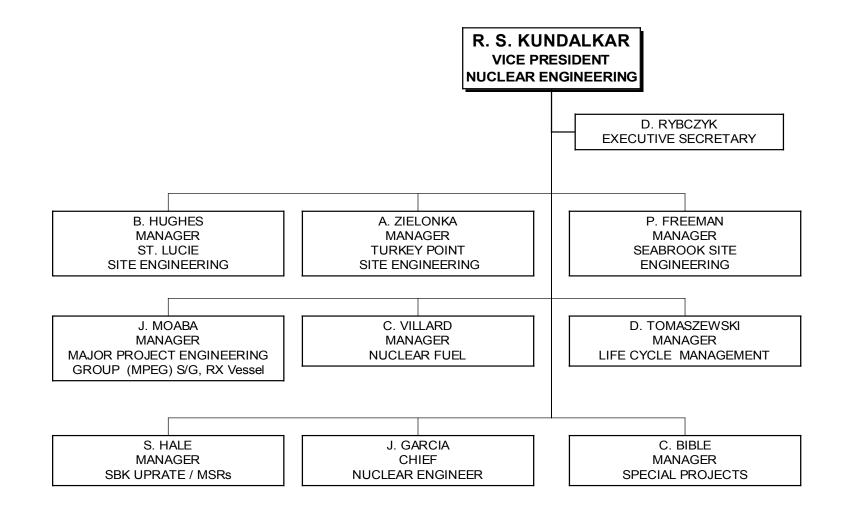


# Nuclear Engineering NRC / FPL Interface Meeting

### December 6, 2004 Region II Atlanta, Georgia






# Agenda

| <ul> <li>Opening Remarks</li> </ul>         | R. Kundalkar           |
|---------------------------------------------|------------------------|
| <ul> <li>Engineering Performance</li> </ul> | B. Hughes /A. Zielonka |
| Corrective Action                           | C. Bible               |
| <ul> <li>Equipment Reliability</li> </ul>   | A. Pell                |
| Life Cycle Management                       | W. Busch               |
| <ul> <li>Materials Management</li> </ul>    | R. Gil                 |
| <ul> <li>2004 Hurricane Season</li> </ul>   | B. Hughes              |
| • Summary                                   | R. Kundalkar           |

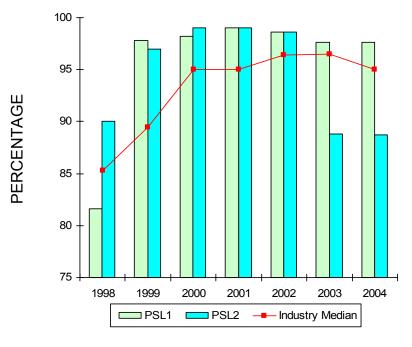


### Nuclear Engineering Organization

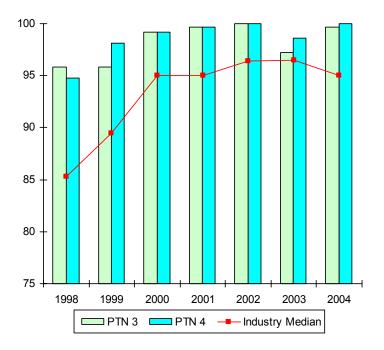




# **Engineering Performance**


### St. Lucie / Turkey Point Engineering

### B. Hughes / A. Zielonka




### WANO Weighted Overall Performance

St. Lucie







Data Through 9/04



|    | Nuclear Safe                                            | ty Focus (Data Thro                                                                                                                             | ough 9/30/04)                 |                                      |                                        |
|----|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|----------------------------------------|
|    | Indicators                                              | G                                                                                                                                               | oals                          | St. Lucie                            | Turkey Point                           |
|    | indicators                                              | Green                                                                                                                                           | Green Red                     |                                      | Actuals                                |
| А. | Unplanned Scrams Per 7000 Hours                         | <u>&lt;</u> 1                                                                                                                                   | >6                            | Unit 1 - 0.0<br>Unit 2 - 1.7         | Unit 3 - 0.0<br>Unit 4 - 0.9           |
| В. | Safety System Unavailibility - EAC <sup>(1)(2)(3)</sup> | <1.25%                                                                                                                                          | >5%                           | Unit 1 - 0.6%<br>Unit 2 - 0.5%       | Unit 3 - 0.4%<br>Unit 4 - 0.5%         |
| C. | Safety System Unavailibility - HPSI <sup>(1)(2)</sup>   | <0.75%                                                                                                                                          | >5%                           | Unit 1 - 0.4%<br>Unit 2 - 0.4%       | Unit 3 - 0.2%<br>Unit 4 - 0.2%         |
| D. | Safety System Unavailibility -AFW <sup>(1)(2)</sup>     | <1.0%                                                                                                                                           | >6%                           | Unit 1 - 0.5%<br>Unit 2 - 0.7%       | Unit 3 - 0.4%<br>Unit 4 - 0.6%         |
| E. | Safety System Unavailibility - RHR <sup>(1)(2)</sup>    | <0.75%                                                                                                                                          | >5%                           | Unit 1 - 0.6%<br>Unit 2 - 0.6%       | Unit 3 - 0.5%<br>Unit 4 - 0.4%         |
| F. | NRC Violations due to Engineering                       | <u>&lt;</u> 2                                                                                                                                   | >6                            | 2 NCV's                              | 4 NCV's                                |
| G. | QA Findings                                             | <2                                                                                                                                              | >6                            | 3                                    | 1                                      |
| Н. | Wano FRI                                                | ≤5 E-4                                                                                                                                          | >2.0 E-2                      | Unit 1 - 1.13E-5<br>Unit 2 - 4.01E-5 | Unit 3 - 1.64 E-5<br>Unit 4 - 2.15 E-6 |
| Ι. | OSHA Recordable Injuries                                | 0                                                                                                                                               | 2                             | 0                                    | 0                                      |
| J. | ALARA                                                   | 10% <budget< td=""><td>&gt;5% Over Budget</td><td>Outage 7%&lt; Non-Outage 11%&lt;</td><td>Outage 26%&lt;<br/>Non-Outage 10%&lt;</td></budget<> | >5% Over Budget               | Outage 7%< Non-Outage 11%<           | Outage 26%<<br>Non-Outage 10%<         |
| К. | Reactivity Events Due to Engineering                    | 0 Major<br><4 Minor                                                                                                                             | <u>≥</u> 5 Major<br>> 8 Minor | 0 Lvi 1 0 Lvi 2                      | 0 Lvi 1 0 Lvi 2                        |

(1) All green by NRC criteria

(2) FPL criteria more stringent

(3) Unit 3 EAC significant improvement



|    | Problem Identification                                         | on and Correc            | <b>tion</b> (Data Througl | h 9/30/04) |              |
|----|----------------------------------------------------------------|--------------------------|---------------------------|------------|--------------|
|    |                                                                | Goals                    |                           | St. Lucie  | Turkey Point |
|    | Indicators                                                     | Green                    | Red                       | Actuals    | Actuals      |
| А. | Condition Report Evaluations (Late)                            | 0 Late                   | <u>&gt;</u> 5 Late        | 0          | 1            |
| В. | Condition Report Action Items (CAQ SITRIS ACTIONS Late)        | 0 Late                   | ≥5 Late                   | 0          | 0            |
| C. | Condition Report Action Items (Non CAQ<br>SITRIS ACTIONS Late) | 0 Late                   | >11 Late                  | 0          | 0            |
| D. | Self Assessments                                               | 1 in 6 mos               | <2 per year               | 2          | 5            |
| E. | System Walkdowns                                               | 90%-100% W/D<br>Complete | <70% W/D<br>Complete      | 100%       | 100%         |
| F. | Drawing/VTM/TEDB Changes                                       | 0-2 Late                 | ≥10 Late                  | 0          | 18 (1) (2)   |

(1) No safety significant items late.

(2) No late priority 1 drawings, all were priority 3 and 4 drawings.



|    | Quality of Engineering (Data Through 9/30/04)                     |       |     |                 |              |
|----|-------------------------------------------------------------------|-------|-----|-----------------|--------------|
|    |                                                                   | Goals |     | St. Lucie       | Turkey Point |
|    | Indicators                                                        | Green | Red | Actuals Actuals |              |
| А. | Engineer Initial Training Not Started<br>Within 12 Months of Hire | <1    | >6  | 0               | 0            |
| В. | Training Performance Indicators                                   | GREEN | RED | GREEN           | GREEN        |
| C. | Plant Modification Revisions due to<br>ENG Error                  | 0     | ≥5  | 4               | 0            |
| D. | Procurement Engineering Backlog<br>( >4 Weeks Old)                | <2    | >11 | 0               | 121          |



|            | Cost/Plant Operation                         | on Performan | Ce (Data Through 9 | )/30/04)                           |                                  |
|------------|----------------------------------------------|--------------|--------------------|------------------------------------|----------------------------------|
| Indicators |                                              | Goals        |                    | St. Lucie                          | Turkey Point                     |
|            |                                              | Green        | Red                | Actuals                            | Actuals                          |
| Α.         | Summer Capacity Factor                       | >99.8%       | <98%               | 100.00%                            | Unit 3 - 95.5%<br>Unit 4 -99.17% |
| В.         | Thermal Performance Indicator                | >99.70%      | <99.5%             | Unit 1 - 99.98%<br>Unit 2 - 99.91% | Unit 3 - 99.9%<br>Unit 4 - 100%  |
| C.         | Refueling Outage Duration                    | <30 Days     | >35 Days           | Unit 1<br>35                       | Unit 3<br>66 (1)                 |
| D.         | Forced Loss Rate 18 Month Running<br>Average | 0% - 1%      | >2.0%              | Unit 1 - 0.1%<br>Unit 2 - 4.24%    | Unit 3 - 2.16%<br>Unit 4 - 1.35% |

(1) Special Reactor Head Replacement Outage for Turkey Point (Goal < 65 days)



### NRC Performance Indicator On Reactor Trips: Green to White

- Causes
- Actions
- Status of Corrective Actions
- Future Initiatives



### **Corrective Action**

C. Bible



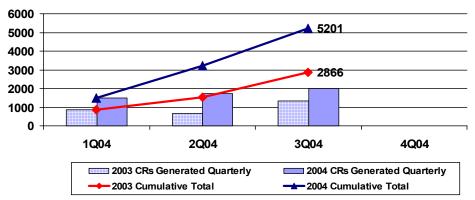
# **Corrective Action**

- Performance Improvement Initiatives
  - Programmatic
  - Organizational
  - Strategic
- Examples

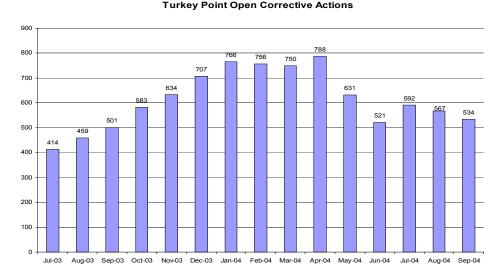


- Programmatic Improvements
  - Electronic Condition Report system
  - Equipment Reliability Improvement Program
  - Utilizing enhanced troubleshooting procedure
    - Form multi-discipline team
    - Obtain Industry Experience and Vendor Input
    - Develop Fault Tree and Cause Validation Matrix




- Organizational Initiatives
  - Performance Improvement Departments
  - Corporate equipment reliability manager
  - Increased engineering staffing levels
    - Improved focus on equipment reliability
    - More proactive approach for equipment health
    - Dedicated corrective action program coordinator
    - Engineering "FIX IT NOW" rapid response teams




- Strategic Initiatives
  - Equipment Reliability
  - Preventative Maintenance Optimization
  - Breaker Reliability
  - Life Cycle Management



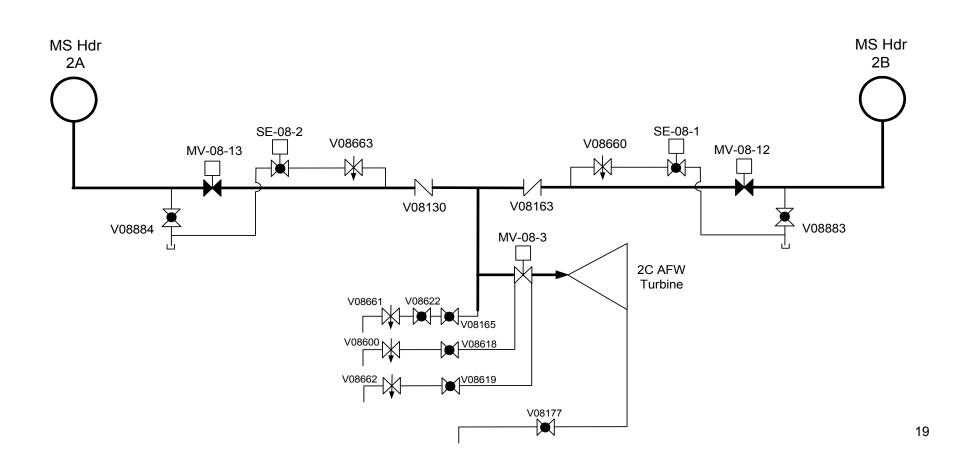
- Increased number of condition reports
- Increased sensitivity to initiate condition reports for unexpected/unwanted conditions
- Increased identification of opportunities for improvement
- Open corrective action backlog remaining constant
- New trending tool developed, training in progress



**Turkey Point Condition Reports Originated Site-Wide** 

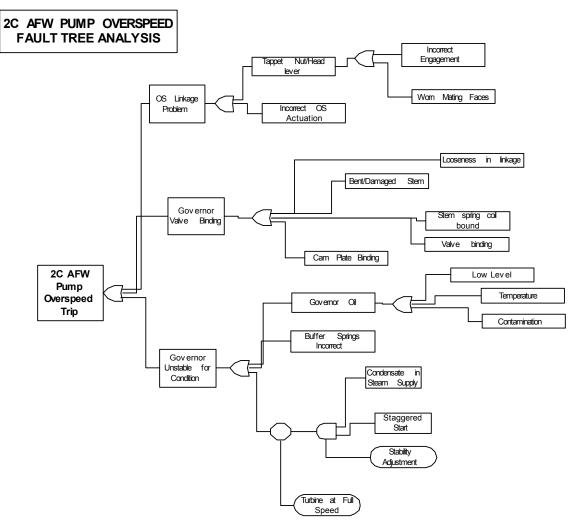





- Event
  - Steam driven pump tripped on overspeed while starting
- Design
  - Two electric driven pumps
  - One steam driven pump
    - Pump has two steam admission valves from A and B steam headers
    - Steam admission valves open independently based on respective steam generator level



- Root Cause
  - Design of AFAS start logic
    - Staggered pump start results from different timing on actuation of two steam admission valves causing governor instability
    - Staggered starts were not tested during monthly surveillance's
  - Design of steam supply piping
    - Condensate in steam supply challenges governor when second steam admission valve opens




### Unit 2 AFW 2C Turbine Supply/Drain Piping





CR 03-4548 Attachement 23, Page 1 of 4





### **2C AFW Pump Turbine Trip Fault Validation Matrix**

| Potential Cause                                 | Potential Fault                                | Validation                                                            | Results                                                                             | Root Cause                                                       |
|-------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Overspeed linkage vibration/wear                | Tappet/head lever<br>engagement                | Measure trip tappet/head<br>lever engagement (0.030"-<br>0.060")      | 0.038"                                                                              | Ruled Out- 0.038" within spec.                                   |
|                                                 |                                                | Agitate linkage to test health                                        | Agitated linkage and could not get mechanism to trip                                |                                                                  |
|                                                 | Condition of head<br>lever/tappet nut surfaces | Inspect head level/tappet<br>nut surfaces                             | Surfaces in good condition                                                          | Ruled Out based on<br>inspection and agitation<br>test.          |
|                                                 | Incorrect OS actuation                         | Replicate event to see if actual overspeed occurs.                    | Test duplicated valid OS – max<br>turbine speed 5200 rpm, OS<br>setpoint – 4690 rpm | Ruled Out base on test results                                   |
| Governor valve<br>binding/improper<br>operation | Bent/damaged stem                              | Inspect for bent stem.<br>Monitor during operation.<br>Manual stroke. | Vendor and SCE observed<br>operation, no indication of<br>improper operation.       | Ruled Out based on<br>inspection and<br>operational performance. |
|                                                 | Valve binding                                  | Check for smooth stroke by manual actuation                           | Inspection performed; no<br>indication of adverse condition.<br>Manual stroke Sat.  | Ruled Out based on<br>inspection and<br>operational performance. |
|                                                 | Cam plate binding                              | Monitor during operation.<br>Manual stroke.                           | Vendor and SCE observed<br>operation, no indication of<br>improper operation.       | Ruled Out based on<br>inspection and<br>operational performance. |
|                                                 | Looseness or free play of linkage              | Check for looseness or free play                                      | Vendor and SCE inspected linkage. No looseness noted.                               | Ruled Out                                                        |
|                                                 | Spring coil bound on<br>closing                | Check to determine if spring is coil bound                            | Vendor observed operation, spring not coil bound                                    | Ruled Out                                                        |



### **2C AFW Pump Turbine Trip Fault Validation Matrix**

| Governor<br>Unstable for | Oil level adequate                          | Check Oil Level                                                                   | 3/8" below top of sightglass.<br>Verified correct during test runs.                                                                                                                        | Ruled Out.                                                 |
|--------------------------|---------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Condition                | Correct buffer springs                      | Check springs                                                                     | Checked with Woodward that correct springs are installed.                                                                                                                                  | Ruled Out, stable operation achieved with current springs. |
|                          | Oil Temperature/<br>Viscosity               | Verify correct oil for<br>operating range.                                        | R&O 32 oil is acceptable to temperature as low as 40 °F.                                                                                                                                   | Temperature ruled out as contributor.                      |
|                          | Governor mis-adjusted                       | Review traces for divergent speed behavior                                        | Test traces indicated that adjustment was needed.                                                                                                                                          | Potential Contributor                                      |
|                          | Load Change challenges governor.            | Perform testing to determine<br>possibility of load change<br>causing instability | No abrupt load changes were witnessed during tests.                                                                                                                                        | Ruled out based on testing.                                |
|                          | Staggered start causes governor instability | Review surveillance data,<br>previous events and current<br>test data.            | Governor response satisfactory<br>during single start scenarios<br>and staggered start scenarios<br>without condensate. Turbine<br>vulnerable to overspeed when<br>upset at nominal speed. | Potential Root Cause                                       |
|                          | Condensate in steam supply challenges       | Perform replicate testing to determine presence of                                | Testing demonstrated that water present during start                                                                                                                                       | Potential Root Cause                                       |
|                          | governor.                                   | condensate                                                                        | sequence.                                                                                                                                                                                  |                                                            |



- Interim Corrective Action
  - Adjusted governor compensating needle valve and verified proper operation with extensive testing replicating staggered starts
  - Optimized condensate removal and heating of piping
  - Perform staggered starts during monthly surveillance's
- Final Corrective Action
  - Modify AFAS start logic to simultaneously open both steam admission valves (Currently planned for unit outages in 2005)



- Event
  - 4A EDG lockout relay actuated while EDG was in the standby condition
  - Initial indications pointed to a problem with the Electronic Speed Switch (ESS)
- Design
  - ESS receives input from magnetic speed sensor on engine flywheel and provides relay outputs of engine speed to various components
  - Power source for ESS is shared with EDG annunciator panel power supply



- Root Cause
  - ESS sensed electrical noise from faulty annunciator panel power supply as pulses from speed circuit magnetic pickup
  - Power supply filtering capacitor failed
- Corrective Action For Similar Power Supplies
  - Replace 4B EDG and Unit 3 and 4 control room 'J' panel capacitors
  - Establish PM for 8 year replacement of filtering capacitors



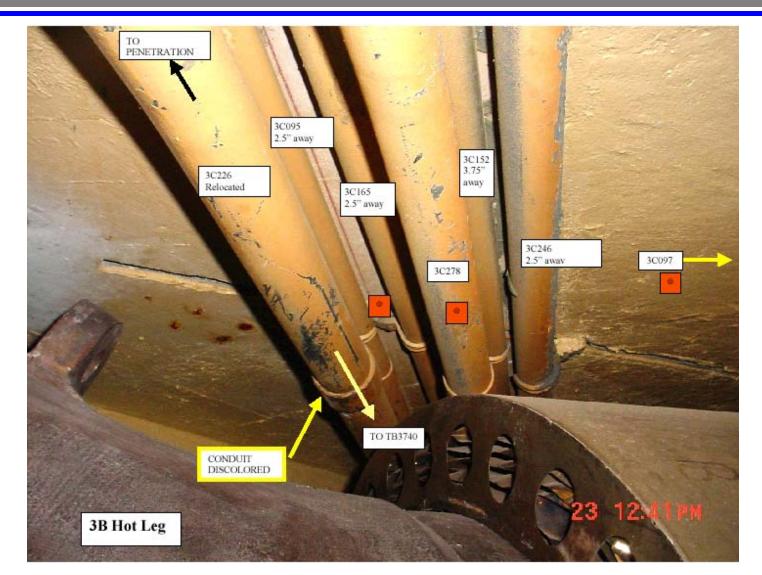
### Attachment 2 EDG 4A Annunciator Power Supply (PS-1) Root Cause Matrix

| <u>Cause</u>                               | Validation/Action Steps                                                              | Expected Results                                                             | Actual Results                                                                                                              | <u>Status</u> |
|--------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------|
| Failed PS1 inverter section                | Replace PS1 inverter section                                                         | False speed indication<br>would clear. Annuciator<br>power would be restored | Annuciator power supply<br>failed; Fuse 2 on new<br>inverter opened. Obtain<br>good replacement inverter<br>with new parts. | Complete      |
|                                            | Troubleshoot for failed<br>component on original PS1<br>inverter                     | Failed open C1 capacitor<br>would not filter feed back<br>noise. In Progress | Inverter input capacitor<br>(C1-1200 mfd) found open<br>circuited.                                                          | Complete      |
|                                            | Troubleshoot for failed<br>component on replaced PS1<br>inverter                     | Identify failed components                                                   | Found a mounting screw<br>(larger than normal)<br>shorting transistor to<br>chassis                                         | Complete      |
| Failed PS1 rectifier<br>circuit            | Implement TSA to isolate<br>inverter and test PS1 rectifier<br>circuit with 120 Vac. | Annunciator circuits<br>function properly                                    | Annunciator circuits<br>function properly                                                                                   | Complete      |
| Failure of annunciator cards or circuitry. | Implement TSA to isolate<br>inverter and test PS1 rectifier<br>circuit with 120 Vac. | Annunciator circuits<br>function properly.                                   | Annunciator circuits<br>function properly.                                                                                  | Complete      |
| Excessive loading from annunciator.        | Use temporary power supply.<br>Measure load currents.                                | Load currents within specification.                                          | Load currents within specification.                                                                                         | Complete      |

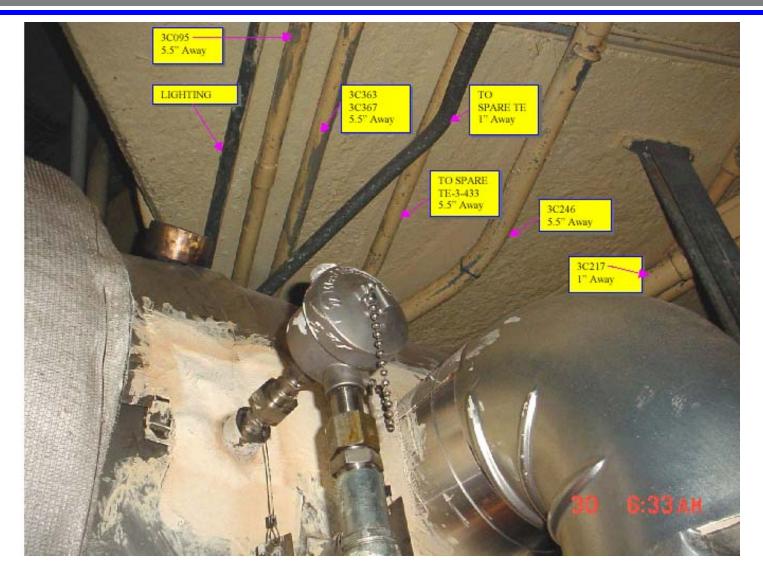


#### Attachment 2 EDG 4A Lockout Due to Electronic Speed Switch Actuation - Root Cause Matrix

| <u>Cause</u>                     | Validation/Action Steps                                                                                                                                                | Expected Results                                                     | Actual Results                                                                                                                                 | <u>Status</u> |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Noise on magnetic<br>pickup      | Disconnect magnetic pickup<br>from ESS.                                                                                                                                | False speed indication would remain                                  | False speed indication remained. NOT A CAUSE                                                                                                   | Complete      |
| Failed ESS                       | Bench check ESS. Replace<br>ESS.                                                                                                                                       | ESS bench checks out good.<br>False speed indication would<br>clear. | ESS bench checks good. False<br>speed indication remained. NOT<br>A CAUSE                                                                      | Complete.     |
| Noise on 125 Vdc power<br>supply | Contact vendor and OE to determine susceptibility to noise.                                                                                                            | ESS not susceptible to noise.                                        | Both vendor and OE (VC<br>Summer) indicate that ESS can<br>give false speed indication with<br>noise on input power.<br><b>POTENTIAL CAUSE</b> | Complete      |
|                                  | Measure noise (ripple) on 125<br>Vdc.                                                                                                                                  | Approximately 1-3 Vac peak to peak.                                  | Acceptable with annunciator<br>circuit isolated. <b>POTENTIAL</b><br><b>CAUSE</b>                                                              | Complete      |
|                                  | Identify noise source. Most<br>likely source is the annunciator<br>circuitry since false speed<br>signal cleared when Annuciator<br>125 Vdc power supply fuse<br>blew. | Failed power supply                                                  | Failed Power Supply                                                                                                                            | Complete      |



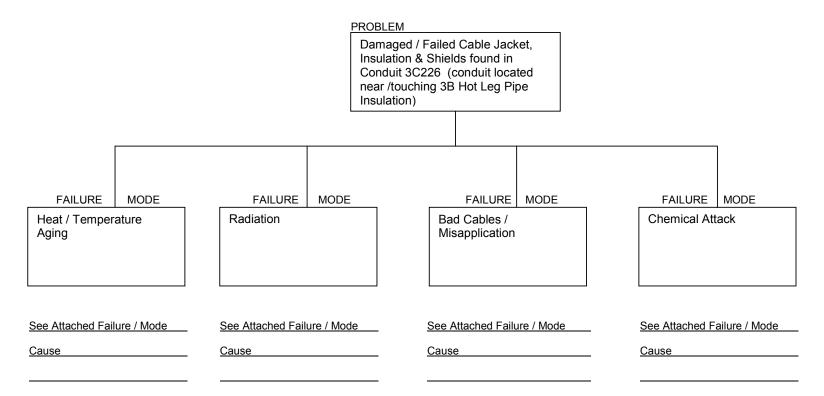

- Event
  - After Unit 3 was shutdown for 20 days, valve PCV-456 (PORV) unexpectedly opened when its control switch was placed in auto
  - Investigation revealed that instrument cable had shorted conductors where cable/conduit passed over 3B Hot Leg RCS piping
  - Majority of cables over 3B and 3C Hot Legs were degraded, cables in all other locations were in good condition
- Design
  - Various cables/conduits are routed in close proximity to RCS piping




- Cause
  - Cable accelerated aging due to temperature
    - Root Cause
      - Conduits routed in enclosed areas
      - Limited heat dissipation capability
      - High heat sources
    - Contributing Factors
      - Normal Containment cooling ventilation register found failed closed
      - Insulation gaps and deficiencies
      - Uninsulated pipe stubs on RCS piping












### Pressurizer Pressure Channel PT-3-445 Cable Failure Attachment 1 to CR 2004-11329 Page 1 of 8

#### Failure Mode Tree





- Corrective Action
  - All active cables above and in close proximity to Hot and Cold Legs of RCS piping were removed, visually inspected and replaced
  - Sample inspection of cables in other locations in proximity to high temperature piping (i.e. RCS intermediate legs, blowdown lines, main steam, feedwater, letdown and pressurizer)

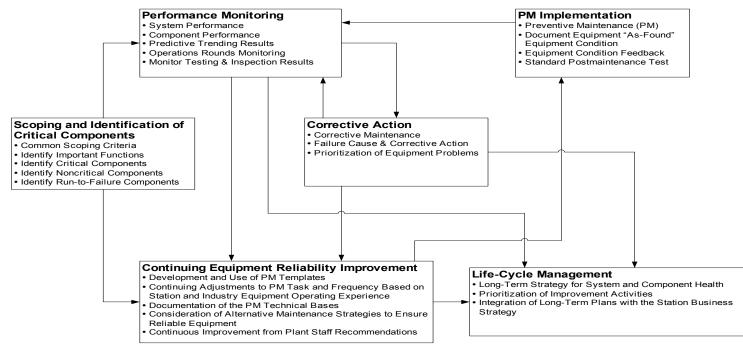


- Corrective Action (continued)
  - Insulation deficiencies corrected
  - Normal Containment cooling ventilation register restored to service
  - Temperatures obtained on 11/27/04 at RCS temperature of 533 degrees; resulted in highest conduit temperature of 124 degrees.
  - Dataloggers installed to obtain temperature readings over an operating cycle
  - Operating experience report issued
  - Operability assessment for Unit 4 issued



- Equipment Performance Improvements
  - Programmatic
  - Organizational
  - Strategic
- Starting to See Positive Benefits
  - Increased number of Condition Reports
  - Improved root cause analysis

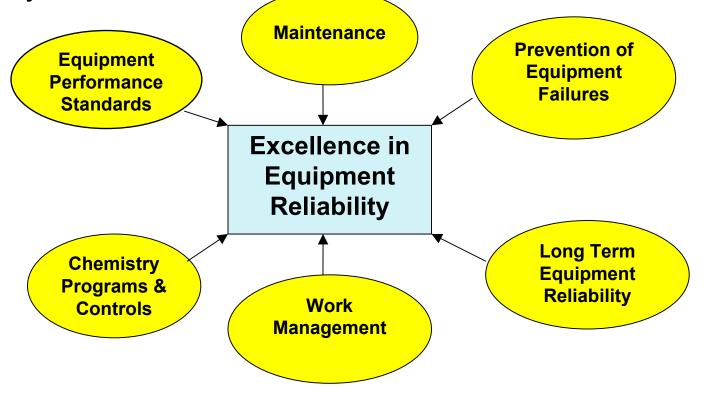



# **Equipment Reliability**

A. Pell



#### Equipment Reliability Improvement Program (ERIP)


- Key Success Factors from INPO 01-004 "Achieving High Equipment Reliability – A Leadership Perspective"
- In 2004, > 200 Formal Actions Completed YTD
- Implements INPO AP-913, Equipment Reliability & 10 NRC Part 50.65 "Requirements for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants"





### NAP-407, Equipment Reliability

- Responsibilities defined for each Station Organization
- Defined Priority Actions for System Health & Equipment Reliability



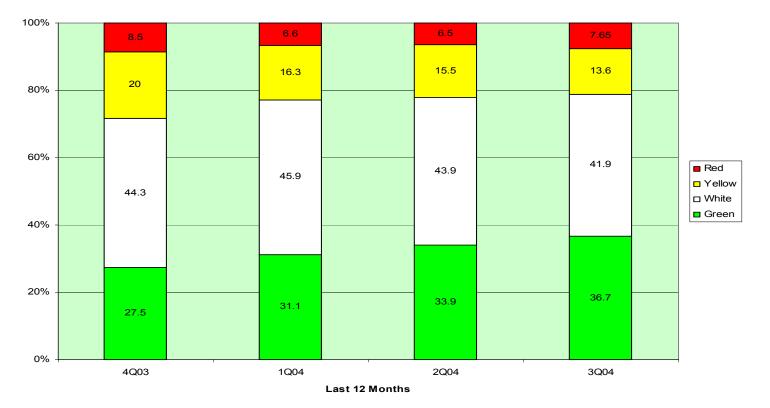


#### **System Health Reporting**

- Assesses System Health and incorporates:
  - INPO AP-913, "Equipment Reliability Process Description"
  - 10 NRC Part 50.65 "Requirements for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants" – Maintenance Rule

#### Action Plans defined for improving System Health

Highest Priority established for Red & Yellow WOs


#### • Key Performance Measures & Indicators track progress

- Top 10 Equipment Issues at each Station
- System Health Metrics
- Equipment Reliability Indicator
- Action Plans reviewed by Plant Health Committees & VPs



#### **System Health Improvement in 2004**

System Health – Turkey Pt. & St. Lucie Status thru end of 3rd Quarter 2004





#### Breaker Program - St. Lucie 4 KV Breaker Replacement

- · SF6 breakers selected
  - Simple operating mechanism with less failure modes
  - Reduced required maintenance
- · SL1-19 Installation
  - Extensive OE review to minimize potential issues
  - Maintenance and testing on key interfaces
  - Additional oversight dedicated to Project



### **Breaker Program**

#### The result:

6 Non Safety breakers installed with no issues





### **Breaker Program**

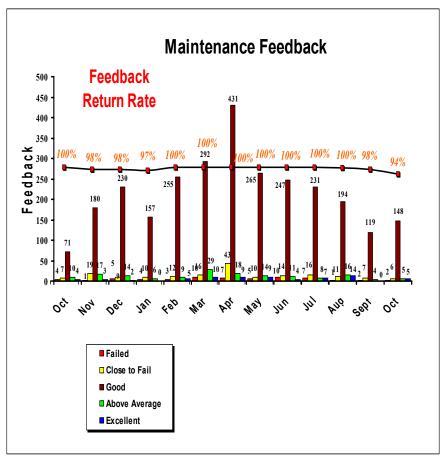
### 4 kV and 6.9 kV Breakers Plan for Breaker Replacements

| ACTIONS                                         | PLANT | #  | OUTAGE  | 2004 | 2005 | 2006 |
|-------------------------------------------------|-------|----|---------|------|------|------|
| REPLACE 4C 4160<br>BREAKERS                     | PTN   | 9  | PTN4-21 |      |      |      |
| REPLACE 6 NNS 4.16 kV<br>BREAKERS               | PSL   | 6  | SL1-19  |      |      |      |
| REPLACE 3C 4160<br>BREAKERS                     | PTN   | 10 | PTN3-21 |      |      |      |
| REPLACE 24 UNIT 2B<br>TRAIN 4.16kV BREAKERS     | PSL   | 24 | SL2-15  |      |      |      |
| REPLACE REMAINING UNIT<br>1 4.16/6.9kV BREAKERS | PSL   | 50 | SL1-20  |      |      |      |
| REPLACE REMAINING UNIT<br>2 4.16/6.9kV BREAKERS | PSL   | 39 | SL2-16  |      |      | 43   |



### **Breaker Program**

- St. Lucie Outdoor Switchgear Floor Repair
  - 2B4 floor repaired in March 04
  - No problems encountered upon return to service
- Turkey Point 4.16 KV switchgear interface
  - Ensured interface/tolerances were correct on all GE Magna-Blast breakers
  - Utilizing the new Operations and Maintenance Procedures to optimize the breaker interface




#### Preventive Maintenance Optimization (PMO)

- PMO Phases in 2004
  - Criticality Determinations (FID) - Complete
  - Standard Equip Clearance Boundaries (FEG) -Complete
  - Maintenance Feedback System & Database -Complete

#### Upcoming PMO Phases

- Maintenance Optimization of PMs & Model WO Revisions
- PM Scheduling & Integration
- Key: Living Program & Ownership going forward





#### Summary

- Extensive Fleet ERIP Actions completed across the Fleet
- Improvements made in plant performance
- In 2004, FPL successfully put into place an Equipment Reliability Improvement Program
- ERIP is a 3-5 year program We're clearly not complete
  - Future work remains in driving change throughout station organizations, culture, and behaviors
  - Key improvements required include long term modifications/actions
  - Feedback, indicators, monitoring process loops required for sustainability



Warren Busch



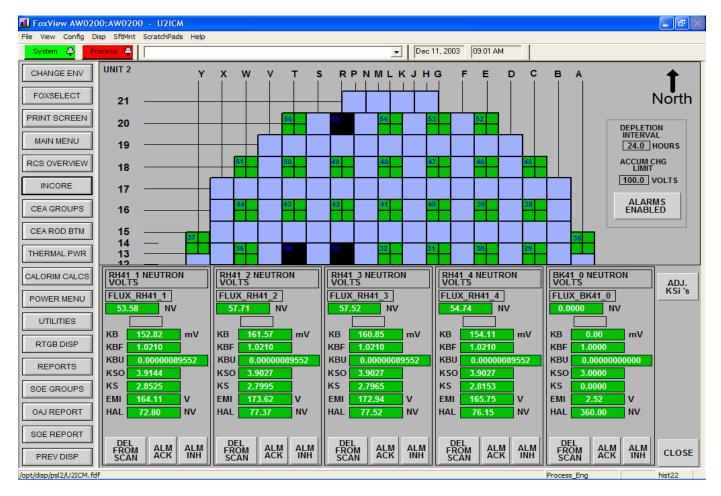
- Program to Cope with Obsolescence of Components and Systems
- Implements a Long Term Strategy to Improve Reliability and Reduce Maintenance and Training Costs
- Projects to Replace I&C Systems and Electrical Components are in process
- Systems not supported by OEM and Parts Unavailable



- Standard Platform Approach to I&C System Replacements
  - Distributed Control
     System, Foxboro I/A
  - Safety Related
     Platform, Triconex
- Redundancy and Diversity Even for Non-Safety Systems












- St. Lucie Digital Data Processing System Replacement
  - Both units in service (May 2003, March 2004)





Incore Detectors/Linear Heat Rate Monitoring







Calorimetric Power Determination



- Major Projects In Process
  - Qualified Safety Parameter Display Systems
    - License amendments for on line implementation
  - Emergency Response Data Acquisition and Display Systems
  - Feedwater and Steam Dump Control Systems
    - License amendments for Steam>Feed and turbine trip reactor trip setpoint at Turkey Point



### • Turkey Point Project Plans

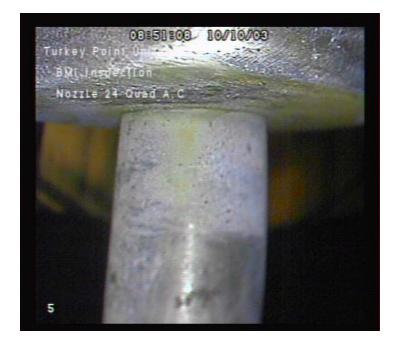
| Unit  | Activity                                      | 2004                                          | 2005        | 2006       | 2007             | 2008         | 2009       | 2010    | 2011 |
|-------|-----------------------------------------------|-----------------------------------------------|-------------|------------|------------------|--------------|------------|---------|------|
|       |                                               |                                               |             | 2000       | 2007             | 2000         | 2003       | 2010    | 2011 |
| PTN 3 | Plant Data Netw ork Installation              | PDN                                           | RVCH        |            |                  |              |            |         |      |
| PTN 3 | QSPDS                                         | QSPDS                                         |             |            |                  |              |            |         |      |
| PTN 3 | ERDADS                                        | ERDADS                                        |             |            |                  |              |            |         |      |
| PTN 3 | FW Controls & Steam Dumps                     | FW CONTR &                                    |             |            |                  |              |            |         |      |
| PTN 3 | Aux FW Controls (QR80 & C281 Cabinets)        |                                               | AFW CONTRO  |            |                  |              |            |         |      |
| PTN 3 | Secondary Pneumatic / Turbine Bldg            |                                               | SEC PNEUT   |            |                  |              |            |         |      |
| PTN 3 | Reactor Protection System/ESFAS               |                                               |             | RPS/ES FA  |                  |              |            |         |      |
| PTN 3 | RCS, CVCS & Balance of HAGAN                  |                                               |             |            | CS/CVCS/Bal      |              |            |         |      |
| PTN 3 | Critcal Equipment Monitoring                  |                                               |             |            | rit Equip Monito | 2            |            |         |      |
| PTN 3 | Annunciator                                   | <u>,                                     </u> |             |            | Annunciator      |              |            |         |      |
| PTN 3 | Balance of Controls (HVAC,AUX System Controls | 5)                                            |             |            |                  |              | BOC        |         |      |
| PTN 3 | Rod Control                                   |                                               |             |            |                  | ROL          | CONTROL    |         |      |
| PTN 3 | Process/Area Rad Monitoring                   |                                               |             |            |                  |              |            | P/ARM   |      |
| PTN   | Simulator                                     |                                               | SIMULATOR   | SIMU       | LATOR            | SIMULATO R   | SI         | MULATOR |      |
|       |                                               |                                               | RVCH        |            |                  |              |            |         |      |
| PTN 4 | Plant Data Network Installation               | PDN                                           |             |            |                  |              |            |         |      |
| PTN 4 | QSPDS                                         | QSPDS                                         |             |            |                  |              |            |         |      |
| PTN 4 | ERDADS                                        | ERDADS                                        |             |            |                  |              |            |         |      |
| PTN 4 | FW Controls & Steam Dumps                     | FW CC                                         | DNTR & SD'S |            |                  |              |            |         |      |
| PTN 4 | Aux FW Controls (QR80 & C281 Cabinets)        |                                               |             | AFW CONTRO |                  |              |            |         |      |
| PTN 4 | RCS, CVCS & Balance of HAGAN                  |                                               |             | RCS/CVCS/B |                  |              |            |         |      |
| PTN 4 | Secondary Pneumatic / Turbine Bldg            |                                               |             | SEC PNEU T |                  |              |            |         |      |
| PTN 4 | Critical Equipment Monitoring                 |                                               |             |            |                  | Quip Monitor |            |         |      |
| PTN 4 | Annunciator                                   |                                               |             |            |                  | Annunciator  |            |         |      |
| PTN 4 | RPS/ESFAS                                     |                                               |             | ,          | RPS/ESI          | FAS          |            |         |      |
| PTN4  | Balance of Controls (HVAC,AUX System Controls | s)                                            |             |            |                  |              | BOC        |         |      |
| PTN 4 | Rod Control                                   |                                               |             |            |                  |              | ROD CONTRO |         |      |
| PTN 4 | Process/Area Rad Monitoring                   |                                               |             |            |                  |              |            | P/ARM   |      |
|       |                                               | 2004                                          | 2005        | 2006       | 2007             | 2008         | 2009       | 2010    | 2011 |



#### • St. Lucie Project Plans

| Unit  | Task Title                              | 2004     | 2005     | 2006      | 2007          | 2008         | 2009                | 2010       | 2011        |
|-------|-----------------------------------------|----------|----------|-----------|---------------|--------------|---------------------|------------|-------------|
| PSL 1 | DDPS/SOE/PDN (Installed Spring 2004)    |          | RVCH     |           | RVCH          |              |                     |            |             |
| PSL 1 | DIGITAL FW CONTROLS /RCP Indicators/DCS | DFWC/RC  |          |           |               |              |                     |            |             |
| PSL 1 | QSPDS                                   | QSPD     |          |           |               |              |                     |            |             |
| PSL 1 | DCS RACEWAYS                            | RACEWA   | YS       |           |               |              |                     |            |             |
| PSL 1 | ERDADS                                  |          | ERDADS   |           |               |              |                     |            |             |
| PSL 1 | Turbine Building Heater Drains          |          | TBHT     | R DRNS    |               |              |                     |            |             |
| PSL 1 | DEH Control System & RTGB 101           |          |          |           | DEH           |              |                     |            |             |
| PSL 1 | CEPEDS/Core Mimic (RTGB 103 &104)       |          |          |           | CEPEDS        |              |                     |            |             |
| PSL 1 | Condensate and Cooling Water (RTGB 102) |          |          | C         | ond/CoolingWa | ter 📃        |                     |            |             |
| PSL 1 | RPS/ESFAS                               |          |          |           | RCS/CVCS      |              |                     |            |             |
|       | RCS & CVCS Control (RTGB 3-6)           |          |          |           | RPS/ESFA      | S            |                     |            |             |
| PSL 1 | Critical Equipment Monitoring           |          |          |           |               | Crit Equip   | Monitor <b>-</b>    |            |             |
| PSL 1 | Annunciators                            |          |          |           |               | Annun        | ciators             |            |             |
| PSL 1 | CEA Control System                      |          |          |           |               | CE           |                     |            |             |
| PSL 1 | Process/ Rad Monitoring                 |          |          |           |               |              |                     | P/ARM      |             |
| PSL 2 | DDPS/SOE/PDN (Installed Spring 2003)    |          |          | VCH       |               | RVCH         |                     |            |             |
| PSL 2 | DCS RACEWAYS                            | RACEWAYS |          |           |               |              |                     |            |             |
| PSL 2 | ERDADS                                  |          |          |           |               |              |                     |            |             |
| PSL 2 | QSPDS                                   |          | ERDADS   |           |               |              |                     |            |             |
| PSL2  | DIGITAL FW CONTROLS (DFWC)              |          |          |           |               |              |                     |            |             |
| PSL 2 | Turbine Bldg Heater Drains              | DFW      |          | TB HTR DR |               |              |                     |            |             |
| PSL 2 | ADS/Core Mimic (RTGB 203 &204)          |          |          | ADS       |               |              |                     |            |             |
| PSL 2 | DEH Control System                      |          |          |           | ┍┯┙╞╺┲┻═╝     | DEH          |                     |            |             |
| PSL 2 | Condensate and Cooling Water (RTGB 202) |          |          |           | Cond/Co       | boling Water |                     |            |             |
| PSL 2 | RCS & CVCS Control (RTGB 3-6)           |          |          |           |               | S/CVCS       |                     |            |             |
| PSL 2 | RPS/ESFAS                               |          |          |           |               | RPS/FS       | FAS                 | ┷┥╎╴┍┥┓╢   |             |
| PSL 2 | Critical Equipment Monitoring           |          |          |           |               |              |                     |            | <b> </b>  - |
| PSL 2 | Annunciators                            |          |          |           |               |              | rit Equip Monit     |            |             |
| PSL 2 | CEA Control System                      |          |          |           |               |              | Annunciators<br>CEA |            |             |
| PSL 2 | Process/ Rad Monitoring                 |          |          |           |               |              |                     | P/ARM      |             |
|       | <b>&gt;</b>                             | ,        |          |           |               |              |                     |            |             |
| PSL   | Simulator                               |          | SIMULATO | OR SI     | MULATO R      | SIMULAT      | <u>ok</u>           | SIMULATO R |             |




### **Materials Management**

R. Gil



# **Materials Management**

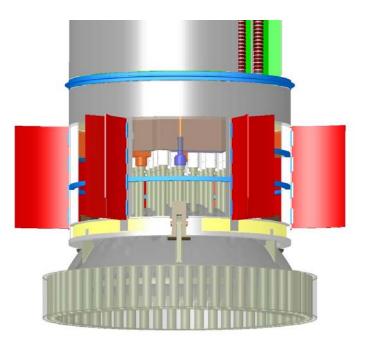
- Alloy 600 and other materials issues continue to be a focus area
- Bottom Mounted Instrumentation (Turkey Point)
  - Bare metal visual (BMV)
     completed at Turkey Point Unit 4
     No Leaks
  - Performed Unit 3 UT No indications
  - Committed to perform Unit 4 UT during spring 2005



Turkey Point Unit 4 BMI Visual



- Small Bore Instrument Nozzles (St. Lucie)
  - Hot leg and pressurizer BMVs performed each outage
  - Replacing on prioritized basis
  - Unit 2 Hot Leg and pressurizer nozzles already replaced
- Pressurizer Heater Sleeves (St. Lucie)
  - Unit 1 PZR to be replaced in fall 2005
  - Plan to replace Unit 2 PZR sleeves in 2007
  - BMV inspections per WOG recommendations




# **Materials Management**

- Butt Welds (St. Lucie)
  - Augmenting ISI with bare metal visuals
  - Mitigation options being evaluated

#### • Reactor Head Penetrations

- All four heads UT inspected
- St. Lucie Unit 2 repaired two cracked penetrations
- No leaks or wastage identified
- Turkey Point 3 head replaced
- Plans in place to replace three remaining heads



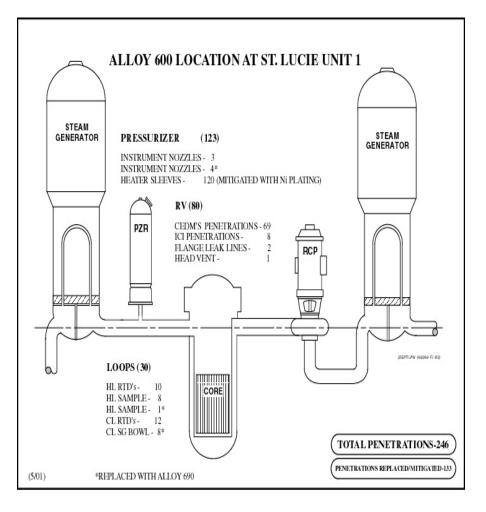


External Corrosion Management

- Challenge at both sites
  - Open structures/ coastal salt laden environment
- Mechanical piping health reports developed

   Increased management oversight
  - Action plans for improvement
  - PSL: Red, PTN: White
- System health reports
  - Material condition status attribute
  - Walkdown report of degradation
  - Action plans for improvement




External Corrosion Management

- Established external corrosion coordinator at each site
- Feedback on degradation precursors from System Engineering walkdowns
- External corrosion (XCI) monitoring program for insulated piping
- Protective coating maintenance program in place at both sites

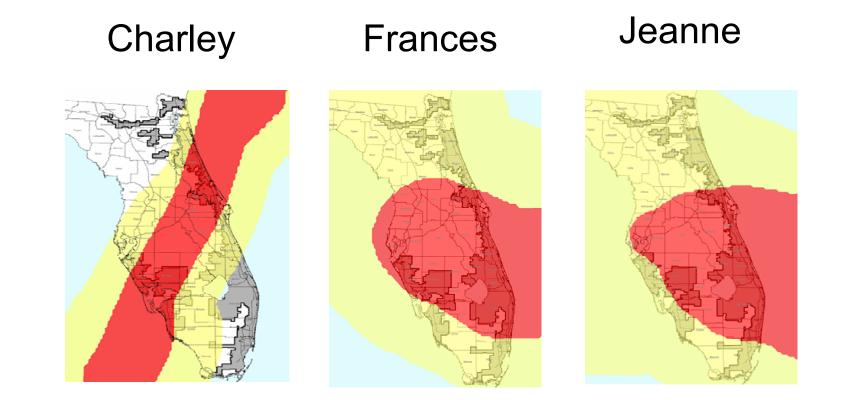
– Improvement in tracking process being pursued



## Conclusions



- FPL continues to be active industry participant
- All Alloy 600 locations at FPL plants have been identified and plans are in place, or actively being developed, to provide long-term resolution
- Improvements in overall material condition programs being actively pursued




### 2004 Hurricane Season

B. Hughes



# 2004 Hurricane Season





## Transmission & Substations







# **Transmission & Substations**

- Execution Strategy
  - System Stability
  - Energize Every Substation Bus
  - Restore Customer Service



## **Transmission & Substations**

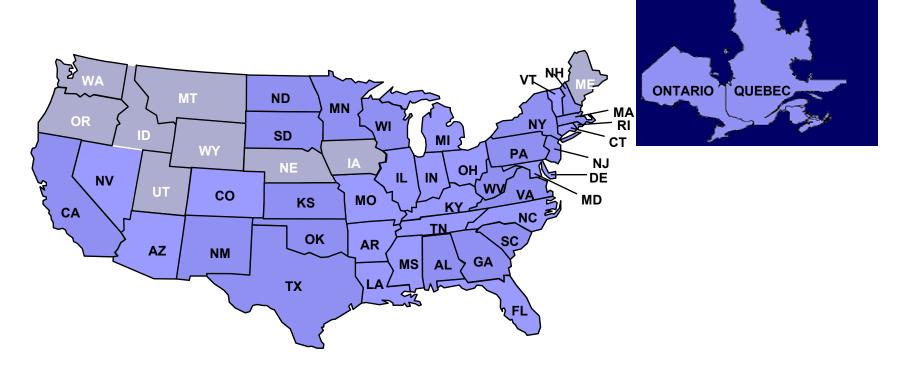
|                                        | CHARLEY       | FRANCES       | JEANNE         |
|----------------------------------------|---------------|---------------|----------------|
|                                        | Aug. 13, 2004 | Sept. 3, 2004 | Sept. 25, 2004 |
| Sections Locked Out                    | 44            | 108           | 80             |
| <b>Distribution Substation Out</b>     | 14            | 54            | 30             |
| <b>Transmission Structures Affecte</b> | d 220         | 150           | 129            |
| Trans. Structures Down                 | 75            | 56            | 48             |
| Trans. Structures Leaning              | 145           | 94            | 81             |
| Transformer Failures                   | 1             | 1             | 1              |
| Breaker Failures                       | 8             | 20            | 14             |
| Number of Days to Restore              | 2             | 2             | 2              |



## **Integrated Supply Chain**



- Resources
- Logistics
- Material






# Results .... A Great Success

Peak external resources reached over 7,400:

39 states and Canada43 utilities66 line contractors





## A Mammoth Logistical Success

- 26 staging sites established
  - Several sites used more than once
- On average we housed, fed and supported over 14,000 workers daily providing
  - 38,000 meals
  - 20,000 gallons of water
  - 7,500 trucks with 180,000 gallons of fuel per day
- Over 1,800 truckloads of material delivered and utilized in the field:
  - 1,700 miles of wire
  - 13,200 poles
  - 11,100 transformers
  - 416,000 splices







### Nuclear





# Key Challenges

- Damage assessment (X2)
- Recovery and restart (X2)
- Nuclear security
- Access to the site
- Water intrusion
- Secondary water chemistry
- Turkey Point outage
- Regulatory permission to restart
- Employee personal impact
- Fatigue, stress and morale







# **Key Successes**

- Recovery organization
- No personnel injuries or human performance errors
- Excellent operating crew performance
- Good use of operating
   experience
- Met all security requirements
- Teamwork







# Impact on Nuclear Plants

- Extensive Hurricane preparation at both sites
- Dedicated Hurricane / Emergency Plan staffing
- Two dual-unit outages
- Loss of all offsite power at St. Lucie during Jeanne
- St. Lucie outage rescheduled
- Infrastructure damage







## Restoring Power ... Restoring Lives

