptance 
criteria based on the potential for core damage and exposure of the public to radiation releases.  
This allows evaluation of digital upgrades in the context of the other potential contributors to 
plant risk. PRA analysis is best-estimate in the sense that it attempts to characterize the actual 
plant response to initiating events, available mitigating functions and systems, and their failure 
modes. 

Incorporating digital upgrades in the PRA models allows comprehensive treatment of the digital 
systems reliability and benefits (see Section 4.4.5) Also, for most plants, the PRA will need to be 
updated at some point to reflect digital upgrades, regardless of whether it is used to support D3 
evaluations. Thus, updating the PRA to support D3 evaluations will put the plant further along in 
its efforts to keep its PRA up-to-date. 
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An additional benefit of risk-informed techniques is the capability to help optimize the design of 
a digital upgrade from both safety and plant performance standpoints. These techniques can be 
used to systematically evaluate prospective I&C architectures, including consideration of design 
complexity that could lead to reduced reliability and increased risk. Also, the designer can use 
the resulting risk insights to guide design decisions and focus efforts on the areas of greatest risk. 

A potential limitation of the quantitative risk-informed methods is the need to establish failure 
effects and probability values for digital failure and digital CCF. Methods for identification of 
specific failure modes, modeling the effects of these failures, and assigning failure probabilities 
for these events are evolving. However, in many cases, it is possible to obtain the needed risk 
insights by modeling the functional effects of digital failures, rather than the internal details of 
the digital systems and their specific failure modes (see Section 3.1.2).  To address uncertainty 
concerns, for the purpose of D3 evaluation, conservative or bounding values can be used for 
failure probabilities and beta-factors. Alternatively, a combination of best-estimate values and 
sensitivity studies can be used. 
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3  
GUIDANCE ON PERFORMING D3 EVALUATIONS 

This section provides general guidance on performing D3 evaluations. It gives an overview of 
the D3 evaluation process, and describes three methods that are recommended as alternatives to 
the BTP-19 (see Reference [1]) deterministic evaluation approach:  

• An “Extended Deterministic” method based on BTP-19 but with risk insights applied.  

• A “Standard Risk-Informed” method based on use of the PRA modified to reflect the digital 
upgrade.  

• A “Simplified Risk-Informed” method that uses data from the existing, unmodified PRA.  

All three methods are blends of deterministic and risk-informed approaches. Any one of the three 
methods is sufficient to meet the intent of BTP-19 and demonstrate that vulnerabilities to digital 
CCFs have been adequately addressed. However, more than one of these methods can be applied 
to provide additional assurance of adequate defense. 

The process shown in Figure 3-1 assumes that the digital upgrade project has progressed to a 
point where sufficient design information is available to identify susceptibilities to digital 
failures and digital CCFs. However, plants are encouraged to evaluate D3 issues early in a 
project (e.g., at the conceptual design stage), examine design options and tradeoffs, and 
determine a final architecture that best manages the risk impact and other considerations related 
to the upgrade. The methods described in this section for the formal D3 evaluation can also be 
used to support such conceptual design studies.  

As shown in the figure, the D3 evaluation process consists of five steps: 

1. Determine whether a D3 evaluation should be performed for the current project. Both 
regulatory and risk perspectives should be considered (see Sections 2.1.3 and 2.2.3). 

2. Determine what susceptibilities to digital failure and digital CCF need to be addressed in the 
D3 evaluation. Guidance for this step is given in Sections 3.1 and 4.2. 

3. Choose the D3 evaluation method that will be used. Guidance on the trade-offs is provided in 
Section 3.7, which summarizes and compares the methods presented in this guideline. 

4. Perform the evaluation using the chosen evaluation method. Sections 3.2, 3.3, and 3.4 
describe the three methods presented in this guideline. Other methods may be appropriate 
with corresponding technical justification. In addition to method-specific acceptance criteria, 
the methods in this guideline all include a confirmatory review step that is discussed in 
Section 3.5. If the acceptance criteria are not met or the confirmatory review reveals potential 
problems, then the upgrade design is revised and/or the evaluation is refined and the D3 
results reassessed (see Section 3.6).  Section 4 provides more detailed guidance and 
information on use of the methods. 

5. Document the results. Section 4.6 provides guidance on documentation. 
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Figure 3-1 
Overview of the D3 Evaluation Process Using Alternatives to the BTP 19 Deterministic 
Method 
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3.1 Identification of Susceptibilities to Digital Failures and Digital CCFs  

The second step in the D3 evaluation is to identify the susceptibilities to digital failures and 
digital CCFs that should be addressed. This deterministic process defines the scope of the 
subsequent D3 evaluation. The following subsections describe and contrast the current regulatory 
guidance and the approach proposed in this guideline.   

3.1.1 NUREG/CR-6303 Approach 

NUREG/CR-6303 (see Reference [5]) provides guidance on identifying susceptibilities to digital 
CCFs. In particular, it states that: 

• “A block diagram of the system to be analyzed should first be constructed.” 

• A block is “a physical subset of equipment for which it can be credibly assumed that internal 
failures, including the effects of software errors, will not propagate to other equipment or 
software.”  

• “Candidate blocks should then be examined under the Diversity Guideline, to decide which 
blocks are identical for analysis purposes, and which will be considered diverse.”  

It also states that “blocks are to be considered identical ... when the likelihood of a CMF 
affecting them simultaneously is not acceptably low.”  

3.1.2 Defensive Measures Approach 

To identify susceptibilities to digital failures and digital CCFs, the “Defensive Measures” 
approach presented here essentially follows and extends the NUREG/CR-6303 approach. The 
main differences are that: 

• It can be used not only in deterministic D3 evaluations, but also in risk-informed D3 
evaluations. 

• It allows the susceptibilities identification process to be tailored based on the relative 
importance of the three factors as determined by the D3 evaluation method selected. For 
example, the Simplified Risk-Informed Method relies primarily on factor A, assigning best-
estimate digital failure probabilities, and uses conservative simplifying assumptions to 
address factors B and C. The Extended Deterministic Method considers primarily factors B 
and C, assessing susceptibility on a yes-or-no basis; however, for problematic events where 
risk insights are applied, it may use all three factors on a best-estimate basis. 

• It can take into account defensive measures that include, but are not restricted to, the seven 
diversity attributes listed by NUREG/CR-6303.  
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Crediting Defensive Measures in D3 Evaluations  

The basis of the Defensive Measures approach is to provide insights on the potential digital 
failure and digital CCF mechanisms, through the consideration of design features and functional 
characteristics that can restrict such mechanisms to a small manageable set of possibilities. 

When used as part of the Extended Deterministic Method, this approach can help determine, 
based on deterministic arguments, the effectiveness of diversity attributes and other defensive 
measures against digital CCFs. In favorable cases, consistent and appropriate sets of measures 
may provide reasonable assurance that even blocks that share identical digital design elements 
have an acceptably low likelihood of digital CCF. 

When used as part of the Standard or the Simplified Risk-Informed Method, the Defensive 
Measures approach can help determine where digital failures and digital CCFs need to be 
considered. When needed, it can help estimate reasonable probabilities of digital failures (PDF) 
and concurrent digital failures (beta-factors) for use in PRA analysis.  

Choosing Blocks 

The Defensive Measures approach begins with the construction, as suggested by NUREG/CR-
6303, of a system block diagram that shows the primary actuation paths associated with the 
system being upgraded. The level of detail in the diagram can depend on the desired degree of 
precision of the susceptibilities identification: simplified diagrams usually give more 
conservative results; detailed diagrams may have more accurate and realistic results. The desired 
degree of precision can depend on the D3 evaluation method being used, and on the impact on 
plant risk of the functions being evaluated.  

For example, when using the Simplified Risk-Informed Method, the analyst can start with:  

• Readily accepted (and very conservative) values for the probability of digital failure (PDF) of 
the digital equipment, and  

• The simplifying (and also very conservative) assumption that all digital failures are also 
digital CCFs (beta-factors of 1, see Section 3.4.2).  

Then, each digital system or device can be represented by a single block, and the second step of 
the D3 evaluation process is complete.  

However, if after having completed the D3 evaluation, it is concluded that the D3 acceptance 
criteria are not met, then one option is to perform a more realistic and less conservative 
susceptibilities identification (see Figure 3-1): this would usually require a more detailed system 
block diagram. 

For higher degrees of precision, it may be worthwhile to decompose particular blocks to the limit 
defined by NUREG/CR-6303 (see Section 3.1.1). In some cases, it may also be worthwhile to go 
even further and to decompose particular elementary blocks into modules that would not qualify 
as blocks, per NUREG/CR-6303. Guidance concerning the selection of blocks and modules is 
provided in Section 4.2.6. 
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Identifying Susceptibilities 

If the probabilities of digital failure of blocks, and the beta-factors between blocks do not have 
readily accepted values, the Defensive Measures approach suggests the following activities to 
justify or estimate these values: 

• Identification of the system elements that are susceptible to digital faults. These typically 
include the functional specification, programmable equipment (e.g., programmable logic 
controllers (PLCs)), and “smart” devices. 

• Determination of the types of digital faults that could affect each susceptible element, the 
operational conditions that could activate these faults, and the failure modes that could result. 
To this end, it may be useful to further decompose blocks into modules that could be 
examined individually for failure analysis purposes (see Section 4.2.6).  

• Identification and characterization of the defensive measures in place to avoid or eliminate 
these faults, and to minimize the activating conditions that could concurrently trigger digital 
failures in redundant blocks.  

• Assessment of the effectiveness and completeness of the defensive measures.  

Different sets of defensive measures may be credited for different types of susceptible elements. 
Measures may concern the element itself, the way the element is used in the digital system, or 
the operational environment of the digital system. They may address aspects such as: 

• Development, modification, and verification processes that provide reasonable assurance of 
fault avoidance and/or removal for the identified types of digital faults. EPRI-TR 102348 
Revision 1 (see Reference [3]) provides guidance and further references on the development, 
modification, and verification processes of digital systems and software. 

• Operational experience, giving reasonable assurance of reliability and appropriate behavior 
in similar conditions of use. EPRI-TR 106439 (see Reference [22]) provides guidance for the 
evaluation and acceptance of commercial grade digital equipment, based in particular on an 
evaluation and acceptance process. 

• Logical separation and independence of redundant channels and systems, giving reasonable 
assurance that failures will not propagate beyond block limits. Additional guidance is 
provided in IEEE 603 (see Reference [21]). 

• Functional characteristics of the plant system that may be used to minimize the likelihood of 
having unsafe digital failures (e.g., existence of an unequivocal and easy to reach safe failure 
position). 

• Design features giving assurance that:  

– The level of residual faults is appropriately low (e.g., simplicity, modularity).  

– Unanticipated operational conditions that could cause a potentially unsafe digital failure 
are very unlikely (e.g., identification, minimization, and coverage of all factors that could 
influence the behavior of a block or module).  

– There is a good capacity for fault tolerance (e.g., surveillance, fail-safe orientation).  
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– Only limited parts of the design can be affected by operational conditions that could 
trigger potentially unsafe digital failures (modularity). 

The last two bulleted items, functional characteristics and design features, are perhaps the most 
significant considerations in the identification and evaluation of susceptibilities. Functional 
characteristics of interest are determined primarily by behaviors at the plant system level. Design 
features refer to behaviors determined by the internal architecture and features embedded in the 
software and hardware of the digital equipment. Investigation of design features goes well 
beyond product marketing information and usually involves “white-box” analysis (i.e., analysis 
based on a detailed knowledge of the contents and design of the system). Sections 4.2.1 through 
4.2.3 list typical defensive measures for the most common types of susceptibilities. Particular 
attention should be given to defensive measures against functional specification faults. 
Experience provides compelling and converging evidence that for high quality digital systems, 
these faults have often been the dominant cause of digital failure (see Reference [27]). For 
redundant channels implementing the same faulty functional specification, such failures are 
likely to be concurrent and result in CCFs, regardless of design, software or equipment diversity.  

3.2 Extended Deterministic Method  

This method is an extension of the BTP-19 (see Reference [1]) Deterministic Method, designed 
to address some of its shortcomings (see Section 2.1.4).  Figure 3-2 provides an overview. The 
basic differences between the BTP-19 and the Extended methods are: 

• The Extended Deterministic Method recommends crediting defensive measures (see Sections 
3.1 and 4.2) to the extent that they limit susceptibilities to digital failures and digital CCFs. 
The BTP-19 Deterministic Method credits various types of diversity, but does not consider 
other valid types of defensive measures. 

• The Extended Deterministic Method includes a confirmatory review to check for risk-
significant events that might have been overlooked by the BTP-19 Deterministic Method (see 
Section 3.5).  

• For initiating events where the relaxed acceptance criteria of the best-estimate deterministic 
analysis are not met, the Extended Deterministic Method provides the option of applying 
risk-informed insights and methods to assess the risk significance of the proposed plant 
modification for those events (see Section 3.6).  

Otherwise, the Extended Deterministic Method is identical to the BTP-19 Deterministic Method, 
including use of the guidance of BTP-19 and NUREG/CR-6303 (see Reference [5]). In 
particular:  

• NUREG/CR-6303 states “Diversity and defense-in-depth analyses should be performed when 
credible potential exists for common-mode failure.”  

• BTP-19 requires that each initiating event analyzed in the SAR be evaluated concurrent with 
each postulated software common mode failure (replaced with digital CCF in this guideline).  

• BTP-19 provides relaxed acceptance criteria for D3 evaluations compared to the acceptance 
criteria applicable to the SAR event analyses. 
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After determining that a D3 evaluation is needed (see Section 2.1.3) and confirming there are 
digital CCF susceptibilities that should be addressed (see Sections 3.1 and 4.2), the system block 
diagram is reviewed. For each of the initiating events analyzed in the SAR: 

• The primary and backup mitigation functions for which credit is taken in the plant licensing 
basis are identified.  

• A check is conducted to determine if any postulated digital CCF could degrade both the 
primary and backup mitigating functions.  

• If such cases are found, then the initiating event is evaluated to determine if an additional 
mitigating function would be needed to meet the acceptance criteria.  

These evaluations are done on a best-estimate basis as described in BTP-19, and the acceptance 
criteria are the relaxed acceptance criteria of BTP-19: 

1. “For each operational occurrence … analyses should not result in radiation release 
exceeding 10% of the 10 CFR 100 guideline value, or violation of the integrity of the primary 
coolant pressure boundary.” 

2. “For each postulated accident …analyses should not result in radiation release exceeding 
the 10 CFR 100 guideline values, violation of the integrity of the primary coolant pressure 
boundary, or violation of the integrity of the containment.” 

Several approaches may be considered for demonstrating that adequate defense-in-depth exists in 
the plant systems. These include: 

• Demonstration that no protective action is required, because the plant attains a new steady 
state that meets the relaxed acceptance criteria. 

• Taking credit for other plant equipment that is not susceptible to the postulated digital CCFs. 

• Assuming manual operator action within a defendable period of time (keeping in mind that 
this is a best-estimate analysis), using controls and monitoring instrumentation that are not 
affected by the postulated digital CCFs. 

• Modifying the proposed design such that the susceptibility to digital CCFs is reduced. 

• Adding an automatic mitigating or actuation function that is not affected by the postulated 
digital CCFs such that the plant response meets the applicable relaxed acceptance criteria. 

• Using one of the two risk-informed methods of this guideline to evaluate specific events for 
which the BTP-19 acceptance criteria are not met when best-estimate analyses are used. 
Risk-informed analysis may demonstrate that risk is adequately managed for these events 
(see Sections 3.3 and 3.4). 

The Extended Deterministic Method recommends a confirmatory D3 review (see Section 3.5) in 
addition to the SAR event analyses, and possibly risk-informed analyses of selected events, to 
help ensure that the deterministic focus on the SAR events has not resulted in missing safety-
significant events. If either the BTP-19 relaxed acceptance criteria are not met, or the 
confirmatory review reveals events for which the available D3 might not be adequate, then the 
designer should consider options for refining the evaluation parameters and/or modifying the 
design (see Section 3.6). The final step is documenting the results of the evaluation (see Section 
4.6). 



 
 
Guidance on Performing D3 Evaluations 

3-8 

The Extended Deterministic Method partially addresses two of the three important-to-risk factors 
of Section 2.2.2: 

• Factor B, “potential for digital CCF” - The potential for digital CCF is considered on a block-
by-block basis, and ultimately assumed to either not occur, or occur with certainty. 

• Factor C, “plant design / safety model” - The method allows the designer to evaluate the 
adequacy of the design of the mitigating systems in response to each initiating event 
analyzed. 

Factor A, “impact of the upgrade on I&C channel reliability” is not addressed, as the method 
does not consider the reliability of the mitigating functions. The designer assumes digital failure 
regardless of the expected or demonstrated reliability of the digital equipment. 

3.3 Standard Risk-Informed Method  

In the Standard Risk-Informed Method, the PRA model is updated to include key characteristics 
of the digital upgrade, and the PRA results are regenerated to estimate new core damage 
frequency (CDF) and large early release frequency (LERF) values. This method recognizes that 
the plant design already defines an implicit level of D3 that is predominately defined by the 
mechanical and electrical mitigating systems. The PRA includes a large portion of the 
mechanical and electrical mitigating equipment in the modeling and quantification of core 
cooling and containment systems. As a result, it is well-suited to assess whether a digital upgrade 
is capable of maintaining the existing D3 and to determine where digital failures will have only a 
limited impact on safety.  

Figure 3-3 provides an overview of the method. First, a review of the PRA model is used to 
identify the elements that are potentially impacted by the upgrade. This begins with identification 
of initiating events and mitigating systems that may be affected. PRA elements of interest will 
include:  

• Initiating events and frequencies (including what fraction might be caused by I&C failures).  

• The specific trains into which the digital equipment is to be installed.  

• New dependencies within and across systems that may be introduced by the digital upgrade. 

Elements of the PRA model affected by the digital upgrade are updated (see Section 4.4) and the 
PRA results are regenerated. Sensitivity studies are used to assess the importance of uncertainties 
regarding digital failure probabilities and beta-factors. Acceptance criteria for the Standard Risk-
Informed Method are based on the guidance of Regulatory Guide 1.174 (see Reference [2]), 
which defines acceptable changes in CDF and LERF. In addition to the probabilistic 
calculations, the Standard Risk-Informed Method recommends a confirmatory defense-in-depth 
review (see Section 3.5) to confirm the results of the quantitative analysis from a qualitative 
perspective. If either the Regulatory Guide 1.174 acceptance criteria are not met or the 
confirmatory review reveals events for which the available D3 might not be adequate, then 
options for refining evaluation parameters and/or modifying the design should be considered (see 
Section 3.6). The final step is documenting the results of the evaluation (see Section 4.6). 
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The Standard Risk-Informed Method addresses all three of the important-to-risk factors of 
Section 2.2.2: 

• Factor A, “impact of the upgrade on I&C channel reliability” - The effects of postulated 
digital failures are explicitly represented using failure probabilities, in a manner similar to 
those of random failures of other components, but taking into consideration the deterministic 
nature of digital failures (i.e., activation of residual digital faults by unanticipated operational 
conditions; see discussion of factor A in Section 2.2.2).  

• Factor B, “potential for digital CCF” - The identified intra and inter-system susceptibilities to 
digital CCFs are represented by beta-factors affecting redundant trains or systems. 

• Factor C, “plant design / safety model” - The PRA model naturally integrates the effects of 
postulated digital failures and digital CCFs into the plant systems. Thus, the regeneration of 
the CDF and LERF calculations allows a direct assessment of the effect of the digital 
upgrade on the D3 that inherently exists in the design of the plant mitigating systems. 

Section 4.4.5 discusses the incorporation into the PRA of the other positive and negative effects 
of the digital upgrade on the plant. 

3.4 Simplified Risk-Informed Method  

This section outlines a simplified, but bounding method to quickly assess the potential D3 
implications of a proposed digital upgrade. It uses selected information from the plant PRA and 
can be applied without the need to update the PRA or perform the best-estimate accident 
analyses suggested by BTP-19 (see Reference [1]). As with the Standard Risk-Informed Method, 
the Simplified Risk-Informed Method recognizes that there is an implicit level of diversity and 
defense-in-depth that already exists in the plant design. The objective of the method is to assure 
that this level of D3 is maintained where it has value. 

The basic principle of the method is to combine key information from the existing plant PRA 
with a conservative treatment of the effects of postulated digital failures to generate bounding 
estimates of the potential change in core damage frequency (∆CDF) and large early release 
frequency (∆LERF). If, under these bounding assumptions, ∆CDF and ∆LERF meet regulatory 
guidance (per Regulatory Guide 1.174, see Reference [2]) for a small change in risk, then the D3 
evaluation is essentially complete, as it demonstrates adequate defense against digital CCFs. A 
confirmatory review still is performed per Section 3.5, as it is for the other two methods. 

Figure 3-4 provides an overview of the method. First, a review of the PRA model is used to 
extract information needed to calculate the ∆CDF and ∆LERF estimates for each initiating event.  
The plant-specific PRA information needed is: 

• The initiating events included in the PRA and their frequencies (including what fraction 
would be caused by I&C failures). 

• A listing of front line mitigating systems available to respond to each of these initiating 
events. 

• Time available for operator action to manually initiate mitigating systems for each initiating 
event (where manual initiation is to be credited in the D3 evaluation). 
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• Probability of failure (conditional on the initiating event) of mitigating systems that can be 
shown to be independent from the initiating event (performed only where the D3 evaluation 
finds that the cause of the initiating event is digital system-related and can also affect one or 
more of the mitigating systems). 

• Conditional probability of large early release for each initiating event (for use in estimating 
∆LERF from ∆CDF). 

∆CDF and ∆LERF estimates are then calculated for each initiating event (see Section 3.4.1). 
Acceptance criteria for the Simplified Risk-Informed Method are based on Regulatory Guide 
1.174, which provides guidance on acceptable changes in CDF and LERF. In addition to the 
probabilistic calculations, the Simplified Risk-Informed Method recommends a confirmatory D3 
review (see Section 3.5) to reaffirm the results of the quantitative analysis from a qualitative 
perspective. If either the Regulatory Guide 1.174 acceptance criteria are not met or the 
confirmatory review reveals events for which the available D3 might not be adequate, then the 
designer should consider refining evaluation parameters and/or modifying the design (see 
Section 3.6). The final step is documenting the results of the evaluation (see Section 4.6). 

As with the Standard Risk-Informed Method, the Simplified Risk-Informed Method addresses all 
three of the important-to-risk factors of Section 2.2.2: 

• Factor A, “impact of the upgrade on I&C channel reliability” - The effects of postulated 
digital failures are explicitly represented using failure probabilities, in a manner similar to 
those of random failures of other components, but taking into consideration the deterministic 
nature of digital failures (i.e., activation of residual digital faults by unanticipated operational 
conditions; see discussion of factor A in Section 2.2.2). 

• Factor B, “potential for digital CCF” - The intra and inter-system susceptibilities to digital 
CCFs are represented by beta-factors between affected trains or systems.  

• Factor C, “plant design / safety model” - The PRA model naturally integrates the effects of 
postulated digital failures and digital CCFs into the plant systems. Thus, the ∆CDF and 
∆LERF calculations allow a direct assessment of the effect of the digital upgrade on the 
defense-in-depth and diversity that inherently exists in the design of the plant mitigating 
systems. 

Note that as a first approximation, the method may use simplifying assumptions for factors B and 
C (see Section 3.4.2). The results of the Simplified Risk-Informed Method are considered 
conservative or bounding for several reasons: 

• The method takes little credit for design features that likely make the reliability of the new 
equipment better than that of the equipment being replaced (including fault tolerance and 
self-diagnostics). 

• The method assumes that all failures of the digital systems are potentially common cause, 
including random hardware failures. 

• It further assumes that the redundant channels of a digital system will always fail 
simultaneously (intra-system beta-factor of 1). This is not always the case, even for identical 
channels, as a number of digital failures may be triggered by events that are unlikely to affect 
all channels simultaneously (see Figure 2-2 and Section 4.2). 
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• It also assumes that all failures of mitigating digital I&C prevent the affected plant systems 
from performing their safety functions (In some cases an I&C failure will not disable its 
system).  

3.4.1 Using Parts of the PRA to Calculate a Change in Risk 

For a given initiating event, the estimate for ∆CDF is based on the initiating event frequency 
from the PRA, the estimated probability of digital failure of a single channel of digital 
equipment, and the beta-factors representing digital CCFs. The beta-factors are considered 
within each mitigating system, between mitigating systems, and between mitigating systems and 
systems that can cause the initiating event.  

The following simple relationships approximate the change in risk for each initiating event 
(assuming all beta-factors are 1): 

 

When there is a digital failure that can lead to a given initiating event, and when this digital 
failure also can affect one or more mitigating systems that are credited by the PRA, then the 
equation for ∆CDF will include two terms: 

 

The new contributions to risk for each initiating event are summed to calculate a total ∆CDF and 
∆LERF. The individual contributions from the initiating events are then examined to identify and 
investigate the dominant risk contributors.  
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3.4.2 Key Simplifying Assumptions 

The Simplified Risk-Informed Method is applicable under the conditions that the digital upgrade 
does not significantly alter (i.e., increase) the frequencies of the PRA initiating events, and that a 
single channel of digital I&C of a mitigating system is at least as reliable as the equipment it 
replaces. These conditions should be confirmed through evaluation of the specific equipment 
design and quality attributes (see Sections 3.1 and 4.2). They are usually satisfied by upgrades 
that replace analog I&C systems with functionally equivalent digital systems. This might not be 
the case for digital designs that introduce significant new complexity or functional changes. 

The following initial assumptions are made: 

• All mitigating systems are subject to the effects of digital failures, including postulated 
digital CCFs (i.e., no credit is taken for the diversity of I&C platforms or defensive 
measures). 

• Beta-factors of 1, regardless of whether mitigating systems share common elements.  

• A digital failure that is postulated to cause an initiating event also results in loss of any 
mitigating system that has identical design elements. 

These assumptions provide a bounding case, and may be refined with appropriate justification. 
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Figure 3-2 
Extended Deterministic Method for D3 Evaluation 
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Figure 3-3 
Standard Risk-Informed Method for D3 Evaluation  
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Figure 3-4 
Simplified Risk-Informed Method for D3 Evaluation 
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3.5 Confirmatory D3 Review 

Regardless of the D3 evaluation method used, it is recommended that a qualitative confirmatory 
review addressing both design-basis and beyond design bases events be performed. The 
objective is to confirm that the available systems provide adequate D3 for each of the initiating 
events. This approach is a blend of deterministic and risk-informed principles. It is risk-informed 
in the sense that the acceptable level of defense is a function of initiating event frequency, and 
deterministic in the sense that specific attributes of actual mitigating systems are considered. 

For the Extended Deterministic Method, this step provides coverage of potentially risk-
significant events that are not addressed under the BTP-19 (see Reference [1]) Deterministic 
Method. For the Standard and Simplified Risk-Informed Methods, this evaluation provides an 
understanding of the change in risk from a system design perspective, and documents 
compliance with the defense-in-depth principle of Regulatory Guide 1.174 (see Reference [2]). 

Figure 3-5 shows an example of a blended deterministic/risk-informed approach that considers 
the full range of PRA initiating events. This approach is similar to that used routinely to assure 
adequate defense-in-depth when evaluating operating events in the Significance Determination 
Process (SDP) of the Reactor Oversight Program (see Reference[25]). The first column contains 
the PRA initiating events classified by their frequencies. The top row contains a spectrum of 
combinations of mechanical mitigating systems that offer decreasing levels of defense-in-depth 
going from left to right. The shaded area of the diagram represents acceptable levels of defense, 
as a function of the frequency of the initiating event (designated as the “green” or non-risk 
significant area in the SDP). 

Added to the SDP diagram for the purpose of evaluating digital upgrades is a second row that 
contains examples of I&C system designs that cover a similar spectrum of defense-in-depth 
levels as the mitigating system configurations in the top row. In order to keep the example 
simple, each I&C system design spans two columns of the SDP diagram. For each I&C system 
design, the expected reliability is roughly equivalent to that of the leftmost corresponding 
mechanical system design in the top row. The shaded area of the diagram again represents 
acceptable levels of defense-in-depth, as a function of the frequency of the initiating event.   

To use the Figure 3-5 approach, the designer compares the actual set of available I&C mitigating 
systems for each initiating event to the examples on the chart, and determines whether the 
corresponding D3 level is acceptable. For multiple mitigating systems to be credited, they should 
be shown to have an acceptably low likelihood of inter-system digital CCF (e.g., using the 
defensive measures approach as it is applied in the Extended Deterministic Method). In the same 
manner, they should also be shown to have an acceptably low likelihood of digital CCF with the 
causes of the initiating events. Design measures that protect against digital failures and digital 
CCFs (see Section 4.2) could be credited, as appropriate. 
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Example 3-1a. Using Figure 3-5 in Confirmatory D3 Reviews - Loss of Feedwater. 

A plant-wide digital upgrade is being implemented. The digital CCF susceptibility evaluation has 
looked at the various digital platforms, applications and defensive measures and concluded that 
the safety and non-safety systems are effectively diverse; no digital CCFs between them need to 
be evaluated further (The possibility of digital CCF among safety systems, among non-safety 
systems, and among redundant channels also should be considered). A qualitative confirmatory 
D3 review is then performed for each of the initiating events in the PRA using Figure 3-5. 

For the Loss of Feedwater initiating event, the primary mitigating system is Auxiliary Feed 
Water (AFW), a multiple train safety system that uses digital actuation and controls. There is 
also a backup digital actuation system for AFW, which is effectively independent, having no 
postulated digital CCF with the primary system I&C. Finally, there is hard-wired manual 
initiation capability for AFW, the Safety Injection (SI) pumps and Power Operated Relief Valves 
(PORVs) for feed-and-bleed purposes. The I&C design exceeds the capability described in the 
left most column of the second row of Figure 3-5, and therefore has adequate D3 for this 
initiating event. 

 

Example 3-1b. Using Figure 3-5 in Confirmatory D3 Reviews - Large Break LOCA. 

The Large Break LOCA (LBLOCA) initiator is mitigated by an automatic redundant digital 
safety system that actuates low head SI. Accident analysis indicates that the time available to 
initiate low head SI is not sufficient to credit manual operator action.  Therefore, the I&C design 
for initiation of SI corresponds to that of the center column of Figure 3-5. Because of the low 
frequency of the LBLOCA, the availability of a single automatic, redundant safety system 
provides adequate D3 for this event, without additional means of actuating the SI function.  

Figure 3-5 illustrates the Loss of Feedwater and Large Break LOCA confirmatory review 
examples.  
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Initiating 
Event 

Frequency 

Mechanical System 
Designs

 
> 3 diverse 

trains 

OR  
2 redundant 

systems 

1 train +  
1 system with 
redundancy 

OR 
2 diverse 
trains + 

recovery of 
failed train 

2 diverse 
trains 

OR 
1 system with 
redundancy + 

recovery of 
failed train 

1 train + 
recovery of 
failed train 

OR 
1 system with 
redundancy 

1 train OR 
1 system with 
redundancy 

(manual 
initiation with 

time 
constraints) 

Recovery of 
failed train None 

(Row added 
for the 
purpose of 
I&C 
confirmatory 
review) 

I&C System Designs

Initiating Events 

1 automatic redundant 
safety system  

AND 

(1 automatic I&C channel 
OR Manual initiation) 

1 automatic redundant 
safety system  

OR 

(1 automatic I&C channel 
AND Manual initiation) 

1 automatic I&C channel 

OR 

Manual initiation 

 

1 to 10 / yr 
Reactor trip 
Loss of Condenser        

10-1 to 1  
/ yr 

Loss of off-site power 
Total loss of main FW 
Stuck open SRV (BWR) 
MSLB (outside cntmt) 
Loss of 1 SR AC bus 
Loss of Instr/Cntrl air 

       

10-2 to 10-1 / 
yr 

SGTR 
Stuck open PORV/SV 
MFLB 
MSLB inside 
Loss of 1 SR DC bus 

       

10-3 to 10-2 / 
yr 

Small LOCA        

10-4 to 10-3 / 
yr Medium & large LOCA 

 
      

10-5 to 10-4 / 
yr 

        

< 10-5 / yr         

Figure 3-5 
Example of Approach for Confirmatory D3 Review
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3.6 When Acceptance Criteria Are Not Met 

The D3 acceptance criteria differ, depending on which evaluation method is used. The 
acceptance criteria for the Extended Deterministic Method are based on BTP-19 (see Reference 
[1]), whereas the criteria for the risk-informed methods are based on Regulatory Guide 1.174 
(see Reference [2]). Acceptance criteria for the confirmatory review may be independent of 
method, as shown in the example of Section 3.5. If any of the acceptance criteria are not met, 
there are only a few basic alternatives: 

1. Refine the parameters and/or assumptions used in the D3 evaluation (with justification). 

2. Use one of the other D3 evaluation methods to gain additional insights to determine whether 
there is adequate D3. 

3. Modify the design of the upgrade to eliminate the digital CCFs of concern. 

4. Add a backup function that is not subject to the digital CCFs of concern. 

5. Do not implement the upgrade. 

Alternatives 1 and 2 above have different implications and limitations depending on which D3 
evaluation method is being used. These variations are discussed in the following subsections. 

3.6.1 Extended Deterministic Method 

If the acceptance criteria of BTP-19 are not met, it may be possible to achieve acceptable results 
by crediting additional “best-estimate” considerations to remove remaining conservatisms from 
the SAR event analyses.  

Alternatively, one of the risk-informed methods may be used to address the initiating events that 
proved problematic under the Extended Deterministic Method. Resulting risk-informed insights 
may be used to establish an engineering rationale as to why the design of the digital upgrade is 
acceptable, even though compliance with the BTP-19 relaxed acceptance criteria is in question. 
Such insights may include: 

• The frequency of the event is sufficiently low that even conservative assumptions regarding 
the potential for digital CCFs would not result in the affected accident sequences contributing 
significantly to risk. 

• Mitigating systems and/or operator actions not credited in the design-basis are available, 
which would prevent potentially significant consequences of the postulated digital CCFs. 

If the acceptance criteria of the confirmatory D3 review are not met, it may be possible to credit 
additional existing features to show that the available mitigating systems offer better defense 
than was assumed in the failed evaluation. For example, there may be design features built into 
the software that limit the potential for digital CCF (see Sections 3.1.2 and 4.2), but were not 
credited in the original review in order to simplify the evaluation. Insights gained using risk-
informed methods may also help determine the design changes that could lead to a successful 
confirmatory review.  
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3.6.2 Standard Risk-Informed Method 

If the acceptance guidance of Regulatory Guide 1.174 is not met, it may be possible to achieve 
acceptable results by using less conservative, but still bounding probabilities of digital failures 
and beta-factors, if they can be justified. In addition, credit may be taken for defense-in-depth 
provided by existing means, such as operator actions or existing analog or other diverse actuation 
mechanisms that have not been previously considered. Another possibility might be to take more 
complete account of other positive impacts of the digital upgrade (e.g., initiating event frequency 
reduction due to improved monitoring of electrical/mechanical equipment). 

3.6.3 Simplified Risk-Informed Method 

The Simplified Risk-Informed Method has more limited options. Less conservative digital failure 
probabilities and beta-factors may be credited, with appropriate justification. However, if much 
adjustment is required, it may be more cost-effective to switch to the Standard Risk-Informed 
Method, so that all the impacts of the digital upgrade can be taken into account, e.g., reduction in 
initiating event frequencies due to improved reliability and diagnostics. 

3.7 Summary and Comparison of Methods  

Any one of the three alternative methods or a combination of them may be sufficient to 
demonstrate adequate D3. The designer therefore has flexibility to decide which is the most 
appropriate on a case-by-case basis. This section briefly discusses strengths and weaknesses of 
each method, presents a side-by-side comparison highlighting similarities and differences, and 
suggests a strategy for applying the methods in a sequence that optimizes the cost-effectiveness 
of the D3 evaluation. 

3.7.1 Strengths and Weaknesses 

All three of the methods are considered adequate in terms of addressing safety concerns. The 
strengths and weaknesses discussed here are based primarily on technical or logistical issues that 
could prove important, depending on the plant-specific or upgrade-specific circumstances. The 
following discussion briefly addresses each of the methods. 

Extended Deterministic Method - This method is the closest to the BTP-19 (see Reference [1]), 
NUREG/CR-6303 (see Reference [5]) approach and is therefore the most familiar to both utility 
design engineers and regulators. It can use the same thermal-hydraulic codes used for the SAR 
analyses to perform the best-estimate analyses, with modified assumptions and initial conditions, 
and uses acceptance criteria based upon commonly used plant process parameters that are also 
used in the SAR analyses. 

The primary weakness of the Extended Deterministic Method is that most of the initiating events 
are addressed using best-estimate analyses, which can be time consuming and expensive.  
Additionally, the best-estimate analyses will likely be unsuccessful for some events, which will 
then need to be addressed using risk-informed insights. Also, if the PRA model will have to be 
updated anyway, it may be more cost-effective to go directly to the Standard Risk-Informed 
Method. 
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Standard Risk-Informed Method - Although significant effort may be involved in modifying 
the PRA model, this may be a cost-effective alternative to performing best-estimate analyses 
under a deterministic approach. This method gives maximum flexibility in that it addresses all 
the affected failure probabilities and beta-factors independently. It also allows the analyst to 
credit other beneficial impacts of the upgrade, i.e., improved condition monitoring (see Section 
4.4.5). It allows the risk impact of a particular digital upgrade design to be highlighted, explicitly 
identifying the accident sequence types and trains of equipment that drive risk. Performing PRA 
analysis early allows the upgrade design to be improved using risk insights and input from plant 
personnel knowledgeable in normal and emergency operations. Optimization of the design from 
a risk and cost perspective can be performed. Since the PRA model will need to be updated at 
some point to incorporate the upgrade, it may be advantageous to update the model early in the 
design process to support the upgrade effort (see Section 4.5). 

A possible disadvantage of the method is that it could take longer due to scheduling and 
communications interactions between the design group and the PRA group, who would most 
likely perform the risk analysis. Depending on the extent of the upgrade, the level of detail with 
respect to the I&C currently included in the PRA, and the number of iterations with respect to the 
final design, update of the PRA potentially could take significant time to implement.  

Simplified Risk-Informed Method -  The principal advantage of this method is that it can be 
done very quickly compared to the other methods, and can be quickly revised as the upgrade 
design changes. Also, it can be implemented by non-PRA personnel with minimal assistance 
from PRA experts, as input from only a limited number of elements of the PRA is required. Like 
the Standard Risk-Informed Method, the Simplified Risk-Informed Method considers a broad 
spectrum of accident sequences that can be important to risk, including those that go well beyond 
the design-basis. 

A potential disadvantage of the method is that it uses conservative or bounding assumptions in 
order to keep the methodology simple. Thus, it may result in the need to credit operator actions 
or provide additional backups that might be shown to be of limited importance if the Standard 
Risk-Informed Method were to be used, taking advantage of the full scope PRA. 

3.7.2 Implementation Strategy 

Table 3-1 summarizes the three methods in the context of the overall D3 evaluation process. It 
shows how the methods differ in terms of the events that are analyzed, the assumptions made 
regarding digital CCF likelihood, the analysis methods used, and the acceptance criteria applied 
to the results.  

One suggested strategy for applying the methods is shown in Figure 3-6. With this approach, the 
Simplified Risk-Informed Method is applied first. This can be done relatively easily, and it 
provides insights into what events are most important from a risk standpoint. If this method gives 
acceptable results, it can be used by itself as the basis for demonstrating that the digital upgrade 
is acceptable from a D3 standpoint. (Of course, Extended Deterministic or Standard Risk-
Informed analyses also could be performed to provide additional assurance, if desired.) If the 
Simplified Risk-Informed Method provides results that do not meet the Regulatory Guide 1.174  
(see Reference [2]) acceptance criteria, then the sensitivity to the values used for probabilities of 
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digital failure and beta-factors may be reexamined. If there is a basis for using less conservative 
values in the events that dominate the results, the method should be repeated using the new 
values. If the method does not meet the acceptance criteria using values that can be justified, then 
either the Extended Deterministic or the Standard Risk-Informed Method is applied as the next 
step. 

If the PRA can be expeditiously updated to support the D3 evaluation, then it is recommended 
that the Standard Risk-Informed Method be used. Again, there can be some iteration to identify 
the dominant contributors to risk and select appropriate failure probabilities and beta-factors.  
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Figure 3-6 
Suggested Strategy for Applying D3 Methods 
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Table 3-1 
Summary of D3 Evaluation Methods 

D3 Evaluation Steps Extended Deterministic Standard  
Risk-Informed 

Simplified 
Risk-Informed 

1 Determine if a D3 evaluation 
is required from a regulatory 
perspective 

This is the case for: 

• Analog-to-Digital upgrades of RTS or ESFAS. 

• Digital-to-Digital upgrades to RTS or ESFAS that may affect previous D3 
evaluation. 

• Upgrades affecting other systems credited in a previous D3 evaluation. 

2 Identify susceptibilities to 
digital CCF that need to be 
addressed 

• Construct a block-diagram showing primary actuation paths affected by the 
upgrade. 

• Examine blocks to determine the likelihood of digital CCF (use Diversity 
Guideline of NUREG/CR-6303 or Defensive Measures approach of section 3.1.2, 
and consider failure propagation, including shared components and signals). 

3 Choose D3 evaluation 
method 

Any one of the three methods can be used by itself. Suggested approach: start with 
the Simplified Risk-Informed Method; use the Extended Deterministic or Standard 
Risk-Informed Methods if necessary. 

4a Identify events to be analyzed 
Initiating events analyzed in 
the SAR + those considered 
in the Confirmatory Review. 

Initiating events included in the existing PRA 

4b Determine assumptions and 
values for PDF (probability of 
digital failure) and β 
(probability of conditional 
digital failure) 

No quantified estimation of 
PDF. β assumed to be 1 for 
blocks susceptible to digital 
CCF. 

• Reasonable, bounding 
values for PDF and β. 

• Less conservative values 
if necessary and 
justified. 

• Sensitivity studies to 
examine effects of 
uncertainties. 

• Initially: very 
conservative 
assumptions 
(bounding value for 
PDF, β=1). 

• Less conservative 
values if necessary 
and justified. 

4c Perform analysis 

“Best-estimate analysis” - 
using initial conditions and 
assumptions that are 
reasonably expected to 
occur. 

• Update PRA to reflect 
effect of upgrade on 
initiating events and 
mitigating systems. 

• Recalculate CDF, LERF. 

• Calculate ∆CDF, ∆LERF. 

• Use selected 
information from 
the existing PRA. 

• Simplified 
calculation of 
∆CDF, ∆LERF for 
each initiating 
event. 

4d Perform qualitative 
confirmatory review 

Determine whether the available systems provide adequate D3 for each of the PRA 
initiating events (using for example a blended deterministic/risk-informed approach 
similar to the SDP of the Reactor Oversight Program). 

Evaluation: relaxed criteria 
based on 10 CFR 100 and 
BTP-19 

Evaluation: criteria defined in Regulatory Guide 
1.174 for ∆CDF, ∆LERF. 

4e Apply acceptance criteria 
Confirmatory Review: for example, criteria based on staying in the “green” area of 
the SDP defense-in-depth matrix. 

No D3 needed (per step 1 above): briefly state the basis (may be as part of the 
normal upgrade process. 
D3 as design aid: documentation recommended but not required for licensing 
purposes 
Scope of evaluation: document the scope of changes to which the evaluation 
applies  
Digital CCF susceptibilities: document evidence showing that digital failure types 
are correctly identified, that credited measures provide adequate defense and were 
correctly implemented. (See also Section 4.6.1.) 
Confirmatory D3 review: see Section 4.6.4. 

5 Document the D3 evaluation 

Analysis: see Section 4.6.2. Analysis: see Section 4.6.3. 
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4  
ADDITIONAL GUIDANCE ON D3 EVALUATIONS 

4.1 Susceptibilities to Random Hardware Failures 

For digital equipment, both random hardware failures and software-based failures (called here 
digital failures) should be considered. High quality, redundancy, and separation are usually the 
main means to reduce the potential for system failure due to random hardware faults. Techniques 
for evaluating hardware failure probabilities are well established and are not discussed here in 
detail. From a hardware failure probability perspective, digital equipment does not require new 
evaluation methods, but it may offer significant advantages over the analog equipment it 
replaces. For example, digital equipment typically has fewer and more reliable hardware 
components. Various forms of fault tolerance can also be used in digital equipment, e.g., self-
surveillance, surveillance by external means, or internal hardware redundancy and separation. 
Appropriate designs can reduce random hardware failures of digital systems to negligible levels. 

4.2 Susceptibilities to Digital Failures and Digital CCFs 

Regarding digital failures and digital CCFs, the primary defense is based upon high quality and 
dependability of the equipment and of the plant-specific application. As stated in BTP-19 (see 
Reference [1]), “To defend against potential common-mode failures, the Staff considers high 
quality, defense-in-depth, and diversity to be key elements in digital system design. High-quality 
software and hardware reduces failure probability.” 

Use of appropriate industry standards and regulatory guidelines for development, verification 
and validation, and configuration control helps ensure adequate quality and dependability of 
digital equipment for safety applications. However, quality and dependability are also 
profoundly influenced by factors other than engineering processes. For example, certain 
designed-in features and functional characteristics can help avoid or tolerate faults and cope with 
unanticipated conditions. Such measures are referred to as defensive measures. They may 
address either the engineering processes or the digital system design. The approach taken in this 
guideline is to credit all the defensive measures that help provide reasonable assurance that 
digital failures are unlikely, and digital CCFs are much less likely than single failures assumed as 
part of the plant’s design and licensing basis. 

This section gives examples of sets of defensive measures that could be considered when 
evaluating susceptibilities that might affect particular types of system elements. Section 4.2.1 
gives examples of defensive measures addressing susceptibilities that might be caused by faults 
in the I&C system functional specification. Section 4.2.2 gives examples of defensive measures 
that address susceptibilities that might be caused by design faults in programmable equipment 
(e.g., PLCs). Section 4.2.3 gives examples of defensive measures that address susceptibilities 
that might result from design faults in smart devices with simple fixed functionality, such as 
smart transmitters. 
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Section 4.2.4 provides guidance for estimating probabilities of digital failure in individual I&C 
channels or devices. Section 4.2.5 provides guidance for estimating beta-factors associated with 
digital CCFs. Section 4.2.6 provides guidance for decomposing blocks into modules for the 
purpose of digital CCF susceptibility analysis and failure mode analysis. 

4.2.1 Defensive Measures for Functional Specifications  

Two main types of mistakes may lead to faults in the functional specification for the application 
of a digital system: 

• Functional mistakes arise when incorrect understanding of the desired behavior of the digital 
system or of the behaviors of other plant systems or components is reflected in the functional 
specification. Such mistakes are usually not specific to digital systems, and have been found 
in the functional specifications of analog systems. 

• Technical mistakes arise when the desired behaviors and functionality of the digital system 
are inaccurately or incompletely translated into the functional specification.  Such mistakes 
result from various causes, including use of inappropriate functional specification methods 
and tools, or from insufficient or incorrect understanding of these methods and tools. 

Table 4-1 lists a set of defensive measures and their potential benefits. Defensive measures for 
functional specification faults are primarily process related, particularly those that protect against 
functional mistakes. Although they are process focused, they often generate documentation that 
can be used to confirm their use after the fact. 
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Table 4-1 
Examples of Defensive Measures for Functional Specifications 

Defensive Measures Benefits 

Functional specification focused on what is strictly 
necessary for safety, and for the operation of the digital 
system. 

Static and rigorous determination of all the entities 
interacting with the digital system, and of their different 
states.  

Functional specification addressing all resulting 
operational conditions. 

Simplicity of interfaces and interactions. 

Identification and examination of the differences with 
the I&C system to be replaced or with similar I&C 
systems that have proven to be adequate. 

Avoid functional mistakes, including: 

• Oversight of some of the operational conditions 
that may face the digital system. 

• Incorrect characterization of anticipated operational 
conditions. 

• Incorrect characterization of interfaces and 
interactions.  

• Specification of inappropriate behavior for some 
operational conditions. 

• Failure to specify actions and operational concerns 
for faults and failures 

• Failure to extend an existing system’s logic into all 
operating conditions 

Functional specification languages, elementary 
functions and tools with clearly defined and simple 
syntax and semantics. 

Specification methods and tools well-adapted to 
application domain, allowing simple functional 
specification. 

Specification methods and tools that can help avoid or 
detect incompleteness and intrinsically unsound 
expressions (e.g., expressions that could lead to 
divisions by zero). 

Functional specification process guaranteeing that 
relevant functional studies are taken into account 
correctly. 

Functional specification process providing clear 
guidance regarding effects of digitization. 

Avoid technical mistakes, e.g.,: 

• Incompleteness. 

• Ambiguousness. 

• Insufficient accuracy. 

• Oversight of possible effects of digitization. 

• Oversight of possible adverse side-effects. 

• Intrinsically unsound expressions. 

• Incorrect translation of results of functional studies 
into functional specification. 

Systematic verification of correctness and 
completeness of functional specification versus plant 
functional and safety requirements. 

Reveals and removes existing functional specification 
faults. 

Existence of an unequivocal and easy to reach safe 
failure position. 

Boolean safety outputs with clearly identified failure 
modes and unsafe failure modes. 

 Plant operating conditions ensuring that potentially 
unsafe failures can occur only in particular situations 
(e.g., only during plant transients). 

Verification of functional specification particularly 
focused on potentially unsafe outputs. 

Specification of the conditions that should be satisfied 
by inputs (pre-conditions), and of conditions that must 
be satisfied by outputs (post-conditions). 

Reduce the likelihood of potentially unsafe failures. 
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4.2.2 Defensive Measures for Programmable Equipment 

With an appropriate set of defensive measures, digital design faults are very unlikely to be a 
dominant cause of digital failures and digital CCFs, even when different blocks contain identical 
software modules. Table 4-2 provides an example of a set of defensive measures that would be 
appropriate for programmable equipment. It relies heavily on “designed-in” features that are 
particularly effective against failures triggered by unanticipated operating conditions. These 
features are often recommended for high quality programmable equipment.  

Table 4-2 
Examples of Defensive Design Features for Programmable Equipment. 

Defensive Measures Benefits 

Rigorous development and modification processes. 

Focus on safety, avoidance of non required 
components and capabilities. 

No generic susceptibilities (e.g., no management of 
time and date). 

Static allocation of resources. 

Low level of residual digital design faults. 

Deterministic behavior. 

Invariability of software during operation. 

Validation of inputs prior to further processing. 

Clearly identified short term memory. 

Interrupts only for exceptions and clock. 

Rigorous identification and characterization of factors 
that can influence the functioning of software.  

Cyclic functioning. 

Single-tasking. 

Limited amount of short term memory. 

Among all these factors, only infrequent events are 
susceptible to cause digital failures. 

Non- software watchdogs (failure of the digital system 
or channel to periodically reset a watchdog results in a 
specified safe action within a specified time frame). 

Surveillance of short and long term memory. Defensive 
programming. 

Software deviations and failures are detected and lead 
rapidly to a safe position. 

Rigorous operational procedures for operator requests 
(one channel at a time, only when absolutely 
necessary). 

Service requests prevented from causing digital CCFs. 

“Dissociation” of Operating System from Application 
Software. 

Transparency of Operating System to plant transients. 

Operating System prevented by design from causing 
potentially unsafe digital CCFs triggered by plant 
transients. 

Further decomposition of Operating System into 
dissociated modules. 

Reduction of the likelihood of design faults in the 
Operating System. 

Application Function Library composed of dissociated, 
simple, stateless, well-proven modules. 

Application Function Library very unlikely to contain 
design faults that could lead to digital failures. 
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4.2.3 Defensive Measures for Smart Devices With Simple, Fixed Functionality 

Table 4-3 lists a set of defensive measures that are particularly appropriate for simple devices. 
This set is based on a list of desirable attributes for the assessment of built-in quality of 
commercial grade smart devices introduced in EPRI TR 106439 (see Reference [22]). It includes 
process-related measures, designed-in features, and measures that can be applied by the user of 
the device to limit susceptibilities. While the defensive measures listed in Table 4-2 are generally 
for more complex devices, they may also be useful in simple devices.  

Table 4-3 
Examples of Defensive Measures for Smart Devices with Simple Fixed Functionality 

Defensive Measures Benefits 

Application of documented and rigorous configuration 
management program. 

Track record for control of changes and versions, and 
notification of changes (especially software fixes). 

Precise identification of the item, assuring that items with 
the same identification are identical. 

Complete and unambiguous documentation. 

Accurate documentation consistent with actual design. 

Characterization of the item, stating in particular what it 
does, how well it does it, what is guaranteed it will not 
do, how it can fail, how it should be used, what it needs 
for correct operation.  

Adequacy to support needed functionality. 

Unneeded / unused capabilities shown to have no 
adverse impact on required functionality. 

Fitness to purpose. 

Rigorous development, manufacturing, and modification 
processes. 

Functional and technical simplicity. 

Sufficient amount of credible, relevant, and successful 
operating history. 

Testing in expected operational conditions. 

Low level of residual digital design faults. 

Error handling capabilities, built-in protective features, 
ability to handle expected and unforeseen errors and 
abnormal conditions and events. 

Robustness, fault-tolerance. 

Technical assurance that the device is used in narrow 
operational conditions, consistent with the bounds of its 
qualification. 

External surveillance by other portions of the I&C 
system, which increases the likelihood that failures or 
drifts are rapidly detected. 

Safe use of the device. 
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4.2.4 Estimating Probabilities of Digital Failure (PDF) of Individual I&C Channels or 
Devices 

Realistic values of probabilities of digital failure (PDF) are necessary for the purpose of PRA 
modeling. There is no generally accepted method for providing accurate figures. However, 
various factors may be considered when estimating failure probability.  

Use of appropriate software development standards is one factor. IEC 61226 (see Reference 
[17]) states that “For an individual system which incorporates software developed in accordance 
with the highest quality criteria (IEC 60880 and IEC 60987), a figure of the order of 10-4 failure 
/ demand may be an appropriate limit to place on the reliability that may be claimed (Note: IEC 
60880 addresses software, while IEC 60987 addresses hardware.) Indeed, a number of regulatory 
agencies have accepted the use of a failure probability of 10-4 for digital equipment qualified for 
use in safety applications. This should be applicable in estimating the probability of digital 
failure of channels that use pre-qualified platforms with applications and configurations 
developed following current industry and regulatory guidance, and benefiting from measures 
such as those listed in Table 4-1. 

Example 4-1a. Probability of Digital Failure Based on Software Development Standards 
and Defensive Measures for Applications and Configurations. 

A PLC platform is being used as part of an ESFAS upgrade. The evaluation of the platform 
reveals that the supplier’s software development and configuration management processes are 
based on the IEC 60880 standard. The review further confirms that the process steps were 
appropriately implemented and the corresponding documentation is in place in accordance with 
the standard. The application software and configuration for the PLC are developed by the utility 
under its 10 CFR 50 Appendix B QA program in accordance with applicable industry and 
regulatory guidance, and includes suitable defensive measures. In particular, the operating 
conditions that can affect the upgrade are systematically identified and are correctly 
characterized and addressed; all inputs are validated prior to any further processing. It is 
concluded, for the purposes of a risk-informed D3 evaluation and for updating the plant PRA, 
that an appropriate digital failure probability estimate for a single I&C channel based on the 
platform is 10-4 per demand. 

 

Example 4-1b. Probability of Digital Failure Based on Use of “Pre-Qualified” Platform and 
Defensive Measures for Applications and Configurations.  

An alternative to the PLC platform of Example 4-1a is being considered. The investigation of the 
platform reveals that the NRC has evaluated and “pre-qualified” it for safety applications in a 
safety evaluation report (SER). A review of the SER confirms that the NRC’s acceptance criteria 
are at least as stringent as those of the IEC 60880 standard. It is concluded that if the 
application/configuration is developed by the utility as in Example 4-1a (i.e., under its 10 CFR 
50 Appendix B QA program and with adequate defensive measures), an appropriate digital 
failure probability estimate for a single I&C channel based on the platform will again be 10-4 per 
demand. 
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Defensive measures such as those listed in Tables 4-2 and 4-3 constitute an important factor that 
helps ensure high dependability in digital systems, because by design, they preclude or mitigate 
various types of potential failure modes and digital CCFs. In principle, such measures can be 
used to achieve digital system reliabilities better than those of functionally similar analog 
channels of I&C. 

Example 4-1c. Impact of Defensive Measures in a PLC Platform. 

As part of the evaluation of the PLC platform of example 4-1b, a detailed “white-box” design 
review is conducted to better understand the potential failure modes, abnormal behaviors, and 
defensive measures designed into the platform (see Example 4-6b). This review provides 
additional assurance of high quality by looking beyond the primarily process-based assessment 
documented in the SER. Key behaviors and defensive measures are confirmed by review of 
documentation and/or testing. As in Examples 4-1a and 4-1b, the application is developed under 
an Appendix B program and has appropriate defensive measures. The evaluation concludes that 
the combination of the confirmed defensive measures in the platform and the application 
precludes nearly all the potentially unsafe digital failure types that are postulated for the intended 
plant application. For the purposes of the D3 evaluation and PRA update, the digital failure 
probability of a single I&C channel is assigned a value of 10-5 per demand.  

Statistical evidence on the operational experience of comparable digital systems is another factor 
that may provide indication of bounding or practical estimates of digital failure probabilities for 
use in risk-informed evaluations. For example, digital flight control systems used in modern 
commercial aircraft have accumulated operational experience exceeding 104 years without a 
single report of a potentially unsafe digital failure. Digital equipment used in nuclear safety 
applications are also subject to extremely rigorous development and verification & validation 
processes, and under certain conditions (e.g., appropriate on-line monitoring assuring that they 
are fully operational), they could be credited with a comparable level of reliability.  

Some of the PLC platforms and smart devices already in use in process industries (e.g., in 
chemical plants or oil refineries) may also be considered for use in nuclear power plants. When 
supporting critical applications, such equipment is usually under strict surveillance: vendors are 
required to apply rigorous version and configuration management, and any failure is likely to be 
detected, reported and analyzed (in particular assigning the cause either to random or digital 
origin). These failure reports and the corresponding cumulated volume of experience can provide 
an estimation of the probability of digital failure for conditions of use similar to those of the 
credited experience. Justification usually needs to be provided when the experience encompasses 
several versions of the product. 
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Example 4-2a. Probability of Digital Failure Based on Operational Experience. 

A smart trip unit for circuit breakers is to be installed in the plant and incorporated into the plant 
PRA model. The evaluation of the operating history reveals that: 

• The vendor has had, since product rollout, a comprehensive tracking process and 
organization to collect and address customer reported failures. 

• Considering the functionality of the device and the customer and application profiles, failures 
(spurious actuations and failures to actuate) are very unlikely to go unnoticed and unreported. 

• All the recorded failures have been random hardware failures; there have been no reported 
digital failures. 

• The software and the digital design have not been modified since product rollout.  

• Approximately 200,000 units have been deployed for several years, with an accumulated 
volume of operating history exceeding 106 years with no reported spurious actuation due to 
digital causes. 

• Based on the application profiles, there are between 1 and 5 demands per unit per year, 
resulting in several million demands with no reported failure to trip due to digital causes.  

Because of the limited functionality of the device, all the industry experience is considered 
relevant in assessing the device for the nuclear plant application. Based on the million plus 
successful operating years and the several million successful trip actuations, it is estimated that 
the probability of a digital failure is negligible compared to the probability of random hardware 
failure (which is also estimated based on the vendor records).  

In Example 4-2a, the likelihood of digital failure was judged to be negligible compared to the 
likelihood of random hardware failure. If it can further be justified that the likelihood of digital 
CCF is sufficiently low that the beta-factor can be assigned a value of 0 (see Example 4-5), then 
the component will have negligible impact on plant risk, and there is no need to assign a value to 
the probability of digital failure. 

Justification of a low probability of digital failure value will typically rely on detailed knowledge 
of such items as the supplier’s software development process, the internal hardware and software 
architecture of the device, and the operating history and problem reports. This information goes 
well beyond what would normally be found in brochures, specification sheets and operating 
manuals. It may or may not be available for assessment, and obtaining it probably will require 
the cooperation of the equipment supplier.  
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Example 4-2b. Probability of Digital Failure with Limited Information. 

An alternative device to the trip unit of Example 4-2a is investigated because of its advanced 
functionality. The evaluation reveals that: 

• In tests performed in the utility’s I&C lab, the device performs flawlessly. 

• The development process and documentation are based on rigorous standards and are 
consistent with expectations for safety-related applications. 

• This new addition to the product line has only been on the market for six months; about 2000 
have been sold, but the vendor is reluctant to share the limited operating history data.  

• While the device is based on earlier generations, it contains new proprietary algorithms that 
the supplier will not reveal because they are important to his competitive advantage in the 
marketplace. 

Because of the supplier’s reluctance to discuss the new algorithms, a detailed investigation of 
designed-in defensive measures is not possible. Also, because the device is new, it is not possible 
to credit the operating history. Without knowledge of the device internals, the completeness of 
the utility testing is open to question and is not heavily credited.  Ultimately, the evaluation 
credits the strong development process and the relative simplicity of the device, and assigns a 
digital failure probability of 10-3 and a beta-factor of 10-1. However, the PRA shows that using 
this failure probability and beta-factor, the trip unit may become a significant contributor to risk 
for some events. Thus, the utility opts to go back to the device of Examples 4-2a and 4-5. 

4.2.5 Estimating Beta-Factors  

General experience with rigorously designed and highly reliable digital systems shows that the 
predominant causes of digital failures are usually functional specification faults (see Reference 
[27]). A change in plant conditions that activates a functional specification fault and causes a 
digital failure is often likely to cause also a digital CCF of all the channels implementing that 
functional specification. The reason is that these channels (usually, they are internal 
redundancies of an I&C system) are likely to perceive the condition concurrently and identically 
(or nearly identically). Thus, intra-system beta-factors are often assigned a value of 1, even when 
the channels benefit from design, equipment or software diversity. 
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Example 4-3. Different Platforms Implementing the Same Functional Specification for the 
Same Mitigation Function. 

The two PLCs from Examples 4-1a and 4-1b are to be used in redundant channels of the same 
ESFAS system. They come from different manufacturers and have diverse software and 
hardware. However, they are to be used to implement the same functional specification, for the 
same mitigating function. Considering the high quality of the PLC platforms, the effectiveness of 
the defensive measures taken against technical mistakes in the functional specification, and the 
rigor of the application software development process, it is estimated that, in this particular case, 
the most likely cause of digital failure is functional mistakes (see Section 4.2.1). Consequently, 
the intra-system beta-factor representing the digital CCF of the two channels is conservatively 
assigned a value of 1. Thus, there is no advantage to using diverse manufacturers, equipment and 
software in this case, and the system designer instead opts to use like platforms in the redundant 
channels. 

The more interesting case is that of like platforms implementing different functions. With 
appropriate defensive measures, most types of functional specification faults are either very 
unlikely or unlikely to be causally related in diverse functional specifications in a manner that 
would cause digital CCFs. A possible exception could be the oversight of operational conditions 
resulting from the same misconception of the operational environment of the digital systems. An 
example of this might be a misunderstanding of how some other plant system would interact 
with the functions of interest during an initiating event. When this issue is correctly addressed 
(e.g., by measures such as those listed in Table 4-1), there is a reasonable assurance that the 
likelihood of inter-system digital CCF is at least an order of magnitude less than the probability 
of digital failure.  

Example 4-4a. Like Platforms in Systems Implementing Similar Functions Activated in 
Different Plant Conditions. 

The PLC platform from Example 4-1c is to be used in two different systems. One system 
implements automatic reactor trip on low pressurizer pressure. The other implements automatic 
auxiliary feedwater actuation on low steam generator water level. The algorithms and (analog) 
sensors are very similar. Also:  

• Functional specifications and application software were developed under a 10 CFR 50 
Appendix B QA program.  

• Appropriate defensive measures have been taken against technical mistakes (see Section 
4.2.1 and Table 4-1). 

• Because of the protection coverage of the defensive measures, it is estimated that the most 
likely cause of digital failure is functional mistakes.  

Because the plant dynamics associated with pressurizer pressure and steam generator level are 
not closely related during a Small Break LOCA, the inter-system digital CCF is not considered 
likely, and the beta-factor is conservatively assigned a value of 10-1. 
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Example 4-4b. Like Platforms in Systems Implementing Very Different Functions. 

The PLC platform of Example 4-1c is used in two different systems. One system controls a 
series of timed relay actuations, monitoring electrical power measurements to confirm proper 
operation. The other adjusts a throttle valve to control flow, using a flow measurement signal for 
feedback. The evaluation shows that: 

• Functional specifications and application software were developed under a 10 CFR 50 
Appendix B QA program.  

• Appropriate defensive measures have been taken against technical AND functional mistakes 
that could cause digital CCFs (see Section 4.2.1 and Table 4-1). 

Because of this and because the systems have very different functionality and monitor diverse, 
unrelated process parameters, the inter-system digital CCF is considered very unlikely. The 
analyst concludes that if the Extended Deterministic Method is used, the systems would not be 
considered susceptible to digital CCF. If one of the Risk-Informed methods is used, a 
conservative value for the beta-factor would be 10-2. 

For devices with simple and fixed functionality, and offering extensive defensive measures (such 
as those listed in Tables 4-2 and 4-3), the likelihood of digital failures and digital CCFs may be 
considered negligible. 

Example 4-5. Beta-Factor for Simple Device. 

The engineering evaluation of the trip unit of Example 4-2a determines that: 

• It has been developed in accordance with a well-defined life cycle process that complies with 
industry standards and regulatory guidance.  

• It is a very simple, easily tested device offering a fixed functionality.  

• Substantial operating history has demonstrated high reliability in applications similar to the 
intended application.  

• The software implements a simple process of acquiring one input signal, setting one output, 
and performing some simple diagnostic checks. This process runs in a continuous sequence 
with no branching or interrupts, no memory, no date and time. 

• A separate alarm relay is available to annunciate detected failures. 

• Failures are bounded by existing failures of the analog device. 

Because this is a simple device backed by a strong development process, a design that uses 
appropriate defensive measures, and an operating history that is both extensive and successful, it 
is concluded that the likelihood of concurrent failures in multiple channels is acceptably low 
(e.g., less than the likelihood of common mode failures due to maintenance or calibration errors), 
and that the beta-factor is assigned a value of 0. 
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4.2.6 Decomposing Blocks Into Modules 

The decomposition of a block of medium or high complexity into simpler modules serves two 
main purposes: the identification of the modules where faults could lead to digital failures or 
digital CCFs, and the identification of module-specific failure modes of the block. This allows in 
turn the determination of corresponding defensives measures, the assessment of their coverage 
and effectiveness, and more realistic estimates of probabilities of digital failures and beta-factors. 
Decomposing blocks into modules won’t be appropriate in every case; it depends on the specifics 
of the application. 

Example 4-6a. Decomposing the Reactor Trip System (RTS) as Part of Failure Mode 
Analysis. 

The RTS takes input from several process sensors to calculate the plant status with respect to 
plant safety limits. The only outputs are Boolean signals to actuate the reactor trip breakers. The 
RTS is implemented in the following manner:  

• Process sensor measurements are input to digital process units that perform analog-to-digital 
conversions, engineering unit conversion, process calculations and output communication.  

• The outputs of process units feed one or more simple voting units that perform input 
communication, voting logic, and digital-to-analog conversion and output to the reactor trip 
breakers.  

Regardless of what digital failures are assumed to occur in the RTS logic, the output is either 
logic 1 or logic 0. Thus, for the purpose of failure modes identification, no decomposition into 
modules is necessary for the RTS. 

However, for the purpose of evaluating defensive measures, it may be helpful to identify critical 
modules based on internal functionality. In this case, process units are decomposed into three 
modules, one for input conversion, one for digital logic processing, and one for output 
communication. The digital logic processing module is further decomposed into software 
modules that are evaluated per Table 4-2 (see Example 4-6b). 
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Example 4-6b. Decomposing the Software of the RTS Logic Processing Module to Evaluate 
Defensive Measures. 

A “white-box” analysis of the software of the RTS logic processing module shows that it is 
composed of three main software sub-modules: 

• The Operating System manages the hardware and provides all the generic services necessary 
for the functioning of the PLC (e.g., monitoring of hardware, handling of inputs, outputs, and 
exceptions). 

• The Application Function Library provides a number of elementary functions to be used by 
applications (e.g., mathematical functions). 

• The Application Software implements application specific logic processing.  

The analysis also shows that:  

• The Operating System functions cyclically in extremely stable conditions (static allocation of 
resources, very limited memory is kept from one cycle to the next, no management of date 
and time); in particular, it is not affected by plant conditions (no plant-related interrupts, 
transparent to input values). 

• The Application Function Library is composed of small, simple, memoriless, well-verified 
software functions based on proven algorithms. 

• The Application Software is generated automatically from the functional specification, using 
high quality, tried and tested tools.  

It is concluded that:  

• Because the Operating System repeats the same sequence of actions cycle after cycle, 
regardless of the plant status, it is essentially blind to plant transients and is therefore very 
unlikely to cause a digital CCF, either during a plant transient or during stand-by conditions, 
even in identical channels. 

• Because of its simplicity, modularity, extensive testing and successful operating history, the 
Application Function Library is also very unlikely to cause digital failures. 

• While the Application Software is relatively simple and is backed by a strong development 
process, it has little operating history. It is therefore concluded that the probability of digital 
failures and digital CCFs is driven by the likelihood of functional specification faults in the 
Application Software.  

Sometimes it is useful to decompose blocks into functional modules to systematically identify 
and address internal failure modes that can have different system-level effects. This would 
typically be the case for blocks with more complex functionality than simple Boolean logic.  
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Example 4-7. Decomposing Blocks to Identify Internal Failure Modes - Safeguards Load 
Sequencer. 

This single digital unit has two inputs (“Bus Voltage” and “SI (Safety Injection) Signal”) and 
multiple outputs (“on/open” and “off/close” commands to safeguard pumps and valves) and is in 
charge of sequencing loads onto the diesel generators. In order to capture all the potential failure 
modes that may result from postulated internal failures, the system designer examines the logic 
of the sequencer. It can be decomposed into three different functional modules: 

• “Undervoltage Detection” determines from the “Bus Voltage” input whether loss of voltage 
has occurred. If so, undervoltage load shedding occurs and an “Undervoltage” signal is 
transmitted to “Load sequencer.” 

• “SI Detection” determines from the “SI Signal” input whether an SI actuation has occurred. 
If so, SI load shedding occurs, and an “SI actuation” signal is transmitted to the “Load 
sequencer.” 

• “Load Sequencer” performs the load sequencer logic when it receives the “Undervoltage” 
and/or the “SI actuation” signals.  The outputs are actuation signals to the safeguard 
components. 

The importance of modeling these three functional modules is demonstrated by performing a 
failure analysis on the sequencer. 

Failure Scenario 1: Postulated Failure in “SI Detection” - Assume a failure occurs in “SI 
Detection” such that the SI loads are not shed, but the “SI actuation” signal is transmitted to 
“Load Sequencer.” The designer should demonstrate that the plant Unit Auxiliary Transformers 
(UATs) have adequate margin to handle the sequenced loads in addition to the load 
corresponding to the components that were not shed due to the postulated failure. 

Failure Scenario 2: Postulated Failure in “Load Sequencer” - Assume an “Undervoltage” 
signal is detected, the undervoltage loads are shed and the feeder breakers receive an open 
command. After the diesel is running, a “diesel output breaker closed” signal and a “feeder 
breaker open” signal are received by the “Load Sequencer.” Assume a failure occurs in “Loads 
Sequencer” such that the all undervoltage components are activated simultaneously. The diesel 
should be shown to have sufficient capacity to handle all those loads, or it should be shown that 
the diesel output breakers will be tripped with no resultant damage to the diesel. Controls should 
be available to the operator to manually shed the loads, close the diesel output breaker and 
sequence the necessary loads. 

If the sequencer is modeled by only one block, the above consequences of postulated internal 
failure modes would not be identified. Arguments may be provided that these internal functional 
modules are not susceptible to digital CCFs due to the use of a rigorous software development 
process and the use of defensive measures. However, it is necessary to recognize that these 
detrimental failure modes potentially exist and need to be addressed.  
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4.3 Principles of Risk-Informed Regulation as They Apply to D3 Evaluations 

The methods presented in this guideline adhere to the five principles of risk-informed regulation 
outlined in Regulatory Guide 1.174 (see Reference [2]). These principles are directed at assuring 
decisions are made using a blend of traditional engineering analyses with insights derived from 
PRA. The following summarizes the principles as they relate to risk-informed D3 evaluations: 

1. The proposed change meets the current regulations. 
The plant will continue to meet regulatory criteria with respect to the single failure criterion 
and diversity in response to ATWS. The plant must still have features that address General 
Design Criteria with respect to protection system reliability, independence, and separation. 
The initiating events analyzed in the SAR will continue to be addressed. The risk-informed 
D3 evaluation addresses a beyond design-basis issue in the form of digital CCF. The 
capability of the plant to cope with conditions associated with design-basis events is not 
affected, and current regulations will therefore continue to be met. 

2. The proposed change is consistent with the defense-in-depth philosophy. 
The risk-informed approaches described in this guideline are specifically directed at 
demonstrating adequate defense-in-depth. Defense-in-depth is addressed from two 
perspectives: 1) maintenance of fission product barriers, and 2) redundancy and diversity in 
maintaining adequate core cooling or preventing a significant release given the frequency of 
various challenges. The potential effects of digital CCFs are directly evaluated, as well as the 
potential effects of digital failures on indications and controls used for human actions that are 
credited in D3 evaluations. The PRA is used to demonstrate that changes in CDF and LERF 
are small. Independent of the PRA, a confirmatory review of defense-in-depth is performed 
consistent with the Reactor Oversight Process. Defense-in-depth therefore plays an integral 
role in the demonstration of adequate ability to cope with the effects of digital CCF when the 
evaluation is performed in accordance with this guideline. 

3. The proposed change maintains sufficient safety margin. 
As the ability of the plant to mitigate the events analyzed in the SAR is preserved, and as the 
analysis of such events will still comply with acceptance criteria in the licensing basis, the 
margin of safety that exists for these events is maintained. This guideline introduces alternate 
methods for demonstrating adequate defense-in-depth when considering the potential for 
digital CCF. These alternate methods address beyond-design-basis conditions. 

4. When proposed changes result in an increase in core damage frequency or risk, the increases 
should be small and consistent with the intent of the Commission's Safety Goal Policy 
Statement. 
Detailed guidance is provided in this document with respect to estimating the change in risk 
associated with digital CCF and in using Figures 3 and 4 of Regulatory Guide 1.174 to 
provide confirmatory assurance based on deterministic considerations. Documentation of the 
reasons for these quantitative results in terms of plant design features and operating 
characteristics is recommended. 
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5. The impact of the proposed change should be monitored using performance measurement 
strategies. 
Existing plant corrective action, maintenance rule and reporting programs govern 
documentation and response to any non-conformances that occur associated with the digital 
upgrade. Whether risk-informed or deterministic D3 evaluations are performed, monitoring 
of satisfactory operation of the upgrade is performed subsequent to its installation. 

4.4 PRA Modeling for D3 Evaluation 

Whether updating the PRA to reflect a digital upgrade or performing a risk-informed D3 
evaluation, it is important to assure that the level of detail in the I&C modeling in the PRA 
reflects the functional impact of the digital equipment to be installed. Two approaches for 
assuring that the functional impact of the digital equipment is appropriately taken into account 
are: 

1. Detailed modeling of the failure modes of the digital equipment and their effects on the plant 
systems that they support. This is a bottom up approach that may require detailed 
investigation of the failure mechanisms of the digital equipment with incorporation of 
mathematical models into the PRA to simulate the effects of these failures. 

2. High level investigation of potential functional effects of digital failures, without modeling 
the specific mechanisms. This is a top down approach that takes advantage of the design of 
the plant systems supported by the digital equipment to determine where digital failures may 
be most important to safety. 

Regardless of the approach taken, consideration should be given to incorporating into the PRA 
any digital failure modes that could disable equipment or operator actions that are credited in the 
PRA. The following discusses the pros and cons of the two approaches. 

4.4.1 Detailed Modeling Approach 

To implement the detailed modeling approach, the modeling of the digital system should include:  

• Identification of the various failure modes of hardware and software components of the 
upgrade. 

• Development of appropriate mathematical and logic models (e.g., Markov, dynamic fault 
trees, etc.) to simulate the occurrence of these failure modes.  

• Assessment of the potential for these failure modes to cause loss of the functions associated 
with the mitigating systems for different accident sequence conditions. 
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The advantage of this approach is that the final logic models should most accurately reflect the 
effects of a spectrum of digital failure modes, demonstrating their likelihood and importance in 
an objective manner. Should a digital failure mode be discovered that has a significant effect on 
safety, the models would offer a variety of options to address the potential vulnerability without 
introducing unnecessary conservatisms. These options could range from additional “white-box” 
evaluation and testing of the digital equipment to changing the design of mitigating systems to 
accommodate the potential failure.  

Disadvantages of the detailed modeling approaches are that techniques and data evaluation for 
this level of detail are still evolving. Utilities are implementing upgrades that may need to be 
designed and operational before the detailed analytical techniques for evaluating these types of 
failures are mature. 

4.4.2 Super-Component Approach 

This approach takes advantage of the fact that the functional impact of failures of plant I&C is 
currently reflected in the mechanical and electrical trains of equipment that make up the 
mitigating systems modeled in the PRA. To consider the effects of digital failures, it may only be 
necessary to incorporate super-components (i.e., events representing the failure of collections of 
components) into the PRA logic models at appropriate locations, effectively reflecting the loss of 
the key functions that the digital equipment supports. The super-component approach includes: 

• Recognition of key functions credited in the PRA for mitigation of each accident sequence. 

• Identification of plant systems that support each of these functions. 

• Incorporation within each plant system of super-components that represent the failure of the 
system to perform the specified function. 

In incorporating the primary effects of potential digital failures using the super-component 
approach, it is not likely that individual sensors, actuation channels, or divisions of logic will 
drive the reliability of the plant systems they control. Rather, in estimating the effects of digital 
failures, it is most important to assure that the super-components reflect inter and intra-system 
effects of these failures (beta-factors). In this regard, incorporation of super-components 
reflecting the common cause effects of digital equipment will capture the dominant effects of 
digital component failures.  

The advantage of the super-component approach is that it is relatively easy to implement and is 
similar to the manner in which complex I&C systems are typically modeled in PRAs for the 
current generation of plants (e.g., for the reactor trip system). Functions that are important to 
managing safety as defined by the existing PRA can be used to focus the analysis. 

A possible disadvantage of this approach is that it may lead to overly conservative assumptions 
in modeling the effects of functional I&C failures and in estimating the potential for these 
failures.  
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4.4.3 Data Assignment 

Whether using detailed modeling or the super-component approach, it should be recognized that 
assignment of digital failure probabilities and beta-factors does not reflect the same 
considerations as for typical hardware. Random hardware failure probabilities are typically based 
on aging and wear-out of hardware components.  Software does not wear out. It can however 
cause malfunctions by generating undesired responses to plant conditions. As noted in Section 2, 
digital failure probabilities and beta-factors should reflect: 

• The potential for the digital equipment to encounter unanticipated conditions 

• The potential for the digital equipment to respond incorrectly to anticipated conditions. 

• The potential for the triggering conditions to affect multiple channels or systems 
concurrently. 

Section 4.2 addresses the determination of the potential for these means of digital failure and 
digital CCF, including identification of defensive measures that are effective in avoiding or 
tolerating them. 

For the purpose of performing a D3 evaluation, assignment of bounding values is appropriate. 
Where realistic values are selected, an assessment of the range of values that might be assigned 
should be performed to assess the impact of uncertainties (e.g., determine what combinations of 
digital failure probability, beta-factor and initiating event frequency will significantly alter the 
results). 

When updating the PRA to reflect the digital upgrade, either the detailed or super-component 
approach to modeling the functional effects of the digital upgrade is applicable. However, 
realistic values for the probabilities of digital failure and the beta-factors should be assigned, as 
opposed to bounding values, so as not to inappropriately bias the PRA when it is used for other 
applications. 

4.4.4 Addressing Uncertainties 

Three types of uncertainties can influence the results of a PRA (see Regulatory Guide 1.174 (see 
Reference [2]): 

1. Parametric uncertainties, i.e., uncertainties regarding failure probabilities, beta-factors and 
initiating events frequencies.  

2. Modeling uncertainties, i.e., uncertainties in the deterministic behavior of systems and 
components, including success criteria, failure modes and their effects. 

3. Completeness uncertainties: from a D3 evaluation perspective, these uncertainties result 
either from insufficient scope of modeling of I&C systems or from insufficient coverage of 
initiating events.  
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Whether using detailed modeling of the digital I&C or the super-component approach, 
acceptable methods of addressing these uncertainties for the purposes of D3 evaluations could 
include the following: 

• Parametric uncertainties can be addressed either by using bounding values or by performing 
sensitivity studies.  

• Modeling uncertainties can be addressed by taking a high level functional approach where 
important functions of plant systems are assumed to be affected adversely by digital failures. 
Thus, for D3 purposes, uncertainties associated with modeling assumptions are handled 
conservatively.  

• Completeness uncertainties can be addressed by assuring that the model includes all potential 
failures of functions important for providing core cooling or preventing significant radiation 
release, for all initiating events modeled in the PRA, as well as location dependent initiators 
(such as internal fires and floods) and external events (such as seismic events).  

4.4.5 Other Effects of Digital Upgrades 

In incorporating the digital upgrade into the PRA models, other positive effects on the plant are 
worthwhile to consider, to the extent practical. For example:  

• Reduction of initiating event frequencies. Often, upgrades will include balance of plant 
systems important to the operation of the plant. Replacement of single train analog controls 
with fault tolerant, self-monitoring equipment can reduce the expected frequency of initiating 
events associated with these systems. 

• Removal of the contribution to failure from the analog I&C. While I&C does not typically 
dominate the reliability of the mitigating systems, a small reduction in their failure 
probabilities can be achieved by removing the logic being replaced from the model or setting 
its failure probability to zero. 

• Credit for additional condition monitoring. Continuous monitoring of normally operating 
equipment may be a part of the upgrade and can have the beneficial effect of reducing the 
failure probability of monitored equipment below that of equipment with longer surveillance 
and maintenance intervals. 

It is also recommended that potential negative effects of diverse backups added to mitigate 
digital CCFs be addressed realistically. For example, additional backups can be sources of: 

• Spurious actuations that may increase frequencies for some initiating events. 

• New failure modes. 

• Single points of failure that may increase beta-factors. 

• Modeling uncertainties. 
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4.5 Importance of Evaluating D3 Issues Early in a Modernization Program 

There are a number of reasons why it is important to consider D3 evaluations as early as possible 
in the I&C modernization process:  

• Results of D3 evaluations can feed back and impact the I&C design, regardless of which 
method is used to perform the evaluation.  

• Upgrades that are planned and performed without any consideration of D3 issues can lead to 
the need for backups to be added later on that could have been avoided.  

The best way to avoid unnecessary changes late in the program is to consider D3 issues and 
solutions at the beginning of the design process, when the initial architecture for the upgraded 
I&C systems is defined: 

• Risk insights can be helpful in optimizing the architecture to get the most benefit (and least 
risk) from digital upgrades. Early consideration of the impact of digital systems on plant risk 
can be helpful in making design decisions on architecture and equipment selection. For 
example, digital systems are capable of performing multiple functions (combining functions 
on one processor or module that were previously performed using separate analog devices). 
Also, signals can be communicated from one system to another to enhance control 
functionality. However, risk evaluations may show that these types of combinations or 
interconnections introduce new failure modes that have not been previously analyzed, and 
which may increase risk. These risks should be considered before finalizing the design. 

• Results of the D3 evaluations also can impact the control room human-system interface 
(HSI) design, plant operating procedures, and training. The reverse is also true – HSI design 
changes can impact the D3 evaluation. For example, implementation of soft controls as part 
of HSI modernization may eliminate manual controls and indications that later may be 
determined to be beneficial in addressing D3 issues. Without the controls, the D3 resolution 
could become more difficult. Or, if the controls are added back late in the design, it may be 
necessary to make compromises in the human factors aspects of the design to accommodate 
the back-fit. 

• Consideration of D3 early in a project can help reduce the cost of addressing D3 during each 
successive modification (outage after outage) by providing an overall evaluation or template 
that can be re-used or simply referenced at each stage of the modification program (unless, of 
course, significant changes are made to the originally planned upgrades later in the program). 
At each stage in the project, the applicability of the overall D3 evaluation should be 
confirmed. 

• Early evaluation of the impact of digital upgrades on plant risk and the corresponding 
changes that will be needed to the plant-specific PRA can help the plant later in keeping the 
PRA up-to-date, and using consistent methods for updating it to reflect digital 
implementations. 
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Sensitivity studies performed using representative plant PRAs have led to several important risk 
insights that should be considered in the early stages of a digital upgrade (see Reference [20]): 

• The level of diversity and defense-in-depth in the plant design can have as much or greater 
impact on overall risk than the values assumed for PDF and beta-factors – the change in plant 
risk may not be very sensitive to the specific values that are chosen. 

• Where redundancy and diversity currently exist within the design of the mitigating systems 
for a given initiating event and have a significant impact on safety, it is important not to 
introduce new digital CCFs that are likely to adversely impact multiple mitigating functions.  

• By the same token, introducing diversity into the I&C of a mitigating system where there is 
not comparable diversity in the mechanical and electrical equipment that it actuates is likely 
to have little beneficial impact on the overall reliability of the mitigating system, and may, in 
fact, reduce human reliability from training and familiarity issues. 

Taking credit for operator action to mitigate certain initiating events can have a significant 
beneficial impact on risk. However, when this is done, it is important to ensure that the HSI the 
operators will need in order to perform the action will not be subject to the same failures that 
lead to the need for operator action. 

4.6 Documentation and Licensing Submittals 

Regardless of whether the licensee plans to submit a License Amendment Request (LAR), the 
results of the D3 evaluation should be documented. This section provides guidance on the types 
and scope of documentation that are appropriate. If a LAR is to be submitted, the detailed results 
need not necessarily be included in the LAR submittal for NRC review and approval; a 
simplified report that provides an overview of the evaluation and results should be adequate.  

The documentation should follow accepted 10 CFR 50 Appendix B Design Control procedures 
so that the results of the evaluation are retrievable during the life of the plant. 

4.6.1 Identification of Susceptibilities and Defensive Measures 

Defensive measures credited as important in the D3 evaluation should be captured in the 
documentation of the initial acceptance for the digital equipment (essentially becoming part of its 
design-basis documentation). Then, when changes are made to the equipment while it is in 
service (e.g., software or hardware updates from the manufacturer), this information can be used 
as part of ensuring acceptability of the changes, i.e., ensuring that risk related to digital failures 
and digital CCFs is still adequately managed as maintenance updates are performed over time. 
The documentation should include sufficient information so that the following can be verified: 

• The design elements susceptible to digital failures and their postulated failure mechanisms 
are identified correctly. 

• The set of credited measures covers and provides an effective defense against the identified 
failure mechanisms. 
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• Each credited measure has been implemented correctly. 

It should not be necessary to "re-open" the D3 evaluation every time maintenance is done on the 
digital equipment. Once the equipment is in service, the burden shifts to those routine activities 
performed when changes are made to ensure that the equipment maintains consistency with the 
original basis for its acceptance. 

4.6.2 Extended Deterministic Method 

The results of each of the steps of the Extended Deterministic Method as discussed in Section 3.2 
should be documented. The primary areas that should be documented include the following. 

• If a D3 evaluation is not required per the conditions of Section 2.1, a justification should be 
provided as to why each of the specified conditions do not apply to the upgrade.  

• A concise simplified diagram should be generated that documents the design upon which the 
D3 evaluation was based. The detailed functional diagram from which the simplified diagram 
was based should also be included or referenced. 

• Using the simplified diagram, a record should be kept of the postulated digital CCFs that 
were evaluated. As part of the record, the functions that are potentially degraded by the 
postulated digital CCFs should also be documented. 

• A table should be generated that identifies the primary and backup protection functions 
assumed in the plant SAR accident analyses. Appropriate references to the SAR should be 
documented. 

• The results of the comparison between the protection functions degraded by a postulated 
digital CCF and the protection functions assumed for each initiating event analyzed in the 
SAR should be documented. 

• If one or more SAR events are identified in which both the primary and backup mitigating 
functions are degraded, the assumptions, analysis methods, and results of the best-estimate 
analyses of the events should be documented. Also, a description of the coping capability that 
is credited and appropriate justification should be included. 

• If a risk-informed method is used for specific events (see Section 3.2), follow the 
documentation guidance given below for that method, focusing only on the specific events 
considered in the risk-informed analysis. 

4.6.3 Risk-Informed Methods 

The level of documentation useful for a risk-informed evaluation depends on the complexity of 
the analysis and the extent to which the models and various elements of the PRA were used in 
performing the evaluation. In this regard, the documentation for a risk-informed digital upgrade 
evaluation will depend on whether the Standard or the Simplified Risk-Informed Method was 
used.  

Only a limited amount of documentation is needed to support a Simplified Risk-Informed 
evaluation. This evaluation requires input from only a few elements that make up the PRA (e.g., 
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initiating events and frequencies, basis for credit for operator actions, basis for conditional 
failure probabilities for mitigating systems and conditional LERF). Those inputs, the estimates of 
the change in CDF and LERF that are calculated, and the comparison to Regulatory Guide 1.174  
(see Reference [2]) acceptance guidance should be documented. 

A detailed use of the PRA as outlined in the Standard Risk-Informed Method would result in 
correspondingly more detailed documentation. Beyond that described for the Simplified Risk-
Informed Method, the documentation should include the modification and quantification of 
system models and accident sequence quantification. 

When documenting the output of the evaluation, a review of accident sequence quantification 
results is recommended to ensure that they can be explained from an engineering context, with a 
focus on the following questions (which apply whether the Standard or the Simplified Risk-
Informed Method is used): 

• Which initiating events dominate the change in CDF and LERF, and why? 

• What accident sequence types and initiators are not significantly affected? What limits the 
effect of the upgrade on these sequences?  

• For the dominant contributors to ∆CDF and ∆LERF, what design features of the upgrade 
and/or the plant keep these changes small? 

• To what extent do operator actions and recoveries play a role in keeping the risk associated 
with digital CCF small? 

• How has the evaluation addressed the five principles of Regulatory Guide 1.174? (See 
Section 4.3).  

When documenting the D3 evaluation, the technical adequacy of the information from the PRA 
should be reviewed. Several methods of accomplishing this review are available (see References 
[28], [29], [30]).  The extent of the review is dependent on the degree to which the PRA was 
used as input to the evaluation. 

4.6.4 Confirmatory D3 Review 

The confirmatory D3 review should be documented in a manner consistent with the Significance 
Determination Process (see Section 3.5). This should include documentation of the defense-in-
depth matrix used and where each event falls on the matrix. 
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5.2 Glossary 

This section provides definitions for key terms as they are used in this guideline. When the 
definition is taken directly from another document, the source is noted in brackets [ ]. 

Accident sequence. A representation in terms of an initiating event followed by a combination 
of system, function, and operator failures or successes, of an accident that can lead to undesired 
consequences, with a specified end state (e.g., core damage or large early release). An accident 
sequence may contain many unique variations of events (minimal cut sets) that are similar. (See 
Reference [11]) 
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Application software. Part of the software that performs the tasks related to the process being 
controlled rather than to the functioning of the system [adapted from IEC 61513]. 

Best-estimate analysis. Analysis that uses realistic inputs and assumptions – this is in contrast to 
the plant licensing basis safety analysis, which uses conservative values for inputs and makes 
worst-case assumptions. Best-estimate analysis is intended to provide a realistic, as opposed to 
conservative, estimate of what the actual behavior of the plant will be for a given scenario. 

Beta-factor. Assuming that a system or equipment has already failed, the conditional probability 
of concurrent failure of a redundant system or equipment (identical or diverse). 

Block. The smallest portion of the system for which it can be credibly assumed that internal 
failures, including the effects of software errors, will not propagate to other equipment. (See 
Reference [5]) 

Channel. An arrangement of components and modules as required to generate a single protective 
action signal when required by a generating station condition. A channel loses its identity where 
single protective action signals are combined. (See Reference [21]) 

Common cause failures. Failures of equipment or systems that occur as a consequence of the 
same cause. The term is usually used with reference to redundant equipment or systems or to 
uses of identical equipment in redundant systems. CCFs can occur due to design, operational, 
environmental, or human factor initiators. CCFs in redundant systems compromise safety if the 
failures are concurrent failures, that is, failures which occur over a time interval during which it 
is not plausible that the failures would be corrected. 

Common mode failure, by strict interpretation, has a meaning that is somewhat different from 
common cause failure because failure mode refers to the manner in which a component fails 
rather than the cause of the failure. However, because the discussions in this guideline are 
concerned with failures that can compromise safety and disable redundant systems or disable 
redundant systems using the same equipment, regardless of whether they are common mode or 
common cause, the two terms are used interchangeably in this document. (See Reference [3]) 

Core damage. Uncovery and heatup of the reactor core to the point at which prolonged 
oxidation and severe fuel damage is anticipated and involving enough of the core to cause a 
significant release. (see Reference [11]) 

Core Damage Frequency (CDF). Expected number of core damage events per unit time. (See 
Reference [11]) 

Defense-in-depth. A concentric arrangement of protective barriers or means, all of which must 
be breached before a hazardous material or dangerous energy can adversely affect human beings 
or the environment. For instrumentation and control systems, the application of the defense in 
depth concept includes the control system; the reactor trip or scram system; the Engineered 
Safety Features Actuation System (ESFAS); and the monitoring and indicator system and 
operator actions based on existing plant procedures. The echelons may be considered to be 
concentrically arranged in that when the control system fails, the reactor trip system shuts down 
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reactivity; when both the control system and the reactor trip system fail, the ESFAS continues to 
support the physical barriers to radiological release by cooling the fuel, thus allowing time for 
other measures to be taken by reactor operators to reduce reactivity. (see Reference [5]) 

Dependability. As used in this document, a broad concept incorporating various characteristics 
of digital equipment, including reliability, safety, availability, maintainability, and others. (See 
Reference [3]) 

Design-Basis Event. Postulated events that are a part of the Safety Analysis used in the design to 
establish the acceptable performance requirements for the structures, systems, and components. 

Digital Common Cause Failure (digital CCF). A systematic common cause failure resulting 
from a design fault in a digital system or component (e.g., a design error in the software or 
software-hardware interaction). 

Digital upgrade. A modification to a plant system or component which involves installation of 
equipment containing one or more computers. These upgrades are often made to plant 
instrumentation and control (I&C) systems, but the term as used in this document also applies to 
the replacement of mechanical or electrical equipment when the new equipment contains a 
computer (e.g., installation of a new heating and ventilation system which includes controls that 
use one or more embedded microprocessors). (see Reference [3]) 

Diversity. Existence of two or more different ways or means of achieving a specified objective. 

Failure. Termination of the ability of a functional unit to perform a required function 

Failure probability. The likelihood that an SSC (System Structure or Components) will fail to 
operate upon demand or fail to operate for a specific mission time. (see Reference [11]) 

Fault. A defect that may cause a reduction in, or loss of, the capability of a functional unit to 
perform a required function when subjected to a particular set of normal or abnormal operating 
conditions. 

Fault tree. A deductive logic diagram that depicts how a particular undesired event can occur as 
a logical combination of other undesired events. (See Reference [11]) 

Firmware. Software that resides in read-only memory. An example is programmable read-only 
memory (PROM). (See Reference [3]) 

Functional accident sequence type. A grouping of the accident sequences developed for the 
plant-specific PRA into bins that reflect one or more functions that must fail or otherwise be 
unavailable in order to get into a condition in which inadequate core cooling or significant 
releases are occurring. 
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Functional mistake. An error made in the functional specification of an I&C system that is 
caused by an insufficient or incorrect understanding of the operational environment of the system 
and of the functions to be performed by the system (see also Technical mistake).  

Functional specification. A document that specifies the functions that a system or component 
must perform. [IEEE 610.12.1990] 

Human factors - A body of scientific facts about human characteristics. The term covers all 
biomedical, psychological, and psycho-social considerations; it includes, but is not limited to, 
principles and applications in the areas of human factors engineering, personnel selection, 
training, job performance aids, and human performance evaluation (see "Human factors 
engineering").(See Reference [6]) 

Human Factors Engineering (HFE) - The application of knowledge about human capabilities 
and limitations to plant, system, and equipment design. HFE ensures that the plant, system, or 
equipment design, human tasks, and work environment are compatible with the sensory, 
perceptual, cognitive, and physical attributes of the personnel who operate, maintain, and support 
it (see “Human factors”). (See Reference [6]) 

Human-System Interfaces (HSIs) - A human-system interface (HSI) is that part of a plant 
system through which personnel interact to perform their functions and tasks. Major HSIs 
include alarms, information displays, controls, and procedures. Use of HSIs can be influenced 
directly by factors such as: (1) the organization of HSIs into workstations (e.g., consoles and 
panels); (2) the arrangement of workstations and supporting equipment into facilities such as a 
main control room, remote shutdown station, local control station, technical support center, and 
emergency operations facility; and (3) the environmental conditions in which the HSIs are used, 
including temperature, humidity, ventilation, illumination, and noise. HSI use can also be 
affected indirectly by other aspects of plant design and operation such as crew training, shift 
schedules, work practices, and management and organizational factors. [Adapted from 6] 

Initiating Event (IE). Any event either internal or external to the plant that perturbs the steady 
state operation of the plant, if operating, thereby initiating an abnormal event such as transient or 
LOCA within the plant. Initiating events trigger sequences of events that challenge plant control 
and safety systems whose failure could potentially lead to core damage or large early release. 
(See Reference [11]) 

I&C architecture. Organizational structure of the I&C systems of the plant which are important 
to safety. [IEC 61513] 

I&C platform . Set of hardware and software components that may work co-operatively in one 
or more defined architectures (configurations) [IEC 61513] 

I&C system. System, based on electrical and/or electronic and/or programmable electronic 
technology, performing I&C functions as well as service and monitoring functions related to the 
operation of the system itself. 
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Large early release. The rapid, unmitigated release of airborne fission products from the 
containment to the environment occurring before the effective implementation of off-site 
emergency response and protective actions. (See Reference [11]) 

Large Early Release Frequency (LERF). Expected number of large early releases per unit 
time. (See Reference [11]) 

Operating system. The machine resident software that enables a computer to function. Without 
it, application programs could not be loaded or run 

Probabilistic Risk Assessment (PRA). A qualitative and quantitative assessment of the risk 
associated with plant operation and maintenance that is measured in terms of frequency of 
occurrence of risk metrics, such as core damage or a radioactive material release and its effects 
on the health of the public (also referred to a probabilistic safety assessment, PSA). (See 
Reference [11]) 

Random failure. Failure, occurring at a random time, which results from one or more of the 
possible degradation mechanisms in the hardware 

Redundancy. The provision of alternative (identical or diverse) equipment or systems so that 
any one can perform the required function, regardless of the state of operation or failure of any 
other. (See Reference [3]) 

Reliability. The characteristic of an item expressed by the probability that it will perform a 
required mission under stated conditions for a stated mission time. [IEEE-577-1991 and IEEE- 
352-1987] 

Risk. Probability and consequences of an event, as expressed by the “risk triplet” that is the 
answer to the following three questions (1) What can go wrong? (2) How likely is it? (3) What 
are the consequences if it occurs? (See Reference [11]) 

Software. Computer programs, procedures, and possibly associated documentation and data 
pertaining to the operation of a computer system. This includes software that is implemented as 
firmware. (See Reference [3]) 

Super-component. An event within a logic model that represents the failure of a collection of 
components.  

Susceptibility. Quality of being sensitive to an extraneous agent or effect. For the purposes of 
this document, susceptible means that digital CCFs are possible at the component, system or 
multiple system level. However, such failures do not necessarily affect risk significantly at the 
plant level. (this is in contrast to use of “vulnerability”). 

System. A collection of equipment that is configured and operated to serve some specific plant 
function(s) (e.g., provides water to the steam generators, sprays water into the containment, 
injects water into the primary system).  
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Technical mistake. An error made in the functional specification of an I&C system, where the 
analyst has an appropriate understanding of the operational environment of the system and of the 
functions to be performed by the system, but provides an incorrect or incomplete expression of 
these functions (see also Functional mistake).  

Train. A collection of equipment that is configured to provide a specific function or signal and is 
a sub-set of an overall system that is designed to accomplish that particular function or signal. 

Vulnerability. Quality of being open to attack or damage. In this document, vulnerability is used 
to refer to increased risk at the plant level due to digital CCF (this is in contrast to the use of 
“susceptibility”). 

“White-box.” System or component whose internal contents or implementation are known. 
[IEEE 610.12.1990] 

5.3 Abbreviations and Acronyms 

AFW Auxiliary Feed Water 
ALWR Advanced Light Water Reactor 
ANS American Nuclear Society 
ANSI  American National Standards Institute 
ASME  American Society of Mechanical Engineers 
ATWS  Anticipated Transient Without Scram 
BTP Branch Technical Position 
CCF  Common Cause Failure 
CDF  Core Damage Frequency 
CFR  Code of Federal Regulations 
CMF  Common Mode Failure 
D3  Diversity & Defense-in-Depth 
EPRI  Electric Power Research Institute 
ESFAS  Engineered Safety Features Actuation System 
ESW Essential Service Water 
HSI Human-System Interface 
I&C  Instrumentation & Control 
IEC International Electrotechnical Commission 
IEEE Institute of Electrical and Electronics Engineer 
IPE Individual Plant Evaluation 
IAEA  International Atomic Energy Agency 
LAR License Amendment Request 
LBLOCA Large-Break Loss Of Coolant Accident 
LERF  Large Early Release Frequency 
LOCA Loss Of Coolant Accident 
NEI  Nuclear Energy Institute 
NRC  Nuclear Regulatory Commission 
NUREG  Nuclear Regulation 
PDF Probability of Digital Failure 
PF Probability of Failure 
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PORV Power Operated Relief Valve 
PRA  Probabilistic Risk Assessment 
RTS  Reactor Trip System 
SAR  Safety Analysis Report 
SDP Significance Determination Process 
SI Safety Injection 
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