2.0 APPROVED CONTENTS

2.1 Fuel Specifications and Loading Conditions

2.1.1 Fuel To Be Stored In The HI-STORM 100 SFSC System

- a. INTACT FUEL ASSEMBLIES, DAMAGED FUEL ASSEMBLIES, FUEL DEBRIS, and NON-FUEL HARDWARE meeting the limits specified in Table 2.1-1 and other referenced tables may be stored in the HI-STORM 100 SFSC System.
- b. For MPCs partially loaded with stainless steel clad fuel assemblies, all remaining fuel assemblies in the MPC shall meet the decay heat generation limit for the stainless steel clad fuel assemblies.
- c. For MPCs partially loaded with DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS, all remaining ZR clad INTACT FUEL ASSEMBLIES in the MPC shall meet the decay heat generation limits for the DAMAGED FUEL ASSEMBLIES. This requirement applies only to uniform fuel loading.
- c. For MPCs partially loaded with array/class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A fuel assemblies, all remaining ZR clad INTACT FUEL ASSEMBLIES in the MPC shall meet the decay heat generation limits for the 6x6A, 6x6B, 6x6C, 7x7A and 8x8A fuel assemblies.
- d. All BWR fuel assemblies may be stored with or without ZR channels with the exception of array/class 10x10D and 10x10E fuel assemblies, which may be stored with or without ZR or stainless steel channels.

2.1.2 Uniform Fuel Loading

Any authorized fuel assembly may be stored in any fuel storage location, subject to other restrictions related to DAMAGED FUEL, FUEL DEBRIS, and NON-FUEL HARDWARE specified in the CoC.

(continued)

2.0 Approved Contents

2.1 Fuel Specifications and Loading Conditions (cont'd)

2.1.3 Regionalized Fuel Loading

Users may choose to store fuel using regionalized loading in lieu of uniform loading to allow higher heat emitting fuel assemblies to be stored than would otherwise be able to be stored using uniform loading. Regionalized loading is limited to those fuel assemblies with ZR cladding. Figures 2.1-1 through 2.1-4 define the regions for the MPC-24, MPC-24E, MPC-24EF, MPC-32, MPC-32F, MPC-68, and MPC-68FF models, respectively¹. Fuel assembly burnup, decay heat, and cooling time limits for regionalized loading are specified in Section 2.4.2. Fuel assemblies used in regionalized loading shall meet all other applicable limits specified in Tables 2.1-1 through 2.1-3.

2.2 Violations

If any Fuel Specifications or Loading Conditions of 2.1 are violated, the following actions shall be completed:

- 2.2.1 The affected fuel assemblies shall be placed in a safe condition.
- 2.2.2 Within 24 hours, notify the NRC Operations Center.
- 2.2.3 Within 30 days, submit a special report which describes the cause of the violation, and actions taken to restore compliance and prevent recurrence.

¹ These figures are only intended to distinguish the fuel loading regions. Other details of the basket design are illustrative and may not reflect the actual basket design details. The design drawings should be consulted for basket design details.

Figure 2.1-1 Fuel Loading Regions - MPC-24

Figure 2.1-2 Fuel Loading Regions - MPC-24E/24EF

Figure 2.1-3 Fuel Loading Regions - MPC-32/32F

Figure 2.1-4 Fuel Loading Regions - MPC-68/68FF

Table 2.1-1 (page 1 of 39) Fuel Assembly Limits

I. MPC MODEL: MPC-24

- A. Allowable Contents
 - 1. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a. (Cladding Type:	ZR or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class.	
b.	Initial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.	
C. ;;	Post-irradiation Cooling Time and Average Burnup Per Assembly:		
	i. Array/Classes 14x14D,14x14E, and 15x15G	Cooling time \geq 8 years and an average burnup \leq 40,000 MWD/MTU.	
	ii. All Other Array/Classes	Cooling time and average burnup as specified in Section 2.4.	
	iii. NON-FUEL HARDWARE	As specified in Table 2.1-8.	

Table 2.1-1 (page 2 of 39) Fuel Assembly Limits			
I. MPC MC	DEL: MPC-24 (continued)		
A. Allo	wable Contents (continued)		
d.	Decay Heat Per Fuel Storage Location:		
	i. Array/Classes 14x14D, 14x14E, and 15x15G	<u><</u> 710 Watts	
	ii All Other Array/Classes	As specified in Section 2.4.	I
e.	Fuel Assembly Length:	176.8 inches (nominal design)	
f.	Fuel Assembly Width:	< 8.54 inches (nominal design)	
g.	Fuel Assembly Weight:	≤ 1,680 lbs (including NON-FUEL HARDWARE)	

B. Quantity per MPC: Up to 24 fuel assemblies.

- C. Deleted.
- D. Neutron sources and DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS are not authorized for loading into the MPC-24.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, or vibration suppressor inserts may be stored in any fuel storage location. Fuel assemblies containing CRAs, RCCAs, CEAs, or APSRs may only be and/or 16. These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

II. MPC MODEL: MPC-68

- A. Allowable Contents
 - 1. Uranium oxide, BWR INTACT FUEL ASSEMBLIES listed in Table 2.1-3, with or without channels, and meeting the following specifications:

a. Cladding Type:		ding Type:	ZR or Stainless Steel (SS) as specified in Table 2.1-3 for the applicable fuel assembly array/class.
b.	Ma INI	aximum PLANAR-AVERAGE TIAL ENRICHMENT:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
c. Initial Maximum Rod Enrichment:		al Maximum Rod ichment:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
d.	Po Av	st-irradiation Cooling Time and erage Burnup Per Assembly:	
	i.	Array/Classes 6x6A, 6x6C, 7x7A, and 8x8A:	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU
	ii.	Array/Class 8x8F	Cooling time \geq 10 years and an average burnup \leq 27,500 MWD/MTU.
	iii.	Array/Classes 10x10D and 10x10E	Cooling time \geq 10 years and an average burnup \leq 22,500 MWD/MTU.
	iv.	All Other Array/Classes	As specified in Section 2.4.

Table 2.1-1	(page 4 of 39)
Fuel Asse	embly Limits

II. MPC MODEL: MPC-68 (continued)

A. Allowable Contents (continued)

e. Decay Heat Per Assembly:

	i.	Array/Classes 6x6A, 6x6C, 7x7A, and 8x8A	<u><</u> 115 Watts
	ii.	Array/Class 8x8F	<u><</u> 183.5 Watts.
	iii.	Array/Classes 10x10D and 10x10E	<u><</u> 95 Watts
	iv.	All Other Array/Classes	As specified in Section 2.4.
f.	Fue	el Assembly Length:	176.5 inches (nominal design)
g.	Fue	el Assembly Width:	<u><</u> 5.85 inches (nominal design)
h.	Fue	el Assembly Weight:	< 700 lbs, including channels

Table 2.1-1 (page 5 of 39) Fuel Assembly Limits

II. MPC MODEL: MPC-68 (continued)

A. Allowable Contents (continued)

2. Uranium oxide, BWR DAMAGED FUEL ASSEMBLIES, with or without channels, placed in DAMAGED FUEL CONTAINERS. Uranium oxide BWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 and meet the following specifications:

a. Cladding Type:	ZR or Stainless Steel (SS) as specified in Table 2.1-3 for the applicable fuel assembly array/class.
a. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	
 Array/Classes 6x6A, 6x6C, 7x7A, and 8x8A 	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
iv. All Other Array/Classes specified in Table 2.1-3	4.0 wt% ²³⁵ U
c. Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
 Post-irradiation Cooling Time and Average Burnup Per Assembly: 	
i. Array/Classes 6x6A, 6x6C, 7x7A,and 8x8A	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU.
ii. Array/Class 8x8F	Cooling time \geq 10 years and an average burnup \leq 27,500 MWD/MTU.
iii. Array/Classes 10x10D and 10x10E	Cooling time \geq 10 years and an average burnup \leq 22,500 MWD/MTU.
iv. All Other Array Classes	As specified in Section 2.4.

Table 2.1-1	(page 6 of 39)
Fuel Asse	embly Limits

II. MPC MOE	DEL: MPC-68 (continued)	
A. Allowa	able Contents (continued)	
e. Deca	ay Heat Per Assembly:	
i.	Array/Class 6x6A, 6x6C, 7x7A, and 8x8A	<u><</u> 115 Watts
ii.	Array/Class 8x8F	<u><</u> 183.5 Watts
iii.	Array/Classes 10x10D and 10x10E	<u><</u> 95 Watts
iv.	All Other Array/Classes	As specified in Section 2.4.
f. Fuel	Assembly Length:	
i.	Array/Class 6x6A, 6x6C, 7x7A, or 8x8A	< 135.0 inches (nominal design)
ii.	All Other Array/Classes	< 176.5 inches (nominal design)
g. Fuel	Assembly Width:	
i.	Array/Class 6x6A, 6x6C, 7x7A, or 8x8A	4.70 inches (nominal design)
ii.	All Other Array/Classes	≤ 5.85 inches (nominal design)
h. Fuel	Assembly Weight:	
i.	Array/Class 6x6A, 6x6C, 7x7A, or 8x8A	\leq 550 lbs, including channels and DFC
ii.	All Other Array/Classes	\leq 700 lbs, including channels and DFC

Table 2.1-1 (page 7 of 39) Fuel Assembly Limits

II. MPC MODEL: MPC-68 (continued)

A. Allowable Contents (continued)

3. Mixed oxide (MOX), BWR INTACT FUEL ASSEMBLIES, with or without channels. MOX BWR INTACT FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6B, and meet the following specifications:

a. Cladding Type:	ZR
b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for fuel assembly array/class 6x6B.
c. Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for fuel assembly array/class 6x6B.
 Post-irradiation Cooling Time and Average Burnup Per Assembly: 	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTIHM.
e. Decay Heat Per Assembly:	<u><</u> 115 Watts
f. Fuel Assembly Length:	< 135.0 inches (nominal design)
g. Fuel Assembly Width:	4.70 inches (nominal design)
h. Fuel Assembly Weight:	< 400 lbs, including channels

Table 2.1-1 (page 8 of 39) Fuel Assembly Limits

II. MPC MODEL: MPC-68 (continued)

A. Allowable Contents (continued)

4. Mixed oxide (MOX), BWR DAMAGED FUEL ASSEMBLIES, with or without channels, placed in DAMAGED FUEL CONTAINERS. MOX BWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6B, and meet the following specifications:

a. Cladding Type:	ZR
b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for array/class 6x6B.
c. Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for array/class 6x6B.
 Post-irradiation Cooling Time and Average Burnup Per Assembly: 	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTIHM.
e. Decay Heat Per Assembly:	<u><</u> 115 Watts
f. Fuel Assembly Length:	< 135.0 inches (nominal design)
g. Fuel Assembly Width:	4.70 inches (nominal design)
h. Fuel Assembly Weight:	< 550 lbs, including channels and DFC

II. MPC MODEL: MPC-68 (continued)

A. Allowable Contents (continued)

5. Thoria rods $(ThO_2 \text{ and } UO_2)$ placed in Dresden Unit 1 Thoria Rod Canisters and meeting the following specifications:

a.	Cladding Type:	ZR
b.	Composition:	98.2 wt.% ThO ₂ , 1.8 wt. % UO ₂ with an enrichment of 93.5 wt. % 235 U.
C.	Number of Rods Per Thoria Rod Canister:	<u><</u> 18
d.	Decay Heat Per Thoria Rod Canister:	<u><</u> 115 Watts
e.	Post-irradiation Fuel Cooling Time and Average Burnup Per Thoria Rod Canister:	A fuel post-irradiation cooling time \geq 18 years and an average burnup \leq 16,000 MWD/MTIHM.
f.	Initial Heavy Metal Weight:	≤ 27 kg/canister
g	. Fuel Cladding O.D.:	<u>></u> 0.412 inches
h.	. Fuel Cladding I.D.:	<u><</u> 0.362 inches
i.	Fuel Pellet O.D.:	<u><</u> 0.358 inches
j.	Active Fuel Length:	<u><</u> 111 inches
k.	Canister Weight:	\leq 550 lbs, including fuel

Table 2.1-1 (page 10 of 39) Fuel Assembly Limits

II. MPC MODEL: MPC-68 (continued)

- B. Quantity per MPC:
 - 1. Up to one (1) Dresden Unit 1 Thoria Rod Canister;
 - 2. Up to 68 array/class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A DAMAGED FUEL ASSEMBLIES in DAMAGED FUEL CONTAINERS;
 - 3. Up to sixteen (16) other BWR DAMAGED FUEL ASSEMBLIES in DAMAGED FUEL CONTAINERS in fuel storage locations 1, 2, 3, 8, 9, 16, 25, 34, 35, 44, 53, 60, 61, 66, 67, and/or 68; and/or
 - 4. Any number of BWR INTACT FUEL ASSEMBLIES up to a total of 68.
- C. Array/Class 10x10D and 10x10E fuel assemblies in stainless steel channels must be stored in fuel storage locations 19 22, 28 31, 38 -41, and/or 47 50.
- D. Dresden Unit 1 fuel assemblies with one Antimony-Beryllium neutron source are authorized for loading in the MPC-68. The Antimony-Beryllium source material shall be in a water rod location.
- E. FUEL DEBRIS is not authorized for loading in the MPC-68.

Table 2.1-1 (page 11 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F

- A. Allowable Contents
- 1. Uranium oxide, BWR INTACT FUEL ASSEMBLIES, with or without ZR | channels. Uranium oxide BWR INTACT FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array class 6x6A, 6x6C, 7x7A or 8x8A, and meet the following specifications:

a. Cladding Type:	ZR
b Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
c. Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
d. Post-irradiation Cooling Time and Average Burnup Per Assembly:	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU.
e. Decay Heat Per Assembly	<u><</u> 115 Watts
f. Fuel Assembly Length:	<u> 135.0 inches (nominal design) </u>
g. Fuel Assembly Width:	4.70 inches (nominal design)
h. Fuel Assembly Weight:	400 lbs, including channels

Table 2.1-1 (page 12 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

2. Uranium oxide, BWR DAMAGED FUEL ASSEMBLIES, with or without ZR channels, placed in DAMAGED FUEL CONTAINERS. Uranium oxide BWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6A, 6x6C, 7x7A, or 8x8A, and meet the following specifications:

a. Cladding Type:	ZR
b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
c. Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
d. Post-irradiation Cooling Time and Average Burnup Per Assembly:	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU.
e. Decay Heat Per Assembly:	<u><</u> 115 Watts
f. Fuel Assembly Length:	<u> 135.0 inches (nominal design) </u>
g. Fuel Assembly Width:	4.70 inches (nominal design)
h. Fuel Assembly Weight:	\leq 550 lbs, including channels and DFC

Table 2.1-1 (page 13 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

3. Uranium oxide, BWR FUEL DEBRIS, with or without ZR channels, placed in DAMAGED FUEL CONTAINERS. The original fuel assemblies for the uranium oxide BWR FUEL DEBRIS shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6A, 6x6C, 7x7A, or 8x8A, and meet the following specifications:

a. Cladding Type:	ZR	
b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for the applicable original fuel assembly array/class.	
c Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for the applicable original fuel assembly array/class.	
d. Post-irradiation Cooling Time and Average Burnup Per Assembly	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU for the original fuel assembly.	
e. Decay Heat Per Assembly	<u><</u> 115 Watts	
f. Original Fuel Assembly Length	<u> 135.0 inches (nominal design) </u>	
g. Original Fuel Assembly Width	4.70 inches (nominal design)	
h. Fuel Debris Weight	\leq 550 lbs, including channels and DFC	

Table 2.1-1 (page 14 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

a Cladding Type.

4. Mixed oxide (MOX), BWR INTACT FUEL ASSEMBLIES, with or without ZR channels. MOX BWR INTACT FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6B, and meet the following specifications:

7R

a.	Maximum PLANAR- AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for fuel assembly array/class 6x6B.
b.	Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for fuel assembly array/class 6x6B.
d.	Post-irradiation Cooling Time and Average Burnup Per Assembly:	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTIHM.
e. [Decay Heat Per Assembly	<u><</u> 115 Watts
f. Fu	uel Assembly Length:	< 135.0 inches (nominal design)
g. F	uel Assembly Width:	4.70 inches (nominal design)
h. F	uel Assembly Weight:	400 lbs, including channels

Table 2.1-1 (page 15 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

5. Mixed oxide (MOX), BWR DAMAGED FUEL ASSEMBLIES, with or without ZR channels, placed in DAMAGED FUEL CONTAINERS. MOX BWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6B, and meet the following specifications:

a. C	ladding Type:	ZR
a.	Maximum PLANAR- AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for fuel assembly array/class 6x6B.
C.	Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for fuel assembly array/class 6x6B.
d. P a A	ost-irradiation Cooling Time nd Average Burnup Per ssembly:	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTIHM.
e. D	Decay Heat Per Assembly	<u><</u> 115 Watts
f. Fu	el Assembly Length:	< 135.0 inches (nominal design)
g. F	uel Assembly Width:	4.70 inches (nominal design)
h. F	uel Assembly Weight:	\leq 550 lbs, including channels and DFC

Table 2.1-1 (page 16 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

6. Mixed Oxide (MOX), BWR FUEL DEBRIS, with or without ZR channels, placed in DAMAGED FUEL CONTAINERS. The original fuel assemblies for the MOX BWR FUEL DEBRIS shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6B, and meet the following specifications:

a. Cladding Type:	ZR
b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for original fuel assembly array/class 6x6B.
c. Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for original fuel assembly array/class 6x6B.
 Post-irradiation Cooling Time and Average Burnup Per Assembly: 	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTIHM for the original fuel assembly.
e. Decay Heat Per Assembly	<u><</u> 115 Watts
f. Original Fuel Assembly Length:	<u> 135.0 inches (nominal design) </u>
g. Original Fuel Assembly Width:	4.70 inches (nominal design)
h. Fuel Debris Weight:	\leq 550 lbs, including channels and DFC

Table 2.1-1 (page 17 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

7. Thoria rods (ThO₂ and UO₂) placed in Dresden Unit 1 Thoria Rod Canisters and meeting the following specifications:

a.	Cladding Type:	ZR
b.	Composition:	98.2 wt.% ThO ₂ , 1.8 wt. % UO ₂ with an enrichment of 93.5 wt. % 235 U.
C.	Number of Rods Per Thoria Rod Canister:	<u><</u> 18
d.	Decay Heat Per Thoria Rod Canister:	<u><</u> 115 Watts
e.	Post-irradiation Fuel Cooling Time and Average Burnup Per Thoria Rod Canister:	A fuel post-irradiation cooling time \geq 18 years and an average burnup \leq 16,000 MWD/MTIHM.
f.	Initial Heavy Metal Weight:	≤ 27 kg/canister
g.	Fuel Cladding O.D.:	≥ 0.412 inches
h.	Fuel Cladding I.D.:	<u><</u> 0.362 inches
i.	Fuel Pellet O.D.:	<u><</u> 0.358 inches
j.	Active Fuel Length:	<u><</u> 111 inches
k	. Canister Weight:	\leq 550 lbs, including fuel

I

Table 2.1-1 (page 18 of 39) Fuel Assembly Limits

- III. MPC MODEL: MPC-68F (continued)
 - B. Quantity per MPC (up to a total of 68 assemblies): (All fuel assemblies must be array/class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A):

Up to four (4) DFCs containing uranium oxide BWR FUEL DEBRIS or MOX BWR FUEL DEBRIS. The remaining MPC-68F fuel storage locations may be filled with fuel assemblies of the following type, as applicable:

- 1. Uranium oxide BWR INTACT FUEL ASSEMBLIES;
- 2. MOX BWR INTACT FUEL ASSEMBLIES;
- 3. Uranium oxide BWR DAMAGED FUEL ASSEMBLIES placed in DFCs;
- 4. MOX BWR DAMAGED FUEL ASSEMBLIES placed in DFCs; or
- 5. Up to one (1) Dresden Unit 1 Thoria Rod Canister.
- C. Fuel assemblies with stainless steel channels are not authorized for loading in the MPC-68F.
- D. Dresden Unit 1 fuel assemblies with one Antimony-Beryllium neutron source are authorized for loading in the MPC-68F. The Antimony-Beryllium source material shall be in a water rod location.

Table 2.1-1 (page 19 of 39) Fuel Assembly Limits

IV. MPC MODEL: MPC-24E

- A. Allowable Contents
 - 1. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a. Cladding Type:	ZR or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class
b. Initial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.
c. Post-irradiation Cooling Time and Average Burnup Per Assembly:	
i. Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 8 years and an average burnup \leq 40,000 MWD/MTU.
ii. All Other Array/Classes	As specified in Section 2.4.
iii. NON-FUEL HARDWARE	As specified in Table 2.1-8.

IV. MPC MODEL: MPC-24E (continued)

A. Allowable Contents (continued)

- d. Decay Heat Per Fuel Storage Location:
 - i. Array/Classes 14x14D, 14x14E, and 15x15G
 - ii. All other Array/Classes As specified in Section 2.4.
- e. Fuel Assembly Length:
- f. Fuel Assembly Width:
- g. Fuel Assembly Weight:

< 710 Watts.</p>

- - < 176.8 inches (nominal design)
- < 8.54 inches (nominal design)</p>
- < 1,680 lbs (including NON-FUEL</p> HARDWARE)

Table 2.1-1 (page 21 of 39) Fuel Assembly Limits

IV. MPC MODEL: MPC-24E (continued)

A. Allowable Contents (continued)

2. Uranium oxide, PWR DAMAGED FUEL ASSEMBLIES, with or without NON-FUEL HARDWARE, placed in DAMAGED FUEL CONTAINERS. Uranium oxide PWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-2 and meet the following specifications (Note 1):

a.	Cla	adding Type:	ZR or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class	
b.	Ini	tial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.	
c.	Po an As	st-irradiation Cooling Time d Average Burnup Per sembly:		
	i.	Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 8 years and an average burnup \leq 40,000 MWD/MTU.	
	ii.	All Other Array/Classes	As specified in Section 2.4.	
	iii.	NON-FUEL HARDWARE	As specified in Table 2.1-8.	

Table 2.1-1 (page 22 of 39) Fuel Assembly Limits		
MPC MC	DDEL: MPC-24E (continued)	
A. Allow	able Contents (continued)	
d.	Decay Heat Per Fuel Storage Location:	
	i. Array/Classes 14x14D, 14x14E, and 15x15G	<u><</u> 710 Watts.
	ii. All Other Array/Classes	As specified in Section 2.4.
e.	Fuel Assembly Length	< 176.8 inches (nominal design)
f.	Fuel Assembly Width	< 8.54 inches (nominal design)
g.	Fuel Assembly Weight	1,680 lbs (including NON-FUEL HARDWARE and DFC)

- A. Quantity per MPC: Up to four (4) DAMAGED FUEL ASSEMBLIES in DAMAGED FUEL CONTAINERS, stored in fuel storage locations 3, 6, 19 and/or 22. The remaining MPC-24E fuel storage locations may be filled with PWR INTACT FUEL ASSEMBLIES meeting the applicable specifications.
- B. Neutron sources and FUEL DEBRIS are not authorized for loading in the MPC-24E.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, or vibration supressor inserts may be stored in any fuel storage location. Fuel assemblies containing CRAs, RCCAs, CEAs, or APSRs may only be loaded in fuel storage locations 9, 10, 15, and/or 16. These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

IV.

Table 2.1-1 (page 23 of 39) Fuel Assembly Limits

V. MPC MODEL: MPC-32

- A. Allowable Contents
 - 1. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a. Cladding Type:	ZR or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class	
b. Initial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.	
 c. Post-irradiation Cooling Time and Average Burnup Per Assembly 		
i. Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 9 years and an average burnup \leq 30,000 MWD/MTU or cooling time \geq 20 years and an average burnup \leq 40,000 MWD/MTU.	
ii. All Other Array/Classes	As specified in Section 2.4.	
iii. NON-FUEL HARDWARE	As specified in Table 2.1-8.	I

Table 2.1-1 (Fuel Asse	page 24 of 39) embly Limits	
V. MPC MODEL: MPC-32 (continued)		
A. Allowable Contents (continued)		
d. Decay Heat Per Fuel Storage Location:		
i. Array/Classes 14x14D, 14x14E, and 15x15G	< 500 Watts As approximation 2.4	
ii. All Other Array/Classes	As specified in Section 2.4.	l
e. Fuel Assembly Length	< 176.8 inches (nominal design)	
f. Fuel Assembly Width	< 8.54 inches (nominal design)	
g. Fuel Assembly Weight	≤ 1,680 lbs (including NON-FUEL HARDWARE)	

Table 2.1-1 (page 25 of 39) Fuel Assembly Limits

V. MPC MODEL: MPC-32 (continued)

A. Allowable Contents (continued)

2. Uranium oxide, PWR DAMAGED FUEL ASSEMBLIES, with or without NON-FUEL HARDWARE, placed in DAMAGED FUEL CONTAINERS. Uranium oxide PWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-2 and meet the following specifications (Note 1):

a. Cladding Type:	ZR or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class
b. Initial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.
 Post-irradiation Cooling Time and Average Burnup Per Assembly: 	
i. Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 9 years and an average burnup \leq 30,000 MWD/MTU or cooling time \geq 20 years and an average burnup \leq 40,000 MWD/MTU.
ii. All Other Array/Classes	As specified in Section 2.4.
iii. NON-FUEL HARDWARE	As specified in Table 2.1-8.

Table 2.1-1 (page 26 of 39) Fuel Assembly Limits				
V. MPC MODEL: MPC-32 (continued)				
A. Allowable Contents (continued)				
d. Decay Heat Per Fuel Storage Location:				
i. Array/Classes 14x14D, 14x14E, and 15x15G	<u><</u> 500 Watts .			
ii. All Other Array/Classes	As specified in Section 2.4.			
e. Fuel Assembly Length	< 176.8 inches (nominal design)	I		
f. Fuel Assembly Width	<u><</u> 8.54 inches (nominal design)	I		
g. Fuel Assembly Weight	< 1,680 lbs (including NON-FUEL HARDWARE and DFC)			

- A. Quantity per MPC: Up to eight (8) DAMAGED FUEL ASSEMBLIES in DAMAGED FUEL CONTAINERS, stored in fuel storage locations 1, 4, 5, 10, 23, 28, 29, and/or 32. The remaining MPC-32 fuel storage locations may be filled with PWR INTACT FUEL ASSEMBLIES meeting the applicable specifications.
- B. Neutron sources and FUEL DEBRIS are not authorized for loading in the MPC-32.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, or vibration suppressor inserts may be stored in any fuel storage location. Fuel assemblies containing CRAs, RCCAs, CEAs, or APSRs may only be loaded in fuel storage locations 13, 14, 19, and/or 20. These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

Table 2.1-1 (page 27 of 39) Fuel Assembly Limits

VI. MPC MODEL: MPC-68FF

A. Allowable Contents

1. Uranium oxide or MOX BWR INTACT FUEL ASSEMBLIES listed in Table 2.1-3, with or without channels and meeting the following specifications:

a.	Cladding Type:	ZR or Stainless Steel (SS) as specified in Table 2.1-3 for the applicable fuel assembly array/class
b.	Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
C.	Initial Maximum Rod Enrichment	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
b.	Post-irradiation Cooling Time and Average Burnup Per Assembly	
	i. Array/Classes 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU (or MTU/MTIHM).
	ii. Array/Class 8x8F	Cooling time \geq 10 years and an average burnup \leq 27,500 MWD/MTU.
	iii. Array/Classes 10x10D and 10x10E	Cooling time \geq 10 years and an average burnup \leq 22,500 MWD/MTU.
	iv. All Other Array/Classes	As specified in Section 2.4.

I

Table 2.1-1 (page 28 of 3	9)
Fuel Assembly Limits	

VI. MPC MODEL: MPC-68FF (continued) A. Allowable Contents (continued) e. Decay Heat Per Assembly i. Array/Classes 6x6A, 6X6b, < 115 Watts</p> 6x6C, 7x7A, and 8x8A ii. Array/Class 8x8F < 183.5 Watts</p> iii. Array/Classes 10x10D and < 95 Watts 10x10E iv. All Other Array/Classes As specified in Section 2.4. f. Fuel Assembly Length i. Array/Class 6x6A, 6x6B, < 135.0 inches (nominal design) 6x6C, 7x7A, or 8x8A < 176.5 inches (nominal design)</p> ii. All Other Array/Classes g. Fuel Assembly Width i. Array/Class 6x6A, 6x6B, 6x6C, \leq 4.70 inches (nominal design) 7x7A, or 8x8A < 5.85 inches (nominal design) ii. All Other Array/Classes h. Fuel Assembly Weight i. Array/Class 6x6A, 6x6B, 6x6C, < 550 lbs, including channels 7x7A, or 8x8A ii. All Other Array/Classes < 700 lbs, including channels

Table 2.1-1 (page 29 of 39) Fuel Assembly Limits

VI. MPC MODEL: MPC-68FF (continued)

A. Allowable Contents (continued)

2. Uranium oxide or MOX BWR DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS, with or without channels, placed in DAMAGED FUEL CONTAINERS. Uranium oxide and MOX BWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS shall meet the criteria specified in Table 2.1-3, and meet the following specifications:

a. Cladding Type:		ј Туре:	ZR or Stainless Steel (SS) in accordance with Table 2.1-3 for the applicable fuel assembly array/class.	
b.	Maximu INITIAL	IM PLANAR-AVERAGE ENRICHMENT:		
	i. Array 6x60	//Classes 6x6A, 6x6B, C, 7x7A, and 8x8A.	As specified in Table 2.1-3 for the applicable fuel assembly array/class.	
	ii. All Ot	ther Array Classes	\leq 4.0 wt.% ²³⁵ U.	
C.	Initial M	aximum Rod Enrichment	As specified in Table 2.1-3 for the applicable fuel assembly array/class.	
d. Post-irradiation Cooling Time and Average Burnup Per Assembly:				
	i.	Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU (or MWD/MTIHM).	
	ii.	Array/Class 8x8F	Cooling time \geq 10 years and an average burnup \leq 27,500 MWD/MTU.	
	iii.	Array/Class 10x10D and 10x10E	Cooling time \geq 10 years and an average burnup \leq 22,500 MWD/MTU.	
	iv.	All Other Array/Classes	As specified in Section 2.4.	

Table 2.1-1 (page 30 of 39) Fuel Assembly Limits

VI. MPC MODEL: MPC-68FF (continued)

A. Allowable Contents (continued)

e. Decay Heat Per Assembly

	i.	Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A	<u><</u> 115 Watts
	ii.	Array/Class 8x8F	<u><</u> 183.5 Watts
	iii.	Array/Classes 10x10D and 10x10E	<u><</u> 95 Watts
	iv.	All Other Array/Classes	As specified in Section 2.4.
f. Fuel Assembly Length			
	i.	Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A	135.0 inches (nominal design)
	ii.	All Other Array/Classes	< 176.5 inches (nominal design)
g.	Fuel	Assembly Width	
	i.	Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A	4.70 inches (nominal design)
	ii.	All Other Array/Classes	≤ 5.85 inches (nominal design)
h. Fuel Assembly Weight			
	i.	Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A	\leq 550 lbs, including channels and DFC
	ii.	All Other Array/Classes	< 700 lbs, including channels and DFC
Table 2.1-1 (page 31 of 39) Fuel Assembly limits

VI. MPC MODEL: MPC-68FF (continued)

- B. Quantity per MPC (up to a total of 68 assemblies)
 - For fuel assembly array/classes 6x6A, 6X6B, 6x6C, 7x7A, or 8x8A, up to 68 BWR INTACT FUEL ASSEMBLIES and/or DAMAGED FUEL ASSEMBLIES. Up to eight (8) DFCs containing FUEL DEBRIS from these array/classes may be stored.
 - 2. For all other array/classes, up to sixteen (16) DFCs containing BWR DAMAGED FUEL ASSEMBLIES and/or up to eight (8) DFCs containing FUEL DEBRIS. DFCs shall be located only in fuel storage locations 1, 2, 3, 8, 9, 16, 25, 34, 35, 44, 53, 60, 61, 66, 67, and/or 68. The remaining MPC-68FF fuel storage locations may be filled with fuel assemblies of the following type:
 - i. Uranium Oxide BWR INTACT FUEL ASSEMBLIES; or
 - ii. MOX BWR INTACT FUEL ASSEMBLIES.
- C. Dresden Unit 1 fuel assemblies with one Antimony-Beryllium neutron source are authorized for loading in the MPC-68FF. The Antimony-Beryllium source material shall be in a water rod location.
- D. Array/Class 10x10D and 10x10E fuel assemblies in stainless steel channels must be stored in fuel storage locations 19 22, 28 31, 38 -41, and/or 47 50.

Table 2.1-1 (page 32 of 39) Fuel Assembly Limits

VII. MPC MODEL: MPC-24EF

A. Allowable Contents

1. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a.	Cla	dding Type:	ZR or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class
b.	Init	al Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.
C.	Po Ave	st-irradiation Cooling Time and erage Burnup Per Assembly:	
	i.	Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 8 years and an average burnup \leq 40,000 MWD/MTU.
	ii.	All Other Array/Classes	As specified in Section 2.4.
	iii.	NON-FUEL HARDWARE	As specified in Table 2.1-8.

Table 2.1-1 (page 33 of 39) Fuel Assembly Limits

VII. MPC MODEL: MPC-24EF (continued)

A. Allowable Contents (continued)

- d. Decay Heat Per Fuel Storage Location:
 - i. Array/Classes 14x14D, 14x14E, and 15x15G
 - ii. All other Array/Classes As specified in Section 2.4.
- e. Fuel Assembly Length:
- f. Fuel Assembly Width:
- g. Fuel Assembly Weight:

- < 710 Watts.</p>
- - < 176.8 inches (nominal design)</p>
 - < 8.54 inches (nominal design)</p>
- < 1,680 lbs (including NON-FUEL</p> HARDWARE)

Table 2.1-1 (page 34 of 39) Fuel Assembly Limits

VII. MPC MODEL: MPC-24EF (continued)

A. Allowable Contents (continued)

 Uranium oxide, PWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS, with or without NON-FUEL HARDWARE, placed in DAMAGED FUEL CONTAINERS. Uranium oxide PWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS shall meet the criteria specified in Table 2.1-2 and meet the following specifications (Note 1):

a.	Cla	adding Type:	ZR or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class
b.	Ini	tial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.
C.		Post-irradiation Cooling Time and Average Burnup Per Assembly:	
	i.	Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 8 years and an average burnup \leq 40,000 MWD/MTU.
	ii.	All Other Array/Classes	As specified in Section 2.4.
	iii.	NON-FUEL HARDWARE	As specified in Table 2.1-8.

Table 2.1-1 (page 35 of 39) Fuel Assembly Limits

VII. MPC MODEL: MPC-24EF (continued)

A. Allowable Contents (continued)

d.	Decay Heat Per Fuel Storage Location:	
	i Array/Classes 14x14D	<u><</u> 710 Watts.
	14x14E, and 15x15G	As an arified in Oraction 0.4
	ii. All Other Array/Classes	As specified in Section 2.4.
e.	Fuel Assembly Length	<u> 176.8 inches (nominal design) </u>
f.	Fuel Assembly Width	< 8.54 inches (nominal design)
g.	Fuel Assembly Weight	< 1,680 lbs (including NON-FUEL HARDWARE and DFC)

- B. Quantity per MPC: Up to four (4) DAMAGED FUEL ASSEMBLIES and/or FUEL DEBRIS in DAMAGED FUEL CONTAINERS, stored in fuel storage locations 3, 6, 19 and/or 22. The remaining MPC-24EF fuel storage locations may be filled with PWR INTACT FUEL ASSEMBLIES meeting the applicable specifications.
- C. Neutron sources are not permitted for loading in the MPC-24EF.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, or vibration suppressor inserts may be stored in any fuel storage location. Fuel assemblies containing CRAs, RCCAs, CEAs, or APSRs may only be loaded in fuel storage locations 9, 10, 15, and/or 16. These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

Table 2.1-1 (page 36 of 39) Fuel Assembly Limits

VIII. MPC MODEL: MPC-32F

A. Allowable Contents

2. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a.	Cladding Type:	ZR or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class
b.	Initial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.
C.	Post-irradiation Cooling Time and Average Burnup Per Assembly:	
	i. Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 9 years and an average burnup \leq 30,000 MWD/MTU or cooling time \geq 20 years and an average burnup \leq 40,000 MWD/MTU.
	ii. All Other Array/Classes	As specified in Section 2.4.
	iii. NON-FUEL HARDWARE	As specified in Table 2.1-8.

	Table 2.1-1 (page 37 of 39) Fuel Assembly Limits							
VIII. MPC MODEL: N	/IPC-32F (cont'd)							
A. Allowable C	ontents (cont'd)							
d. Decay l Storage	Heat Per Fuel e Location:							
i. Array 14x1	//Classes 14x14D, 4E, and 15x15G	<u><</u> 500 Watts.						
ii. All C	ther Array/Classes	As specified in Section 2.4.						
e. Fuel As	ssembly Length	< 176.8 inches (nominal design)						
f. Fuel As	ssembly Width	< 8.54 inches (nominal design)						
g. Fuel As	ssembly Weight	<u><</u> 1,680 lbs (including NON-FUEL HARDWARE)						

Table 2.1-1 (page 38 of 39) Fuel Assembly Limits

VIII. MPC MODEL: MPC-32F (cont'd)

- A. Allowable Contents (cont'd)
 - 2. Uranium oxide, PWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS, with or without NON-FUEL HARDWARE, placed in DAMAGED FUEL CONTAINERS. Uranium oxide PWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS shall meet the criteria specified in Table 2.1-2 and meet the following specifications (Note 1):

a. Cladding Type:	ZR or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class		
b. Initial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.		
 Post-irradiation Cooling Time and Average Burnup Per Assembly: 			
i. Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 9 years and an average burnup \leq 30,000 MWD/MTU or cooling time \geq 20 years and an average burnup \leq 40,000 MWD/MTU.		
ii. All Other Array/Classes	As specified in Section 2.4.		
iii. NON-FUEL HARDWARE	As specified in Table 2.1-8.		

	Table 2.1-1 (page 39 of 39) Fuel Assembly Limits							
	Fuel Assen							
VIII. MPC MODE	EL: MPC-32F (cont'd)							
A. Allowab	le Contents (cont'd)							
d. Dec Stor	cay Heat Per Fuel rage Location:							
i. A 1	Array/Classes 14x14D, 4x14E, and 15x15G	<u><</u> 500 Watts.						
ii. A	All Other Array/Classes	As specified in Section 2.3.						
e. Fue	el Assembly Length	<u> 176.8 inches (nominal design) </u>						
f. Fue	el Assembly Width	< 8.54 inches (nominal design)						
g. Fue	el Assembly Weight	\leq 1,680 lbs (including NON-FUEL HARDWARE and DFC)						

- B. Quantity per MPC: Up to eight (8) DAMAGED FUEL ASSEMBLIES and/or FUEL DEBRIS in DAMAGED FUEL CONTAINERS, stored in fuel storage locations 1, 4, 5, 10, 23, 28, 29, and/or 32. The remaining MPC-32F fuel storage locations may be filled with PWR INTACT FUEL ASSEMBLIES meeting the applicable specifications.
- C. Neutron sources are not permitted for loading in the MPC-32F.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement guide tube plugs, orifice rod assemblies, or vibration suppressor inserts may be stored in any fuel storage location. Fuel assemblies containing CRAs, RCCAs, CEAs, or APSRs may only be loaded in fuel storage locations 13, 14, 19 and/or 20. These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

L

Fuel Assembly Array/Class	14x14A	14x14B	14x14C	14x14D	14x14E
Clad Material	ZR	ZR	ZR	SS	SS
Design Initial U (kg/assy.) (Note 3)	<u><</u> 365	<u><</u> 412	<u><</u> 438	<u><</u> 400	<u><</u> 206
Initial Enrichment (MPC-24, 24E and 24EF without soluble boron credit) (wt % ²³⁵ U) (Note 7)	≤ 4.6 (24) ≤ 5.0 (24E/24EF)	≤ 4.6 (24) ≤ 5.0 (24E/24EF)	≤ 4.6 (24) ≤ 5.0 (24E/24EF)	≤ 4.0 (24) ≤ 5.0 (24E/24EF)	≤ 5.0 (24) ≤ 5.0 (24E/24EF)
Initial Enrichment (MPC-24, 24E, 24EF, 32, or 32F with soluble boron credit - see Note 5) (wt % ²³⁵ U)	<u><</u> 5.0				
No. of Fuel Rod Locations	179	179	176	180	173
Fuel Rod Clad O.D. (in.)	<u>></u> 0.400	<u>></u> 0.417	<u>></u> 0.440	<u>></u> 0.422	<u>></u> 0.3415
Fuel Rod Clad I.D. (in.)	<u><</u> 0.3514	<u><</u> 0.3734	<u><</u> 0.3880	<u><</u> 0.3890	<u><</u> 0.3175
Fuel Pellet Dia. (in.)	<u><</u> 0.3444	<u><</u> 0.3659	<u><</u> 0.3805	<u><</u> 0.3835	<u><</u> 0.3130
Fuel Rod Pitch (in.)	<u><</u> 0.556	<u><</u> 0.556	<u><</u> 0.580	<u><</u> 0.556	Note 6
Active Fuel Length (in.)	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u><</u> 144	<u><</u> 102
No. of Guide and/or Instrument Tubes	17	17	5 (Note 4)	16	0
Guide/Instrument Tube Thickness (in.)	<u>></u> 0.017	<u>></u> 0.017	<u>></u> 0.038	<u>></u> 0.0145	N/A

Table 2.1-2 (page 1 of 4) PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

L

L

					•/	
Fuel Assembly Array/Class	15x15A	15x15B	15x15C	15x15D	15x15E	15x15F
Clad Material	ZR	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u><</u> 473	<u><</u> 473	<u><</u> 473	<u><</u> 495	<u><</u> 495	<u><</u> 495
Initial Enrichment (MPC-24, 24E and 24EF without soluble boron credit) (wt % ²³⁵ U) (Note 7)	≤ 4.1 (24) ≤ 4.5 (24E/24EF)					
Initial Enrichment (MPC-24, 24E, 24EF, 32, or 32F with soluble boron credit - see Note 5) (wt % ²³⁵ U)	<u><</u> 5.0					
No. of Fuel Rod Locations	204	204	204	208	208	208
Fuel Rod Clad O.D. (in.)	<u>></u> 0.418	<u>></u> 0.420	<u>></u> 0.417	<u>></u> 0.430	<u>></u> 0.428	<u>></u> 0.428
Fuel Rod Clad I.D. (in.)	<u><</u> 0.3660	<u><</u> 0.3736	<u><</u> 0.3640	<u><</u> 0.3800	<u><</u> 0.3790	<u><</u> 0.3820
Fuel Pellet Dia. (in.)	<u><</u> 0.3580	<u><</u> 0.3671	<u><</u> 0.3570	<u><</u> 0.3735	<u><</u> 0.3707	<u><</u> 0.3742
Fuel Rod Pitch (in.)	<u><</u> 0.550	<u><</u> 0.563	<u><</u> 0.563	<u><</u> 0.568	<u><</u> 0.568	<u><</u> 0.568
Active Fuel Length (in.)	<u><</u> 150					
No. of Guide and/or Instrument Tubes	21	21	21	17	17	17
Guide/Instrument Tube Thickness (in.)	<u>></u> 0.0165	<u>></u> 0.015	<u>></u> 0.0165	<u>></u> 0.0150	<u>></u> 0.0140	<u>></u> 0.0140

Table 2.1-2 (page 2 of 4) PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

L

L

Fuel Assembly Array/ Class	15x15G	15x15H	16x16A	17x17A	17x17B	17x17C
Clad Material	SS	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u><</u> 420	<u><</u> 495	<u><</u> 448	<u><</u> 433	<u><</u> 474	<u><</u> 480
Initial Enrichment (MPC-24, 24E, and 24EF without soluble boron credit) (wt % ²³⁵ U) (Note 7)	≤ 4.0 (24) ≤ 4.5 (24E/24EF)	≤ 3.8 (24) ≤ 4.2 (24E/24EF)	≤ 4.6 (24) ≤ 5.0 (24E/24EF)	≤ 4.0 (24) ≤ 4.4 (24E/24EF)	≤ 4.0 (24) ≤ 4.4 (24E/24EF)	≤ 4.0 (24) ≤ 4.4 (24E/24EF)
Initial Enrichment (MPC-24, 24E, 24EF, 32, or 32F with soluble boron credit - see Note 5) (wt % ²³⁵ U)	<u><</u> 5.0					
No. of Fuel Rod Locations	204	208	236	264	264	264
Fuel Rod Clad O.D. (in.)	<u>></u> 0.422	<u>></u> 0.414	<u>></u> 0.382	<u>></u> 0.360	<u>></u> 0.372	<u>≥</u> 0.377
Fuel Rod Clad I.D. (in.)	<u><</u> 0.3890	<u><</u> 0.3700	<u><</u> 0.3320	<u><</u> 0.3150	<u><</u> 0.3310	<u><</u> 0.3330
Fuel Pellet Dia. (in.)	<u><</u> 0.3825	<u><</u> 0.3622	<u><</u> 0.3255	<u><</u> 0.3088	<u><</u> 0.3232	<u><</u> 0.3252
Fuel Rod Pitch (in.)	<u><</u> 0.563	<u><</u> 0.568	<u><</u> 0.506	<u><</u> 0.496	<u><</u> 0.496	<u><</u> 0.502
Active Fuel Length (in.)	<u><</u> 144	<u><</u> 150				
No. of Guide and/or Instrument Tubes	21	17	5 (Note 4)	25	25	25
Guide/Instrument Tube Thickness (in.)	<u>></u> 0.0145	<u>≥</u> 0.0140	<u>≥</u> 0.0400	<u>></u> 0.016	<u>≥</u> 0.014	<u>≥</u> 0.020

Table 2.1-2 (page 3 of 4) PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Approved Contents 2.0

Table 2.1-2 (page 4 of 4) PWR FUEL ASSEMBLY CHARACTERISTICS

Notes:

- 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.
- 2. Deleted.
- 3. Design initial uranium weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each PWR fuel assembly, the total uranium weight limit specified in this table may be increased up to 2.0 percent for comparison with users' fuel records to account for manufacturer's tolerances.
- 4. Each guide tube replaces four fuel rods.
- 5. Soluble boron concentration per LCO 3.3.1.
- 6. This fuel assembly array/class includes only the Indian Point Unit 1 fuel assembly. This fuel assembly has two pitches in different sectors of the assembly. These pitches are 0.441 inches and 0.453 inches.
- 7. For those MPCs loaded with both INTACT FUEL ASSEMBLIES and DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS, the maximum initial enrichment of the INTACT FUEL ASSEMBLIES, DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS is 4.0 wt.% ²³⁵U.

I

Fuel Assembly Array/Class	6x6A	6x6B	6x6C	7x7A	7x7B	8x8A
Clad Material	ZR	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u><</u> 110	<u><</u> 110	<u><</u> 110	<u><</u> 100	<u><</u> 198	<u><</u> 120
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	<u><</u> 2.7	≤ 2.7 for the UO ₂ rods. See Note 4 for MOX rods	<u><</u> 2.7	<u><</u> 2.7	<u><</u> 4.2	<u><</u> 2.7
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u><</u> 4.0	<u><</u> 4.0	<u><</u> 4.0	<u><</u> 5.5	<u><</u> 5.0	<u><</u> 4.0
No. of Fuel Rod Locations	35 or 36	35 or 36 (up to 9 MOX rods)	36	49	49	63 or 64
Fuel Rod Clad O.D. (in.)	<u>></u> 0.5550	<u>></u> 0.5625	<u>></u> 0.5630	<u>></u> 0.4860	<u>></u> 0.5630	<u>></u> 0.4120
Fuel Rod Clad I.D. (in.)	<u><</u> 0.5105	<u><</u> 0.4945	<u><</u> 0.4990	<u><</u> 0.4204	<u><</u> 0.4990	<u><</u> 0.3620
Fuel Pellet Dia. (in.)	<u><</u> 0.4980	<u><</u> 0.4820	<u><</u> 0.4880	<u><</u> 0.4110	<u><</u> 0.4910	<u><</u> 0.3580
Fuel Rod Pitch (in.)	<u><</u> 0.710	<u><</u> 0.710	<u><</u> 0.740	<u><</u> 0.631	<u><</u> 0.738	<u><</u> 0.523
Active Fuel Length (in.)	<u><</u> 120	<u><</u> 120	<u><</u> 77.5	<u><</u> 80	<u><</u> 150	<u><</u> 120
No. of Water Rods (Note 11)	1 or 0	1 or 0	0	0	0	1 or 0
Water Rod Thickness (in.)	> 0	> 0	N/A	N/A	N/A	<u>></u> 0
Channel Thickness (in.)	<u><</u> 0.060	<u><</u> 0.060	<u><</u> 0.060	<u><</u> 0.060	<u><</u> 0.120	<u><</u> 0.100

Table 2.1-3 (page 1 of 5) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Certificate of Compliance No. 1014 Appendix B

T

Fuel Assembly Array/Class	8x8B	8x8C	8x8D	8x8E	8x8F	9x9A
Clad Material	ZR	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u><</u> 192	<u><</u> 190	<u><</u> 190	< 190	<u><</u> 191	<u><</u> 180
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	<u><</u> 4.2	<u><</u> 4.2	<u><</u> 4.2	<u><</u> 4.2	<u><</u> 4.0	<u><</u> 4.2
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u><</u> 5.0					
No. of Fuel Rod Locations	63 or 64	62	60 or 61	59	64	74/66 (Note 5)
Fuel Rod Clad O.D. (in.)	<u>></u> 0.4840	<u>></u> 0.4830	<u>></u> 0.4830	<u>></u> 0.4930	<u>></u> 0.4576	<u>></u> 0.4400
Fuel Rod Clad I.D. (in.)	<u><</u> 0.4295	<u><</u> 0.4250	<u><</u> 0.4230	<u><</u> 0.4250	<u><</u> 0.3996	<u><</u> 0.3840
Fuel Pellet Dia. (in.)	<u><</u> 0.4195	<u><</u> 0.4160	<u><</u> 0.4140	<u><</u> 0.4160	<u><</u> 0.3913	<u><</u> 0.3760
Fuel Rod Pitch (in.)	<u><</u> 0.642	<u><</u> 0.641	<u><</u> 0.640	<u><</u> 0.640	<u><</u> 0.609	<u><</u> 0.566
Design Active Fuel Length (in.)	<u><</u> 150					
No. of Water Rods (Note 11)	1 or 0	2	1 - 4 (Note 7)	5	N/A (Note 12)	2
Water Rod Thickness (in.)	<u>></u> 0.034	> 0.00	> 0.00	<u>></u> 0.034	<u>></u> 0.0315	> 0.00
Channel Thickness (in.)	<u><</u> 0.120	<u><</u> 0.120	<u><</u> 0.120	<u><</u> 0.100	<u><</u> 0.055	<u><</u> 0.120

Table 2.1-3 (2 of 5) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

I

Fuel Assembly Array/Class	9x9B	9x9C	9x9D	9x9E (Note 13)	9x9F (Note 13)	9x9G
Clad Material	ZR	ZR	ZR	ZR	ZR	ZR
Design Initial U (kg/assy.) (Note 3)	<u><</u> 180	<u><</u> 182	<u><</u> 182	<u><</u> 183	<u><</u> 183	<u><</u> 164
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	<u><</u> 4.2	<u><</u> 4.2	<u><</u> 4.2	<u><</u> 4.0	<u><</u> 4.0	<u><</u> 4.2
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u><</u> 5.0					
No. of Fuel Rod Locations	72	80	79	76	76	72
Fuel Rod Clad O.D. (in.)	<u>></u> 0.4330	<u>></u> 0.4230	<u>></u> 0.4240	<u>></u> 0.4170	<u>></u> 0.4430	<u>></u> 0.4240
Fuel Rod Clad I.D. (in.)	<u><</u> 0.3810	<u><</u> 0.3640	<u><</u> 0.3640	<u><</u> 0.3640	<u><</u> 0.3860	<u><</u> 0.3640
Fuel Pellet Dia. (in.)	<u><</u> 0.3740	<u><</u> 0.3565	<u><</u> 0.3565	<u><</u> 0.3530	<u><</u> 0.3745	<u><</u> 0.3565
Fuel Rod Pitch (in.)	<u><</u> 0.572					
Design Active Fuel Length (in.)	<u><</u> 150					
No. of Water Rods (Note 11)	1 (Note 6)	1	2	5	5	1 (Note 6)
Water Rod Thickness (in.)	> 0.00	<u>></u> 0.020	<u>></u> 0.0300	<u>></u> 0.0120	<u>></u> 0.0120	<u>></u> 0.0320
Channel Thickness (in.)	<u><</u> 0.120	<u><</u> 0.100	<u><</u> 0.100	<u><</u> 0.120	<u><</u> 0.120	<u><</u> 0.120

Table 2.1-3 (page 3 of 5) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

T

Fuel Assembly Array/Class	10x10A	10x10B	10x10C	10x10D	10x10E
Clad Material	ZR	ZR	ZR	SS	SS
Design Initial U (kg/assy.) (Note 3)	<u><</u> 188	<u><</u> 188	<u><</u> 179	<u><</u> 125	<u><</u> 125
Maximum PLANAR-AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	<u><</u> 4.2	<u><</u> 4.2	<u><</u> 4.2	<u><</u> 4.0	<u><</u> 4.0
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u><</u> 5.0				
No. of Fuel Rod Locations	92/78 (Note 8)	91/83 (Note 9)	96	100	96
Fuel Rod Clad O.D. (in.)	<u>></u> 0.4040	<u>></u> 0.3957	<u>></u> 0.3780	<u>></u> 0.3960	<u>></u> 0.3940
Fuel Rod Clad I.D. (in.)	<u><</u> 0.3520	<u><</u> 0.3480	<u><</u> 0.3294	<u><</u> 0.3560	<u><</u> 0.3500
Fuel Pellet Dia. (in.)	<u><</u> 0.3455	<u><</u> 0.3420	<u><</u> 0.3224	<u><</u> 0.3500	<u><</u> 0.3430
Fuel Rod Pitch (in.)	<u><</u> 0.510	<u><</u> 0.510	<u><</u> 0.488	<u><</u> 0.565	<u><</u> 0.557
Design Active Fuel Length (in.)	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u><</u> 83	<u><</u> 83
No. of Water Rods (Note 11)	2	1 (Note 6)	5 (Note 10)	0	4
Water Rod Thickness (in.)	<u>></u> 0.0300	> 0.00	<u>></u> 0.031	N/A	<u>></u> 0.022
Channel Thickness (in.)	<u><</u> 0.120	<u><</u> 0.120	<u><</u> 0.055	<u><</u> 0.080	<u><</u> 0.080

Table 2.1-3 (page 4 of 5) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Certificate of Compliance No. 1014 Appendix B

Approved Contents 2.0

Table 2.1-3 (page 5 of 5) BWR FUEL ASSEMBLY CHARACTERISTICS

Notes:

- 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.
- 2. Deleted.
- 3. Design initial uranium weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each BWR fuel assembly, the total uranium weight limit specified in this table may be increased up to 1.5 percent for comparison with users' fuel records to account for manufacturer tolerances.
- 4. ≤ 0.635 wt. % 235 U and ≤ 1.578 wt. % total fissile plutonium (239 Pu and 241 Pu), (wt. % of total fuel weight, i.e., UO₂ plus PuO₂).
- 5. This assembly class contains 74 total rods; 66 full length rods and 8 partial length rods.
- 6. Square, replacing nine fuel rods.
- 7. Variable.
- 8. This assembly contains 92 total fuel rods; 78 full length rods and 14 partial length rods.
- 9. This assembly class contains 91 total fuel rods; 83 full length rods and 8 partial length rods.
- 10. One diamond-shaped water rod replacing the four center fuel rods and four rectangular water rods dividing the assembly into four quadrants.
- 11. These rods may also be sealed at both ends and contain Zr material in lieu of water.
- 12. This assembly is known as "QUAD+." It has four rectangular water cross segments dividing the assembly into four quadrants.
- 13. For the SPC 9x9-5 fuel assembly, each fuel rod must meet either the 9x9E or the 9x9F set of limits for clad O.D., clad I.D., and pellet diameter.
- 14. For those MPCs loaded with both INTACT FUEL ASSEMBLIES and DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS, the maximum PLANAR AVERAGE INITIAL ENRICHMENT for the INTACT FUEL ASSEMBLIES is limited to 3.7 wt.% ²³⁵U, as applicable.

Approved Contents 2.0

Table 2.1-4

Table 2.1-5

Table 2.1-6 (page 1 of 2)

Table 2.1-6 (page 2 of 2)

Table 2.1-7 (page 1 of 2)

Table 2.1-7 (page 2 of 2)

Post-irradiation Cooling Time (years)	INSERTS (Note 4) BURNUP (MWD/MTU)	GUIDE TUBE HARDWARE (Note 5) BURNUP (MWD/MTU)	CONTROL COMPONENT (Note 6) BURNUP (MWD/MTU)	APSR BURNUP (MWD/MTU)
<u>></u> 3	<u><</u> 24,635	NA (Note 7)	NA	NA
<u>></u> 4	<u><</u> 30,000	<u><</u> 20,000	NA	NA
<u>></u> 5	<u><</u> 36,748	<u><</u> 25,000	<u><</u> 630,000	<u><</u> 45,000
<u>></u> 6	<u><</u> 44,102	<u><</u> 30,000	-	<u><</u> 54,500
<u>></u> 7	<u><</u> 52,900	<u><</u> 40,000	-	<u><</u> 68,000
<u>></u> 8	<u><</u> 60,000	<u><</u> 45,000	-	<u><</u> 83,000
<u>></u> 9	-	<u><</u> 50,000	-	<u><</u> 111,000
<u>></u> 10	-	<u><</u> 60,000	-	<u><</u> 180,000
<u>></u> 11	-	<u><</u> 75,000	-	<u><</u> 630,000
<u>></u> 12	-	<u><</u> 90,000	-	-
<u>></u> 13	-	<u><</u> 180,000	-	-
<u>></u> 14	-	<u><</u> 630,000	-	-

 Table 2.1-8

 NON-FUEL HARDWARE COOLING AND AVERAGE BURNUP (Notes 1, 2, and 3)

- Notes: 1. Burnups for NON-FUEL HARDWARE are to be determined based on the burnup and uranium mass of the fuel assemblies in which the component was inserted during reactor operation.
 - Linear interpolation between points is permitted, except that TPD and APSR burnups > 180,000 MWD/MTU and ≤ 630,000 MWD/MTU must be cooled ≥ 14 years and ≥ 11 years, respectively.
 - 3. Applicable to uniform loading and regionalized loading.
 - 4. Includes Burnable Poison Rod Assemblies (BPRAs), Wet Annular Burnable Absorbers (WABAs), and vibration suppressor inserts..
 - 5. Includes Thimble Plug Devices (TPDs), water displacement guide tube plugs, and orifice rod assemblies.
 - 6. Includes Control Rod Assemblies (CRAs), Control Element Assemblies (CEAs), and Rod Cluster Control Assemblies (RCCAs).
 - 7. NA means not authorized for loading at this cooling time.

2.4 Decay Heat, Burnup, and Cooling Time Limits for ZR-Clad Fuel

This section provides the limits on ZR-clad fuel assembly decay heat, burnup, and cooling time for storage in the HI-STORM 100 System. A detailed discussion of how to calculate the limits and verify compliance, including examples, is provided in Chapter 12 of the HI-STORM 100 FSAR.

2.4.1 Uniform Fuel Loading Decay Heat Limits for ZR-clad fuel

Table 2.4-1 provides the maximum allowable decay heat per fuel storage location for ZR-clad fuel in uniform fuel loading for each MPC model.

Table 2.4-1

Maximum Allowable Decay Heat per Fuel Storage Location (Uniform Loading, ZR-Clad)

MPC Model	Decay Heat per Fuel Storage Location (kW)				
Intact Fuel Assemblies					
MPC-24	<u><</u> 1.157				
MPC-24E/24EF	<u><</u> 1.173				
MPC-32/32F	<u><</u> 0.898				
MPC-68/68FF	<u><</u> 0.414				
Damaged Fuel Asser	nblies and Fuel Debris				
MPC-24	<u><</u> 1.099				
MPC-24E/24EF	<u><</u> 1.114				
MPC-32/32F	<u><</u> 0.718				
MPC-68/68FF	<u><</u> 0.393				

2.4.2 Regionalized Fuel Loading Decay Heat Limits for ZR-Clad Fuel

Table 2.4-2 provides the maximum allowable decay heat per fuel storage location for ZRclad fuel in regionalized loading for each MPC model.

2.4.2 Regionalized Fuel Loading Decay Heat Limits for ZR-Clad Fuel (cont'd)

Table 2.4-2

Fuel Storage Regions and Maximum Decay Heat per MPC

MPC Model	Number of Fuel Storage Locations in Inner and Outer Regions	Inner Region Maximum Decay Heat per Assembly (kW)	Outer Region Maximum Decay Heat per Assembly (kW)
MPC-24	4 and 20	1.470	0.900
MPC-24E/24EF	4 and 20	1.540	0.900
MPC-32/32F	12 and 20	1.131	0.600
MPC-68/68FF	32 and 36	0.500	0.275

2.4.3 Burnup Limits as a Function of Cooling Time for ZR-Clad Fuel

The maximum allowable fuel assembly average burnup varies with the following parameters:

- Minimum fuel assembly cooling time
- Maximum fuel assembly decay heat
- Minimum fuel assembly average enrichment

The maximum allowable ZR-clad fuel assembly average burnup for a given MINIMUM ENRICHMENT is calculated as described below for minimum cooling times between 3 and 20 years using the maximum permissible decay heat determined in Section 2.4.1 or 2.4.2. Different fuel assembly average burnup limits may be calculated for different minimum enrichments (by individual fuel assembly) for use in choosing the fuel assemblies to be loaded into a given MPC.

- 2.4.3.1 Choose a fuel assembly minimum enrichment, E₂₃₅.
- 2.4.3.2 Calculate the maximum allowable fuel assembly average burnup for a minimum cooling time between 3 and 20 years using the equation below.

Bu =
$$(A x q) + (B x q^2) + (C x q^3) + [D x (E_{235})^2] + (E x q x E_{235}) + (F x q^2 x E_{235}) + G$$

Equation 2.4.3

Where:

Bu = Maximum allowable average burnup per fuel assembly (MWD/MTU)

- 2.4.3 Burnup Limits as a Function of Cooling Time for ZR-Clad Fuel (cont'd)
 - q = Maximum allowable decay heat per fuel storage location determined in Section 2.4.1 or 2.4.2 (kW)
 - E₂₃₅ = Minimum fuel assembly average enrichment (wt. % ²³⁵U) (e.g., for 4.05 wt.%, use 4.05)

- 2.4.3.3 Calculated burnup limits shall be rounded down to the nearest integer.
- 2.4.3.4 Calculated burnup limits greater than 68,200 MWD/MTU for PWR fuel and 65,000 MWD/MTU for BWR must be reduced to be equal to these values.
- 2.4.3.5 Linear interpolation of calculated burnups between cooling times for a given fuel assembly maximum decay heat and minimum enrichment is permitted. For example, the allowable burnup for a cooling time of 4.5 years may be interpolated between those burnups calculated for 4 year and 5 years.
- 2.4.3.6 Each ZR-clad fuel assembly to be stored must have a MINIMUM ENRICHMENT greater than or equal to the value used in Step 2.4.3.2.
- 2.4.4 When complying with the maximum fuel storage location decay heat limits, users must account for the decay heat from both the fuel assembly and any NON-FUEL HARDWARE, as applicable for the particular fuel storage location, to ensure the decay heat emitted by all contents in a storage location does not exceed the limit.

A through G = Coefficients from Tables 2.4-3 and 2.4-4 for the applicable fuel assembly array/class and minimum cooling time

Cooling Array/Class 14x14A Time В С Е F G А D (years) 20277.1 303.592 -68.329 -139.41 2993.67 -498.159 -615.411 > 3 > 4 35560.1 -6034.67 985.415 -132.734 3578.92 -723.721 -609.84 > 5 48917.9 -14499.5 2976.09 -150.707 4072.55 -892.691 -54.8362 > 6 59110.3 -22507 5255.61 -177.017 4517.03 -1024.01 613.36 > 7 67595.6 -30158.1 7746.6 -200.128 4898.71 -1123.21 716.004 > 8 74424.9 -36871.1 10169.4 -218.676 5203.64 -1190.24 741.163 <u>></u>9 81405.8 -44093.1 12910.8 -227.9165405.34 -1223.27 250.224 <u>></u> 10 86184.3 -49211.7 15063.4 -237.641 5607.96 -1266.21 134.435 5732.25 <u>> 11</u> 92024.9 -55666.8 17779.6 -240.973-1282.12 -401.456 94775.8 19249.9 -246.3695896.27 -1345.42 <u>></u> 12 -58559.7 -295.435 <u>></u>13 100163 -64813.8 22045.1 -242.572 5861.86 -1261.66 -842.159 > 14 103971 -69171 24207 -242.651 5933.96 -1277.48 -1108.99 108919 -75171.1 27152.4 -243.154 6000.2 -1301.19 -1620.63 > 15 110622 -76715.2 28210.2 -240.235 6028.33 -1307.74 -1425.5 > 16 115582 -82929.7 31411.9 -235.234 5982.3 -1244.11 -1948.05 <u>></u> 17 33881.4 6002.43 <u>></u> 18 119195 -87323.5 -233.28 -1245.95 -2199.41 121882 -90270.6 35713.7 -231.873 6044.42 -1284.55 -2264.05 <u>></u> 19 <u>></u> 20 124649 -93573.5 37853.1 -230.22 6075.82 -1306.57 -2319.63

Table 2.4-3 (Page 1 of 8)

Table 2.4-3 (Page 2 of 8)

Cooling			Array/Class 14x14B					
(years)	А	В	С	D	E	F	G	
<u>></u> 3	18937.9	70.2997	-28.6224	-130.732	2572.36	-383.393	-858.17	
<u>></u> 4	32058.7	-4960.63	745.224	-125.978	3048.98	-551.656	-549.108	
<u>></u> 5	42626.3	-10804.1	1965.09	-139.722	3433.49	-676.643	321.88	
<u>></u> 6	51209.6	-16782.3	3490.45	-158.929	3751.01	-761.524	847.282	
<u>></u> 7	57829.9	-21982	5009.12	-180.026	4066.65	-846.272	1200.45	
<u>></u> 8	62758	-26055.3	6330.88	-196.804	4340.18	-928.336	1413.17	
<u>></u> 9	68161.4	-30827.6	7943.87	-204.454	4500.52	-966.347	1084.69	
<u>></u> 10	71996.8	-34224.3	9197.25	-210.433	4638.94	-1001.83	1016.38	
<u>></u> 11	75567.3	-37486.1	10466.9	-214.95	4759.55	-1040.85	848.169	
<u>></u> 12	79296.7	-40900.3	11799.6	-212.898	4794.13	-1040.51	576.242	
<u>></u> 13	82257.3	-43594	12935	-212.8	4845.81	-1056.01	410.807	
<u>></u> 14	83941.2	-44915.2	13641	-215.389	4953.19	-1121.71	552.724	
<u>></u> 15	87228.5	-48130	15056.9	-212.545	4951.12	-1112.5	260.194	
<u>></u> 16	90321.7	-50918.3	16285.5	-206.094	4923.36	-1106.35	-38.7487	
<u>></u> 17	92836.2	-53314.5	17481.7	-203.139	4924.61	-1109.32	-159.673	
<u>></u> 18	93872.8	-53721.4	17865.1	-202.573	4956.21	-1136.9	30.0594	
<u>></u> 19	96361.6	-56019.1	19075.9	-199.068	4954.59	-1156.07	-125.917	
<u>></u> 20	98647.5	-57795.1	19961.8	-191.502	4869.59	-1108.74	-217.603	

Table 2.4-3 (Page 3 of 8)

Cooling		Array/Class 14x14C						
(years)	А	В	С	D	E	F	G	
<u>></u> 3	19176.9	192.012	-66.7595	-138.112	2666.73	-407.664	-1372.41	
<u>></u> 4	32040.3	-4731.4	651.014	-124.944	3012.63	-530.456	-890.059	
<u>></u> 5	43276.7	-11292.8	2009.76	-142.172	3313.91	-594.917	-200.195	
<u>></u> 6	51315.5	-16920.5	3414.76	-164.287	3610.77	-652.118	463.041	
<u>></u> 7	57594.7	-21897.6	4848.49	-189.606	3940.67	-729.367	781.46	
<u>></u> 8	63252.3	-26562.8	6273.01	-199.974	4088.41	-732.054	693.879	
<u>></u> 9	67657.5	-30350.9	7533.4	-211.77	4283.39	-772.916	588.456	
<u>></u> 10	71834.4	-34113.7	8857.32	-216.408	4383.45	-774.982	380.243	
<u>></u> 11	75464.1	-37382.1	10063	-218.813	4460.69	-776.665	160.668	
<u>></u> 12	77811.1	-39425.1	10934.3	-225.193	4604.68	-833.459	182.463	
<u>></u> 13	81438.3	-42785.4	12239.9	-220.943	4597.28	-803.32	-191.636	
<u>></u> 14	84222.1	-45291.6	13287.9	-218.366	4608.13	-791.655	-354.59	
<u>></u> 15	86700.1	-47582.6	14331.2	-218.206	4655.34	-807.366	-487.316	
<u>></u> 16	88104.7	-48601.1	14927.9	-219.498	4729.97	-849.446	-373.196	
<u>></u> 17	91103.3	-51332.5	16129	-212.138	4679.91	-822.896	-654.296	
<u>></u> 18	93850.4	-53915.8	17336.9	-207.666	4652.65	-799.697	-866.307	
<u>></u> 19	96192.9	-55955.8	18359.3	-203.462	4642.65	-800.315	-1007.75	
<u>></u> 20	97790.4	-57058.1	19027.7	-200.963	4635.88	-799.721	-951.122	

Table 2.4-3 (Page 4 of 8)

Cooling		Array/Class 15x15A/B/C						
(years)	А	В	С	D	E	F	G	
<u>></u> 3	15789.2	119.829	-21.8071	-127.422	2152.53	-267.717	-580.768	
<u>></u> 4	26803.8	-3312.93	415.027	-116.279	2550.15	-386.33	-367.168	
<u>></u> 5	36403.6	-7831.93	1219.66	-126.065	2858.32	-471.785	326.863	
<u>></u> 6	44046.1	-12375.9	2213.52	-145.727	3153.45	-539.715	851.971	
<u>></u> 7	49753.5	-16172.6	3163.61	-166.946	3428.38	-603.598	1186.31	
<u>></u> 8	55095.4	-20182.5	4287.03	-183.047	3650.42	-652.92	1052.4	
<u>></u> 9	58974.4	-23071.6	5156.53	-191.718	3805.41	-687.18	1025	
<u>></u> 10	62591.8	-25800.8	5995.95	-195.105	3884.14	-690.659	868.556	
<u>></u> 11	65133.1	-27747.4	6689	-203.095	4036.91	-744.034	894.607	
<u>></u> 12	68448.4	-30456	7624.9	-202.201	4083.52	-753.391	577.914	
<u>></u> 13	71084.4	-32536.4	8381.78	-201.624	4117.93	-757.16	379.105	
<u>></u> 14	73459.5	-34352.3	9068.86	-197.988	4113.16	-747.015	266.536	
<u>></u> 15	75950.7	-36469.4	9920.52	-199.791	4184.91	-779.222	57.9429	
<u>></u> 16	76929.1	-36845.6	10171.3	-197.88	4206.24	-794.541	256.099	
<u>></u> 17	79730	-39134.8	11069.4	-190.865	4160.42	-773.448	-42.6853	
<u>></u> 18	81649.2	-40583	11736.1	-187.604	4163.36	-785.838	-113.614	
<u>></u> 19	83459	-41771.8	12265.9	-181.461	4107.51	-758.496	-193.442	
<u>></u> 20	86165.4	-44208.8	13361.2	-178.89	4107.62	-768.671	-479.778	

Table 2.4-3 (Page 5 of 8)

Cooling		Array/Class 15x15D/E/F/H					
(years)	А	В	С	D	E	F	G
<u>></u> 3	15192.5	50.5722	-12.3042	-126.906	2009.71	-235.879	-561.574
<u>></u> 4	25782.5	-3096.5	369.096	-113.289	2357.75	-334.695	-254.964
<u>></u> 5	35026.5	-7299.87	1091.93	-124.619	2664	-414.527	470.916
<u>></u> 6	42234.9	-11438.4	1967.63	-145.948	2945.81	-474.981	1016.84
<u>></u> 7	47818.4	-15047	2839.22	-167.273	3208.95	-531.296	1321.12
<u>></u> 8	52730.7	-18387.2	3702.43	-175.057	3335.58	-543.232	1223.61
<u>></u> 9	56254.6	-20999.9	4485.93	-190.489	3547.98	-600.64	1261.55
<u>></u> 10	59874.6	-23706.5	5303.88	-193.807	3633.01	-611.892	1028.63
<u>></u> 11	62811	-25848.4	5979.64	-194.997	3694.14	-618.968	862.738
<u>></u> 12	65557.6	-27952.4	6686.74	-198.224	3767.28	-635.126	645.139
<u>></u> 13	67379.4	-29239.2	7197.49	-200.164	3858.53	-677.958	652.601
<u>></u> 14	69599.2	-30823.8	7768.51	-196.788	3868.2	-679.88	504.443
<u>></u> 15	71806.7	-32425	8360.38	-191.935	3851.65	-669.917	321.146
<u>></u> 16	73662.6	-33703.5	8870.78	-187.366	3831.59	-658.419	232.335
<u>></u> 17	76219.8	-35898.1	9754.72	-189.111	3892.07	-694.244	-46.924
<u>></u> 18	76594.4	-35518.2	9719.78	-185.11	3897.04	-712.82	236.047
<u>></u> 19	78592.7	-36920.8	10316.5	-179.54	3865.84	-709.551	82.478
<u>></u> 20	80770.5	-38599.9	11051.3	-175.106	3858.67	-723.211	-116.014

Table 2.4-3 (Page 6 of 8)

Cooling			Arra	ay/Class 16X	16X16A					
(years)	А	В	С	D	E	F	G			
<u>></u> 3	17038.2	158.445	-37.6008	-136.707	2368.1	-321.58	-700.033			
<u>></u> 4	29166.3	-3919.95	508.439	-125.131	2782.53	-455.722	-344.199			
<u>></u> 5	40285	-9762.36	1629.72	-139.652	3111.83	-539.804	139.67			
<u>></u> 6	48335.7	-15002.6	2864.09	-164.702	3444.97	-614.756	851.706			
<u>></u> 7	55274.9	-20190	4258.03	-185.909	3728.11	-670.841	920.035			
<u>></u> 8	60646.6	-24402.4	5483.54	-199.014	3903.29	-682.26	944.913			
<u>></u> 9	64663.2	-27753.1	6588.21	-215.318	4145.34	-746.822	967.914			
<u>></u> 10	69306.9	-31739.1	7892.13	-218.898	4237.04	-746.815	589.277			
<u>></u> 11	72725.8	-34676.6	8942.26	-220.836	4312.93	-750.85	407.133			
<u>></u> 12	76573.8	-38238.7	10248.1	-224.934	4395.85	-757.914	23.7549			
<u>></u> 13	78569	-39794.3	10914.9	-224.584	4457	-776.876	69.428			
<u>></u> 14	81559.4	-42453.6	11969.6	-222.704	4485.28	-778.427	-203.031			
<u>></u> 15	84108.6	-44680.4	12897.8	-218.387	4460	-746.756	-329.078			
<u>></u> 16	86512.2	-46766.8	13822.8	-216.278	4487.79	-759.882	-479.729			
<u>></u> 17	87526.7	-47326.2	14221	-218.894	4567.68	-805.659	-273.692			
<u>></u> 18	90340.3	-49888.6	15349.8	-212.139	4506.29	-762.236	-513.316			
<u>></u> 19	93218.2	-52436.7	16482.4	-207.653	4504.12	-776.489	-837.1			
<u>></u> 20	95533.9	-54474.1	17484.2	-203.094	4476.21	-760.482	-955.662			

Table 2.4-3 (Page 7 of 8)

Cooling	Array/Class 17x17A						
(years)	А	В	С	D	E	F	G
<u>></u> 3	16784.4	3.90244	-10.476	-128.835	2256.98	-287.108	-263.081
<u>></u> 4	28859	-3824.72	491.016	-120.108	2737.65	-432.361	-113.457
<u>></u> 5	40315.9	-9724	1622.89	-140.459	3170.28	-547.749	425.136
<u>></u> 6	49378.5	-15653.1	3029.25	-164.712	3532.55	-628.93	842.73
<u>></u> 7	56759.5	-21320.4	4598.78	-190.58	3873.21	-698.143	975.46
<u>></u> 8	63153.4	-26463.8	6102.47	-201.262	4021.84	-685.431	848.497
<u>></u> 9	67874.9	-30519.2	7442.84	-218.184	4287.23	-754.597	723.305
<u>></u> 10	72676.8	-34855.2	8928.27	-222.423	4382.07	-741.243	387.877
<u>></u> 11	75623	-37457.1	9927.65	-232.962	4564.55	-792.051	388.402
<u>></u> 12	80141.8	-41736.5	11509.8	-232.944	4624.72	-787.134	-164.727
<u>></u> 13	83587.5	-45016.4	12800.9	-230.643	4623.2	-745.177	-428.635
<u>></u> 14	86311.3	-47443.4	13815.2	-228.162	4638.89	-729.425	-561.758
<u>></u> 15	87839.2	-48704.1	14500.3	-231.979	4747.67	-775.801	-441.959
<u>></u> 16	91190.5	-51877.4	15813.2	-225.768	4692.45	-719.311	-756.537
<u>></u> 17	94512	-55201.2	17306.1	-224.328	4740.86	-747.11	-1129.15
<u>></u> 18	96959	-57459.9	18403.8	-220.038	4721.02	-726.928	-1272.47
<u>></u> 19	99061.1	-59172.1	19253.1	-214.045	4663.37	-679.362	-1309.88
<u>></u> 20	100305	-59997.5	19841.1	-216.112	4721.71	-705.463	-1148.45

Table 2.4-3 (Page 8 of 8)

Cooling			Arra	y/Class 17x1	′B/C				
(years)	А	В	С	D	E	F	G		
<u>></u> 3	15526.8	18.0364	-9.36581	-128.415	2050.81	-243.915	-426.07		
<u>></u> 4	26595.4	-3345.47	409.264	-115.394	2429.48	-350.883	-243.477		
<u>></u> 5	36190.4	-7783.2	1186.37	-130.008	2769.53	-438.716	519.95		
<u>></u> 6	44159	-12517.5	2209.54	-150.234	3042.25	-489.858	924.151		
<u>></u> 7	50399.6	-16780.6	3277.26	-173.223	3336.58	-555.743	1129.66		
<u>></u> 8	55453.9	-20420	4259.68	-189.355	3531.65	-581.917	1105.62		
<u>></u> 9	59469.3	-23459.8	5176.62	-199.63	3709.99	-626.667	1028.74		
<u>></u> 10	63200.5	-26319.6	6047.8	-203.233	3783.02	-619.949	805.311		
<u>></u> 11	65636.3	-28258.3	6757.23	-214.247	3972.8	-688.56	843.457		
<u>></u> 12	68989.7	-30904.4	7626.53	-212.539	3995.62	-678.037	495.032		
<u>></u> 13	71616.6	-32962.2	8360.45	-210.386	4009.11	-666.542	317.009		
<u>></u> 14	73923.9	-34748	9037.75	-207.668	4020.13	-662.692	183.086		
<u>></u> 15	76131.8	-36422.3	9692.32	-203.428	4014.55	-655.981	47.5234		
<u>></u> 16	77376.5	-37224.7	10111.4	-207.581	4110.76	-703.37	161.128		
<u>></u> 17	80294.9	-39675.9	11065.9	-201.194	4079.24	-691.636	-173.782		
<u>></u> 18	82219.8	-41064.8	11672.1	-195.431	4043.83	-675.432	-286.059		
<u>></u> 19	84168.9	-42503.6	12309.4	-190.602	4008.19	-656.192	-372.411		
<u>></u> 20	86074.2	-43854.4	12935.9	-185.767	3985.57	-656.72	-475.953		
Table 2.4-4 (Page 1 of 10)

Cooling	Array/Class 7x7B									
(years)	А	В	С	D	E	F	G			
<u>></u> 3	26409.1	28347.5	-16858	-147.076	5636.32	-1606.75	1177.88			
<u>></u> 4	61967.8	-6618.31	-4131.96	-113.949	6122.77	-2042.85	-96.7439			
<u>></u> 5	91601.1	-49298.3	17826.5	-132.045	6823.14	-2418.49	-185.189			
<u>></u> 6	111369	-80890.1	35713.8	-150.262	7288.51	-2471.1	86.6363			
<u>></u> 7	126904	-108669	53338.1	-167.764	7650.57	-2340.78	150.403			
<u>></u> 8	139181	-132294	69852.5	-187.317	8098.66	-2336.13	97.5285			
<u>></u> 9	150334	-154490	86148.1	-193.899	8232.84	-2040.37	-123.029			
<u>></u> 10	159897	-173614	100819	-194.156	8254.99	-1708.32	-373.605			
<u>></u> 11	166931	-186860	111502	-193.776	8251.55	-1393.91	-543.677			
<u>></u> 12	173691	-201687	125166	-202.578	8626.84	-1642.3	-650.814			
<u>></u> 13	180312	-215406	137518	-201.041	8642.19	-1469.45	-810.024			
<u>></u> 14	185927	-227005	148721	-197.938	8607.6	-1225.95	-892.876			
<u>></u> 15	191151	-236120	156781	-191.625	8451.86	-846.27	-1019.4			
<u>></u> 16	195761	-244598	165372	-187.043	8359.19	-572.561	-1068.19			
<u>></u> 17	200791	-256573	179816	-197.26	8914.28	-1393.37	-1218.63			
<u>></u> 18	206068	-266136	188841	-187.191	8569.56	-730.898	-1363.79			
<u>></u> 19	210187	-273609	197794	-182.151	8488.23	-584.727	-1335.59			
<u>></u> 20	213731	-278120	203074	-175.864	8395.63	-457.304	-1364.38			

Table 2.4-4 (Page 2 of 10)

Cooling	Array/Class 8x8B									
(years)	А	В	С	D	E	F	G			
<u>></u> 3	28219.6	28963.7	-17616.2	-147.68	5887.41	-1730.96	1048.21			
<u>></u> 4	66061.8	-10742.4	-1961.82	-123.066	6565.54	-2356.05	-298.005			
<u>></u> 5	95790.7	-53401.7	19836.7	-134.584	7145.41	-2637.09	-298.858			
<u>></u> 6	117477	-90055.9	41383.9	-154.758	7613.43	-2612.69	-64.9921			
<u>></u> 7	134090	-120643	60983	-168.675	7809	-2183.3	-40.8885			
<u>></u> 8	148186	-149181	81418.7	-185.726	8190.07	-2040.31	-260.773			
<u>></u> 9	159082	-172081	99175.2	-197.185	8450.86	-1792.04	-381.705			
<u>></u> 10	168816	-191389	113810	-195.613	8359.87	-1244.22	-613.594			
<u>></u> 11	177221	-210599	131099	-208.3	8810	-1466.49	-819.773			
<u>></u> 12	183929	-224384	143405	-207.497	8841.33	-1227.71	-929.708			
<u>></u> 13	191093	-240384	158327	-204.95	8760.17	-811.708	-1154.76			
<u>></u> 14	196787	-252211	169664	-204.574	8810.95	-610.928	-1208.97			
<u>></u> 15	203345	-267656	186057	-208.962	9078.41	-828.954	-1383.76			
<u>></u> 16	207973	-276838	196071	-204.592	9024.17	-640.808	-1436.43			
<u>></u> 17	213891	-290411	211145	-202.169	9024.19	-482.1	-1595.28			
<u>></u> 18	217483	-294066	214600	-194.243	8859.35	-244.684	-1529.61			
<u>></u> 19	220504	-297897	219704	-190.161	8794.97	-10.9863	-1433.86			
<u>></u> 20	227821	-318395	245322	-194.682	9060.96	-350.308	-1741.16			

Table 2.4-4 (Page 3 of 10)

Cooling	Array/Class 8x8C/D/E									
(years)	А	В	С	D	E	F	G			
<u>></u> 3	28592.7	28691.5	-17773.6	-149.418	5969.45	-1746.07	1063.62			
<u>></u> 4	66720.8	-12115.7	-1154	-128.444	6787.16	-2529.99	-302.155			
<u>></u> 5	96929.1	-55827.5	21140.3	-136.228	7259.19	-2685.06	-334.328			
<u>></u> 6	118190	-92000.2	42602.5	-162.204	7907.46	-2853.42	-47.5465			
<u>></u> 7	135120	-123437	62827.1	-172.397	8059.72	-2385.81	-75.0053			
<u>></u> 8	149162	-152986	84543.1	-195.458	8559.11	-2306.54	-183.595			
<u>></u> 9	161041	-177511	103020	-200.087	8632.84	-1864.4	-433.081			
<u>></u> 10	171754	-201468	122929	-209.799	8952.06	-1802.86	-755.742			
<u>></u> 11	179364	-217723	137000	-215.803	9142.37	-1664.82	-847.268			
<u>></u> 12	186090	-232150	150255	-216.033	9218.36	-1441.92	-975.817			
<u>></u> 13	193571	-249160	165997	-213.204	9146.99	-1011.13	-1119.47			
<u>></u> 14	200034	-263671	180359	-210.559	9107.54	-694.626	-1312.55			
<u>></u> 15	205581	-275904	193585	-216.242	9446.57	-1040.65	-1428.13			
<u>></u> 16	212015	-290101	207594	-210.036	9212.93	-428.321	-1590.7			
<u>></u> 17	216775	-299399	218278	-204.611	9187.86	-398.353	-1657.6			
<u>></u> 18	220653	-306719	227133	-202.498	9186.34	-181.672	-1611.86			
<u>></u> 19	224859	-314004	235956	-193.902	8990.14	145.151	-1604.71			
<u>></u> 20	228541	-320787	245449	-200.727	9310.87	-230.252	-1570.18			

Table 2.4-4 (Page 4 of 10)

Cooling	Array/Class 9x9A									
(years)	А	В	С	D	E	F	G			
<u>></u> 3	30538.7	28463.2	-18105.5	-150.039	6226.92	-1876.69	1034.06			
<u>></u> 4	71040.1	-16692.2	1164.15	-128.241	7105.27	-2728.58	-414.09			
<u>></u> 5	100888	-60277.7	24150.1	-142.541	7896.11	-3272.86	-232.197			
<u>></u> 6	124846	-102954	50350.8	-161.849	8350.16	-3163.44	-91.1396			
<u>></u> 7	143516	-140615	76456.5	-185.538	8833.04	-2949.38	-104.802			
<u>></u> 8	158218	-171718	99788.2	-196.315	9048.88	-2529.26	-259.929			
<u>></u> 9	172226	-204312	126620	-214.214	9511.56	-2459.19	-624.954			
<u>></u> 10	182700	-227938	146736	-215.793	9555.41	-1959.92	-830.943			
<u>></u> 11	190734	-246174	163557	-218.071	9649.43	-1647.5	-935.021			
<u>></u> 12	199997	-269577	186406	-223.975	9884.92	-1534.34	-1235.27			
<u>></u> 13	207414	-287446	204723	-228.808	10131.7	-1614.49	-1358.61			
<u>></u> 14	215263	-306131	223440	-220.919	9928.27	-988.276	-1638.05			
<u>></u> 15	221920	-321612	239503	-217.949	9839.02	-554.709	-1784.04			
<u>></u> 16	226532	-331778	252234	-216.189	9893.43	-442.149	-1754.72			
<u>></u> 17	232959	-348593	272609	-219.907	10126.3	-663.84	-1915.3			
<u>></u> 18	240810	-369085	296809	-219.729	10294.6	-859.302	-2218.87			
<u>></u> 19	244637	-375057	304456	-210.997	10077.8	-425.446	-2127.83			
<u>></u> 20	248112	-379262	309391	-204.191	9863.67	100.27	-2059.39			

Table 2.4-4 (Page 5 of 10)

Cooling	Array/Class 9x9B									
(years)	А	В	С	D	E	F	G			
<u>></u> 3	30613.2	28985.3	-18371	-151.117	6321.55	-1881.28	988.92			
<u>></u> 4	71346.6	-15922.9	631.132	-128.876	7232.47	-2810.64	-471.737			
<u>></u> 5	102131	-60654.1	23762.7	-140.748	7881.6	-3156.38	-417.979			
<u>></u> 6	127187	-105842	51525.2	-162.228	8307.4	-2913.08	-342.13			
<u>></u> 7	146853	-145834	79146.5	-185.192	8718.74	-2529.57	-484.885			
<u>></u> 8	162013	-178244	103205	-197.825	8896.39	-1921.58	-584.013			
<u>></u> 9	176764	-212856	131577	-215.41	9328.18	-1737.12	-1041.11			
<u>></u> 10	186900	-235819	151238	-218.98	9388.08	-1179.87	-1202.83			
<u>></u> 11	196178	-257688	171031	-220.323	9408.47	-638.53	-1385.16			
<u>></u> 12	205366	-280266	192775	-223.715	9592.12	-472.261	-1661.6			
<u>></u> 13	215012	-306103	218866	-231.821	9853.37	-361.449	-1985.56			
<u>></u> 14	222368	-324558	238655	-228.062	9834.57	3.47358	-2178.84			
<u>></u> 15	226705	-332738	247316	-224.659	9696.59	632.172	-2090.75			
<u>></u> 16	233846	-349835	265676	-221.533	9649.93	913.747	-2243.34			
<u>></u> 17	243979	-379622	300077	-222.351	9792.17	1011.04	-2753.36			
<u>></u> 18	247774	-386203	308873	-220.306	9791.37	1164.58	-2612.25			
<u>></u> 19	254041	-401906	327901	-213.96	9645.47	1664.94	-2786.2			
<u>></u> 20	256003	-402034	330566	-215.242	9850.42	1359.46	-2550.06			

Table 2.4-4 (Page 6 of 10)

Cooling	Array/Class 9x9C/D								
(years)	А	В	С	D	E	F	G		
<u>></u> 3	30051.6	29548.7	-18614.2	-148.276	6148.44	-1810.34	1006		
<u>></u> 4	70472.7	-14696.6	-233.567	-127.728	7008.69	-2634.22	-444.373		
<u>></u> 5	101298	-59638.9	23065.2	-138.523	7627.57	-2958.03	-377.965		
<u>></u> 6	125546	-102740	49217.4	-160.811	8096.34	-2798.88	-259.767		
<u>></u> 7	143887	-139261	74100.4	-184.302	8550.86	-2517.19	-275.151		
<u>></u> 8	159633	-172741	98641.4	-194.351	8636.89	-1838.81	-486.731		
<u>></u> 9	173517	-204709	124803	-212.604	9151.98	-1853.27	-887.137		
<u>></u> 10	182895	-225481	142362	-218.251	9262.59	-1408.25	-978.356		
<u>></u> 11	192530	-247839	162173	-217.381	9213.58	-818.676	-1222.12		
<u>></u> 12	201127	-268201	181030	-215.552	9147.44	-232.221	-1481.55		
<u>></u> 13	209538	-289761	203291	-225.092	9588.12	-574.227	-1749.35		
<u>></u> 14	216798	-306958	220468	-222.578	9518.22	-69.9307	-1919.71		
<u>></u> 15	223515	-323254	237933	-217.398	9366.52	475.506	-2012.93		
<u>></u> 16	228796	-334529	250541	-215.004	9369.33	662.325	-2122.75		
<u>></u> 17	237256	-356311	273419	-206.483	9029.55	1551.3	-2367.96		
<u>></u> 18	242778	-369493	290354	-215.557	9600.71	659.297	-2589.32		
<u>></u> 19	246704	-377971	302630	-210.768	9509.41	1025.34	-2476.06		
<u>></u> 20	249944	-382059	308281	-205.495	9362.63	1389.71	-2350.49		

Table 2.4-4 (Page 7 of 10)

Cooling	Array/Class 9x9E/F									
(years)	А	В	С	D	E	F	G			
<u>></u> 3	30284.3	26949.5	-16926.4	-147.914	6017.02	-1854.81	1026.15			
<u>></u> 4	69727.4	-17117.2	1982.33	-127.983	6874.68	-2673.01	-359.962			
<u>></u> 5	98438.9	-58492	23382.2	-138.712	7513.55	-3038.23	-112.641			
<u>></u> 6	119765	-95024.1	45261	-159.669	8074.25	-3129.49	221.182			
<u>></u> 7	136740	-128219	67940.1	-182.439	8595.68	-3098.17	315.544			
<u>></u> 8	150745	-156607	88691.5	-193.941	8908.73	-2947.64	142.072			
<u>></u> 9	162915	-182667	109134	-198.37	8999.11	-2531	-93.4908			
<u>></u> 10	174000	-208668	131543	-210.777	9365.52	-2511.74	-445.876			
<u>></u> 11	181524	-224252	145280	-212.407	9489.67	-2387.49	-544.123			
<u>></u> 12	188946	-240952	160787	-210.65	9478.1	-2029.94	-652.339			
<u>></u> 13	193762	-250900	171363	-215.798	9742.31	-2179.24	-608.636			
<u>></u> 14	203288	-275191	196115	-218.113	9992.5	-2437.71	-1065.92			
<u>></u> 15	208108	-284395	205221	-213.956	9857.25	-1970.65	-1082.94			
<u>></u> 16	215093	-301828	224757	-209.736	9789.58	-1718.37	-1303.35			
<u>></u> 17	220056	-310906	234180	-201.494	9541.73	-1230.42	-1284.15			
<u>></u> 18	224545	-320969	247724	-206.807	9892.97	-1790.61	-1381.9			
<u>></u> 19	226901	-322168	250395	-204.073	9902.14	-1748.78	-1253.22			
<u>></u> 20	235561	-345414	276856	-198.306	9720.78	-1284.14	-1569.18			

Table 2.4-4 (Page 8 of 10)

Cooling	Array/Class 9x9G									
(years)	А	В	С	D	E	F	G			
<u>></u> 3	35158.5	26918.5	-17976.7	-149.915	6787.19	-2154.29	836.894			
<u>></u> 4	77137.2	-19760.1	2371.28	-130.934	8015.43	-3512.38	-455.424			
<u>></u> 5	113405	-77931.2	35511.2	-150.637	8932.55	-4099.48	-629.806			
<u>></u> 6	139938	-128700	68698.3	-173.799	9451.22	-3847.83	-455.905			
<u>></u> 7	164267	-183309	109526	-193.952	9737.91	-3046.84	-737.992			
<u>></u> 8	182646	-227630	146275	-210.936	10092.3	-2489.3	-1066.96			
<u>></u> 9	199309	-270496	184230	-218.617	10124.3	-1453.81	-1381.41			
<u>></u> 10	213186	-308612	221699	-235.828	10703.2	-1483.31	-1821.73			
<u>></u> 11	225587	-342892	256242	-236.112	10658.5	-612.076	-2134.65			
<u>></u> 12	235725	-370471	285195	-234.378	10604.9	118.591	-2417.89			
<u>></u> 13	247043	-404028	323049	-245.79	11158.2	-281.813	-2869.82			
<u>></u> 14	253649	-421134	342682	-243.142	11082.3	400.019	-2903.88			
<u>></u> 15	262750	-448593	376340	-245.435	11241.2	581.355	-3125.07			
<u>></u> 16	270816	-470846	402249	-236.294	10845.4	1791.46	-3293.07			
<u>></u> 17	279840	-500272	441964	-241.324	11222.6	1455.84	-3528.25			
<u>></u> 18	284533	-511287	458538	-240.905	11367.2	1459.68	-3520.94			
<u>></u> 19	295787	-545885	501824	-235.685	11188.2	2082.21	-3954.2			
<u>></u> 20	300209	-556936	519174	-229.539	10956	2942.09	-3872.87			

Table 2.4-4 (Page 9 of 10)

Cooling	Array/Class 10x10A/B								
(years)	А	В	С	D	E	F	G		
<u>></u> 3	29285.4	27562.2	-16985	-148.415	5960.56	-1810.79	1001.45		
<u>></u> 4	67844.9	-14383	395.619	-127.723	6754.56	-2547.96	-369.267		
<u>></u> 5	96660.5	-55383.8	21180.4	-137.17	7296.6	-2793.58	-192.85		
<u>></u> 6	118098	-91995	42958	-162.985	7931.44	-2940.84	60.9197		
<u>></u> 7	135115	-123721	63588.9	-171.747	8060.23	-2485.59	73.6219		
<u>></u> 8	148721	-151690	84143.9	-190.26	8515.81	-2444.25	-63.4649		
<u>></u> 9	160770	-177397	104069	-197.534	8673.6	-2101.25	-331.046		
<u>></u> 10	170331	-198419	121817	-213.692	9178.33	-2351.54	-472.844		
<u>></u> 11	179130	-217799	138652	-209.75	9095.43	-1842.88	-705.254		
<u>></u> 12	186070	-232389	151792	-208.946	9104.52	-1565.11	-822.73		
<u>></u> 13	192407	-246005	164928	-209.696	9234.7	-1541.54	-979.245		
<u>></u> 14	200493	-265596	183851	-207.639	9159.83	-1095.72	-1240.61		
<u>></u> 15	205594	-276161	195760	-213.491	9564.23	-1672.22	-1333.64		
<u>></u> 16	209386	-282942	204110	-209.322	9515.83	-1506.86	-1286.82		
<u>></u> 17	214972	-295149	217095	-202.445	9292.34	-893.6	-1364.97		
<u>></u> 18	219312	-302748	225826	-198.667	9272.27	-878.536	-1379.58		
<u>></u> 19	223481	-310663	235908	-194.825	9252.9	-785.066	-1379.62		
<u>></u> 20	227628	-319115	247597	-199.194	9509.02	-1135.23	-1386.19		

Table 2.4-4 (Page 10 of 10)

Cooling	Array/Class 10x10C									
(years)	А	В	С	D	E	F	G			
<u>></u> 3	31425.3	27358.9	-17413.3	-152.096	6367.53	-1967.91	925.763			
<u>></u> 4	71804	-16964.1	1000.4	-129.299	7227.18	-2806.44	-416.92			
<u>></u> 5	102685	-62383.3	24971.2	-142.316	7961	-3290.98	-354.784			
<u>></u> 6	126962	-105802	51444.6	-164.283	8421.44	-3104.21	-186.615			
<u>></u> 7	146284	-145608	79275.5	-188.967	8927.23	-2859.08	-251.163			
<u>></u> 8	162748	-181259	105859	-199.122	9052.91	-2206.31	-554.124			
<u>></u> 9	176612	-214183	133261	-217.56	9492.17	-1999.28	-860.669			
<u>></u> 10	187756	-239944	155315	-219.56	9532.45	-1470.9	-1113.42			
<u>></u> 11	196580	-260941	174536	-222.457	9591.64	-944.473	-1225.79			
<u>></u> 12	208017	-291492	204805	-233.488	10058.3	-1217.01	-1749.84			
<u>></u> 13	214920	-307772	221158	-234.747	10137.1	-897.23	-1868.04			
<u>></u> 14	222562	-326471	240234	-228.569	9929.34	-183.47	-2016.12			
<u>></u> 15	228844	-342382	258347	-226.944	9936.76	117.061	-2106.05			
<u>></u> 16	233907	-353008	270390	-223.179	9910.72	360.39	-2105.23			
<u>></u> 17	244153	-383017	304819	-227.266	10103.2	380.393	-2633.23			
<u>></u> 18	249240	-395456	321452	-226.989	10284.1	169.947	-2623.67			
<u>></u> 19	254343	-406555	335240	-220.569	10070.5	764.689	-2640.2			
<u>></u> 20	260202	-421069	354249	-216.255	10069.9	854.497	-2732.77			