Letter of Transmittal

· · · ·

NIMSSOI

359 North Gate Drive • Warrendale, Pennsylvania 15086 • Phone: (724) 934-3530 • Fax (724) 934-3533

Date:	December 9, 2004	Project No.:	4000-PA4072-02
To:	Mr. John T. Buckley		
	U.S. Nuclear Regulatory Commission		
	Document Control Desk		
	Washington, DC 20555-0001		
Re:	Kaiser Tulsa Site		
	Thorium Remediation Project		

We are sending you the following item(s):

Quantity	Date	No.	Description
1	Decemebr, 2004		RECON Procedure: REC-WP-4-02 Rev 04

These are transmitted as checked below:

	For	your	use	
--	-----	------	-----	--

Enclosed

As Requested

Under Separate Cover via:

Return of requested material

Other: <u>For your information.</u>

Remarks: On behalf of Kaiser Aluminum & Chemical Corporation, the above referenced procedure revision is transmitted for your information. Please destroy all previous versions of this procedure.

Signed: Cludk Beactfy Copy to: _____ Distribution (see attached)______ If enclosures are not as noted, please notify our office immediately.

Kaiser Plan and Procedure Distribution							
Mr. John T. Buckley US Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001 <i>FedEx</i>	Mr. S Paul Handa Kaiser Aluminum & Chemical Corporation 7311 East 41st Street Tulsa, OK 74145 (Three copies in one FedEx envelope)						
US Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001 FedEx	Diana Brown RECON 7311 East 41st Street Tulsa, OK 74145 <i>FedEx</i>						
D. Blair Spitzberg, PHD Chief, Fuel Cycle Decommissioning Branch US Nuclear Regulatory Commission Region IV 611 Ryan Plaza Drive Arlington, TX 76011-8064 <i>FedEx</i> Ms Pamela L. Bishop Sr. Environmental Specialist State of Oklahoma Department of Environmental Quality	J.W. (Bill) Vinzant, P.E. Regional Environmental Manager Kaiser Aluminum & Chemical Corporation Corporate Environmental Affairs 9141 Interline Avenue, Suite 1A Baton Rouge, LA 70809-1957 <i>FedEx</i> Dr. L Max Scott Rm 1067 Energy, Coast & Environment Building Louisiana State University Baton Rouge, LA 70803-0301						
707 N. Robinson PO Box 1677 Oklahoma City, OK 73102 (Fed-ex Zip) 73107 (PO Box Zip)	FedEx						
FedEx Ms. Kelly Hunter Burch State of Oklahoma Office of Attorney General 4545 N. Lincoln Boulevard Suite 260 Oklahoma City, OK 73105 FedEx Mr. Scott Van Loo City of Tulsa 4818 South Ellwood Avenue Tulsa, OK 74107 FedEx	Alvin G. Gutterman Attorney at Law Morgan, Lewis & Bockius LLP 1111 Pennsylvania Avenue, NW Washington, DC 20004 <i>FedEx</i> Tre Fischer Kaiser Aluminum & Chemical Corporation 5847 San Felipe, #2600 Houston, TX 77057 <i>FedEx</i>						
Ms. Roberta Fowlkes CCF Associates, LLC 20 Pinnacle Drive Charleston, WV 25311 FedEx	Danny Brown RECON PO Box 690708 Houston, Texas 77269 FedEx						

-RECON-Work-Plan & Procedures Manual-**RECON Procedure: REC-WP-4-02 Air Sampling** Thorium Remediation Project Tulsa, Oklahoma • **REVISION: 04** EFFECTIVE DATE: December 2004_ Approved by: J. W. (Bill) Vinzant - Project Manager-Kaiser Aluminum and Chemical Corporation Date: 12/03/04 Approved by: Danny P. Brown Project Manager Remedial Construction Services, L. P. Date: 12-03-04 -Date:----. ____

RECON Procedure: REC-WP-4-02

Air Sampling

1.0 PURPOSE

The purpose of this procedure is to provide instruction for the collection of air samples.

2.0 DEFINITIONS

NA

3.0 PREREQUISITES PRECAUTIONS/LIMITATIONS

- 3.1 Air samples are performed in specific work areas to determine the extent of the airborne radiological hazards, establish radiological protective measures/controls and control personnel exposure.
- 3.2 Check the applicable health and safety guidance for the site. Ensure the proper protocol and other precautions delineated in the appropriate documents (e.g., Environmental Health and Safety Plan, Radiation Health and Safety Plan, Safety Work Permit, etc.) are followed.
- 3.3 Additional guidance on performing air sampling is provided in NUREG-1575.

4.0 EQUIPMENT

- 4.1 Air Sample Data & Analysis Log (REC-WP-4-02-1), Air Sampler Filter Envelope(s) (REC-WP-4-02-2) and PDR Data & Analysis Log (REC-WP-4-02-3).
- 4.2 Black ink pen (indelible)
- 4.3 Cellulose-ester filters or other appropriate filters
- 4.4 High Volume Sampler
- 4.5 Personal DataRAM (PDR)

5.0 PROCEDURE

- 5.1 Preparation for High Volume Air Sampling
- 5.1.1 Obtain air sample envelope(s) and fill out with the appropriate information: Date, Serial Number, and Placement Location.
- 5.1.2 Load filter head with appropriate filter and start pump.
- 5.1.3 Record start time and meter flow rate on sample envelope form REC-WP-4-02-2.
- 5.2 Collection of High Volume Air Sample
- 5.2.1 Record final pump stop time and ending flow rate on sample envelope.
- 5.2.2 Remove filter from sampling head and place in sample envelope.

Remedial Construction Services, L.P. 9720 Derrington Houston, TX 77064

Revision 04 December 2004

RECON Procedure: REC-WP-4-02

Air Sampling

- 5.2.3 Determine total elapsed time and enter on envelope and data log.
- 5.2.4 Multiply total elapsed time by the average flow rate to determine volume sampled in liters or cubic feet as appropriate and enter on envelope.
- 5.2.5 Place sample media on a planchet and insert in Ludlum Model 2929 and record results on REC-WP-4-02-1.
- 5.2.6 If the initial count indicates air concentrations of .3 DAC or greater the air sample filter will be recounted. The recount will be adjusted for radon in accordance with "On Site Air Sampling L. Max Scott 10/13/04". If the recount indicates air concentrations of .3 DAC or greater then the filter will be held until any radon daughters have decayed. The filter will be recounted and this will be considered the final result.
- 5.3 Preparation for PDR Air Sampling
- 5.3.1 Perform zero check and fill out Attachment 5 (Personal DataRAM Daily Inspection and Zero Form) located in RECON's Environmental Health and Safety Plan (EHASP).
- 5.3.2 Place PDR in designated monitoring location.

5.4 Retrieving PDR Data

- 5.4.1 Collect PDR samplers and download data onto computer.
- 5.4.2 Summarize data on form REC-WP-4-02-3
- 5.4.3 Table 2 in attachment titled "On-Site Air Sampling, L. Max Scott, 10/13/04" shall be used to determine the DAC as a function of weight by volume and specific activity by estimated concentration of exposure material (pCi/g Th-232)

6.0 REFERENCES

NA

7.0 ATTACHMENT

Form REC-WP-4-02-1	Air Sampling Data & Analysis Log
Form REC-WP-4-02-2	Air Sampling Envelope
Form REC-WP-4-02-3	PDR Data & Analysis Log
On-Site Air Sampling, L. Max Scott,	10/13/04

Remedial Construction Services, L.P. 9720 Derrington Houston, TX 77064

Revision 04 December 2004

RECON Procedure: REC-WP-4-02

-

Air Sampling

Form REC-WP-4-02-1

Remedial Construction Services, L.P. 9720 Derrington Houston, TX 77064

Revision 04 December 2004 .

Form REC-WP-4-02-1 Air Sample Data Analysis Log

Instrument Type Pump Typc Instrument Serial # Pump Serial # Detector Type Cal. Due Date Detector Serial # Derived Air Concentration Value (Th-232): Cal. Due Date 2E-12 Model Arrow Concentration Value (Th-232): Ambient Conditions / Comments								
Detector Type Cal. Due Date Detector Serial # Derived Air Concentration Value (Th-232): Cal. Due Date 2E-12 mCi/ml Site Background Activity	Instrument Type	Pump Type						
Detector Serial # Derived Air Concentration Value (Th-232): Cal. Due Date 2E-12 mCi/ml Site Background Activity	Instrument Serial #	Pump Serial #						
Cal. Duc Date 2E-12 mCi/ml Site Background Activity	Detector Type	Cal. Due Date						
2E-12 mCi/ml She Background Activity	Detector Serial #	Derived Air C	Derived Air Concentration Value (Th-232):					
Ambient Conditions / Comments	Cal. Due Date	2E-12	mCi/ml	· · ·				
		Ambient Conditions / Commen	its	<u> </u>				

Sample Collection Data											
Lime Start I Time Stop I		Elapsed Time (Min)	Flow Rate (lpm)	Total Volume (liters)	Technician Performing Count						
	- - -										

.

Field Screening Count Data									
a Bkg Count Rate	a Gross Counts	α Net Count Rate	Technician Performing Count						
			· · · · · · · · · · · · · · · · · · ·						

	Analysis Data										
Work Area Concentration Quick Count (mCi/ml)	DAC Fraction Quick Count (%)		Laboratory Result (pCi/F)	Laboratory Data Concentration (mCi/ml)	Laboratory DAC Fraction (%)						

Reviewed By:

RECON Procedure: REC-WP-4-02

•

.

Air Sampling

- -

Form REC-WP-4-02-2

Remedial Construction Services, L.P. 9720 Derrington Houston, TX 77064

Revision 04 December 2004

.

Form REC-WP-4-02-2 Air Sample Envelope

Date:	Sample #
Time On:	Sampler ID #
Time Off:	Total Min:
Flow:	Volume:
Technician:	
Location:	
Reason:	

Remedial Construction Services, L.P. (Recon) 9720 Derrington Houston, TX 77064

.

Revision 04 December 2004

.

٩,

.

RECON Procedure: REC-WP-4-02

.

.

Form REC-WP-4-02-3

Remedial Construction Services, L.P. 9720 Derrington Houston, TX 77064

Revision 03 June 2004

•

.

Air Sampling

. . .

Form REC-WP-4-02-3 PDR Data Analysis Log

.

Date	Wind Direction/ Weather	Elasped Run Time	Up Wind Max STEL mg/m3	Up Wind Avg STEL mg/m3	Location	Elasped Run Time	STEL	Down Wind Avg STEL mg/m3	Location	Estimated TH- 232 pCI/g Concentration	% DAC	Comments
												* Note 1 -
4/12/2004					* Note 1	7h 36min	0.019	0.008	Down wind of job site	20	0.044	No Data Collected
				1	Fence at				North Fence	·		
4/15/2004	South	9h 40min	0.168	0.051	Safety Trailer	9h 40min	0.128	0.022	Line	40	0.242	
	1				South Fence				North Fence			
4/16/2004	South	9h 30min	0.099	0.078	Line	9h 25min	0.070	0.036	Line	60	0.594	
					South Fence	1			50 feet from			
4/17/2004	South	6h Omin	0.112	0.078	Line	6h 00min	0.041	0.030	work	80	0.660	
					Fence at	Í .		!	50 feet from			
4/19/2004	South	8h 05min	0.112	0.088	Safety Trailer	8h 00min	0.287	0.062	work	100	1.705	[
					Fence at	I			50 feet from			
4/22/2004	South	7h 30min	0.150	0.084	Safety Trailer	7h 30min	0.112	0.031	work	120	1.023	1
					South Fence				50 feet from			
4/26/2004	South	9h 40min	0.017	0.005	Line	9h 35min	0.014	0.006	work	140	0.231	1
					South Fence				50 feet from			
4/27/2004	South	9h 35min	0.016	0.003	Line	9h 35min	0.026	0.009	work	160	0.396	ł
		a. 45			South Fence	0.45			50 feet from			
4/28/2004	South	9h 15min	0.038	0.017	Line	9h 15min	0.055	0.025	work	180	1.238	
					South Fence Line @ Safety				50 feet from			
5/3/2004	South	8hr 25min	0.028	0.007	Trailer	7h 25min	0.037	0.013	conveyor	200	0.715	

This form will be kept as a spreadsheet. The information above is example data.

Remedial Construction Services, L. P. 9720 Derrington Houston, TX 77064

,

Revision 04 Effective December 2004 s.

RECON Procedure: REC-WP-4-02

Air Sampling

On-Site Air Sampling, L. Max Scott, 10/13/04

Remedial Construction Services, L.P. 9720 Derrington Houston, TX 77064

•

Revision 04 December 2004 ADA CONSULTANTS L. MAX SCOTT, PhD Certified Health Physicist 1348 Chippenham Drive Baton Rouge, Louisiana 70808 225 767-5519

October 13, 2004

Mr. J. W. (Bill) Vinzant Kaiser Aluminum and Chemical Corporation 9141 Interline Ave. Suite 1A Baton Rouge, LA 70809

RE: On-site Air Sampling Program

Dear Mr. Vinzant:

Attached is the write-up of the details of the on-site air sampling program. I believe that it addresses all of the air sampling concerns raised by the Nuclear Regulatory Commission Inspectors.

Sincerely,

L. Max Scott, Ph.D.

xc: Tulsa file

On-Site Air Sampling

Purpose:

To bring together in one document the steps used to evaluate air sampling results and the underlying rational.

Derived Air Concentration (DAC):

The weighted DAC for ²³² Th, ²²⁸ Th, and ²³⁰ Th is 2×10^{-12} . Derived as follows Activity ratio of 1:1:3.5 DAC ²³² Th - 5×10^{-13} uCi/ml DAC ²²⁸ Th - 4×10^{-12} uCi/ml DAC ²³⁰ Th - 3×10^{-12} uCi/ml

Weighted DAC = $1/(((1/5.5) \times (5 \times 10^{-13} \text{ uCi/ml})) + ((1/5.5) \times (4 \times 10^{-12} \text{ uCi/ml})) + ((3.5/5.5) \times (3 \times 10^{-12} \text{ uCi/ml}))) = 2.73 \times 10^{-12} \text{ uCi/ml}.$ round down to 2×10^{-12} .

There are 7 alpha emitters in the Thorium-232 decay chain - ²³² Th, ²²⁸ Th, ²²⁴ Ra, ²²⁰ Rn, ²¹⁶ Po, ²¹² Bi, and ²¹² Po.

In the derivation of the DAC and the evaluation of air sampling results no credit is taken for the contribution of ²²⁴ Ra or ²²⁰ Rn. Rn-220 and its daughters have short half-lives and will have essentially decayed away before the evaluation of air sampling is completed.

Due to the long half-life of 226 Ra (first daughter of 230 Th) this decay chain is not in equilibrium and for all practical purposes the only alpha emitter is 230 Th.

Collection of Air Samples:

Air samples are collected by two methods:

- Conventional hi-volume air samplers with the collection of particulate on a filter paper
- DataRAM pDR-1000 which measures weight per volume of respirable air particulate

Evaluation of Air Samples:

Conventional Air Sampling

Correction for Radon

Radon-222 is present in essentially all environments, and its daughters are collected on the filter paper. Since the radionuclides of concern at the Tulsa site include ²³² Th in equilibrium with its daughters, ²²⁰ Rn and its daughters may be present in the environment, and if present wil be collected on the filter paper. For the initial evaluation of air concentrations, no correction is made for ²²⁰ Rn daughters. Where elevated air concentrations are observed (.30 DAC or greater), sampling filters will be held until all of the radon daughters have decayed and then recounted. This count shall be considered

the final result. Because the ²²² Rn daughters have short halflives (controling half-life 26.8 minutes of ²¹⁴ Pb), the comparison of results of a recount of a filter paper separated by 30 minutes to 2 hours lapse time is a good indicator of ²²² Rn daughter contribution. Table 1 is to be used to estimate and correct for the ²²² Rn daughter contribution. An example of its use is also shown.

Percent ²²² Rn										
	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lapse Time min.			<u> </u>	Rc	ducti	on Fa	ctor			
	0.98	0.96	0.95	0.93	0.91	0.89	0.87	0.86	0.84	0.82
60	0.95	_0.9	0.85	0.8	0.76	0.71	0.66	0.61	0.56	0.51
90	0.93	0.85	0.78	0.72	0.64	0.57	0.5	0.42	0.35	0.28
120	0.91	0.83	0.74	0.66	0.57	0.48	0.4	0.31	0.23	0.14

Table 1Fraction of Original Activity remaining vs Percent 222 Rn

Table values derived as follows: For each fraction of 222 Rn, i.e., 10% 222 Rn and 90% thorium, the fraction of the original count remaining after the selected lapse time was calculated assuming the decay of the 222 Rn daughters and no decay of the thorium.

Example of use:

Initial count 540 cpm

Re-count after 60 minutes 325 cpm

325 + 540 = .60

On the 60 minute lapsed time line find the table value equal to or just greater than ratio of the 2 counts (.60). Note that this is under the 80% column. This Indicates that 80% of the alpha activity was due to ²²² Rn daughters. Thus, $325 \times 2 = 65$ cpm are attributed to thorium. Use this value to calculate percent of DAC in the usual manner. Correction for ²²⁰ Rn daughters is more difficult because of the 10.6 hour controlling half-life of ²¹² Pb. If the air sample result corrected for ²²² Rn daughters exceeds .3 DAC the area shall be posted. The filter paper will be recounted after 48 hours to determine if the ²²⁰ Rn daughters contributed to the count. If the recount results in a calculated DAC less than .3, the posting shall be removed.

Background

No correction will be made for trace concentrations of uranium and thorium particulate in ambient air.

DataRAM pDR-1000

The pDR-1000 collect 1 minute samples and analzed for weight by volume of air particulate equal to or less than 10 micron in diameter (respirable particulate). If one knows the weight by volume and the specific activity of the particulate then the radionuclide air concentration or fraction of the DAC can be derived. Table 2 list the percent of DAC as a function of weight by volume and specific activity.

2

Table 2								
DAC as a Function of Weight by Volume and Specific Activity								

Estimated Concentration of Exposure Material pCi/g Th-232										
	pCi/g									
	20	40	60	80	100	120	140	160	180	200
mg/ cu m	% of DAC									
0.1	0.55	1.1	1.65	2.2	2.75	3.3	3.85	4.4	4.95	5.5
0.2	1.1	2.2	3.3	4.4	5.5	6.6	7.7	8.8	9.9	11
0.3	1.65	3.3	4.95	6.6	8.25	. 9.9	11.55	13.2	14.85	16.5
0.4	2.2	4.4	6.6	8.8	11	13.2	15.4	17.6	19.8	22
0.5	2.75			11	13.75	16.5	19.25	22	24.75	27.5
0.6	3.3	6.6		· 13.2	16.5	19.8	23.1	26.4	29.7	33
0.7	3.85	7.7	11.55	15.4	19.25	23.1	26.95	· 30.8	34.65	38.5
0.8	4.4	8.8	13.2	17.6	22	26.4	30.8	35.2	39.6	44
0.9	4.95	9.9	14.85	19.8	24.75	29.7	34.65	39.6	44.55	49.5
1	5.5	11	16.5	22	27.5	33	38.5	44	49.5	55
2	11	22	33	44	55	66	77	88	99	110
3	16.5	33	49.5	66	82.5	99	115.5	132	148.5	165
4	22	44	66	88	110	132	154	176	198	220
5	27.5	55		110	137.5	165	192.5	220	247.5	275
6	33			132		198	231	264	297	330
~ 7	38.5			154		231	269.5	308	346.5	385
8	44	88					308	352	396	440
9	49.5							396	445.5	495
10				220					495	550

NOTE: Thorium concentration shall be determined by taking at least 3 measurments at surface contact with a microR meter. Select the most representative reading and multiply by .3 to obtain pCi/g Th-232. (35 uR \sim 10 pCi/g Th-232 Dan Baker)

Example of use:

Sample an operation for 60 minutes with a resulting average concentration of .73 mg/m³ (always round up to next table value). Estimated concentration of exposure material 110 pCi/g (always round up to next table value). Table value under .8 mg/m³ and 120 pCi/g 26.4 % of DAC. L. Max Scott

10/13/2004

3