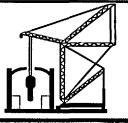

Watts Bar Nuclear Plant

Steam Generator Replacement Project Status/Issues

August 26, 2004

·····

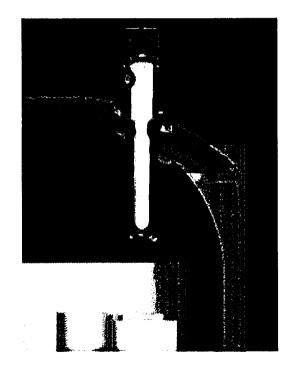


RSG Features – Same as SQN

- Same physical size as old steam generators
- Increased tube surface area
- Integral loose parts strainer provided for FW/AFW
- Reduced moisture content at exit steam
- Advanced tube support grid to reduce contact length w/tubes
- Reduction of ASME welds/ISI
- Shellside recirculation nozzle and sparger for chemical cleaning
- Additional access handholes
- Snaplock Nozzle Dams provided for dose reduction
- Electro Polished Head Bowls for dose reduction

RSG Features – Different from SQN

- Uprate capability from 3475MWt to 3720MWt (future)
- Nozzles compatible with high chromium content piping
- Preheater designed to eliminate warmup during startup
- "Tempering Flow" for Aux FW nozzle warming eliminated
- Shellside blowdown from hot or cold side or combination
- Increased steam pressure of ~ 50 #
- 12% Tube plugging margin vs 8%-10%
- 50 year fatigue life



OSG/RSG Comparison

Parameter	OSG	RSG
Steam Pressure (Thermal Design)	980 psia	1030 psia
Max Moisture Carry Over	.25%	.10%
Nominal Tube OD	0.75 in.	0.75 in.
Tube Wall Thickness	0.43 in.	0.43 in.
Number of Tubes	4674	5128
Min. U-Bend Radius	2.25 in.	3.188 in.
Tube Bundle Length	27.39 ft.	37.04 ft.
Max Plug Level	10%	12%
Tube Material	I 600	Alloy 690
Secondary Side HT Area	48,000 sq. ft.	68,000 sq. ft.
Primary Side Volume / SG	935 cu. ft.	1193 cu. ft.
Secondary Side Volume / SG	5947 cu. ft.	5618 cu. ft.
Total RCS Volume	11,789 cu. ft.	12,821 cu. ft.
Dry Weight	352 tons	380 tons
Secondary Side Liquid Mass 100% Power	95,000 lbm	109,549 lbm
Secondary Side Steam Mass 100% Power	9,000 lbm	7,618 lbm

Steam Generator Replacement

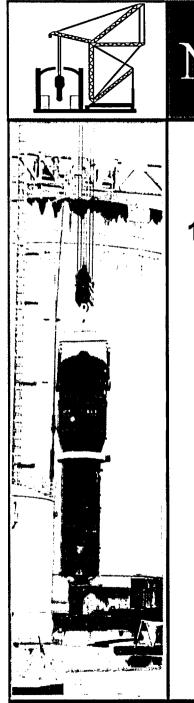
- One Piece Replacement like SQN
- Major Activities Involved:
 - Obtain & Assemble Large Crane
 - Build Support Facilities
 - Defuel Reactor
 - Cut holes in Shield Building,
 Steel Containment Vessel (SCV),
 and SG Compartment Roofs
 - Remove Old SGs
 - Install Replacement SGs
 - Restore SG Compartments,
 SCV, and Shield Building
 - Refuel Reactor
 - Pressure Test to Demonstrate Restored Containment Integrity

Current Project Status

- Shield Building, SCV and SG Compartment Modifications are Similar to SQN and Will Use Same Methodology
- Safe Load Paths and Load Drop Analysis for Crane Components, Steam Generators, and Other Heavy Loads under Development
- Using Lessons Learned From SQN
 - Movement of Material to SCV Dome
- N-1 Design Packages Issued or in final review to issue
- SGRO Design Packages Several reaching 10% Status
- Coordinating with Security to maintain compliance with DBT Security Order

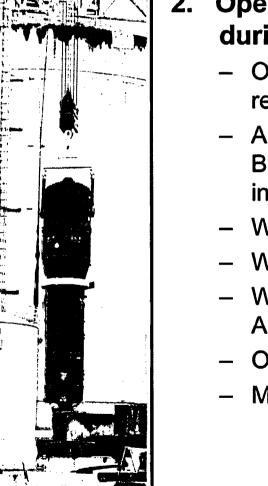
Current Project Status (continued)

- Westinghouse NSSS Analyses Being Performed
 - RSG with 2 * F T-Avg Reduction
 - Input Parameters
 - Primary Reactor Operating Conditions for 0%, 12% SG Tube Plugging
 - Best Estimate Steam Parameters for Turbine/BOP Cycle
 - Safety
 - LOCA
 - Transient Analysis (FSAR Chapter 15 non-LOCA events)
 - LOCA Mass & Energy/Containment Integrity
 - MSLB Mass & Energy/Containment Integrity
 - SG Tube Rupture
 - Steam Releases for Dose Analysis
 - Control Systems
 - Margin to Trip Analysis
 - Low Temp Over Pressure Protection System
 - RCS and Steam Pressure Control Systems
 - Components
 - NSSS and Auxiliary Systems Design Transients
 - Component Reviews
 - Pumps, Valves, Tanks, Heat Exchangers
 - Fuel Design
 - Reactor Coolant Loop Piping
 - Systems
 - Fluid Systems
 - NSSS/BOP Interface Review


NRC Involvement

- Steam Generator Component Replacement Performed via 10 CFR 50.59
 - Plan to demonstrate original and replacement SG equivalence and compliance w/existing NRC acceptance criteria
- Design Changes Related to RSGs Performed via 10 CFR 50.59
 - NSSS Reactor Coolant Loop Reanalysis
 - Seismic Spectra B+C used per UFSAR
 - Use coupled analysis of interior concrete structure & NSSS
 loop
 - 2°F Tavg Reduction
 - 2% Increase in Pressurizer Level Operating Range
 - SG FW Operational Changes
- NRC ROP Oversight of 10 CFR 50.59 Evaluations

- Known License Amendment/Relief Requests
 - Use of Bar-Lock Mechanical Couplers instead of Cadwelds for Rebar Splicing during Shield Building Restoration
 - Opening of Penetrations in Shield Building Dome during Modes
 1-4 for Material Handling
 - SGTR Operator Action to Prevent Overfill
 - Additional Ice Bed Total Weight (Ice Bed Tech Spec)
 - SG Water Level Setpoints
 - Steam Generator Water Level- Low Low (RTS Tech Spec)
 - Steam Generator Water Level- High High (RTS and ESFAS Tech Specs)
 - Steam Generator Water Level- (RCS Loops- Mode 3, RCS Loops- Mode 4, and RCS Loops- Mode 5, Loops Filled Tech Specs)
 - Revise APC Specifications
 - Use of Pressure Test rather than CILRT for PMT of restored Steel Containment Vessel like SQN



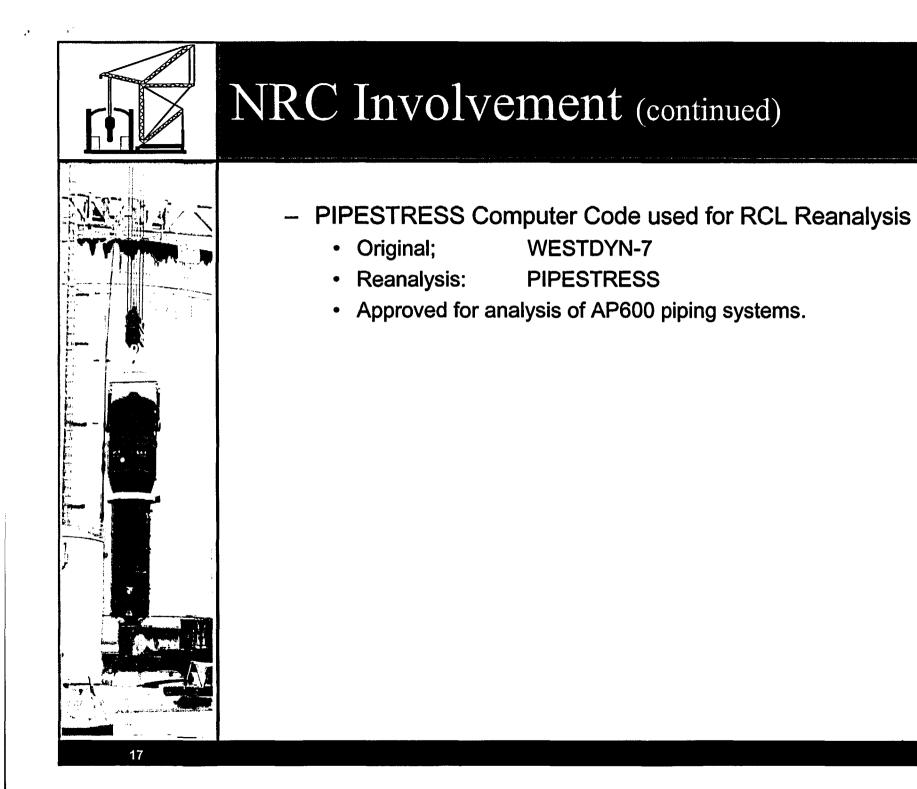
- Potential License Amendment Requests
 - Compensatory Measures due to Load Drop
 - WBN evaluating whether a license amendment and compensatory measures for rigging and transport of steam generators are needed
- SQN License Amendment Requests Not Required for WBN
 - SG Compartment Restoration
 - License amendment for a code change not required, since existing WBN design is more robust compared to SQN
 - Will use design similar to SQN

Items Of Note

- 1. Use of Bar-Lock Mechanical Couplers instead of Cadwelds for Rebar Splicing during Shield Building Restoration
 - Propose not performing pre-use qualification testing
 - Same application as NRC approved for SQN
 - Couplers purchased from same vendor and dedicated same as SQN
 - Material, process and QA program are same
 - Sister splice testing will verify adequacy of installed couplers

2. Opening of Penetrations in Shield Building Dome during Modes 1-4 for Material Handling

- One-time change to Tech Spec 3.6.15 (Shield Building) required during Cycle 6
- Allows material movement to SCV dome through Shield Building dome versus through Auxiliary Building and up ladder in annulus
- Will reduce time spent in annulus and minimize personnel dose
- Will reduce congestion and delays at annulus ladder
- Will reduce potential for damage of SSCs along path through Auxiliary Building and annulus
- Offsite Dose Impacts
- Mission Dose Impacts



3. NSSS Reactor Coolant Loop Reanalysis

Replacement Steam Generator (increase in mass and change in stiffness) constitutes a modification to Reactor Coolant Loop reanalysis. For New/Modification of items, UFSAR requires use of Seismic Spectra Set B+C rather than previous Spectra Set A evaluated to Spectra B.

- Couple Interior Containment Structure (ICS) with the Reactor Coolant Loop (RCL)
 - Original:
 - 4-Loop RCL/supports model (uncoupled)
 - Set A Amplified Response Spectra (ARS) input at highest loop support location
 - Reanalysis:
 - 4-Loop RCL/supports coupled with ICS
 - Set B+C ARS input at basemat elevation

- Coupled ICS and RCL model used for WBN to generate ARS for SSC attachments to Shield Building SCV and ICS in accordance with UFSAR
- Similar model used by Westinghouse in other applications for RCL reanalysis for steam generator snubber elimination and/or SG replacement (Wolf Creek, Callaway, Farley, McGuire, Catawba)
- 3-D Seismic Analysis Methodology
 - Original: 2-D input/combination methodology per original FSAR
 - Reanalysis: 3-D input/combination methodology per UFSAR
 - WBN piping and supports analyzed using 3-D method for Sets B and C Seismic Input.
 - UFSAR specifies 3-D for new design and modification analyses
 - Consistent with SRP 3.7.2

- Open Temporary Holes in Shield Building Dome 11/04
- SGTR Operator Action to Prevent Overfill 12/04
- Load Drop Compensatory Measures (if required) 5/05
- Additional Ice Mass 7/05
- SG Water Level Setpoints 8/05
- Revise APC Specifications 8/05
- Use of Pressure Test rather than CILRT 8/05

Summary

- Implementing SQN Lessons Learned and Best Practices
- Addressing Licensing/Design Basis differences with SQN
- Plan is to provide minimum of 1 year staff review time