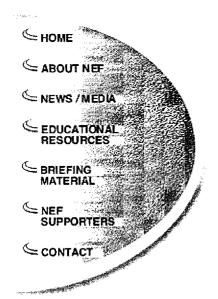
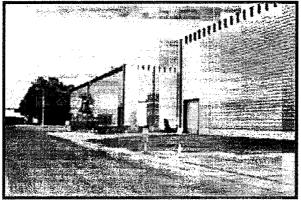
R. NEVIN STAFF EXHIBIT 5 NIRS/PC EC-7

NEF Page 1 of 3



"I feel they are taking the right steps to protect their employees, the community, and our environment."


- Steven Stevenson, EMS Director, Eunice Fire

Vie

National Enrichment Facility (view facility drawings)

LES has chosen a site in Lea County, New Mexico 5 miles east of Eunice, to be gas centrifuge uranium enrichment facility. This facility will enable the United 5 have a domestic source of enriched uranium for the country's commercial nucl power plants. LES is a partnership of major nuclear energy companies. Parl include Urenco Ltd., Westinghouse Electric Company, LLC, and U.S. energy companies Duke Power, Entergy and Exelon.

SP5 Uranium enrichment facility - Almelo, Netherlands

The new National Enrich Facility (NEF) will use the most advanced, energy-and cost effective uraniu enrichment technology. Developed by Urenco Ltechnology has been in a over 30 years. It will be a facility of its kind in North America.

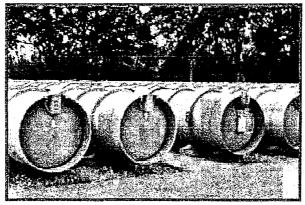
Established in 1971, Ure

is a consortium of British Nuclear Fuels, Ltd., the Dutch government and sever German nuclear utilities. Urenco Ltd. operates three enrichment facilities -- in the Netherlands and Germany -- and provides 15 percent of the worldwide ma enriched uranium. Westinghouse Electric Company, LLC, a subsidiary of Britis Nuclear Fuels, Ltd., is a world leader in commercial nuclear reactor technology including power plant design, nuclear fuel fabrication and related services. Cla percent of the world's nuclear power plants are based on the 117-year-old con technology.

Uranium that is slightly enriched, termed "low enriched uranium" (LEU), is esset fueling commercial nuclear power plants. Nuclear energy supplies approximate percent of U.S. electricity and is the second greatest source of the nation's elected after coal. Because it is greenhouse gas emission-free, nuclear power is often to as the most eco-efficient of energies.

NEF will provide a sustainable domestic supply of LEU, thereby substantially r U.S. reliance on the global nuclear fuel marketplace and encouraging competiwithin the U.S. market. USEC is the only other company currently producing e uranium in the U.S.

In 2001, the U.S produced only 12 percent of its needed supply of enriched ura


rage 2013

uranium in the U.S.

In 2001, the U.S produced only 12 percent of its needed supply of enriched uranium, behind Russia supplying 55 percent and Urenco supplying 16 percent of the U.S. demand. Full capacity operation of the NEF is expected to annually produce 3 million separative work units (SWUs) of uranium, which is approximately one-fourth of current U.S. enrichment services demand.

NEF will produce LEU using the Urenco-developed gas centrifuge technology, proven to be more cost effective and energy efficient than gaseous diffusion. The enrichment process involves the concentration of U-235, one of the isotopes in natural uranium. U-235, only 0.7 percent of the weight of natural uranium, is the needed isotope because it is the one that fissions (splits) inside the core of nuclear power reactors and releases energy in the process. The concentration of U-235 is increased slightly or "low-enriched" from 0.7 percent to 3 to 5 percent during the centrifuge process.

The NEF will house thousands of centrifuges that spin uranium hexafluoride (UF6) gas at high enough speeds to separate the fissile U-235 from the heavier U-238 isotope. By contrast, gaseous diffusion is based on the separation effect arising from molecular diffusion, i.e. the flow of gas through small holes to separate the isotopes. The NEF centrifuge-enriched uranium, with greater concentrations of U-235, is then ready to be converted into fuel.

Uranium byproduct cylinders (UBC's) - Almelo, Netherlands

The byproduct of the enrichment process is depleted uranium, containing about 0.3 percent U-235. LES will store the uranium byproduct in Uranium Byproduct Cylinders (UBCs) at the NEF site, just as Urenco has safely stored UBCs at its European facilities for 30 years.

This storage process will be regulated by the U.S. Nuclear Regulatory Commission (NRC),

which will determine how many UBCs can be stored at the NEF site and the length of storage time. LES will also work with the New Mexico Environment Department to ensure compliance with the highest environmental standards.

LES chose New Mexico as the site for its U.S. plant for several reasons, notably its history as a hub of scientific R&D and strong support from both Lea County leaders and businesspeople and state officials including U.S. Senator Pete Domenici, current chairman of the Senate Energy and Natural Resources Committee. "Nuclear technologies are well understood and appreciated in this area," says Domenici. Lea

County is also geologically suitable to the new enterprise.

LES applied for an operating license from the U.S. Nuclear Regulatory Commission on December 15, 2003. It is estimated that the approval process will take approximately two years. LES's goal is to produce 1 million SWUs at its New Mexico facility by the year 2009, and triple that by 2013.

Energy Independence for America