RESTRANC THE AVACABLE

UCRL-AR-127650

COST ANALYSIS REPORT FOR THE LONG-TERM MANAGEMENT OF DEPLETED URANIUM HEXAFLUORIDE

Hatem Elayat, Julie Zoller, Lisa Szytel

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

1.1

and the second system of the second secon Statistics

도망 관계 관계적으로 가장하는 것 - 이번 관계 관계 전 1000년 1000년 - 1000년 - 1000년 - 1000년 - 100년 100년 100년 100년 - 1000년 - 1000년 - 1000년 - 1000년 - 1000년

COST ANALYSIS REPORT FOR THE LONG-TERM MANAGEMENT OF DEPLETED URANIUM HEXAFLUORIDE

Hatem Elayat, Julie Zoller, Lisa Szytel Lawrence Livermore National Laboratory Livermore, California

May 1997

COST ANALYSIS REPORT FOR THE LONG-TERM MANAGEMENT OF DEPLETED URANIUM HEXAFLUORIDE

Table of Contents

Table of Tablesiv
Table of Figuresvi
1. INTRODUCTION1
2. OPTIONS AND ALTERNATIVE MANAGEMENT STRATEGIES
2.1 Categories of Options.22.1.1 Continued Cylinder Storage at Current Sites.32.1.2 Transportation.42.1.3 Conversion.62.1.4 Long-Term Storage.72.1.5 Manufacture and Use.72.1.6 Disposal.8
2.2 Definition of Alternative Management Strategies .9 2.2.1 No Action. .9 2.2.2 Long-Term Storage as UF ₆
3. COST ESTIMATION METHODOLOGY
3.1 Approach
3.2 Cost Basis.283.2.1 Technology Development.283.2.2 Capital Costs283.2.3 Capital Costs - Project Management.313.2.4 Regulatory Compliance313.2.5 Operations and Maintenance - Materials323.2.6 Operations and Maintenance - Labor323.2.7 Operations and Maintenance - Utilities333.2.8 Operations and Maintenance - Waste Management and Disposal333.2.9 Revenues34

J.L. IL EXCIUSIONS		• • • • • • •
		••••
. COST ESTIMATION OF C	OPTIONS	•••••
A 1 Transportation		
4.1 1 Dreparation for Sh	••••••••••••••••••••••••••••••••••••••	•••••
A 1 2 Treatment of Empl	ipincin	• • • • • • •
A 1 3 Loading Shipping	and Inloading	• • • • • • •
4.1.5 Loading, Shipping	on Costs	••••••
		•••••
'A 2 Conversion		•.
421 Conversion Costs	•••••••••••••••••••••••••••••••••••••••	••••••
422 Revenue from Sale	of By-product AHF and CaF	•••••
	Provense rate mile Car Second s	••••••
4.3 Manufacture and Use		
4.4 Long-term Storage	•••••••••••••••••••••••••••••••••••••••	
		•
4.5 Disposal		• • • • • • •
4.6 Continued Storage at Ca	urrent Sites	
_		· . ?
. COST ESTIMATION OF N	VITIES, RISKS, AND VULNERABILITIES	•••••
. COST ESTIMATION OF N ANALYSIS OF SENSITIV	/ITIES, RISKS, AND VULNERABILITIES	••••
. COST ESTIMATION OF N . ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount	/ITIES, RISKS, AND VULNERABILITIES	•••••
. COST ESTIMATION OF N . ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 6.1.2 Effect of Transport	/ITIES, RISKS, AND VULNERABILITIES Rate	•••••
. COST ESTIMATION OF N . ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 1 6.1.2 Effect of Transport 6.1.3 Effect of Shielding	/ITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values	•••••
. COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density of	/ITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values n UO, Storage and Disposal Options	•••••
. COST ESTIMATION OF N . ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density o 6.1.5 Effect of Facility T	VITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values n UO ₂ Storage and Disposal Options hroughput	
. COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 1 6.1.2 Effect of Discount 1 6.1.3 Effect of Shielding 6.1.4 Effect of Density o 6.1.5 Effect of Facility T	/ITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values n UO ₂ Storage and Disposal Options hroughput	
 COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 1 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density of 6.1.5 Effect of Facility T 6.2 Performance Risk 	/ITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values n UO ₂ Storage and Disposal Options hroughput	
 COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density of 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 	/ITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values n UO ₂ Storage and Disposal Options hroughput	
 COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density of 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 6.2.2 Process and Facility 	VITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values n UO ₂ Storage and Disposal Options hroughput iforming Cylinders y Uncertainties	
 COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density of 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 6.2.2 Process and Facility 	VITIES, RISKS, AND VULNERABILITIES Rate ation Distances. Cask Values n UO ₂ Storage and Disposal Options hroughput iforming Cylinders y Uncertainties	
 COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 1 6.1.2 Effect of Discount 1 6.1.3 Effect of Shielding 6.1.4 Effect of Density o 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 6.2.2 Process and Facility 6.3 Process Vulnerabilities 	VITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values n UO ₂ Storage and Disposal Options hroughput forming Cylinders y Uncertainties	
 COST ESTIMATION OF N ANALYSIS OF SENSITIVE 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 1 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density of 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 6.2.2 Process and Facility 6.3 Process Vulnerabilities 6.3.1 Disposal of CaF₂ B 	VITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values n UO ₂ Storage and Disposal Options hroughput forming Cylinders y Uncertainties	
 COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density of 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 6.2.2 Process and Facility 6.3 Process Vulnerabilities 6.3.1 Disposal of CaF₂ B 6.3.2 LLW Disposal of No 	/ITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values n UO ₂ Storage and Disposal Options hroughput forming Cylinders y Uncertainties y-product from HF Neutralization Options	
 COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density of 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 6.2.2 Process and Facility 6.3 Process Vulnerabilities 6.3.1 Disposal of CaF₂ B 6.3.2 LLW Disposal of No 	VITIES, RISKS, AND VULNERABILITIES Rate	
 COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density of 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 6.2.2 Process and Facility 6.3 Process Vulnerabilities 6.3.1 Disposal of CaF₂ B 6.3.2 LLW Disposal of N 	VITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values n UO ₂ Storage and Disposal Options hroughput forming Cylinders y Uncertainties y Uncertainties	
 COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 1 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density o 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 6.2.2 Process and Facility 6.3 Process Vulnerabilities 6.3.1 Disposal of CaF₂ B 6.3.2 LLW Disposal of N REFERENCES 	VITIES, RISKS, AND VULNERABILITIES Rate	
 COST ESTIMATION OF N ANALYSIS OF SENSITIVE 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 1 6.1.2 Effect of Discount 1 6.1.3 Effect of Shielding 6.1.4 Effect of Density of 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 6.2.2 Process and Facility 6.3 Process Vulnerabilities 6.3.1 Disposal of CaF₂ B 6.3.2 LLW Disposal of N REFERENCES 	VITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values n UO ₂ Storage and Disposal Options hroughput forming Cylinders y Uncertainties y Uncertainties y-product from HF Neutralization Options AgF ₂ By-product from Metal Conversion Options	
 COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 1 6.1.2 Effect of Discount 1 6.1.3 Effect of Shielding 6.1.4 Effect of Density of 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 6.2.2 Process and Facility 6.3 Process Vulnerabilities 6.3.1 Disposal of CaF₂ B 6.3.2 LLW Disposal of N REFERENCES 	VITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values n UO ₂ Storage and Disposal Options hroughput forming Cylinders y Uncertainties y Uncertainties cy-product from HF Neutralization Options	
 COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density of 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 6.2.2 Process and Facility 6.3 Process Vulnerabilities 6.3.1 Disposal of CaF₂ B 6.3.2 LLW Disposal of N REFERENCES 	VITIES, RISKS, AND VULNERABILITIES Rate ation Distances Cask Values n UO ₂ Storage and Disposal Options hroughput forming Cylinders y Uncertainties y Uncertainties y Ender Storage Sto	
 COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density of 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 6.2.2 Process and Facility 6.3 Process Vulnerabilities 6.3.1 Disposal of CaF₂ B 6.3.2 LLW Disposal of N REFERENCES 	VITIES, RISKS, AND VULNERABILITIES Rate ation Distances. Cask Values n UO ₂ Storage and Disposal Options hroughput hroughput hroughput y Uncertainties y-product from HF Neutralization Options MgF ₂ By-product from Metal Conversion Options	
 COST ESTIMATION OF N ANALYSIS OF SENSITIV 6.1 Sensitivity Analyses 6.1.1 Effect of Discount 6.1.2 Effect of Transport 6.1.3 Effect of Shielding 6.1.4 Effect of Density of 6.1.5 Effect of Facility T 6.2 Performance Risk 6.2.1 Number of Noncor 6.2.2 Process and Facilities 6.3.1 Disposal of CaF₂ B 6.3.2 LLW Disposal of N REFERENCES 	/ITTIES, RISKS, AND VULNERABILITTES Rate	

iii

• •

. . .

Table of Tables

	Table 4.1 Cost Breakdown (in Millions of Dollars) for Preparation of (17,339) Conforming
	Cylinders for Shipment
	Table 4.2 Cost Breakdown (in Millions of Dollars) for Preparation of (29,083) Nonconforming
	Cylinders for Shipment - Overcontainer Option
	Table 4.3 Cost Breakdown (in Millions of Dollars) for Preparation of (29,083) Nonconforming
	Cylinders for Shipment - Transfer Facility Option
	Table 4.4 Cost Breakdown (in Millions of Dollars) for Emptied Cylinder Disposition
	Table 4.5 Loading, Shipping, and Unloading Cost Breakdown (in Millions of Dollars) by Truck
	and Rail
	Table 4.6. Cost Breakdown (in Millions of Dollars) for Transportation Using the Overcontainer
	Ontion for the Prenaration of (29 083) Nonconforming Cylinders and the Rail Option for the Mode
	of Transmostation
	Table 4.7 Cost Breakdown (in Millions of Dollars) for Transportation Using the Transfer Facility
	Option for the Prenaration of (29.083) Nonconforming Cylinders and the Truck Option for the
	Mode of Transmostation
	Table 4.8 Cost Breakdown (in Millions of Dollars) for Conversion Ontions 52
	Table 4.9 Annual Revenue from Sale of AHF and CaF. By-products from Conversion Options in
	Millions of Dollars
	Table 4 10 Cost Breakdown (in Millions of Dollars) for Manufacture of Metal and Oxide
	Shielding Ontions
:	Table 4.11 Cost Breakdown (in Millions of Dollars) for Long-term Storage Ontions 60
	Table 4.12 Cost Breakdown (in Millions of Dollars) for Disposal Options.
	Table 4.12 Cost Breakdown (in Millions of Dollars) for Continued Storage at Current Sites
	Table 5.1. Cost Breakdown (in Millions of Dollars) for the Low-Cost Alternative Management
•	Strategies
	Table 5.2 Cost Breakdown (in Millions of Dollars) for the High-Cost Alternative Management
·	Strategies
	Table 61 Cost Breakdown (in Millions of Dollars) Based on Discount Rate
	Table 6.2 Transportation Cost Breakdown (in Millions of Dollars) based on Distance Between
•	Facilities using Rail and Overrontainer Ontions
	Table 6.3 Sensitivity Analysis for Depleted Uranium Shielding Applications - Cask Credit
:	Table 6.4. Parametric Analysis of Conversion to LLO. Defluorination w/AHF (in Millions of
	Table 0.4 Talancule Analysis of Conversion to 0303. Deriver and on write (in think of 0)
	Table 6.5. Parametric Analysis of Conversion to IIO.: Ceramic IIO. w/AHE (in Millions of
	Table 0.5 Farametric Analysis of Conversion to 002. Ceramic 002 w/rink (in Minimum of 100
	Table 6.6. Dometric Analysis of Conversion to Metal by Continuous Metallothermic Reduction
	(in Millions of Dollars)
	Table 6.7. Dempetric Analysis of Manufacture and Lise as Metal Shielding (in Millions of
•	Table 0.7 Parametric Analysis of Manufacture and Ose as Metal Smelding (in Minions of
	Dollars)
	Table 0.8 Parametric Analysis of Manufacture and Use as Oxide Smelding (in Minious of
	Dollars)
	Table 0.9 Parametric Analysis of Storage in Dunuings as Or (in Millions of Dollars)
	Table 0.10 Parametric Analysis of Storage in Bulldings as 00 ₂ (in Millions of Donals)
	Table 0.11 Parametric Analysis of Disposal in a relified Cavity as Bulk 0.30% (in relifions of 100
	Dollars)
	Table 0.12 Cost Breakdown (in Willions of Dollars) for Preparing Contonning Cylinders
	Table 0.13 Cost Breakdown (in Millions of Donars) for Preparing Noncomorning Cylinders -
	Overcontainer Option

iv

Table 6.14 Cost Breakdown (in Millions of Dollars) for Preparing Nonconforming Cylinders -

 Table 6.15 Performance Risks
 117

 Table 6.16 Cost Impacts of Disposal of CaF₂ Resulting from Conversion Options with HF

 Neutralization (Millions of Dollars)

 119

 Table 6.17 Cost Impacts of Disposal of MgF₂ Resulting from Metal Conversion Options (Millions of Dollars)

 120

 ; and a second 1992) 3947 1992 - 3947 1993 - 1927 (F. 1997) 1997 1993 - 1927 (F. 1997) 1993 - 1993 - 1997 ti y andra de la companya La companya de la comp La companya de la comp and a second 15 a 11 1 1 1 · . . enHall 1 St.J. - El COL - Steller - Color - Co 2 Color - Color an parte sal en en la composition de la de la composition de la la composition de la composition and the second second • · • · · · • • •

}v: **v**:

.

.:

Table of Figures

..

Figure 2.1 Options and Alternative Management Strategies	
Figure 2.2 No Action Alternative - Current Management Activities Continue through 2039 14	
Figure 2.3 Long-Term Storage as UF ₆ 15	
Figure 2.4 Long-Term Storage as Uranium Oxide	
Figure 2.5 Use as Uranium Dioxide in DUCRETE ^{1m}	
Figure 2.6 Use as Uranium Metal	
Figure 2.1 Disposal as Oxide	
Figure 3.2 Cost Breakdown Structure (CBS) to Level 5	
Defluction with Anhydrous HE Production 22	
Figure 3.3 Schedule	
Figure 4.1 Total Cost by Truck and Rail for the Various Management Strategies AA	
Figure 4.2. Total Costs for Transportation Using Overcontainer and Rail 46	
Figure 4.3 Total Costs for Transportation Using Transfer Facility and Truck 48	
Figure 4.4 Total Costs for Different Conversion Options.	
Figure 4.5 Total Costs of Manufacture of Metal and Oxide Shielding Options	
Figure 4.6 Total Costs for Long-term Storage Options	
Figure 4.7 Total Costs for Disposal Options	
Figure 4.8 Total Costs for Continued Storage at Current Sites	
Figure 5.1 Comparison of Total Costs of Alternative Management Strategies (Low-Cost	
Scenarios)73	
Figure 5.2 Comparison of Total Costs of Alternative Management Strategies (High-Cost	
Scenarios)	
Figure 5.3 Low-Cost Breakdown for No Action (\$327 Million)	
Figure 5.4 High-Cost Breakdown for No Action (\$327 Million)	
Figure 5.5 Low-Cost Breakdown for Long-Term Storage as DUF, (\$383 Million)	
Figure 5.0 Figure Cost Dicakdown for Long-term Storage as DUF ₆ (\$1518 Million)	
Production (\$880 Million) 78	
Figure 5.8 High-Cost Breakdown for Long-Term Storage as Oxide - U.O. Defluorination w/AHF	
Production (\$1897 Million)	
Figure 5.9 Low-Cost Breakdown for Long-Term Storage as Oxide - U.O. Defluorination w/HF	
Neutralization (\$938 Million)	
Figure 5.10 High-Cost Breakdown for Long-Term Storage as Oxide - U ₂ O, Defluorination w/HF	
Neutralization (\$1955 Million)	
Figure 5.11 Low-Cost Breakdown for Long-Term Storage as Oxide - UO ₂ Gelation (\$1,356	
Million)	
Figure 5.12 High-Cost Breakdown for Long-Term Storage as Oxide - UO ₂ Gelation (\$2,203	
Million)	
Figure 5.13 Low-Cost Breakdown for Use as Oxide - UO ₂ Dry Process w/AHF Production	
(\$1,600 Million)	
Figure 5.14 High-Cost Breakdown for Use as Oxide - UO ₂ Dry Process w/AHF Production	
(\$2,112 Million)	
Figure 5.15 Low-Cost Breakdown for Use as Oxide - UO ₂ Dry Process W/HF Neutralization	
(\$1,048 Million)	
(\$2 160 Million)	
(42,100 Million)	
Figure 5.18 High Cost Breakdown for Use as Oxide - UO Celation (\$2,075 Million) 22	
Figure 5.10 Low-Cost Breakdown for Use as Metal - Ratch Metallothermic Reduction (\$1.053)	
Million)	
Figure 5.20 High-Cost Breakdown for Use as Metal - Batch Metallothermic Reduction (\$2.463	
Million)	

vi

Figure 5.21 Low-Cost Breakdown for Use as Metal - Continuous Metallothermic Reduction	
(\$1,780 Million)	5 ·
Figure 5.22 High-Cost Breakdown for Use as Metal - Continuous Metallothermic Reduction	
(\$2,290 Million)	5
Figure 5.23 Low-Cost Breakdown for Disposal as Oxide - U ₃ O ₂ Defluorination w/AHF	
Production (\$810 Million)	6
Figure 5.24 High-Cost Breakdown for Disposal as Oxide - U ₃ O ₈ Defluorination w/AHF	
Production (\$2,561 Million)	б
Figure 5.25 Low-Cost Breakdown for Disposal as Oxide - U ₃ O ₄ Defluorination w/HF	
Neutralization (\$868 Million)	7
Figure 5.26 High-Cost Breakdown for Disposal as Oxide - U ₃ O ₈ Defluorination w/HF	
Neutralization (\$2,619 Million)	7
. Figure 5.27 Low-Cost Breakdown for Disposal as Oxide - UO ₂ Gelation (\$1,332 Million)8	B
Figure 5.28 High-Cost Breakdown for Disposal as Oxide - UO ₂ Gelation (\$2,550 Million)88	8
Figure 6.1 Total Costs for Given Discount Rates	1
Figure 6.2 Total Transportation Costs for Given Distances between Facilities (Rail and	•
Overcontainer Options)	4
Figure 6.3 Parametric Analysis of Conversion Options102	2
Figure 6.4 Parametric Analysis of Use Options10	5
Figure 6.5 Parametric Analysis of Storage Options10	8
Figure 6.6 Parametric Analysis of Disposal Options	I
and the set of the set	

· · · · Ne con a pre-. : , r and the second second second second ۰. **.** ·.. . _ ' (and a second sec · · · · • · · · . 5.000 ۰. · · · p · 1 11 1 • : • • • . . . **. .** · · . . .

Figure 1. Second State 1. S

1. INTRODUCTION

With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994, *Federal Register* (59 FR 56324 and 56325), the Department of Energy (DOE) initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride (UF₆) stored in the cylinder yards at Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee. The current management strategy entails handling, inspection, monitoring, and maintenance activities to ensure safe storage of the depleted UF₆. Six long-term management strategy alternatives are being analyzed in a draft Programmatic Environmental Impact Statement (PEIS) (DOE, forthcoming 1997). These alternatives include the current management strategy (the "No Action alternative"), two long-term storage alternatives, two use alternatives, and a disposal alternative. Complete management strategies may also involve transportation and, in many cases, conversion to another chemical form.

This Cost Analysis Report was developed to provide comparative cost data for the management strategy alternatives being examined. The draft PEIS and the Cost Analysis Report will be used by DOE in the decision-making process, which is expected to result in a Record of Decision in 1998, completing the first phase of the Depleted UF₆ Management Program, management strategy selection. During the second phase of the Program, site-specific and technology-specific issues will be addressed.

This report presents life-cycle cost estimates for each of the management strategy alternatives. The cost analysis estimates the primary capital and operating costs for the different alternatives and reflects all development, construction, operating, and decontamination and decommissioning (D&D) costs, as well as potential off-setting revenues from the sale of recycled materials. The costs are estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives. The focus is on identifying the relative differences in the costs of alternatives for purposes of comparison, not on developing absolute costs for project budgets or bid-document costs. The technical data upon which this cost analysis is based is principally found in the *Engineering Analysis Report* (Dubrin et al. 1997).

Section 2 of this report introduces the options and alternative strategies included in the draft PEIS. Section 3 presents the basis for the cost estimates for each of the options considered. Section 4 presents the cost estimates for the options. Section 5 presents the cost estimates for the alternative management strategies, which were developed by linking together the cost estimates for individual options. Section 6 discusses the uncertainty in the cost estimates for the alternative strategies and provides an analysis of the sensitivity of the cost estimates to a variety of assumptions.

OPTIONS AND ALTERNATIVE MANAGEMENT STRATEGIES 2.

とうしき やくさい 必要通知した

Six long-term management strategy alternatives are being analyzed in the PEIS, including the current management strategy (the "No Action alternative"), two long-term storage and alternatives, two use alternatives, and a disposal alternative. The disposal alternative leads to final disposition, while the other alternatives have varying endpoints. A management strategy may include various activities such as transportation, conversion, use, storage and/or disposal. The process of constructing each of these management strategy alternatives entailed the systematic combination of selected *options* for the various activities, which formed the logical building blocks for the alternatives, as well as the basis for the organization of this document. . . .

To analyze the costs of a given alternative, the costs of each option for activities composing that alternative were evaluated. In cases where different options were available to implement a particular alternative, the analysis considered several options. After all costs for the options composing a particular alternative were defined, the costs were summed to yield a total cost for the alternative. 2.1 Categories of Options

en de la companya de la comp

The following option categories are considered in this report:

- Continued cylinder storage at current sites
- Transportation

- Storage
- Manufacture and use
- Disposal

An option category designates a major activity in a management strategy which can be accomplished in various different ways. Each of the following discussions includes a brief examination of the options within that category, along with descriptions of specific activities or requirements associated with each option and reasons for its consideration in particular contexts. With the exception of continued cylinder storage at current sites, the technical data are found in the Engineering Analysis Report (Dubrin et al. 1997). Continued storage activities are described in other programmatic documents, identified in Section 2.1.1.

Facilities for the conversion, manufacture, storage, disposal, or transfer of depleted UF₆ are assumed to be constructed and operated at a generic green field site. For purposes of analysis, a period of 20 years from the onset of operations is assumed to disposition the entire depleted uranium stockpile (about 560,000 metric tons [MT] of UF₆ in 46,422 cylinders). This corresponds to an annual throughput rate of 28,000 MT of UF₆ or about 19,000 MT of depleted uranium.

the second s

2.1.1 Continued Cylinder Storage at Current Sites

Continued cylinder storage refers to the activities associated with the present approach to storing depleted UF₆ at the K-25 site at Oak Ridge, the Paducah site, and the Portsmouth site. Storage of depleted UF₆ is included under all alternative management strategies considered, the main difference being the *duration* of the storage period. In the "No Action" alternative, all of the cylinders remain in storage indefinitely. In the "action" alternatives, the cylinder inventory declines at five percent (5%) per year beginning in 2009.

The surveillance and maintenance activities that would be undertaken from now until September 30, 2002, are described in detail in the UF_{δ} Cylinder Program Management Plan (CPMP) that was submitted to the Defense Nuclear Facilities Safety Board in July 1996 (LMES 1996). Surveillance and maintenance activities are expected to continue beyond fiscal year 2002, but the scope of the CPMP was limited. Assumptions were developed to estimate the impacts and cost of continued storage because the assessment period for the draft PEIS and cost analysis extends to 2040. In developing these assumptions, it was recognized that the details of the activities actually undertaken in the future may differ from those described in the CPMP due to unexpected field conditions or budgetary constraints. A memo by Joe W. Parks, Assistant Manager for Enrichment Facilities, DOE Oak Ridge Operations Office (Parks 1997), documents assumptions for evaluating continued cylinder management activities for the No Action alternative.

The Parks memo was used as follows to develop the cost estimates for the alternatives considered in this report:

No Action Alternative

1999-2039 Continued cylinder storage activities as described in Parks memo

Action Alternatives

1999-2008 Continued cylinder storage activities as described in Parks memo 2009-2029 Continued storage of cylinders awaiting conversion or storage at . another location (inventory declining 5% per year). Annual inspections (visual and ultrasonic) and valve monitoring/maintenance activities and cylinder breaches, as described in the Parks memo, decline proportionally to the reducing inventory. Repainting of the inventory would occur every ten years until 2019, when cylinders would be removed within the 10-year paint life.

The activities supporting continued cylinder storage analyzed in this document include the following:

- Routine visual and ultrasonic inspections of cylinders
- Cylinder painting
- Cylinder valve monitoring and maintenance
- General storage yard and equipment maintenance
- Yard reconstruction to improve storage conditions

- Relocation of cylinders to new yards or to improve access for inspections
- Repair (patch welding) and contents transfer for breached cylinders
- Data tracking, systems planning and execution, and conduct of operations

The total inventory of 46,422 depleted UF₆ cylinders is currently stored as follows: 28,351 cylinders (about 60%) are stored in 13 yards at the Paducah site, 13,388 cylinders (about 30%) are stored in two yards at the Portsmouth site, and 4,683 cylinders (about 10%) are stored in three yards at the K-25 site. An intensive effort is ongoing to improve yard storage conditions. This effort includes (1) relocation of cylinders which are too close to one another to allow for adequate inspections and (2) construction of new storage yards or reconstruction of existing storage yards to provide a stabilized concrete base and monitored drainage for the cylinder storage areas. The costs for reconstruction of four Paducah yards, construction of a new yard at the K-25 site, and relocation of about 19,000 cylinders at Paducah and all the cylinders at K-25 are included in this report.

Most cylinders are inspected every four years for evidence of damage or accelerated corrosion. Annual inspections are required for cylinders that have been stored previously in substandard conditions and/or show areas of heavy pitting or corrosion (about 25 percent of the cylinder population). In addition to these routine inspections, ultrasonic testing inspections are currently conducted on some of the relocated cylinders. The ultrasonic testing is a nondestructive method to measure the wall thickness of cylinders. Valve monitoring and maintenance are also conducted for cylinders that exhibit discoloration of the valve or surrounding area during routine inspections. Leaking valves are replaced in the field.

For the No Action alternative, the frequency of routine inspections and valve monitoring is assumed to remain constant through 2039. Ultrasonic testing is assumed to be conducted annually for 10% of relocated cylinders; after relocation activities are finished, around the year 2003, 10% of the cylinders painted each year are assumed to receive ultrasonic testing inspections. For the action alternatives, the frequency of inspections is assumed to decrease with decreasing cylinder inventory from 2009 to 2029.

Cylinder painting will be employed at the three sites to reduce cylinder corrosion. The paint currently planned for use is assumed to have a lifetime of 10 years. Although repainting may not actually be required every 10 years, or budgetary constraints may preclude painting every 10 years, the continued cylinder storage analysis under the No Action alternative assumes a 10-year cycle for painting. Activities associated with breached cylinders are also assessed.

2.1.2 Transportation

Transportation involves the movement of materials among the facilities that play a role in the various alternative management strategies. With the exception of the No Action alternative, transportation occurs under each alternative, in some cases representing two or three separate steps in the process of managing depleted UF_6 . Two modes — truck and rail — are considered. The following elements are included in transportation:

• Preparation of depleted UF₆ cylinders for shipment

- 4

- Transport of all forms of depleted uranium (i.e., UF₆ from the current storage sites; U_3O_8 , UO_2 , and U metal from conversion facilities; and uranium shields from manufacturing facilities)
- Cylinder treatment (i.e., cleaning the emptied cylinders to remove the depleted UF₆ heel, crushing the cleaned cylinders, and transporting the crushed cylinders to a DOE scrap yard)

Preparation for shipment cost refers to the cost associated with the activities required to prepare depleted UF₆ cylinders for transportation from the three current storage sites. Cylinder preparation would be required for alternatives that involve transport of cylinders to a conversion facility or a long-term storage site. The draft PEIS assumes that all alternatives except "No Action" may require transport — that is, neither long-term storage nor conversion would occur at the current storage sites. Actual siting of facilities will be considered during Phase II of the depleted UF₆ Management Program. Preparation of cylinders for shipment would occur at each of the sites currently storing depleted UF₆.

Although the cylinders currently used for storing depleted UF₆ were designed and built to meet U.S. Department of Transportation (DOT) requirements for shipment, some of the cylinders no longer meet those requirements. Review of Title 49 of the Code of Federal Regulations (CFR), the American National Standards Institute's ANSI N14.1, and the U.S. Enrichment Corporation's USEC-651, along with other documents, has helped identify three categories of cylinder problems: overpressured, overfilled, and substandard. Overpressured cylinders do not meet the requirement that they be shipped at subatmospheric pressures. Overfilled cylinders contain an inventory of UF₆ which exceeds allowable fill limits for shipping. Substandard cylinders do not meet the "strong, tight" requirements for shipment; substandard cylinders include those having corrosion sufficient for the wall thickness to be below allowable minimums, damaged cylinders, and cylinders with plug or valve threading problems or other nonconformances that prevent shipment "as-is."

Cylinders that meet DOT shipment requirements would require no special preparation and could be shipped whenever desired. Depleted UF_6 in cylinders that no longer meet DOT requirements would be prepared for shipment in one of two ways:

- The placement of the nonconforming cylinder in a cylinder overcontainer a protective metal container slightly larger than the cylinder itself and designed to meet all DOT shipment requirements; or
- The transfer of depleted UF₆ from cylinders that no longer meet DOT requirements to new cylinders which do meet these requirements, with the transfer to occur at the storage site in a new facility designed specifically for this activity.

The second element of the transportation category of options, transport, includes costs for loading, shipping, and unloading activities. Loading/unloading and trip costs (/kilometer [km]) were considered to be dependent upon mode (i.e., truck or rail), material packaging, and density. These dependencies were the same, regardless of the chemical form of the cargo. For example, transport of UF₆ was assumed to cost the same per railcar per kilometer as transport of U₃O₈, the only difference being the amount of material in a load.

The final element of the transportation category of options is treatment and transport of emptied cylinders. Most of the alternatives being considered involve removing the depleted

UF₆ from the cylinders and converting it to another form. After the cylinders are emptied, they would be washed to remove the residual heel of depleted UF₆. It is assumed that the cleaned cylinders would be crushed and then transported to the gaseous diffusion plant sites, where they would become part of the scrap metal inventory. Disposition of the emptied cylinders (46,422) and the residual "heel" of depleted UF₆ is addressed under cylinder treatment (see Section 4.1.2).

2.1.3 Conversion

Conversion of the depleted UF_6 to another chemical form is required for most management strategy alternatives. The following conversion options are considered:

- Conversion to triuranium octaoxide (U_3O_8)
- Conversion to uranium dioxide (UO₂)
- Conversion to metallic uranium

Due to their high chemical stability and low solubility, uranium oxides in general are presently the favored forms for the storage and disposal alternatives. High density UO_2 and uranium metal are the preferred forms for spent nuclear fuel radiation shielding applications due to their efficacy in gamma ray attenuation. It is assumed that the entire inventory of depleted UF₆ could be converted over a 20-year period at a single industrial plant built for and dedicated to this task. Two different processes for the conversion to U_3O_8 , three different processes for the conversion to UO_2 , and two different processes for the conversion to the conversion to metal are considered.

The Engineering Analysis Project developed two suboptions for the dry conversion of UF₆ to U_3O_8 . The first process upgrades the concentrated hydrogen fluoride (HF) by-product to anhydrous HF (AHF < 1% H₂O). In the second process, the acid would be neutralized with lime to produce calcium fluoride (CaF₂).

The conversion of UF₆ to dense UO₂ is industrially practiced in the nuclear fuel fabrication industry. By either a "wet" or a "dry" process, the UF₆ is converted to a low-density UO₂ powder under controlled conditions to assure suitable powder morphology for sintering to high density for use as power reactor fuel pellets. Three suboptions were developed in the Engineering Analysis Project for the conversion of UF₆ to UO₂. A generic industrial dry process with conversion (similar to that used for U₃O₈) followed by conventional pelletizing and sintering to produce centimeter-sized pellets is the basis for the first two suboptions. The first suboption upgrades the concentrated HF to AHF (< 1% H₂O). The second suboption neutralizes the HF to CaF₂ for sale. The third suboption, a wet process, is based on small scale studies and is referred to as the gelation process.

As described above, it is assumed that the AHF and CaF_2 conversion products are of sufficient purity to be sold for unrestricted usage. Vulnerabilities associated with this assumption are addressed in Section 6.3.1.

Two metallothermic reduction routes (batch and continuous) for the production of uranium metal were analyzed. Both processes have the same chemistry: the magnesium metal (Mg) reduction of uranium tetrafluoride (UF₄) to produce uranium metal and a magnesium fluoride (MgF₂) by-product slag. The UF₄ required for either process would be generated by the hydrogen (H₂) reduction of depleted UF₆ (a standard industrial process), producing AHF as the by-product. The standard industrial process for over 50 years has been the

batch metallothermic reduction process. The MgF₂ by-product slag resulting from this process is contaminated with appreciable quantities of uranium. Without further treatment, the slag must be disposed of as a low-level waste (LLW). With the rising cost for LLW disposal, disposal has become a significant fraction of the total cost for producing uranium metal. For the batch metallothermic suboption, an acid leaching step to reduce the uranium content in the slag and potentially enable it to be disposed in a sanitary landfill is analyzed. An exemption would be required since the uranium activity in the treated slag would still be large compared to that in typical soils.

The other suboption analyzed in depth is the continuous metallothermic reduction process, which is currently under development. The initial expectation is that the level of uranium contamination in the MgF₂ by-product would be sufficiently low that a post-treatment step such as the acid leaching step used in the batch metallothermic process would not be necessary. Nevertheless, an exemption for disposal in a sanitary landfill would be required because of the small amount of remaining uranium. Process vulnerabilities associated with metal conversion options are further discussed in Section 6.3.2.

2.1.4 Long-Term Storage

Two alternatives analyzed involve long-term storage. Emplacement in the storage facility would occur over 20 years at a newly constructed consolidated facility and the facility would be monitored thereafter. In the engineering analysis, storage options are defined by the type of storage facility, and suboptions are defined by the chemical form in which the depleted uranium is stored: The types of storage facilities analyzed in the *Engineering Analysis Report* and the draft PEIS are (1) buildings, (2) below ground vaults, and (3) mined cavities. The three chemical forms analyzed are (1) UF₆, (2) U₃O₈, and (3) UO₂. The two long-term storage alternatives considered in the draft PEIS are storage of the depleted uranium as UF₆ and storage in an oxide form (either U₃O₈ or UO₂).

In the case of storage as U_2O_8 , following conversion, the U_3O_8 would be stored in powdered form in 55-gal (208-liter [L]) drums. The drums would be placed in buildings, below ground vaults, or an underground mine for monitored storage. Compared to depleted UF₆, U_3O_8 provides greater chemical stability, although storage in the converted form may be less flexible, and therefore more costly, for potential future uses. In the case of storage as UO₂, following conversion, the UO₂ would be stored as dense microspheres (the product of the gelation process) or pellets in 30-gal (110-L) drums, with the drums placed in buildings, below ground vaults, or an underground mine. As with U_3O_8 , the UO₂ form provides greater chemical stability compared to UF₆.

Long-term storage as UF_6 in the existing cylinders in either buildings or a mined cavity is also considered. Storage of UF_6 in the existing outdoor yards is addressed in Section 2.1.1.

2.1.5 Manufacture and Use

Currently, there exist several potential uses for depleted UF_6 . The manufacture and use options evaluated in the *Engineering Analysis Report* and the draft PEIS focus on the use of depleted uranium to shield radiation. Due to its high density, depleted uranium, although radioactive itself, can be used to absorb the radiation from other, more highly radioactive materials. This shielding characteristic could be employed in the manufacture of casks for the spent nuclear fuel removed from DOE facilities or commercial nuclear power

plants. Two alternatives involving the manufacture and use of depleted uranium for shielding are considered: uranium dioxide (DUCRETETM)¹ and uranium metal.

DUCRETETM is similar to concrete but contains high-density UO₂ in place of conventional aggregate (typically gravel) as a tempering agent mixed with cement for shielding in spent nuclear fuel (SNF) storage containers. Due to the high density of UO_2 , achieving a particular level of radiation shielding using DUCRETETM requires less than half the thickness of concrete. Such a dramatic reduction in shielding thickness provides both weight and size advantages over casks using concrete shielding. DUCRETE[™] may also be an appropriate material for overcontainers for spent nuclear fuel disposal, although this application is more speculative than the storage applications because the precise disposal requirements are not known at this time. Accordingly, the engineering analysis assumes that, after the spent nuclear fuel storage period, the empty DUCRETE[™] cask would be disposed as low-level waste when the spent fuel is disposed. The cost of disposal of the DUCRETETM casks is not included. The timing of such activities is not known but is assumed to be beyond 2040. e sustante molecteres

The second use alternative involves using depleted uranium as the metal in the manufacture of annular shields for a multipurpose unit system. The multipurpose unit concept is a spent nuclear fuel package that, once loaded at the reactor, provides confinement of spent nuclear fuel assemblies during storage, transportation, and disposal. In this approach, the depleted uranium is disposed of with the spent nuclear fuel.

For purposes of analysis, it is assumed that (1) casks would be based on existing designs, with the uranium shielding material enclosed between stainless steel (or equivalent) shells; and (2) the shielded casks would be produced over a period of 20 years at a central standalone industrial plant, transported to commercial reactors, and loaded with spent nuclear fuel.

2.1.6 Disposal

Disposal refers to the emplacement of a material in a manner which ensures isolation for the indefinite future. Disposal is considered permanent, with no intent to retrieve the material for future use. The disposal options considered in the Engineering Analysis Report and PEIS involve conversion of the UF₆ and disposal as an oxide — either U_3O_8 or UO_2 . The U_3O_8 would be disposed of in 55-gal (208-L) drums, and the UO₂ would be disposed of in 30-gal (110-L) drums. Both bulk disposal (i.e., the U_3O_8 powder or UO_2 microspheres are placed directly into drums) and grouted disposal (i.e., the oxide forms are mixed with cement before being placed in drums) are analyzed, as well as three types of disposal facility: shallow earthen structures, below ground vaults, and an underground mine. Each disposal facility would be stand-alone and single-purpose, composed of a waste form facility and several disposal units, which would vary depending on the type of facility involved.

The second se ¹ DUCRETE is a trademark of Lockheed Martin Idaho Technologies Company and is licensed to Nuclear Metals, Inc., Concord, MA.

and the explanation from a second config

÷. . .

現金の低いたという。 ションスロート 日本学校 特別がたった みたん たいいだ の外部でのからない いった したいみ 一般などのほ子 ¹⁹⁶の したがたたたたた

·, 8

2.2 Definition of Alternative Management Strategies

Selected options from the six categories described in Section 2.1 can be combined to build the following long-term management strategies being considered:

- No Action alternative
- Long-term storage as UF₆ in buildings or a mined cavity
- Long-term storage as oxide in buildings, vaults, or a mined cavity
- Use as uranium dioxide in DUCRETE[™] for shielding applications
- Use as uranium metal for shielding applications
- Disposal as oxide in shallow earthen structures, vaults, or mined cavity

The draft PEIS studies the potential environmental impacts of these management strategy alternatives for the 41-year period from 1999 through 2039, although the strategies could continue beyond that date. Accordingly, the *Cost Analysis Report* analyzes the same time period.

The process of combining options into a management strategy entails selecting those options that fulfill the function(s) necessary to carry out a particular alternative. It is noted that the alternatives have varying endpoints. Figure 2.1 shows the different options in alternative management strategies. (All figures are located at the end of Chapter 2.)

2.2.1 No Action

The Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act (40 CFR Parts 1500-1508) require that a "No Action" alternative be considered when preparing an EIS. Under the No Action alternative, DOE would continue to store its inventory of full depleted UF₆ cylinders at the three existing sites indefinitely. The activities involved in continued storage are described in Section 2.1.1 and shown in Figure 2.2. Consistent with the PEIS time frame, costs of current management activities were estimated from 1999 through 2039.

2.2.2 Long-Term Storage as UF,

The long-term storage as UF_6 alternative involves storage of depleted UF_6 in its current chemical form until 2040. This alternative combines options from four categories, including a transportation step to move the material from its current location to a long-term storage location.

- Continued storage as depleted UF₆ in the current yards from 1999 to 2029, with the amount of depleted UF₆ in storage decreasing by 5% per year from 2009 to 2029 until it is gone;
- Cylinder preparation for shipment from 2009 to 2029;
- Transportation as UF_6 to a consolidated storage facility from 2009 to 2029;

• Long-term storage as depleted UF₆ in buildings or a mined cavity from 2009 to 2040, with the amount of depleted UF₆ in storage increasing by 5% per year until all the depleted uranium is stored at a consolidated storage facility by 2029.

Under this alternative, continued storage at the current sites would occur through 2008. In the ensuing 20-year period, from 2009 until 2029, cylinder preparation for shipment, transportation to the long-term storage site, and placement in the long-term storage facility would occur. As the amount of depleted UF₆ in current storage conditions declines over this two-decade period, the amount of depleted UF₆ in long-term storage increases. Once all of the cylinders have been shipped (2029), the long-term storage facility would enter a maintenance and monitoring mode until 2040. No decision has yet been made regarding what will happen to the stored UF₆ after 2040. Long-term storage as UF₆ is shown in Figure 2.3.

2.2.3 Long-Term Storage as Uranium Oxide

The long-term storage as uranium oxide alternative considers long-term storage of depleted uranium after it has been converted to either U_3O_8 or UO_2 . It is assumed that both the conversion process and long-term storage would occur at locations other than the sites presently used for depleted UF₆ storage.

The combination of options making up the long-term storage as oxide alternative fall into seven different steps, two of which are transportation:

- Continued storage as depleted UF_6 in the current yards from 1999 to 2029, with the amount of depleted UF_6 in storage decreasing by 5% per year beginning in 2009 until it is gone in 2029;
- Cylinder preparation for shipment from 2009 to 2029;
 - Transportation as UF₆ from 2009 to 2029;
 - Conversion to oxide from 2009 to 2029;
 - Transportation as oxide from 2009 to 2029;
- Cylinder treatment from 2009 to 2029;
- Long-term storage as oxide in a building, vault, or mined cavity from 2009 to 2040, with the amount of oxide in storage increasing by 5% per year until all the depleted uranium is stored in this form by 2029.

Once again, continued storage persists through 2029. Most of the activity under this alternative would occur in the period beginning in 2009 and continuing for 20 years: cylinders would be prepared for transportation and transported to a conversion facility; the depleted UF, would be converted to oxide; and the oxide would be moved to a long-term storage facility. The inverse, complementary relationship between current storage and long-term storage also persists, with the former declining as the latter increases with the transfer of material from the current sites to a long-term storage facility. Once all of the material has been shipped, the long-term storage facility would enter a maintenance and monitoring mode until 2040. Long-term storage as uranium oxide is shown in Figure 2.4.

的现在分词行行。

2.2.4 Use as Uranium Dioxide in DUCRETE[™] for Shielding Applications

One of the two use alternatives considered in the Engineering Analysis Report and the draft PEIS involves using depleted uranium to make a radiation shielding material known as $DUCRETE^{TM}$. Under this alternative, UF_6 would be converted to an oxide form (UO₂), which in turn would be used to manufacture $DUCRETE^{TM}$ casks for storing spent nuclear fuel.

This alternative consists of the following steps:

- Continued storage as depleted UF₆ in the current yards from 1999 to 2029, with the amount of depleted UF₆ in storage decreasing by 5% per year beginning in 2009 until it is gone in 2029;
- Cylinder preparation for shipment from 2009 to 2029;
- Transportation as UF₆ from 2009 to 2029;
- Conversion to UO₂ pellets from 2009 to 2029;
- Transportation as UO₂ from 2009 to 2029;
- Cylinder treatment from 2009 to 2029;
- *Manufacture* of DUCRETE[™] casks from 2009 to 2029;
- *Transportation* as DUCRETE[™] casks from 2009 to 2029;
- Use as DUCRETETM casks beginning in 2009.

Storage as depleted UF₆ would continue to 2029. Beginning in 2009, cylinders would be prepared for transportation and transported to a conversion facility, where the depleted UF₆ would be converted to UO₂. The UO₂ would be transported to a facility that manufactures DUCRETETM casks; the casks would be manufactured; and the finished casks would be transported to a commercial or DOE nuclear facility to be filled with spent fuel. Use would increase between 2009 and 2029 as continued storage decreases, with all of the depleted uranium in use in DUCRETETM casks by 2029. Use as uranium dioxide in DUCRETETM is shown in Figure 2.5.

2.2.5 Use as Uranium Metal for Shielding Applications

A second long-term management strategy for using depleted UF_6 is the use as metal alternative. Under this alternative, depleted UF_6 would be converted to metal, which in turn would be used to manufacture metal casks for spent nuclear fuel or high-level waste from commercial or DOE facilities.

The use as metal alternative consists of the following steps:

- Continued storage as depleted UF₆ in the current yards from 1999 to 2029, with the amount of depleted UF₆ in storage decreasing by 5% per year beginning in 2009 until it is gone in 2029;
- Cylinder preparation for shipment from 2009 to 2029;

- Transportation as UF₆ from 2009 to 2029;
- *Conversion* to metal from 2009 to 2029;
- Transportation as metal from 2009 to 2029;
- Cylinder treatment from 2009 to 2029;
- Manufacture of metal casks from 2009 to 2029;
- Transportation as metal casks from 2009 to 2029;
- Use as metal casks beginning in 2009.

Storage as depleted UF₆ would continue to 2029. Beginning in 2009, cylinders would be prepared for transportation and transported to a conversion facility, where the depleted UF₆ would be converted to metal. The metal would be transported to a facility that manufactures metal casks; the casks would be manufactured; and the finished casks would be transported to a commercial or DOE nuclear facility to be filled with spent fuel. Use would increase between 2009 and 2029 as continued storage decreases, with all of the depleted uranium in use in metal casks by 2029. Use as uranium metal is shown in Figure 2.6.

2.2.6 Disposal as Oxide

The disposal as oxide alternative considers the disposal of depleted uranium after it has been converted to U_3O_8 or UO_2 . It is assumed that both the conversion process and the disposal would occur at different locations

The combination of options making up the disposal as oxide alternative fall into seven different steps, two of which are transportation:

- Continued storage as depleted UF₆ in the current yards from 1999 to 2029, with the amount of depleted UF₆ in storage decreasing by 5% per year beginning in 2009 until it is gone in 2029;
- Cylinder preparation for shipment from 2009 to 2029;
- Transportation as depleted UF₆ from 2009 to 2029;
- Conversion to U_3O_6 or UO_7 from 2009 to 2029;
- Transportation as U₃O₈ or UO₂ from 2009 to 2029;
- Cylinder treatment from 2009 to 2029;
- Disposal as oxide from 2009 to 2040, with the amount of oxide disposed increasing by 5% per year until all depleted uranium is disposed by 2029.

12

Disposal as oxide is shown in Figure 2.7

1

1

I

1

Figure 2.1 Options and Alternative Management Strategies

I

Transportation by Truck or Rail

Figure 2.3 Long-Term Storage as UF.

15

Continued Storage

Transportation of UF₆

· · · · · ·

1

1

1

- 1

Cylinder Preparation

Long-Term Storage as UF

·.

Ī

· 1

1 -

1 (

Figure 2.7 Disposal as Oxide

Continued Storage

•

1

Cylinder Preparation

Transportation of UF₆

•••

Conversion to Oxide

.

Transportation of Oxide

Disposal as Oxide

•

•

3. COST ESTIMATION METHODOLOGY

3.1 Approach

Costs were developed in a three-phase process. In Phase I, the costs of the primary contributors to capital and operating costs were developed. In Phase II, factors for other life-cycle costs were analyzed. These two phases were performed concurrently. In Phase III, the costs and revenues estimated in Phases I and II were integrated into a computer cost model to determine the life-cycle costs of all the management strategy alternatives being considered.

3.1.1 Cost Estimation for Primary Capital and Operations and Maintenance Costs

Each of the options described in Section 2.1 (i.e., the primary cost contributors) was analyzed as part of the Engineering Analysis Project. The costs were developed in accordance with a cost breakdown structure (CBS) paralleling the work breakdown structure (WBS) used in the Engineering Analysis Project (Lawrence Livermore National Laboratory 1996). Figure 3.1 summarizes the CBS modules and options (see Section 2.4 of the Engineering Analysis Report for a discussion of the methodology and the selection of options for in-depth analysis). The options which were analyzed in detail are the building blocks for the alternatives. Figure 3.2 shows the CBS at Level 6 for the U_3O_8 conversion option using the defluorination process with anhydrous HF production.

Costs were developed at least one level below that at which they are reported. These costs were reported in preliminary draft Cost Estimation Reports (CERs) that were prepared according to preset guidelines. Rather than revising the individual CERs to reflect any subsequent changes, the cost model described in Section 3.1.5 is being used to capture updates to the cost estimates.

The capital and operating costs were developed and reported year by year over the life of the project in accordance with the project schedule. A period of 20 years was assumed to disposition the entire depleted uranium stockpile (about 560,000 MT UF₆ in 46,422 cylinders). This corresponds to an annual throughput rate of 28,000 MT of UF₆, or about 19,000 MT of uranium.

A cash flow analysis was prepared to establish life-cycle costs. All costs were estimated in first quarter fiscal year 1996 dollars. In general, a scoping-level combination of vendor quotes, a factored approach based on historical cost data, and a detailed engineering (bottom-up) approach were used in estimating costs. A factored approach was used when historical data were available for cost elements, for example, for the cost per square foot of a particular type of building (e.g., Butler). The total cost was estimated using the size of the structure and the per-square-foot cost factor. A detailed engineering approach begins with a specific facility design, and, from this, estimates are made of the quantities of materials, labor, and other components required. Unit costs were applied to these estimated quantities to prepare the direct cost estimates. Additional costs were estimated using assumptions concerning the type of construction, safety and environmental regulations, production throughput, and other factors.

In Chapter 4, Cost Estimation of Options, costs are reported to the nearest \$10,000, resulting in some estimates with five significant figures. A maximum of two significant figures is considered appropriate; however, rounding was reserved for the final totals (Chapter 5, Cost Estimation of Strategies) and is not used on interim results.

I

I

Ĩ

ł

ł

רי א

Figure 3.2 Cost Breakdown Structure (CBS) to Level 6 for Conversion to U_3O_3 Using Defluorination with Anhydrous HF Production

3.1.2 Schedule

A generic schedule was assumed for conversion (including empty cylinder treatment) and manufacturing facilities in the program. Schedules have not been differentiated for DOE or privatized facilities at this time. Beginning from the time of the Record of Decision (ROD), technology verification and piloting were assumed to take five years, including preliminary assessments. Simultaneously, design activities and the safety approval/NEPA processes would be proceeding, both of which were assumed to be completed within seven years. Site preparation, facility construction, procurement of process equipment, and testing/installation were assumed to require four years, which would have plant start-up occurring about 11 years after the ROD. Facility operation and maintenance are assumed to begin in the twelfth year and be complete at the end of the thirty-first year of the project. Decontamination and decommissioning are assumed to take three years and start immediately after 20 years of operations and maintenance. The generic schedule is shown in Figure 3.3.

1

1

Figure 3.3 Schedule

	,		÷		. 🔛		2				•	Y	cars	from	Reco	rd of	Dec	ision										_
10	Task Name				1 2	3 4	1 5	6 7	' 8	9 1	0 11	12 1	3 14	15 1	6 17	18 19	20	21	2 23	24	25	26	27 2	1 29	30 3	1 32	33 34	
1	Record of Decision					 1 1					- 	្រា				·			`•	1		i .1	3.1	1.41		-	,, , , ,	Į. –
				40	T i		1.1					Ë L								T.	•		<u>.</u>	1 1 2 1 1	1			
2	Site/technology selection	.	· · ·			◆ド	1 1	1	1 1			- 1	1			· • •	. • .		:	;	1	i ji	1	ì				
3	Technology verification and	d piloting	. :		t i	44			: :	1	121			i ti ⊳tr	1 1	1 2	58 . 		i 1 1	:	1. 1.) ()) ())	· • •	1 1	
				4.3	<u></u>	<u> </u>	i j	, i	• •	. 1	• •	7.	Ì		•		•]	••	. 1	•	• 1	1			1	· • ·	1 1	
4	Preliminary		• <u> </u>			P 1				- :	111		1		1 1		1.3		1	ï	1			1.1		, 1 - 1		Í
5	Final ·	•) 	. !	171			le Tr				1 ¹ 1	2 U . U	1) () (1 1	1' 0. 6 0.		1 I 1 I	
	Design		<u>.</u>	┥ݧ		·			i i	í.		1	· ·	•			÷ -,				•		1	1		•	1 1	1
Ū	Design						1 4	-1-1	T :			3 								;	1 .1	, , , ,			1 - 1			Í
7	Conceptual	1. 2		. E					i n	•	1.11 1.11	. 1' 1		1 - 1 1 - 1	1 1	1	1.		* : *	:	1 1) .) . 		11	1. 1 . 1 1.	1 1	11	İ -
8	Preliminary		<u> </u>				, ,	- 1	- • •	ij	1-1-1			1	•		•		1	•	• 1		•	• . •				
				<u> </u>	1.1	130263		- 1	() 	1		∎.	. 1	1 1	1 1		1.0	∎ <u>;</u> , ∎ ∎ – ∎	4		1 1	1.1. 1.1	-1	1,1	2 2∎, 1 3.€*			
9	Final			:	1				? :	1	1			i ∎'.	- i ` I			1 [°] 1 1 - 1		:	1 1			1.1		nin −	1 F 1 1	
10	Safety approval and NEPA	process		7					١	1		\$.								•	1 0		.	1.14	1-14			
			<u> </u>	-13				1				21 E	، ، ر ا ۰۰)- t 1						1.	1 1	8 1 1 1	1 1				1 I 1 I	
11	Site selection .	<u>-</u>			287.2							៍									\mathbb{N}		31),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	្រា ។ ដំនា		5
12	Final EIS/Preliminary sa	fety analy	sis 👘			15-15-	5 . L		(i i		171		- I		1-51						1.4			• * •	្រុះ	1	15.1	
- <u></u>				-		- E- E - E- E	· · · · · · · · · · · · · · · · · · ·	1					• •		1 1				· •	1.	1 1) # #	1.	1 -1 1 -1	isan∎'s It‴∎a		1 T 1 T	
13.	Tillial selety anelysis			<u> </u>	1 1		. 1			•	1.1	•••	` I			,. \$	1	1 1 1 1		р.	1	Í∎ INN	<u> </u>			3 1 1	1 · 1 · ·	
14	Construction		<u>.</u>			1 1	- i 🖣	- 1				l P	÷٠,	i t	1 1		•			•	i i		i		i∎		1 1	l
15	Application submitted		• • •	1	1 1	1 1×			· 1 1	 	1 1 . 1 1) 1	1 1	1	•	1 1	1	¥.	1 1	; ₽ ; ₽	1	1 1	2 U 1	•		
				4	• •			1	11	T	1 1	, ! .					1		1	!	1 1) , 1 ⊾ - ∎ -	1 1	1 1 1 1	
16	Application approved	1	·	1.	1 I 1. I		1 1		• ;			, i		12 1 1 ~ 1					i	÷	1°1			i și	а Т	1		ŀ
17	Procurement/construction	n/installati	ontest		1 .					1265		۶ł					. 1 1	1 1 1 1	н с	1	11 1), '∦ r ∦		1 - 1 1 - 1	∎. }- ∎.	1 (7	1, 1, 1	
	Destas sus siste to size	econeta vetiv		. .	1.1	1.1	1			1	1 1			•			<u>.</u> 5.			!				1.1		•	•	
81	Design oversignt ouring	CUIBLICK	2011 2011-00 		1 1 1 1	1. 1. 1. 1.									 	1 4	÷		i		1 (1) - E			ł
19	Safety compliance review		•		1-1	1, 1			18.6		- S.S.		. 1 	inne ⊨inat		- - 1 :				.	1 1 1 1	t, ∦t. i s∦t		1 1 1 1		2 8 - 1	, , , , ,	
	Operations			-1		- 1 , 1,											÷						فنجب	ليعش			• •	
		<u>.</u>		1	1" 1 1 1		· 1 1	· ·		i , ∎ i ∎	101		;		1, 1 1, 1		, , , , , , , , , , , , , , , , , , ,		۱ ۱	н 11-	3, "1 1 _1		1	1 1 1 1	·	T 3	4 T 6 T	
21	Authorization to operate	:	1 L		1 1	1 • 1 *			<u>, 1</u>	1 - 1	14					5 F		 	- 1		r i			1.1	1.11	<u> </u>	1 T	
2	Operations		<u> </u>	-	1.1 1.1	1, 11, 1, 1						.		2. (X	2020	1997	1			3. 3.	1		515			.		
			<u></u>		1.1	- 1 - 1 - 1 - 1	1.1	¶.' ¶	2000 2000		1 1 1 1 1			1 1 1	1 1	***********	- 1	ovæø: I `I`		i.	1 1		1	1 .1			1 1 1 1	l
2	Decontamination and deco	ommissio	ning		11	1 1	1 1		• •	- 1	• •					1	1			•	1 1					122	M. A.	
L			_		_		_		_			_				-	_											

3.1.3 Basis for Financial Analysis

There are three alternatives for the ownership and operation of the conversion, manufacturing, long-term storage, and permanent disposal facilities and transportation equipment. These alternatives are government, regulated quasi-private (analogous to utility companies), and fully private. What alternative is chosen for ownership and operation has implications for basic project costs and schedules, permitting and licensing costs, facility operating requirements, capital structure of the enterprise, and sources of money and, hence, for cost of funds, profitability requirements, and taxes. These issues are beyond the scope of this *Cost Analysis Report*, whose focus is on how design requirements are translated into costs for a government enterprise.

OMB Circular A-94 Section 4 (OMB 1992) provides guidance for internal Executive branch financial analyses to be submitted to the Office of Management and Budget (OMB). In particular, it addresses federal budget preparation and analyses supporting government decision making regarding projects and programs where measurable costs and benefits extend three on more years into the future. Management of the Department of Energy's depleted UF₆ is an example of such a program. OMB Circular A-94 (Section 5) recommends use of benefit/cost analysis in the form of discounted costs and benefits. The Circular (Section 7) also requires that all costs and benefits be in initial-year dollars (that is, noninflating dollars) and that an inflation-free discount rate be used for this analysis.

In this Cost Analysis Report, the different depleted UF_6 management strategy alternatives are evaluated in terms of net present value of all outlays and returns, beginning with technology development and ending with facility decommissioning and decontamination.

3.1.3.1 Reference Case Return Rate

OMB Circular A-94 recommends a value of seven percent per annum (7% p.a.) for reference case analysis (Section 8b). This rate is described as approximating the marginal pretax return rate for investments in the private sector. The use of this return rate can also be supported through examination of return rates in industries similar in nature to those participating in depleted UF_6 management projects. Accordingly, the 7% p.a. value is used for reference case analyses in this *Cost Analysis Report*.

Inflation-free rates are not regularly reported in the financial and business press. A crude correction can be made by subtracting an inflation rate estimate from the reported cost of funds. The March 25, 1996, issue of *Business Week* lists the 1000 largest companies in the United States as measured by their value. Subsets of these data were examined to determine what expectation of return rate the managers and owners may have. The metric used was a pretax "return on invested capital," although other metrics are certainly possible. The results are presented below in terms of minimum, average, and maximum values:

Industry Group	Return on invested capital for 1995 (%)
n an	(Min) Avg. (Max)
Chemicals (5 companies)	(15.5) 22.2 (29.9)
Manufacturing (13 companies)	(1.2) 14.3 (25.8)
Paper (7 companies)	(3.4) 12.7 (21.3)
Electric utilities (9 companies)	(0) 9.0 (10.0)

Industry groups in the above table were selected as being representative of those which might be interested in participating in depleted UF_6 management strategy activities. Chemical companies have a long history of participation in the DOE missions. Studies comparing industry group characteristics have concluded that uranium enrichment has a structure similar to that of the paper industry. If the depleted UF_6 is managed as a quasiprivate enterprise, the electric utility industry would seem to be a reasonable model to use for the purpose of estimating profitability expectations.

Assuming long-term stability of the U.S. economy, the future inflation rate may be in the range of 2.5-3.0% p.a. In order to estimate the inflation-free return rate, a number in this range would need to be subtracted from the return on invested capital in the preceding table. If this is done, the average inflation-free return rates range from 10-19% p.a. for private industries which might be similar in nature to those participating in depleted UF₆ management projects and 6% p.a. for a regulated industry.

It is believed that these examples support the OMB Circular A-94 recommendation of a reference case value of 7% p.a. if one remembers that 7% does not cover all businesses' requirements for return on investment. In fact, the 7% p.a. return rate seems appropriate for a licensed monopoly (such as a utility) where government regulation, not free competition, protects the consumer from overcharging.

2.67.11

3.1.3.2 Return Rates for Sensitivity Studies

It is important to look at the financial analysis from a sensitivity study perspective to ensure that the ranking of strategies does not depend strongly on the choice of discount rate. In Chapter 6, the sensitivity of results is tested by reporting net present values of the alternative strategies at 4% and at 15% p.a.; as well as at the reference case rate of 7% p.a. The purpose of the next paragraphs is to establish the reasonableness and rationale for 4% and 15% p.a. sensitivity study return rates.

The table in Section 3.1.3.1 shows the impacts of investment risk certain industries have become accustomed to as they pursue their customary lines of endeavor. As indicated, there is a range of returns within an industry group which depends on the details of the various enterprises and the ability of the managers to forecast and prepare for the future. Additionally, not shown in the table are the temporal trends or business cycles to which several industry groups are subject and which affect year-to-year profitability. In this latter sense, profit margins for 1995 were about 25-40% better for the industry groups shown than were those of 1994.

The data in the preceding table support an upper sensitivity return rate in the neighborhood of 15% p.a. for conventional private industries which operate in a competitive market where return rates do not have to be restricted by government entities to protect consumers. The lower bound for sensitivity calculations can be derived from an assumption that depleted UF_6 management will be a government project since the material was government-generated and now is government-owned. The guidance of OMB Circular A-94 (Appendix C) is to use 3% p.a. for government projects extending for 30 years.

The business literature provides other measures of return rate expectations. Among these are the bank prime rate and U.S. Treasury bond rates. The March 13, 1997, *Wall Street Journal* quotes the following values for these metrics:

Prime rate (set 2/1/97)	8.25% p.a.
-------------------------	------------

U.S. Treasury bond rate

2 year	6.08% p.a.
5 year	6.42
10 year	6.58
30 year	6.87

The prime rate indicates a demand for an inflation-free commercial return rate of 5.25-5.75% p.a. when the investment has minimal risk. However, its use is inappropriate for the purpose of developing a lower bound return estimate where the project is postulated to be government owned and operated. For this case, U.S. Treasury bond rate data are appropriate because the government assumes all the risk. The data in the table above imply an inflation-free return rate of about 4% p.a. for a lower bound government project, where there is minimal business risk. For this analysis we have chosen the 4% p.a. figure as the lower sensitivity value.

3.1.4 Other Life-Cycle Costs

Other life-cycle costs and revenues were the subject of their own special studies. Examples include market surveys to determine the market price for the anhydrous HF and CaF₂ by-products produced from conversion (described in Section 4.2.2). An estimate of the cost of regulatory compliance was another study (described in Section 3.2.4). Cost estimates for both DOE and Nuclear Regulatory Commission (NRC) requirements under each option were estimated. The more costly DOE requirements were integrated into the computer model described in Section 3.1.5 and included in the cost estimates for each option.

3.1.5 Integration of Costs

A computer model was developed to integrate the primary capital and operating costs and other supporting costs and factors. Unit costs and facility size were used as a base, to which were added appropriate costs for installation, project management, taxes, contingency, and other factors; site preparation and utility costs; and decontamination and decommissioning costs. Cost factors and other cost assumptions described below are input variables in the cost model. As such, they may be revised as necessary.
3.2 ···· Cost Basis The preoperational, capital, operating, and other life-cycle costs are described in the remainder of this section. A median cost reflecting contingency based on a 50% probability of overrun and a 50% probability of underrun is reported. Stated another way, there is a 50% likelihood that the as-built costs would be either greater or less than those presented.

3.2.1 Technology Development The cost of technology development includes the costs for verification and piloting necessary before detailed design and engineering. Design work performed prior to Title I design and funded out of the DOE operating or new owner's budget falls in this category. Usually, this work is performed by an architect/engineering (A/E) firm or by the resident engineering staff at a management and operations (M&O) contractor site. Such a design is usually the first "bottom-up" design using take-offs from drawings and equipment specifications and includes a cost estimate. Technology development is shown on the generic schedule (Figure 3.3) as technology verification and piloting during years 1-5.

Initial projections of technology development costs, including pilot scale testing, are provided in the cost tabulations found in subsequent chapters. The cost estimates were primarily based on engineering judgment, following review and ranking of the subsystem uncertainties. The focus is on relative costs. The reader is referred to Chapter 3 of the Engineering Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride, Rev. 2. It was implicitly assumed that the development and testing would be conducted in existing facilities capable of handling large quantities of depleted uranium and having suitable infrastructure.

Definitive engineering development costs will be established in a subsequent phase of the Depleted UF, Management Program.

1701

3.2.2 Capital Costs C 955. 1

This section defines the terminology used in the discussion of facility capital costs, lists the components of a capital cost, and outlines the approaches used to estimate these costs.

3.2.2.1 Architect/Engineering

e presente esta entre la consecte presente entre de 1.1.1.1.1.1.1.1 Architect/engineering design costs were estimated at 25% of total field cost. This includes conceptual, Title I, Title II, and Title III design and engineering.

Title I is the preliminary design and is usually the first line-item funded design effort for a facility. It includes detailed drawings, bills-of-material, and craft labor requirements. A Title I cost estimate is usually also produced. An architect/engineering firm is often used for this level of design effort. The design at this point will be site-specific. Title II design produces the final preconstruction drawings, bills-of-material, and other specifications. The same A/E firm as for Title I design is often used. Title III is engineering that takes place primarily during construction and involves verification that the Title II final design is being implemented. Inspection activities and quality assurance (QA) are included in this category.

Architectural and engineering costs are incurred during the design period shown on the generic schedule. The A/E costs for process equipment, process facilities, and balance of plant are found at CBS Level 6. Conceptual design costs are 10% of total A/E cost spread evenly over the first two years. Eighty-five percent of the remaining 90% of A/E costs

(76.5% of the total A/E cost) was allocated to preliminary (years 3-4) and final (years 5-7) design. The final 15% of the remaining 90% (13.5% of the total A/E cost) was allocated to the design oversight of construction (years 8-11)

3.2.2.2 Construction

The initial site selected for costing purposes was a hypothetical green field site in Kenosha, WI. This is the standard description for an east/west central site and is typical for electric power generation facilities, having access to water and rail transportation. It was used for the engineering analysis and establishes the basic manual labor rates and state sales tax.

. . .

Davis-Bacon manual labor rates for Kenosha, WI, the Workers Compensation Insurance rates for Tennessee, and a standard 40-hour work week were used, plus an allowance of 1% for casual overtime. If costing involved an existing or a different site, Davis-Bacon manual rates for that specific area were used. For example, labor rates at Portsmouth, OH, Paducah, KY, and Oak Ridge, TN, were used to estimate the cost of continued storage of depleted uranium hexafluoride in yards.

For process equipment cost element (CBS Level 5), capital costs for materials and tax on materials are captured under fabrication at CBS Level 6, as shown on Figure 3.2. After engineering and process equipment are subtracted, the remaining capital costs for process equipment are captured under installation at CBS Level 6. For process facilities and balance of plant (CBS Level 5); these costs are captured under construction at CBS Level 6.

Direct construction costs include the cost of craft labor, construction materials (such as concrete forms, rebar, concrete, structural steel, piping, electrical raceway and cable) and installed equipment (such as process equipment and service equipment). Costs were estimated as follows:

Cost Element

Major equipment:

Process support equipment:

Process support systems:

Major facilities:

Support facilities:

Facility support systems:

State sales tax:

Basis, Assumption, Value Range

1 . . .

Vendor quotes; historical data; or a factor approach based on complexity, size, mass, and technical maturity

Same as major equipment or percentage of major equipment cost, depending on the type of support equipment

Actual cost or percent of major equipment cost, depending on the support system

Quantity take-offs or "bottom-up" estimates or factored approach

\$/square foot or \$/cubic foot, depending on the classification of the facility

\$/unit or percent of total facility cost, depending on type of facility support system

Sales tax on materials (including distributable field costs on materials) - 6%

Indirect costs are distributables (general conditions), overhead, and profit. These include support to direct construction for temporary construction facilities, construction equipment, construction support, field office expenses, and craft supervision. Construction facilities include on-site offices, warehouses, shops, change rooms, construction roads, construction parking lots, etc. Construction support includes such items as construction tools and consumables, safety equipment, material handling and warehousing, and general cleanup. These costs were estimated as follows:

Distributable field (general conditions) costs:

Distributable field costs for materials are 28% of the direct labor costs. Distributable field costs for labor are 75% of the direct labor costs.

Contractor's bond:

1% of total contractor's contract value

Contractor's overhead and profit:

5% for materials and 15% for labor, taken as a percentage of both total direct costs and distributable field costs.

Initial spares are major and crucial extra equipment items purchased out of the project capital budget. These are items needed to ensure process operation in the event of the failure of a major piece of installed equipment. The nature and cost of these items are technology-dependent.

Initial spare parts:

10% of process equipment, exclusive of piping, instrumentation, and installation

3.2.2.3 Balance of Plant

The balance of plant CBS includes the costs of site improvements, utility buildings, services, and support buildings. Site improvement costs include roads, parking areas, fencing, landscaping, and railroad spurs. Support buildings include an administration building, a utility building, a site warehouse, maintenance shops, an entry control building, and sanitary and industrial waste treatment facilities.

Once a site for a facility is recommended, it must be certified that the site geology, infrastructure, and meteorology are capable of safely accommodating the facility and any wastes or emissions generated therefrom. For geologic disposition options, this can be a lengthy and expensive step. Much of the work involves environmental and geologic sampling and documentation of findings. Although no specific sites were selected during Phase I of the Depleted UF, Management Program, generic site selection and site qualification costs were developed.

3.2.2.4 Cost Estimating Contingencies

Engineering contingencies which reflect the level of the preconceptual designs, the engineering data available, and the experience base were determined for the various options. It was assumed that a development program would verify process feasibility, demonstrate successful equipment operation and integration, and generate engineering data for scale-up to production size equipment. These cost estimating contingencies were applied to capital costs as follows:

- Process and manufacturing facilities: 30%
- Balance of plant: 20%

Process and manufacturing equipment: variable (~30-50%, depending on option)

The variable process and manufacturing cost estimating contingencies do not consider process feasibility or performance risk, which is described in Chapter 6 (the sensitivity analysis) of this report. In particular, factors that indicated a higher process and manufacturing contingency included (1) little or no operational experience with similar processes or equipment, (2) first-of-a-kind and custom-designed equipment, (3) uncertainty regarding the selection of materials of construction, and (4) conceptual nature of equipment or lack of good definition. Factors that indicated a lower process and manufacturing contingency included (1) industrial experience with similar processes and equipment, (2) standard unit operations with well-recognized design methods, and (3) standard or off-the-shelf equipment.

3.2.3 Capital Costs - Project Management

For government-owned facilities, DOE usually hires a construction manager (normally an A/E firm) to handle the subcontracting of craft labor and to interact with the design A/Es and equipment vendors.

Construction management:

10% of contractor's field cost after taxes

Project management:

6% of total capital costs, including both direct and indirect costs

3.2.4 Regulatory Compliance

Scoping-level estimates were developed as a separate study for the cost of permitting, licensing, and environmental documentation under both public and private ownership and operation. The following were considered:

- Atomic Energy Act/Nuclear Regulatory Commission (NRC) regulations
- Department of Energy Orders
- Clean Air Act
- National Environmental Policy Act
- Resource Conservation and Recovery Act
- Clean Water Act
- Packaging and Transportation of Radioactive Material/NRC regulations
- Hazardous Materials Transportation Act
- Safe Drinking Water Act
- Emergency Planning and Community Right-to-Know Act

Under the Atomic Energy Act, DOE Orders would apply to DOE-owned facilities while NRC regulations would apply to privately owned commercial facilities. Both costs were estimated, but only costs for regulation under DOE Orders is included in the *Cost Analysis Report* since this is the more costly set of requirements.

Regulatory compliance includes preparation of the site-specific EIS (which follows the more generic PEIS) and state, local, and federal permits related to air and water quality. Construction permits are also included in this category, which covers the legal and technical work needed to obtain the NRC license required to begin construction. Some technical work, such as safety documentation, would be performed by vendors, new owners, or national laboratories.

3.2.5 Operations and Maintenance - Materials

Operations and maintenance costs are captured at Level 5 of the CBS.

Chemical or feed costs: Cost of consumable materials for process operations such as chemicals, cements, and additives are based on vendor quotes, Chemical Market Reporter magazine, or similar sources.

data reports specifically prescribe otherwise

Facilities and equipment maintenance 4% of the total direct facility capital cost and spares: and spares:

3.2.6 Operations and Maintenance - Labor

Direct Operations Staff

This category includes salaries plus fringe benefits for those persons directly associated with operations, such as chemical operators, foremen, and technicians, plus their line supervision. Clerical and health physics support in the process area are also included here.

Number of shifts: One, two, or three, depending on engineering design Davis-Bacon wage rates for Kenosha, WI, for Breakdown of staffing and nonexempt employees and current national average cost/person-hour: wage rates for exempt employees Based on 20 years of operation, 28,000 MT of Production rate: depleted UF₆ per year 80% of operating days/year, unless engineering Plant availability:

Direct Maintenance Staff

This category includes salaries plus fringe benefits for those persons directly associated with maintenance.

Indirect Staff This category includes salaries plus fringe benefits for other personnel needed to run the facility in a safe and environmentally compliant manner meeting all federal, state, and local regulations. Among the indirect staff would be medical personnel; engineers; research and development (R&D) staff (for post-startup, process improvement R&D); human resources personnel; fire fighters; stores clerks; travel clerks; in-house environment, safety, and health (ES&H) oversight personnel; and the secretarial pool. Some of these functions may be shared with other facilities on a DOE reservation and their costs allocated on a fair basis.

Prior to commencing normal operations, the operator of a facility (presumably an M&O contractor/owner) must become familiar with the facility processes. Technology and

information transfer from vendors to the M&O contractor/owner is required. DOE Orders and NRC requirements also necessitate extensive training of M&O staff, not only on technical operations, but also on the ES&H aspects of facility operations. Start-up costs were estimated to be 65% of the first year's operating labor, incurred the year before operations begin.

Current regulatory regimes require complete documentation of operational procedures prior to facility start-up. As part of this activity, manuals for various process equipment items must be prepared, which may involve both vendors and M&O contractors/owners. The facility project office must also prove to the NRC or DOE that the facility is ready to commence operations in a safe and environmentally benign manner. Considerable time on the part of the contractor and regulatory staff may be required to prepare for and carry out these reviews.

3.2.7 Operations and Maintenance - Utilities

Utilities include annual costs for electric power, natural gas, fuel oil, water, purchased steam, telephones, and other nonelectric utilities. Utility costs depend on the location of the facility.

Utilities and services costs:

10% of total operating labor or based on current rates and power requirements, whichever is greater

3.2.8 Operations and Maintenance - Waste Management and Disposal

Depending on the characterization of wastes by engineering studies, the cost of disposal will be determined by the approaches defined below. Packaging and transportation costs will be added where applicable. Disposal costs were based on Murray (1994). The cost per unit volume for waste disposal is an input variable in the cost model and may therefore be modified.

Mixed Waste

Disposal costs for mixed (radioactive/hazardous) waste were reported in this category. A cost of \$100/cubic foot was used.

Hazardous Waste

Disposal costs for hazardous waste were reported in this category. A cost of \$20/cubic foot was used.

Low-Level Radioactive Waste

Waste of this type is sent to DOE sites or special burial sites covered under regional LLW compacts. The cost is typically levied on a \$/cubic foot basis. A cost of \$100/cubic foot was used.

Nonhazardous Waste

Nonhazardous sanitary liquid wastes generated in facilities are transferred to an on-site sanitary waste system for treatment. Nonhazardous solid waste disposal costs (e.g., CaF_2) are assumed to be \$2/cubic foot.

·· 17

3.2.9 Revenues

Some of the conversion processes result in marketable by-products, such as the anhydrous hydrofluoric acid (AHF) produced in the defluorination process and the calcium fluoride from the neutralization process. The use module in the engineering analysis anticipates direct use of the depleted uranium shielding forms. These products or by-products will generate revenues which partially off-set the conversion and manufacturing costs. An initial market survey was conducted to determine the size of markets for the major by-products (AHF and calcium fluoride) of the various conversion processes. Issues addressed included annual sales of product, price, growth or reduction forecast for the markets, and the capacity of the market to absorb additional supply without undue effects on price. The effect of shielding cask values is presented in Section 6.1.3, while the revenue from sale of AHF and CaF, is presented in Section 4.2.2.

3.2.10 Decontamination and Decommissioning (D&D)

· * :

It was assumed that a DOE M&O contractor and perhaps an A/E would shut down and decontaminate the facility and remove contaminated and junk equipment. It was assumed that facility demolition would not be required. The D&D cost includes disposal of contaminated or junked equipment at licensed disposal sites.

Decontamination and	10% of the total costs for process equipment,
decommissioning:	process facilities, and balance of plant (i.e., the
-	plant capital cost)

This estimate is based on historic and projected D&D costs for facilities with similar complexity, size, and hazardous waste characteristics.

3.2.11 Transportation

All costs for transportation of depleted uranium were tabulated. An engineering cost analysis of transportation alternatives was conducted and a submodel developed to assess the cost per unit quantity per unit distance traveled and the loading/unloading operation performed.

3.2.12 Exclusions

The following items have been excluded from the estimates during Phase I, but may be included during Phase II of the Program, when there is a basis for defining these costs:

- Fees earned by M&O contractors
- Royalties to third parties
- Payments in lieu of property taxes
- DOE oversight costs
- Cost of land

Land requirements for each option were estimated in the *Engineering Analysis Report*. The cost of land was excluded, however, because land prices are highly dependent upon location, which will be determined in a later phase of the Program. In addition, it would neither discriminate between alternatives nor significantly affect the total cost of an alternative, as illustrated in the following paragraph.

The estimated land area required for the conversion options ranges from about 13 to 20 acres. Assuming that land in an industrial area costs \$5,000 per acre, this would add up to \$100,000 (a few hundredths of a percent) to the cost of implementing a conversion option. Estimated land requirements are greater for the use, storage, and disposal options than for the conversion options. Shielding fabrication facilities occupying 90 acres would add about \$450,000 (again, a few hundredths of a percent) to the total cost. Land requirements for storage facilities are estimated to range from 74 acres for mined cavity storage of UO₂ to 212 acres for vault storage of U₃O₈ with corresponding land costs of \$370,000 to \$1,060,000, based on a unit cost of \$5,000 per acre. Inclusion of the cost of land would add less than one-half of one percent to the total cost of each option and would be insignificant when comparing storage options (e.g., building, vault, or mined cavity). A similar comparison may be made for disposal options, where the greatest land requirement is for disposal of grouted U_3O_8 in a mined cavity (1141 acres). Including the cost of land for this option would increase the cost by less than one-half of one percent.

. COST ESTIMATION OF OPTIONS

• • • •

All costs reported in this document are median costs (50% probability of overrun and 50% probability of underrun) and are given in millions of first-quarter 1996 dollars discounted to the beginning of the project. The discount rate used for the reference case was 7% p.a.

4.1 Transportation

Transportation costs include the following elements:

 Preparation of depleted UF₆ cylinders which meet DOT requirements (i.e., conforming cylinders) for shipment from the three sites to a conversion or storage facility

- Preparation of depleted UF, cylinders which do not meet DOT requirements (i.e., nonconforming cylinders) for shipment from the three sites to a conversion or storage facility
- Treatment of emptied cylinders
- Loading, shipping, and unloading of depleted UF_6 , emptied cylinders, U_3O_8 , UO_2 , uranium metal, uranium metal shields, and oxide (DUCRETETM) shields

Cost for shipping other materials such as input reagents for chemical conversion processes (e.g., ammonia, sodium hydroxide, hydrochloric acid) and output by-products (e.g., AHF) are included in the cost of purchasing the reagents or in the revenues generated from selling the by-products.

4.1.1 Preparation for Shipment

Preparation for shipment includes the cost of preparing conforming cylinders plus the cost of preparing nonconforming cylinders. The preparation cost for the latter is the cost of placing nonconforming cylinders in cylinder overcontainers <u>or</u> the cost of transferring depleted UF_6 from cylinders that no longer meet DOT requirements to new or conforming cylinders.

The number of cylinders that will not meet transportation requirements over the shipping time frame is not precisely known. The costs for preparing the cylinders for shipment are based upon the reference case of approximately 29,000 nonconforming cylinders and 17,000 conforming cylinders. Other cases are presented in Section 6.2.1.

The cost of preparing conforming cylinders for shipment is presented in Table 4.1. Tables 4.2 and 4.3 present the costs of the two options for preparing nonconforming cylinders for shipment, the cylinder overcontainer option and the transfer facility option. The overcontainer option has a much lower estimated cost because process facilities are not necessary and the operations and maintenance activities are simpler and therefore less costly. However, if development and fielding of an overcontainer (which currently does not exist) is adversely impacted by changes in transportation regulations or other factors, the transfer facility provides another option for preparing nonconforming cylinders for shipment.

Three facilities would be required for the transfer option—one at Paducah for transferring 19,200 cylinders, one at Portsmouth for transferring 5,200 cylinders, and one at K-25 for transferring 4,683 cylinders. Table 4.3 shows the combined cost for the three transfer facilities. The costs for the transfer facility option were evaluated by combining the costs

of engineering development, process equipment, process facilities, balance of plant, regulatory compliance, operations and maintenance, and decontamination and decommissioning.² Process facilities for the transfer facility include the engineering and construction of a two-story reinforced concrete process building to house autoclaves and other process equipment. Most of the transfer facility process building is special construction with area perimeter walls and ceilings assumed to be 1-ft thick concrete, interior walls assumed to be 8-in. thick concrete, and base mat assumed to be 2-ft thick concrete.

4.1.2 Treatment of Emptied Cylinders

Most of the management strategy alternatives involve removing the depleted UF₆ from the cylinders and converting it to another form, which would generate 46,422 emptied cylinders for disposition. Transfer of the depleted UF₆ into new or conforming cylinders for future storage is another option requiring treatment of emptied cylinders. A preconceptual design for a stand-alone facility for removal of the depleted UF₆ heel from the emptied cylinders is included in the *Engineering Analysis Report*. After the heel is washed from the cylinders, the wash solution is neutralized for disposal and the cylinders are crushed for shipment to DOE scrap metal facilities.

The qualitative and quantitative impacts of collocating the treatment facility with either a metal or oxide conversion facility were analyzed. The collocation would lead to a significant reduction in the required infrastructure, including labor, storage yards for temporary storage of incoming/outgoing emptied cylinders, support buildings, roadwork, grounds, and piping. In addition, the cylinder treatment function would become a processing module within the conversion facility. Table 4.4 presents the incremental costs for integrating the cylinder treatment function into a conversion facility. The estimates for a treatment facility collocated with an oxide conversion facility are about one-quarter the stand-alone costs, while the estimate for a treatment facility collocated with a metal conversion facility is the basis for emptied cylinder disposition costs for the management strategy alternatives.

4.1.3 Loading, Shipping, and Unloading

Loading, shipping, and unloading full depleted UF₆ cylinders, emptied depleted UF₆ cylinders, drums of U_2O_8 , drums of UO_2 , boxes of uranium metal, uranium metal shields, and oxide (DUCRETETM) shields are included in this cost element. Table 4.5 and Figure 4.1 compare the shipping costs, including loading and unloading, by truck and rail for all the management strategies. Other than shipments originating from the current storage sites, origins and destinations are unknown at this time. For the reference case, a distance of 1000 km was assumed for all shipments. Other cases are considered in Section 6.1.2.

Estimated costs per kilometer traveled and for loading and unloading are lower for truck than for rail (\$1.79/km, \$100/load, and \$100/unload per truckload versus \$1.86/km, \$1000/load, and \$1000/unload per railcar). However, at the assumed distance of 1000 km, the total cost of transport is lower by rail. In general, more material can be placed on a railcar than a truck (approximately a factor of 3 by weight), resulting in a lower cost per kilometer per kilogram of material moved. For distances greater than around 500 km, this outweighs the higher loading/unloading costs and rail is less expensive, but for shorter

² Due to the discount effect, costs occurring late in the campaign, such as decontamination and decommissioning, appear to be quite small compared with those such as technology development, which occur early in the campaign.

distances, truck transport would have the lower costs. It is noted that rail costs are influenced by location more than trip distance and therefore have a much higher associated uncertainty than truck transportation costs since locations have not been determined.

4.1.4 Total Transportation Costs

The total transportation costs are presented in Tables 4.6 and 4.7 and are computed as the sum of the costs described in Sections 4.1.1 through 4.1.3. Table 4.6 and Figure 4.2 present the estimate for the low-cost transportation options (i.e., overcontainers for nonconforming cylinders and rail for transport mode). Table 4.7 and Figure 4.3 present the estimate for the high-cost transportation options (i.e., a transfer facility for nonconforming cylinders and truck for transport mode).

1 ...

Ģ.

•, • 5

·~ ;

÷ .

,

38

. . . 1

and subject

· · · · ·

in the Literi

· · . .

1.1.1

· . · . .

> ty‡era∦e C

> > . 1

. . . .

- 1 **-** 1

1.1

17

· ·

.

. . .

1.__

.

Table 4.1	Cost Breakdown (in Millions of Dollars) for Preparation of (17,339)	
	Conforming Cylinders for Shipment	

Inspection and retrieval equipment	· · · · · · · · · · · · · · · · · · ·
Engineering	0.17
Fabrication	1.39
Certification	0.07
Subtotal	1.63
Handling fixtures	{ ·
Engineering	0.06
Fabrication	0.47
Certification	0.02
Subtotal	0.55
Shipping fixtures	
Engineering	0.02
Fabrication	0.16
Certification	0.01
Subtotal	0.19
Facilities	
Engineering	0.00
Construction	0.00
Project management	0.00
Subtotal	0.00
Regulatory compliance	1.13
Operations and maintenance	
Materials	1.64
Utilities	0.01
Labor	44.27
Waste Management & Disposal	0.19
Subtotal	46.11
Decontamination & decommissioning	0.00
TOTAL	49.61

Engineering Technology	0.82	
Inspection and retrieval equipment		
Engineering	0.23	
Fabrication	1.93	
Certification	0.09	, v ²
Subtotal	2.25	·····
Overcontainers		
Engineering	0.54	$= -\frac{1}{2} \int dx dx dx = -\frac{1}{2} \int dx dx dx dx dx = -\frac{1}{2} \int dx dx dx dx dx = -\frac{1}{2} \int dx dx dx dx dx dx dx dx$
Fabrication	2.39	
Certification	0.15	$(1, \dots, N_{n}) \in \mathbb{C}^{n}$
Subtotal	3.08	
Handling fixtures	21 C -	Serge a contraction of the
Engineering	0.06	
Fabrication	0.47	1. ¹⁰ .
Certification	0.02	14 Sec. 11
Subtotal	0.55	
Shipping fixtures	la to s	
Engineering	0.03	· · · · · · · · · · · · · · · · · · ·
Fabrication	0.24	
Certification	0.01	
Subtotal	0.28	the second s
Facilities		
Engineering	0.00	ب ب
Construction	·0.00	and the second
Project management	0.00	
Subtotal	0.00	
Regulatory compliance	1.13	· · · · · · · · · · · · · · · · · · ·
Operations and maintenance	• • • •	· · · ·
Materials	6.60	
Utilities	0.03	
Labor	96.03	
Waste Management & Disposal	0.33	•
Subtotal	102.99	· .
Decontamination & decommissioning	0.00	
TOTAL	111.10	

Table 4.2Cost Breakdown (in Millions of Dollars) for Preparation of (29,083)Nonconforming Cylinders for Shipment - Overcontainer Option

. 40

Table 4.3 Cost Breakdown (in Millions of Dollars) for Preparation of (29,083)Nonconforming Cylinders for Shipment - Transfer Facility Option

-	
Engineering Development	2.46
Process Equipment	•
Engineering	3.70
Fabrications	8.01
Installation	5.24
Certification & Test	0.35
Subtotal	17.30
Process Facilities	
Engineering	16.86
Construction	49.04
Proj. Management	10.97
Subtotal	76.87
Balance of Plant	
Engineering	12.46
Construction	36.26
Proj. Management	8.11
Subtotal	56.83
Regulatory Compliance	56.20
Operations and Maintenance	•
Material	82.78
Utilities	28.17
Labor	278.51
Waste Management & Disposal	4.70
Subtotal	394.16
Decont & Decom.	2.71
TOTAL	604.07

Table 4.4 Cost Breakdown (in Millions of Dollars) for Emptied CylinderDisposition

:	Integration into Oxide Conversion Facility	Integration into Metal Conversion Facility
Technology Development	1.64	1.64
Facility Capital Cost		•
Engineering	0.94	1.52
Construction	3.43	5.54
Project management	0.63	1.01
Subtotal	5.00	8.07
O & M		
Labor	0.89	1.24
Utilities	0.09	0.12
Materials	0.04	0.04
Waste Management & Disposal	0.49	0.49
Subtotal	1.51	1.89
D & D	· 0.11	0.11
TOTAL	8.26	11.71

; •

Table 4.5 Loading, Shipping, and Unloading Cost Breakdown (in Millions of Dollars) by Truck and Rail

	No A	Action	DU Long Terr	F. n Storage	U ₃ U ₈ w Production/I Storage	/AHF Neutralization //Disposal	UU2 Go	elation /Disposal	UU ₂ v Production/N Storage	v/AHF leutralization /Disposal	UO ₂ Go 	lation e	Batch Meta	I Reduction	Continuous N	fetal Reduction
	truck	rail	truck	rail	truck	rail	truck	rail	truck	rail	truck	rail	truck	rail	truck	. rail
From Current Site to Conversion Facility	0.00	0.00	•	•	23.25	11.28	23.25	11.28	23.25	11.28	23.25	11.28	23.25	11.28	23.25	11.28
From Conversion Site to Storage/Disposal Site	0.00	0.00	•	•	12.76	8.70	13.14	8.55	-	•	•	•	-	•	• ·	•
From Conversion Site to DUCRETE TM Container	-	•		•	•	•	•	-	13.41	8.24	13.14	8.55	-	• .	-	•
From DUCRETE TM Container Manufacturer to SNF Container User	•		-	•				-	rail 9.33	9.33	rail 9.33	9.33	-	•	-	•
From Conversion Site to Metal Annulus Manufacturer	•	.•	•	•			•	•	-		•	•	10.43 rail	7.15	10.76 rail	7.30
From Metal Annulus Manufacturer to SNF Container User	-	•		-	•	•	•	-	-	•	•	•	8.86	8.86	8.86	8.86
From Conversion Facility to Cylinder Treatment Facility	0.00	0.00		•	0.00	0.00	0.00	0.00	0.00	0.00	0.00 · .	0.00		0.00		0.00
From Cylinder Treatment Facility to DOE Yards (crushed cylinders)	0.00	0.00	-	-	3.87	2.51	3.87	2.51	3.87	2.51	3.87	2.51	3.87	2.51	3.87	2.51
From Current Site to Storage	•	•	23.25	11.28	-	•	• 	•	•	•	•	-	•	•		•
TOTAL	0.00	0.00	23.25	11.28	39.88	22.49	40.26	22.34	49.86	31.36	49.59	31.67	46.41	29.80	46.74	29.95

43

:

• •

M							М						•	
			w/AHF Produ			AHF			Redu	< · · ·	AHF			
Preparation of Nonconforming Cylinders for Shipment	0.00	111.10	111.10	. 111.10	111.10	111.10	111.10	111.10	111.10	111.10	111.10	111.10	111.10	
Emptied Cylinder Disposition	0.00	0.00	8.26	8.26	8.26	8.26	8.26	8.26	11.72	11.72	8.26	8.26	8.26	
Total Loading, Shipping, Unloading for rail	0.00	11.28	22.49	22.49	22.34	31.36	31.36	31.67	29.80	29.95	22.49	22.49	22.34	
TOTAL	0.00	171.99	191.46	191.46	191.31	200.33	200.33	200.64	202.23	202.38	191.46	191.46	191.31	

.

 $E_{\rm eff} = 0$, $E_{\rm eff}$

Table 4.7 Cost Breakdown (in Millions of Dollars) for Transportation Using the Transfer Facility Option for the Preparation of (29,083)Nonconforming Cylinders and the Truck Option for the Mode of Transportation

	No Action	DUF ₆ Long Term Storage	U ₃ O ₈ Defluorination w/AHF Production Storage	U ₃ U ₈ Defluorination with HF Neutralization <u>Storage</u>	UO2 Gelation Storage	UU ₂ Dry Process with AHF Production Use	UO ₂ Dry Process with HF Neutralization Use	UU2 Gelation Use	Metal Batch Metallothermic Reduction Use	Metal Continuous Metallothermic Reduction <u>Use</u>	U ₁ O ₄ Defluorination with AHF Production Disposal	U ₃ O ₈ Defluorination with HF Neutralization Disposal	UO ₁ Gelation Disposal
Preparation of Conforming Cylinders for Shipment	0.00	49.61	49.61	49.61	49.61	49.61	49.61	49.61	49.61	49.61	49.61	49.61	. 49.61
Preparation of Nonconforming Cylinders for Shipment	0.00	604.07	604.07	604.07	604.07	604.07	604.07	604.07	604.07	604.07	604.07	604.07	604.07
Emptied Cylinder Disposition	0.00	0.00	8.26	8.26	8.26	8.26	8.26	8.26	11.72	11.72	8.26	8.26	8.26
Total Loading, Shipping, Unloading for truck	0.00	23.25	39.88	. 39.88	40.26	49.86	49.86	49.59	46.41	46.74	39.88	39.88	40.26
TOTAL	0.00	676.90	701.79	701.79	702.17	711.77	711.77	711.50	711.78	712.11	701.79	701.79	702.17

4.2 Conversion

Conversion of the depleted UF_6 to another chemical form is required for most management strategy alternatives. The following conversion options are considered:

- Conversion to triuranium octaoxide (U_3O_8)
- Conversion to uranium dioxide (UO₂)
- Conversion to metallic uranium

Two different processes for the conversion to U_3O_8 , three different processes for the conversion to UO_3 , and two different processes for the conversion to metal were analyzed.

4.2.1 Conversion Costs

The costs of the conversion options are summarized in Table 4.8, which reflects costs at CBS Level 6. These costs were evaluated by combining the costs for technology development, process equipment, process facilities, balance of plant, regulatory compliance, operation and maintenance, and decontamination and decommissioning. The process equipment estimate provides costs for the major process equipment, as well as costs for process piping and instrumentation. Costs are based on vendor quotes (where available), historical costs of similar equipment in similar service, current estimating/pricing manuals, or estimated costs of equipment of the same complexity and materials of construction.

Process facilities include costs for buildings and supporting equipment. All major buildings are structural steel frame of standard construction, with the following exceptions:

- The process building is a two-story reinforced concrete structure. Most of this building is "special construction," with "standard construction" support areas, as shown on the layout figures in the *Engineering Analysis Report*. The "special construction" area perimeter walls and ceilings are assumed to be 1-ft thick concrete; interior walls are assumed to be 8-in. thick concrete; and the base mat is assumed to be 2-ft thick concrete. The "standard construction" area walls are assumed to be 8-in. thick concrete; ceilings and elevated floor areas are assumed to be 6-in. thick concrete on metal deck; and the floor slab on grade is assumed to be 8-in. thick concrete.
- The AHF storage building for options producing AHF by-product is a reinforced concrete structure, designed and constructed as "special construction." The walls are assumed to be 8-in. thick concrete; ceilings are assumed to be 6 inches of concrete on metal deck; and the floor slab is assumed to be 2-ft thick concrete.

The operation and maintenance costs include labor, materials, utilities, and waste management and disposal costs necessary to operate the facility at design capacity for 20 years. Conversion to metal produces the salable by-product AHF and waste MgF₂, which is assumed to be disposed as sanitary waste at a cost of \$2/cubic foot. Section 6.3.2 discusses the cost impacts if disposal as LLW were required. Conversion to oxide produces either AHF or, when the HF is neutralized, CaF₂. It is noted that neutralization of the HF produced by conversion processes results in higher estimated costs than production and sale of AHF. Section 4.2.2 describes the assumptions regarding the sale of AHF and CaF₂ by-products. Section 6.3.1 describes vulnerabilities associated with sale of these by-products and estimates the cost impacts if disposal were necessary.

Figure 4.4 compares the costs of the various conversion options. With the exception of the gelation process for producing UO₂, conversion costs are lowest for conversion to U_3O_8 and

highest for conversion to uranium metal. Conversion to UO, using the dry process is higher than conversion to U_3O_8 , while gelation process costs are slightly more than double the dry process costs for conversion to UO₂. Costs for all conversion options are dominated by the operations and maintenance costs. Operations and maintenance costs for the gelation process, particularly materials (which is a factor of almost 4 higher), are more than double the operations and maintenance costs for other options for the conversion to UO₂.

The gelation process produces UO, microspheres with a bulk density about 50% higher than the dry conversion processes, which produce pellets. This leads to a reduction in storage and disposal volumetric requirements, and therefore the gelation process minimizes costs for the storage and disposal options involving the oxide. These considerations are further discussed in Section 6.1.4. There are also a number of technical uncertainties with respect to the gelation process, including a practical recovery and recycle process for major process reagents. In the absence of such a process, the effluent stream containing these reagents was assumed to be discarded as a sanitary waste. Recycling these reagents would significantly improve the economics and viability of the gelation process.

The batch metallothermic reduction option for producing metal is estimated to cost significantly more than the continuous metallothermic reduction option. Batch reduction is a mature process with decades of industrial use. The continuous reduction process is still in development. These differences are further discussed in the *Engineering Analysis Report*, Section 3.2.3.

4.2.2 Revenue from Sale of By-product AHF and CaF₂

All of the conversion options produce potentially salable by-products—either AHF or CaF_2 . Three of the oxide conversion options and both of the metal conversions options produce AHF. Defluorination with AHF production is superior to defluorination with HF neutralization in terms of by-product value and waste avoidance. In the unlikely event that the recovered AHF (because of the small [< 1 ppm] uranium concentration) could not be sold for unrestricted use or the even more unlikely event that it could not be recycled in the nuclear fuel industry, the concentrated HF would be neutralized with lime (CaO) to form CaF₂. Neutralization of HF may also be undertaken to avoid storage and transportation of large quantities of hazardous AHF. Neutralization would further reduce the already small concentration of uranium in the by-product. In the absence of regulatory constraints regarding the uranium content, the CaF₂ could be sold as a feedstock (i.e., a high-quality fluorspar substitute) for the commercial production of AHF. The by-product value of CaF₂ is significantly less than AHF and major quantities of lime would be required for neutralization, adding to the cost of input reagents.

The largest use of AHF is in the manufacture of fluorocarbons. The fluorocarbon market accounts for about 65-70% of AHF demand and is thus the primary driving force in hydrogen fluoride demand. Forecasting fluorocarbon demand is still a very uncertain exercise. Although the replacement fluorocarbons use more hydrogen fluoride per unit than the chlorinated fluorocarbons, representatives of the major North American fluorocarbon producers are divided in forecasting demand. It should be noted that the annual production of by-product AHF from an oxide conversion facility (28,000 MT/yr. UF₆) is about 9,200 MT. This is approximately 5% or less of the estimated U.S. annual capacity for HF production.

In addition to the uncertain market, there is concern about possible public reaction to uranium contaminants. If the fluorine chemical is to be sold in North America, it may be subjected to higher purity standards due to the source material. Allied Signal has proposed to overcome this potential problem by using the AHF in nuclear reactor fuel production. The aqueous HF produced by Cogema in France as part of their defluorination process is viewed by potential European purchasers outside the nuclear fuel cycle as very pure and highly desirable. It is marketed to outside buyers in the glass and steel industries. The uranium content of this high purity HF is

below the 0.1 ppm uranium instrument detection levels, well within the 5 ppm specification for aqueous HF sales in Europe.

The major potential buyers for AHF negotiate prices. The price published in the *Chemical Market Reporter* (formerly *Chemical Marketing Reporter*) (CMR) of \$1.5125/kg was used in this analysis, although the actual price would be negotiated at the time of sale. Prices in the CMR were checked between June 30, 1995, and March 29, 1996, and there was no change. It should be noted that chemical prices quoted in the CMR come with a disclaimer to the effect that they are based on price information obtained from suppliers and do not necessarily represent levels at which transactions actually may have occurred.

Calcium fluoride is a potential major feed stock for HF production as a substitute for mined fluorspar. If a market could be found, possible fluorspar prices are \$97.66/ton (\$.10736/kg) (U.S. Department of Interior). In the previous three years, fluorspar prices had declined slightly and steadily to the current level. This is partly due to an increase in Chinese fluorspar and increased U.S. government licensing for fluorspar mining.

Table 4.9 shows the annual revenue from sale of AHF and CaF_2 by-products produced from conversion of depleted UF₆ to other uranium forms. The prices quoted above were used to calculate these revenues. The discounted values (7% p.a.) of the revenue stream over the 20-year conversion campaign are shown in Table 4.8.

1

K

J

Table 4.8	Cost	Breakdo	wn (in	Millions	of	Dollars)	for	Conversion	Options
	: .	. •	·						

1

1

1

			•				
		U ₃ O ₁ -		UO2 ··· ·	· ·	M	etal
	With AHF Production	With HF Neutralization	With AHF Production	With HF Neutralization	Gelation	Batch Metallothermic Reduction	Continuous Metallothermic Reduction
Tech. Development	9.84	5.74	13.94	9.84	24,60	4.92	20.50
Process Equipment				•			
Engineering	4.74	4.43	· 7.74	7.13	21.98	· 7.80	6.52
Fabrication	11.91	10.93	18.96	17.41	51.81	17.98	15.22
Installation	5.19	5.04	8.91	8.27	27.18	10.03	8.20
Certification & Test	0.52	0.48	0.83	0.76	2.26	0.79	0.66
Subtotal	22.36	20.88	36.44	33.57	103.23	36.60	30.60
Process Facilities				• *	•		
Engineering	10.16	9.98	14.91	13.58	23.89	18.27	16.09
Construction	29.56	29.05	43.39	39.50	69.51	53.14	46.82
Proi. Management	6.61	6.50	9.71	8.84	Febrer 15.55	11.89	10.47
Subtotal	46.33	45.53	68.01	61.92	108.95	83.30	73.38
Balance of Plant							n mangan mangan m
(***) Engineering	6.40	6.63	7.76	7.66	13.08	8.33	8.22
Construction	18.63	19.30	22.57	22.29	38.04	. 24.22	23.91
Proj. Management	4.17	4.32	4.12	4.99	8.51	5.42	5,35
Subtotal	29.20	30.25	34.45	34.94	59.63	37.97	37.48
Regulatory Compliance	22.70	· · 22.70	22.70	22.70	. 22.70	22.70	22.70
Meterial	52.71	55 96	66.12	66.45	261 94	180 74	171 76
	12.83	13.10	14.55	14.82	46.05	23.84	13 30
Labor	134 68	137.44	152.72	155.48	242.11	250 19	130 57
Waste Management & Disnosal	11.86	2.92	12.47	3.47	74 45	39 14	6 14
Ry product Devenue	1 277 37		-77 31	-11.02	-77 32	-26 11	-26 11
Subtotal	134.76	198.40	168.55	229.20	497.23	476.80	304,66
	}						
Decont. & Decom.	1.76	1.73	2.51	2.34	4.87	2.83	2.54
TOTAL	266.95	325.23	346.60	394.51	821.21	665.12	491.86

Figure 4.4 Total Costs for Different Conversion Options

3

I

ł

1.

I

Option	Quantity (MT)	Reference Case	
U ₃ O ₈ w/AHF Production	9,237 AHF 419 CaF,	Revenue from AHF: 13.97 Revenue from CaF ₂ : 0.045	
U ₃ O ₈ w/HF Neutralization	CaF, 18,600	Revenue from CaF ₂ : 1.99	
UO ₂ w/AHF	9,237 AHF 421 CaF,	Revenue from AHF: 13.97 Revenue from CaF ₂ : 0.045	
UO, w/HF Neutralization	CaF, 18,600	Revenue from CaF ₂ : 1.99	
UO ₂ Gelation	9,237 AHF 421 CaF ₂	Revenue from AHF: 13.97 Revenue from CaF ₂ : 0.045	
Batch metallothermic reduction to uranium metal	3,121 AHF 118 CaF,	Revenue from AHF: 4.72 Revenue from CaF ₂ : 0.013	
Continuous metallothermic reduction to uranium metal	3,121 AHF 118 CaF,	Revenue from AHF: 4.72 Revenue from CaF ₂ : 0.013	

Table 4.9 Annual Revenue from Sale of AHF and CaF, By-products from Conversion Options in Millions of Dollars • • •

4.3 Manufacture and Use

· . . ·

1100.00

There is a potential use for depleted uranium in radiation shielding applications, specifically for storage, transportation, or disposal containers for spent nuclear fuel (SNF). Two manufacturing options were considered: oxide shielding (DUCRETETM) and uranium metal shielding. In the oxide shielding application, dense UO, would be substituted as the aggregate in standard concrete for the construction of containers for the dry storage of SNF. In the metal shielding application, molten depleted uranium metal would be cast into a component of a multipurpose unit suitable for the storage, transportation, and disposal of SNF.

The total shielding cost was evaluated by combining the costs of engineering development, manufacturing equipment, manufacturing facilities, balance of plant, regulatory compliance, operations and maintenance, and decontamination and decommissioning. The cost of the depleted uranium is excluded from this estimate because the cost of converting depleted UF₆ to depleted uranium metal or dense UO₂ is captured in the conversion options and is part of any use alternative. The operations and maintenance costs include the labor, materials, utilities, and waste management and disposal costs necessary to operate the facility at design capacity for 20 years.

No credit has been taken in the reference case for either the metal or the DUCRETETM casks. Use of the DUCRETETM casks for dry storage of spent nuclear fuel would avoid the cost of the standard vertical concrete containers currently available. Similarly, use of metal casks would avoid the cost of other options. In addition, these applications could delay costs associated with disposal of depleted uranium. If the depleted uranium casks are also used for the disposal of the spent nuclear fuel, future depleted uranium disposal costs could be avoided altogether. Cases which consider a cask credit are found in Section 6.1.3.

The manufacturing equipment estimate provides costs for the major process equipment, including process piping and instrumentation. Costs are based on vendor quotes (where available), historical costs of similar equipment in similar service, current estimating/pricing manuals, or estimated costs of equipment of the same complexity and materials of construction.

Manufacturing facilities include costs for buildings and supporting equipment. The main processing buildings for the two applications differ due to the types of shielding materials produced and the forming operations required. The main processing building for the metal shielding application is a reinforced

> 12 -54

concrete, high-bay structure, while the main processing building for the oxide shielding application is based upon standard construction concrete block and spread footers.

The costs for oxide and metal shielding are summarized in Table 4.10 and compared in Figure 4.5. The estimated costs for the metal and oxide shielding applications are similar. The majority of the costs for both options are operations and maintenance costs. For metal shielding, operations and maintenance costs account for 87% of total shielding cost. For oxide shielding, they account for 89% of total shielding cost.

	Metal	Shielding	Oxide Shielding	
Engineering Development		16.40	6.56	
Manufacturing Equipment	* * * ÷ * *			• • • •
Engineering		4.11	3.94	
Fabrication		11.55	. 11.06	-129
Installation		3.19	3.06	
Certification and Test		0.51	0.49	
Subtotal		19.36	18.55	
Manufacturing Facilities				-
Engineering		7.64	6.87	. ·
Construction		22.26	20.02	
Project Management		4.99	4.49	
Subtotal		34.89	31.38	*
Balance of Plant	e de se		•	e
Engineering		5.95	4.94	
Construction		17.31	14.36	
Project Management		3.88	3.22	
Subtotal		. 27.14	22.52	1
· ,			. *	
Regulatory Compliance		17.43	17.43	
Operations & Maintenance				
Materials		311.49	296.05	
Utilities		42.30	42.41	
Labor		415.13	416.18	
Waste Management		3.70	3.92	
Cask Credit		0.00	0.00	
Subtotal		772.62	758.56	
Decontamination & Decommission	ning	• 1.46	1.30	
TOTAL		889.30	856.30	

Table 4.10 Cost Breakdown (in Millions of Dollars) for Manufacture of Metal and
Oxide Shielding Options

4.4 Long-term Storage

Storage of depleted uranium is predicated on its use at some later date. In the engineering analysis, storage options are defined by the type of storage facility, and suboptions are defined by the chemical form in which the depleted uranium is stored. The types of storage facilities analyzed are (1) buildings, (2) below ground vaults, and (3) a mined cavity. The three chemical forms analyzed are (1) UF₆, (2) U₃O₈, and (3) UO₂, with corresponding assumed bulk densities of 4.6 gram per cubic centimeter (g/cc), 3.0 g/cc, and 9.0 g/cc at ambient temperature.³ The area required to store depleted uranium depends on the uranium content in the storage form, the bulk density of the compound stored, the type of storage containers used, and the configuration of the storage containers. UF₆ would be stored in Type 48 cylinders, while U₃O₈ and UO₂ would be stored in 55- and 30-gallon drums, respectively. Total storage area requirements are greatest for U₃O₈ and least for UO₂, based on the preconceptual designs in the *Engineering Analysis Report*.

The storage cost was evaluated by combining the costs of technology development, equipment, facilities, balance of plant, regulatory compliance, and operations and maintenance. Facility costs include costs for the storage facilities (i.e., buildings, vaults, or a mined cavity), the receiving warehouse and repackaging building, and the cylinder washing building for the UF₆ storage options. Balance of plant costs include site improvements and utilities, the site support buildings such as the administration building and the workshop, and mobile yard equipment. Costs for site improvements and utilities are based on preliminary estimates for site clearing, grubbing, and mass earthwork, as well as other information provided in the *Engineering Analysis Report*. Operations and maintenance costs are based on emplacement over 20 years followed by surveillance and monitoring until 2040. Surveillance and monitoring will likely continue beyond 2040, but this is the period assumed for purposes of analysis.

There is considerable variation and uncertainty in costs associated with excavation and maintenance for the mined cavity. Available data from the Yucca Mountain and Waste Isolation Pilot Plant (WIPP) projects were used for estimating these costs.

Table 4.11 provides a summary of the costs of the various long-term storage options considered. It is evident from Table 4.11 that the lowest-cost storage option for UF_6 , U_3O_8 , and UO_2 is above ground (buildings), while the highest-cost storage option is a mined cavity. Significantly greater operations and maintenance (materials) and facility costs are estimated for the mined cavity than for the building or vault options. Storage in the oxide forms differs from storage as depleted UF_6 in six key areas:

- Lesser weight rating of the depleted uranium handling equipment due to the lower storage container weight (the weight rating is higher for UO_2 than for U_3O_8)
- Different equipment used for cylinder repackaging than for drum repackaging (e.g., autoclaves versus hoppers and vibrating platforms)
- Greater number of storage buildings required for storing U_3O_8 , fewer for storing UO_2
- Larger site required for storing U_3O_8 , smaller for storing UO_2
- Absence of a cylinder cleaning building
- Higher material and staffing requirements for storing U_3O_8 , lower for storing UO_2

³ The density of depleted UF; decreases dramatically when it is heated to a maximum working cylinder temperature of 250°F. Cylinders are filled so that they are about 62% full at ambient temperature.

Figure 4.6 compares the long-term storage costs for all options considered. For above ground storage (buildings), the facilities cost accounts for 52%, 57%, and 43% of the total storage cost for UF_6 , U_3O_8 , and UO_2 , respectively, while the operations and maintenance cost accounts for 32%, 29%, and 37% of the total storage cost. For the mined cavity option, the facilities cost accounts for 58%, 59%, and 57% of the total storage cost for UF_6 , U_3O_8 , and UO_2 , respectively, while the operations and maintenance cost accounts for 58%, 59%, and 57% of the total storage cost for UF_6 , U_3O_8 , and UO_2 , respectively, while the operations and maintenance cost accounts for 36%, 36%, and 37% of the total storage cost. In all cases, facilities costs are dominant, making up nearly half of total costs.

59

• • • • • • • •

1

1

l

	Aboveground (Buildings)			Vault		Mined Cavity		
	UF.	U,0,	. UO ₂	U ₃ O ₈	UO,	UF ₆	U ₃ O ₈	UO,
Tech. Development	0.82	0.82	0.82	1.64	1.64	3.28	3.28	3.28
Equipment			Ī		1		1	
Engineering	0.95	0.42	0.38	0.24	0.23	0.47	0.30	. 0.30
Fabrication	1.39	1.01	0.94	0.68	0.65	1.33	0.93	0.90
Installation	., 2.68	0.79	- 0.71	0.36	् 0.3 4	0.68	0.36	0.38
Certification & Test	0.07	0.05	0.05	0.03	0.03	0.07	0.05	0.04
Subtotal	5.09	2.27	2.08	1.31	1.25	2.55	1.64	1.62
Facilities			÷.	;	-			
Engineering	21.30	24.30	11.91	[°] 26.17	12.59	71.18	81.50	51.77
Construction	77.45	88.37	43.32	95.17	45.79	258.82	296.38	188.27
Proj. Management	14.13	16.13	7.91	17.37	8.36	47.24	54.09	34.36
Subtotal	. 112.88	128.80	63.14	138.71	66.74	a i a 377.2 4	431.97	274.40
Balance of Plant			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			inn a tagra intat		
Engineering	1.58	1.62	1.34	2.72	1.93	<u>n 1.20</u>	1.43	1.13
Construction	5.74	5.91	4.88	9.89	7.01	4.37	5.21	4.12
Proj. Management	1.05	1.08	0.89	1.80	1.28	0.80	0.95	0.75
Subtotal	8.37	8.61	. 7.11	14.41	10.22	6.37		6.00
Regulatory Compliance	18.61	18.61	18.61	18.61	18.61	18.61	18.61	18.61
Operations and Maintenance			•					ľ
Material	19.41	12.37	8.05	10.38	6.46	185.26	211.38	128.53
Utilities	2.12	2.41	1.63	1.98	1.36	1.78	1.99	1.47
Labor	47.03	50.83	45.02	49.80	45.97	49.08	54.48	48.90
. Waste Management & Disposal	0.15	0.27	0.13	0.27	0.13	0.08	0.27	0.13
Subtotal	68.71	65.88	54.83	62.43	53.92	236.20	268.12	179.03
							1	1
Decont. & Decom.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
τοτλί	214.48	224.99	146.59	237.11	152.38	644.25	731.21	482.94

Table 4.11 Cost Breakdown (in Millions of Dollars) for Long-term Storage Options

1 1 (___1

1

١

1

1

and reasonables

J

60

1 1 1 1 1

4.5 Disposal

Disposal options and suboptions are defined by the type of disposal facility and the nature of the waste form. The engineering analysis considered three disposal facility options: (1) engineered trench, (2) below ground vault, and (3) mined cavity. Each option was evaluated for the same four waste form suboptions: (1) grouted (cemented) U_3O_8 , (2) grouted UO_2 , (3) bulk (i.e., not grouted) U_3O_8 , and (4) bulk UO_2 . The area required to dispose of the depleted uranium depends on the uranium content in the disposal form, the bulk density of the compound stored, the type of storage containers used, and the configuration of the storage containers. Both grouted and bulk U_3O_8 would be disposed of in 55-gallon drums; grouted and bulk UO_2 would be disposed of in 30-gallon drums. The following list ranks the four waste forms from least to greatest number of disposal containers and disposal area required: (1) bulk UO_2 , (2) grouted UO_2 , (3) bulk U_3O_8 , and (4) grouted U_3O_8 .

Contractor and the

** <u>}</u>

The disposal cost was evaluated by combining the costs of technology development, equipment, facilities, balance of plant, regulatory compliance, operations and maintenance, and decontamination and decommissioning. Facility costs include costs for the disposal facilities (i.e., trenches, vaults, or mined cavity) and waste form preparation facilities (i.e., the cementing building and the curing building for grouted waste form preparation). Balance of plant costs include site improvements and utilities and the site support buildings such as the administration building, the product receiving warehouse, and the supply and shipping warehouse. Costs for site improvements and utilities are based on preliminary estimates for site clearing, grubbing, and mass earthwork, as well as other information provided in the *Engineering Analysis Report*. Operations and maintenance costs include the labor, utilities, materials, and waste management costs necessary to operate the waste form facility for 20 years. Emplacement and closure and surveillance and maintenance costs are incurred over the same 20-year period. All operations of the waste form and disposal facilities would be completed in 2029.

As with the option for storage in a mined cavity, there is considerable variation and uncertainty in costs associated with excavation and maintenance for disposal in a mined cavity. Available data from the Yucca Mountain and WIPP projects were used for estimating these costs.

Disposal costs for bulk oxides vary from storage costs for the same oxides in vaults or a mined cavity due to the differences listed below. Most of these differences are the result of providing accessibility in order to allow the surveillance and maintenance necessary for storage options.

- A waste form preparation facility is needed for disposal options, but not for storage options.
- Disposal vaults are covered with concrete and earth, while storage vaults are not.
- Disposal vaults are smaller and contain interior concrete walls.
- Disposal drifts are shorter, narrower, and shallower than storage drifts because access for inspections after emplacement is unnecessary. Access to drifts is by shafts for storage facilities and by ramp for disposal facilities.
- Drums are packed more tightly into disposal facilities than in storage facilities.
- Disposal facilities are not monitored for 20 years after emplacement as storage facilities are.
- Regulatory compliance costs for disposal options are more than double the regulatory compliance costs for the long-term storage options.

Table 4.12 provides a summary of the costs of the various disposal options considered. Waste form preparation costs are given first, followed by disposal facility costs and total costs. It is evident from Table 4.12 that the lowest-cost disposal option is disposal as bulk UO₂ in an engineered trench, while the highest-cost disposal option is disposal as grouted U_3O_8 in a mined cavity. Mined cavity disposal may be desirable, however, due to environmental impact considerations since this option provides the greatest isolation of the waste form. Additional discussion may be found in Section 6.13 of the Engineering Analysis Report.

Figure 4.7 compares the disposal costs for all options considered. It is noted that disposal costs (exclusive of waste form preparation costs) vary directly with the number of disposal containers and the disposal area required for each waste form and are, from least to greatest within each facility type: (1) bulk UO_2 , (2) grouted UO_2 , (3) bulk U_3O_8 , and (4) grouted U_3O_8 . When the preparation costs are added, the order shifts and disposal of bulk U_3O_8 has a lower cost than disposal of grouted UO_2 because the waste form preparation costs associated with the bulk U_3O_8 are about one-third of those associated with grouted UO_2 .

For a given waste form (e.g., bulk U_3O_8 or grouted UO_2), preparation costs are constant, regardless of the type of disposal facility (e.g., engineered trench), except for the technology development cost. For a given type of disposal facility, waste form preparation costs vary in the same manner as disposal facility costs, with bulk UO_2 having the least cost and grouted U_3O_8 having the greatest cost. Preparation costs are higher than other cost elements for all trench disposal options, making up about one-half the total costs for bulk disposal forms and threefourths the total cost for grouted waste forms. Facility costs dominate total costs for the more complex waste disposal facilities.

For purposes of this analysis, regulatory compliance costs were assumed to be constant, regardless of facility or waste form. Accordingly, regulatory compliance is a significant factor at the lower end of the spectrum, making up 34% of total disposal costs for bulk UO_2 in an engineered trench. Compliance costs make up only about 3% of total costs for the highest-cost option, grouted U_3O_8 in a mined cavity.
1 1 1 1 1

I

Table 4.12	Cost Breakdown	(in Millions	of Dollars)	for	Disposal	Options
------------	----------------	--------------	-------------	-----	----------	---------

1 (

1 1

1

• 1

1

	U,0	<u>s Bulk</u>		U,O 8	Grouted	1	UO	Bulk		UO,	Grout	ed
Preparation	Engineered	[•] Vault	Mined	Engineered	Vault	' Mined	Engineered	Vault	Mined	Engineered	Vault	Mined
يوال المعمودة والمراجع الم	Trench	· • •••••	Cavity_	Trench	112 y 27 -	Cavity	Trench	e interna	Cavity	• Trench		Cavity
				· · · · ·	-1.11							
Technology Development	6.56	6.56	8.20	. 8.20	8.20		6.56	6.56	8.20	8.20	8.20	9.84
Process Equipment	··· · · · ·	·					· · · · · · · · · · · · · · · · · · ·					· · · · · · · ·
Engineering	0.00	0.00	0.00	5.61	5.61	5.61	0.00	0.00	0.00	4.32	4.32	4.32
Fabrication	· 0.00	0.00	0.00	16.78	16.78	16.78	0.00	0.00	0.00	12.98	12.98	12.98
Installation	0.00	0.00	0.00	4.65	4.65	4.65	0.00	0.00	0.00	3.53	3.53	3.53
² Certification and Test	0.00	0.00	0.00	ʻ 0.60	0.60	0.60	0.00	0.00	0.00	0.46	0.46	
Subtotal	0.00	0.00	0.00	27.64	27.64	27.64	. 0.00	0.00	0.00	21.29	21.29	21.29
Process [®] Facilities	* U	- 1 . S.	151			e ter		: ₫.	· •			; * +
Engineering	0.00	0.00	0.00	. 6.27	6.27	6.27	0.00	0.00	0.00	3.71	-3.71	3.71
Construction	0.00	0.00	0.00	17.39	17.39	17.39	0.00	0.00	0.00	10.28	10.28	10.28
Project Management	~ 0.00	0.00	·0.00	. 4.01	- 4.01	4.01	·	0.00	÷0.00	: 2.37	: 2.37	~ 2.37
Subtotal	0.00	0.00	0.00	27.67	27.67	27.67	0.00	0.00	0.00	16.36	16.36	16.36
Balance of Plant	nij or	(es 58	14 15	13 141	24792		12/21	- 79 - 17	1.1.1.1	77 7 07	15,52	
Engineering	5 6.01	3 6.01	⊜6.01	10.90	10.90	10.90	3.63	73.63	3.63	7.68	7.68	7.68
Construction	16.56	16.56	16.56	30.05	30.05	, 30.05	9.99	9.99	9.99	21.17	21.17	¹ 21.17
Project Management	3.86	3.86	3.86	7.00	7.00	. 7.00	2.33	2.33	:2.3 3	4.93	4.93	4.93
Subtotal	26.43	26.43	26.43	47.95	47.95	47.95	15.95	15.95	15.95	33.78	33.78	33.78
	۰ <u>،</u> ،	· · · ·	•	· .]			· •		· · ·		
Regulatory Compliance	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02
Operation & Maintenance	<i>^</i>	•	' > î		÷ •	: <u>.</u>					•: <i>•</i>	· · ·
Materials '	0.14	0.14	0.14	122.86	122.86	122.86	0.08	0.08	0.08	13.26	13.26	13.26
Utilities & Consumables	3.51	3.51	3.51	6.04	6.04	6.04	1.95	1.95	1.95	3.32	3.32	3.32
Labor	28.41	28.41	. 28.41	75.60	75.60	75.60	28.36	28.36	28.36	70.87	70.87	70.87
Waste Management	1.17	: 1.17	- 1.17	1.98	1.98	. 1.98	0.72	0.72	0.72	· 1.19	1.19	1.19
Subtotal	· 33.23	33.23	33.23	206.48	206.48	206.48	. 31.11	31.11	31.11	. 88.64	88.64	88.64
1 4 9 4 4 6 7 7 9		1. A. A.		1	01 1	111	1		. 1	`		
Decont. & Decom.	0.60	0.60	0.60	1.83	<u>, 1.83</u>	1.83	0.38	0.38	0.38	1.26	1.26	1.26
Total Preparation Cost	68.84	68.84	70.48	321.79	321.79	323.43	56.02	56.02	57.66	171.55	171.55	173.19

[Table 4.12 is continued on the next page]

an the club for the form and the full draw with the second straight for the second second second second second

intà das Antonio de la composición de tras tras tras tras de la contra de la contra de la contra de la contra de la contr 64

I

1

ł

ł

1

Table 4.12 Cost Breakdown (in Millions of Dollars) for Disposal Options (Continued)

J

ł

	U,0	Bulk		U ₃ O ₄	Grouted	e.	UO,	Bulk		UO,	Grout	:d
	Engineered	Vault	Mined	Engineered	Vault	Mined	Engineered	Vault	Mined	Engineered	Vault	Mined
	Trench		Cavity_	Trench		Cavity	Trench		Cavity	Trench		Cavity
Facility		_	-,							{		.
Engineering	3.73	29.33	87.05	7.12	61.85	119.05	1.86	8.42	72.16	2.50	12.81	79.56
Construction	7.20	56.62	271.44	13.73	119.41	371.21	3.59	16.25	225.01	4.82	24.73	248.07
Project Management	1.29	10.13	-50.53	2.46	21.37	69.11	0.64	2.91	41.89	0.86	4.43	46.18
Subtotal	12.22	96.08	409.02	23.31	202.63	559.37	6.09	27.58	339.06	8.18	41.97	373.81
Site Prep & Restoration	:						•					· · ·
Engineering	0.17	0.32	3.62	0.27	0.55	3.78	0.11	0.14	3.55	0.13	0.17	3.59
Construction	0.61	1.15	13.18	0.97	1.99	13.75	0.40	0.49	12.91	0.47	0.63	13.05
Project Management	0.11	0.21	2.41	0.18	0.36	2.51	0.07	0.09	2.36	0.09	0.12	2.38
Subtotal	0.89	1.68	19.21	1.42	2.90	20.04	· 0.58	0,72	18.82	0.69	0.92	19.02
Emplacement & Closure		4 A.										· · · · ·
Materials	1.40	2.15	28.49	2.45	3.17	47.31	0.85	0.79	24.76	1.05	1.50	35.06
Equipment	3.63	3.84	183.46	5.16	5.24	357.60	2.33	2.23	103.23	2.44	2.76	143.39
Labor	25.58	33.21	36.93	35.82	66.26	44.80	14.43	23.71	33.30	18.55	30.06	43.28
Subtotal .	30.61	39.20	248.88	43.43	74.67	449.71	. 17.61	26.73	161.29	22.04	34.32	221.73
Regulatory Compliance	40.35	40.35	40.35	40.35	40.35	40.35	40.35	40.35	40.35	40.35	40.35	40.35
Surveillance & Maintenance							~ 	~ ~ ~ ~	·			0.50
Materials	0.79	1.36	0.58	1.03	2.76	0.75	0.67	0.44	0.42	0.71	0.63	0.58
Labor	1.50	1.50	1.63	1.50	1.50	1.63	1.50	1.50	1.63	1.50	1.50	1.63
Subtotal	2.29	2.86	2.21	2.53	4.26	2.38	2.17	<u> </u>	2.05	2.21	2.13	2.21
Total Facility Cost	86.36	180.17	719.67	111.04	324.81	1,071.85	66.80	97.32	561.57	73.47	119.69	657.12
	•	,						٠.				
					•							•

•	U ₃ O ₃ Bulk		U ₃ O ₃ Grouted		UO ₂ Bulk		UO, Grouted					
	Engineered	Vault	Mined	Engineered	Vault	Mined	Engineered	Vault	Mined	Engineered	Vault	Mined
	Trench		Cavity	Trench		Cavity	Trench		Cavity	Trench		Cavity
GRAND TOTAL	155.20	249.01	790.15	432.83	646.60	1,395.28	122.82	153.34	619.23	245.02	291.24	830.31

4.6 Continued Storage at Current Sites

Storage of depleted UF₆ in the current cylinders and yards would continue for several years under all alternatives. For all alternatives except the No Action alternative, storage as depleted UF₆ in the current yards would continue from 1999 to 2029, with the amount of depleted UF₆ in storage decreasing by 5% per year beginning in 2009 until it is gone by 2029. Under the No Action alternative, storage as depleted UF₆ in the current yards would continue from 1999 to 2040, without reduction of the amount of depleted UF₆ in storage.

The continued storage cost was evaluated by combining the costs of equipment, cylinder placement, facilities, and surveillance and maintenance. Equipment costs include the costs of capital equipment required to store the depleted UF_6 cylinders in yards. Cylinder placement costs include estimates of the cost of stacking and restacking cylinders in the storage yards, including the newly constructed or modified yards. Facilities costs include estimates for constructing new storage yards at the three existing facilities. Cylinder placement and facilities costs occur in the first six years and are therefore identical for the action and No Action alternatives.

Surveillance and maintenance costs include repainting, management of substandard cylinders (including breach repair and transfer of contents), general cylinder maintenance (including valve/plug replacement and paint touch-up), general yard and equipment maintenance, cylinder inspections, data tracking, systems planning and execution, conduct of operations, and engineering development. These costs decline for the action alternatives until they are zero by the year 2029 when all the cylinders are gone. Surveillance and maintenance costs continue at a steady rate for the entire time period under the No Action alternative and are therefore higher. There are no decontamination and decommissioning costs for the No Action alternative because storage of the depleted UF_6 cylinders is assumed to continue indefinitely.

Unlike the other cost estimates, which are based on data contained in the Engineering Analysis Report, this cost estimate was derived from the Fiscal Year 1997 Baseline Plan for the sites and information provided by Lockheed Martin Energy Systems.

Table 4.13 and Figure 4.8 show the cost of continued storage for all alternatives. The first column gives the cost of continued storage for all alternatives other than the No Action alternative. The second column gives the No Action costs. Surveillance and maintenance account for more than 80% of the total cost for both.

		Continued Storage (Action)	Continued Storage (No Action)
Equipment	•	6.60	9.31
Cylinder Placement			
Materials		0.31	0.40
Utilities		0.00	0.00
Labor '		6.89	6.89
Waste Manage	ment & Disposal	0.00	0.00
Subtotal		7.20	7.29
Facilities (Site)			
Engineering		3.89	3.89
Construction		14.71	14.71
Proj. Managem	ent	2.99	2.99
Subtotal		21 .5 9	21.59
Surveillance and M	laintenance		
Material		37.82	74.78
Utilities		1.78	3.93
Labor	· · · ·	118.63	204.98
Waste Manage	ment & Disposal	3.03	5.13
Subtotal		- 161.26	288.82
Decont. & Decom.		0.00	0.00
TOTAL		196.65	327.01

 Table 4.13 Cost Breakdown (in Millions of Dollars) for Continued Storage at Current Sites

5. COST ESTIMATION OF MANAGEMENT STRATEGIES

Six long-term management strategy alternatives are being considered. These strategies, which are described in Section 2.2, are listed below. The conversion options associated with each alternative are also identified.

• No action alternative

- Long-term storage as UF₆ in buildings or a mined cavity
- Long-term storage as oxide in buildings, vaults, or a mined cavity

 $-U_3O_8$ Defluorination with AHF production

- U₃O₈ Defluorination with HF neutralization
- UO, Gelation

• Use as uranium dioxide in $\mathbf{DUCRETE}^{\mathsf{TM}}$ for shielding applications

- UO_2 Dry process with AHF production
 - UO, Dry process with HF neutralization
 - UO, Gelation

• Use as Metal for shielding applications

- Batch metallothermic reduction

- Continuous metallothermic reduction

• Disposal

 $-U_3O_8$ Defluorination with AHF production

 $-U_3O_8$ Defluorination with HF neutralization

- UO, Gelation

The total cost for each management strategy is reported twice in this section by considering the lowest- and highest-cost options within each category included in a management strategy alternative. First, a low-cost scenario was considered that assumes (1) shipping is done by rail; (2) nonconforming cylinders are placed in a cylinder overcontainer in preparation for shipment; (3) storage of UF₆, U₃O₈, and UO₂ is carried out in a building; and (4) disposal of U₃O₈ and UO₂ is in the bulk form in an engineered trench. Second, a high-cost scenario was considered that assumes (1) shipping is done by truck; (2) depleted UF₆ in nonconforming cylinders is transferred to new or conforming cylinders which meet the DOT requirement; (3) storage of UF₆, U₃O₈, and UO₂ is carried out in a mined cavity; and (4) disposal of U₃O₈ and UO₂ is in the grouted form in a mined cavity. By selecting the lowest- and highest-cost options within each category, a range of costs for implementing each management strategy alternative is developed. For the remainder of this report, the low-cost scenario is addressed unless otherwise specified.

The costs of the alternatives, for both low- and high-cost scenarios, are summarized in Tables 5.1 and 5.2. As in the preceding sections of this report, the discount rate used is

行 70

7% p.a. Table 5.1 represents the lower-cost range for all the alternative strategies, while Table 5.2 represents the higher-cost range. Table 5.1 indicates that the lowest-cost management strategy is the No Action alternative and the second lowest-cost alternative is long-term storage of depleted UF₆. Unlike the other alternatives, these do not involve conversion to another chemical form. Table 5.1 also indicates that the highest-cost alternative management strategy is use as DUCRETETM if the UO, conversion is by the gelation process; however, the cost of use as DUCRETETM falls significantly if conversion is by a dry process. Additionally, taking credit for the cask can further reduce the cost of this alternative (refer to Section 6.1.3).

Table 5.2 indicates that disposal in a mined cavity as grouted U_3O_8 using the defluorination with HF neutralization conversion option is the most costly alternative using the high-cost scenarios. It is noted that the No Action alternative is still the lowest-cost alternative and long-term storage of depleted UF₆ is still the second lowest-cost alternative. The No Action alternative is unique in that the low- and the high-cost scenarios are equal since it is simply continued storage of depleted UF₆ in the existing yards, and options for preparation for shipment, transportation, and conversion do not apply.

Figures 5.1 and 5.2 compare the total costs of each alternative management strategy for both the low- and high-cost scenarios. Figures 5.3 to 5.28 present the percentage of cost attributed to each option category (continued storage, transportation, conversion, use, longterm storage, and disposal) for each alternative strategy for both the low- and high-cost scenarios.

1 1 1 1

1

1

Table 5.1	Cost Breakdown	(in Millions of	Dollars) f	or the	Low-Cost	Alternative	Management	Strategies
-----------	----------------	-----------------	------------	--------	----------	-------------	------------	------------

 $1 1 \left(1 \right)$

1 1 1

· • .

A. C.

]

_ **I**

1

DBF Allerhätives	Continued Storage	Transportation -	Conversion	TAX USE AND	Long-lehm Storage	Disposal	TOTAL 21
No Action	327						327
DUF, Long Term	197	172			214		583
Storage							
Long-Term Storage as	197	191	267		225		880
Oxide (U ₃ O ₈							
Defluorination w/AHF							
Prod.)							
Long-Term Storage as	197	191	325		225		938
Oxide (U_3O_1)							
Defluorination. w/HF	· ·						
Neutralization.)						•	
Long-Term Storage as	. 197	191	821	• • •	147		1,356
Oxide (UO, Gelation)				· ·			
Use as Oxide (UO ₂ Dry	ig 197	200	- 347	856		an that	. 1,600
Process w/AHF Prod.)					. <u>7</u>		
Use as Oxide (UO ₂ Dry	197	200	395	- 856		- · · ·	1,648
Process w/HF					,		• 1
Neutralization)	· ·			· ·			· · ·
Use as Oxide (UO ₂	. 197	201	821	856			2,075
Gelation)		· ·		·			
Use as Metal (Batch	197	202	665	889			1,953
Met. Reduction)		· ·	•	,			
Use as Metal (Cont.	197	202	492	· 889			1,780
Met. Reduction)			·	1		•	
Disposal (U ₃ O ₈	197	· 191	267			155	810
Defluorination. w/AHF				•	,		
Prod.)				1 A	: *		•. •
Disposal (U ₁ O ₈	197	191	325			155	868
Dcfluorination. w/HF			· '				
Neutralization.)							
Disposal (UO ₂ Gelation)	197	191	821			123	1,332

grant de la sector de la company de la company de la company

Figure 5.1 Comparison of Total Costs of Alternative Management Strategies (Low-Cost Scenarios)

73

(

Table 5.2 Cost Breakdown (in Millions of Dollars) for the High-Cost Alternative Management Strategies

DUE Alternatives	Continued Storage	Transportation -	Conversion	THY USES PILE	Long term Storage	Ulspotal	TOTAL
No Action	327						327
DUF, Long Term	197	677			644		1,518
Storage							
Long-Term Storage as	197	702	267		731		1,897
Oxide (U_3O_8)							
Defluorination. w/AHF		•				• .	
Prod.)							
Long-Term Storage as	197	702	325		731		1,955
$Oxide (U_3 O_8)$	er al esta esta esta esta esta esta esta esta	••					
Delluorination. w/HF							
Long Tarm Storage or	107		821		. 402		0.000
Long-Term Storage as	157	102	021	•	483		2,203
Use as Ovide (UO, Dru	ê 197		347	856			2 112
Process w/AHF Prod.)			541			2 (2,112
Use as Oxide (UO, Dry	· · · · · · · · · · · · · · · · · · ·	712	305	856			2 160
Process w/HF?			575	. 050			2,100
Neutralization.)			7	· · ·			
Use as Oxide (UO,		711	821	856			2.585
Gelation)	,						2,000
Use as Metal (Batch	197	712	665	889	.,		2,463
Met. Reduction)	:						-,
Use as Metal (Cont.	. 197	712	492	889			2,290
Met. Reduction)			·	•	х ₁	, (
Disposal (U ₁ O ₁	197	702	267			1,395	2.561
Defluorination. w/AHF				· · ·	4		
Prod.)			-	·	{		•
Disposal (U ₃ O ₁	- 197	702	325		. 1	1,395	2,619
Defluorination. w/HF		1. S.		: j			
Neutralization.)	1.11	· ·			• }	j	
Disposal (UO ₂ Gelation)	197	702	821			830	2,550

and the second
74

÷. .

Figure 5.2 Comparison of Total Costs of Alternative Management Strategies (High-Cost Scenarios)

n_

Π.

m

• • • •

Figure 5.9 Low-Cost Breakdown for Long-Term Storage as Oxide - U₃O₃ Defluorination w/HF Neutralization (\$938 Million)

Г

Γ

n

1

Figure 5.10 High-Cost Breakdown for Long-Term Storage as Oxide - U₃O₈ Defluorination w/HF Neutralization (\$1955 Million)

Figure 5.12 High-Cost Breakdown for Long-Term Storage as Oxide - UO₂ Gelation (\$2,203 Million)

. **. . 80**

Figure 5.14 High-Cost Breakdown for Use as Oxide • UO₂ Dry Process w/AHF Production (\$2,112 Million)

r

Figure 5.18 High-Cost Breakdown for Use as Oxide - UO₂ Gelation (\$2,585 Million)

Γ.

-

Figure 5.22 High-Cost Breakdown for Use as Metal - Continuous Metallothermic Reduction (\$2,290 Million)

P

Figure 5.24 High-Cost Breakdown for Disposal as Oxide - U₃O₈ Defluorination w/AHF Production (\$2,561 Million)

11_

r

1

r

.

Continued Storage

15%

• Transportation 14%

Pray and

West to 1 ...

.

Χ.,

. 12 ...

 α^{*}

· . . .

· • • • •

• •

. . . ·

- - 2011 -

e e elec

Figure 5.27 Low-Cost Breakdown for Disposal as Oxide - UO₂ Gelation (\$1,332 Million)

ker pr

Disposal

9%

 $\rightarrow i^{*}$ · - -. 1171

· • • • 1000 Conversion **.** .

n

17. 12 . 1 . ۰., N • ,•

: as an enoted for taken in 2 • and the second second second • • • • المراجع والمراجع وال 31. 19 1. S. 2.21 · • • . • · · · · Harris Later St. . . tra Corres

62%

• • Figure 5.28 High-Cost Breakdown for Disposal as Oxide - UO₂ Gelation (\$2,550 Million)

(1,1)**.**(11 1 12 M a and the stand and the and the second • • (

and the state Conversion 11.11 . . .0 A recent to the set of a the line of the burght. :: ••••• ÷ . 1.1 1.20 .. R off to science of the 1,1

88

.

6. ANALYSIS OF SENSITIVITIES, RISKS, AND VULNERABILITIES

In addition to the reference cases treated in Chapters 4 and 5, there are sensitivity cases, performance risks, and vulnerabilities that need to be considered because they can make the cost outcome substantially different from that found for the reference cases. Sensitivity analyses were performed in accordance with OMB Circular No. A-94 guidance to determine how sensitive the costs of the alternative strategies were to changes in assumptions for various input parameters. The results are presented in Section 6.1.

In Section 6.2, Performance Risk, uncertainties in facility operating conditions and their potential cost impacts are discussed. For purposes of this discussion, performance risks are defined as failures of equipment and systems to perform up to the levels specified by their designers and causing them to operate below design specifications or to require additional process equipment in order to meet product quality requirements.

Process vulnerabilities to changes in the external environment in which the facility operates are the focus of Section 6.3. The facility may exactly meet its design goals, for example, but may not be allowed to dispose of a major processing waste as planned. Cost impacts due to external regulations affecting the use of major by-products or the disposal of large waste streams are discussed in Section 6.3.

Performance risks and vulnerabilities are alike in that they result from insufficient information being available to the facility designers. They differ in that performance risks can be reduced to as low a level as desired by early expenditures on developing and demonstrating the technology and the equipment. Vulnerabilities, since they result from changes in the legal and regulatory environment, cannot be controlled by the process designer or facility operator.

6.1 Sensitivity Analyses

Sensitivity to variations in discount rate, transportation distance, shielding cask values, product density, and facility throughput are presented in this section.

6.1.1 Effect of Discount Rate

All costs were estimated in first-quarter 1996 dollars and discounted to the start of the project according to OMB guidance:

constant-dollar benefit-cost analyses of proposed investments and regulations should report net present value and other outcomes determined using a real discount rate of 7 percent. This rate approximates the marginal pretax rate of return on an average investment in the private sector in recent years.

However, 7% may be too high if the long-term management of depleted UF₆ is viewed as an "internal" government investment that takes the form of decreased federal costs. Conversely, it may be too low if the management of the depleted UF₆ is privatized and private industry views the financial return as riskier than normal. Therefore, the effects on the present value of discount rates as low as 4% and as high as 15% were analyzed and the results summarized in Table 6.1 and Figure 6.1 (the low-cost scenario is addressed, as described in Chapter 5). Examination of Table 6.1 and Figure 6.1 shows that the ranking of strategies according to their cumulative discounted net costs is essentially unaffected by the choice of discount rates used for sensitivity analysis.

i										
		Discount Rate								
Strategy	4.00%	7.00% *	15.00%							
No Action	432	327	193							
Long Term Storage as UF.	903	583	241							
Long-Term Storage as Oxide			; ;							
U ₁ O ₈ Defluorination w/AHF Production	pse , 1,357	880	365							
U ₁ O ₂ Defluorination with HF Neutralization	≋⊑ 1,462	938	378							
UO ₂ Gelation	2,099	1,356	554							
Use as DUCRETETM										
UO2 Dry Process with AHF Production	2,553	1,600	· 598							
UO, Dry Process with HF Neutralization	2,643	1,648	607							
UO, Gelation	3,309	2.075	775							
Use as Metal		:								
Metal Batch Metallothermic Reduction -	3,154	1,953	705							
Metal Continuous Metallothermic Reduction	2,850	1,780	661							
Disposal	• •									
U ₁ O, Defluorination with AHF Production	1,221	810	357							
U ₁ O ₂ Defluorination with HF Neutralization	- 1,327	869	370							
UO. Gelation	2,043	1,332	558							

Table 6.1 Cost Breakdown (in Millions of Dollars) Based on Discount Rate

1

* Values in this column are for the reference case; they were taken from Table 5.1

Figure 6.1 Total Costs for Given

Rates

6.1.2 Effect of Transportation Distances

The Cost Analysis Report and the draft PEIS assume a transportation distance of 1000 km whenever facilities are not collocated. The actual transportation distance may be more or less. In order to provide insights into the impacts of different transportation distances, the transportation cost components of the alternative management strategies for different distances are presented in Table 6.2 and Figure 6.2. All values presented in this table reflect the rail and overcontainer options.

A state of the sta

The loading, shipping, and unloading costs represent less than one quarter of the transportation costs. Changing the shipping distance does not change the ranking of strategies by cost. Distance affects only the shipping component of transportation costs, which will vary linearly with the distance between facilities. Total transportation costs are therefore relatively insensitive to distances between facilities. There is significant flexibility, therefore, in choosing off-site locations for conversion, manufacturing, storage, and disposal facilities. On-site locations, which would eliminate transportation costs, would require additional consideration. These cases would require site-specific analysis of distinctly sized facilities. The cost savings from avoiding transportation could readily be exceeded by the costs incurred from deploying multiple facilities.

²⁷ 92

		Distance Between Facilitie (in kilometers)			
Strategy	500	1000 *	2,000		
No Action	. 0	. 0	· 0		
Long Term Storage as UF ₄	169	172	177		
Long-Term Storage as Oxide					
U ₃ O ₈ Defluorination w/AHF Production	186	191	202		
U.O. Defluorination with HF Neutralization	186	191	202		
UO ₂ Gelation	186	191	202		
Use as DUCRETETM			•		
UO ₂ Dry Process with AHF Production	193	200	215		
UO: Dry Process with HF Neutralization	193	· 200	215		
UO ₂ Gelation	193	201	· 216		
Use as metal		•			
Metal Batch Metallothermic Reduction	195	202	· 217		
Metal Continuous Metallothermic Reduction	195	202	217		
Disposal					
U:0, Defluorination with AHF Production	186	. 191	202		
U.O, Defluorination with HF Neutralization	186	191	202		
UO, Gelation	186	191	202		

Table 6.2 Transportation Cost Breakdown (in Millions of Dollars) based onDistance Between Facilities using Rail and Overcontainer Options

* Values in this column are for the reference case; they were taken from Table 4.6.

Figure 6.2 Total Transportation Costs for Given Distances between Facilities (Rail and Overcontainer Options)

2										•
			<u></u> П.							
									13 500 kilometers 14 1000 kilometers 12 2000 kilometers	•
										-
Action 6 m B UF6	HF Dation	D8 HF Ization	Land Day	Dry s with ization	alatch Jormic March	al Jours Jermic	AHF ction ction D8 htf nation zation	Selection Select		
No Long 1	Dettuori w/A Produ	U30 Defluori with Neutral	UO2 Proces Ar	UC2 Process II Neutrali	UO2 G Metal E Metalloth	Mot Continy Metallott Raduc U3	Produ Produ U30 Defluori with	n05 G		
-		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · ·	[····	· · · · · · · · · · · · · · · · · · ·		•
	Long	Term Storage as Oxide	Use as urai	nium oxide in DUCR	ETEM	Use as Metal	Dispos	at in the second se	х.	

.

6.1.3 Effect of Shielding Cask Values

As described in Section 2.1.5, the Engineering Analysis Report and the draft PEIS consider two alternatives involving the manufacture and use of depleted uranium for shielding: uranium dioxide (DUCRETETM) and uranium metal. The first option involves the manufacture of DUCRETETM casks for dry storage of spent nuclear fuel disposal. The second involves the use of depleted uranium metal in the manufacture of annular shields for a multipurpose unit system for the storage, transportation, and disposal of spent nuclear fuel. The cost of these options was presented in Section 4.3 without taking any credit for the cask.

Both the Cost Analysis Report and the Engineering Analysis Report were based on the assumption that the demand for casks would match the supply, working off the inventory over 20 years. Based upon a throughput of 28,000 MT of depleted UF₆ per year, 480 DUCRETETM and 453 depleted uranium metal casks would be produced annually. This approach is supported by the literature:

The total quantity of DU metal needed for fabrication of 9500 containers is approximately 437,000 MTU. This total demand for DU metal exceeds the current DOE-owned inventory... (Herztler and Nishimoto, pp 33-34).

and

Placing all of the U.S. spent fuel (about 86,000 metric tons) in DUCRETE casks would require about 9,500 casks and use most of the current DOE depleted uranium inventory (Powell, p. 2).

If depleted uranium or DUCRETE^M were manufactured into shielding casks for the storage of spent nuclear fuel, some price could be charged to the power reactor operator for such casks. This charge would off-set a portion of the costs incurred by management strategies for using depleted UF₆ whose end product is a cask. The revenue to the depleted UF₆ management enterprise from this charge should be taken into account, just as revenues from by-product AHF or CaF₂ sales are folded into the present-value evaluations presented in Chapters 4 and 5.

Casks made from depleted uranium metal or DUCRETE[™] may have benefits to reactor operators that would make them more attractive to use (and thus command a higher price) than conventional concrete casks. These benefits might include potential reductions in transportation costs and cask handling operations. For example, a DUCRETE[™] cask could be loaded directly in the spent nuclear fuel pool, whereas the current plan is to use a separate transfer cask because a conventional concrete cask is too large to fit into the storage pool. Additionally, it is possible that the depleted uranium cask could eventually be disposed with the spent fuel at the repository. However, these added benefits are speculative at the present time. The focus of this section is to make an initial assessment of the off-setting revenues resulting from cask production. This estimate will then be used in the life-cycle cost analysis for strategies leading to manufactured depleted uranium metal or DUCRETETM casks to test the sensitivity of life-cycle costs to the cask value.

The economic differences between a DUCRETETM spent nuclear fuel storage cask and a conventional concrete storage cask are summarized in the report, *Comparative Economics for DUCRETE Spent Fuel Storage Cask Handling, Transportation, and Capital Requirements.* The conventional concrete cask system considered in the report is the NRC-licensed Sierra Nuclear Corporation Ventilated Storage Cask, with an estimated cost for

materials of about \$200,000, excluding such elements as engineering design and project management (Powell 1995).

Another NRC-licensed concrete cask is the Vector Fuels Division's NUHOMS concrete horizontal storage module. In the Depleted Uranium Concrete Container Feasibility Study (Haeslig 1994), the estimated cost for the concrete module of this storage system is \$150,000. It is noted that an inner metal multipurpose canister system is needed to contain the spent nuclear fuel stored in any of the dry concrete storage systems. Similar economic data for the multipurpose unit system were not discovered. Accordingly, a sensitivity analysis assuming a cask credit of \$150,000 and \$200,000 per cask for both the DUCRETE[™] and metal shielding applications was conducted.

As shown in Table 6.3, a cask credit of \$150,000 and \$200,000 per cask would reduce the life-cycle costs of the shielding options by about 40-60%. The cost of complete management strategy alternatives is presented in Chapter 5 of this Cost Analysis Report. These costs range from about \$1,600 to \$2,600 million (7% p.a. discount rate) for the shielding alternative without the cask credit. Total management strategy alternative costs would be reduced about \$370-\$550 million (7% p.a. discount rate) or 14-34% with the assumed cask credit. .

Table 6.3	Sensitivity	Analysis	for Depleted	Uranium	Shielding
	Ann	ligations	Cock Crodi	4 · · · · · · · · · · · · · · · · · · ·	· · -
	ւ հե	meanons	- Cask Creui	L , P	

		DUCR	ETE [™] Sł \pplicatio	nielding ns	Metal Sh Applic	uelding ations
. Start Start				1 - A.	···(. ··	
Number of casks manufacture	d .	1.		1114		
per year				480		453
total, in 20 year project	and the second states of the second			9,600		9,060
				· · · ·		
Annual credit from sale of casks (millions)				:	-1	
@ \$0.15 million/shield				\$72.00		\$67.95
@ \$0.2 million/shield	····		•. •	\$96.00		\$90.6 0
Cumulative present value cre	dit from sale of casks (millions)	1 · .	÷	 .	÷	
@ \$0.15 million/shield				\$362.39		\$342.00
@ \$0.2 million/shield		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1× ;	\$483.18		\$456.00
Cumulative present value of shielding option (millions)				~ 1.36		
With no credit for sale of casks (reference case)*			•	\$856.30		\$889.30
With credit of \$0.15 million	n/cask by the second second			\$493.91		\$547.30
With credit of \$0.20 million	n/cask			\$373.12		\$433.30

* Values in this row are for the reference case; they were taken from Table 4.10.

x levelse stor

6.1.4 Effect of Density on UO₂ Storage and Disposal Options

The costs for the UO, storage and disposal options (Chapter 4) and their associated strategies (Chapter 5) are based on the gelation process for the conversion of UF, to dense

UO₂. The gelation process produces small spheres with a higher bulk density than the conventional UO₂ process, which produces pellets. This leads to a reduction in storage and disposal volume requirements, and therefore the gelation process minimizes the costs for the storage and disposal options involving the oxide. However, the gelation process is substantially more expensive than conversion to UO₂ pellets or U₃O₈ powder. Because the higher conversion cost of the gelation process does not off-set its lower storage and disposal option costs, the storage and disposal strategies based on U₃O₈ have a significantly lower cost (Chapter 5).

Bottom-up storage and disposal costs were not determined for UO₂ pellets, which have a bulk density and a conversion cost between that for U_3O_8 powder and that for UO_2 produced by the gelation process. An approximate scaling analysis was used to estimate the storage and disposal option costs for ungrouted UO₂ pellets. Within the estimating uncertainties, no significant differences were found in the strategy costs for storage and disposal of ungrouted UO₂ pellets and ungrouted U_3O_8 powder. Thus, storage and disposal of UO₂ pellets as a variation on the long-term management strategies for storage and disposal as an oxide are suitably contained within the options analyzed.

6.1.5 Effect of Facility Throughput

A period of 20 years was assumed to disposition the entire depleted uranium stockpile (about 560,000 MT UF₆ in 46.422 cylinders). This corresponds to an annual throughput rate of 28,000 MT of UF₆ or about 19,000 MT of uranium. Each option was evaluated at this rate, assuming that a single alternative would be selected. It is possible, however, that a hybrid of alternatives will be implemented. The need for parametric analysis of other options being considered for the long-term management of depleted UF₆ was determined after the end of the scoping period for the PEIS (March 25, 1996). The following options were selected for parametric analyses:

- Conversion to U₃O₈: defluorination with anhydrous hydrogen fluoride (AHF)
- Conversion to UO₂: ceramic UO₂ with AHF
- Conversion to uranium metal by continuous metallothermic reduction
- Manufacture and use as shielding (DUCRETE[™] and metal)
- Storage in buildings as UO₂ and UF₆
- Disposal in a mined cavity as bulk U_3O_8

Key engineering and cost data elements for facilities that are sized for 50% and 25% of the reference capacity case (28,000 MT/year of depleted UF₆) were evaluated. These smaller facilities are assumed to be deployed on the same schedule as the reference facility and operate at throughputs of 14,000 MT/year and 7,000 MT/year, respectively, for 20 years. A summary of the results of these analyses is presented in Tables 6.4 to 6.11, and Figures 6.3 to 6.6. A discount rate of 7% p.a. is assumed.

As shown by these tables, reducing the throughput does not result in a corresponding cost reduction of the same magnitude. This is expected, on the basis of economy of scale considerations; however, the magnitude of this effect depends strongly on the specific option. For the conversion options, the present-value cost drops about 16%, on average, when the throughput is halved from the reference capacity. For the storage options, the equivalent reduction is about 34% on average. This significant difference reflects the greater modularity of the storage facility designs. These studies of throughput variations show that hybrid alternatives would likely have a higher total cost than a single alternative. For example, a hybrid which involves converting the depleted UF₆ to UO₂ and using half

•••]

.....

, ĩ+

Sec. 18

. .

· · · . ..

, **4**

18 100

. :-::)

.

• ;

la projet Totali se este t

Stand and the second

:.

in DUCRETETM shielding applications and storing half would have a higher cost over the time frame considered than storing it all as oxide. Likewise, the cost could also be significantly higher for an alternative involving multiple sites for the same module. For example, the increase in conversion costs from converting the depleted UF₆ to UO₂ at two sites may not be off-set by the decrease in avoided transportation costs.

1, ... 1

. . •

. . .

. . ;

. .

। सर्वे स

1-2-3

105 1

and the state of the state of the state

۰.

· · · •

- . . I

.

· ·

÷

. • •

١.

e j

	250	0.577	
· .	<u>_</u> %	50%	100% +
Tech. Development	9.84	9.84	9.84
Process Equipment			
Engineering	3.26	3.64	4.74
Fabrications	7.96	8.88	11.91
Installation	3.78	4.21	5.19
Certification & Test	0.35	0.39	0.52
Subtotal	15.35	17.12	22.36
Process Facilities			
Engineering	6.88	8,29	10.16
Construction	20.01	24.12	29.56
Proj. Management	4.48	5.40	6.61
Subtotal	31.37	37.81	46.33
Balance of Plant			
Engineering	4.22	4.96	6.40
Construction	12.28	14.44	18.63
Proj Management	2.75	3.23	4.17
Subtotal	19.25	22.63	29.20
Regulatory Compliance	22.70	22.70	22.70
Operations and Maintenance			
Material	29.85	37.79	52.71
Utilities	11.73	12.12	12.83
Labor	123.09	127.16	134.68
Waste Management &	4.35	6.92	11.86
Disposal			
By-product Revenue	-19.33	-38.66	-77.32
Subtotal	149.69	145.33	134.76
Decont. & Decom.	1.18	1.39	1.76
TOTAL	249.38	256.82	266.95

Table 6.4 Parametric Analysis of Conversion to U₃O₃: Defluorinationw/AHF (in Millions of Dollars)

* Values in this column are for the reference case; they were taken from Table 4.8
| | | 25% | 50% | 100% * | |
|-----------------------------|---------|------------------|--------|---------|-------------|
| | | | | | |
| Tech. Development | 1 f 1 | 1 3.94 | 13.94 | 13.94 | |
| Process Equipment | | | | | • |
| Engineering | • •• | 5.50 | 6.26 | 7.74 | |
| Fabrications | | 13.10 | 15.05 | 18.96 | |
| Installation | | 6.70 | 7.47 | 8.91 | · |
| Certification & 7 | est | 0.57 | 0.66 | 0.83 | • • |
| Subtotal | • • | 25.87 | 29.44 | 36.44 | · · · · · · |
| Process Facilities | 14 × 14 | 2 - 1 <u>6</u> 4 | | | |
| Engineering | | 9.83 | 12.52 | 14.91 | |
| Construction | - | 28.61 | 36.44 | 43.39 | • |
| Proj. Managemen | t · | 6.40 | 8.15 | 9.71 | |
| Subtotal | | 44.84 | 57.11 | 68.01 | |
| Balance of Plant | | | | | • |
| Engineering | • · | 5.10 | 6.18 | 7.76 | • • |
| Construction | | 14.85 | 17.97 | 22.57 | |
| Proi. Managemen | ť | 2.71 | 3.28 | 4.12 | • • ; |
| Subtotal | | 22 66 | 27.43 | 34 45 | • |
| O BNIVIEI | | 1 · · · | 2 | 54.45 | • |
| Regulatory Complian | ce | 22.70 | 22.70 | 22.70 | |
| Operations and Maint | enance | | | | |
| Material | | 38.85 | 49.67 | 66.12 | |
| Utilities | | 13.45 | 13.84 | . 14.55 | |
| Labor | | 141.13 | 145.20 | 152.72 | |
| Waste Manageme | nt & | 4.81 | 7.01 | 12.47 | • |
| Disposal | | | | | |
| By-product Reven | uie | -19.33 | -38.65 | -77.31 | · |
| Subtotal | | 178.91 | 177.07 | 168.55 | |
| 2.22.0.01 | | 1.00 | | | • |
| Decont. & Decom. | | . C.H.C. 1.69 | 2.06 | 2.51 | 32.5 |
| TOTAL | | 310.61 | 329.75 | 346,60 | |

Table 6.5 Parametric Analysis of Conversion to UO2: Ceramic UO2 w/AHF(in Millions of Dollars)

* Values in this column are for the reference case; they were taken from Table 4.8

toriga i la litera

2

۰, I

· [25%	50%	100% *
ſ		· .	
Tech. Development	20.50	20.50	20.50
Process Equipment		•	
Engineering	4.72	5.55	6.52
Fabrications	10.63	12.75	15.22
Installation	6.29	7.19	8.20
Certification & Test	0.46	0.56	0.66
Subtotal	22.10	26.05	30.60
Process Facilities			
Engineering	11.59	. 13.47	16.09
Construction	33.70	39.18	46.82
Proj. Management	7.54	. 8.77	10.47
Subtotal	52.83	61.42	73.38
Balance of Plant			
Engineering	5.32	6.39	8.22
Construction	15.48	18.59	23.91
Proj. Management	3.46	4.16	5.35
Subtotal	24.26	. 29.14	37.48
Regulatory Compliance	22.70	22.70	22.70
Operations and Maintenance			
Material	70.74	108.86	171.76
Utilities	12.00	12.39	13.30
Labor	125.91	129.98	139.57
Waste Management & Disposal	3.25	4.30	6.14
By-product Revenue	-6.53	-13.05	-26.11
Subtotal	211.90	255.53	330.77
Decont. & Decom.	1.78	2.09	2.54
TOTAL	349.54	404.38	491.86

Table 6.6 Parametric Analysis of Conversion to Metal by ContinuousMetallothermic Reduction (in Millions of Dollars)

* Values in this column are for the reference case; they were taken from Table 4.8

·	25%	50%	100% *
Engineering Development	16.40	16.40	16.40
Manufacturing Equipment			
Engineering	2.47	3.14	4.11
Fabrication	6.93	. 8.80	11.55
Installation	· 1.94	2.45	. 3.19
Certification and Test	0.33	0.39	0.51
Subtotal	11.67	14.78	19.36
Manufacturing Facilities			
Engineering	5.43	6.41	7.64
Construction	15.81	18.68	22.26
Project Management	3.54	4.18	4.99
Subtotal	24.78	· 29.27	34.89
Balance of Plant			
Engineering	5.81	5.88	5.95
Construction	16.89	17.10	17.31
Project Management	3.79	3.83	3.88
Subtotal	26.49	26.81	27.14
Regulatory Compliance	17.43	17.43	17.43
Operations & Maintenance			
Materials	93.97	166.49	311.49
Utilities	30.71	36.11	42.30
Labor	301.37	354.37	415.13
Waste Management	1.29	1.96	3.70
Cask Credit	0.00	0.00	0.00
Subtotal	427.34	558.93	772.62
Decontamination & Decommissioning	1.13	1.27	1.46
TOTAL	525.24	664.89	889.30

 Table 6.7
 Parametric Analysis of Manufacture and Use as Metal

 Shielding (in Millions of Dollars)

* Values in this column are for the reference case; they were taken from Table 4.10

Table 6.8	Parametric	Analysis of	Manufacture	and	Use as	Oxide
£• ' -	Shielding	(in Million	s of Dollars)	•		

	25%	50%	100% *
Engineering Development	6.56	6.56	6.56
Manufacturing Equipment			
Engineering	2.41	3.05	3.94
Fabrication	6.76	8.56	11.06
Installation	1.89	2.38	3.06
Certification and Test	0.32	0.38	0.49
Subtotal	11.38	14.37	18.55
Manufacturing Facilities			
Engineering	5.05	5.79	6.87
Construction	14.72	16.86	20.02
Project Management	3.30	[,] 3.78	4.49
Subtotal	23.07	• 26.43	31.38
Balance of Plant			
Engineering	4.83	4.88	· 4.94
Construction	14.06	14.21	14.36
Project Management	3.15	3.18	3.22
Subtotal	22.04	22.27	22.52
Regulatory Compliance	, 17.43	17.43	17.43
Operations & Maintenance			
Materials	88.41	157.59	296.05
Utilities	30.49	31.35	42.41
Labor	299.19	307.60	416.18
Waste Management	1.37	2.08	3.92
Cask Credit	0.00	0.00	0.00
Subtotal	419.46	498.62	758.56
Decontamination & Decommissioning	1.01	1.13	1.30
TOTAL	500.95	586.81	856.30

* Values in this column are for the reference case; they were taken from Table 4.10

. 104

Figure 6.4 Parametric Analysis of Use Options

· · · · · · · ·	2	5%	50%	100% *
Technology Development		0.82	0.82	0.82
Equipment		•		1
Engineering	. •	0.42	0.59	. 0.95
Fabrications		0.62	0.87	1.39
Installation	. 5	1.20	1.67	2.68
Certification & Test	. <u>.</u> a	0.03	0.04	0.07
Subtotal	· 4	2.27	3.17	5.09
Facilities				
Engineering	:	6.47	11.03	21.30
Construction	o. 1	23.54	40.10	77.45
Proj. Management	100	4.30	7.32	14.13
Subtotal	·	34.31	58.45	112.88
Balance of Plant				
Engineering	· • •	1.00	1.26	1.58
Construction		3.65	4.59	5.74
Proj. Management	. ·	0.67	0.84	1.05
Subtotal	t.	5.32	6.69	8.37
Regulatory Compliance	3: ₁	18.61	18.61	18.61
Operations and Maintenance	ļ			- 12 - L
Material	A 64	8.80	12.00	19.41
Utilities	i (0.90	1.33	2.12
Labor	B ∫T −	24.46	31.88	47.03
Waste Management & Disposal		0.15	0.15	0.15
Subtotal	4.82	34.31	45.36	68.71
Decont. & Decom.	a te	0.00	0.00	· · • 0.00
TOTAL	5 m	95.64	133.10	214.48

Table 6.9 Parametric Analysis of Storage in Buildingsas UF, (in Millions of Dollars)

* Values in this column are for the reference case; they were taken from Table 4.11

	25%	50%	100% *
Technology Development	0.82	0.82	0.82
Equipment			
Engineering	0.27	0.30	0.38
Fabrications	0.65	0.73	0.94
Installation	0.49	0.55	0.71
Certification & Test	0.03	0.04	0.05
Subtotal	1.44	1.62	2.08
Facilities	•		
Engineering	4.57	7.04	11.91
Construction	16.62	25.61	43.32
Proj. Management	3.03	4.67	7.91
Subtotal	24.22	37.32	63.14
Balance of Plant			
Engineering	1,04	1.19	1.34
Construction	3.78	4.33	4.88
Proj. Management	0.69	0.79	0.89
Subtotal	5.51	6.31	. 7.11
Regulatory Compliance Operations and Maintenance	18.61	18.61	18.61
Material	5.35	6.15	8.05
Utilities	1.12	1.23	1.63
Labor	22.83	29.85	45.02
Waste Management & Disposal	0.13	0.13	0.13
Subtotal	29.43	37.36	54.83
Decont. & Decom.	0.00	0.00	0.00
TOTAL	80.03	102.04	146.59

Table 6.10 Parametric Analysis of Storage in Buildingsas UO2 (in Millions of Dollars)

* Values in this column are for the reference case; they were taken from Table 4.11

eqc**108**

· · · · · · · · · · · · · · · · · · ·			
Preparation	25%	50%	100% *
Technology Development	8.20	8.20	8.20
Equipment	• •		
Engineering	0.00	0.00	. 0.00
Fabrications	• 0.00	0.00	· 0.00
Installation	0.00	0.00	0.00
Certification & Test	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00
Facilities	· ·	e de la construcción de la constru	
Engineering	0.00	0.00	0.00
Construction	0.00	0.00	0.00
Proj. Management	, 0.00	0.00	0.00
Subtotal	0.00	· 0. 00	0.00
Balance of Plant			
Engineering	3.11	4.19	6.01
Construction	8.58	. 11.55	16.56
Proj. Management	2.00	2.69	3.86
Subtotal .	13.69	18.43	26.43
Regulatory Compliance	2.02	2.02	2.02
Operations and Maintenance		.	
Material	0.07	0.10	0.14
Utilities	1.69	2.41	3.51
Labor	15.98	21.38	28.41
waste Management & Disposal	0.54	0.74	1.17
Sudiolal	18.28	24.63	33,23
Decont. & Decom.	0.37	0.46	0.60
Total Preparation Cost	42.56	53.74	70.48

Table 6.11 Parametric Analysis of Disposal in a Mined Cavity as Bulk U_3O_8 (in Millions of Dollars)

* Values in this column are for the reference case; they were taken from Table 4.12

[Table 6.11 is continued on the next page.]

		25%	50% ·	100% *
	• •	1. 1. 1.		
Facility	· · ·		· ·	
Engineering		- 66.74	74,17	87.05
Construction	11.	208.11	231,28	271.44
Project Management		38.74	43.06	50.53
Subtotal		313.59	348.51	409.02
Site Preparation & Restoration	on	Λ^{12} and γ	· · · · ·	•
Engineering		3.46	3.54	3.62
Construction		12.57	12.88	13.18
Project Management		2.29	2.35	2.41
Subtotal		18.32	18.77	19.21
Emplacement & Closure	1		•	
Emplacement		12.44	× 18.12	28.49
Emplacement Support		63.03	103.16	183.46
Closure		26.78	29.67	36.93
Subtotal		102.25	150.95	248.88
		1		
Regulatory Compliance		40.35	40.35	40.3
Surveillance & Maintenance	•			
Materials	1	0.58	0.58	0.58
Labor		1.63	1.63	1.63
Subtotal		2.21	2.21	2.2
Total Facility Cost	Ī	476.72	560.79	719.6

Table 6.11 Parametric Analysis of Disposal in a Mined Cavity as Bulk U_3O_3 (Continued)

	· · · · · · · · · · · · · · · · · · ·			
	25%	50%	100%	
GRAND TOTAL	519.28	614.53	790.15	
الأفرار فاستند والمستحد المستخد والمستحد والمراح والمراح والمترا فترق والمراحة والمراحة والمراحة والمراحة والم				

Values in this column are for the reference case; they were taken from Table 4.12.

Cavity

Figure 6.6 Parametric Analysis of Disposal Options

Performance Risk

6.2

The cost effects due to uncertainties in the number of nonconforming cylinders and process and facility design are presented in this section.

THE OWNERS OF

6.2.1 Number of Nonconforming Cylinders

The number of depleted UF₆ cylinders that will not meet transportation requirements over the shipping time frame is uncertain. Changes in the number of such cylinders impact the costs of preparing the cylinders for off-site shipment. The preliminary estimate of the number of nonconforming cylinders is 19,200 at Paducah; 5,200 at Portsmouth; and 4,683 (the entire inventory) at K-25. The uncertainty in the number of nonconforming cylinders ranges from a low of one-half of these preliminary estimates to a high of all cylinders. It is anticipated that the range of uncertainty will change over time as estimates of the numbers of overpressured, overfilled, and substandard cylinders are refined and as cylinder conditions and regulatory requirements change.

	Re	ferenc e]	Low	High		
	Number of Non- Conforming Cylinders	Number of Conforming Cylinders	Number of Non- Conforming Cylinders	Number of Conforming Cylinders	Number of Non- Conforming Cylinders	Number of Conforming Cylinders	
Portsmouth	. 5200	8188	2600	10788	13388	0	
Paducah	19200	9151	9600	18751	28351	0	
K-25	4683	0	2342	2341	4683	0	
Total	29083	17339	· 14542	. 31880	46422	· 0	

In order to analyze the impact of this uncertainty, the engineering analysis developed preconceptual designs for transfer facilities to handle three different throughput rates. The low-capacity case was 320 cylinders per year; the reference case was 960 cylinders per year; and the high-capacity case was 1,600 cylinders per year. The largest facility would be capable of transferring all the cylinders at Paducah, the site with the most cylinders (28,351). The smallest facility would be appropriate for transferring all the cylinders at K-25 (4,683) or all the projected nonconforming cylinders at Portsmouth (5,200) in fewer than 20 years. The cost of each of these three throughput rates was evaluated and used to interpolate or extrapolate costs for the low, reference, and high numbers of nonconforming cylinders.

Costs for preparing cylinders for shipment are, of necessity, site-specific. Based upon the cases analyzed above and the assumptions made concerning the number of nonconforming cylinders, the present value (7% p.a. discount rate) of the total costs for preparing the cylinders for shipment is presented in Tables 6.12, 6.13, and 6.14. The cost of preparing conforming cylinders for shipment is presented in Table 6.12. Tables 6.13 and 6.14 present the costs of the two options for preparing nonconforming cylinders for shipment, the cylinder overcontainer option and the transfer facility option. Since labor costs dominate the preparation for conforming cylinders (Table 6.12) and the overcontainer option (Table 6.13), for initial purposes all other costs for the low and high cases (where applicable) were equated to the reference values. The total cost for each option is the sum of the cost for preparing conforming cylinders for shipment and the cost of preparing nonconforming cylinders for shipment. For the overcontainer option, there is a slight variation in labor costs and costs for the overcontainers (which are reusable). For the

: 112

transfer facility option, a transfer facility sized according to the number of nonconforming cylinders is needed at each site.

There is a significant difference between the cost of preparing cylinders for shipment using the overcontainer and preparing them for shipment using the transfer facility. Total costs using the overcontainer for problem cylinders range from about \$147 million (low-cost column in Table 6.12 plus low-cost column in Table 6.13) for 14,542 nonconforming and 31,880 conforming cylinders to about \$171 million (high-cost column in Table 6.13) if all 46,422 cylinders were nonconforming. The number of nonconforming cylinders has a greater dollar impact on the transfer facility option, where total costs range from \$609 million (low-cost column in Table 6.12 plus low-cost column in Table 6.14) to \$706 million (high-cost column in Table 6.14). Clearly, what is most significant from a cost perspective is which option is chosen—the overcontainer or the transfer facility.

	Refere	nce : - (L	ow	High	_
Inspection and retrieval equipment	1					
Engineering		0.17		0.17	0.00	
Fabrication		1.39		1.39	0.00	
Certification		0.07	:	0.07	0.00	
Subtotal	3.5	1.63		1.63	0.00	
Handling fixtures		1			. ,	
Engineering	_	0.06		0.06	0.00	
Fabrication		0.47		0.47	0.00	
Certification	·	0.02		0.02	0.00	
Subtotal	1.1	0.55		0.55	0.00	
Shipping fixtures	14		:			
Engineering		0.02		0.02	0.00	a saite a
Fabrication		0.16	÷	0.16	0.00	
Certification	,	0.01		0.01	0.00	
Subtotal		0.19		0.19	0.00	
Facilities 🔅			•••			
Engineering	:	0.00		0.00	0.00	
Construction	1.7.18	0.00		0.00	0.00	
Project management		0.00		0.00	0.00	
Subtotal		0.00		0.00	0.00	
	6					-
Regulatory compliance		1.13		1.13	0.00	1.2.1.1.1.1.
Operations and maintenance					0.00	
Materials		1.64	·	1 64	0.00	
Utilities		0.01		0.01	0.00	1
Labor		44.27		81.35	0.0	
Waste management and disposal		0.19	•	0.19	0.00	4.
Subtotal		46 11	:	83.19	0.00	1
				05.17		1 4. 25 L
Decontamination & decommissioning	· .	0.00	;	0 00	0.00	1 March 1
TOTAI	•	40.61	:	96.60	0.00	
		10.01	. <u>.</u>		0.00	
			•			
			• •	•	e da e de la	··
•	1		1	•		t <u>t</u> 4

Table 6.12 Cost Breakdown (in Millions of Dollars) for Preparing Conforming Cylinders

•

.

Table	6.13	Cost	Breakdown	(in	Millions	of	Dollars)	for P	reparing
	Noi	nconfo	orming Cylin	nde	rs - Over	cor	ntainer (Option	• •

· · ·	Reference	Low	High
Engineering Technology	0.82	0.82	0.82
Inspection and retrieval equipment			
Engineering	0.23	0.23	0.23
Fabrication	1.93	1.93	1.93
Certification	0.09	0.09	0.09
Subtotal	2.25	2.25	2.25
Overcontainers			
Engineering	0.54	0.28	0.86
Fabrication	2.39	1.22	3.80
Certification	0.15	0.08	0.24
Subtotal	3.08	1.58	4.90
Handling fixtures	ľ		
Engineering	0.06	0.06	0.06
Fabrication	0.47	0.47	0.47
Certification	0.02	0.02	0.02
Subtotal	0.55	0.55	0.55
Shipping fixtures			
Engineering	0.03	0.03	0.03
Fabrication	0.24	0.24	.0.24
Certification	0.01	0.01	0.01
Subtotal	0.28	0.28	0.28
Facilities			
Engineering	0.00	0.00	0.00
Construction	0.00	0.00	0.00
Project management	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00
Regulatory compliance	1.13	1.13	1.13
Operations and maintenance			
Materials	6.60	5.88	7.47
Utilities	0.03	0.03	0.03
Labor	96.03	48.02	153.36
Waste Management & Disposal	0.33	0.33	0.33
Subtotal	102.99	54.26	161.19
Decontamination & decommissioning	0.00	0.00	0.00
TOTAL	111.10	60.87	171.12

115

. . . .

~ • • •

Table 6.14	Cost Breakdown (in Millions of Dollars) for Preparing Nonconforming
	Cylinders - Transfer Facility Option

	ويستهامون المراجع	· • •	· · ·	
ing the second second second second	Reference	Low	High	
Engineering Development	2.46	2.46	2.46	лі <u>і</u>
Process Equipment	्र तुः भई स्त	CHI TAN	:	• •
Engineering	3.70	CON 2.20	5.49	· ···
Fabrications		4.61	12.08	
Installation	5.24	3.27	7.59	• • •
Certification & Test	0.35	0.20	0.53	
Subtotal	17.30	10.28	25.69	
Process Facilities				
Engineering	16.86	13.76	20.55	
Construction	49.04	te te 40.03	59.79	
Proj. Management	10.97	8.96	13.38	
Subtotal	76.87	62.75	93.72	1
Balance of Plant	1. P. 1.	19 3 0 - 1		· . · ·
Engineering	12.46	10.72	14.55	· · .
Construction	36.26	31.18	42.32	2,379
Proj. Management	8.11	6.98	9.47	.'
Subtotal		48.88	66.34	
1			•.	1.1.5
Regulatory Compliance	56.20	56.20	56.20	
Operations and Maintenance			ئے ہے۔ 1 ہے	
Material	82.78	58.75	111.46	• •
Utilities	28.1	25.46	31.41	··· ·
Labor	278.5	251.68	310.53	· · .
Waste Management &	4.70	4.17	- 5.33	
Disposal			, ,	
Subtotal	394.10	5 340.06	458.73	
· · ·				
Decont. & Decom.	2.7	2.19	3.33	
TOTAL	606.5	3 522.82	706.47	

•: * . 23

1

_19744 ______R_2 (6)

 A^{\pm} .

1 -1 1.1.1 191.00 1 10

niecht r • 1 1 Same 1 - 5115 7 Ne to op t

ate x 116

6.2.2 Process and Facility Uncertainties

Uncertainties in facility and process scope cover those factors that are usually beyond the contractor's or the architect/engineer's control or outside the scope of the original design, schedule, and cost estimate. The project owner (e.g., DOE) must have funds available to cover the cost effects of these factors, or allocate the process development and demonstration time and funds up front to reduce these uncertainties.

Cost impacts were estimated for various equipment additions and enhancements to address potential performance risks. It was assumed that equipment additions would mitigate possible throughput deficiencies or product/by-product quality issues. The reader is referred to Chapter 3 of the Engineering Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride, Rev. 2.

For the transfer facility and selected conversion facilities, the potential increase in the process equipment costs and the resulting increase in the associated process facility costs were estimated. Table 6.15 lists the facility cases addressed, summarizes the equipment sensitivity cases evaluated, and for these provides the sum of the process equipment and process facility cost increases relative to the same for the reference case cost (no performance risks) tabulated in previous sections. The impacts on balance of plant and operations and maintenance costs were not estimated.

Facility	Equipment Additions	.% Cost Increase*
Cylinder Transfer	Double no. autoclaves	37
U ₃ O ₈ Conversion: AHF	Double no. defluorination lines; enhance distillation system	16
U ₃ O ₈ Conversion: HF Neutralization	Double no. defluorination lines	14
UO, Conversion: AHF	Double no. defluorination lines; enhance distillation system; double no. sintering furnaces	24
UO ₂ Conversion: HF Neutralization	Double no. defluorination lines; double no. sintering furnaces	23
U-Metal Conversion: Batch	Double no. UF ₆ to UF ₄ reactors; double no. leach stages	6
U-Metal Conversion: Continuous	Double no. UF ₆ to UF ₄ reactors; Double no. UF ₄ to U lines; add leach system	29

Table 6.15Performance Risks

* Total increase in process equipment and process facility costs (balance of plant impacts not evaluated)

Autoclave transfer of UF_6 is a well-established technology. The comparatively high cost risk assigned to the cylinder transfer facility reflects the unavailability of precise heat transfer data for air-heated autoclaves. Air-heated autoclaves were used in the engineering analysis for the transfer facility due to the assumed condition of the cylinders being transferred and the increased likelihood that a cylinder would breach.

For all oxide conversion cases, there are engineering scaling uncertainties, including residency times, associated with the reactors (kilns) for converting UF_6 to oxide powder $(U_3O_8 \text{ and } UO_2)$. For the oxide conversion cases in which anhydrous hydrogen fluoride is produced, there is a small likelihood that there would be an unacceptable level of uranium

contaminant carryover into the distillation system. Therefore, the reference distillation system was modified to an extractive distillation system using sulfuric acid addition. Finally, for conversion to densified UO_2 , there is engineering uncertainty associated with the scaling of the high-temperature sintering furnaces.

The batch metallothermic reduction to uranium metal is a well-established industrial technology. The estimated cost risk reflects (1) the scaling associated with the use of higher throughput tower reactors for the conversion of the UF₆ to the process feed (UF₄), and (2) the possibility that added leaching capacity would be required for the by-product (MgF₂) decontamination for its disposal as a nonhazardous solid waste.

The continuous metallothermic reduction to uranium metal is not an industrial process and requires extensive engineering development and testing. The assigned performance risk reflects the following: (1) the scaling associated with the use of higher throughput tower reactors, as in the case of the batch process, (2) the engineering uncertainties associated with the scaling of the reduction reactors and continuous casters, and (3) the significant possibility that a leaching system would be required to decontaminate the by-product (MgF₂) for its disposal as a nonhazardous solid waste.

6.3 Process Vulnerabilities

This section describes the vulnerability of the oxide conversion process producing CaF_2 and the metal conversion processes producing MgF_2 to changes in disposal requirements.

.6.3.1 Disposal of CaF₂ By-product from HF Neutralization Options

As stated in Section 4.2.2, all of the conversion options produce potentially salable byproducts—either AHF or CaF₂. Defluorination with AHF production is superior to defluorination with HF neutralization in terms of by-product value and waste avoidance. In the unlikely event that the recovered AHF could not be sold (because of the small [<1 ppm] uranium concentration), the concentrated HF would be neutralized with lime (CaO) to form about 18,600 MT (13,895 cubic yards) of CaF₂. In the absence of regulatory constraints regarding the uranium content, the CaF₂ could be sold as a feedstock for the commercial production of AHF.

If neither the AHF nor the CaF₂ could be sold, then the CaF₂ is assumed to be disposed of as nonhazardous solid waste. This case would result in a large waste stream (approximately 1 kg waste per kg uranium) that would bound the waste for defluorination (U₁O₂ or UO₂). The relatively small amounts of CaF₂ which are produced by the conversion options without neutralization are not considered in this vulnerability analysis. Neutralization of the AHF with lime (CaO) to form CaF₂ is also a reasonable variation for the metal conversion options and the gelation options. However, the impact of adding a neutralization step to the metal and gelation conversion options has not been quantified from either an engineering or a cost perspective.

A potential vulnerability is that disposal as low-level waste (LLW) would be necessary because of the small uranium content in the CaF₂, and the disposal costs would rise significantly. The pessimistic case then assumes that the by-product must be disposed as a LLW. The cost impacts of CaF₂ disposal are summarized in Table 6.16. Assumed disposal costs are \$2/ft³ for nonhazardous solid waste and \$100/ft³ for LLW, as defined in Section 3.2.8.

C (118)

Option	CaF ₂ (MT/yr.)	Cost of Disposal as Nonhazardous Solid Waste	Cost of Disposal as LLW	Total Conversion Cost
U ₃ O ₈ w/HF Neutralization	18,600	\$0.75/yr. (\$15 total)	\$38/yr. (\$750 total)	\$340 (Nonhazardous) \$544 (LLW)
UO ₂ w/HF Neutralization	18,600	\$0.75/yr. (\$15 total)	\$38/yr. (\$750 total)	\$409 (Nonhazardous) \$614 (LLW)

 Table 6.16 Cost Impacts of Disposal of CaF₂ Resulting from Conversion

 Options with HF Neutralization (Millions of Dollars)

[•] Discounted costs (7% p.a. rate). See Table 4.8 for reference cases involving sale of CaF₂.

The neutralization reference cases have total conversion costs of \$325M and \$395M for U_3O_8 and UO_2 , respectively; therefore, CaF₂ disposal as a nonhazardous solid waste would result in a minor cost increase relative to its sale. However, CaF₂ disposal as a LLW would result in a major cost increase relative to its sale or disposal as a nonhazardous solid waste.

6.3.2 LLW Disposal of MgF, By-product from Metal Conversion Options

The metal conversion process produces MgF₂ in substantial quantities (about 10^4 MT or slightly under 8,000 cubic yards annually) which must be disposed as a waste. The batch metallothermic process includes a decontamination step for the MgF₂ by-product, resulting in < 90 ppm uranium. The by-product from the continuous metallothermic process is assumed to have a low enough uranium concentration (< 90 ppm) that decontamination would not be necessary. For both cases, it is assumed that the MgF₂ would be granted a free release exemption for disposal as a nonhazardous solid waste. This is the assumption for all the cost estimates in Chapters 4 and 5.

Exemptions for decontaminated MgF₂ have been granted, but the quantities were substantially smaller. The practical limitations on MgF₂ decontamination are presently unknown, but it is likely that the residual levels of uranium will be at least 10-fold greater than the levels in CaF₂ from the HF neutralization options (Section 6.3.1). Accordingly, and in the absence of a *de minimus* value, MgF₂ is judged to be more vulnerable for disposal as a LLW than CaF₂. The cost impacts for MgF₂ disposal are summarized in Table 6.17. Assumed disposal costs are \$2/ft³ for nonhazardous solid waste and \$100/ft³ for LLW, as defined in Section 3.2.8.

Option	MgF ₂ (MT/yr) ***	Cost of Disposal as Nonhazardous Waste (Reference Case)	Cost of Disposal as LLW	Total Conversion Cost	Cost Increase for Disposal as LLW
Batch metallothermic reduction	9,663	\$0.41/yr (\$8.3 total)	\$20.7/yr (\$413 total)	\$665 (Nonhazardous) \$745 (LLW)**	\$80 1
Continuous metallothermic reduction	10,097 .,	\$0.43/yr (\$8.6 total)	\$21.6/yr (\$431 total)	\$492 (Nonhazardous) \$600 (LLW)	\$108

Table 6.17 Cost Impacts of Disposal of MgF₂ Resulting from Metal Conversion Options (Millions of Dollars)

* Discounted costs (7% p.a. rate). See Table 4.8 for reference cases.

** Takes into account increase in nongrouted MgF,

*** Ungrouted weight.

Disposal as a LLW would result in a major increase in the metal conversion costs. The reference case assumes disposal as nonhazardous waste in bulk form. If grouting were required, there would be additional costs for the grouting operation and the increased disposal volume. In moving from the reference case to the LLW disposal case, the increase in option cost is less for the batch than for the continuous process. This is primarily due to the elimination of the decontamination system for the batch process. This reduces capital costs (process equipment and process facility) and eliminates the operations and maintenance cost associated with the decontamination system. Market States of States and States

and the start of the second
e et a l'atter a 1 . . . Rite At the sec

Contraction and the second s second seco

. . . .

.

Rei ana.

entre en la constante en la consta

(a) Compared to the second se Second seco

7. **REFERENCES**

American National Standards Institute. ANSI N14.1-1995, American National Standard for Nuclear Materials - Uranium Hexafluoride - Packaging for Transport. December 1, 1995.

Business Week, March 25, 1996.

Chemical Market Reporter (formerly Chemical Marketing Reporter), June 30, 1995-March 29, 1996.

Code of Federal Regulations. Title 40 CFR Parts 1500-1508 (Council on Environmental Quality Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act).

Code of Federal Regulations. Title 49 (Transportation).

Dubrin, J., et al. The Engineering Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride, Revision 2. UCRL-AR-124080. Livermore, CA: Lawrence Livermore National Laboratory. May 1997.

Dubrin, J., and J.N. Zoller. Characterization of Options for the Depleted Uranium Hexafluoride Management Program. Livermore, CA: Lawrence Livermore National Laboratory. November 1995.

Haelsig, R.T. Depleted Uranium Concrete Container Feasibility Study. EGG-MS-1140. Idaho National Engineering Laboratory. September 1994.

Herztler and Nishimoto. Depleted Uranium Management Alternatives. August 1994.

Lawrence Livermore National Laboratory. Depleted Uranium Hexafluoride Management Program Work Breakdown Structure (Initial Report). Livermore, CA. 1995.

Lawrence Livermore National Laboratory. Depleted Uranium Hexafluoride Management Program Work Breakdown Structure, Revision 1. Livermore, CA. May 14, 1996.

Lockheed Martin Energy Systems, Inc. UF_{δ} Cylinder Program Management Plan. K/TSO-30. Oak Ridge, TN: Environmental Management and Enrichment Facilities, Technical Support Organization. July 1996.

Murray, Alex, et al. Draft Summary Report on Applicability of the Minimum Additive Waste Stabilization (MAWS) Approach to Hanford Waste Streams. Science Applications International Corp. 1994.

Office of Management and Budget. Circular No. A-94, Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs. October 29, 1992.

Parks, J.W. "Data for Revised No Action Alternative in the Depleted UF₆ Programmatic Environmental Impact Statement," memorandum from J.W. Parks (Assistant Manager for Enrichment Facilities, EF-20, U.S. Department of Energy, Oak Ridge Operations Office, Oak Ridge, TN) to C.E. Bradley, Jr. (U.S. Department of Energy, Office of Facilities, NE-40, Germantown, MD). April 7, 1997.

Powell, F.P. Comparative Economics for DUCRETE Spent Fuel Storage Cask Handling, Transportation, and Capital Requirements. INEL-95/0166. Idaho National Engineering Laboratory. April 1995.

U.S. Department of Energy, Office of Nuclear Energy. "Management of Depleted Uranium Hexafluoride (UF₆): Request for Recommendations" and "Alternative Strategies for the Long-Term Management of Depleted Uranium Hexafluoride Resources at Several Geographic Locations: Advance notice of intent to prepare an environmental impact statement," *Federal Register*, Vol. 59, November 10, 1994, pp. 56324 and 56325.

U.S. Department of Energy, Office of Nuclear Energy, Science, and Technology. Draft Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride. Forthcoming [1997].

U.S. Department of the Interior, Bureau of Mines. Mineral Industry Surveys: Fluorspar. Washington, DC.

United States Enrichment Corporation. Uranium Hexafluoride: A Manual of Good Handling Practices. USEC-651. January 1995.

Wall Street Journal, March 13, 1997.

Zoller, J.N. Letter to C.E. Bradley, Jr., Subject: Work Breakdown Structure for the Depleted Uranium Hexafluoride Management Program Engineering and Cost Analysis Projects. UP-DU/95-5-G-207. May 14, 1996.