Ningers Notant Power Corporation Nine Mile Point Rucios Station Unit 2, P. C. Box 63 Lycoming, New York 13093

FAX TRANSMITTAL

TO:

Darl Hood NRC

DEPT .:

TOTAL NUMBER OF PAGES FAXED (including covershort)

COMMENTS:

FROM: Ted Kulczycky Nuclear Engineering, ESB-2 EXT: 315-349-1949. FAX: (315) 349-1886 157

NT W MAGARA	Page 1 (Next 2)
NL MOHAWK.	Total 3
NUCLEAR ENGINEERING	Last 3

NINE MILE POINT NUCLEAR STATION Unit (1, 2 or	0=Both):1 Disc	cipline : ANALYSIS
Tite UNIT 1 FUEL HANDLING ACCIDENT DOSES IN UNIT 1 CONTROL	Calculation No. H21C045	Rev Disp 01 01A
ROOM	Originator T. M. KURTZ TBnK	Date 5/23/98

(Sub)System(s)	Index No.	Checker	Date
202	N/A	A. C. MOISAN GLM	5/23/98
Design/Configuration Change No.		Approver	Dete
N1-98-016		T. G. KULCZYCKY TGK	5/23/98

NMPC Acceptance/Date: N/A

.....

Superseded Document(s): NONE

Description of Change

Calculation H21C045, revision 01, used 95% RBEV filter efficiency for elemental iodine to be consistent with Regulatory Guide 1.52 guidance and system design. Technical Specification 3.4.4.c states that the minimum allowable filter efficiency is 90%. Therefore, this disposition determines control room doses based on 90% RBEV charcoal filter efficiency.

Resolution

Doses were: Thyroid: 5.38 Rem, Gamma: 0.0219 Rem, and Beta (skin): 0.822 rem. For a design basis Unit 1 Fuel Handlling accident, control room doses are less than 10CFR50 Appendix A GDC 19 acceptance criteria assuming 90 % RBEV charcoal filter efficiency for elemental and methyl iodide. Therefore, the conclusions of H21C045, revision 01, remain valid.

Cross Reference change(s): NONE

		and the second	
Confirmation Required (Yes / No): No			Operations Acceptance
See Page(s) :	(APP/FIO/VOI): APP	(Càic / Hold) :Caic	Req'd. (Yes / No) : No

Evaluation Number(s): N/R Copy of Applicability Review Attached (Yes / N/R)? N/R	Component ID(s) (As shown in MEL) : FLT-202-/1 FLT-202-42	
Key Words : DOSES, GDC 19, FILTER EFFICIENCY, CONTROL ROOM HABITABILITY, FUEL HANDLING ACCIDENT,		:
	FORMAT # NEP-DES-	08, Rev. 02 (F03)

5

NUCLEAR ENGINEERING	CALCULA	TION CON	TINUATION S	HEET	Page 2 (Next
ine Mile Point Nuclear Sta		Unit: 1	•	Dispos	ition: 01A
Dinginator/Date TM. Kuitz / 5/23/98 ef.	Checker/Date A. C. Moisan	1 5/23/98	Calcutation No. H21C045		Revision 01
DATA / ASSUMPTIO	ing Emergency Ver to be 90%. This is ges are made to th	in accordance ne DATA / ASS	with Unit 1 Techr UMPTIONS used	nical Specificatio	ns 3.4.4.c.
The results of DRAG(01 with the 90% filter	efficiency, are: CR i	DOSES NO CR	FILTERS		2045, revisior
		ACTIVATION	AT T=15 SECON E (REM)	IDS	
		THYROID	GAMMA	BETA	·
DOSES IN CO GDC		5.58 30	0.0219 5	. 0.822 30	
RESULTS / CONCLU All doses resulting from activation of control ro	n a design basis fu	el handling acc vstem.	ident are less tha	in the GDC 19 ci	nteria with no
COMPUTER RUN LO	G				·
JOB# 1072		SCRIPTION	HA to Unit 1 CR	- no CR filters	
The output card is fou	nd on the following	page.			• .
REFERENCES					
See parent calculation	H21C045, revision	01 (DATA / AS	SUMPTION item	3)	
· ·					

FORMAT # NEP-DES-03, Rev. 02 (F02)

.

** PROGRAM -- DRAGON -- JILS.VI.ROS.LEVDO-- 4.

CARD COLUMNS		1	2	· ' 3		4	Ś	5	• ;	7	4	CAPO	COLUNNS
CARD NO.	123456789	01234567	1901234	567090123	4 5678	7012345	67890173	34567990123	456789	0123456	7990		•
1	++NMP1 FH	A 15 SE	CONDS TO	1 720 HRS	RBEV	FILTER	NO CRAT	TS FILTER			•	•	
2	5 111	0 1 0111	0	1	0	0	0.0075	0.0025	1				
3	SPENT FU	EL POOL		t	0	0	0	0 2.015	0	0	0	:	
4	REFUEL F	LOOR		1.07+6	0	0	0.0	0.0 2.0+5	0.90	0+9	0		
5	CONTROL	NOOM		1.31+5	·0	0	0	0 1.0	0	0	1		
6	0-00+	0 2.8544	J.26+1	2.3144 3	.69-4	4.2613	0.0040	0.0010					
7	0.00+	0 0.00+0	0.00+0	3.69-1 1	.71+2	9.65+2	2+7.7-2	5-21+1		•			
8	0.00+	0 2.01+2	4.29+2	5.6844 6	. 82+2	1.30+4	0.0040	0+00+0		•			
.9	t	· 1 [·]	0	0 t	0	2530.	2530.3.1	12-4	1	12.	78-4		
10	2	1	0	0 1	0	2530.	2530.3.1	12-4	1	31	10-J		
11	3	1	o '	0 1	0	2530.	2530.3.1	12-4	1	14.	17-3		
. 12	4	1	0	1 15	. 0	2530.	2530.3.	12-4	1	t	2.0		
13	5	ο,	0	0 0	÷ 0	2530.	2530.1.2	22-8	t	1 7	20.0		

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

HLICOYSOIA

J08#

1072

S

Ŵ

MAY-23-98 SAī 11:30 Aħ ₹ From:<kulczyckyt@nimo.com>To:WND2.WNP3(DSH)Date:5/21/98 3:18pmSubject:NMPC Unit 1 Control Room doses resulting from a FuelHandlingAccident.

Attached calculation determines the radiological consequences of a Fuel Handling Accident to the Unit 1 Control Room.

(See attached file: U1_FHA.doc)

The document is in WORD for Windows version 7.0 format - if unable to read please call. My number is 315-349-1949 or try my pager 1-800-732-4365, pager # 1072.

Ted Kulczycky

CC: GATED.nrcsmtp("moisana@nimo.com", "mazzaferrop@nimo...

Acticade W/O SGTS = SJAlin Hyraid @ 10% gap 0.364/Alm Wb

NOTE: This revision is a total rewrite

OBJECTIVE OF CALCULATION

Bener for meeting CR downed Bener for prepeters burden petpeint for pepieles monitor an in petpeint monitor . And monitor as in TS & Table 3.6.2. j.

The objectives of this calculation are to:

determine doses in the Unit 1 Control Room resulting from a Unit 1 Fuel Handling Accident (FHA).

confirm that the activity released is sufficient to alarm the refuel bridge radiation monitor

Doses calculated will be compared to the 10CFR50 App A GDC19 (REF 9) dose limits to confirm that the Unit 1 Control Room is habitable following a design basis FHA at Unit 1.

METHOD

Core activity at end of an operating cycle is decayed for 24 hrs as that is assumed to be the earliest point at which fuel is anticipated to be moved. Using the Regulatory Guide 1.25 (REF 1) guidance and the Stone & Webster (SWEC) computer code DRAGON (REF 11), the gap activity in 125 fuel pins of 8x8 fuel is assumed to be released to the fuel pool water. Per the regulatory guide, the water provides a DF of 100 for halogens and 1 for noble gas. The Unit 1 Control Room is assumed to intake air at the normal Unit 1 Control Room ventilation intake rate with emergency filtration conservatively assumed not to actuate. The activity release is completed within two hours and CR doses are calculated for 720 hr and the dose results are then compared to the dose limits given in GDC 19 (REF 9). An output of the DRAGON code is a gamma dose rate in the refuel floor airspace. This result is compared to the technical specification trip point of refuel bridge radiation monitor.

Changes from Revision 0

Due to recent modifications to the Unit 1 Control Room ventilation system and also recalculation of Control Room free air envelope have resulted in the following changes to this analysis

Variable	Rev 00	Rev 01
Control room normal intake rate	3550 cfm 4-	2500 cfm
Control room free air volume	1.36+5 ft3	1.31+5 ft3

Revision 0 assumed a partially filtered release from the Unit 1 Reactor Building. Revision 1 provides more discussion of the actual response time of the RB isolation dampers and compares the time required to isolate the reactor building (RB) ventilation versus the time required for the activity released from the pool to reach the RB isolation dampers calculated in REF 16 to show that none of the activity released as a result of a FHA is released unfiltered due to the environment.

Revision 0 used 90% filter efficiency for RBEV which was overly conservative. To be consistent with other Regulatory Guide 1.52 (REF 15) guidance, the following RBEV filter efficiencies are used - elemental (inorganic) - 95% and methyl (organic) - 90%.

Incorporate independent reviewer's comments.

DATA / ASSUMPTIONS

The reactor is assumed to be operating at 102% of full thermal power at the time of plant shutdown (REF 2, page 15.6.5-5 and REF 3 recommend that 102% power be used in analyses to allow for possible instrument errors in registering the power level).

Reactor power level is 1850 MWt and 102% power is 1887 MWt. (REF 4 a).

- The core inventory in curie/MWt (from REF 6) is multiplied by the core power level of 1850 MWt and then by 1.02 to account for the instrument uncertainty to give core activity at the time of shutdown. These data are given in Table 1.
- 125 fuel rods of 8x8 fuel are assumed to fail in the accident (REF 5 Section XV.C.3.2).
 8x8 fuel assemblies contain 62 fuel rods each (REF 5 section XV.C.3.2) each and there are 532 fuel assemblies in the reactor (REF 5 Section I.B.4.0) making a total of 62 * 532 = 32984 fuel rods total. Using 8 x 8 fuel is assumed to be more conservative than 9x9 or 11x11 as there is more activity per fuel rod and therefore more activity released as a result of an 8x8 accident.

Release parameters as defined in Safety Guide 25 (REF 1)

10% of the total core halogen and noble gas activity is in the fuel rod gaps with the exception of Kr-85 where the fraction is 30%

all gap activity in the damaged fuel rods is released to the fuel pool water the fuel pool water has an effective DF of 1 for noble gas and 100 for halogens radial peaking factor of 1.5 is assumed in the rods that are damaged.

breathing rate of 3.47E-04 m3/sec. This is assumed for the duration (0-720 hr) of the accident.

halogens above the water are 75% inorganic (elemental) and 25% organic (methyl) all activity released from pool released from building in 2 hrs (or on filters)

The accident is assumed to occur 24 hrs after shutdown as that is judged to be the earliest that fuel can be moved after shutdown. This is consistent with the USAR and previous analysis.

The free volume of the Unit 1 control room is 1.31E+5 ft³. (REF 8).

The control room normal intake rate is 2250 cfm \pm 10%. 2250 cfm + 10% = 2475 cfm,

:/: ...

KD.

247)

28.75 ? + 107.

use 2500 cfm (REF 18).

- The doors of the control room are weather-stripped and the penetrations sealed to maintain a positive pressure of approximately one-sixteenth of an inch of water (REF 5, page III-11), however, an unfiltered inleakage of 10 cfm to the control room is assumed per REF 2, Section 6.4.III.3.d.(2).(ii). An additional 20 cfm is assumed to account for an unfiltered inleakage (REF 7) through an unsealed drain. The total inleakage of 30 cfm combined with the normal ventilation flow rate makes the total Unit 1 CR air intake rate 2530 cfm.
- Stack 0 2 hr and 2 hr -720 χ /Q values are given in Table 2 (REF 6).
- GDC 19 (REF 9) dose limit 5 Rem whole body or its equivalent. This equates to 30 Rem Thyroid and 30 Rem Beta (skin) per SRP (REF 2 Section 6.4).
- Per calculation SO-GOTHIC-REFUEL001 (REF 16) minimum transit time for the activity to travel from the top of reactor cavity water to the nearest refuel floor exhaust duct inlet is 12 seconds.
- The response of the reactor building ventilation to a refuel bridge radiation monitor high radiation signal is as follows (REF 17):
- t=0 signal to isolate received
- t=1 second logic response time (conservative) judgment
- t=5 seconds BV-202-32 closes last test 1.9 seconds
- t=5.5 seconds BV-202-31 closes last test 2 seconds

The refuel bridge radiation monitor is assumed to initiate a signal within ~2.5 seconds of sensing high radiation making total time to isolate the RB, after sensing radiation, approximately 8 seconds. DRAGON output will show enough activity will be present at t=1 seconds to alarm the monitor making the time from the activity leaving the pool until the secondary containment is isolated approximately 9 seconds. It is estimated that the transit time from the inlet of refuel floor ductwork to the RB isolation damper is \geq 3 seconds making the minimum total transit time required for the activity to pass from the top of cavity water to the RB isolation damper \geq 15 seconds. As the time required to isolate the RB is approximately 9 seconds, the release is filtered by the RBEV. For purposes of this calculation, following a 15 second delay in the Reactor Building for the activity to travel from the pool to the RB exhaust damper, the activity is assumed to be released as a puff release through the RBEV filters. This model simplifies the calculation and also ensures that all activity available to be released to the environment is released within 2 hours.

The iodine removal efficiency of the RBEV filters is assumed to be 95% for elemental iodines and 90% for organic iodines. The RBEV duct heaters control the humidity to less than 70% per Section VII.H.2.0 of the UFSAR (REF 5). Based on humidity control and penetration, Regulatory Guide 1.52, Table 2 (REF 15) assigns a filter efficiency of 95% for elemental iodines for 2 inch charcoal beds. The methyl iodine filter efficiency of 90% assumed is conservative as Reg Guide 1.52 Table 2 also assigns a methyl filter efficiency of 95% for 2" deep filters that have humidity control of 70%. Particulates are not discussed as Reg Guide 1.25 states that 75% of the iodines released from the pool are elemental and 25% are organic.

lat Tut

The release point for RBEVS is the Main Stack. (REF 5 Section VII.H.1.0, page VII-36).

Refuel bridge setpoint \leq 1000 mr/hr per Table 3.6.2j of the Tech Specs (REF 4c).

The free air volume above refuel floor is 1,072,600 ft3 (REF 14). This value is conservatively used to calculate the dose rate at the refuel bridge monitor. The DRAGON (REF 11) model uses a finite hemispherical cloud model with the calculated radius of the cloud resulting in a cloud volume equal to the room being modeled - in this case 1.07E6 ft3. This results in a very dispersed source. In reality the refuel bridge monitor is located directly over the pool which means as the activity is released from the pool into the air above the pool, the monitor would likely be immersed or at least be very close to a much smaller cloud which would be much more concentrated than the one assumed by DRAGON (REF 11).

T	able	1

CORE INVENTORY AT 102% THERMAL POWER					
ISOTOPE	ACTIVITY (Ci/MWt)	CORE INVENTORY (Ci)			
I-131	2.90E+04	5.47E+07			
I-132	4.20E+04	7.93E+07			
I-133	4.80E+04	9.06E+07			
I-134	6.20E+04	1.17E+08			
I-135	4.90E+04	9.25E+07			
KR-83M	3.00E+03	5.66E+06			
KR-85M	6.50E+03	1.23E+07			

KR-85	3.00E+02	5.66E+05
KR-87	1.20E+04	2.26E+07
KR-88	1.70E+04	3.21E+07
KR-89	2.00E+04	3.77E+07
XE-131M	1.80E+02	3.40E+05
XE-133M	2.00E+02	3.77E+05
XE-133	5.60E+04	1.06E+08
XE-135M	1.70E+04	3.21E+07
XE-135	9.80E+03	1.85E+07
XE-138	4.40E+04	8.30E+07

TABLE 1: Ci/MWt from Reference 6, pages 6 & 7, is multiplied by 1850 MWt * 1.02 to determine core inventory.

Table	2
-------	---

X/Q VALUES @ MAIN STACK RELEASE FOR CONTROL ROOM AIR INTAKE (SEC/M 3)				
TIME	X/Q			
0-2 HR	3.12E-04			
2-720 HR	1.22E-08			

TABLE 2: All X/Q values taken from REF 6, pages 12 & 13.

CALCULATION

The core activities at the time of shutdown are input to SWEC computer code RADIOISOTOPE (REF 12) run # 9203 dated 5/1/98 in units of μ Ci and decayed for 24 hrs with the results presented in Table 3. The total core activity is then multiplied by 10% (except Kr-85 which is 30%) to get activity in gap. This value is then multiplied by 125/32984 to get gap activity in the damaged fuel pins and multiplied by 1.5 to account for the radial peaking factor. This final result is total activity released to the fuel pool. All this calculating is performed in Table 3 A card input of the input to this run is included in Appendix A

	CORE ACT	CORE GAP ACT 24 HRS AFTER	GAP ACTIVITY IN 125 FUEL RODS	ACTIVITY RLSD
ICOTODE	SHUTDOWN	SHUTDOWN	(W/PEAKING FACTOR)	FROM POOL
ISOTOPE	:	Ci	Ci	Ci
1-131	5.02E+07	5.02E+06	2.85E+04	2.85E+02
1-132	5.74E+04	5.74E+03	3.26E+01	3.26E-01
I-133	4.07E+07	4.07E+06	2.31E+04	2.31E+02
1-134	6.50E-01	6.50E-02	3.69E-04	3.69E-06
1-135	7.49E+06	7.49E+05	4.26E+03	4.26E+01
KR-83M	6.50E+02	6.50E+01	3.69E-01	3.69E-01
KR-85M	3.00E+05	3.00E+04	1.71E+02	1.71E+02
KR-85	5.66E+05	1.70E+05	9.65E+02	9.65E+02
KR-87	4.88E+01	4.88E+00	2.77E-02	2.77E-02
KR-88	9.17E+04	9.17E+03	5.21E+01	5.21E+01
KR-89	0.00E+00	0.00E+00	0.00E+00	0.00E+00
XE-131M	3.53E+05	3.53E+04	2.01E+02	2.01E+02
XE-133M	7.55E+05	7.55E+04	4.29E+02	4.29E+02
XE-133	1.00E+08	1.00E+07	5.68E+04	5.68E+04
XE-135M	1.20E+06	1.20E+05	6.82E+02	6.82E+02
XE-135	2.28E+07	2.28E+06	1.30E+04	1.30E+04
XE138	0.00E+00	0.00E+00	0.00E+00	0.00E+00

The DRAGON model used is as follows:

Fuel pool water volume - not required due to release is in fractions per day

Release water to RB air space 2.0E+5 fractions per day for the period 0 to 2 hrs. This is the DRAGON recommended value for puff releases.

Volume 2 Refuel floor air space volume 1.07+6 ft3

No release rate for 15 seconds followed by a puff release through the RBEV filters. The 15 second delay models the time for the cloud of activity to reach the RB isolation damper.

Exhaust filter efficiency = 0.95 elemental and 0.90 methyl

Unit 1 Control Room

volume - 1.31E+5 cubic ft intake rate 0 to 720 hrs 2530cfm filter efficiencies 0 - 720 hrs = 0 Breathing rate 0-720 hrs 3.47E-04 m3/sec

0 - 2 hr stack γ/Q is 3.12E-4 sec/m3 No γ/Q is required after 2 hours as all the activity has been released.

Activities in units of Ci from column 3 Table 3 are instantaneously released to Volume 1 (pool water) at T=0 with the iodine fractions being 0.0075 for elemental and 0.0025 for methyl to model the pool DF of 100 and the species fractions above the fuel pool as recommended by Reg Guide 1.25.

The results of DRAGON run #8842 5/16/98 are listed in Table 4 below.

TABLE 4 - CR D	OSE NO CI	R[®]FILTER [®]					
RBEV FILTER ACTIVATION AT T=15 SECONDS							
720 HR DOSE (REM)							
	THYROID						
RELEASE FROM RB	RELEASE FROM RB 3.49E+00 2.18E-02 8.22E-01						
GDCLIMIT	3.00E+01	5.00E+00	3.00E+01				

The DRAGON run also gave a gamma dose rate on the refuel floor of 15.5 Rem per hour at 1 sec and 17.2 Rem/hr at 5 seconds. This proves that the Technical Specification alarm limit of 1000 mRem/hr will be reached within 1 second of the activity leaving the pool and supports the estimated 9 second time for the RB to isolate post FHA.

A second DRAGON run (run #8825 dated 5/16/98) was made which was a duplicate of the DRAGON run made above except with no RBEV filters. This run determines the dose with a puff release with no filtration. This run allows for determination of doses resulting from FHAs where fuel damage less than that required to alarm the monitor occurs. These doses are also compared to GDC 19 to ensure there is not a FHA which fails to alarm the radiation monitor but could exceed GDC 19 dose criteria. The results are given below:

The thyroid dose for a FHA with 125 failed rods with no holdup and no filtration was 50.4 Rem. This means that:

 $\frac{30 \operatorname{Re}m}{50.4 \operatorname{Re}m} * 125 \operatorname{Rods} = 75 \operatorname{Rods}$

are required to fail in order to receive a Thyroid dose in excess of 30 Rem with no RBEV actuation.

Remembering that 125 rods resulted in a (conservative) dose rate of 15.5 Rem/hr at the refuel bridge monitor, then:

 $\frac{75Rods}{125Rods}$ * 15.5 Rem / hr = 9.3 Remhr at the refuel bridge monitor which is well above the setpoint of 1000 mRem/hr.

RESULTS/CONCLUSIONS

Gamma dose rate on refuel floor at T=1 seconds - 15.5 Rem/hr gamma. Note this is a very conservative model. It is likely that the dose rate would be much larger as the monitor is on the refuel bridge right above where the bubble of activity would emerge from the pool.

All doses resulting from a Design Basis FHA at Unit 1 result in doses within the GDC 19 criteria. See Table 4 above.

A fuel handling accident which would not result in sufficient activity to alarm the refuel bridge monitor also would not result in sufficient activity being released to exceed GDC 19 dose limits.

COMPUTER RUN LOG

<u>JOB #</u>	DATE	DESCRIPTION OF RUN
9203	5/1/98	RADIOISOTOPE (REF 12) Core activities decayed
for 24 hrs.		
8842	5/16/98	DRAGON (REF 11) Unit 1 FHA to Unit 1 CR - no
CR filters		
8825	5/16/98	DRAGON (REF11) Unit 1 FHA to Unit 1 CR - no
RBEV or CR		Filters.

Note: Card image of computer run listed above is given in APPENDIX A

REFERENCES

Reg Guide 1.25 (also known as Safety Guide 25), "Assumptions Used for Evaluating the Potential Radiological Consequences of a Fuel Handling Accident in the Fuel Handling and Storage Facility for Boiling Water and Pressurized Water Reactors".

NUREG-0800, Standard Review Plan.

Regulatory Guide 1.49, Revision 1, "Power Levels of Nuclear Power Plants." Nine Mile Point Unit 1 Technical Specifications.

- a. Facility Operating License which accompanied the Technical Specifications
- b. Section 3.4.4.b, 3.4.4.c, and 3.4.4.d, "Limiting Condition for Operation of Emergency Ventilation System."
- c. Table 3.6.2j
- Nine Mile Point Unit 1 Final Safety Analysis Report Revision 15
- G&H Calculation No. N83-1, Rev 1 in CDS as Calc H21C020, "LOCA CR, TSC & EOF Doses"

NMPC calculation S10-CR277.A-U1.210 Revision 00.

Calculation S10-210HV12 and drawings C18810C sheet 1, C18812C sheet 1, C18804C sheet 1 as described in Mechanical Design Input to Design Change N1-98-016 dated 5/17/98

10CFR Part 50, Appendix A, General Design Criteria 19.

NMPC Procedure N1-OP-10 Revision 13

DRAGON Computer Code, SWEC Number NU-115, Version 5, Level 0

RADIOISOTOPE Computer Code SWEC Number NU-007, Version 1, Level 2.

Drawing C-18778-C, Revision 6 Reactor Building Ventilation System.

NMPC Calculation SO.Gothic-RB01 - (Attachment 3) - Revision 0.

- Regulatory Guide 1.52, Revision 2, 3/78, "Design, Testing, and Maintenance Criteria for Post Accident ESF Atmosphere Cleanup System Air Filtration and Adsorption Units of Light-Water-Cooled-Nuclear Power Plants".
- Calculation SO-GOTHIC-REFUEL001, "Predicting the Flow Behavior within the Reactor Refuel Floor at 340' Elevation with Normal Reactor Building Ventilation System", 5/21/98.
- System Design Basis Document-601 Rev 0 and drawing C22026-C Sheet 8A as described

in Electrical Design input to design change N1-98-016 dated 5/19/98, file code ESB1-E98-0014.

Internal Correspondence, file code M98-014, from T. Mogren to T. Kulczycky dated 5/18/98 "Outside Air Flow Rate for Control Room Ventilation".

APPENDIX A (4 pages total)

CARD IMAGE OF COMPUTER RUNS

·	UE ÚÓ:31 K. B. HEDUI	•		10. 348 <u>44</u>				.
- EL	EAR ENGINEERING	CULATIO	N CO	VER	HEE			2)
NINE I	AILE POINT NUCLEAR STATION	Unit (1, 2	or 0=Both)	: 1 Disci	oline : H	ealth Physic	~~	
Title: U	nit 1Fuel Handling Accident Doses	in Uni1 Control	Calculati	on No.				
Room	. `\		H21CC (Sub)sys			uilding I	Flore Flore	Inday Mr.
	<u> </u>		ARM		R		Floor Elev. 340	Index No. N/A
Originati A. Mois	an		.k r	1	<u> </u>			
	(s) / Approver(s) z/T. Kulczycky			1	/			
Rev	Description	Design Change No.	Prep'd By	U- Date	Chk	Date	Арр	Date
00	Original Issue	NXA .	uom	5/1/98	TAK	5/1/98	TCK	5/1/
}		+			}		+	┼───
}					<u> </u>			╆
Docum Ref No	ent Cross Reference(s) - For addi		360 p age(s):13	Doc	lador	Shoot	De
NO	See page 13	ument No.			Туре	Index	Sheet	Re
				\mathbf{X}				
				\rightarrow		- 		
				<u>`</u> _		+		
Genera See pa								
Calcula that no	ntion determines Unit 1 Control Roor Unit 1 Control Room emergency filt	er actuation is requi	ired to redu	ce doses be	low GDC 1	9 limits.		
	mation Required (Yes / No) : No	Final Issue Stat		File Loca (Calc / H	tion old) :CAL(tions Accepted (Yes / N	
See Pa					18			
See Pa Evalua Copy c	tion Number(s) / Revision:SE 98 of Applicability Review Attached (3-010 Rev 0 Yes / N/R)?N/R	Comp	onent ID(s) 16C-10	(As shown	n in MEL) :		
See Pa Evalua Copy o Key We	tion Number(s) / Revision : SE 9	B-010 Rev 0 Yes / N/R)?N/R pnitors, Control	Compo RIC-RO			al memo 76	71 # of pages	·
See Pa Evalua Copy o Key We	tion Number(s) / Revision : SE 98 of Applicability Review Attached (ords : doses, GDC 19, radiation, mo	B-010 Rev 0 Yes / N/R)?N/R pnitors, Control	Compo RIC-RO				· · · · ·	• 17
See Pa Evalua Copy o Key We	tion Number(s) / Revision : SE 98 of Applicability Review Attached (ords : doses, GDC 19, radiation, mo	B-010 Rev 0 Yes / N/R)?N/R pnitors, Control	Compo RIC-RO Post-I			al memo 76	71 # of pages	• 17 :4

-05-98 TUE 08:31	R. B. ABBOTT	FAX NO. 3494417	P. 02
NUCLEAR ENGINEERING	CALCULATION CON		Page 2
Project Nine Mile Point N	Nuclear Station Unit	1Dispos	ition <u>N/A</u>
Originator/Date A. Moisan 5/1/98	Checker/Date T. Kurtz 5/1/98	Calculation No. H21C045	<i>Rev</i> 00
	TABLE OF	CONTENTS	
		Page No.	. .
Table of Objective Method Data/Ass T Calculati T Calculati T Results T Conclusi Compute Reference	Table 3 - Ci Rlsd to Unit 1 Fuel P Table 4 - Ci Rlsd to Environment Table 5 - CR Doses RBEV Filter tons er Run Log	0-2hrs 10 12 Act @ 15 seconds 12 12 12 12 13	

.

N NIAGARA MOHAWK			
NUCLEAR ENGINEERING	CALCULATION CONTINU	ATION-SHEET.	age 3
vject Nine Mile Point I			
Dject <u>Nine Mile Point I</u>		Disposítio	n <u>N/A</u>

ITA NO. DECENTI

1.00

OBJECTIVE OF CALCULATION

L. D. RODULI

The objectives of this calculation are to:

- 1. determine doses in the Unit 1 Control Room resulting from a Unit 1 Fuel Handling Accident (FHA).
- 2. confirm that the activity released is sufficient to alarm the refuel bridge radiation monitor

Doses calculated will be compared to the 10CFR50 App A GDC19 (REF 9) dose limits to confirm that the Unit 1 Control Room is habitable following a design basis FHA at Unit 1.

METHOD

Core activity at end of cycle is decayed for 24 hrs as that is assumed to be the earliest point at which fuel is anticipated to be moved. Using the Safety Guide 25. (also known as Reg Guide 1.25) guidance and the Stone & Webster (SWEC) computer code DRAGON (REF 11), the gap activity in 125 fuel pins of 8x8 fuel is then released to the fuel pool water. Per the safety guide, the water provides a DF of 100 for halogens and 1 for noble gas. The activity is then released to the Refuel Floor airspace and then to the tack. A dose rate at T=5 seconds is calculated to ensure that the Refuel bridge monitor alarms. If so, the RBEV emergency filtration is assumed to start at T=15 seconds. The Unit 1 Control Room is assumed to intake air at the normal Unit 1 Control Room ventilation intake rate with emergency filtration conservatively assumed not to actuate. The activity release is completed within two hours and CR doses are calculated for 720 hr. The results are then compared to the dose limits given in GDC 19 (REF 9). An output of the DRAGON code is a gamma dose rate in the refuel floor airspace. This result is compared to the technical specification trip point of refuel bridge radiation monitor.

DATA / ASSUMPTIONS

- 1. The reactor is assumed to be operating at 102% of full thermal power at the time of the accident. (REF 2, page 15.6.5-5 and REF 3 recommend that 102% power be used in analyses to allow for possible instrument errors in registering the power level).
- 2. reactor power level is 1850 MW₁ and 102% power is 1887 MW₁. (REF 4 a).
- 3. The core inventory in curie/MW, (from REF 6) is multiplied by the core power level of 1850 MW, (DATA/ASSUMPTION #2) and then by 1.02 to account for the instrument uncertainty (DATA/ASSUMPTIONS #1) to give core activity at the time of the accident. These data are given in Table 1.
- 4. 125 fuel rods of 8x8 fuel are assumed to fail in the accident (REF 5 Section XV.C.3.2). 8x8 fuel assemblies contain 62 fuel rods each (REF 5 section XV.C.3.2) each and there are 532 fuel assemblies in the reactor (REF 5 Section I.B.4.0) making a total of 62 * 532 = 32984 fuel rods total. Using 8 x 8 fuel is assumed to be more conservative than 9x9 or 11x11 as there is more
- activity per fuel rod.

N MIAGARA MOHAWK			· · · · · · · · · · · · · · · · · · ·
NUCLEAR ENGINEERING	CALCULATION CONTIN	UATIONSHEET	ago 4
Project Nine Mile Point Nucle	ar Station Unit 1	Disposition	7 <u>N/A</u>
Originator/Date A. Moisan 5/1/98	Checker/Date T. Kurtz 5/1/98	Calculation No. H21C045	<i>Rev</i> 00
6 Delene mensetere es		、	
-	defined in Safety Guide 25 (REF 1 alogen and noble gas activity is in	• • • • • • • • • • •	ention of Kr
85 where the fraction i	s 30%	- ·	ception of Re
• the fuel pool water has	amaged fuel rods is released to the an effective DF of 1 for noble gas	and 100 for halogens	
	f 1.5 is assumed in the rods that are -04 m ³ /sec is assumed for the dura		nt
 halogens above the wa 	ter are 75% inorganic (elemental) :	and 25% organic (methyl)	•••
• all activity released fro	m pool released from building in 2	hrs (or on filters)	
	d to occur 24 hrs after shutdown a atom of the second state of the		
	Unit 1 control room is 1.36E+5 ft		
	m normal intake rate is 3550 cfm u		
	16,300 minus the minimum recirc t maximize dose thus bounding all p		
	of Unit 1 CR ventilation is assume		
9. The doors of the contr	ol room are weather-stripped and t proximately one-sixteenth of an inc	he penetrations scaled to main	ntain a
an unfiltered inleakage	of 10 cfm to the control room is a	ssumed per REF 2, Section	-
through an unsealed dr	additional 20 cfm is assumed to ac ain. The total inleakage of 30 cfm (
rate makes the total U	uit 1 CR zir intske rate 3580 cfm.		
10. Stack 0 - 2 hr and 2 hr	τ -720 χ/Q values are given in Tab	le 2 (REF 6).	
	e limit 5 Rem whole body or its' ea	quivalent. This equates to 30 l	Rem Thyroid
•) per SRP (REF 2 Section 6.4)		
12. The release rate from t	he refuel floor is calculated as follo	ows:	
• normal ventilation flow	rate from above refuel floor 2900 refuel floor 1,072,600 ft ³ (REF 14	0 cfm (REF 13)	
 50% mixing is assume 	i and judged to be reasonable. This	value only used to calculate a	release rate
and the release rate has environment within 2 h	to be sufficient to ensure that all a	of the activity is released to the	ne -

10-90 IUE UD:33	n. D. NBDJII			
NUCLEAR ENGINEERING	- CALCUI	ATION CONTINUA	LON SHEET	5
Project Nine Mile Point	Nuclear Station	Unit _1_	Disposition <u>N</u>	/A
Originator/Date A. Moisan 5/1/98		ecker/Date Kuriz 5/1/98	Calculation No. H21C045	<i>Rev</i> 00
conservative as 99 as described in the efficiency as 99% i Section 3.4.4.b) w 14. A delay of 3 secon 36) while ensuring is present to alarm	% efficiency for j UFSAR (REF 5, for methyl iodide hich gives the halo ds has been introo a valid actuation the refuel bridge	o be 90% for both methyl an particulate and elemental age Sections XV.C.S.1.8 and V and other iodine forms and t ogenated hydrocarbon test re duced to RBEVS to reduce a occurs. It will be shown in monitor at T=5 seconds white	ees with the original Licens II-H.2.0) which describes t he Technical Specifications equirement of \geq 99%. spurious actuations (REF 5 this calculation that sufficie ch causes RBEVs to actuat	he filter (REF 4, page VII- nt radiation e. For
Conservatism a 10) second delay in 1 ned at a negative	RBEVS actuation is assumed pressure of 0.25" water gauge	in this calculation. The rea	ICTOL
15. The release point :	for RBEVS is the	Main Stack. (REF 5 Sectio	n VII.H.1.0, page VII-36).	
16. Refuel bridge setp	$oint \leq 1000 mr/hr$	per Table 3.6.2j of the Tecl	n Specs (REF 4c)	
	•			
)				·····

.

1

5.00

NUCLEAR ENGINEERING	CALCU	LATION CONTINU	JATION SHEET	Page 6
roject <u>Nine Mile Point</u>	Nuclear Station	Unit 1	Disposit	lion <u>N/A</u>
Originator/Date A. Moisan 5/1/98		ecker/Date Kuriz 5/1/98	Calculation No. H21C045	Rev 00
		Table 1		
		CORE INVENTOR AT 102% THERMAL P	Y	
	ISOTOPE	ACTIVITY (Ci/MW)	CORE INVENTORY (Ci)	
	I-131	2.90E+04	5.47E+07	
	I-132	4.20E+04	7.93E+07	
	I-133	4.80E+04	9.06E+07	
	I-134	6.20E+04	1.17E+08	
	I-135	4.90E+04	9.25E+07	-
	KR-83M	3.00E+03	5.G6E+06	
	KR-85M	6.50E+03	1.23E+07	
	KR-85	3.00E+02	5.66E105	
	KR-87	1.20E+04	2.26E+07	
	KR-88	1.70E+04	3.21E+07	
	KR-89	2.00E+04	3.77E+07	
	XE-13IM	1.80E+02	3.40E+05	
	XE-133M	2.00E+02	3.77E+05	
Í	XE-133	5,60E+04	1.06E+08	
ſ	XE-135M	1.70E+04	3.21E+07	
•	XE-135	9.80E+03	1.85E+07	
Í	XE-138	4.40E+04	.8.30E107	

inventory.

NUCLEAR ENGINEERIN	CALCULATION C	ONTINUAT	ION SHEET	Page 7
roject <u>Nine Mile Poin</u>	nt Nuclear Station Uni	1_1_	Disposi	tion <u>N/A</u>
Originator/Date A. Moisan 5/1/98	Checker/Date T. Kurtz 5/1/98		Calculation No. H21C045	<i>Rev</i> 00
	CONTROL.	MAIN STACK I FOR ROOM AIR INT	1	
	CONTROL	FOR ROOM AIR INT (SEC/M ³)	AKE	
	CONTROL.	FOR ROOM AIR INT (SEC/M ³)	1	

CALCULATION

The core activities at the time of shutdown are input to SWEC computer code RADIOISOTOPE (REF 12) run # 9203 dated 5/1/98 in units of μ Ci and decayed for 24 hrs with the results presented in Table 3. The total core activity is then multiplied by 10% (except Kr-85 which is 30%) to get activity in gap. This value is then multiplied by 125/32984 to get gap activity in the damaged fuel pins and multiplied by 1.5 to account for the radial peaking factor. This final result is total activity released to the fuel pool. All this calculating is performed in Table 3 A card input of the input to this run is included in Appendix A

Project Nine Mile Point Nuclear Station

Unit 1

Disposition N/A

		Y	
Originator/Date	Checker/Date	Calculation No.	D
A. Moisan 5/1/98		Carcalation Ivo.	Rev
A. MUSAL 3/1/70	T. Kurtz 5/1/98	H21C045	00
	1		1 **

		TABLE 3	· · · · · · · · · · · · · · · · · · ·	1
	CURIES REL	EASED TO UNIT 1	FUEL POOL	
	CORE ACT	CORE GAP ACT	GAP ACTIVITY IN	
	24 HRS AFTER	24 HRS AFTER	125 FUEL RODS	ACTIVITY RLSD
	SHUTDOWN	SHUTDOWN	(W/PEAKING FACTOR)	FROM POOL
ISOTOPE	Ci	Ci	Ci	Ci
1-131	5.02E+07	5.02E+06	2.85E+04	2.85E+02
1-132	5.74E+04	5.74E+03	3.26E+01	3.26E-01
1-133	4.07E+07	4.07E+06	2.31E+04	2.31E+02
1-134	6.50E-01	6.50E-02	3.69E-04	3.69E-06
1-135	7.49E+06	7.49E+05	4.26E+03	4.26E+01
KR-83M	6.50E+02	6.50E+01	3.69E-01	3.69E-01
KR-85M	3.00E+05	3.00E+04	1.71E+02	1.71E+02
KR-85	5.66E+05	1.70E+05	9.65E+02	9.65E+02
KR-87	4.88E+01	4.88E+00	2.77E-02	2.77E-02
KR-88	9.17E+04	9.17E+03	5.21E+01	5.21E+01
KR-89	0.00E+00	0.00E+00	0.00E+00	0.00E+00
XE-131M	3.53E+05	3.53E+04	2.01E+02	2.01E+02
XE-133M	7.55E+05	7.55E+04	4.29E+02	4.29E+02
XE-133	1.00E+08	1.00E+07	5.66E+04	5.68E+04
XE-135M	1.20E+06	1.20E+05	6.82E+02	6.82E+02
XE-135	2.28E+07	2.28E+06	1.30E+04	1.30E+04
XE138	0.00E+00	0.00E+00	0.00E+00	0.00E+00

The DRAGON model used is as follows:

Fuel pool water volume - not required due to release is in fractions per day

Release water to RB air space 2.0E+5 fractions per day for the period 0 to 2 hrs. This is the DRAGON recommended value for puff releases.

Volume 2 volume 1.07+6 ft³

Actual flow rate from RB is calculated as follows:

$$\frac{29000^{cf}}{1072600cf = 0.5} * \frac{60\min}{hr} * \frac{24hr}{day} = 77.8 \frac{vol}{day}$$

must be validated that all Ci released from pool (Table 3 above) are either released from RB or on RBEV filter. This is done in Table 4 below.

	ation Unit 1	Dispositio	<u>N/A</u>
Date 5/1/98	Checker/Date T. Kurtz 5/1/98	Calculation No. H21C045	Rev 00
rol Room			
volume - 1.36E+5 intake rate 0 to 72 filter efficiencies 0	0 hrs 3580 cfm		
ate 0-720 hrs 3.47E-0	4 m ³ /sec		
ck χ/Q is 3.12E-4 sec	$/m^3$ No χ/Q is required aft	er 2 hours as all the activity has	been
units of Ci from Tab	e 3 are instantaneously rele	ased to Volume 1 (pool water)	al T=0.
ring 0-2hrs are checke	ed to ensure that all of the ac	to 2 hour filtered release. The ctivity is released as required by	curies Reg Guide
is performed in Table	4 Delow.		
is performed in Table	4 DEIGW.		
ring 0-2hrs are checke	ed to ensure that all of the ac	ctivity is released as required by	v Reg

הידעס־שט וטב טטישט היי

5. 5. NODVII

ו הברברה אחר אתו

....

Note that the totals do not match. That is because only 10% of the iodines released from the pool from 15 seconds to 720 hrs actually are released from the building. Making that adjustment, the total iodines released = 5.60E2 Ci which is actually more iodine released than was available. This was a result of not subtracting the iodines released in the 0 to 15 second time period from the total iodine released to the pool for the 15 second to 720 hr case. Note also that more Noble Gas is released to the environment than was released to the fuel pool.

For information a DRAGON run (run #231 dated 5/1/98) was made assuming a puff release (i.e no holdup in either the fuel pool or the Reactor Building), no actuation of RBEV filters or CR filters. The thyroid dose for this bounding analysis was calculated to be 55.9 Rem. This run was made to allow an estimate of what type of fuel handling accident might result in doses in excess of GDC 19 without alarming the refuel bridge monitor. The discussion below should be used with great caution as there are many variables assumed to be constant. That is, amount of activity in fuel rod gap, accuracy of the peaking factor used, the release rate from the fuel to the water, from the water to the RB air space, the behavior of cloud as it

vits the pool (i.e. does it mix? Is it pulled into ductwork with no mixing?), the release rate out of the ilding, plateout of the iodines as they travel to the CR are all assumed to be as stated above. This is unlikely to occur specifically in this way and therefore should be used carefully.

Ł

R. B. ABBOTT MAN-05-98 THE 08:36

FAX NO. 3494417

<u>r. 11</u>

NUCLEAR ENGINEERING	GALCULA		UATION SHEE	T Page 11	<u> </u>
Project <u>Nine Mile Point N</u>	luclear Station	Unit _1_	Ĺ	isposition <u>N//</u>	<u> </u>
Originator/Date A. Moisan 5/1/98		er/Date z 5/1/98	Calculation N H21C045	<i>'</i> 0.	<i>Rev</i> 00
That said, the resulting t 55.9 Rem Thyroid. That	thyroid dose for a F at means that at leas	HA with 125 failed	l rods with no holdur	and no filtrat	ion was
2020			dose in excess of 30	Rem.	
Remembering that 125 monitor, then:	rods resulted in a (C	onservative) dose i	rate of 17.2 Rem to t	he refuel bridg	;e
$\frac{67Rods}{125Rods} + 17.2Rem = 100$	9.2 Rem at the refu	el bridge monitor v	which is well above th	e setpoint.	
		•			
)					
ر			· .		·
ر			· .		
,			· · · · · ·		

•

	r. b. ai				
NUCLEAR ENGINEER		CULATION	CONTINUA	TION SHEET	Page 12
Project Nine Mile Po	int Nuclear Sta	tion U	nit <u>1</u>	Disposi	ition <u>N/A</u>
Originator/Date A. Moisan 5/1/98		Checker/Date T. Kurtz 5/1/98	·	Calculation No. H21C045	<i>Rev</i> 00
RESULTS					
conservative me	del. It is likely	or at T= 0 second that the dose rate ubble of activity	e would be muc	gamma. Note this is h larger as the monite om the pool.	a very or is on the refue
2	1	TABLE 5 - CR D	OSE NO CR FIL	ſER	
	RBE	V FILTER ACTIV		ECONDS DOSE (REM)	
	RELEASE FR	OM RB	THYROID G	AMMA BETA	
	0-15 SEC UNFI	LTERED HR FILTERED	7.30E-01 2 5.57E+00 2		
	TOTAL	ARTILIERED	6.3DE+00 2	15E-02 8.25E-01	
	GDC LIMIT		3.00E+01 5.	00E+00 3.00E+01	
3 For the model	described abov	e, a fuel handling	accident which	would not result in st	inclent activity
to alarm the refuc GDC 19 dose limit	l bridge monito	r also would not	result in sufficie	nt activity being relea	sed to exceed
to alarm the refuc	l bridge monito its.	or also would not	result in sufficie	nt activity being relea	sed to exceed
to alarm the refuc GDC 19 dose limi CONCLUSIONS A design basis Uni 10CFR50 Appendi case assumed the r	l bridge monito its. t 1 FHA results x A GDC 19 de elatively slow a	in 30 day doses i	n the Unit 1 Cou	nt activity being relea ntrol Room which are for Unit 1 CR emerge at T=15 seconds and	e less than ency filters. This
to alarm the refuc GDC 19 dose limit CONCLUSIONS A design basis Unit 10CFR50 Appendit case assumed the r 90% RBEV filter e	l bridge monito its. t 1 FHA results x A GDC 19 de elatively slow a efficiency. it 1 FHA will e	in 30 day doses ose criteria witho ctuation of the R	n the Unit 1 Cou ut taking credit i BEV filter train	nt activity being relea ntrol Room which are for Unit 1 CR emerge	e less than ency filters. This only assumed a
to alarm the refuc GDC 19 dose limit CONCLUSIONS A design basis Unit 10CFR50 Appendit case assumed the r 90% RBEV filter of A design basis Un spec alarm limit of For the model lister bridge monitor wo	t 1 FHA results t 1 FHA results x A GDC 19 de elatively slow a efficiency. it 1 FHA will e $\leq 1000 \text{ mr/hr.}$ d described about res	in 30 day doses i ose criteria witho actuation of the R asily alarm the ref ove, a FHA which sult in CR doses is	n the Unit 1 Con ut taking credit is BEV filter train fueling platform a would not relean a excess of GDC	nt activity being relea ntrol Room which are for Unit 1 CR emerge at T=15 seconds and	e less than ency filters. This only assumed a ich has a tech alarm the refuel
to alarm the refuc GDC 19 dose limit CONCLUSIONS A design basis Unit 10CFR50 Appendit case assumed the r 90% RBEV filter et A design basis Un spec alarm limit of	l bridge monito its. t 1 FHA results x A GDC 19 de elatively slow a efficiency. it 1 FHA will e ≤ 1000 mr/hr. d described about uld also not res ation by either	in 30 day doses i ose criteria witho actuation of the R asily alarm the ref ove, a FHA which sult in CR doses is	n the Unit 1 Con ut taking credit is BEV filter train fueling platform a would not relean a excess of GDC	nt activity being relea introl Room which are for Unit 1 CR emerge at T=15 seconds and radiation monitor wh use enough activity to	e less than ency filters. This only assumed a ich has a tech alarm the refuel

MAY-05-98 T

		R. B. ABI	 BOTT	FAX NO.	3494417	P. 13	
-	-05-98 TUE 08:37						
	NUCLEAR ENGINEERING	-CALC	SULATION C	ONTINUA	ION SHEET-	Page 13	
	Project Nine Mile Point	Nuclear Stati	on Unit	r_1_	Dispos	ition <u>NIA</u>	
	Originator/Date A. Moisan 5/1/98		Checker/Dute T. Kuriz 5/1/98		Calculation No. H21C045	Rev 00	
	Boiling Water and 2. NUREG-0800, Sta 3. Regulatory Guide 4. Nine Mile Point Ui a. Facility Opera b. Section 3.4.4.b System." c. Table 3.6.2j 5. Nine Mile Point U 6. G&H Calculation	equences of a Pressurized V andard Review 1.49, Revisio nit 1 Technic ting License 0, 3.4.4.c, and No. N83-1, F S 18 9TB 300	a Fuel Handling A Water Reactors". w Plan. on 1, "Power Leve al Specifications. which accompanie d 3.4.4.d, "Limitin afety Analysis Rep Rev 1 in CDS as C 0023111 210 Rev	ccident in the F ls of Nuclear P ed the Technica g Condition for ort Revision 14 alc H21C020, ision 03	ower Plants." Nower Plants." Specifications of Emer UOCA - CR, TSC	gency Ventilation & EOF Doses"	n
1	 MMPC Internal Control SMPC Internal Control File Code: SM-HF 10CFR Part 50, A 10. NMPC Procedure 11. DRAGON Computed 12. RADIOISOTOPE 	orrespondenc 291-0115. ppendix A, G N1-OP-10 R uter Code SV	e, R.J. Cazzolli to General Design Cri Levision 13 WEC Number NU	Distribution, 1 teria 19. -115. Version :	5, Level 0	ject: DBD Input,	•

- 13. Drawing C-18778-C, Revision 6 Reactor Building Ventilation System. 14. NMPC Calculation SO.Gothic-RB01 (Attachment 3) Revision 0.

roject <u>Nine Mile Point I</u>	Nuclear Station	Unit _1_	Disp	osition <u>N/A</u>
Originator/Date A. Moisan 5/1/98		cer/Date nz 5/1/98	Calculation No. H21C045	Rev 00
	APP	ENDIX A (3 pages t	otal)	
	CARD IN	LAGE OF COMPUTI	ER RUNS	
		. ' -		. .

, . .

L

***** PHOGRAM -- RADIOI SOTOPE -- NUOD7. VER _EVOR -- 12/13/83 -- *****

* * * * * * * CARD HASE OF INPUT SUBNITTED TO RADIOISOTOPE - * * * * * * * * * *

AND CJLUPNS	1 2		·i	5 7 8	CARD COLUMNS
44475 44.5	1234547840123456749012	34567090123456709012	34567890123456789	012345678901234567890	
AND NO.			•		
1	UNIT & CORE ACTIVITS				
•	1 0	.17	.		
3	24.0				
4	1 5.6612				
·•	2 1,23613				
4	3 5+66811				
1	4 2.25čl3				
71	i 1.21613				
·)	3 3.77013				
10	7 J.40E11				.
11	1 3.77611			•	
12	J 1.05EL4				S B
13	10 3.21013				<u>~ 0</u>
14	11 1.05813				
1.0	1.1 d.Joh1 J				
1 **	25 5.47813				6
17	25 7.43F13				õ õ
14	27 9.06113				O _.
1.4	23 1.17034		•		コ
	20 V.Phald				9

1234 30739312343670901234567890123456789012345673901234567390123456739012345678901234567890

RADIOISOTOPE PUN # 9203

CALC HZICOAS

PIS

٩.

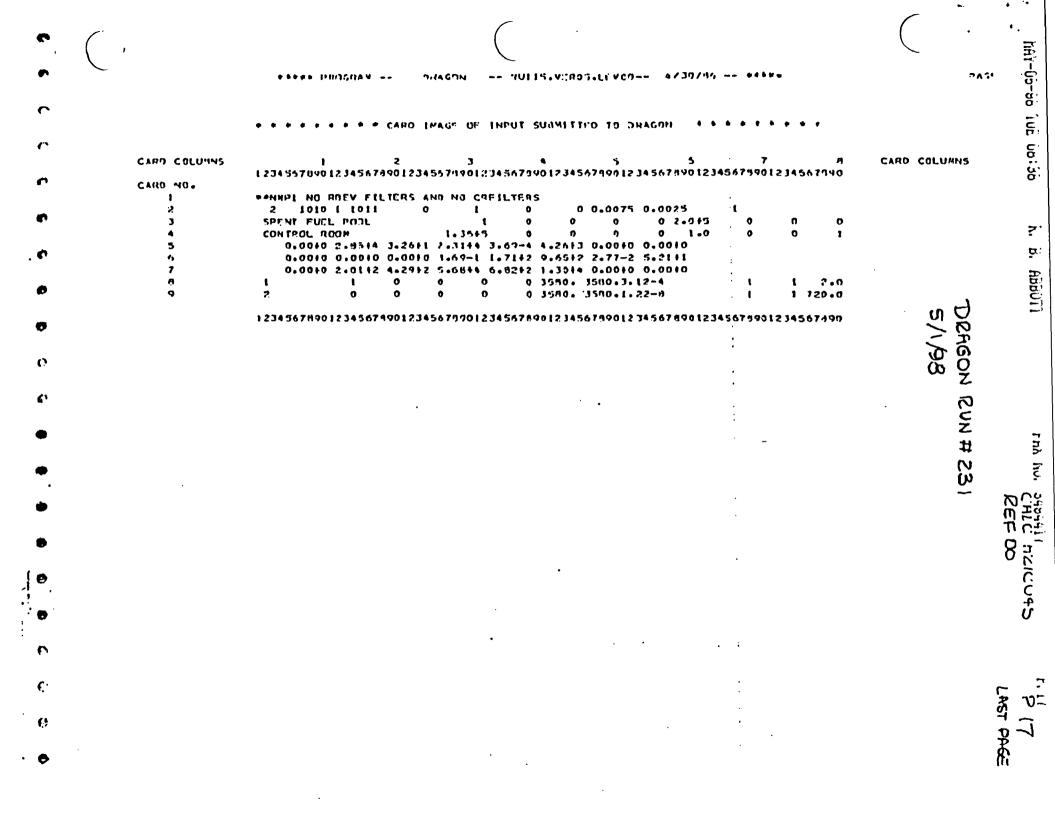
•... E.

ę €¢

€[€] • • €;

£ : •<u>.</u>

CALC HZICO4S


U

-

INPUT SUINIFIED TO DRAGON LNAGE OF CA00

CAND CULUMNS	ι		2	3		4	5		6		7	a	CARD COLUMNS
	1234567890	1234567	HY012349	5674701	2345679	9012345	56739012	34567	7490123	456789	012345	57890	
CARD NO.													
1	• •NHP1 FHA	0-15 S	EC NO RI	UEV FIL	TER 40 -	CRATS F	"ILTER				•		
2	4 L110	1 1111	0	t	0	• •	0.0075	0.00	025	1			
1	SPENT FUE	L PCOL			1 0	0	0	0	2.0+5	0	0	0	
4	REFUCL FL	008		l.07+	60	0	0.0	0.0	77.9	0	۵	0	
5	CONTROL R			1.361		Û	0	0	1.0	0	0	1	
5						-	3 0.00+0	-			•		
7			-				2 2.77-2						
- 1 -	0,00+0	2.01/2	4,2912	5.0414			0.0040		0+0				
も	1	1	0	1			3590.3.			1		37-3	
10	2	1	0	1			3580.3.			t		17-3	(D
11	3	0	0	0			3580.3.			1		2±0	
12	4	0	0	0	· ·		3540.1.			L	1 1	120.0	
13	**NMP1 FHA		CONDS T	0 720 H	RS ROEV		RO CAN	-					
14		1 (11)	0	1	0		0.0075			1			86/
10	SPENT FUR				1 0	0	0		2.0+5	0	0	0	00
16	REFUEL FL			1+07+	-	0	0.0		77.0	019	0.9 .	0	
17	CUNTROL R			L + .35 #	-	0	0	0	1.0	0	0.	1	
រប				-			3 0.00+0				•		
1.9							2.77-2				•		
20	0.00+0	2.01+2	4.2942	5+0814			0.00+0		DØØ	_	_		
21	I	- 1	0	0			3580.3.			1		3-7-7	
3.	2	I	0	0			3580.3.			1		17~3	
23	,	L	0	I			3580.3.			t		2.0	(
.24	^	· T	o	Q	ם מ	+0#Ct	3590.1.	22-11		1	1 1	20.0	, i i i i i i i i i i i i i i i i i i i
													-
	1234367890	1234567	H701234	5071901	2 3 4 5 6 7 0	901234	6789012	34567	7890123	456789	0123456	57490	
													r

1234567490123456749012345679901234567990123456789012345678901234567890123456789012345678901234567890

