Extended Power Uprate (EPU)

License Amendment Requests BVPS Unit 1 - LAR 302 BVPS Unit 2 - LAR 173

ĩ.

Beaver Valley Power Station Units 1&2

12-15-04 Slide 1

- Overview
 - Background
 - EPU Technical Process
 - Licensing Basis Changes
- Impact on Plant
 - Plant Modifications
 - Staged Power Increase
- Submittal
 - Submittal Structure and Completeness
 - Technical Specification Changes
- Schedule
- Summary

BACKGROUND

BVPS Full Potential Program

- Atmospheric Containment Conversion
- BELOCA
- Extended Power Uprate
- Replace Steam Generators and Reactor Vessel Head
- License Renewal
- Improved Standard Technical Specifications

BACKGROUND (Continued)

- Both units originally licensed to 2652 MWt
- Uprated by 1.4% to 2689 MWt (October 2001)
- Extended Power Uprate to 2900 MWt (Additional 8%)
 - BVPS Unit 1 with Model 54F Replacement Steam Generators (RSG)
 - BVPS Unit 2 with Original Steam Generators (OSG)

BACKGROUND (Continued)

- Key Elements
 - Atmospheric Containment Conversion
 - Stand-alone submittal
 - Analyses performed at EPU conditions
 - Beloca
 - License methodology for BVPS
 - Results presented include containment conversion and EPU
 - Extended Power Uprate
 - Containment Qualified in Containment Conversion submittal
 - LOCA analysis performed using BELOCA methodology

BACKGROUND (Continued)

To Position BVPS Units for EPU:

Submittals Completed NRC Review

•New Fuel Storage Rack Enrichment Limit Increase Amendments 1-204 /2-135

•Positive Moderator Temperature Coefficient Amendments 1-251 /2-129

•Accumulator and RWST Increased Boron Concentration Amendments 1-242 /2-125

•Selective implementation of AST Amendments 1-241 /2-121 and 1-257 /2-139

•Minimum Decay Time Before Fuel Movement Amendments 1-247 /2-126

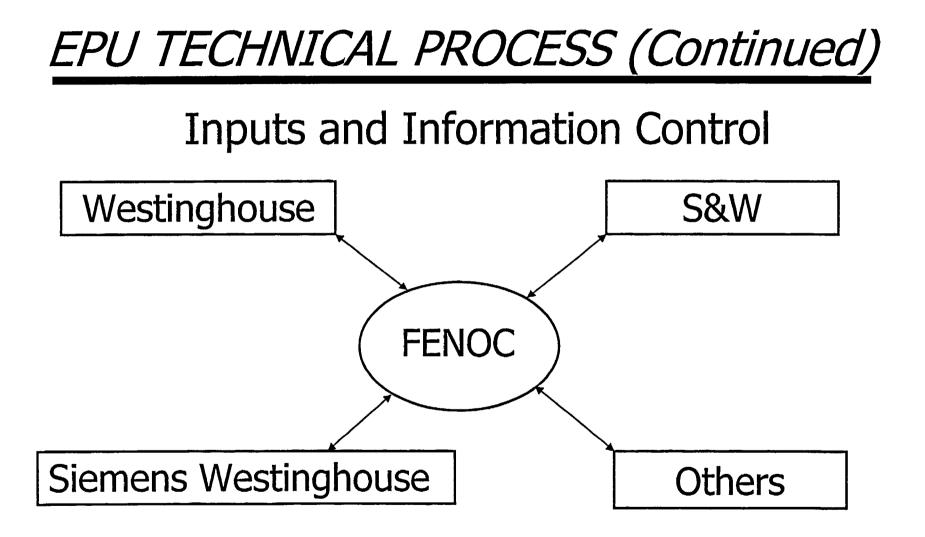
Containment Conversion LARs 1-317 /2-190 submitted 6/04

Large Break Best Estimate Loss-of-Coolant Accident (BELOCA) Methodology LARs 1-318 /2-191 submitted 10/04

Extended Power Uprate (EPU) with RSG (Unit 1) and Full Implementation of AST LARs 1-302 /2-173 submitted 10/04

EPU TECHNICAL PROCESS

- Identify Changes Due to Uprating the Core Power by an Additional 8%
- Technically Review for Impact
 - Safety and Transient Analyses
 - Systems, Structures and Components
 - Programs
 - Procedures



- General Criteria
 - Follow current licensing bases unless specifically identified
 - No new BVPS analytical methodologies unless specifically identified
 - No new industry (unlicensed) methodologies
 - Consistent with other power uprates

- Based on Review:
 - Update Safety Analyses
 - Update Licensing and Design Basis Calculations
 - Evaluate Impact on Operation
 - Implement Necessary Plant Modifications
 - Implement Documents for Configuration Control
 - Implement Procedures

- Westinghouse
 - NSSS Systems and Components
 - Fuel/Core Design
 - Safety Analyses
 - Transient Analyses
- S&W
 - BOP (Balance of Plant) Systems
 - Radiological Analyses and AST
 - Piping
 - Programs
 - Environmental Assessment

- Siemens Westinghouse
 - Turbine, Generator and Auxiliaries
- Others
 - MSRs (Moisture Separator Reheaters)
 - Grid Stability
 - FAC (Flow Accelerated Corrosion)
- FENOC
 - Consistency of Inputs
 - Consistency with Plant Conditions and Configuration
 - Proper Interfacing of Information

LICENSING BASIS CHANGES

Licensing Basis changes include:

- 1. Safety Analysis based on 2900 MWt
- 2. Full implementation of the Alternative Source Term methodology of Regulatory Guide 1.183
 - Selective implementation previously approved in Amendments 1-241/2-121 and 1-257/2-139
- First time BVPS application of VIPRE and WRB-2M
- First time BVPS application of the BELOCA Methodology

IMPACT ON PLANT

- Higher reactor core power level
- Higher secondary flow rates
- Higher generator output
- Higher heat load on condenser and cooling towers

PLANT MODIFICATIONS

Safety Related Plant Modifications

- Replacement of charging/safety injection pump rotating assemblies
- Conversion from a sub-atmospheric to an atmospheric containment design
 - Installation of fast acting feedwater isolation valves (Unit 1 only)
 - Installation of auxiliary feedwater cavitating venturies (Unit 1 only)
 - Addition of reactor cavity drainage port
 - Elimination of Quench Spray Cutback (Unit 1 only)
- Replacement of Steam Generators (Unit 1 only)

PLANT MODIFICATIONS (Continued)

Unit 1 Replacement Steam Generators Changes

- Expanded narrow range level span
- New tube material no alternate repair criteria (thermally treated Alloy 690)
- Reduced moisture carry-over (less than 0.1%)
- Steam outlet nozzle venturi (limits break flow and internal loads)
- Increased primary side volume/mass
- Decreased secondary side volume/mass
- Reduction in accumulated outage dose

PLANT MODIFICATIONS (Continued)

Balance of Plant Modifications

- Replace high pressure turbine with all-reaction design
- Increase capacity of main transformer coolers (Unit 2 only)
- Install stakes in main condenser (Unit 2 only)
- Modify cooling tower fill (Unit 2 only)
- Raise set-pressure of moisture separator reheater relief valves
- Increase Cv of main feedwater control valves
- Increase flow capacity of some heater drain control valves
- Remove orifices to increase flow to generator hydrogen coolers (Unit 2 only)
- Instrument replacements for higher flow range

STAGED POWER INCREASE

Overview

- Power uprate (increase above currently licensed power) will be limited by balance of plant (BOP). As BOP modifications are completed, power level will be increased
- Operating Power Level
 - Limited by License and Technical Specification
 - Controlled by Licensing Requirements Manual (LRM) within limit

POWER LEVEL LIMITS

Staged Power Increase

- <u>License:</u> 2900 MWt
- <u>Technical Specification</u>

1.3 RATED THERMAL POWER shall be a total reactor core heat transfer rate to the reactor coolant as specified in the Licensing Requirements Manual, and shall not exceed 2900 MWt

→ All safety related plant modifications will be completed prior to amendment implementation

Licensing Requirements Manual

1.0.1.a <u>RATED THERMAL POWER</u> - The value of RATED THERMAL POWER, as per Technical Specification Definition 1.3, is 2689 MWt

Extended Power Uprate (EPU)

Questions?

Beaver Valley Power Station Units 1&2

12-15-04 Slide 20

SUBMITTAL STRUCTURE

FENOC Letter No. L-04-125, Dated 10/4/04

- Enclosure 1
 - Description, Background and Technical Analysis
 - No Significant Hazards Analysis
 - Environmental Consideration
 - Technical Specification, Bases and Licensing Requirements
 Manual (LRM) Markups
 - Commitments

12-15-04 Slide 21

- Enclosure 2 EPU Licensing Report
 - * Section 1 Introduction
 - * Section 2 NSSS Analysis
 - * Section 3 NSSS Systems
 - * Section 4 NSSS Components
 - * Section 5 Safety Analyses
 - * Section 6 Fuel Analysis
 - * Section 7 Containment Analysis

- Enclosure 2 (Continued)
 - * Section 8 BOP Analyses
 - * Section 9 Plant Systems
 - * Section 10 Generic Programs
 - * Section 11 Environmental
 - * Section 12 Financial Assurance
 - * Section 13 Testing

- Enclosure 3
 - Cross References RS-001 Template SER Section to EPU Licensing Report Section
 - BVPS Commitment Summary to SRPs Referenced in RS-001
- Enclosure 4
 - WCAP-16307-P EPU Licensing Report Proprietary Information

- Enclosure 5
 - WCAP-13483-P (Rev. 2) Series 51 Steam Generator Sleeving Report - Laser Welded Sleeves (Unit 2 only)
- Enclosure 6
 - Proprietary Information Affidavits

SUBMITTAL COMPLETENESS

- Licensing Report (Enclosure 2)
 - Information is organized based on previous precedent for power uprate licensing reports, reflecting a thorough plant evaluation
 - Report was initially written before RS-001 (draft) was available
- RS-001 was reviewed for "topics" to address
 - Licensing Report was revised to include any topics addressed in RS-001 that were not already addressed
 - Licensing Report sections were cross-referenced to RS-001 sections (Enclosure 3)

SUBMITTAL COMPLETENESS (Continued)

- NRC RAIs for other power uprates were reviewed and information included so that appropriate information is being presented
- Due to uniqueness/plant specific nature of RAI issues for each plant, all details requested in RAIs may not be included

NRC REVIEWER AID

- Enclosure 3 (of submittal)
 - RS-001 review matrices are cross-referenced to Licensing Report sections
 - Lists compliance to each SRP and RG referenced in RS-001
- Reviewer Aid CD
 - UFSAR for both units
 - Original SER for both units
- UFSAR cross-reference file
 - RS-001 topics are cross-referenced to UFSAR sections

DESCRIPTION OF CHANGE

Types of Technical Specification changes:

- Extended Power Uprate (EPU) changes
- Non-EPU changes
- Administrative changes

Beaver Valley Power Station Units 1&2

12-15-04 Slide 29

- 1. Increasing the Maximum Power Level specified in each units' license
- 2. Revising the value of Rated Thermal Power (RTP)
- 3. Adding RTP definition to License Requirements Manual (LRM)
- 4. Revising fuel assembly specific Departure from Nucleate Boiling Ratios (DNBR) and correlations

- 5. Raising the maximum temperature of the refueling water storage tank
- 6. Modifying Overtemperature ΔT and Overpower ΔT equations (Unit 1 only)
- 7. Revising the Steam Generator water level low-low and high-high trip setpoints (Unit 1 only)

- Revising the required Steam Generator secondary side level in Modes 4 and 5 (Unit 1 only)
- Relaxing the positive tolerance setting for the pressurizer safety values
- Revising the Steam Generator Technical Specification (low-low level) to reflect the replacement Steam Generators (Unit 1 only)

- Revising the Steam Generator Technical Specification tube sleeve reference and TIG welded Steam Generator sleeve repair limit (Remove for Unit 1, Revise for Unit 2 only)
- Revising the specific activity of the primary coolant system (Unit 1 only)
- Increasing the operating band for accumulator water volume and nitrogen pressure

- Revising the required charging pump discharge pressure for reactor coolant pump seal injection flow
- Relaxing the positive tolerance setting for the main steam safety valves (all but the lowest MSSV)
- Changing the allowable power limits associated with inoperable main steam safety valves

- 9. Revising the primary plant demineralized water storage tank volume requirement
- 10. Revising the specific activity of the secondary coolant system (Unit 1 only)
- 11. Adding WCAP-14565, VIPRE, and WCAP 15025, WRB-2M, to Technical Specification 6.9.5
- 12. Full implementation of Alternative Source Terms

Not directly EPU related include:

- 1. Deleting the Power Range, Neutron Flux High Negative Rate trip
- Adding a footnote to Table 3.3-3, Engineered Safety Features Actuation System Instrumentation, concerning time constants for steamline pressure low (Unit 1 only)

DESCRIPTION OF CHANGE (Continued)

Not directly EPU related include:

- Removing the Boron Injection Tank boron concentration Technical Specification (Unit 1 only)
- Renaming of Boron Injection Tank flow path Technical Specification (Unit 1 only)

DESCRIPTION OF CHANGE (Continued)

Administrative changes include:

- 1. Removing the amendment number from the operating license for each unit
- 2. Correcting an inconsistency regarding a referenced permissive, P-9 instead of P-7 (Unit 1 only)

SUPPORTING DOCUMENTATION

• EPU Changes

-Licensing Report (Enclosure 2) and WCAP-16307-P, "Beaver Valley Units 1 and 2 Extended Power Uprate Licensing Report Supplemental Information," September 2004 (Enclosure 4)

• Unit 2 Steam Generator Repair

--WCAP-13483-P Revision 2, "Beaver Valley Units 1 and 2 Series 51 Steam Generator Sleeving Report - Laser Welded Sleeves," October 2002 (Enclosure 3)

SUPPORTING DOCUMENTATION (Continued)

- Deletion of Negative Rate Trip
 - WCAP-11394-P-A, "Methodology for the Analysis of the Dropped Rod Event," January 1990
- Use of VIPRE
 - WCAP-14565-P-A, "VIPRE-01 Modeling and Qualification for Pressurized Water Reactor Non-LOCA Thermal-Hydraulic Safety Analysis," October 1999
- Use of WRB-2M
 - WCAP-15025-P-A, "Modified WRB-2 Correlation, WRB-2M, for Predicting Critical Heat Flux in 17x17 Rod Bundles with Modified LPD Mixing Vane Grids, April 1999

BENEFICIAL IMPACT

- Uniform and updated safety analyses
- Increased operating bands
 - Reactor Coolant System T-avg.
 - Feedwater Temperature
 - RWST temperature
 - Accumulator volume and pressure
- Increased operating margin
 - Increased positive tolerance for pressurizer and main steam safety valves

12-15-04 Slide 41

BENEFICIAL IMPACT (Continued)

- Removal of an unnecessary trip
 - Power Range, Neutron Flux High Negative Rate Trip
- Removal of a Technical Specification (Unit 1 only)
 - − 3.5.4.1.1, "Boron Injection Tank \geq 350°F"
- Increased consistency between the units' Technical Specifications

Extended Power Uprate (EPU)

Questions?

Beaver Valley Power Station Units 1&2

12-15-04 Slide 43

CONTAINMENT METAL MASS

- Issue
 - During data development for the containment analyses, different values for heat sink metal mass and surface area were derived than were used in the analysis of record for the units.
- Status relative to EPU
 - Review has confirmed that the new data is more detailed and correct.
 - Design Analyses have been revised and an annual 50.46 report submitted.

TESTING

- Post-mod functional and operational testing
- Power ascension testing
 - Sequence procedure used for control and coordination
 - Data taken at 95% and 100% of current power level
 - Data taken at 2.5% increases above current power
 - Senior management review all anomalies
 - Test reports within 6-months

TESTING (Continued)

Testing under staged implementation

- Testing program will be used when ascending in power beyond previous power level
- Testing will be performed for incremental power increases, as outlined in test plan.
- Final test report will include all testing

SCHEDULE

- EPU submittal dependency
 - EPU relies on containment analysis methodology and mods submitted in Containment Conversion LAR
 - EPU relies on large break LOCA methodology included in BELOCA LAR
- Required Amendment issuance sequence
 - Containment Conversion
 - BELOCA
 - EPU

SCHEDULE (Continued)

- Amendment implementation
 - Due to the interdependencies, FENOC intends to implement all 3 amendments during 2006 outages, including Unit 1 Replacement Steam Generators
 - Unit 1 1R17 (first quarter 2006)
 - Unit 2 2R12 (fourth quarter 2006)
- Technical Specification changes for Unit 1 SG replacement are included in EPU LAR
- Request issuance of amendments
 - Containment Conversion by June 2005
 - BELOCA & EPU by November 2005

SUMMARY

- Complete and detailed EPU submittal
- Includes Unit 1 Replacement Steam Generator scheduled for 2006
- FENOC staff is available to support NRC's timely and thorough review of the EPU submittal

Extended Power Uprate (EPU)

Questions?

Break-out Sessions

Beaver Valley Power Station Units 1&2

12-15-04 Slide 50