# ACR-700 Reactor Physics Methods

Peter G. Boczar

**Director, Reactor Core Technology Division, AECL** 

Presentation to ACRS Rockville, MD

2004 October 7







## **Current ACR Physics Toolset**

#### WIMS

- 2-D transport, lattice cell calculations
- multi-group cross sections generated for ACR-700

#### DRAGON

 3-D transport, incremental cross sections to represent reactivity devices between fuel channels

#### RFSP

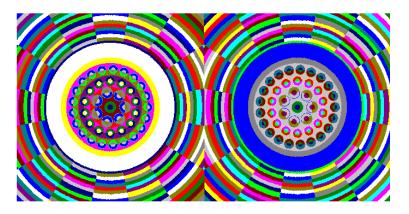
- 2-group diffusion theory for whole reactor calculation
- time-dependent refueling, xenon-transients, kinetics with thermal hydraulics iteration

#### MCNP

theoretically rigorous treatment for detailed assessments of modeling accuracy



## **Assessment of Toolset**


- Key ACR physics phenomena
  - tighter coupling between adjacent lattice cells
  - heterogeneity between adjacent cells
  - leakage
- Our assessment to date
  - toolset is adequate for most applications
  - enhancement desired for certain heterogeneous configurations



## **Enhancements to Physics Codes**

## WIMS 3.0

- improved resonance treatment
- more detailed geometrical representation
- multi-cell capability



## RFSP

- micro-depletion model for isotopic evolution calculations (burnup reflecting local parameters and history)
- specific enhancements being assessed and under development to address heterogeneity between adjacent cells



# **ACR Physics Analysis Approach**

- Will use WIMS 3.0
- Enhancements to RFSP
  - as they become available
- Modeling uncertainties assessed through specific detailed MCNP analysis
  - bundle powers/channel powers in steady state
  - reactivity, powers during LOCA



# **Qualification of Physics Toolset**

- ACR-700 specific experiments in ZED-2
- Past experiments in other critical facilities
- NRU irradiations
- MCNP for "filling in the gaps"
- Independent assessments to confirm the adequacy of both modeling, and the toolset qualification





## **Conclusions**

- Current toolset, including MCNP, is adequate for core physics design
  - MCNP analysis for situations having significant spatial heterogeneity (such as checkerboard voiding)
- Physics toolset is being enhanced to capture heterogeneity between adjacent cells
- Physics toolset qualification based on
  - extensive measurements in ZED-2
  - past measurements in other critical facilities
  - NRU irradiations
  - benchmarks against MCNP



