Site-Specific Soil Parameters Westinghouse Former Fuel Cycle Facility D&D Project

Prepared for:

Westinghouse Electric Company Hematite Facility Festus, Missouri 63028

September 15, 2003

LEGGETTE, BRASHEARS AND GRAHAM, INC. Professional Ground-Water and Environmental Services 4850 Lemay Ferry Road, Suite 205 St. Louis, Missouri 63129 (314) 845-0535

· _

Site-Specific Soil Parameters Westinghouse Former Fuel Cycle Facility D&D Project

Approved by: J. Kevin Powers Principal

Prepared for:

Westinghouse Electric Company Hematite Facility Festus, Missouri 63028

Prepared by:

LEGGETTE, BRASHEARS & GRAHAM, INC. Professional Ground-Water & Environmental Services

September 15, 2003

REUSE OF DOCUMENTS

This document has been developed for a specific application and not for general use; therefore, it may not be used or copied without the written approval of Leggette, Brashears & Graham, Inc. Unapproved use is at the sole responsibility of the unauthorized user.

Copyright[©], Leggette, Brashears & Graham, Inc. 2003 4850 Lemay Ferry Road, Suite 205, St. Louis, MO 63129 (314) 845-0535 Fax (314) 845-3573

John L. Bognar, R.G. Senior Associate Missouri Registered Geologist

TABLE OF CONTENTS

RESRAD Parameter Table for ⁹⁹ Tc1
Reference Footnotes for ⁹⁹ Tc2
RESRAD Parameter Table for ²³⁵ U
Reference Footnotes for ²³⁵ U
RESRAD Parameter Table for ²²⁸ Ac
Reference Footnotes for ²²⁸ Ac
RESRAD Parameter Table for ²¹² Bi
Reference Footnotes for ²¹² Bi
RESRAD Parameter Table for ²¹² Pb
Reference Footnotes for ²¹² Pb
RESRAD Parameter Table for ²⁰⁸ T1
Reference Footnotes for ²⁰⁸ T1
RESRAD Parameter Table for ²³⁴ U
Reference Footnotes for ²³⁴ U
RESRAD Parameter Table for ²³⁸ U
Reference Footnotes for ²³⁸ U
RESRAD Parameter Table for ²³⁷ Np
Reference Footnotes for ²³⁷ Np41
RESRAD Parameter Table for ²³⁹ Pu
Reference Footnotes for ²³⁹ Pu45
RESRAD Parameter Table for ²³² Th
Reference Footnotes for ²³² Th
RESRAD Parameter Table for ²²⁸ Ra
Reference Footnotes for ²²⁸ Ra
RESRAD Parameter Table for ²²⁸ Th
Reference Footnotes for ²²⁸ Th
RESRAD Parameter Table for ²²⁴ Ra
Reference Footnotes for ²²⁴ Ra

LIST OF FIGURES (at end of report)

Figure

- Ground-Water Flow Direction and Gradient, and Length of Contaminated Zone
 Parallel to the Aquifer Flow in the DSCC
- 2 Area of Contaminated Zone ⁹⁹Tc
- 3 Watershed Area
- 4 Area of Contaminated Zone ²³⁵U, ²³⁴U, ²³⁸U, ²²⁸Ac, ²¹²Bi, ²¹²Pb, ²⁰⁸T1, ²³⁷Np, ²³⁹Pu, ²³²Th, ²²⁸Ra, ²²⁸Th, ²²⁴Ra

LIST OF APPENDICES (at end of report)

Appendix

- A Ground-Water Concentration Supporting Documentation
- B Supporting Documentation for ⁹⁹Tc Area of Contamination Zone
- C RESRAD Default Value Table
- D Total Porosity, Dry Density and Hydraulic Conductivity Calculations and Supporting Documentation
- E Field Capacity Calculation
- F Representative Values of Soil-Specific Exponential b Parameter
- G Well Pump Intake Calculations and Supporting Documentation
- H Well Pumping Rate Calculation and Supporting Documentation

Site-Specific Soil Parameters Westinghouse Former Fuel Cycle Facility D&&D Project

RESRAD Parameter Table for ⁹⁹**Tc**

Parameter	Recommended	RESRAD Code	Units	Uncertainty Range		Range	ange Probabilistic	
	Value	Designation	UIIIS	Low Value	High Value	Number of Samples	Function	Reference
Groundwater Concentration	179	W(i)	pCi/L	24.9	1590	_7	Lognormal	11
Area of Contaminated Zone	6432	AREA	m^2	5146	7718	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	1.39	2.11	_28	Normal	5
Contaminated Zone Erosion Rate	0.00005	VCZ	m/yr	0.00004	0.00006	NA	Bounded Normal	6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	_13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	^2	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	_13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	562	UW	m ³ /yr	450	674	NA	Bounded Normal	17

LEGGETTE, BRASHEARS & GRAHAM, INC.

1

1 ⁹⁹Tc ground-water concentration data were taken from piezometer GWE-6, which was sampled by Gateway Environmental and analyzed by ABB in September 1996. This information was referenced in Table 3-3, "*Investigation to Determine the Source of* ⁹⁹TC *in Groundwater Monitoring Wells 17 and 17B.*" Figure 1 shows the former location of GWE-6 and Appendix A contains a copy of Table 3-3. The low and high values of the uncertainty range correspond to concentrations from WS-14 and GWE-4, respectively.

2 ⁹⁹Tc data does not exist for soil. Therefore, LBG assumes the contaminated zone is based on operations where ⁹⁹Tc may have been stored or disposed. This includes the former ring storage area and the evaporation ponds, located immediately south of the existing structures. This assumption is based on information provided on page 15 of the "*Remedial Investigation/Feasibility Study (RI/FS) Work Plan, Revision 0,*" dated May 9, 2003. Figure 2 shows the Area of Contamination boundary for ⁹⁹Tc and Appendix B contains a copy of page 15. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Due to a lack of soil data for ⁹⁹Tc, the RESRAD default value was chosen, based on Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 95 percent of the area of contamination is covered with impervious material, the default value was multiplied by .05 to give a value of 0.00005 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

9 Shannon and Wilson (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the recommended value.

12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1.

13 The average horizontal hydraulic conductivity value was calculated using an average of the values for NSSSC and DSCC as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG

3 LEGGETTE, BRASHEARS & GRAHAM, INC.

in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.

16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSCC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.

17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (1.59 acres) were used for pastureland, approximately 4 head of cattle would require drinking water needs. The example scenario assumes each head of cattle will require 160 liters of water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "Principles of Controlled Grazing" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended

4

Site-Specific Soil Parameters Westinghouse Former Fuel Cycle Facility D&&D Project

RESRAD Parameter Table for ²³⁵U

Parameter	Recommended	ommended RESRAD Code		Uncertain		lange	Probabilistic	Reference
	Value	Designation	Units	Low Value	High Value	Number of Samples	Function	
Groundwater Concentration	13.4	W(i)	pCi/L	0	60.6	12	Lognormal	11
Area of Contaminated Zone	77458	AREA	m ²	61966	92950	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	1.39	2.11	28	Normal	5
Contaminated Zone Erosion Rate	0.0003	VCZ	m/yr	0.00024	0.00036	NA	Bounded Normal	6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	m ²	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	913	UW	m ³ /yr	730	1096	NA	Bounded Normal	17

REFERENCE FOOTNOTES for ²³⁵U

1 ²³⁵U ground-water concentration data was taken from piezometer MW-32, which was sampled by Leggette, Brashears & Graham, Inc. in August 1999. This information was referenced in Table 7, "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999. Figure 1 shows the location of MW-32 and Appendix A contains a copy of Table 7. The low value of the uncertainty range corresponds to the numerous non-detections during the four quarterly sampling events, and the high value corresponds to concentrations from WS-27 (November 1998).

2 Only sparse ²³⁵U data exists for soil. LBG assumes the Area of Contaminated Zone is where operations involving ²³⁵U occurred. Therefore, the Area of Contamination is defined by the following: Missouri State Highway P to the northwest, the Northeast Site Creek to the northeast, the fenceline to the southeast, and the Site Pond/Creek to the southwest. The northern limits include the Health Physics building and Red Room Roof Burial area, which are in close proximity to the highway. The eastern limits include the burial area, which is located between the plant and the Northeast Site Creek. The south fence line is just northwest of the railway easement. The western limits of extend to the Site Pond/Creek to encompass the location of the cistern/burn pit and red room roof burial area. Figure 4 shows the Area of Contamination for ²³⁵U. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Due to a sparse amount of soil data for ²³⁵U, the RESRAD default value was chosen, based on Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set. 6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 70 percent of the area of contamination is covered with impervious material, the default value was multiplied by .30 to give a value of 0.0003 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

9 Shannon and Wilson (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the recommended value.

12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1.

13 The average horizontal hydraulic conductivity value was calculated using an average of the values for near-surface silt, silty-clay (NSSSC) and deep silty-clay, clay (DSCC) as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.

16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSSC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.

17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (19.14 acres) were used for pastureland, approximately 10 head of cattle would require drinking water needs. The example scenario assumes each head of cattle will require 160 liters of Water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "Principles of *Controlled Grazing*" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

ڻ

Site-Specific Soil Parameters Westinghouse Former Fuel Cycle Facility D&&D Project

RESRAD Parameter Table for ²²⁸Ac

Parameter	Recommended	RESRAD Code Units		Un	certainty F	Range	Probabilistic	Reference
	Value	Designation	Units	Low Value	High Value	Number of Samples	Function	Reference
Groundwater Concentration	29.3	W(i)	pCi/L	0	41.8	12	Lognormal	1
Area of Contaminated Zone	77458	AREA	m ²	61966	92950	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	1.39	2.11	28	Normal	5
Contaminated Zone Erosion Rate	0.0003	VCZ	m/yr	0.00024	0.00036	NA	Bounded Normal	_6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	m ²	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	913	UW	m ³ /yr	730	1096	NA	Bounded Normal	17

1 ²²⁸Ac ground-water concentration data was taken from piezometer MW-32, which was sampled by Leggette, Brashears & Graham, Inc. in May 1999. This information was referenced in Table 7, "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999. Figure 1 shows the location of MW-32 and Appendix A contains a copy of Table 7. The low value of the uncertainty range corresponds to the numerous non-detections during the four quarterly sampling events, and the high value corresponds to concentrations from WS-27 (August 1999).

2 Only sparse ²²⁸Ac data exists for soil. LBG assumes the Area of Contaminated Zone is where operations involving radioactive materials occurred. Therefore, the Area of Contamination is defined by the following: Missouri State Highway P to the northwest, the Northeast Site Creek to the northeast, the fenceline to the southeast, and the Site Pond/Creek to the southwest. The northern limits include the Health Physics building and Red Room Roof Burial area, which are in close proximity to the highway. The eastern limits include the burial area, which is located between the plant and the Northeast Site Creek. The south fence line is just northwest of the railway easement. The western limits of extend to the Site Pond/Creek to encompass the location of the cistern/burn pit and red room roof burial area. Figure 4 shows the Area of Contamination for ²²⁸Ac. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Due to a sparse amount of soil data for ²²⁸Ac, the RESRAD default value was chosen, based on Table 1.3 of "*Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil*," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set. 6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 70 percent of the area of contamination is covered with impervious material, the default value was multiplied by .30 to give a value of 0.0003 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

9 Shannon and Wilson (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the recommended value.

12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1.

13 The average horizontal hydraulic conductivity value was calculated using an average of the values for near-surface silt, silty-clay (NSSSC) and deep silty-clay, clay (DSCC) as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.

16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSSC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.

17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (19.14 acres) were used for pastureland, approximately 10 head of cattle would require drinking water needs. The example scenario assumes each head of cattle will require 160 liters of Water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "Principles of *Controlled Grazing*" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

ø

.

Site-Specific Soil Parameters Westinghouse Former Fuel Cycle Facility D&&D Project

RESRAD Parameter Table for ²¹²Bi

Parameter	Recommended RESRAI		Uncertainty Ran			Range Probabilistic		Reference
rarameter	Value	Designation		Low Value	High Value	Number of Samples	Function	Nelei ence
Groundwater Concentration	1.49	W(i)	pCi/L	0	1.49	12	Lognormal	1
Area of Contaminated Zone	77458	AREA	m^2	61966	92950	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	1.39	2.11	28	Normal	5
Contaminated Zone Erosion Rate	0.0003	VCZ	m/yr	0.00024	0.00036	NA	Bounded Normal	6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	²	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	913	UW	m ³ /yr	730	1096	NA	Bounded Normal	17

1 ²¹²Bi ground-water concentration data was taken from piezometer MW-23, which was sampled by Leggette, Brashears & Graham, Inc. in May 1999. This information was referenced in Table 7, "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999. Figure 1 shows the location of MW-23 and Appendix A contains a copy of Table 7. The low value of the uncertainty range corresponds to the numerous non-detections during the four quarterly sampling events, and the high value corresponds to the recommended value (1.49; May 1999).

2 Only sparse ²¹²Bi data exists for soil. LBG assumes the Area of Contaminated Zone is where operations involving radioactive materials occurred. Therefore, the Area of Contamination is defined by the following: Missouri State Highway P to the northwest, the Northeast Site Creek to the northeast, the fenceline to the southeast, and the Site Pond/Creek to the southwest. The northern limits include the Health Physics building and Red Room Roof Burial area, which are in close proximity to the highway. The eastern limits include the burial area, which is located between the plant and the Northeast Site Creek. The south fence line is just northwest of the railway easement. The western limits of extend to the Site Pond/Creek to encompass the location of the cistern/burn pit and red room roof burial area. Figure 4 shows the Area of Contamination for ²¹²Bi. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Due to a sparse amount of soil data for ²¹²Bi, the RESRAD default value was chosen, based on Table 1.3 of "*Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil*," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set. 6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 70 percent of the area of contamination is covered with impervious material, the default value was multiplied by .30 to give a value of 0.0003 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

9 Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the recommended value.

12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1.

13 The average horizontal hydraulic conductivity value was calculated using an average of the values for near-surface silt, silty-clay (NSSSC) and deep silty-clay, clay (DSCC) as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.

16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSSC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.

17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (19.14 acres) were used for pastureland, approximately 10 head of cattle would require drinking water needs. The example scenario assumes each head of cattle will require 160 liters of Water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "Principles of *Controlled Grazing*" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

•

ノ.

4

Site-Specific Soil Parameters Westinghouse Former Fuel Cycle Facility D&&D Project

RESRAD Parameter Table for ²¹²Pb

Parameter	Recommended	RESRAD Code	Units	Uncertainty Range		Range	Probabilistic	Reference
	Value	Designation		Low Value	High Value	Number of Samples	Function	Kelefence
Groundwater Concentration	31.8	W(i)	pCi/L	0	78.4	12	Lognormal	1
Area of Contaminated Zone	77458	AREA	m ²	61966	92950	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	1.39	2.11	28	Normal	5
Contaminated Zone Erosion Rate	0.0003	VCZ	m/yr	0.00024	0.00036	NA	Bounded Normal	6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	m ²	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	913	UW	m ³ /yr	730	1096	NA	Bounded Normal	17

.

REFERENCE FOOTNOTES for ²¹²Pb

1 ²¹²Pb ground-water concentration data was taken from piezometer MW-32, which was sampled by Leggette, Brashears & Graham, Inc. in February 1999. This information was referenced in Table 7, "*Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*", prepared by LBG in November 1999. Figure 1 shows the location of MW-32 and Appendix A contains a copy of Table 7. The low value of the uncertainty range corresponds to the numerous non-detections during the four quarterly sampling events, and the high value corresponds to concentrations from WS-23 (February 1999).

2 Only sparse ²¹²Pb data exists for soil. LBG assumes the Area of Contaminated Zone is where operations involving radioactive materials occurred. Therefore, the Area of Contamination is defined by the following: Missouri State Highway P to the northwest, the Northeast Site Creek to the northeast, the fenceline to the southeast, and the Site Pond/Creek to the southwest. The northern limits include the Health Physics building and Red Room Roof Burial area, which are in close proximity to the highway. The eastern limits include the burial area, which is located between the plant and the Northeast Site Creek. The south fence line is just northwest of the railway easement. The western limits of extend to the Site Pond/Creek to encompass the location of the cistern/burn pit and red room roof burial area. Figure 4 shows the Area of Contamination for ²¹²Pb. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Due to a sparse amount of soil data for ²¹²Pb, the RESRAD default value was chosen, based on Table 1.3 of "*Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil*," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set. 6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 70 percent of the area of contamination is covered with impervious material, the default value was multiplied by .30 to give a value of 0.0003 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

9 Shannon and Wilson (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the recommended value.

12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1.

13 The average horizontal hydraulic conductivity value was calculated using an average of the values for near-surface silt, silty-clay (NSSSC) and deep silty-clay, clay (DSCC) as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from *"Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization"* performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.

16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSSC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.

17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (19.14 acres) were used for pastureland, approximately 10 head of cattle would require drinking water needs. The example scenario assumes each head of cattle will require 160 liters of Water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "Principles of *Controlled Grazing*" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

Site-Specific Soil Parameters Westinghouse Former Fuel Cycle Facility D&&D Project

RESRAD Parameter Table for ²⁰⁸Tl

Parameter	Recommended RESRAI		Uncertainty Ran			ncertainty Range Probabilistic		Reference
	Value	Designation			High Value	Number of Samples	Function	Kelel ence
Groundwater Concentration	8.3	W(i)	pCi/L	0	12.3	12	Lognormal	1
Area of Contaminated Zone	77458	AREA	m ²	61966	92950	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	1.39	2.11	28	Normal	5
Contaminated Zone Erosion Rate	0.0003	VCZ	m/yr	0.00024	0.00036	NA	Bounded Normal	6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	m ²	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	913	UW	m ³ /yr	730	1096	NA	Bounded Normal	17

REFERENCE FOOTNOTES for ²⁰⁸Ti

1 ²⁰⁸Tl ground-water concentration data was taken from piezometer MW-17B, which was sampled by Leggette, Brashears & Graham, Inc. in February 1999. This information was referenced in Table 7, "*Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*", prepared by LBG in November 1999. Figure 1 shows the location of MW-17B and Appendix A contains a copy of Table 7. The low value of the uncertainty range corresponds to the numerous non-detections during the four quarterly sampling events, and the high value corresponds to concentrations from WS-22 (August 1999).

2 Only sparse ²⁰⁸Tl data exists for soil. LBG assumes the Area of Contaminated Zone is where operations involving radioactive materials occurred. Therefore, the Area of Contamination is defined by the following: Missouri State Highway P to the northwest, the Northeast Site Creek to the northeast, the fenceline to the southeast, and the Site Pond/Creek to the southwest. The northern limits include the Health Physics building and Red Room Roof Burial area, which are in close proximity to the highway. The eastern limits include the burial area, which is located between the plant and the Northeast Site Creek. The south fence line is just northwest of the railway easement. The western limits of extend to the Site Pond/Creek to encompass the location of the cistern/burn pit and red room roof burial area. Figure 4 shows the Area of Contamination for ²⁰⁸Tl. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Due to a sparse amount of soil data for ²⁰⁸Tl, the RESRAD default value was chosen, based on Table 1.3 of "*Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil*," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set. 6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 70 percent of the area of contamination is covered with impervious material, the default value was multiplied by .30 to give a value of 0.0003 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

9 Shannon and Wilson (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the recommended value.

12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1.

13 The average horizontal hydraulic conductivity value was calculated using an average of the values for near-surface silt, silty-clay (NSSSC) and deep silty-clay, clay (DSCC) as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.

16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSSC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.

17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (19.14 acres) were used for pastureland, approximately 10 head of cattle would require drinking water needs. The example scenario assumes each head of cattle will require 160 liters of Water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "Principles of *Controlled Grazing*" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

Site-Specific Soil Parameters Westinghouse Former Fuel Cycle Facility D&&D Project

RESRAD Parameter Table for ²³⁴U

Parameter	Recommended	RESRAD Code	Units	Uncertainty]		Range	Probabilistic	Reference
	Value	Designation	Units	Low Value	High Value	Number of Samples	Function	Reference
Groundwater Concentration	213	W(i)	pCi/L	0	238	12	Lognormal	1
Area of Contaminated Zone	77458	AREA	m ²	61966	92950	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	1.39	2.11	28	Normal	5
Contaminated Zone Erosion Rate	0.0003	VCZ	m/yr	0.00024	0.00036	NA	Bounded Normal	6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	m ²	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	913	UW	m ³ /yr	730	1096	NA	Bounded Normal	17

REFERENCE FOOTNOTES for ²³⁴U

1 ²³⁴U ground-water concentration data does not exist. However ²³⁴Th (a Parent isotope of ²³⁴U) ground-water data does exist. If we assume that ²³⁴U is in 100% equilibrium with ²³⁴Th we can use the same data. ²³⁴Th data was taken from piezometer MW-32, which was sampled by Leggette, Brashears & Graham, Inc. in August 1999. This information was referenced in Table 7, "*Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*", prepared by LBG in November 1999. Figure 1 shows the location of MW-32 and Appendix A contains a copy of Table 7. The low value of the uncertainty range corresponds to the numerous non-detections during the four quarterly sampling events, and the high value corresponds to concentrations from WS-27 (February 1999).

2 Only sparse ²³⁴U data exists for soil. LBG assumes the Area of Contaminated Zone is where operations involving ²³⁴U occurred. Therefore, the Area of Contamination is defined by the following: Missouri State Highway P to the northwest, the Northeast Site Creek to the northeast, the fenceline to the southeast, and the Site Pond/Creek to the southwest. The northern limits include the Health Physics building and Red Room Roof Burial area, which are in close proximity to the highway. The eastern limits include the burial area, which is located between the plant and the Northeast Site Creek. The south fence line is just northwest of the railway easement. The western limits of extend to the Site Pond/Creek to encompass the location of the cistern/burn pit and red room roof burial area. Figure 4 shows the Area of Contamination for ²³⁴U. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Due to a sparse amount of soil data for ²³⁴U, the RESRAD default value was chosen, based on Table 1.3 of "*Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil*," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 70 percent of the area of contamination is covered with impervious material, the default value was multiplied by .30 to give a value of 0.0003 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

9 Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the recommended value.

12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1.

13 The average horizontal hydraulic conductivity value was calculated using an average of the values for near-surface silt, silty-clay (NSSSC) and deep silty-clay, clay (DSCC) as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.

16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSSC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.

17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (19.14 acres) were used for pastureland, approximately 10 head of cattle would require drinking water needs. The example scenario assumes each head of cattle will require 160 liters of Water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "Principles of *Controlled Grazing*" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

- - -

RESRAD Parameter Table for ²³⁸U

Parameter	Recommended	RESRAD Code	Units	Uncertainty Range		Range	Probabilistic	Reference
	Value	Designation		Low Value	High Value	Number of Samples	Function	Kelerence
Groundwater Concentration	213	W(i)	pCi/L	0	238	12	Lognormal	1
Area of Contaminated Zone	77458	AREA	m ²	61966	92950	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	1.39	2.11	28	Normal	5
Contaminated Zone Erosion Rate	0.0003	VCZ	m/yr	0.00024	0.00036	NA	Bounded Normal	6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	m ²	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	913	UW	m ³ /yr	730	1096	NA	Bounded Normal	17

τ.

REFERENCE FOOTNOTES for ²³⁸U

1 ²³⁸U ground-water concentration data does not exist. However ²³⁴Th (a daughter of ²³⁸U) ground-water data does exist. If we assume that ²³⁸U is in 100% equilibrium with ²³⁴Th, we can use the same data. ²³⁴Th data was taken from piezometer MW-32, which was sampled by Leggette, Brashears & Graham, Inc. in August 1999. This information was referenced in Table 7, "*Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*", prepared by LBG in November 1999. Figure 1 shows the location of MW-32 and Appendix A contains a copy of Table 7. The low value of the uncertainty range corresponds to the numerous non-detections during the four quarterly sampling events, and the high value corresponds to concentrations from WS-27 (February 1999).

2 Only sparse ²³⁸U data exists for soil. LBG assumes the Area of Contaminated Zone is where operations involving ²³⁸U occurred. Therefore, the Area of Contamination is defined by the following: Missouri State Highway P to the northwest, the Northeast Site Creek to the northeast, the fenceline to the southeast, and the Site Pond/Creek to the southwest. The northern limits include the Health Physics building and Red Room Roof Burial area, which are in close proximity to the highway. The eastern limits include the burial area, which is located between the plant and the Northeast Site Creek. The south fence line is just northwest of the railway easement. The western limits of extend to the Site Pond/Creek to encompass the location of the cistern/burn pit and red room roof burial area. Figure 4 shows the Area of Contamination for ²³⁸U. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Due to a sparse amount of soil data for ²³⁸U, the RESRAD default value was chosen, based on Table 1.3 of "*Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil*," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from *"Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization"* performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 70 percent of the area of contamination is covered with impervious material, the default value was multiplied by .30 to give a value of 0.0003 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

9 Shannon and Wilson (Appendix B of "*Hydrogeologic Investigation and Ground-Water*, *Soil and Stream Characterization*" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the

recommended value.

12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1.

13 The average horizontal hydraulic conductivity value was calculated using an average of the values for near-surface silt, silty-clay (NSSSC) and deep silty-clay, clay (DSCC) as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.

16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSSC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.

17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (19.14 acres) were used for pastureland, approximately 10 head of cattle would require drinking water needs. The example scenario assumes each head of cattle will require 160 liters of Water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "*Principles of Controlled Grazing*" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

RESRAD Parameter Table for ²³⁷Np

Parameter	Recommended	RESRAD Code	Units	Uncertainty Range		Range	Probabilistic	Reference
	Value]	Designation		Low Value	High Value	Number of Samples	Function	Keleience
Groundwater Concentration	0	W(i)	pCi/L	0	1.00E+20	NA	Lognormal	1
Area of Contaminated Zone	77458	AREA	m ²	61966	<u>9295</u> 0	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	1.39	2.11	28	Normal	5
Contaminated Zone Erosion Rate	0.0003	VCZ	m/yr	0.00024	0.00036	NA	Bounded Normal	6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr_	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	m ²	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	913	UW	m ³ /yr	730	1096	NA	Bounded Normal	17

REFERENCE FOOTNOTES for ²³⁷Np

1²³⁷Np ground-water data does not exist, and it is not in a decay series where known concentrations can be used in equilibrium. Therefore, the RESRAD default value (0 pci/L) will be used. Low and high values will also correspond to default values.

2 No ²³⁷Np data exists for soil. LBG assumes the Area of Contaminated Zone is where operations involving U occurred. Therefore, the Area of Contamination is defined by the following: Missouri State Highway P to the northwest, the Northeast Site Creek to the northeast, the fenceline to the southeast, and the Site Pond/Creek to the southwest. The northern limits include the Health Physics building and Red Room Roof Burial area, which are in close proximity to the highway. The eastern limits include the burial area, which is located between the plant and the Northeast Site Creek. The south fence line is just northwest of the railway easement. The western limits of extend to the Site Pond/Creek to encompass the location of the cistern/burn pit and red room roof burial area. Figure 4 shows the Area of Contamination for ²³⁷Np. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Since no soil data exists for ²³⁷Np, the RESRAD default value was chosen, based on Table 1.3 of "*Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil*," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 70 percent of the area of contamination is covered with impervious material, the default value was multiplied by .30 to give a value of 0.0003 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

9 Shannon and Wilson (Appendix B of "*Hydrogeologic Investigation and Ground-Water*, *Soil and Stream Characterization*" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the recommended value.

12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1. 13 The average horizontal hydraulic conductivity value was calculated using an average of the values for near-surface silt, silty-clay (NSSSC) and deep silty-clay, clay (DSCC) as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.

16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSSC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.

17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (19.14 acres) were used for pastureland, approximately 10 head of cattle would require drinking water needs. The example scenario assumes each head of cattle will require 160 liters of Water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "Principles of Controlled Grazing" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

RESRAD Parameter Table for ²³⁹Pu

Parameter	Recommended	RESRAD Code	Units	Uncertainty Range		Range	Probabilistic	Reference
rarameter	Value	Designation	Units	Low Value	High Value	Number of Samples	Function	Keleience
Groundwater Concentration	0	W(i)	pCi/L	0	1.00E+20	NA	Lognormal	1
Area of Contaminated Zone	77458	AREA	m ²	61966	92950	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	1.39	2.11	28	Normal	5
Contaminated Zone Erosion Rate	0.0003	VCZ	m/yr	0.00024	0.00036	NA	Bounded Normal	6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	m ²	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	913	UW	m ³ /yr	730	1096	NA	Bounded Normal	17

1 ²³⁹Pu ground-water data does not exist, and it is not in a decay series where known concentrations can be used in equilibrium. Therefore, the RESRAD default value (0 pci/L) will be used. Low and high values will also correspond to default values.

2 No²³⁹Pu data exists for soil. LBG assumes the Area of Contaminated Zone is where operations involving U occurred. Therefore, the Area of Contamination is defined by the following: Missouri State Highway P to the northwest, the Northeast Site Creek to the northeast, the fenceline to the southeast, and the Site Pond/Creek to the southwest. The northern limits include the Health Physics building and Red Room Roof Burial area, which are in close proximity to the highway. The eastern limits include the burial area, which is located between the plant and the Northeast Site Creek. The south fence line is just northwest of the railway easement. The western limits of extend to the Site Pond/Creek to encompass the location of the cistern/burn pit and red room roof burial area. Figure 4 shows the Area of Contamination for ²³⁹Pu. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Since no soil data exists for ²³⁹Pu, the RESRAD default value was chosen, based on Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 70 percent of the area of contamination is covered with impervious material, the default value was multiplied by .30 to give a value of 0.0003 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

9 Shannon and Wilson (Appendix B of "*Hydrogeologic Investigation and Ground-Water*, *Soil and Stream Characterization*" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the recommended value.

12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1.

13 The average horizontal hydraulic conductivity value was calculated using an average of the values for near-surface silt, silty-clay (NSSSC) and deep silty-clay, clay (DSCC) as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.

16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSSC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.

17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (19.14 acres) were used for pastureland, approximately 10 head of cattle would require drinking water needs. The example scenario assumes each head of cattle will require 160 liters of Water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "Principles of Controlled Grazing" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

RESRAD Parameter Table for ²³²Th

Parameter	Recommended	RESRAD Code Units –		Une	certainty F	Range	Probabilistic	Reference
Parameter	Value	Designation	Units	Low Value	High Value	Number of Samples	Function	Reference
Groundwater Concentration	29.3	W(i)	pCi/L	0	41.8	12	Lognormal	1
Area of Contaminated Zone	77458	AREA	m ²	61966	92950	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	<u>1.39</u>	2.11	28	Normal	5
Contaminated Zone Erosion Rate	0.0003	VCZ	m/yr	0.00024	0.00036	NA	Bounded Normal	6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	m ²	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	' NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	913	UW	m ³ /yr	730	1096	NA	Bounded Normal	17

REFERENCE FOOTNOTES for ²³²Th

1 ²³²Th ground-water concentration data does not exist. However ²²⁸Ac (a daughter of ²³²Th) ground-water data does exist. If we assume that ²³²Th is in 100% equilibrium with ²²⁸Ac, we can use the same data. ²²⁸Ac data was taken from piezometer MW-32, which was sampled by Leggette, Brashears & Graham, Inc. in May 1999. This information was referenced in Table 7, "*Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*", prepared by LBG in November 1999. Figure 1 shows the location of MW-32 and Appendix A contains a copy of Table 7. The low value of the uncertainty range corresponds to the numerous non-detections during the four quarterly sampling events, and the high value corresponds to concentrations from WS-27 (August 1999).

2 Only sparse ²³²Th data exists for soil. LBG assumes the Area of Contaminated Zone is where operations involving ²³²Th occurred. Therefore, the Area of Contamination is defined by the following: Missouri State Highway P to the northwest, the Northeast Site Creek to the northeast, the fenceline to the southeast, and the Site Pond/Creek to the southwest. The northern limits include the Health Physics building and Red Room Roof Burial area, which are in close proximity to the highway. The eastern limits include the burial area, which is located between the plant and the Northeast Site Creek. The south fence line is just northwest of the railway easement. The western limits of extend to the Site Pond/Creek to encompass the location of the cistern/burn pit and red room roof burial area. Figure 4 shows the Area of Contamination for ²³²Th. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Due to a sparse amount of soil data for ²³⁵U, the RESRAD default value was chosen, based on Table 1.3 of "*Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil*," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 70 percent of the area of contamination is covered with impervious material, the default value was multiplied by .30 to give a value of 0.0003 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

9 Shannon and Wilson (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the recommended value.

12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1.

13 The average horizontal hydraulic conductivity value was calculated using an average of the values for near-surface silt, silty-clay (NSSSC) and deep silty-clay, clay (DSCC) as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.

16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSSC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.

17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (19.14 acres) were used for pastureland, approximately 10 head of cattle would require drinking water needs. The example scenario assumes each head of cattle will require 160 liters of Water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "Principles of *Controlled Grazing*" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

11

RESRAD Parameter Table for ²²⁸Ra

Parameter	Recommended	RESRAD Code	Units	Uncertainty Range		Range	Probabilistic	Reference
	Value	Designation		Low High Value Value	-	Number of Samples	Function	Reference
Groundwater Concentration	29.3	W(i)	pCi/L	0	41.8	12	Lognormal	1
Area of Contaminated Zone	77458	AREA	m ²	61966	92950	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	1.39	2.11	28	Normal	5
Contaminated Zone Erosion Rate	0.0003	VCZ	m/yr	0.00024	0.00036	NA	Bounded Normal	6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	m ²	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	913	UW	m ³ /yr	730	1096	NA	Bounded Normal	17

REFERENCE FOOTNOTES for ²²⁸Ra

1 ²²⁸Ra ground-water concentration data does not exist. However ²²⁸Ac (a daughter of ²²⁸Ra) ground-water data does exist. If we assume that ²²⁸Ra is in 100% equilibrium with ²²⁸Ac, we can use the same data. ²²⁸Ac data was taken from piezometer MW-32, which was sampled by Leggette, Brashears & Graham, Inc. in May 1999. This information was referenced in Table 7, "*Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*", prepared by LBG in November 1999. Figure 1 shows the location of MW-32 and Appendix A contains a copy of Table 7. The low value of the uncertainty range corresponds to the numerous non-detections during the four quarterly sampling events, and the high value corresponds to concentrations from WS-27 (August 1999).

2 Only sparse ²²⁸Ra data exists for soil. LBG assumes the Area of Contaminated Zone is where operations involving ²²⁸Ra occurred. Therefore, the Area of Contamination is defined by the following: Missouri State Highway P to the northwest, the Northeast Site Creek to the northeast, the fenceline to the southeast, and the Site Pond/Creek to the southwest. The northern limits include the Health Physics building and Red Room Roof Burial area, which are in close proximity to the highway. The eastern limits include the burial area, which is located between the plant and the Northeast Site Creek. The south fence line is just northwest of the railway easement. The western limits of extend to the Site Pond/Creek to encompass the location of the cistern/burn pit and red room roof burial area. Figure 4 shows the Area of Contamination for ²²⁸Ra. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Due to a sparse amount of soil data for ²³⁵U, the RESRAD default value was chosen, based on Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 70 percent of the area of contamination is covered with impervious material, the default value was multiplied by .30 to give a value of 0.0003 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

9 Shannon and Wilson (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the recommended value.

12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1.

13 The average horizontal hydraulic conductivity value was calculated using an average of the values for near-surface silt, silty-clay (NSSSC) and deep silty-clay, clay (DSCC) as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.

16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSSC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.

17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (19.14 acres) were used for pastureland, approximately 10 head of cattle would require drinking water needs. The

56

example scenario assumes each head of cattle will require 160 liters of Water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "*Principles of Controlled Grazing*" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

57

RESRAD Parameter Table for ²²⁸Th

Parameter	Recommended	RESRAD Code	Units	Uncertainty Range		Range	Probabilistic	Reference
rarameter	Value	Designation	UIIIIS	Low Value	High Value	Number of Samples	Function	Multichee
Groundwater Concentration	29.3	W(i)	pCi/L	0	41.8	12	Lognormal	1
Area of Contaminated Zone	77458	AREA	m ²	61966	92950	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	1.39	2.11	28	Normal	5
Contaminated Zone Erosion Rate	0.0003	VCZ	m/yr	0.00024	0.00036	NA	Bounded Normal	6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	m^2	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	, NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	913	UW	m ³ /yr	730	1096	NA	Bounded Normal	17

REFERENCE FOOTNOTES for ²²⁸Th

1 ²²⁸Th ground-water concentration data does not exist. However ²²⁸Ac (a parent of ²²⁸Th) ground-water data does exist. If we assume that ²²⁸Th is in 100% equilibrium with ²²⁸Ac, we can use the same data. ²²⁸Ac data was taken from piezometer MW-32, which was sampled by Leggette, Brashears & Graham, Inc. in May 1999. This information was referenced in Table 7, "*Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*", prepared by LBG in November 1999. Figure 1 shows the location of MW-32 and Appendix A contains a copy of Table 7. The low value of the uncertainty range corresponds to the numerous non-detections during the four quarterly sampling events, and the high value corresponds to concentrations from WS-27 (August 1999).

2 Only sparse ²²⁸Th data exists for soil. LBG assumes the Area of Contaminated Zone is where operations involving ²²⁸Th occurred. Therefore, the Area of Contamination is defined by the following: Missouri State Highway P to the northwest, the Northeast Site Creek to the northeast, the fenceline to the southeast, and the Site Pond/Creek to the southwest. The northern limits include the Health Physics building and Red Room Roof Burial area, which are in close proximity to the highway. The eastern limits include the burial area, which is located between the plant and the Northeast Site Creek. The south fence line is just northwest of the railway easement. The western limits of extend to the Site Pond/Creek to encompass the location of the cistern/burn pit and red room roof burial area. Figure 4 shows the Area of Contamination for ²²⁸Th. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Due to a sparse amount of soil data for ²³⁵U, the RESRAD default value was chosen, based on Table 1.3 of "*Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil*," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 70 percent of the area of contamination is covered with impervious material, the default value was multiplied by .30 to give a value of 0.0003 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

9 Shannon and Wilson (Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

60

11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the recommended value.

12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1.

13 The average horizontal hydraulic conductivity value was calculated using an average of the values for near-surface silt, silty-clay (NSSSC) and deep silty-clay, clay (DSCC) as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.

16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSSC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.

17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (19.14 acres) were used for pastureland, approximately 10 head of cattle would require drinking water needs. The

61

example scenario assumes each head of cattle will require 160 liters of Water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "*Principles of Controlled Grazing*" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

RESRAD Parameter Table for ²²⁴Ra

Parameter	Recommended	RESRAD Code	Units	Uncertainty Range		Range	Probabilistic	Reference
	Value	Designation	Onits	Low Value	High Value	Number of Samples	Function	Reference
Groundwater Concentration	29.3	W(i)	pCi/L	0	41.8	12	Lognormal	1
Area of Contaminated Zone	77458	AREA	m ²	61966	92950	NA	Normal	2
Thickness of Contaminated Zone	2	THICKO	m	1.00E-10	11.74	NA	Bounded Lognormal	3
Length Parallel to Aquifer	291	LCZPAQ	m	233	349	NA	Bounded Normal	4
Density of Contaminated Zone	1.69	DENSCZ	g/cm ³	1.39	2.11	28	Normal	5
Contaminated Zone Erosion Rate	0.0003	VCZ	m/yr	0.00024	0.00036	NA	Bounded Normal	6
Contaminated Zone Total Porosity	0.45	TPCZ	0.xx	0.41	0.483	13	Normal	7
Contaminated Zone Field Capacity	0.17	FCCZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Contaminated Zone Hydraulic Conductivity	14.56	HCCZ	m/yr	1.38E-03	1.45E+02	13	Lognormal	9
Contaminated Zone b Parameter	10.40	BCZ	unitless	4.05	11.4	NA	Lognormal	10
Watershed Area	998939	WAREA	m ²	988950	1008928	NA	Bounded Normal	11
Density of Saturated Zone	1.69	DENSAQ	g/cm ³	1.39	2.11	28	Normal	5
Saturated Zone Total Porosity	0.45	TPSZ	0.xx	0.41	0.483	13	Normal	7
Saturated Zone Effective Porosity	0.29	EPSZ	0.xx	0.281	0.425	NA	Normal	12
Saturated Zone Field Capacity	0.17	FCSZ	0.xx	0.01	0.2	NA	Bounded Normal	8
Saturated Zone Hydraulic Conductivity	169.58	HCSZ	m/yr	1.56E+01	8.51E+01	12	Lognormal	13
Saturated Zone Hydraulic Gradient	0.015	HGWT	unitless	0.013	0.018	NA	Bounded Lognormal	14
Saturated Zone b Parameter	10.40	BSZ	unitless	4.05	11.4	NA	Lognormal	10
Water Table Drop Rate	0.00	VWT	m/yr	NA	NA	NA	None Recommended	15
Well Pump Intake Depth	9.41	DWIBWT	m	5.4	11.7	10	Bounded Normal	16
Well Pumping Rate	913	UW	m ³ /yr	730	1096	NA	Bounded Normal	17

1 ²²⁴Ra ground-water concentration data does not exist. However ²²⁸Ac (a parent of ²²⁴Ra) ground-water data does exist. If we assume that ²²⁴Ra is in 100% equilibrium with ²²⁸Ac, we can use the same data. ²²⁸Ac data was taken from piezometer MW-32, which was sampled by Leggette, Brashears & Graham, Inc. in May 1999. This information was referenced in Table 7, "*Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*", prepared by LBG in November 1999. Figure 1 shows the location of MW-32 and Appendix A contains a copy of Table 7. The low value of the uncertainty range corresponds to the numerous non-detections during the four quarterly sampling events, and the high value corresponds to concentrations from WS-27 (August 1999).

2 Only sparse ²²⁴Ra data exists for soil. LBG assumes the Area of Contaminated Zone is where operations involving ²²⁴Ra occurred. Therefore, the Area of Contamination is defined by the following: Missouri State Highway P to the northwest, the Northeast Site Creek to the northeast, the fenceline to the southeast, and the Site Pond/Creek to the southwest. The northern limits include the Health Physics building and Red Room Roof Burial area, which are in close proximity to the highway. The eastern limits include the burial area, which is located between the plant and the Northeast Site Creek. The south fence line is just northwest of the railway easement. The western limits of extend to the Site Pond/Creek to encompass the location of the cistern/burn pit and red room roof burial area. Figure 4 shows the Area of Contamination for ²²⁴Ra. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

3 Due to a sparse amount of soil data for ²³⁵U, the RESRAD default value was chosen, based on Table 1.3 of "*Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil*," April 1993. Appendix C contains a copy of Table 1.3. The low value of the uncertainty range is based on the lower bounds value in Table 1.3. The high value of the uncertainty range is the maximum depth of the overburden.

4 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. The source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high uncertainty range values for the Length Parallel to Aquifer are not expected to be more than 20 percent above or below the recommended value.

5 Taken from an average of dry density calculations from work performed by Fitch, University of Missouri – Rolla, 1998, presented in "Fourth Sampling Event Report in Conjunction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization", prepared by LBG in November 1999, and Shannon and Wilson (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

6 Jefferson County does not have a published soil survey which typically provide values for erosion rates. Therefore, the default value (0.001 m/yr) provided in Table 1.3 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993, was used as a starting point. Since approximately 70 percent of the area of contamination is covered with impervious material, the default value was multiplied by .30 to give a value of 0.0003 m/yr. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.

7 From Shannon and Wilson, (Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

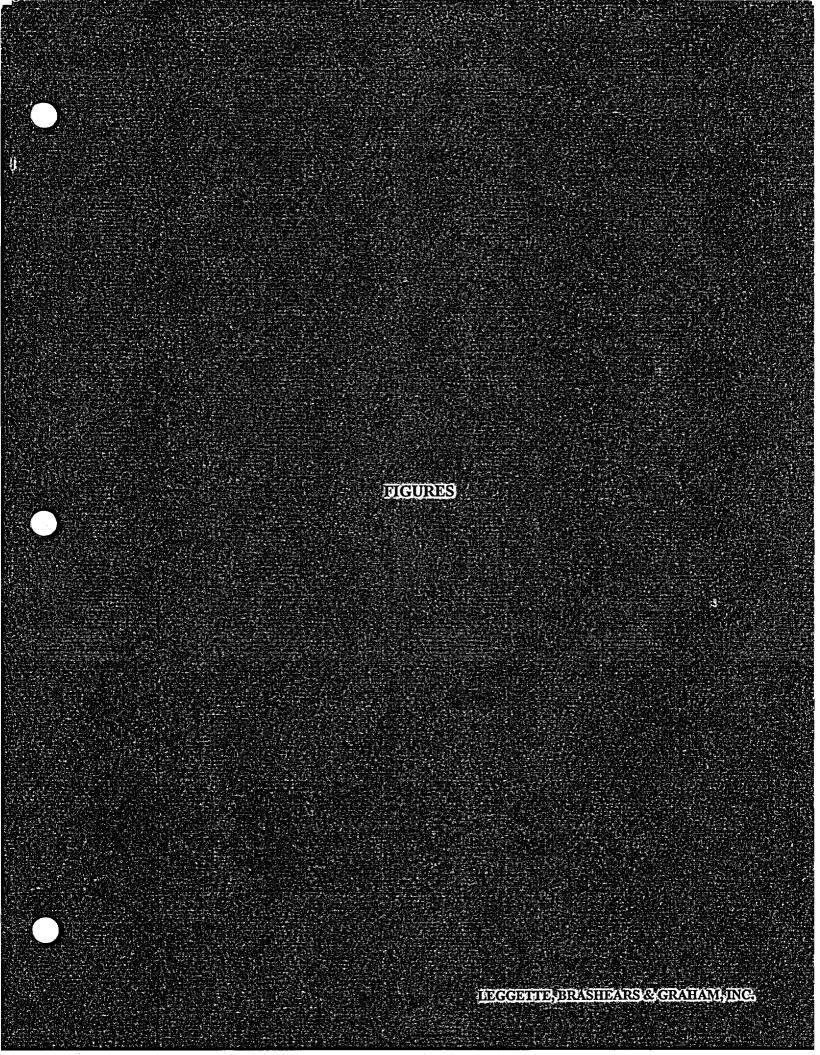
8 Derived using Formula 4.4 on page 28 of "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. The value for total porosity was taken from the average of Shannon and Wilson data (0.446; see footnote 7 above) and the value for effective porosity was based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of page 28, the completed formula, and Table 3.3-1 are provided in Appendix E. The low value of the uncertainty range cannot be zero (thus 0.01 was chosen), and the high value is derived by using the highest total porosity and effective porosity values in the calculation.

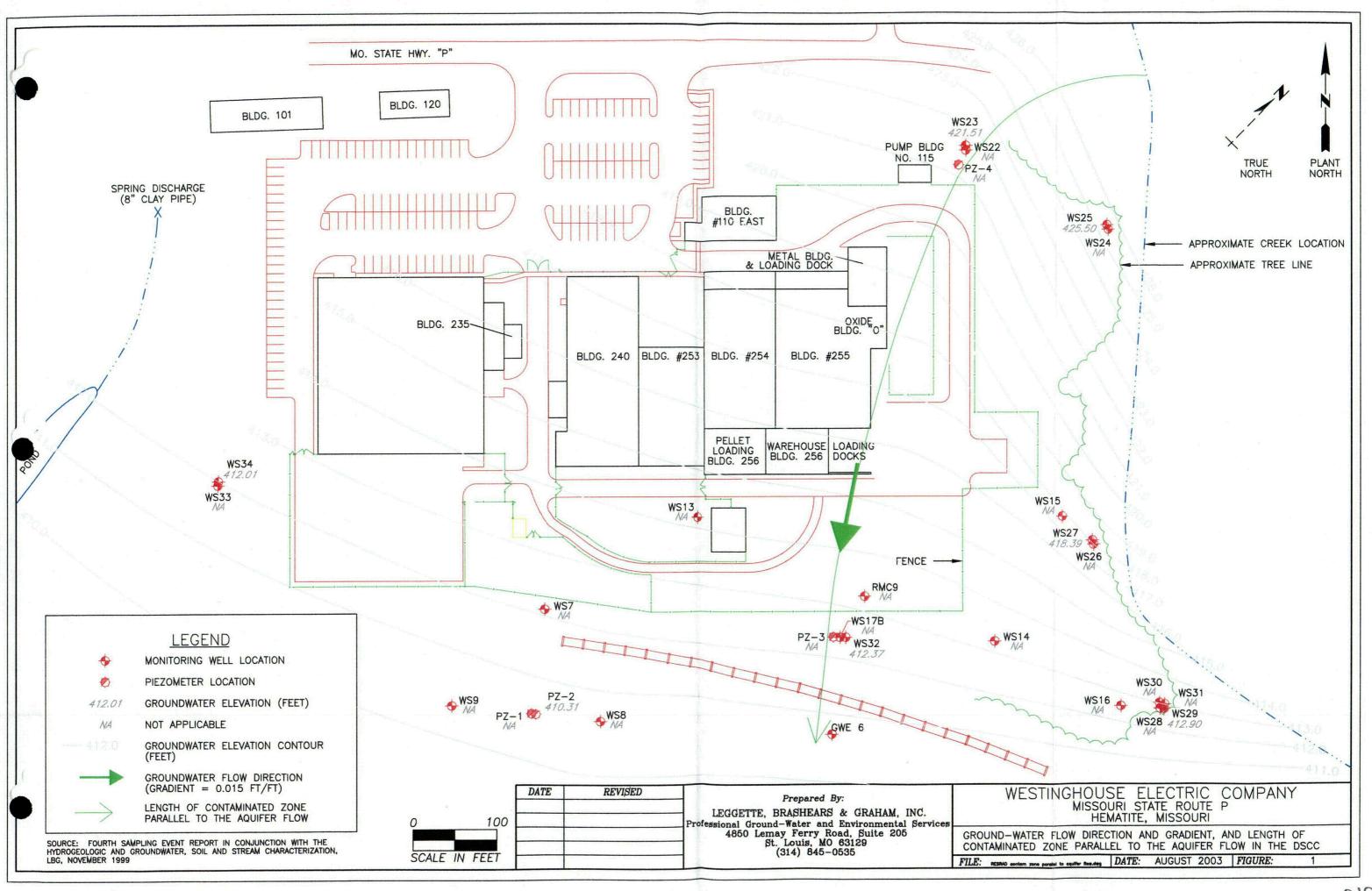
9 Shannon and Wilson (Appendix B of "*Hydrogeologic Investigation and Ground-Water*, *Soil and Stream Characterization*" prepared by LBG in March 1999) performed permeability tests on numerous soil samples. The average vertical permeability (hydraulic conductivity; K) for each sample was determined by averaging the last three permeability readings (telephone communication with Mr. Chris Groves, Vice-President, Shannon and Wilson on August 13, 2003). Once averages were calculated for each sample, an average of the entire data set was determined. The vertical hydraulic conductivity test data and a table developed to show the average K per sample, and the average K for the data set are provided in Appendix D. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

10 Based on the default value for silty clay provided in Table 13.1, in "Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil," April 1993. A copy of Table 13.1 is provided in Appendix F. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 13.1.

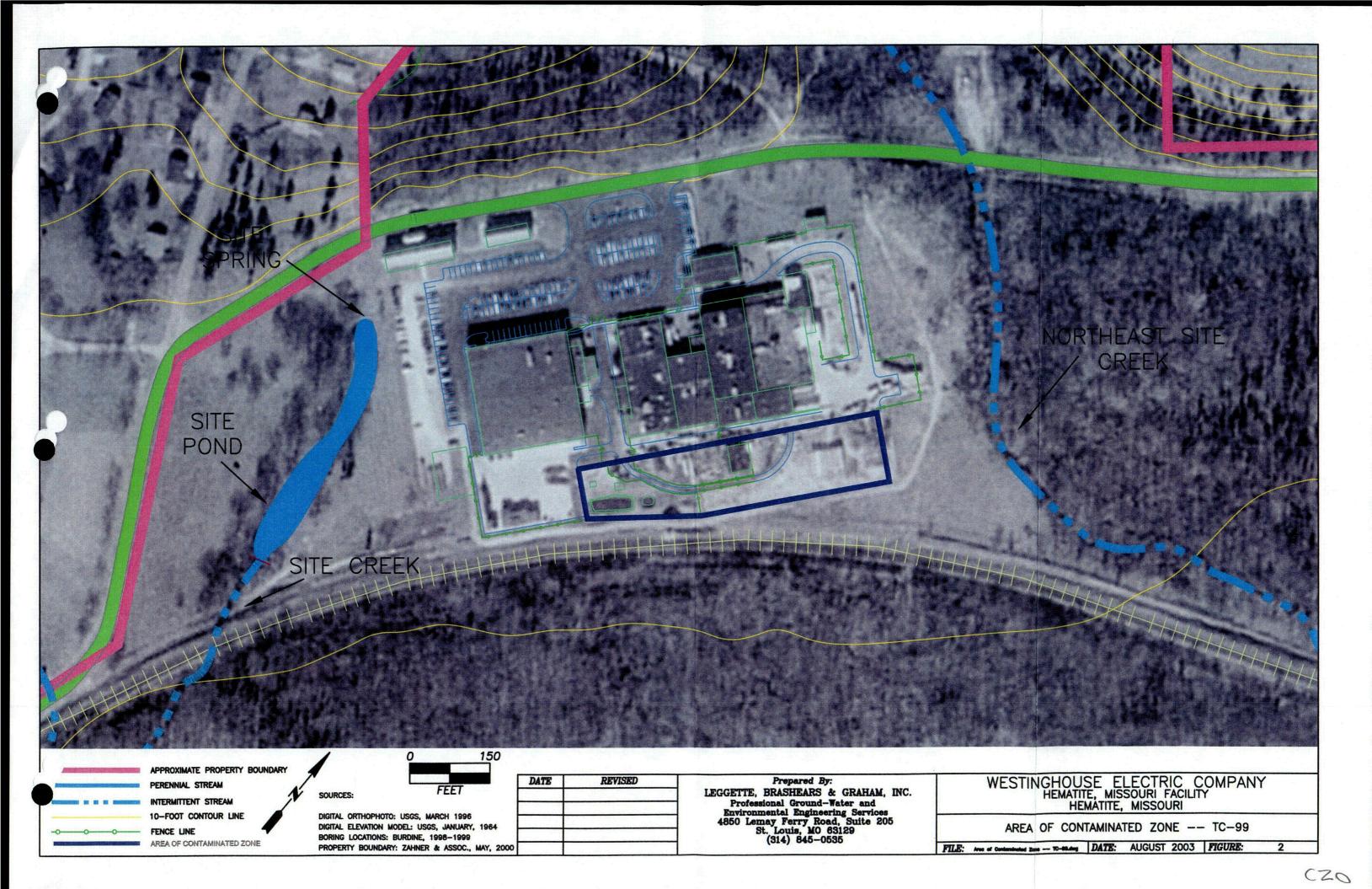
11 The areal extent of the Watershed Area is defined on Figure 3. The low and high uncertainty range values are not expected to be more than 1 percent above or below the recommended value.

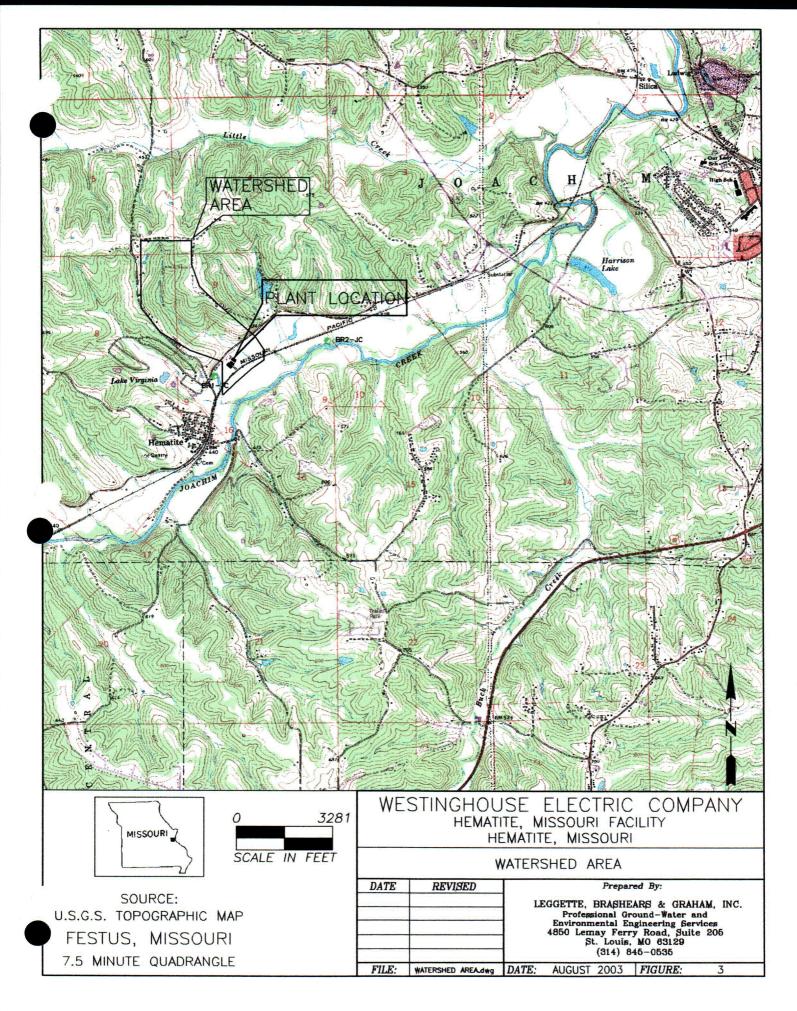
12 The effective porosity value is based on a default value for silty clay in Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000. A copy of Table 3.3-1 is provided in Appendix E. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 3.3-1.

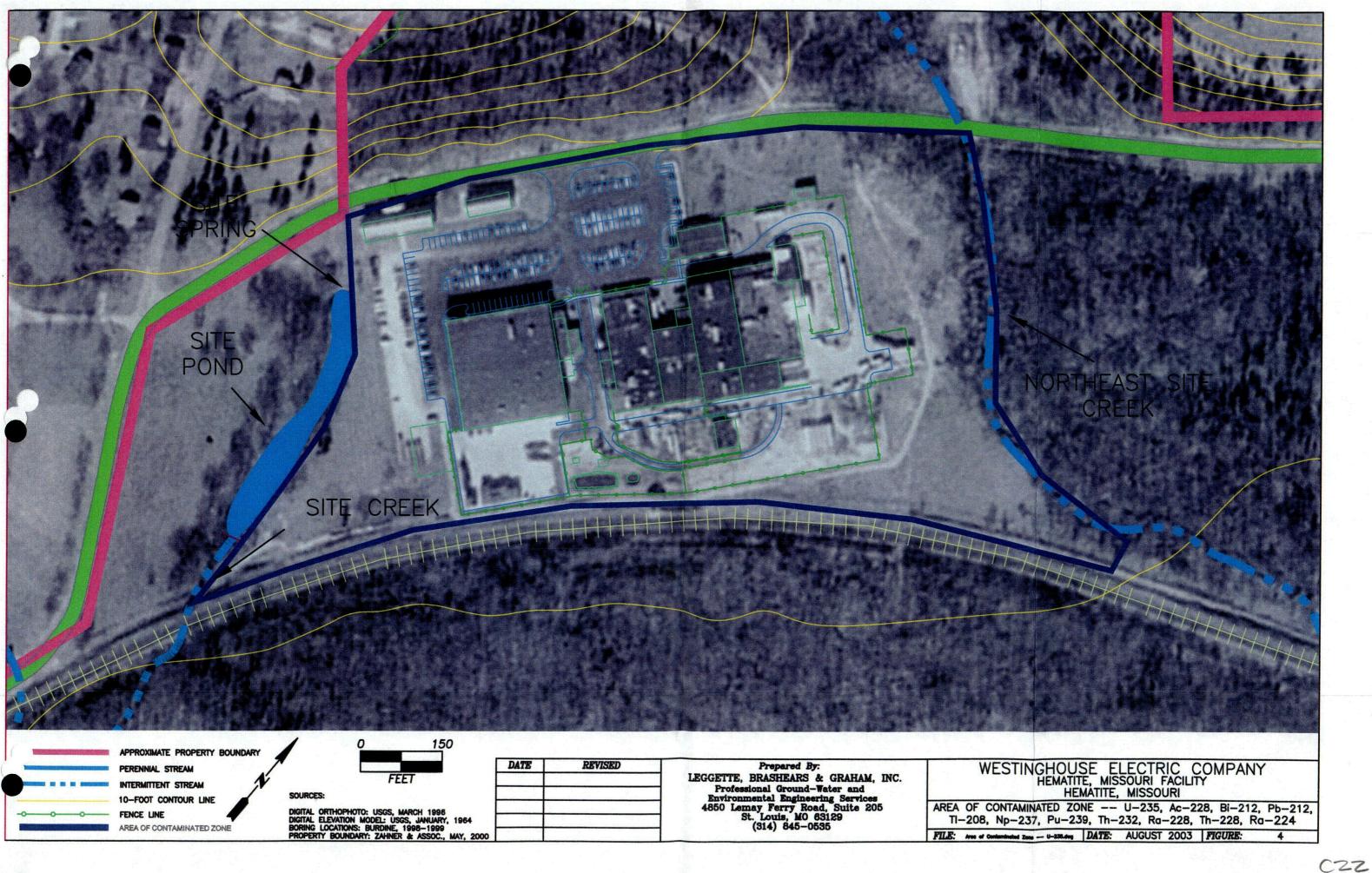

13 The average horizontal hydraulic conductivity value was calculated using an average of the values for near-surface silt, silty-clay (NSSSC) and deep silty-clay, clay (DSCC) as determined in Table 2 of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999). Appendix D includes a table with these values showing how the value was derived. It also includes a copy of the reference data. The low and high values for the uncertainty range are associated with the lowest and highest values from the data set.

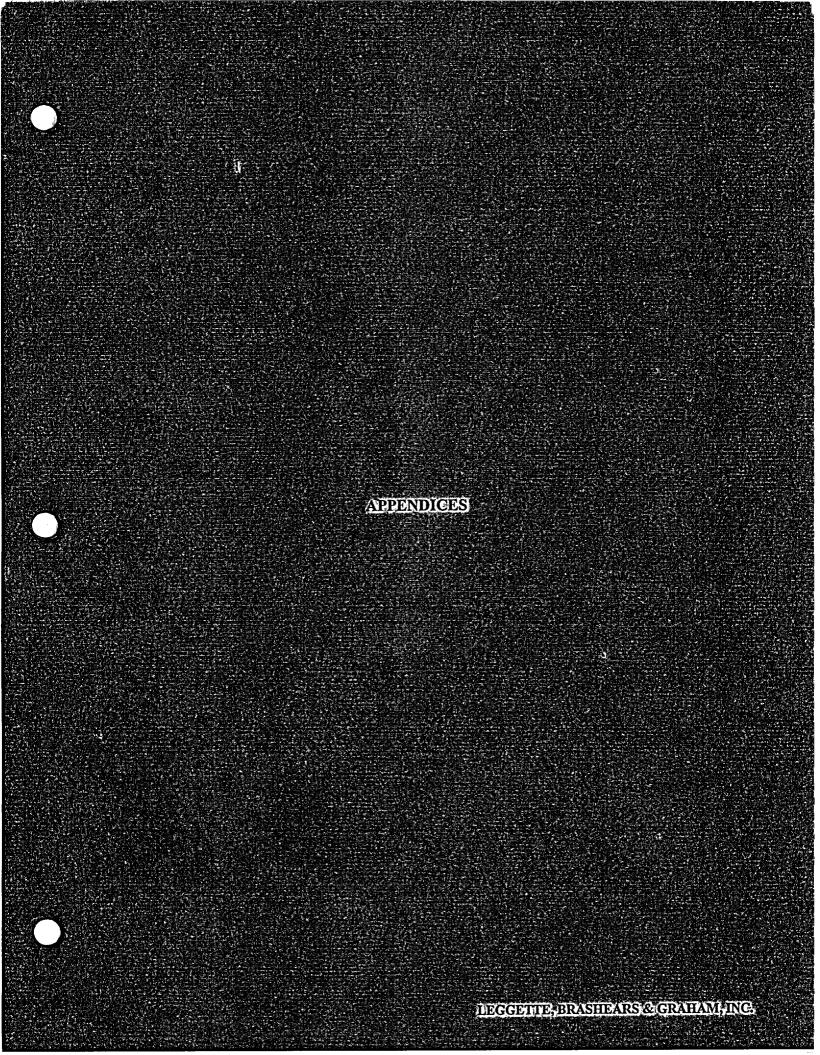

14 Figure 1 shows the ground-water flow direction and gradient, and length of contaminated zone. Source of Figure 1 is from "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*" performed by LBG in March 1999. The low and high values of the uncertainty range correspond to the lowest and highest gradient values from the LBG quarterly sampling reports.

15 Because the overburden aquifer is not used as a source of drinking water or for irrigation purposes, no net loss of ground water is expected to occur. Therefore, the value for the Water Table Drop Rate is zero. Low and high values of the uncertainty range are not applicable.


16 The Pump Intake Depth would be near the bottom of the DSCC, which would be approximately two feet above bedrock at the Site. The bottom of the screen depth of all DSSC wells was averaged and two feet was subtracted from that value. Table 5 from the RI/FS work plan was used to estimated the bottom of the wells, a copy of which is included in Appendix G. A table showing how the average was derived is also provided. The low and high values for the uncertainty range are associated with the lowest and highest values in Table 5.


17 Table 3.10-1 of "Development of Probabilistic RESRAD 6.0 and RESRAD-Build 3.0 Computer Codes," November 2000 provides a basis for determining the well pumping rate. The example scenario assumes a household of 4 adults, each requiring 225 liters of water per day. Agricultural parcels in this part of Missouri are typically not irrigated, so pumping rates for irrigation have not been provided. Water consumption for livestock is included in this parameter. Based on "Principles of Controlled Grazing," prepared by David W. Pratt in 1993, 2 head of cattle per acre on remote ranges or non-irrigated pasture is common. If the entire contaminated zone (19.14 acres) were used for pastureland, approximately 10 head of cattle would require drinking water needs. The example scenario assumes each head of cattle will require 160 liters of Water per day. A calculation provided in Appendix H shows annual well pumping rate required for this scenario. A copy of Table 3.10-1 and pertinent information from "*Principles of Controlled Grazing*" are also provided. The low and high uncertainty range values are not expected to be more than 20 percent above or below the recommended value.




C19

DATE	REVISED	Prepared By: LEGGETTE, BRASHEARS & GRAHAM, INC. Professional Ground-Water and Environmental Engineering Services	WEST
		4850 Lemay Ferry Road, Suite 205 St. Louis, MO 63129 (314) 845-0535	AREA OF CONTA TI-208, Np-
		(014) 040-0000	FILE: Area of Contaminator

Ground-Water Concentration Supporting Documentation

IEGGETTE; BRASHEARS & GRAHAMAING.

TABLE 3-399Tc Concentration (pCi/L) inSelected Groundwater Monitoring WellsCE COMBUSTION ENGINEERINGHEMATITE, MISSOURI

Groundwater Monitoring Well Identity	⁹⁹ Tc Concentration (pCi/L) Aug.27, 1996
WS-14	24.9
GWE-2	260
GWE-3	142
GWE-4	· 1590
GWE-5	874
GWE-6	179
GWE-8	317

COMBUSI MISSOURI ATE ROUTE P HEMATITE, MISSOURI

FILTERED GAMMA RADIOACTIVE GROUND-WATER AND STREAM SURFACE WATER ANALYTICAL DATA USEPA METHODS 900.0 AND 901.1M PICOCURIES PER LITER (pCI/L)

140534	-	K-40 Potass	jum	TI-208 Thail	łum:	Pb-212 Le	ad	Bi-212 Bism	uth	Bi-214 Bism	iuth	Pb-214 Let	rd .	Radium-22	6*	Ac-228 Actin	nium	Th-234** The	rtum	U-235 Uran	ium
WELL	DATE	CONCENTRATION	MOt	CONCENTRATION	HOL	CONCENTRATION	MOL	CONCENTRATION	MOL	CONCENTRATION	MOL	CONCENTRATION	MOL	CONCENTRATION	MDL.	CONCENTRATION	MOL	CONCENTRATION.	MDL.	CONCENTRATION	MOL
SW-1	Nov-98	BDL	83.6	BDL	7.9	BDL	12.8			BDL	14.5	ND	ND			BDL	26.4	BDL	91.7	BDL	9.3
(Surface Water)	Feb-99	BDL	173	BDL	12.6	BDL	18.8	BDL	83.6	BDL	24.9	BDL	21.5	BDL	24.9	BDL	43.2	BDL	101.0	BDL	54
	May-99	8DL	137	BDL.	11.1	BDL	21.1	BDL	66.5	BDL	19.8	BDL	16.7	BDL	152	BDL	35.3	BDL	101	BDL	9.23
	Aug-99	BDL	156	BDL	19.9	BDL	18.7	BDL	73.4	BDL	26	BDL	23.4	BDL	201	BDL	36.9	BOL	192	BDL	12.2
. SW-2	Nov-98	BDL	62.8	BDL	6.3	BDL	15.6			BDL	11.6	BDL	14.3			BDL	20.8	BDL	105.0	BDL	10.0
(Surface Water)	Feb-99	BDL	92	BDL	7.0	BDL	10.1	BDL	45.7	BDL	13.4	BDL	14.7	BDL	13.4	BDL	21.3	BDL	78.5	BDL	31.9
	May-99	BDL	103	BDL	6.90	BDL	14.3	BDL	55.2	BDL	15.0	BDL.	12.0	128 +/- 37.1	104	BDL	25.3	BDL	134	17.7 +/- 7.41	9.87
	Aug-99	BOL	159	BDL	10.20	22.9 +/- 3.97	12.8	BDL	59	BDL	19.2	8DL	22.7	BDL	168	BDL	29.9	BDL	120	BDL	7.10
SW-3	Nov-98	BDL	6.1	BDL	6.1	BDL	13.0			3.8 +/- 11.3	10.4	BDL	13,3			BDL.	18.2	BDL	9.0	58 +/- 75	76.0
(Surface Water)	Feb-99	BDL	69	BDL	5.1	BDL	7.6	BDL	36.9	BDL	10.2	BDL.	11.0	BDL	10.2	BDL	17.2	BDL	86.4	BDL	29.0
1	May-99	277 +/- 44.0	98.4	BOL	13.5	25.6 +/- 10.8	21.1	23.3 +/- 118	16,4	80L	23.4	BOL	23.2	165 +/- 25.3	142	BDL	43.5	BDL	129	BDL	12.8
	Aug-99	182 +/- 46.8	128	BDL	14.6	BOL	32.8	8DL	46.4	BDL	71.6	BDL	61	428 +/- 111	350	BOL	69.2	379 +/- 43.3	153	28.0 +/- 6.77	21.3
SW-4	Nov-98	BDL	4.6	BDL	4.0	BDL	10.2	[BDL	8.0	ND	ND	1		BOL	14.4	8.1 +/- 5.0	7.3	104 +/- 53.6	80.4
(Surface Water)	Feb-99	8DL	124	BDL	8.9	BDL	13.4	BDL	56.7	BDL	16.2	BDL	j 15.1	BDL	16.2	BDL	28.9	BDL	70.2	BDL	35.0
	May-99	BDL	96.7	BDL	6.24	BDL	9.72	BDL	57.0	BDL	15.4	BDL	16.1	189 +/- 45.7	120	BDL	27.4	BDL	160	BDL	10.5
}	Aug-99	130 +/- 35.1	100	BDL	7.88	16.9 +/- 4.09	16.2	BDL	61.8	BDL	37.9	13.1 +/- 2.40	12.4	BDL	163	22.4 +/- 3.57	16.1	BDL	93	BDL	9.91
SW-5	May-99	BDL	93.3	BDL	8.94	12.1 +/- 4.39	13.9	BDL	57.6	18.0 +/- 5.46	18.4	BDL	14.5	200 +/- 41.0	94.3	14.8 +/- 10.1	22.4	BDL	147	BDL	9,49
(BD of SW-3)	Aug-99	BDL.	207.0	BDL	28,50	BDL	27.6	BDL	46.4	BDL	22.1	BDL	35.8	50.3 +/- 145	483.0	BDL	65.1	BDL	192	BDL	29.40
WS17B	Nov-98	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1 NA	NA	NA	NA	NA	NA	NA	NA	NA
(NSSSC)	Feb-99	153 +/- 18.5	50.1	8.3 +/- 0.8	4.4	BDL	10.2	BDL	42.8	22.4 +/- 3.3	10.6	12.0 +/- 3.2	10.3	18.1 +/- 3.6	12.8	23.9 +/- 5.7	19.8	BDL	73.0	BOL	31.9
(May-99	279 +/- 43.4	94.3	BDL	11.9	BDL	22.7	BDL	16.4	BDL	21.0	BDL	23.3	BDL	158	BDL	38,9	BDL	119	BDL	13.5
Ì	Aug-99	BDL	164	BDL	15.8	BDL	29.3	BDL	81.9	59.2 +/- 6.84	1		24.1	BDL	403	BDL	40.5	BDL	189	BDL	24.5
WS22	Nov-98	BDL	56.3	BDL	7.1	BDL	8.9			BDL	7.9	BDL	9.9			BDL	16.1	BDL	91.0	BDL	12.2
(NSSSC)	Feb-99	85.8 +/- 22.5	85.0	BDL	5.3	11.0 +/- 1.4	80.6	BDL	41.2	9.2 +/- 2.4	7.5	7.4 +/- 2.3	7.2	BDL	10.8	BDL	17.9	180 +/- 32.9	101	BDL	30.8
	May-99	BDL	75.1	BDL	5,70	BDL	7.83	BDL	39.4	25.8 +/- 4.33	14.9	28.0 +/- 3.52	12.8	1	78.5	BDL	21.2	BDL	120	14.4 +/- 4.69	8,67
1	Aug-99	BDL	160	12.3 +/- 2.72	8.19	BDL	17.4	BDL	32.4	40.9 +/- 5.85	1	26.8 +/- 4.03	17.1	BDL	199	30.4 +/- 7.43	1	BDL	88.9	BDL	12.1
WS23	Nov-98	BDL	87.1	BDL	8.7	BDL	21.0	1	1	BDL	14.2	ND	ND	1	;	BDL	28.4	8.8 +/- 10.9	17.8	38.1 +/- 105	173.0
(DSCC)	Feb-99	BDL	160	BDL	17.1		1	BDL	55.4	BDL	32.9	BDL	27.9	23.0 +/- 4.6	15.8	BDL	48.0	BDL	232	BDL	34.7
	May-99	BDL	120	BDL	6.92		1	1.49 +/- 66.4	8.22	43.6 +/- 5.82)	36.1 +/- 5.26	21.7		232	BDL	32.1	BDL	91.6	BDL	16.8
1	Aug-99	BDL	266	BDL	18.3	4		BDL	30.2	44.1 +/- 11.9	4	BOL	37.4		453	BDL	64.4	199 +/- 48.2	186	BDL	27.5
WS24	Nov-98	BDL	52.6	BDL	6.0	8.3 +/- 12.0	12.2		1	2.6 +/- 12.0	12.4	4.4 +/- 12.0	12.7			BDL	21.6	3.9 +/- 9,4	12.2	22.3 +/- 95.5	5 126.0
(NSSSC)	Feb-99	140 +/- 17.7	44.4	10.3 +/- 1.6	4.7	40.2 +/- 3.7	10.1	8DL	42.8	16.7 +/- 3.3	10.0	13.4 +/- 1.5	9.0	1	12.2	24.9 +/- 2.5	13.3	BDL	70.2	BDL	31.6
	May-99	BDL	90.8	BDL	10.0	,	12.9	BDL	47.7	BDL	12.3		11.6	1	213	BDL	23.1	BDL	118	BDL	12.0
1	Aug-99	140 +/- 33.0	87.0	BOL	9.7	32.0 +/- 4.03		1	66.8	BDL	32.8	1 · · ·	23.1		160	28.7 +/- 3.98	1	BDL	134	BDL	. 9,8
WS25	Nov-98	BDL	69.6	BOL	6.7	BDL	15.5			BDL	12.8	the second s	15.0	the second s		BDL	20.3	BDL	111	BDL	12.7
(DSCC)	Feb-99	58.7 +/- 17.2		2.9 +/- 1.8	5.9	5.9 +/- 2.2	75.7	BDL	39.5	8.6 +/- 2.8	8.8	5.0 +/- 1.2	6.4	i .	10.4	10.8 +/- 3.5	1	179.0 +/- 33.			29.2
1	May-99	BDL	157	BDL	10.1	BDL	24.2			69.9 +/- 25.3			29.3	1	177	BDL	38.5		102	1 · · ·	14.3
1	Aug-99	BDL	172	BDL	10.8		28.8		75	BDL	30.0	1	22.9		241	BDL	34,7	BDL	200	BDL	14.7
WS26	Nov-98	Dry	Dry	Dry	Dry	Dry	Dry	1	~~~~	Dry	Dry	Dry	Dry			Dry	Dry		Dry	Dry	Dry
	Feb-99	174.0 +/- 26.7		9.0 +/- 1.8	: 5.3	BDL	97.7	BDL	45.4	11.2 +/- 2.9	9.9	1.1 +/- 4.8	16.0	•	11.7	23.6 +/- 3.6			. 84.1		31.2
5	May-99	BDL	145	BDL	9,45	1	21.9	1	16.4	14.9 +/- 16.3			22.	1	197	BDL	39.3	1	131		15.2
	Aug-99	BDL	286	BDL	15.0	1	31.5	-	30.2		29.4		36.9	1	501	BDL	36.2		191		30.5
WS27	Nov-98	BDL	44.7	BDL	3.6	BDL	12.8		30.2	BDL	7.3	ND	ND			BDL	14.3		8.6		
(DSCC)	Feb-99	84.1 +/- 17.8			5.0	BDL BDL	76.7		37.5		12.5		12.		10.7		14.3			1	29.4
(0300)	May-99	BDL	159	BDL	8,48		27.4		16.4		18.5	1	30.6		237	BDL	44.9		142		
1	- i - i - i - i - i - i - i - i - i - i						20.2	-	16.4	1	1		22.		194				125		11.8
L	Aug-99	128 +/- 32.0	09.6	- 9.00 TI- 1.41	0.5/	BUL	20.2	BUL	106	1 BUL	36.1	i BDL	1 44.	UL BUL	194	41.0 T/- 0.2	/ 18.3		140		11.0

BDL=BELOW DETECTION LIMIT

ND=NOT DETECTED

NA=NOT ANALYZED

BD=BLIND DUPUCATE

BU=BLIND DUPUCATE SD=SPIKE DUPUCATE INCLUDING ALPHA CONCENTRATION OF 9x10⁻¹ pCi/L AND BETA CONCENTRATION OF 1X10⁻¹ pCi/L

*=RADIUM-226 REPORTED VALUE HAS NOT BEEN CORRECTED FOR POSSIBLE U-235 INTERFERENCES

**=Th-234 RESULTS MAY NOT BE RELIABLE SINCE THEY WERE RUN ON A "P-TYPE" DETECTOR

FILTERED GAMMA RADIOACTIVE GROUND-WATER AND STREAM SURFACE WATER ANALYTICAL DATA USEPA METHODS 900.0 AND 901.1M PICOCURIES PER LITER (pC/L)

		K-40 Potass	ium	TI-208 Thall	lum	Pb-212 Let	id	Bi-212 Bism	wth	BI-214 Bism	wth	Pb-214 Let	d	Radium-2	5	Ac-228 Actin	nium	Th-234** Tho	rium	U-235 Urani	ហា
WELL	DATE	CONCENTRATION	MDL.	CONCENTRATION	MOL	CONCENTRATION	MOL.	CONCENTRATION	MOL	CONCENTRATION	MOL	CONCENTRATION	WOL	CONCENTRATION	HOL	CONCENTRATION:	NDL.	CONCENTRATION	NOL.	CONCENTRATION	HOL 1
WS28	Nov-98	BOL	65.8	BDL	6.2	BDL.	13.5			BDL	10.9	BDL	9.2			BDL i	20.3	BDL	110.0	BDL,	11.0
(NSSSC)	Feb-99	8DL	151.0	BDL	16.4	BDL	13.1	BDL	58.1	BOL	33.3	BDL	24.9	BDL	15.7	BDL I	51.4	BDL	224.0	BDL	34.9
1	May-99	BDL	161	6.91 +/- 2.22	8,19	BDL	24.7	BDL +/- 22.6	16.4	BDL	19.1	BDL	27.1	BDL	234	BDL	38.7	BDL	106	BDL +/- 5.11	17.1
	Aug-99	BDL	183	BDL	12.0	BDL	13.6	BDL	16.5	26.0 +/- 6.05	18.1	BOL	17.7	BDL	262	BDL	38.2	BDL	179	BDL	15.9
WS29	Nov-98	BDL	88.1	BDL	7.7	BDL	16.6			BDL	14.8	ND				BDL.	27.6	BDL	89.6	BOL	10.1
(DSCC)	Feb-99	BDL	155.0	BDL	15.7	56.4 +/- 17.3	13.1	BDL	56.4	BDL	33.3	BDL	25.5	BDL	15.9	BDL	48.0	8DL	222.0	BDL	34.8
	May-99	BDL	121	BDL	12.2	BDL	19.5	BDL	62.2	BDL	20.8	12.2 +/- 2.26	11.6	BDL	111	BDL	34.3	BDL	105	BDL	6.72
	Aug-99	BDL	129	BDL	7.33	BDL	_11.1	BDL	50.0	BOL	17.5	BDL	22.4	BDL	140	BDL	22.9	8DL	107	BDL	8.53
W\$30	Nov-98	BOL	100.0	BDL	8.4	BDL	9.6			BDL	18.3	BDL	13.4			BDL	30.0	BOL	99	BDL	9.8
(Bed.)	Feb-99	162.0 +/- 25.9	61.5	9.4 +/- 1.0	4.1	BOL	99.5	BDL	44.0	14.2 +/- 3.3	11.5	10.2 +/- 1.6	8.0	BDL	12.1	24.1 +/- 4.4	16.2	BDL	34.1	BOL	31.4
1	May-99	96.8 +/- 40.3	127	BDL	11.4	9.83 +/- 8.27	16.0	BDL	79.2	BDL	22.2	15.6 +/- 2.44	15.8	BDL	179	BDL	33.3	BDL	108	BDL	10.9
	Aug-99	BDL	178	BDL	7.33	BDL	20.9	BDL	76.1	20.0 +/- 5.48	17.6	BDL	22.3	BDL	278	BDL	22.4	BDL	238	BDL	16.9
W\$31	Nov-98	BOL	59.9	BOL	6.7	BOL	14.6			BDL	12.5	BDL	15.0		}	BDL	20.7	BDL	96.1	BDL	11.3
(Bed.)	Feb-99	65.9 +/- 16.6	46.1	BDL	3.7	BDL	75.2	BDL	38.5	BDL	12.4	BDL	9.3	BDL	10.8	BDL	: 14.8	185.0 +/- 34.5		BDL	; 30.1
	May-99	BDL	146	BDL	10.7	27.6 +/- 4.71	22.4	BDL	16.4	BDL	19.1	BDL	22.9	145 +/- 32.0	102	BDL	38.8	BDL	108	BDL	11.3
	Aug-99	150 +/- 22.2	63.8	12.5 +/- 1.32	6.57	17.2 +/- 3.74	11.7	BDL	65.9	BDL	37.2	BDL	22.6	BDL	74.8	BDL	28	BDL	105	BDL	4.54
W\$32	Nov-96	BDL	107.0		ND	BDL	14.7		į	BDL	16.3	ND		!	İ	BDL	33.4	BDL	98.2	1	10.4
(DSCC)	Feb-99	BOL	154.0	BDL	15.6	31.8 +/- 13.6	13.1	BDL	57.1	BDL	32.6	BDL	24.0	24.6 +/- 14.9	15.4	BDL	53.3	BDL	222.0	1	35.0
	May-99	BDL	142	BDL	12.9	BDL .	16.2	BDL	89.5	BDL	21.5	7.25 +/- 5.56	8.60	BDL	188	29.3 +/- 10.7	33.0	BDL	108	10.9 +/- 3.68	11.4
	Aug-99	BDL	78.9	BDL	9.89	BDL	14.1	8DL	80.1	BOL	48.9	BDL	34.80	BDL	208	BDL	35.1		137	13.4 +/- 3.97	12.6
W\$33	Nov-98	BDL	68.1	BOL	6.4	BOL	14.2	[(BDL	12.6	BDL	17.7		1	BDL	20.4	BDL	97.0	BDL	10.2
(NSSSC)	Feb-99	124.0 +/- 16.5	52.0	BDL	9.3	BDL	10.1	BDL	46.7	12.8 +/- 3.7	; 11.7	BDL	12.1	BDL	12.3	27.9 +/- 3.3	14.3	BDL	77.5	1	31.6
1	May-99	BDL	164	BDL	9.47	8DL	20.9	BDL	16.4	BDL	20.9	BDL	23.3	BDL	216	BDL	39.2	BDL	121	BDL	16.2
	Aug-99	BOL	202	BDL	14.4	BDL	19.4	BDL	16.5	19.0 +/- 5.67	18.2	BDL	18.5	BDL	312	BDL	36.7	BDL	156	BDL	19.0
W\$34	Nov-98	BOL	99.2	ND	ND	BDL	14.1		Į	BDL	15.3	ND	i i		l	BDL	34.0	BDL	98.0	,	10.9
(DSCC)	Feb-99	113.0 +/- 19.1	43.5	BDL.	3.5	BDL	77.2	BOL	39.1	BDL	10.6	BDL	12.5	BDL	10.6	8DL	12.0	178.0 +/- 31.7		1	29.5
1	May-99	BDL	125	BDL.	6.74	BDL	10.2	BDL	56.2	BDL	17.5	BDL	12.5	266 +/- 62.9	166	BDL	27.8	BDL	155	-	12.6
	Aug-99	BDL	262	BDL	22.9	BDL	32.4	BDL	21.4	BDL	<u> 43.1</u>	BDL	43.5	BDL	417	BDL	94.2	BDL	175		25.4
W\$35	Mary-99	BDL	108	BOL	7.57	BOL	11.0	BDL	53.2	BDL	15.2	BDL	15.2	155 +/- 47.9	139	BDL	25.9		188		11.3
(BD of WS31)	Aug-99	159 +/- 16.8	75.0	8.85 +/- 2.14	6.32		15.9	BDL	62.9	BDL	36.8	BDL	22.1	BDL	176	28.9 +/- 6.94	25.9		149		10.7
W\$36	May-99	BOL	94.3	BDL	9.00	BDL	12.5	BDL	53.2	BDL	21.4	BDL	15.5		99.5	BDL	24.5		124		9.68
(Deionized Water)	Aug-99	BOL	126	BDL	7.03	BDL	11.6	BDL	51.3	BDL	13.9	42.3 +/- 4.17	12.6	BDL	346	BDL ·	23,7		155		: 21.1
W\$37 50	May-99	437 +/- 52.8	83.5		12.1	BDL	25.8	20.6 +/- 22.3	1	BDL	26.8	BDL	23.3	2390 +/- 171	262	BDL	43.1	193 +/- 29.4	129		18.5
L	Aug-99	BDL	150	BDL	10.4		16.2	BDL	61.8	BDL	. 18.7	BDL	22.9		178	BDL	31.3		109		10.8
W\$38	May-99	91.7 +/- 41.9	133	BDL	11.0	•	17.9		71.9	•	22.0	21.7 +/- 2.87	16.3		146	26.3 +/- 9.97	33.0		116		
(BD of WS17B)	Aug-99	BDL	91.8	BDL	7.57	BDL	11.2	BDL	37.8	BDL	13.9	40.7 +/- 4.32	12.9	BDL	113	BDL	24.1	BDL	91.6	BDL	6.87

BOL*BELOW DETECTION LIMIT

ND=NOT DETECTED

NA=NOT ANALYZED

80=8LIND DUPLICATE

SD=SPIKE DUPLICATE INCLUDING ALPHA CONCENTRATION OF 9x10⁻¹ pC/L AND BETA CONCENTRATION OF 1X10⁻¹ pC/L *RADIUM-226 REPORTED VALUE HAS NOT BEEN CORRECTED FOR POSSIBLE U-235 INTERFERENCES

.

"=Th-234 RESULTS MAY NOT BE RELIABLE SINCE THEY WERE RUN ON A "P-TYPE" DETECTOR

APPENDIXB

Supporting Documentation for ²⁰ Te Area of Contamination Zone

detectable levels above background in the northwest corner of the burial site. RMC determined that these levels were due to sources on-site (most likely UF₆ storage area) at that time rather than buried material. RMC concluded that little or no thorium was present near the ground surface. Results of surface soil sampling revealed low level surface contamination. RMC concluded that the surface contamination may have resulted from burial activities or from past effluent (i.e., stack) releases. Results of subsurface soil sampling showed the highest U-234 activity in the Burial Pits to be approximately 400 pCi/g, and the highest U-234 level estimated for surface soil at approximately 47 pCi/g. These levels were based on an estimated U-234/U-238 activity ratio of about 10 to 1.

2.6.2 Investigation to Determine the Source of Technetium-99 in Groundwater Monitoring Wells WS-17 and WS-17B, September 1996

Gateway Environmental Associates, Inc., conducted an investigation to determine the source of Technetium-99 (⁹⁹Tc) in monitoring wells WS-17 and WS-17B. (Gateway, 1996a) The investigation was conducted to answer concerns expressed by the NRC regarding the source of ⁹⁹Tc. Gateway Environmental Associates concluded that the ⁹⁹Tc may have entered the ground-water system within the former ring storage area and traveled down gradient toward the monitoring wells in question. Historical ⁹⁹Tc and TCE waste disposal practices at the evaporation ponds, may have been a source for contamination in WS17/17B because a nearby gas pipeline may have created a connection between the evaporation ponds and WS17/17B.

⁹⁹Tc is a low energy beta emitting byproduct of the nuclear fission of Uranium-235 and has a half-life of 213,000 years. ⁹⁹Tc has appeared as a contaminant in the fuel cycle from the United States Enrichment Company (USEC) facilities. The ⁹⁹Tc contaminant was present in commercial UF₆ as a result of US government recycling and re-enrichment activities at the gaseous diffusion plants.

One pathway to the evaporation ponds was through the cylinder wash operations. On site UF₆ cylinder washing was performed intermittently over the operating years of the facility. UF₆ cylinder heels preferentially contain the less volatile compounds including ⁹⁹Tc. The wash solution removed the technetium that was subsequently APPENDIXC

RESRAD Default Value Unble

TABLE 1.3 Default Values, Lower Bounds, and Upper Bounds forRESRAD Input Parameters

		Default	Lower ^a	Upper
Parameter	Unit	Value	Bound	Bound
Soil bulk density				
Cover material	g/cm ³	1.5	0	100
Contaminated zone	g/cm ³	1.5	0	100
Unsaturated zone	g/cm ³	1.5	0	100
Saturated zone	g/cm ³	1.5	0	100
Building foundation material	g/cm ³	2.4	0	100
Total porosity				
Cover material	_b	.4	0	1
Contaminated zone	-	.4	0	1
Unsaturated zone	-	.4	0	1
Saturated zone	-	.4	0	1
Building foundation material	-	.1	0	1
Effective porosity				
Contaminated zone	-	.2	0	1
Saturated zone	-	.2	0	1
Unsaturated zone	-	.2	0	1
Hydraulic conductivity				
Contaminated zone	m/yr	10	0	1×10^{10}
Unsaturated zone	m/yr	10	0	1×10^{10}
Saturated zone	m/yr	100	0	1 × 1010
/olumetric water content				
Cover material	-	0.05	0	1
Building foundation material	-	0.03	0	1
Iffective radon diffusion coefficient				
Cover material	m²/s	2×10^{-6}	С	1
Contaminated zone	m²/s	2×10^{-6}	C	1
Building foundation material	m²/s	3 × 10 ⁻⁷	C	1
adon emanation coefficient (Rn-222/Rn-220)		0.25/0.15	0.01	1
recipitation rate	m/yr	1	0	10
unoff coefficient	•	0.2	0	1
rigation rate	m/yr	0.2	0	10
vapotranspiration coefficient		0.5	0	0.999
oil-specific b parameter				
Contaminated zone	-	5.3	0	15
Unsaturated zone	•	5.3	0	15
Saturated zone	-	5.3	0	15

.

Erosion rate

Cover material Contaminated zone	m/yr m/yr	0.001 0.001	0	5 5
Hydraulic gradient		0.02	0 0	10
Length of contaminated zone	m	100	0	~

.

,

.

. .

.

.

Parameter	Unit	Default Value	Lower ^a	Upper ^a
Watershed area for nearby stream or pond	m²	1 × 10 ⁶	0	×
Water table drop rate	m/yr	0.001	0	5
Well-pump intake depth	m	10	0	1,000
Radon vertical dimension of mixing	m	2	0	1,000
Average annual wind speed	m/s	2	0	100
Average building air exchange rate	1/h	0.5	0	1,000
Building room height	m	2.5	0	100
Building indoor area factor		0	0	100
Thickness of uncontaminated unsaturated zone	m	4	0	1 0,00 0
Building foundation thickness	m	0.15	0	10
Foundation depth below ground surface	m	1	0	100
Fraction of time spent indoors on-site	-	0.5	0	1
Fraction of time spent outdoors on-site	-	0.25	0	t
Area of contaminated zone	m²	10,000	0	œ
Cover depth	m	0	0	100
Distribution coefficients	cm³/g	đ	0	1 × 10 ¹⁰
Fractions of annular areas within contaminated area	-	0	0	I
Radionuclide concentration in groundwater	pCi/L	0	0	1 × 10 ²⁰
Leach rate	1/yr	0	0	1 × 10 ¹⁰
Livestock fodder intake Meat Milk	kg/d kg/d	68 55	0 0	300 300
Mass loading for inhalation	g/m³	2 × 10 ⁻⁴	0	2
Milk consumption rate	L/yr	92	0	1,000

.

	1	2				
Shi	lelding factor for inhalation	-	0.4	0	1	
Dep	pth of roots	m	0.9	0	100	
Soi	l ingestion rate	g/yr	36.5	0	10,000	

.

.

• •

		Default	Lower ^a	Upper ^a
Parameter	Unit	Value	Bound	Bound
Thickness of contaminated zone	m	2	1 × 10 ⁻¹⁰	1,000
Radiation dose limit	mrem/yr	30	0.01	10.000
Dilution length for airborne dust	m	3	0	1,000
Seafood consumption rate	1	<i></i>	0	1.000
Fish Other seafood	kg/yr kg/yr	5.4 0.9	0 0	1,000 100
Fruit, vegetable, and grain				
consumption rates	kg/yr	160	0	1,000
Inhalation rate	m³/yr	8,400	0	20.000
Leafy vegetable consumption rate	kg/yr	14	0	100
Livestock water intake rate				
Meat	L/d	50	0	500
Milk	L/d	160	0	500
Meat and poultry consumption rate	kg/yr	63	0	300
Shielding factor for external gamma		0.7	0	1
Elapsed time of waste placement	yr	0	0	1.000
Shape factor, external gamma		1	0°	1
Initial concentrations of principal radionuclide	pCi/g	d	0	1 × 10 ²⁰
Drinking water intake rate	L/yr	510	0	1,000
Fraction of drinking water from site		1	. 0	1
Fraction of aquatic food from site		0.5	0	1
Mass loading for foliar deposition	g/m³	i × 10 ^{.4}	0	t
Depth of soil mixing layer	m	0.15	0	i
Fraction from groundwater				
Drinking water	-	1	0	1
Livestock water	-	1	0	1
Irrigation water			0	

^a The lower and upper bound values represent the lower and upper limit of an input parameter that can be used in RESRAD. For some secondary (derived) parameters (e.g., leach rate), the upper and lower bounds are derived from other primary (basic) parameters. (e.g., thickness of contaminated zone).

- ^b A hyphen indicates that the parameter is dimensionless.
- ^c A negative value for this parameter serves as a flag in RESRAD. See the section in the handbook on the particular parameter for details.
- ^d The default value is radionuclide dependent.

2 SOIL DENSITY

2.1 DEFINITION

Density, as applied to any kind of homogeneous monophasic material of mass M and volume V, is expressed as the ratio of M to V. Under specified conditions, this definition leads to unique values that represent a well-defined property of the material. For heterogeneous and multiphasic materials, however, such as porous media, application of this definition can lead to different results, depending on the exact way the mass and volume of the system are defined.

Soil is a typical heterogeneous multiphasic porous system which, in its general form, contains three natural phases: (1) the solid phase or the soil matrix (formed by mineral particles and solid organic materials); (2) the liquid phase, which is often represented by water and which could more properly be called the soil solution; and (3) the gaseous phase, which contains air and other gases. In this three-phase soil system, the concept of average density can be used to define the following densities: (1) density of solids or soil particle density, ρ_s ; (2) bulk or dry density, ρ_b ; and (3) total or wet density, ρ_t .

The masses and volumes associated with the three soil phases must be defined before the definitions of the different densities that characterize the soil system can be formalized. Thus, consider a representative elementary volume (REV) of soil that satisfies the following criteria (Bear 1972; Marsily 1986):

- 1. A sufficiently large volume of soil containing a large number of pores, such that the concept of mean global properties is applicable, and
- 2. A sufficiently small volume of soil so that the variation of any parameter of the soil from one part of the domain to another can be approximated by continuous functions.

Within a REV, the masses of the phases composing the soil can be defined as follows:

- M_s = the mass of solids,
- M_{i} = the mass of liquids,
- M_g = the mass of gases (negligible compared with the masses of the solid and liquid phases), and
- $M_t = M_s + M_l =$ the total mass.

APPENDIXD

Total Porosity, Dry Density and Hydraulle Conductivity Calculations and Supporting Documentation

BEGEFFTE, BRASHEARS & GRAHAMI, INC.

行

Н

Shannon an	d Wilson Data
MW or Piez	Total Porosity
PZ2	0.467
WS22	0.447
WS23	0.452
WS24	0.41
WS25	0.418
WS26	0.476
WS27	0.461
WS28	0.464
WS29	0.483
WS32	0.41
WS32	0.482
WS33	0.415
WS34	0.408
AVERAGE	0.45

Shannon and Wilson Data from Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization," prepared by LBG in March 1999.

DRY DENSITY CALCULATIONS

TABLE 1	0/Fitch Data	Shan	non and Wils	son Data
MW or Piez	Density g/cm3	MW or Piez	Density pcf	Density g/cm3
PZ2	2.05	PZ2	90.1	1.44
PZ2	1.71	WS22	96.3	1.54
WS23	1.85	WS23	90.6	1.45
WS23	1.74	WS24	98.3	1.57
WS25	2.04	WS25	99.1	1.59
WS25	1.77	WS26	90.3	1.45
WS25	1.81	WS27	88.2	1.41
WS27	1.9	WS28	90.6 ⁻	1.45
WS27	1.43	WS29	87	1.39
WS29	2.11	WS32	96.1	1.54
WS29	1.86	WS32	88.3	1.41
WS32	1.92	WS33	96.4	1.54
WS32	2.01	WS34	99.7	1.6
WS34	1.86		<u></u>	<u></u>
WS34	1.85			
VERAGE O	F ALL DATA			1.69

Table 10/Fitch data from "Fourth Sampling Event Report in Conjuction with the Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization," prepared by LBG in November 1999.

Shannon and Wilson Data from Appendix B of "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization," prepared by LBG in March 1999.

.

HYDRAULIC CONDUCTIVITY CALCULATIONS

AW or Piez	K (cm/sec)	K (m/yr)
WS-22	2.63E-04	8.29E+01
WS-24	6.94E-05	2.19E+01
WS-28	4.95E-05	1.56E+01
WS-33	2.05E-04	6.46E+01
PZ-1	6.62E-05	2.09E+01
WS-23	6.76E-04	2.13E+02
WS-25	3.26E-04	1.03E+02
WS-27	6.13E-04	1.93E+02
WS-29	8.27E-04	2.61E+02
WS-32	2.70E-03	8.51E+02
WS-34	3.84E-04	1.21E+02
PZ-2	2.76E-04	8.70E+01
VERAGE		169.58

VERTICA	the second s	ILIC CONDUC	ΓΙνιτγ
		d Wilson Data	·
MW or Piez	K (cm/sec)	Avg K (cm/sec)	K (m/yr
	3.60E-07		
PZ-2	3.60E-07	3.67E-07	1.16E-01
	3.80E-07		
	4.50E-09		ł
WS-22	4.40E-09	4.37E-09	1.38E-03
	4.20E-09		•
	2.90E-05		
WS-23	2.60E-05	2.77E-05	8.72E+00
	2.80E-05		
	2.40E-06		
WS-24	2.40E-06	2.50E-06	7.88E-01
	2.70E-06		
	4.90E-08		
WS-25	4.80E-08	4.97E-08	1.57E-02
	5.20E-08		· · · · · ·
	5.30E-06		
WS-26	5.20E-06	5.23E-06	1.65E+00
	5.20E-06		
	4.60E-04		
WS-27	4.70E-04	4.60E-04	1.45E+02
	4.50E-04		
	6.50E-05	:	
WS-28	6.30E-05	6.47E-05	2.04E+01
	6.60E-05	· 	
	1.80E-07		
WS-29	2.00E-07	1.90E-07	5.99E-02
	1.90E-07		
	1.90E-05	:	
WS-32	2.00E-05	1.93E-05	6.10E+00
	1.90E-05		
	2.00E-05	1	
WS-32	2.00E-05	2.03E-05	6.41E+00
	2.10E-05	· ·	
ļ.,	1.70E-08	f	
WS-33	2.00E-08	1.83E-08	5.78E-03
	1.80E-08		[
	1.70E-08		
WS-34	1.90E-08	1.83E-08	5.78E-03
	1.90E-08	· · · · · · · · · · · · · · · · · · ·	
VERAGE			14.56

Table 2/LBG data from "Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization" prepared by LBG in March 1999.

Shannon and Wilson Data from Appendix B of "*Hydrogeologic Investigation and Ground-Water, Soil and Stream Characterization*," prepared by LBG in March 1999. The permeability (K) for each sample was derived by averaging the last three readings from the test (verbal communication with Chris Groves - Vice-President, Shannon & Wilson, August 13, 2003). Vertical permeability (K) determined according to ASTM 5084-90.

			TR	IAXIA		•	ABILI & WILS			SHEE	Т	
							a wild	SON, II	vC.			
Ľ	ject _			Engineeri					<u>ک</u> :	Test. b		M-10/19/98
	Job No. E-										y Mill	1-12/1/98
	Description	Dark g	grey fat C	LAY, wit	th some F	e stains, o			****			······
	Depth				Permea	nt <u>tap wa</u>	ter		<u> </u>	est Metho	d_ASTM	1 5084-90
•	Permea	ameter No	0	8	St	andpipe V	/ol (cc/cm) Inflow	:1.29	7 Outflov	v: <u>1.29</u>	4
			Before T	'est	After Te	st			Before T	est	After Te	st
	Sample Dia	meter (in	a) <u>2.86</u>	9	2.87	5		Tare No.	. <u>K1</u>		82	-
	Sample L		100100000000000000000000000000000000000	55 C	2.76		Ta	ure Wt. (g)2.6	3	83.62	2
	Sample Ar	ea (cm^2) 417		41.8		Wet Soil	+ Tare (g) 98.32	2	633.61	~
	Sample Vol	ume (CC) 2915		293.8		Dry Soil		 Contraction of the second secon	37 I	501.19	ज रि
	-) 549.92	1	549.99	-	Water Co	ontent (%)		8	317	
	Wet Der	nsity (pcf)7		116.2			Porosity	0.46	-		
) 90.1		88.1		Pore Vol	ume (CC)	L	کہ		, l
	1	ective		1		9		D	-	Saturation	<u>La constance de la constance</u>	
	Consolida	ition (psi)) 5	min	6	max			Specif	ic Gravity	2.71	.
	Read Time	Pcell	Pin	Pout	Readin	gs (cm)	Inflow	Outflow	Storage	Total	i	K
ļ	y hr min	psi	psi	psi	hin	hout	PV	PV	PV	PV		cm/s
	1 9 42	50	45	44	64.20	64.20		ł	<u></u>		10.1	
	1 11 4	50		44	63.55	64.85	22222222222222	8688888888		882288888888	888888888888	
	1 12 34	50					202020202020	0.01	100000000000000000000000000000000000000	198996989898	100900000000	
	1 13 23	50		44	62.45		8838688888				9.6	3.8E-07
	1 15 11				61.65		10.000.000.000	88888888	0.00		9.4	3.8E-07
	1 16 24	50		44	61.15	67.00	0.00	0.00	0.00	0.03	9.2	3.8E-07
	1 16 43	50	45	44	61.00	67.10	0.00	0.00	0.00	0.03	92	3.7E-07
	2 9 55	50	45	44	60.80	67.00		AAL	0.00		9.2 	2.017.07
	2 12 34 2 13 57	50 50	45 45	44	<u>59.70</u> 59.20	<u>68.05</u> 68.55	-0.01 0.00	0.00	0.00	0.04	8.9 8.7	3.9E-07 3.5E-07
	2 13 57 2 16 35	50	45	44	58.20	69.55	-0.01	0.01	0.00	0.05	8.4	3.8E-07
	2 18 27	50	45	44	57.55	70.10	-0.01	0.01	0.00	0.06	8.3	3.3E-07
	3 8 13	50	45	44	53.05	74.40	-0.04	0.04	0.00	0.10	7.0	3.6E-07
ł	3 9 37	50	45	44	52.60	74.75	0.00	0,00	0.00	0.10	6.9	3.5E-07
t	3 11 1	50	45	44	52.20	75.15	0.00	0.00	0.00	0.10	6.8	3.6E-07
Ī	3 14 25	50	45	44	51.25	76.10		olo	0.00	oiu	6.5	3.6E-07
	3 17 53	50	45	44	50.15	76.95	-0 01	0.01	0.00	0 12	6.2	3:8E-07

rev 3.2.97

٠.

+

Page 1

	(
	,,e	ct	Comb	oustion E	ngineerin	g		·			_Test. by	KD	M-10/29/98
	Job N	lo. <u>E</u> .	1039-01		Boring	g <u>WS-22</u>		Sample	16.0-18	.0 C	<u>Checked</u> by		1-12/7/98
	Desci	iption	Brown	& grey f	at CLAY	, with som	e Fe stair	is, some s	m Fe nodu	iles, occa	decompos	sed roots	· 1
	Deptl					Permean	t <u>tap wa</u>	ter		_ Te	st Method	ASTM	5084-90
	F	'ermea	ameter No). <u> </u>	<u>6</u>	Sta	undpipe V	ol (cc/cm) Inflow:	1.312	2 Outflow	:1.30	8
				Before T	est	After Te	st			Before Te	st	After Te	st
	Samp	le Dia	meter (in) 2.85	0	2.886	<u>i</u>		Tare No.	<u>K2</u>	_	109	_
	Sar	nple L	ength (in) 2.310	5	2.349)	Ta	ure Wt. (g)	2.63	-	84.34	<u>i</u>
	Sam	ple Ar	ea (cm^2)) 41.0		42.20		Wet Soil	+ Tare (g)	79.99	-	570.13	3
	Samp	le Vol	ume (CC)) 242 1	2000 A	251.81		Dry Soil	+ Tare (g)	62.91	-	459.02	
		Samp	ole Wt. (g)) 479.39)	485.79	-	Water Co	ontent (%)	28.3		29.7	
	W	et De	nsity (pcf)) 123.0		120.4			Porosity	0.447			
	D	ry Dei	nsity (pcf)	963		92.8		Pore Vol	ume (CC)	108,23			
			ective		-				D	egree of S	Saturation	95	
	Cor	isolida	ation (psi)	5	min	6	max			Specifi	c Gravity	2.79	-
t	Read	Time	Pcell	Pin	Pout	Reading	s (cm)	Inflow	Outflow	Storage	Total	i	К
	h	r mir	n psi	psi	psi	hin	hout	PV	PV	PV	PV		cm/s
	1 1	2 55	50	45	44	64.40	65.40					11.8	
	2	8 13	50	45	44	64.00	65.50	0.00	0.00	0.00	0.00	11.7	9.8E-09
	2 1	5 3	50	45	44	63.95	65.55		000	0.00	0.00	117	5.5E-09
L	2 1	54	50	45	43	63.95	65.55					23.6	
	3	9 43	50	45	43	63.55	65.80	0.00	0.00	0.00	0.00	23.5	6.5E-09
		8.31		45	43	63.10	66.00	00000000000	0000000000000		and had not had not be bet bet ber at	23,4	5.4E-09
	5	8 13	50	45	43	62.70	66.20	0.00		0.00	0.01	23.3	4.8E-09
	5 1	7 56	50	45	43	62.60	66.30	0.00	0.00	0.00	0.01	23.3	3.9E-09
	6 1	26	50	45	43	62.30	66.40	0.00	0.00	0.00	0.01	23.2	4.2E-09
	6 12	2 7	50	45	43	60.70	60.05					24.0	
	9	8 45	50	45	43	59.95	60.65	-0.01	0.01	0.00	0.02	23.8	3.6E-09
	10 8	3 30	50	45	43	59.60	60.80	0.00	0.00	0.00	0.02	23.7	3.9E-09
		3 15	50	45	43	59.30	61.00	0.00	000	0.00	0.02	23.6	3.9E-09
	12 17		50	45	43	58.90	61.35	0.00	0.00	0.00	0.03	23.5	4.2E-09
	3 16		50	45	43	58.60	61.60	0.00	0.00	0.00	0.03	23.4	4.5E-09
•	4 10		50	45	43	58.35	61.75	0.00	0.00	0.00	0.03	23.3	4.4E-09
, 	7 9	59	50	45	43	57.30	62.30	-0 01	0.01	0.00	0.04	23.1	4.2E-09

rev 3.2.97

1												
j	ect _	Com	bustion E	Ingineerin	g					Test. b	y <u>K</u> C	M-10/28/98
Job 1	No. E	-1039-01		Borin	g WS-23			26.5-28	3.5 (<u>Checked</u> b	y Kult	1-12/7/98
Desc	riptio	n Dark g	grey fat C	LAY, wit	h occa sn	roots &	root holes	, some wo	orm burro	ws, sl bloo	cky	
Dept	h				Permear	nt tap wa	iter		Te	est Metho	d ASTM	1 5084-90
1	Perme	ameter N	0	7	St	andpipe V	Vol (cc/cm	i) Inflow	:1.30	4 Outflov	v: <u>1.28</u>	8
			Before T	lest	After Te	st			Before T	est	After Te	st
Sam	ple Di	ameter (ir	ı) <u>2.87</u>	2	2.87	<u>)</u>		Tare No	. <u>K3</u>		78	_
Sa	mple I	ength (ir	a) <u>2.50</u>	8	2.510)	Ta	are Wt. (g) 2.63	3	83.10	5
Sam	ple A	rea (cm^2) 418		417		Wet Soil	+ Tare (g) 94.29	2	589.43	3
Samp	le Vo	lume (CC) 2662		266.0		Dry Soil	+ Tare (g) 73.14	1	469.60)
	Samj	ple Wt. (g) 502.5	8	506.27	, 1	Water Co	ontent (%)) 30.0)	31.(
W	et De	nsity (pcf			118.7			Porosity	0.452			
D	ry De	nsity (pcf) 90		90.6		Pore Vol	ume (CC)	120.36		*****	7
		fective		5		3		D	egree of S	Saturation	100	
Co	nsolid	ation (psi) 5	min	6	max			Specifi	ic Gravity	2.65	-
Read	Time	Pcell	Pin	Pout	Reading	is (cm)	Inflow	Outflow	Storage	Total	i	ĸ
y H	r mì	1 psi	psi	psi	hin	hout	PV	PV	PV	PV		cm/s
	15	50	+	44			100000000000000000000000000000000000000				10.8	
		50	t				1201212-00202	FRANKS BRANK	0.00	PRIMARIAN	1000000000000	
1 1		1			60.60		388688888888	101010101010000				
11		t			60.10	64.95	198898888888	P. F. S. F. S.			10.3	2.5E-05
					59.70	65.35	8666666666666	100880888888				
					59.00	66.00	86868868861				99	1.7E-05
		1			58.35	66.65	2010000000000	0.01	0.00	0.04	9,7	1.7E-05
	<u>5 10</u>				57.75	67.25	00000000000	0.01	V, OU	0.04	95	1.6E-05
	81	50		44 44	57.45 56.20	65.85 67.20	1000000000000	0.01	0.00	6.66	9.7 9.3	7.1E-05
	8 <u>1</u> 82	<u>50</u> 50	45 45	44	55.25	68.15	-0.01	0.01	0.00	0.06	9.0	5.4E-05
*******	s 2 8 3	50	45	44	54.40	69.00	.001	0.01	0.00	0.08	87	4.9E-05
3 8		50	45	44	53.60	69.80	-0.01	0.01	0.00	0.09	8.5	4.8E-05
3 8		50	45	44	52.35	71.05	.001	0.01	0.00	0.10	8.1	3.9E-05
3 8		50	45	44	50.65	72.75	0.02	0.02	0.00		7.6	3.7E-05
38	11	50	45	44	49.75	73.65			0.00	0.6	73	3.1E-05
3 8	13	50	45	44	48.95	74.45	-0.01	0.01	0.00	0.14	7.0	2.9E-05

_		sct		Comb	ustion En	gineering						Test. by	KDM	-10/28/98
	Job	No.	<u>E-1</u>	039-01		Boring	WS-23		Sample	26.5-28.5	5 <u>C</u>	hecked by	Kult	12/7/98
	Des	cript	ion	Dark gr	ey fat CL	AY, with	occa sm	roots & re	oot holes,	some wor	m burrow	s, sl block	<u>y</u>	·····
	Dep	th				•.	Permeant	tap wate	er	. <u></u>	Te	st Method	ASTM 5	084-90
		Peri	nea	meter No	7		Sta	ndpipe V	ol (cc/cm)	Inflow:	1.304	Outflow:	1.288	
	3	8	15	50	45	44	48.15	75.25	-0.01	0.01	0.00	0.15	6.8	3.0E-05
	3	8	17	50	45	44	47.45	75.95	-0.01	0.01	0.00	0.15	6.6	2.7E-05
	3	8	19	50	45	44	46.80	76.60	-0.01	0.01	0.00	0.16	6.4	2:6E-05
	3	8	21	50	45	44	46.20	77.20	-0,01	0.01	0,00	0.17	6.2	2.5E-05
	6	9	2	50	45	44	44.50	61.60					8.4	
	6	9	4	50	45	44	43.55	62.55	-0.01	0.01	0,00	0.18	8.1	3.0E-05
	6	9	6	50	45	44	42.70	63.40	-0.01	0.01	0.00	0.19	7,8	2;8E-05
	6	9	7	50	45	44	54.80	63.80					9.6	
	6	9	16	50	45	44	50.30	68.30	-0.05	0.05	0.00	0.23	8.2	2.9E-05
	6	9	17	50	45	44	50.30	62.00					9.2	
ł	6	9	22	50	45	44	47.80	64.40	-0.03	0.03	0.00	0.26	8.4	2.9E-05
بر		9	25	50	45	44	46.60	65.65	-0.01	0.01	0.00	0.27	8.1	2.6E-05
	6	9	28	50	45	44	45.30	66.90	-0.01	0.01	0.00	0.29	7.6	2.8E-05
			_											
Ļ			_											
Ļ		·												
			_	· · ·										
F			_											
-														
┝														
┝			-+											
┝			-+											
\vdash			+											
\vdash			+											
┢			┽											
!			+											

...

	ject	Com	hustion F	ngineerin	o					Test. b	v KD	M-10/15/98
~	/ . · · · · · · · · · · · · · · · · · ·						Sample	16.0-1	80 0			4-12/7/98
	Description								-			Marci T/1
	Depth					t tap wa						1 5084-90
						سي دين ک دينيونې	······	.) T				
	Permea		o. <u>1</u>				/01 (CC/Cff	1) Inflow	r: <u>1.29</u>			
			Before T		After Te				Before T	est	After Te	st
	Sample Dia	2	·		2.859				o. <u>K4</u>		96	-
	Sample L	-		7	2.224	7			(2.6) 2.6		83.29	- 1
	Sample An				41.42	-			g) <u>88.5</u>	-	546.78	-]
	Sample Vol	•		لسن	233.97		Dry Soil	-		ר	452.15	ן ר
	-	le Wt. (g		7	463.49	ר	Water Co		·	-1	25.7	1 1
	Wet Den			-1	123.6	1		Porosit	·]	1		
	Dry Den	• •	98.3	Ŋ	98:4	J	Pore Vol	•	• [-4		1
		ective		7 .	<u></u>	1		I	Degree of S		•	·
	Consolida	tion (psi)	5	Jmin	6	max			Specif	ic Gravity	2.67	.
	Read Time	Pcell	Pin	Pout	Reading	s (cm)	Inflow	Outflow	Storage	Total	i	К
	y hr min	psi	psi	psi	hin	hout	PV	PV	PV	PV		cm/s
	1 12	50	45	44	64.80	66.20					12.3	
	1 12 15	50	45	, 44	63.80	67.20	-0.01	0.01	0.00	0.01	11.9	2.9E-06
	1 12 41	50	45	44	62.40	68.60	-0.02	0.02	0.00	0.03	11.4	2.4E-06
	1 13 3	50	45	44	61.25	69.75	-0.02	0.02		0.05		2.4E-06
	1 13 19	50	45	44	60.50	70.50	-0.01		0.00	0.06	10.7	2.2E-06
	1 13 51	50	45	44	59.00		-0.02			0.08	10.2	2.3E-06
	1 14 12	50	45	44	58.10	72.90	-0.01	0.01	0.00	0.09	9.9	2.2E-06
ļ	1 14 40	50	45	44	56.90		<u>:::::::::::::::::::::::::::::::::::::</u>	0.02	0:00	0.11	9.5	2.2E-06
ļ	1 15 15	50	45	44	55.50	75.50	-0.02	··· 0.0Ž	0.00	0.12	9.0	2.3E-06
	1 15 34	50	45	44	54.75	76.25	7 -0.01	0.01	0.00	0.14	8.7	2.3E-06
ļ	1 15 46	50	45	44	54.30			0,01	0,00	0.14	8:5	2.3E-06
-	1 16 5	50	45	44	53.60		-0.01	0.01	0.00	0.15	8.3	2.3E-06
4	1 16 28	50	45	44	52.80	78.20	-0.01	0.01	0.00	0.16	8.0	2.2E-06
┟	1 17 6	50	45	44	51.40	79.60	-0.02	0.02	0.00	0.18	7.5	2.5E-06
┢	3 8 34	50	45	44	50.85	79.40					7.4	
1	3 8 55	50	45	44	50.20	80.20	-0.01	0.01	0.00	0.19	7.2	2.4E-06
· _	3 9 17	50	45	44	49.45	80.90		-0.01	0.00	0.20	6.9	2.4E-06

L	/	ect				ngineering						-	KDM	the second s
	Job	No.	E-1	039-01		Boring	<u>WS-24</u>		Sample	16.0-18	.0 Cl	ecked by	KULH -	-12/7/98
	Des	cripti	on	Brown	lean CL	AY, with n	umerous F	Fe stains,	some sm	Fe nodul	es, occa sn	1 roots, sl	blocky	· ·
	Dep	lh .					Permeant	tap wat	er		_ Tes	t Method	ASTM 5	084-90
		Pern	nean	neter No)1	7	Stan	dpipe Vo	ol (cc/cm) Inflow:	1.298	Outflow:	1.293	
	3	11	45	50) 4	5 44	<u> </u>	85.05		1	1	0.26	5.4	2.4E-06
	3	13	55	5(2 4	5 44	42.05	88.30	-0.04	0.04	0.00	0.30	4.3	2.7E-06
					_									
		·								· · ·				
				· · · · · · · · · · · · · · · · · · ·						<u>.</u>				
					<u> </u>						·			
					 				·····	· · · · ·				
ł			-+										<u> </u>	
ł			-+											
ł			\neg						•••••••••••••••••••••••••••••••••••••••					
L	•		+						·					
			-+											
f			+			11								
f			+											
T	•••••••••••													
											· · · .			
								· Å		4				
			1		·	[]_					·			
						ļļ.					<u> </u>			
									49-2-4 19-2-19-	a	<u></u>			
						-					·			
-						 		· .		Neter [
-			+-			 -		and the second						
\vdash													· · · ·	
1_			+											

rev 3.2.97

	jje	et	Con	nbustion 1	Engineerir	ıg					Test. by	y KMH	/KDM-11/2/98
~	Job N	о. Е					i	Sample	30.0-3	1.5		· · · · · · · · · · · · · · · · · · ·	1-12/7/98
	1				 CLAY, wi			-				· · · · · · · · · · · · · · · · · · ·	┶╍╍╼╼╍╼┫╍╍┶╍╉╍╍┶╍╍
	Depth		• <u>•</u> ••••••••••••••••••••••••••••••••••			Permea	nt tap wa	ter		T	est Metho	d ASTM	1 5084-90
	P	erme	ameter N	lo.	8	S	andpipe V	/ol (cc/cn	n) Inflow	/: 1.29	07 Outflow	v: 1.29	4
				Before		After To		,	,	Before T		After Te	
	Samo	Ie Di	ameter (i	in) 2.8		2.88			Tare No	belote 1 b. AB1	631	95 Aner 16	51
	-		Length (i	المالية بالنجالي		2.36		Т		(3) 2.6	3	84.20	-
		-		2) 42.0	I	42.1	7			;) <u> </u>		587.10	
	-		-	C) 252.5		253.1	-		+ Tare (g			485.10	-
	-			g) 501.3		502.8		-	ontent (%	″ 	7	25.4	ן ר
			ensity (pc			123.	7		Porosit	·	-1	L	-
				f) 99.		.98.	-1	Pore Vol	•) 105.68	-1		1
	·	-	fective	·	لاست		-1		-	·	 Saturation	96	
	Con	solid	ation (ps	i) 5	min	6	max				ic Gravity	·····	-
$\left \right $			- 					1		1			·
L	Read 7	l'ime mi	1	Pin psi	Pout psi	Readin hin	gs (cm)	Inflow PV	Outflow PV	Storage PV	Total PV	Í	K cm/s
'n	Transferration and	3 1		0 4								11.3	
ł	1 17					<u> </u>	1	=0.01		· · · · · · · · · · · · · · · · · · ·		11.1	5.3E-08
f		5			~	1	f	-0.01				10.8	
F	2 16					1		1	1			10.6	4.9E-08
ſ	3 10) 45		f	·	-0.01	· · · · · · · · · · · · · · · · · · ·	<u> </u>		10.2	5.2E-08
ſ	5 7	49	50) 45	5 44	62.90	76.80	-0.03	0.03	0.00	0.07	9.4	4.9E-08
Γ	67	50	50) 45	44	61.60	78.20	≏ ;≠0.02	0.02		0.08	8.9	5.3E-08
Γ	7 10	12	50	45	44	60.30	79.70	-0.02				8.5	5.2E-08
Γ	88	42	50	45	44	59.15	75.25		1			9.0	
	8 15	21	50	45	44	58.80	75.60	10.00	0.00	0.00	0.11	8:9	5.0E-08
	99	25	50	45	44	57.90	76.50	-0.01	0.01	0.00	0.12	8.6	4.9E-08
	10 10	15	50	45	44	56.75	77.70	0.01	0.01	0.00	0.13	8.2	4.8E-08
	12 11	24	50	45	44	54.40	80.00	-0.03	0.03	0.00	0.16	7.4	5.2E-08
ļ								1997 - 1997 -		·····			
										······································			
									<u> </u>				
									1 million and				

t

ŧ	ject	Comb	oustion E	ngineerin	g				:	Test. by	уКМ	IH-11/19/98
	Job No. E-	1039-01		Boring	g <u>WS-26</u>		Sample	13.0-15	5.0 (Checked b	y Kut	1-12/7/98
	Description	Grey fa	at CLAY,	, with son	ne Fe stai							
	Depth				Permear	it tap wa	ter		T	est Metho	d_ASTM	5084-90
	Permea	meter No)	5	St	andpipe V	/ol (cc/cm) Inflow	:1.28	0 Outflov	v: <u>1.28</u>]	1
			Before T	'est	After Te	st			Before T	est	After Te	st
	Sample Dia		•		2.87	9		Tare No). K5		100	_
	Sample L	ength (in)) 2.538	 B	2.55	8	Та	are Wt. (g) 2.6	3	86.14	-
•	Sample Are	ea (cm^2)	41.88	8	42.00)	Wet Soil				604.41	
	Sample Vol	ume (CC)	270.00	5	272.88	3	Dry Soil	+ Tare (g) 64.42	2	478.21	
	Samp	le Wt. (g)	509.68	3	518.27	1	Water Co	ontent (%) 30.	5	32.2	
	Wet Den	sity (pcf)	117.8	3	118.5	5		Porosity	0.476	5		
	Dry Den	sity (pcf)	90.3	5	89.7	'	Pore Vol	ume (CC	128.44	t]	**************************************	,
	Eff	ective		-	g	-		I	Degree of a	Saturation	96]
	Consolida	tion (psi)	5	min	6	max			Specif	ic Gravity	2.76	
	Read Time	Pcell	Pin	Pout	Readin	gs (cm)	Inflow	Outflow	Storage	Total	i	K
•	<u>hr min</u>	psi	psi	psi	hin	hout	PV	PV	PV	PV		cm/s
	-1 13 25	50	45	44	63.25	66.35					10.4	
	1 13 43	50	45	44	58.05	71.45		0.05	0.00	0.05	8.8	1.5E-05
	29	50			58.00		1		 	 	10.9	
	2 9 5								0.00	{		1.0E-05
ł	2 9 10								0.00	[8.8E-06
ŀ	2 9 20		45		54.40				0.00		f	7.9E-06
ł	2 9 34						-0.02	0.02	0.00	0.10		6.5E-06
ł	4 7 10	50	45	44	52.20	64.80	a la a l	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			9.0	
ŀ	4 7 20	50	45	44	50.85	66.15	-0.01	0.01	0.00	0.12	8.5	7.9E-06
+	4 7 36	50	45	44	49.15	67.85	-0.02	0.02	` 0.0 0	0.13	8.0	6.5E-06
┟	<u>47.37</u>	50	45	44	49.00	63.00			<u> </u>		8.7	
ŀ	4 7 48	50	45	44	47.80	64.25	-0.01	0.01	0.00	0.14	8.4	6.6E-06
╞	4 8 4	50	45	44	46.20	65.80	-0.02	0.02	0.00	0.16	7.9	6.2E-06
┢	4 8 20	50	45	44	44.80	67.20	-0.01	0.01	0.00	0.17	7.4	5.8E-06
┢	4 8 43	50	45	44	43.05	69.00	-0.02	0.02	0.00	0.19	6.9	5.5E-06
ŀ	4 9 9	50	45	44	41.10	70.90 70.90	-0.02	0.02	0.00	0.21	6.3 9,8	5.7E-06
	4 8 59	50	45	44	63.60	10.20	Sec		$T = N^{-1} + N^{-1}$	•	9.8	

, ,	je						gineering								I-11/19/98
Jot) N	ю.								Sample	13.0-15	.0 C	- hecked by	Muth	-12/7/98
												hered shel			
De	pth							Permeant	tap wat	er		Tes	st Method	ASTM S	5084-90
	Р	ern	nean	neter I	ło	5		Star	ndpipe V	ol (cc/cm)) Inflow:	1.280	Outflow:	1.281	
4	 	9	24	[50	45	44	61.15	73.35	-0.02	0.02	0.00	0.24	9.0	5.3E-0
4		10	23		50	45	44	56.20	78.20	-0.05	0.05	0.00	0.28	7.5	5.1E-0
4]	[1	3		50	45	44	53.20	81.20	-0.03	0.03	0.00	0.31	6.6	5.4E-0
4	1	1	4		50	45	44	53.20	70.00	<u></u>	· ·	·		8.3	
4	1	1	53		50	45	44	49.30	73.90	-0.04	0.04	0.00	0.35	7.1	5.3E-0
4	1	2	36		50	45	44	46.40	76.80	-0.03	0.03	0.00	0.38	6.2	5.2E-06
4	1	3	6		50	45	44	44.60	78.60	-0.02	0.02	0.00	0.40	5.6	5.2E-06
_															
					+										
			_		-					· · · · ·					
			_								·				
	Ţ		+	.,	+				·	· · ·					
			-		╋									·	
			+		┿							1. A			م بالا معرفة المراجع ا المراجع المراجع
			┯╋		╋										
			╉		╋										
			╋		╋					<u> </u>					
			╈		╉─										
			╋		\uparrow										
			+-		╋										
			1		1-					10.00					
					1										
					Γ					ار المحمد مشرع من مع الم المحمد المحمد ال	in an ing c			1 N 1 N	
			Ι												
												·			
<u>.</u>									1		and a state of the	,		al a sur a San a sur a San a sur a sur a	

.

•

	- C												
ţ	ect	t	Comb	ustion En	gineering	[•		_Test. by	KMH/F	KDM-11/20/98
	Job No	. <u>E-</u>	1039-01		Boring	g <u>WS-27</u>		Sample	21.0-23	.0 <u>C</u>	hecked by	y Cut	-12/2/98
	Descri	ption	Dark g	rey fat Cl	LAY, wit	h occa sm	roots & 1	oot holes,	, rare Fe st	tains, sl bl	ocky		· ·
	Depth				_	Permean	it <u>tap wa</u>	ter		_ Te	st Method	ASTM	5084-90
	Pe	ermea	ameter No	5. 1'	7	Sta	andpipe V	ol (cc/cm) Inflow:	1.298	3 Outflow	r: 1.293	}
	UPALI			Before T		After Te				Before Te	-	After Tes	-
	Sampl	e Die		1) 2.88		2.89			Tare No		-50	96 Aniel 168) C
	1 -		ength (in	-		2.74		Тя	ure Wt. (g)		-	83.40	-
	1	-	-) 42.1	5 C	42.3	8		+ Tare (g)		-	634.27	-
	-) 292 5	3	294.8	3		+ Tare (g)		•	496.60	-
) 546.80		550.87	-	-	ontent (%)	100000000000000000000000000000000000000	1	33.3	1
) 1164	H	116.6	3			0.461	1		1
	1			88.2	1	87.4		Pore Vol	ume (CC)		1		
			ective				4		D	egree of S	Saturation	100	
	Con			5	min	6	max			-	c Gravity	استنتقيت فيتعتقب فتشته فعرتهم	
		•		7	и Т	Lange and the second second		1			·		
	Read T		Pcell	Pin	Pout	Reading	1	Inflow	1	Storage	Total	i	К
	for the second s	min		psi	psi	hin	hout	PV	PV	PV	PV		cm/s
	1 8		50	1				8141553576176488	ł			7,9	
		0.5	1	1		55.20		100000000000000000000000000000000000000	0.04	0.00	0.04		6.2E-04
	1 8		1	1		51.95						4.6	
	1 8		1	1		49.25		101051008640064				3.9	6.5E-04
	1 8				44	47.20		866655566666	0.02				5.9E-04
		2.5	·····		44	45.35	89.70			0.00			6.4E-04
	1 8					43.75		-0.02	0.02	0.00	0.12		6.6E-04
	1 8				44	65.60	80.00					7.0	
}	1 8	4.0			44	61.60	84.00	-0.04	0.04	0.00	016	59	6.3E-04
┟	1 8	4.5		45	44	58.40	87.20					6.0	
ł	1 8	5.0		45	44	55.80	89.80	-0.03	0.02	0.00	0.18	5.2	4.8E-04
ł		5.5		45	44	53.50	92.10	0.02	0.02	0.00	0.21	4.6	4.8E-04
\mathbf{h}	18	6.0	50 50	45 45	44 44	51.60 50.00	94.00 95.60	-0.02	0.02 0.02	0.00	0.22 0.24	4.0 3.6	4.5E-04 4.3E-04
ŀ	<u>1</u> 8 1.8	6.5 7.0	50	45	44	48.60	95.00	-0.01	0.02	0.00	0.25	3.2	4.3E-04 4.3E-04
ł	1.8		50	45	44	47.40	97.00	-0.01	0.01	0.00	0.27	2.8	4.1E-04
, * -	2 8		50	45	44	85.30	90.80		STATE OF A			93	
			~~]						2272515252555555555			1919-1919-1919-19 1 -1	

	 / j	ect		Combu	stion Eng	ineering						Test. by	KMH/KI	OM-11/20/98
	Job	No.	E-1	039-01		Boring	WS-27		Sample	21.0-23.0	Ch	ecked by	Kult -	12/7/98
										rare Fe stai			· · · · · · · · · · · · · · · · · · ·	
	Dept	h				,	Permeant	tap wat	er		Tes	t Method	ASTM 5	084-90
	UPA			neter No.	17		Star	idpipe Vo	ol (cc/cm)	Inflow:	1.298	Outflow:	1.293	
	2	8	0.5	50	45	44	81.10	94.90	-0,04	0.04	0.00	0.30	8,1	4.9E-04
	2	8	1.0	50	45	44	77.95	98.05	-0.03	0.03	0.00	0.33	7.2	4.2E-04
	2	8	2.0	50	45	44	72.35	103.60	-0.05	0.05	0.00	0.39	5.6	4.5E-04
	2	8	2.5	50	45	44	72.35	87.00					8.0	
	2	8	3.0	50	45	44	69.00	90.30	-0.03	0.03	0.00	0.42	7.1	4.5E-04
	2	8	3.5	50	45	44	66.00	93.30	-0.02	0.03	0.00	0,45	6.2	4.6E-04
	2	8	4.0	50	45	44	67.55	79.80					8.4	
	2	8	4.5	50	45	44	63.85	83.40	-0.04	0.03	0.00	0,48	73	4.8E-04
	2	8	5.0	50	45	44	60.75	86.50	-0.03	0.03	0.00	0.51	6,4	4.6E-04
	2	8	5.5	50	45 .	44	58.00	89.25	0.03	0.03	0.00	0,54	5.6	4.7E-04
1	2	8	6.0	50	45	44	60.10	76.60					7.8	
$\mathcal{I}_{\mathbf{i}}$	2	8	6.5	50	45	44	57.00	79.90	-0.03	0,03	0.00	0.57	6.8	4.5E-04
-		_												
┝														
╞														
ŀ														
-														
┝														
-														
-														
┝														
-														
-	<u></u>					<u> </u>								
┝	······													
F														
┢					{									
-														
´							L							

•,•

	· • • •															
Ľ	Ĵ	Combustion Engineering												KDM-10/30/98		
	Job No. <u>E-1039-01</u> Boring W								Sample	16.5-18	.5 (<u>Checked</u> b	y Kul	-12/7/98		
	De	scription Dark grey lean CLAY, with some roots & root holes, some Fe stains, sl blocky												·····		
	De	pth			·		Permeant tap water					Test Method ASTM 5084-90				
		Pei	mea	ameter N	o	6	Sta	andpipe V	ol (cc/cm)) Inflow:	66 Outflow: 1.279					
					Before T	Test	After Test Be					efore Test After Test				
	Sa	mple	Dia	ameter (in	n) <u>2.88</u>	2	2.88	1		Tare No	. <u>AB3</u>	<u>AB3</u> 94				
	Sample Length (in) 1.994						1.990	1.990 Tare Wt. (g) 2.63 83.35								
	Sa	impl	e Ar	rea (cm^2	2) 42.0	9	42.00	2	Wet Soil -	+ Tare (g)	85.6	85.65 489.94				
	Sar	nple	Vol	lume (CC	.) 213.1		212.58		Dry Soil -	+ Tare (g)	392.83					
	, i	S	amp	ole Wt. (g	g) 402.9	2	406.59	406.59 Water Content (%) 30.2 31.4								
		Wet	Dei	nsity (pcl	0 118		Porosity 0.464									
	Dry Density (pcf) 90.6 90.8 Por							Pore Volu	ume (CC)	98.97			-			
				fective	000000000		00000000000	3		D	egree of	Saturation	99			
	C	Conse	olida	ation (psi) 5	min	6	max	Specific Gravity 2.71							
	Re	ad T	me	Pceli	Pin	Pout	Reading	ts (cm)	Inflow	Outflow	Storage	Total	i.	K		
	1.	ht	mli	n psi	psi	psi	hin	hout	PV	PV	PV	PV		cm/s		
	-1	8	8	3 50	0 45	i <u>44</u>	61.40	70.60					12.1			
	1	8	11	5(0 45	44	57.95	74.00	(104	0.04	0.00	0.04	10.7	5.1E-05		
	1	8	15	50) 45	44	54.40	77.55	-0.05	0.05	0.00	0.09	9.3	4.5E-05		
	1	8	20	50) 45	44	50.80	81.15	-0.05	0.05	0.00	0.14	7.9	4.2E-05		
	2	10		50			56.20	66.90					11.8			
-	2		6	{			49.00		000000000000000000000000000000000000000	0.09	0.00	80886088885				
ŀ	_2	10	8	f	1	{·	47.05	76.00	102080808083	0.03	0.00					
	2		9		1		46.15	76.90		0.01	0,00					
ŀ	2	10					44.40	78.70	-0.02	0.02	0.00	19639999999	7.1	6.0E-05		
	2	10	12	50	45	44	43.50	79.60	-0.01	0.01	0.00	0.30	6.8	6.5E-05		
ļ	2	10	13	50	45	44	42.60	80.50	-0.01	0.01	0.00	0.31	6.4	6.9E-05		
Ļ	2	11		50		44	60.25	70.40					11.9			
\mathbf{h}		11	_1			44	58.85	71.80	0.02	0.02	0.00	0.33	11.3	6.1E-05		
\mathbf{F}		11	_2	50	f	44	57.50	73.15	-0.02	0.02	0.00	0.35	10.8	6.2 E-05		
\mathbf{F}	2		3			44	56.20	74.45	-0.02	0.02	0.00	0.36	10.3	6.2E-05		
Ļ	2		_4	50		44	54.90	75.75	-0.02	0.02	0.00	0.38	9.8	6.5E-05		
	?	11	5	50	45	44	53.70	76.95	-0.02	0.02	0.00	0.40	9.3	6.3E-05		

ļ

.

Ł	1 Z - j	ject		Combu	stion Eng	ineering							Test. by	KMH/K	DM-10/30/98
\sim	dot	No.					يصلبها المراقبي سيعصب فالبابية		S	ample	16.5-18.	.5 C	-		The second s
	Job No.E-1039-01Boring WS-28Sample 16.5-18.5Checked byDescriptionDark grey lean CLAY, with some roots & root holes, some Fe stains, sl blocky														
	Dep	th					Permeant	tap wat	er			Te	st Method	d ASTM 5084-90	
		Pen	mea	meter No.	6	Standpipe Vol (cc/cm					Inflow: <u>1.266</u> Ou		Outflow:	ow: <u>1.279</u>	
	2	11	6	50	45	44	52.60	78.05		-0.01	0.0	0.00	0.41	8.9	6.1E-05
	2	11	7	50	45	44	51.55	79.10		-0.01	0.01	0,00	0.42	8.4	6.1E-05
	2	11	8	50	45	44	50.50	80.15		-0.01	0.01	0.00	0.44	8.0	6.4E-05
	2	11	10	50	45	44	48.50	82.15		-0.03	Q.03	0.00	0.46	7.2	6.6E-05
	2	11	12	50	45	44	46.65	84.00		-0.02	0.02	0.00	0.49	6.5	6.8E-05
	4	8		50	45	44	61.90	71.35						12.0	
	4	8	3	50	45	44	57.50	75.75		-0.06	0.06	0.00	0.54	10.3	6.6E-05
	4		28	[[-	45	44	57.40	68.00	1919					11.8	
	4	8		50	45	44	52.90	72.30		-0.06	0.06	0.00	0.60	10.1	6.8E-05
	4	8	40	50	45	44	52.90	70.10						10.5	
L	4	8	54	50	45	44	39.35	83.60		-017	0.17	0.00	0.77	5.1	6.5E-05
Ľ	4	8	55	50	45	44	38.70	84.20		-0.01	0.01	0.00	0.78	4.9	6.3E-05
ŀ	4	8	56	50	45	44	38.10	84.85		-0.01	0.01	0.00	0.79	4.7	6.6E-05
-															
┝			-+												
┢			-+												
┢			-+												
+															
┝			-+												
┢			-+												
-															
\vdash			-+-												
+		. والالدانية	+												
			+												
F			╋												
F			╈												
Γ															
			Γ												

Ľ	1 1	,ect Combustion Engineering							•			Test. by		KDM-11/19/98		
	Job	Job No.E-1039-01Boring WS-29DescriptionDark grey lean CLAY, with some san							Sample	20.0-22	.0 C			Kult -12/7/98		
	Des							and, som	e sm roots	& root h	oles, occa	thin f san	d stringer	s, sl blocky		
	Dep	Depth Permeant					t tap wa	tap water Test M				I_ASTM	5084-90			
		Permeameter No. 11 Standy						ndpipe V	dpipe Vol (cc/cm) Inflow: <u>1.290</u> Outflo					v: <u>1.289</u>		
		Before Test After Test									Before Te	est	After Te	st		
	San	nple	Dia	meter (in) 2.86	8	2.860	-		Tare No.	<u>KT1</u>	52				
	s	amp	ie L	ength (in) 2.79	7	2.773	-	Та	re Wt. (g)	2.63	<u>}</u>	83.17			
•	Sa	mpl	e Ar	ea (cm^2)) 416		41.45 Wet Soil + Tare (g) 99.49 628.33									
	Sarr	ple	Vol	ume (CC) 296.1(29193 Dry Soil + Tare (g) 74.8						497.24			
		Sample Wt. (g) 553.62 545.16							Water Co	ontent (%)	34.0		31.7			
		Wet	Der	nsity (pcf)) 116		116.5 Porosity 0.483									
	Dry Density (pcf) 87.0 88.5 Pore Volume (CC) 143.13															
	Effective Degree of Saturation															
	Consolidation (psi) 5 min 6 max Specific Gravity 2.70												-			
	Rea	Read Time Pcell Pin Pout Readings						s (cm)	Inflow	Outflow	Storage	Total	i	К		
Ľ	1	hr	mir	psi	psi	psi	hin	hout	PV	PV	PV	PV		cm/s		
	1	10	• 42	50	45	44	60.00	61.40					9,7			
	1	13	59	50	45	44	58.95	62.40	-0.01	0.01	0.00	0.01	9 A	2.8E-07		
	1	18	_2	50	45	44	57.60	63.70	-0.01	0.01	0.00	0.02	9.0	3.0E-07		
	2	7	·41	50	45	44	53.15	68.10	-0.04	0.04	0.00	0.06	7.8	3.3E-07		
	2	17	17	50	45	44	50.60	70.70	-0.02	0.02	0.00	0.08	7.1	3.1E-07		
	3	9	25	50	45	44	46.05	75.05	-0.04	0,04	0.00	0,12	5.8	3.7E-07		
	3	15	35	50	45	44	44.70	76.40	.001	0.01	0.00	0.14	5,4	3.3E-07		
	5	10	13	50	45	44	40.10	81.00	-0.04	0.04	0.00	0.18	41	1.9E-07		
ļ	7	10	55	50	45	44	68.80	70.10					97			
	7	13	42	50	45	44	68.20	70.70	-0.01	0.01	0.00	0.18	95	1.9E-07		
	7	16	_11	50	45	44	67.70	71.20	0.00	0.00	0.00	0.19	9,4	1.8E-07		
ļ	9	15	10	50	45	44	59.20	79.55	-0.08	0.08	0,00	0.26	7.0	1.9E-07		
	9	15	22	50	45	44	58.35	74.15					7.7			
ļ	10	15	15	50	45	44	54.88	77.65	-0.03	0.03	0.00	0.29	6.7	1.7E-07		
	10	18	17	50	45	44	54.40	78.10	0 00	0.00	0.00	0.30	6.6	2.0E-07		
L	11	7	49	50	45	44	52.50	79.85	-0.02	0.02	0.00	0.31	6.1	1.8E-07		
/	il	13	3	50	45	44	51.90	80.50	-0 01	001	0.00	0.32	5.9	1.7E-07		

2

15. E.

~

~

ί	بر ا	ject		Comb	ustion En	gineering						Test. by	KDN	1-11/19/98
~	·		<u>E-1</u>						Sample	20.0-22.0	C	hecked by	luut	-12/2/98
										& root hole				1 1
	Dep	th				-	Permeant	tap wa	ter		Tes	st Method	ASTM .	5084-90
		Perr	nean	neter No	11		Star	idpipe V	ol (cc/cm)	Inflow:	1.290	Outflow:	1.289	
	11	15	19	50	45	44	51.60	80.80	0.00	0.000	0.00	0.82	5.8	2.0E-07
	12	9	32	50	45	44	49.45	82.90	-0.02	0.02	0.00	0.34	5.2	L.8E-07
	12	14	41	50	45	44	48.95	82.90					5.1	
	13	9	50	50	45	44	47.05	85.25	-0.02	0.02	0.00	0.36	4.5	2.0E-07
ļ	14	8	_5	50	45	44	44.95	87.25	-0.02	0.02	0.00	0.38	3,9	1.9E-07
┟						<u></u>								
┝														
┢		,												
┢														
I			-+											
T			-											
			-+											
			+											
F			1					ľ						
F														
Γ														
		·												
ļ			+-											
			+-											
I			+-											
			ſ	1	1	i i	l I							

	ect	Com	oustion Er	ngineering	g					Test. by	, KM	IH-11/20/98
	Job No. E-	1039-01		Boring	g WS-32		Sample	12.0-14	.0 0	Checked by	y Kill	1-12/7/98
	Description	Brown					_					holes, blocky
	Depth				Permean	t tap wa	ter		_ Te	est Method	d ASTM	5084-90
	Permea	meter No	D. 1	9	Sta	ndpipe V	ol (cc/cm) Inflow:	1.30	2 Outflow	: 1.31	1
			Before T	est.	After Tes	ŧ			Before To	est	After Te	- st
1	Sample Dia	meter (in) 2.87.	5	2.885			Tare No	. KT2		74	
	Sample L	ength (in) 2.293	3	2.301	_	Ta	ire Wt. (g)) 2.63	3	85.24	-
	Sample Ar	ea (cm^2) 418	3	42 17		Wet Soil	+ Tare (g)	79.60)	564.06	5
	Sample Vol	ume (CC) 243.9		246.49 Dry Soil + Tare (g) 63.05						461.51	
	Samp	le Wt. (g) 478.42	2							27.3	
	Wet Den	sity (pcf) 122.4		1212			Porosity	0.410			
	Dry Den	sity (pcf) 96.1		953		Pore Volu	ume (CC)	100.04			
	Eff	ective		_				D	egree of S	Saturation	100	
	Consolida	tion (psi)) 5	min	6	max			Specifi	ic Gravity	2.61	
ł	Read Time	Pcell	Pin	Pout	Reading	s (cm)	Inflow	Outflow	Storage	Total	i	K
	hr min	1	psi	psi	hin	hout	PV	PV	PV	PV		cm/s
1	1 8 23	1	45	44	73.60	75.50					11.7	
ſ	1 8 35	50	45	44	70.30	78.70	-0.04	0.04	0.00	0.04	10.6	
ſ	1 8 43	50	45	44	68.50	80.50	-0 02	002	0.00	0.07	10.0	1.1E-05
ſ	3 10	50	45	44	66.05	74.65					10.6	
Γ	3 10 5	50	45	44	64.05	76.65	-0.03	0.03	0.00	0.09	9.9	2.0E-05
	3 10 9	50	45	44	62.55	78.15	-0.02	0.02	0.00	0,11	9,4	2.0E-05
	3 10 12	50	45	44	61.45	79.20	.001	001	000	0.13	9.0	2.0E-05
	3 10 13	50	45	44	61.45	74.00					9.9	
	3 10 17	50	45	44	60.05	75.40	-0.02	0.02	0.00	0.14	9,4	1.9E-05
	3 10 20	50	45	44	58.90	76.55	-0.01	0.02	0.00	0.16	9.0	2.2E-05
L	3 10 23	50	45	44	57.85	77.60	-0,01	0.01	0.00	0.17	8.7	2,1E-05
	3 10 26	50	45	44	56.85	78.65	-0.01	0.01	0.00	0.19	8.3	2.1E-05
	3 10 27	50	45	44	56.85	70.00					9.8	
	3 10 30	50	45	44	55.85	71.00	-0.01	Q.01	0.00	0.20	9.5	1.8E-05
L	3 10 33	50	45	44	54.85	72.00	-0.01	0.01	0.00	0.21	9.1	1.9E-05
L	3 10 36	50	45	44	53.80	73.00	-0.01	0.01	0,00	0.23	8.8	2.0E-05
	3 10 39	50	45	44	52.85	73.95	-0.01	ooii	0.00	0.24	8.5	1.9E-05

rev 3.2.97

1		Com	hundian E	nainaarin	_					Test h		ATT 13/16/00
			bustion E	ومناهبيه فياليا كمنيا المنا			C 1		<u> </u>			1H-11/16/98
1		-1039-01									y <u>ruo</u>	1-12/7/98
	-			والاستراد الموافع المعربة ومعرفة والمعربة		ne Fe stain					A CTTL	L 5094 00
Deptl						Permeant tap water Test Method ASTM 5084-90						
F	Perme	ameter N	o. <u> </u>	0	S	tandpipe V	/ol (cc/cn	a) Inflow	:	01 Outflow	v: <u>1.30</u>	1
			Before T	'est	After Te	est			Before 7	'est	After Te	st
Samp	ole Di	ameter (ir) 2.88	2	2.88	9		Tare No.). <u>KT3</u>		81	
Sar	mple l	Length (ir	n) <u>2.58</u>	5	2.58	6	T	are Wt. (g) 2.6	3	82.70	5
Sam	ple A	rea (cm^2	2) 42.0	2	42.2	9	Wet Soil	+ Tare (g) 81.2	6	599.60	5
Samp	le Vo	lume (CC	276.34	4	277.7	9	Dry Soil	+ Tare (g) 62.1	5	470.00	2
	Sam	ple Wt. (g	() 516.49	2	516.9	0	Water C	ontent (%) 32.	1	33.5	5
W	et De	nsity (pcf) 116.0	5	116.	1		Porosity	0.48	2		
D	ry De	nsity (pcf	88.3	3	87.0	2	Pore Vol	ume (CC)	133.13	3	p	.
1	Eff	fective		-				Ľ	Degree of	Saturation	95] [
Con	isolida	ation (psi) 5	min	6	max			Specif	ïc Gravity	2.73	_
Bend		Deall	Dia	Bout	Deadin	~ (~ ~)	Inflow	Outflow	Ctores	Tatal		К
Read			Pin	Pout		gs (cm)	1	1	ľ		1	
`h	r mir	1	psi	psi	hin 67.60	hout	PV	PV	PV	PV	11.2	cm/s
	8 28 8 31	1	1			1		0.03			11.3	
3 1		50						0.03	0.00	0.03	<u>10.5</u> 9.2	4.6E-05
$\frac{3}{3}$ 1		1	1	44	<u>57.90</u> 56.75			0.01	0.00	0.04	9.2	3.2E-05
}				44	55.80			0.01	0.00		8.6	2.8E-05
$\frac{3}{2}$		1	[]	44	54.55		-0.01	0.01	0.00		8.2	
$\frac{3}{2}$				f	53.80		-0.01					2.6E-05
$\frac{3}{2}$				44	52.50	64.85 66.15	-0.01	0.01	0.00		<u> </u>	2.4E-05 2.2E-05
3 10				44	51.25	67.45	-0.01	0.01	0.00	0.08	7.2	2.2E-05
<u>3 1(</u> 4 5		50	45 45	44	69.05	79.40	-0.01	0.01	0.00	0.09	9.1	2.2E-03
							0.02	0.02	0.00		t·	2.28.05
4 9) 4) 7		45	44 44	67.45 66.35	81.00	-0.02	0.02	0.00	0.11	<u>8.6</u> 8.3	2.3E-05 2.2E-05
4 9 4 9		50 50	45	44	64.90	82.10 83.60	-0.01	0.01	0.00	0.12	<u> </u>	2.2E-03 2.3E-05
4 9		50	45	44	64.90	76.90	10.01	- 0.01	0.00		8.9	2.JL-VJ
4 9		<u>50</u>	45	44	63.15	78.70	-0.02	0.02	0.00	0.15	8.3	2.1E-05
4 9		50	45	44	59.55	82.40	-0.02	0.02	0.00	0.15	7.2	2.1E-03 2.2E-05
-7 7		201			57.00		- U.VT	0.07	v.vv(0.17[استد. ا	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.

			Como	usuon E	ngineerin	g					_Test. by	<u>KM</u>	H-11/16/98
-J-ub	No.	<u>E-1</u>	039-01		Boring	WS-32		Sample	25.0-26	<u>.0 C</u>	hecked by	Jant	-12/7/98
Des	script	ion	Grey-b	równ lea	n CLAY,	with som	e Fe stair	is, some s	m roots &	root holes		•	
Dep	oth					Permear	nt <u>tap wa</u>	ater		_ Te	st Method	ASTM	5084-90
	Perr			. 1		St	andpipe V	/ol (cc/cn	n) Inflow:	1.301	Outflow:	1.301	_
4	10		50) 4	5 44	49.2	68.3	5				7.8	
4	10	. 7	5() 4	5 44	47.0	0 70.5	5 -0.0	2 0.02	0.00	0.22	7.1	2.2E-05
4	10	13	50) 4	5 44	45.4	72.1	00.0	2 0.02	0.00	0.24	6.6	2.0E-05
4	10	19	50) 4:	5 44	43.90) 73.6	00.0	1 0.01	0.00	0.25	6.2	2.0E-05
4	10	23	50	4.	5 44	42.90) 74.6	00.0	1 0.01	0.00	0.26	5.9	2.1E-05
				[<u> </u>								
				ļ					<u> </u>				
					ļ				- 				
					<u> </u>			· · · · · · · · · · · · · · · · · · ·					
								ļ					
<u> </u>													
·								·					
								 					
 								ļ	<u> </u>				
		-+-					_	·					
	• ••••••••••••••••••••••••••••••••••••									<u>.</u>		[.	
 	- 11												
		-+-							·				
 			{										
 									<u> </u>	<u> </u>			

										·			
						{							
<u> </u>													
		╋											
		+											
!		+-							<u> </u> -				

rev 3.2.97

. :

1

ject	Com	bustion E	ngineerin	g			,		Test. by	y KD	M-11/24/98
Job No. E-						Sample	20.0-22	.0 (y Kut	
Description											<u> </u>
Depth					it_tap wa					d ASTM	5084-90
Permea	meter No	o. 1	<u>6</u>	St	andpipe V	ol (cc/cm) Inflow:	1.31	2 Outflow	/: 1.308	3
de a		Before T	est	After Te	st	·		Before To	est	After Te:	st
Sample Dia	meter (in) 2.86	5	2.870	5		Tare No	LB22_	_	82	_
Sample L	3	2.585	5	Ta	ure Wt. (g	2.63	3	83.50	<u>)</u>		
Sample Are	ea (cm^2)) 41.62		41.9		Wet Soil	+ Tare (g)	70.12	2	621.59) _
Sample Volu	ume (CC)) 272 01		275.15		Dry Soil	+ Tare (g)	55.64	1	506.51	-
Sampl	le Wt. (g)) 534.74	ļ.	538.09)	Water Co	ontent (%)	27.3		27.2	
Wet Den	sity (pcf)) 122.7		122.0			Porosity	0.415			
Dry Den		96.4		95.9		Pore Vol	ume (CC)		3		1
	ective	512131111111	1		7		D	-		100	1
Consolidat	tion (psi)	5	min	6	max			Specifi	c Gravity	2.64	
Read Time	Pcell	Pin	Pout	Reading	s (cm)	Inflow	Outflow	Storage	Total	i	К
<u>y hr min</u>	psi	psi	psi	hin	hout	PV	PV	PV	PV		cm/s
1 11 1	50	45	44	68.05					-	10.3	
1 16 11	50		44	67.80		5778-646-6776-6778				10.2	4.1E-0
3 15 36	50		44	66.15	72.75						3.0E-(
4 9 21	50	45	44	65.60	73.15						2.4E-0
4 18 17	50	45	44	65.40	73.40			0.00	0.03		
5 7 49 5 18 12	50 50	45 45	44 44	<u>65.00</u> 64.65	73.80	0.00	0.00	0.00	0.03	9,4 9,3	2.7E-0
5 18 12 6 9 32	50	45 45	44	64.03	74.05 74.50	-0.01	0.01	0.00	0.04	9.2	2:7E-0 2.8E-0
7 9 31	50	45	44	63.55	74.95	-0.01	0.01	0.00	0.05	9.0	2.3E-0 2.2E-0
8 8 6	50	45	44	63.05	75.30	-0.01	0.00	0.00	0.05	8.9	1.8E-0
9 7 34	50	45	44	62.55	75.65	0.01	0.00	0.00	0.05	8.8	1.8E-0
10 8 31	50	45	44	62.05	76.05	-0.01	0.00	0.00	0.06	8.6	1.8E-0
10 18 4	50	45	44	61.85	76.25	000	0.00	0.00	0.06	8.6	2.1E-08
1 7 51	50	45	44	61.60	76.50		0.00	0.00	0.06	8.5	1.9E-0
1 17 45	50	45	44	61.45	76.65	0.00	0.00	0.00	0.07	8,4	1.6E-08
2 9 35	50	45	44	61.15	76.90	0.00	0.00	0.00	0.07	8.4	1,8E-08
2 16 23	50	45	44	61.00	77.00	0.00	0.00	0.00	0.07	8,3	1.9E-08

	ect		Combust									****************	1-11/24/98
Job I	Vo.	E-1	039-01		Boring	WS-33		Sample	20.0-22.	<u>0 C</u>	hecked by	Kult	-12/7/9
Desc	ripti	ion	Dark brow	n & gre	y fat CL	AY, with	some Fe	nodules,	occa Fe st	ains, occa	sm roots		
Dept	h					Permeant	tap wate	er		Te	st Method	ASTM	5084-90
]	Pern	nean	neter No.	16		Stan	dpipe Vo	l (cc/cm) Inflow:	1.312	Outflow:	1.308	
13	9	20	50	45	44	60.65	77.15	0.00	0000	0.00	0.07	8.2	1.6E
15	8	19	50	45	44	59.85	77.85	-0.01	0.01	0.00	0.08	8.0	1.7E
16	8		50	45	44	59.35	78.20	-0.01	0.00	0.00	0.08	7.9	2.0E
17	8	39	50	45	44	58.85	78.50	-0,01	0,00	0.00	0.09	7.8	1.8E-
						·							
الملعين وحذيون وا													
			:										
	•												
													· · · · · · · · · · · · · · · · · · ·
		\bot											
		\bot											
		\bot											

rev 3.2.97

3.

-

1.													
	ec	-	والمراجع بأكريسا المتكاف الفكر بالقرام	فالمركا كجنا أكالمج الكالمي الكالما المالية فعج	Engineerin	ويستعد والمتحد والمتحد والمتحد والمتحد			·····		Test. b	*	M-11/19/98
110	b No	o. <u>E</u>	-1039-01		Borin	g <u>WS-34</u>	L	Sampl	e <u>30.7-32</u>	2.0 (<u>Checked</u> b	y Kul	1.12/7/98
D	escri	ption	n Dark	grey lean	CLAY, w	ith some	f sand, oc	ca thin f	sand string	gers; rare s	m roots		1/1/00
D	epth			. • 		Permea	nt <u>tap</u> wa	ater		T	est Metho	d ASTM	1 5084-90
	Pe	erme	ameter N	0	9	St	tandpipe V	Vol (cc/cr	n) Inflow	:1.30	2 Outflov	v: <u>1.31</u>	1
1				Before 7	Test	After Te	est			Before T	est	After Te	st
Sa	mpl	e Di	ameter (in	n) <u>2.84</u>	45	2.82	5		Tare No.	<u>LB24</u>		54	
1	Sam	ple I	ength (in	n) <u>2.74</u>	11	2.70	8	Т	`are Wt. (g)2.63	3	82.7	1
s	amp	le A	rea (cm^2	2) 41.0	1	40.4	4	Wet Soil	l + Tare (g) 77.94	1	643.57	7
Sa	mple	e Vo	lume (CC	285.5	4	278.1	5	Dry Soil	+ Tare (g) 62.70)	540.85	5
ĺ	5	Samp	ple Wt. (g	g) <u>571.8</u>	2	560.80	6	Water C	Content (%) 25.4	<u>r</u> l	22.4	ŀ] [
	We	t De	nsity (pc	f) <u>125.</u>	0	125.8	8		Porosity	0.408	3		
	Dry	, De	nsity (pcl	ŋ <u>99</u> .	7	102.8	в	Pore Vo	lume (CC	116.61	.]		- I
		Ef	fective				-		Ľ	Degree of a	Saturation	95	
	Cons	olid	ation (psi) 5	min	6	max			Specifi	ic Gravity	2.70	-
Re	ad T	ïme	Pcell	Pin	Pout	Readin	gs (cm)	Inflow	Outflow	Storage	Total	i	K
لاند	hr	mii	n psi	psi	psi	hin	hout	PV	PV	PV	PV		cm/s
1	10	49	50) 45	5 44	64.90	68.70					9.6	
3		. 35) 45	5 44	63.50	69.95	-0.02	0.01	· 0.00	0.01	9.2	2.4E-08
4	9	15	50	45	5 44	63.00	70.30	-0.01	0.00	0.00	0.02	9.1	2.3E-08
4	18	19	50	45	44	62.80	70.55	0.00	0.00	0.00	0.02	9.0	2.4E-08
5	7	45	50	45	44	62.45	70.90	0.00	0.00	0.00	0.02	8.9	2.6E-08
5	18					62.20		- the second		0.00	0.03	8.8	2.4E-08
6	9	34	50	45	44	61.80	71.40	0.00	0.00	0.00	0.03	8.7	2.1E-08
6		42	50	45	44	61.65	71.55	0.00	0.00	0.00	0.03	8.7	<u>3.0E-08</u>
7	9	45	50	45	44	61.00	72.00	-0.01	0.01	0.00	0.04	8.5	3.0E-08
8	8	7	50	45	44	60.50	72.45	-0.01	0.01	0.00	0.04	8.4	2.2E-08
9	7	49	50	45	44	59.90	72.90	-0.01	0.01	0.00	0.05	8.2	2.4E-08
10	8	29	50	45	44	59.45	73.25	-0.01	0.00	0.00	0.05	8.1	1.8E-08
11	7	52	50		44	59.00	73.70	-0.01	0.01	0.00	0.06	8.0	2.1E-08
12	9	37	50	45	44	58.45	74.05	-0.01	0.00	0.00	0.06	7.9	2.0E-08
12	16	f	50	45	44	58.35	74.15	0.00	0.00	0.00	0.06	7.8	1.7E-08
15		20	50	45	44	57.05	75.00	-0.01	0.01	0.00	0.07	7.5	1.9E-08
16	8	5	50	45	44	56.65	75.35	0.00	0.00	0.00	0.07	7.4	1.9E-08

COMBUSTION ENGINEERING MISSOURI STATE ROUTE P HEMATITE, MISSOURI

TAULE 2

Geometric Mean - NSSSC Monitoring Wells/Piezometers Summary of Results of Single Well Hydraulic Conductivity Testing

Well ID		Bouwer-Rice Method Feet/minute	Geomean of Two Methods Feet/minute
WS-22	1.37E-04	1.96E-03	5.18E-04
WS-24	2.72E-05	6.85E-04	1.37E-04
WS-28	1.71E-05	5.53E-04	9.74E-05
WS-33	1.12E-04	1.45E-03	4.03E-04
PZ-1	1.34E-05	1.27E-03	1.30E-04
GEOMEAN	3.95E-05	1.06E-03	2.05E-04

Table 2b - Feet/Dav

		1000 - U	
Well ID	Hvorslev Method Feet/day	Bouwer-Rice Method Feet/day	Geomean of Two Methods Feet/day
WS-22	1.97E-01	2.82E+00	7.46E-01
WS-24	3.92E-02	9.87E-01	1.97E-01
WS-28	2.47E-02	7.97E-01	1.40E-01
WS-33	1.61E-01	2.09E+00	5.80E-01
PZ-1	1.93E-02	1.83E+00	1.88E-01
GEOMEAN	5.68E-02	1.53E+00	2.95E-01

Table 2c - Centimeters/Second

Well ID	Hvorslev Method cm/sec	Bouwer-Rice Method	Geomean of Two Methods cm/sec
WS-22	6.96E-05	9.94E-04	2.63E-04
WS-24	1.38E-05	3.48E-04	6.94E-05
WS-28	8.71E-06	2.81E-04	4.95E-05
WS-33	5.69E-05	7.37E-04	2.05E-04
PZ-1	6.80E-06	6.45E-04	6.62E-05
GEOMEAN	2.00E-05	5.41E-04	1.04E-04

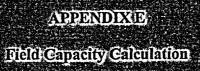
1

TABLE 3

COMBUSTION ENGINEERING MISSOURI STATE ROUTE P HEMATITE, MISSOURI

Geometric Mean - DSCC Monitoring Wells/Piezometers Summary of Results of Single Well Hydraulic Conductivity Testing

	Table 3a - Feet/Minute									
Well ID	Hvorslev Method Feet/minute	Bouwer-Rice Method Feet/minute	Geomean of Two Methods Feet/minute							
WS-23	4.34E-04	4.09E-03	1.33E-03							
WS-25	1.82E-04	2.26E-03	6.41E-04							
WS-27	2.54E-04	5.74E-03	1.21E-03							
WS-29	3.80E-04	6.97E-03	1.63E-03							
WS-32	9.49E-05	3.11E-03	5.43E-04							
WS-34	2.90E-04	4.99E-03	1.20E-03							
PZ-2	9.49E-05	3.11E-03	5.43E-04							
GEOMEAN	2.13E-04	4.05E-03	9.29E-04							


Table 3b - Feet/Day

Wett tD	Hvorslev Method	Bouwer-Rice Method	Geomean of Two Methods
	Feet/day	Feet/day	Feet/day
WS-23	6.24E-01	5.88E+00	1.92E+00
WS-25	2.61E-01	3.26E+00	9.23E-01
WS-27	3.66E-01	8.27E+00	1.74E+00
WS-29	5.48E-01	1.00E+01	2.35E+00
WS-32	2.00E+00	2.92E+01	7.65E+00
WS-34	2.49E-01	4.75E+00	1.09E+00
PZ-2	1.37E-01	4.48E+00	7.82E-01
GEOMEAN	4.18E-01	7.19E+00	1.73E+00

Table 3c - Centimeters/Second

Welt ID	Hvorslev Method	Bouwer-Rice Method	Geomean of Two Methods
	cm/sec	cm/sec	cm/sec
WS-23	2.20E-04	2.08E-03	6.76E-04
WS-25	9.22E-05	1.15E-03	3.26E-04
WS-27	1.29E-04	2.92E-03	6.13E-04
WS-29	1.93E-04	3.54E-03	8.27E-04
WS-32	7.07E-04	1.03E-02	2.70E-03
WS-34	8.78E-05	1.68E-03	3.84E-04
PZ-2 :	4.82E-05	1.58E-03	2.76E-04
GEOMEAN	1.47E-04	2.53E-03	6.11E-04

Leggette, Brashears & Graham, Inc.

 $-\infty$

LEGGHTTE, BRASHPARSE&GRAHAM, INC.

Į.

Therefore, the effective porosity is related to the total porosity and the field capacity according to the following expression:

Several aspects of the soil system influence the value of its effective porosity: (1) the adhesive water on minerals, (2) the absorbed water in the clay-mineral lattice, (3) the existence of unconnected pores, and (4) the existence of dead-end pores. The adhesive water in the soil is that part of the water present in the soil that is attached to the surface of the soil grains through the forces of molecular attraction (Marsily 1988). The sum of the volumes of the adhesive and absorbed water plus the water that fills the unconnected and dead-end pores constitute the volume of the adsorbed water, *Viw*, that is unable to move through the system.

A detailed list of representative porosity values (total porosity and effective porosity) is presented in Table 3.2.

4.2 MEASUREMENT METHODOLOGY

Determination of the effective porosity, p_e , of soils can be accomplished indirectly by measuring the total porosity, p_i , and the field capacity, θ_r , and then calculating p_e from Equation 4.4. The total porosity is obtained indirectly by measuring the soil densities according to the method described in Section 3.2. To determine the field capacity of the soils, the soil sample is first saturated with water and is then allowed to drain completely under the action of gravity until it gets to its irreducible saturation. The value of θ_r can then be obtained according to the methods used for measuring volumetric water content (Section 6.2).

4.3 RESRAD DATA INPUT REQUIREMENTS

To use RESRAD, the user is required to define (or to use the default values) of the effective porosity of three distinct materials: (1) contaminated zone, (2) saturated zone, and (3) unsaturated zone. In RESRAD, the effective porosity values are entered as decimal fractions rather than as percentages. As a default value, RESRAD adopts the value of $p_{e} = 0.2$ for all three materials. These default values are provided for generic use of the RESRAD code. For more accurate utilization of the model, site-specific data should be used.

If site-specific data are not available and the soil type is known, Table 3.2 can be used for estimating effective porosity. However, if no information is available on soil type, then the values of effective porosity should be experimentally determined according to the method presented in Section 4.2. Effective porosity values should not be greater than total porosity values. Total porosity is discussed in Section 3.

Problem: Calculate I	Field Capacity	y of Soil
----------------------	----------------	-----------

Formula: $P_e = P_{t} - \theta_r$

Where: $P_e = Effective Porosity$

 $P_t = Total Porosity$

 θ_r = Field Capacity

Given: $P_e = 0.281$ (from default value for silty-clay from Table 3.3-1 of "Development of Probabilistic RESRAD 6.0 and RESAD-Build 3.0 Computer Codes, "November 2000).

 $P_t = 0.446$ (Shannon & Wilson Data)

 $\theta_r = Unknown$

Solve for
$$\theta_r = P_t - \theta_r$$

•••

 $-\theta_{\rm r} = P_{\rm e} - P_{\rm t}$ $\theta_{\rm r} = P_{\rm t} - P_{\rm e}$

 $\theta_{\rm r} = 0.446 \text{-} 0.281$

 $\theta_r = 0.165$

Field Capacity = 0.165

water content and residual water content to develop distributions for effective porosity by subtraction. Table 3.3-1 gives the distributions and the defining parameters for effective porosity for the 12 soil textural classes and for the generic soil type.

The distribution to be used for cases when the type of soil is not known (the RESRAD default distribution) was obtained as the weighted average of the distributions for the individual soil classes. The same weighting factor scheme as discussed for the generic soil type in Section 3.1 was used. The probability density function of the weight average was plotted, and the parameters of the normal distribution were chosen to represent the weighted average curve over the range of interest. The probability density function for the effective porosity for this generic soil type is shown in Figure 3.3-1. When a site-specific analysis is being conducted, the distribution for the soil type present at the site should be used. For consistency, distributions corresponding to the same soil type selected for this parameter should also be selected for the following parameters: soil density, total porosity, hydraulic conductivity, and the soil b parameter.

Soil Type	Distribution	Mean	Standard Deviation	Lower Limit	Upper Limit
Sand	Normal	0.383	0.0610	0.195	0.572
Loamy sand	Normal	0.353	0.0913	0.0711	0.635
Sandy loam	Normal	0.346	0.0915	0.0629	0.628
Sandy clay loam	Normal	0.289	0.0703	0.0723	0.507
Loam	Normal	0.352	0.101	0.0414	0.663
Silt loam	Normal	0.383	0.0813	0.132	0.634
Silt	Normal	0.425	0.110	0.0839	0.766
Clay loam	Normal	0.315	0.0905	0.0349	0.594
Silty clay loam	Normal	0.342	0.0705	0.124	0.560
Sandy clay	Normal	0.281	0.0513	0.122	0.439
Silty clay	Normal	0.289	0.0735	0.0623	0.517
Clay	Normal	0.311	0.0963	0.0138	0.609
Generic soil type*	Normal	0.355	0.0906	0.075	0.635

Table 3.3-1 Distribution Type and Parameters for Effective Porosity by Soil Type Porosity by Soil Type

Parameters for the generic soil type were derived from the distribution enveloping all soil types. The lower and upper limits correspond to the 0.001 and 0.999 guantile values, respectively.

Sources: Carsel and Parrish (1988); Meyer et al. (1997).

APPENDIXIF

3

Representative Values of Soll-Spealite Exponential D Parameter

• •

TABLE 13.1RepresentativeValues of Soil-SpecificExponential b Parameter

Texture	Soil-Specific Exponential Parameter, b
Sand	4.05
Loamy sand	4.38
Sandy loam	4.90
Silty loam	5.30
Loam	5.39
Sandy clay loam	7.12
Silty clay loam	7.75
Clay loam	8.52
Sandy clay	10.40
Silty clay	10.40
Clay	11.40

Source: Clapp and Hornberger (1978).

ï

٠

APPENDIXC

J.

Well Pump Intelke Calculations and Supporting Documentation

WELL PUMP INTAKE CALCULATIONS

WELL PUMP INTAKE CALCULATIONS BASED ON DSCC WELLS						
MW or Piez	Depth bgs (feet)					
WS-23	38.52					
WS-25	38.21					
WS-27	32.46					
WS-29	27.79					
WS-32	35.22					
WS-34	35.45					
PZ-2	33.49					
OB-1	26.20					
OB-2	37.00					
BR3-OB	24.30					
Average (feet bgs)	32.86					
Pump Height (feet bgs)	30.86					
Pump Height (meters bgs)	9.41					

Pump is assumed to located 2 feet off the bottom of the well.

.

WESTINGHOUSE ELECTRIC CO. LLC HEMATITE, MISSOURI FACILITY

REMEDIAL INVESTIGATION/FEASIBILITY STUDY WORK PLAN TABLE 5 - MONITORING WELL/PIEZOMETER CONSTRUCTION DATA

			WELL		TOP OF	WELL					
WELL	DATE		CASING	GRADE	CASING	BOTTOM	DEPTH OF	DEPTH OF	SCREEN	SCREENED	HYDROSTRATIGRAPHIC
DESIGNATION	INSTALLED	SCREEN/CASING	DIAMETER	ELEVATION	ELEVATION	ELEVATION	WELL	WELL	LENGTH	INTERVAL	ZONE
		MATERIAL	(INCHES O.D.)	(FEET AMSL)	(FEET AMSL)	(FEET AMSL)	(FEET BGS)	(FEET BTOC)	(FEET)	(FEET BGS)	MONITORED
WS-7	Unknown	PVC/Unknown	4	432.25	432.28	409.77	22.48	22.51	Unknown	Unknown	Unconsolidated
WS-8	Unknown	PVC/Unknown	4	431.71	433.70	414.04	17.67	19.66	Unknown	Unknown	Unconsolidated
WS-9	Únknown	PVC/Unknown	4	431.77	432.84	406.47	25.30	26.37	Unknown	Unknown	Unconsolidated
RMC-9	Unknown	PVC/Unknown	2	433.51	436.07	Unknown	Unknown	Unknown	Unknown	Unknown	Unconsolidated
WS-13	Unknown	PVC/PVC	2	434.02	435.80	Unknown	Unknown	20.70	Unknown	Unknown	Unconsolidated
WS-14	Unknown	PVC/PVC	2	433.56	435.65	Unknown	Unknown	25.58	Unknown	Unknown	Unconsolidated
WS-15	Unknown	PVC/PVC	2	430.58	432.76	406.79	23.79	25.97	Unknown	Unknown	Unconsolidated
WS-16	Unknown	PVC/PVC	2	430.19	432.25	410.55	19.64	21.70	Unknown	Unknown	Unconsolidated
WS-17B	26-Jun-96	PVC/PVC	2	433.39	435.36	412.85	20.54	22.51	13.00	7.0-20.0	Unconsolidated
WS-22	24-Sep-98	PVC/PVC	2	438.22	441.12	421.96	16.26	19.16	5.00	10.5-15.5	NSSSC/Unconsolidated
WS-23	24-Sep-98	PVC/PVC	2	438.15	441.16	399.63	38.52	41.53	10.00	28.52-38.52	DSCC/Unconsolidated
WS-24	23-Sep-98	PVC/PVC	2	436.76	439.64	420.00	16.76	19.64	10.00	5.5-15.5	NSSSC/Unconsolidated
WS-25	23-Sep-98	PVC/PVC	2	436.55	439.09	398.34	38.21	40.75	10.00	28.4-38.4	DSCC/Unconsolidated
WS-26	28-Sep-98	PVC/PVC	2	430.48	433.53	415.32	15.16	18.21	10.00	5.0-15.0	NSSSC/Unconsolidated
WS-27	28-Sep-98	PVC/PVC	2	430.69	433.56	398.23	32.46	35.33	10.00	21.8-31.8	DSCC/Unconsolidated
WS-28	25-Sep-98	PVC/PVC	2	425.71	428.61	409.87	15.84	18.74	10.00	6.5-16.5	NSSSC/Unconsolidated
WS-29	25-Sep-98	PVC/PVC	2	425.32	428.20	397.53	27.79	30.67	7.00	20.4-27.4	DSCC/Unconsolidated
WS-30 °	15-Oct-98	PVC/PVC	2	425.41	428.27	376.20	49.21	52.07	10.00	38.9-48.9	Jefferson City-Cotter Dolomite
WS-31	13-Oct-98	PVC/PVC	2	424.95	427.63	343.54	81.41	84.09	10.00	71.3-81.3	Jefferson City-Cotter Dolomite
WS-32	30-Sep-98	PVC/PVC	2	433.20	436.11	397.98	35.22	38.13	5.00	30.8-35.8	DSCC/Unconsolidated
WS-33	22-Sep-98	PVC/PVC	2	434.23	437.12	416.32	17.91	20.80	10.00	7.6-17.6	NSSSC/Unconsolidated
WS-34	21-Sep-98	PVC/PVC	2	434.21	436.96	398.76	35.45	38.20	10.00	25.6-35.6	DSCC/Unconsolidated
PZ-1	28-Sep-98	PVC/PVC	2	·431.75	434.74	407.85	23.90	26.89	10.00	13.5-23.5	NSSSC/Unconsolidated
PZ-2	28-Sep-98	PVC/PVC	2	431.63	434.81	398.14	33.49	36.67	10.00	23.5-33.5	DSCC/Unconsolidated
PZ-3	13-Oct-98	PVC/PVC	2	433.23	435.85	372.28	60.95	63.57	10.00	50.3-60.3	Jefferson City-Cotter Dolomite
PZ-4	13-Oct-98	PVC/PVC	.~2	438.17	440.71	378.86	59.31	61.85	10.00	49.3-59.3	Jefferson City-Cotter Dolomite
OB-1	15-May-02	PVC/PVC	2	426.67	429.64	400.47	26.20	29.17	16.20	10.0-26.2	Unconsolidated
OB-2	28-May-02	PVC/PVC	2	427.71	430.52	390.71	37.00	39.81	27.00	10.0-37.0	Unconsolidated

Note

(

O.D. = Outside Diameter

AMSL = Above Mean Sea Level

BGS = Below Ground Surface

BTOC = Below Top of Casing

SC = Near-Surface, Silt; Silty-Clay

DSCC = Deep, Silty-Clay; Clay

()

WESTINGHOUSE ELECTRIC CO. LLC HEMATITE, MISSOURI FACILITY

REMEDIAL INVESTIGATION/FEASIBILITY STUDY WORK PLAN TABLE 5 - MONITORING WELL/PIEZOMETER CONSTRUCTION DATA

WELL DESIGNATION	DATE INSTALLED	SCREEN/CASING MATERIAL	*******	GRADE ELEVATION (FEET AMSL)	TOP OF CASING ELEVATION (FEET AMSL)	WELL BOTTOM ELEVATION (FEET AMSL)	DEPTH OF WELL (FEET BGS)	DEPTH OF WELL (FEET BTOC)	LENGTH	SCREENED INTERVAL (FEET BGS)	
BR1-JC	06-Jun-02	PVC/PVC	1	439.29	442.08	332.29	107.00	109.79	10.00	97.0-107.0	Jefferson City-Cotter Dolomite
BR1-RB	24-Jul-02	PVC/PVC	2	440.03	442.63	275.03	165.00	167.60	40.00	125-165	Roubidoux Formation
BR2-JC	23-Jul-02	PVC/PVC	1	428.64	431.33	313.64	115.00	117.69	5.00	105-115	Jefferson City-Cotter Dolomite
BR2-RB	24-Jul-02	PVC/PVC	2	428.23	431.50	93.23	335.00	338.27	40.00	295-335	Roubidoux Formation
BR3-OB	23-Jul-02	PVC/PVC	2	418.65	421.72	394.35	24.30	27.37	11.10	13.2-24.3	DSCC/Unconsolidated
BR3-RB	24-Jul-02	PVC/PVC	2	418.12	420.73	228.12	190.00	192.61	40.00	150-190	Roubidoux Formation
BR4-JC	24-Jul-02	PVC/PVC	2	432.11	434,51	327.11	105.00	107.40	10.00	95-105	Jefferson City-Cotter Dolomite
BR4-RB	24-Jul-02	PVC/PVC	2	431.95	434.93	191.95	240.00	242.98	40.00	200-240	Roubidoux Formation

ote

()

()

D. = Outside Diameter

MSL = Above Mean Sea Level

GS = Below Ground Surface

TOC = Below Top of Casing

SSSC = Near-Surface, Silt; Silty-Clay

SCC = Deep, Silty-Clay; Clay

APPENDIXH

ij,

Well Rumping Rate Calculation and Supporting Documentation

BECCEPTER BRASHPARSES GRAHAMAINE

Scenario 1: Area of Contamination = 6432 M^2

Assume:

4 Adults 4 head of cattle

225 liters/adult/day 160 liters/head/day

225 x 4 = 900 liters/day 160 x 4 = 640 liters/day

Total 1540 liters/day or 562,100 liters/yearly

Conversion:

1 liter = 0.001 M^3

562,1000 liters = 562 M^3

Pumping Rate Requirements: 562 M³/year

Scenario 2: Area of Contamination = 77458 M^2

Assume: 4 Adults 10 head of cattle

> from above: $225 \times 4 = 900$ liters/day $160 \times 10 = 1600$ liters/day

> > Total 2500 liters/day of 912,500 liters/yearly

Pumping Rate Requirements: 913 M³/year

Water Use		Water Use as a Function of Land Area						
Component	General Case	100 m ²	2,400 m ²	10,000 m ²				
Household	225 × 4 L/d ≡ 328.7 m³ yr ⁻¹	328.7 m ³ yr ⁻¹	328.7 m ³ yr ⁻¹	328.7 m³ yr				
Livestock	50+160 L/d ≋ 76.7 m³ yr ⁻¹	76.7 m³ yr-¹	76.7 m ³ yr ⁻¹	76.7 m³ yr				
Irrigation of vegetable plot								
Contaminated fraction	f _p = min(Area/2000, 0.5)	0	0.5	0.				
Irrigation rate	l, (m yr ⁻¹)	0	0.1125 m yr ⁻¹	0.1125 m yr				
Irrigation water	$f_p \times l_r \times 2000$	0	112.5 m³ yr⁻¹	112.5 m³ yr				
rrigation of pasture								
Contaminated fraction	f _m = Area/20,000 ≤ 1	0	0.065	0.445				
rrigation rate	l, (m yr ¹)	0	0.1125 m yr ⁻¹	0.1125 m yr				
rrigation water	f _m × I _r × 20,000	0	146.3 m³ yr ⁻¹	1001 m³ yr				
Drinking water	409.5 × 4 L/yr = 1.64 m³ yr¹ (Section 5.2)	1.64 m ³ yr ⁻¹	1.64 m ³ yr ⁻¹	1.64 m³ yr`				
rotal (m³ yr⁻¹)		407	666	1519				

.

-

.

Table 3.10-1 Example Calculations for Estimating the Well Pumping Rate

PRINCIPLES OF CONTROLLED GRAZING

David W. Pratt, U.C.C.E. Farm Advisor

LIVESTOCK & RANGE REPORT NO. 932 SPRING, 1993

Napa & Solano Counties U.C.C.E., Livestock/Range Management Program

GRASS FARMING

Ranching is really the business of converting sunlight energy into forage and forage into harvestable livestock products in a sustainable manner. From this perspective we see that those of us in the livestock business are also in the grass pusiness. Allan Nation, editor of the Stockman Grass Farmer would say we are "grass farmers" and our livestock are the four legged combines with which we harvest our crop.

Most of us have considered the livestock business, not the grass business, as our primary occupation. As a result, our focus has been on the animal. We have a relatively poor understanding of how our crop grows and responds to grazing. An understanding of this relationship is fundamental to successful grass farming.

GREEN LEAVES CAPTURE SUNLIGHT

Sustainable production in ranching starts with using plants to capture sunlight energy. When sunlight falls on bare soil, rocks, or anything but growing plants, its energy cannot be harvested.

inciple: Maintain 100% green plant cover in pastures for as long as possible.

THE "S" SHAPED CURVE

The efficiency with which plants convert the sun's energy into green leaves and the ability of animals to harvest and use energy from those leaves depends on the phase of growth of the plants.

After grazing, plants go through three phases of growth that form an "S" shaped curve (figure 1). Phase I occurs after plants have been severely grazed. After grazing, fewer leaves are left to intercept sunlight and plants require more energy for growth than they are able to produce through photosynthesis. So, to compensate, energy is mobilized from the roots. The roots become smaller and weaker as energy is used to grow new leaves.

FIGURE 1. PLANT GROWTH AFTER GRAZING (THE 'S' SHAPED CURVE)

number of head per acre:

STOCK DENSITY = HEAD ÷ ACRE

r example if 50 steers are grazing a 10 acre paddock the stock density is 5 head/acre:

STOCK DENSITY = 50 HEAD ÷ 10 ACRES = 5 head / acre

In his book Holistic Resource Management, Allan Savory says, "Low density, not overgrazing or overstocking, should bear the blame for many serious range and production problems, including trailing, successional shifts toward brush and weeds, pest outbreaks, poor animal performance, and high supplemental feed costs...". To understand why, let's take another look at the two one acre paddocks described earlier (Figure 2).

The two paddocks had identical stocking rates (100 animal days per acre), but they were grazed for different periods of time and the stock densities were drastically different.

In the first paddock, with one animal grazing for 100 days (stock density 1 animal/acre), utilization was uneven, with some plants overgrazed and others undergrazed. In the other paddock, where one hundred animals grazed for one day (stock density 100 animals/acre), utilization was more uniform and there was no overgrazing. Shortening the graze period reduced overgrazing, but it was the increase in stock density that resulted in more even utilization.

Overgrazing is a function of time.

Uniformity of utilization is a function of stock density.

High stock density increases the uniformity of utilization and maintains forage in a more palatable, nutritious, digestible condition.

Stock density increases as the number of animals in a paddock increase or as paddock size decreases.

Principle: Use the highest stock density possible.

Twenty head per acre is the minimum stock density needed to uniformly graze irrigated pasture. Higher is better. Stock densities of over 50 cattle per acre are not uncommon on well managed irrigated pastures. Two head per acre is a reasonable target on more remote ranges. Again, higher is better.

HERD EFFECT

If you haven't already seen the movie *Dances With Wolves*, get out the popcorn and rent it tonight. When it gets to the scene where they are tracking the buffalo, stop the tape and reread this section.

After the buffalo stampeded through, the range literally looked plowed. This is a natural phenomena called herd effect. When animals are spread out and calm, their hooves tend to compact the soil. When they are concentrated and excited, v tend to knock down old standing vegetation and break up the soil.

Herd effect will not happen just by increasing stock density. To achieve this effect it is usually necessary to stimulate animals in some way. It can be done by herding through or feeding on the area where you want this impact.