NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040415-2

SRR: 25770 SDG: 243222 CASE: CNWRA

VTSR: April 14, 2004

PROJECT#: 06002.01.141

FINAL REPORT

SAMPLE ANALYSIS DATA SHEET

010002

Sample ID CNWRA 1

Lab Name: Southwest Research Institute Client: Division 20

Lab Code: SwRI Date Received: 04/14/04

Matrix: Water Project No.: 20.06002.01.141

Lab System ID: 243222 SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	< 0.05	0.05
Antimony	< 0.02	0.02
Arsenic	< 0.005	0.005
Barium	0.297	0.005
Beryllium	< 0.005	0.005
Bismuth	<0.01	0.01
Boron	1.69	0.05
Cadmium	< 0.005	0.005
Calcium	29.1	0.05
Chromium	< 0.015	0.015
Cobalt	< 0.005	0.005
Copper	< 0.005	0.005
Iron	<0.1	0.1
Lanthanum	< 0.005	0.005
Lead	< 0.005	0.005
Lithium	<0.01	0.01
Magnesium	0.098	0.05
Manganese	< 0.005	0.005
Molybdenum	<0.01	0.01
Nickel	0.059	0.01
Palladium	< 0.005	0.005
Phosphorus	<0.02	0.02
Potassium	0.414	0.2
Selenium	< 0.015	0.015
Silicon	0.274	0.05
Silver	< 0.005	0.005
Sodium	3.64	0.2
Strontium	0.212	0.005
Sulfur	24.9	0.05
Thallium	<0.02	0.02
Thorium	< 0.015	0.015
Tin	<0.01	0.01
Titanium	<0.005	0.005
Tungsten	<0.01	0.01
Uranium	<0.1	0.1
Vanadium	<0.005	0.005
Yttrium	<0.005	0.005
Zinc	0.112	0.005
Zirconium	<0.005	0.005

SAMPLE ANALYSIS DATA SHEET

010003 Sample ID

CNWRA 10

Lab Name: Southwest Research Institute Client: Division 20

Lab Code: SwRI Date Received: 04/14/04

Matrix: Water Project No.: 20.06002.01.141

Lab System ID: 243223 SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	< 0.05	0.05
Antimony	< 0.02	0.02
Arsenic	< 0.005	0.005
Barium	0.007	0.005
Beryllium	< 0.005	0.005
Bismuth	< 0.01	0.01
Boron	0.138	0.05
Cadmium	< 0.005	0.005
Calcium	17.8	0.05
Chromium	< 0.015	0.015
Cobalt	< 0.005	0.005
Copper	< 0.005	0.005
Iron	<0.1	0.1
Lanthanum	< 0.005	0.005
Lead	< 0.005	0.005
Lithium	0.035	0.01
Magnesium	2.78	0.05
Manganese	0.025	0.005
Molybdenum	<0.01	0.01
Nickel	<0.01	0.01
Palladium	< 0.005	0.005
Phosphorus	0.020	0.02
Potassium	5.08	0.2
Selenium	< 0.015	0.015
Silicon	19.5	0.05
Silver	< 0.005	0.005
Sodium	34.9	0.2
Strontium	0.079	0.005
Sulfur	6.81	0.05
Thallium	<0.02	0.02
Thorium	< 0.015	0.015
Tin	0.015	0.01
Titanium	< 0.005	0.005
Tungsten	<0.01	0.01
Uranium	<0.1	0.1
Vanadium	<0.005	0.005
Yttrium	<0.005	0.005
Zinc	<0.005	0.005
Zirconium	<0.005	0.005

SAMPLE ANALYSIS DATA SHEET 010004

Sample ID CNWRA 11

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 20.06002.01.141

Lab System ID: 243224

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	< 0.05	0.05
Antimony	< 0.02	0.02
Arsenic	< 0.005	0.005
Barium	< 0.005	0.005
Beryllium	< 0.005	0.005
Bismuth	<0.01	0.01
Boron	< 0.05	0.05
Cadmium	<0.005	0.005
Calcium	5.00	0.05
Chromium	< 0.015	0.015
Cobalt	< 0.005	0.005
Copper	< 0.005	0.005
Iron	<0.1	0.1
Lanthanum	< 0.005	0.005
Lead	< 0.005	0.005
Lithium	<0.01	0.01
Magnesium	<0.05	0.05
Manganese	< 0.005	0.005
Molybdenum	<0.01	0.01
Nickel	<0.01	0.01
Palladium	< 0.005	0.005
Phosphorus	<0.02	0.02
Potassium	<0.2	0.2
Selenium	< 0.015	0.015
Silicon	< 0.05	0.05
Silver	<0.005	0.005
Sodium	8.86	0.2
Strontium	< 0.005	0.005
Sulfur	< 0.05	0.05
Thallium	<0.02	0.02
Thorium	< 0.015	0.015
Tin	<0.01	0.01
Titanium	< 0.005	0.005
Tungsten	<0.01	0.01
Uranium	<0.1	0.1
Vanadium	< 0.005	0.005
Yttrium	< 0.005	0.005
Zinc	< 0.005	0.005
Zirconium	< 0.005	0.005

SAMPLE ANALYSIS DATA SHEET

010005

Sample ID CNWRA 2

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 20.06002.01.141

Lab System ID: 243225

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	< 0.05	0.05
Antimony	< 0.02	0.02
Arsenic	< 0.005	0.005
Barium	0.183	0.005
Beryllium	< 0.005	0.005
Bismuth	< 0.01	0.01
Boron	1.23	0.05
Cadmium	<0.005	0.005
Calcium	0.248	0.05
Chromium	< 0.015	0.015
Cobalt	< 0.005	0.005
Copper	< 0.005	0.005
Iron	<0.1	0.1
Lanthanum	<0.005	0.005
Lead	< 0.005	0.005
Lithium	<0.01	0.01
Magnesium	< 0.05	0.05
Manganese	<0.005	0.005
Molybdenum	<0.01	0.01
Nickel	0.016	0.01
Palladium	< 0.005	0.005
Phosphorus	<0.02	0.02
Potassium	<0.2	0.2
Selenium	< 0.015	0.015
Silicon	0.465	0.05
Silver	< 0.005	0.005
Sodium	2.89	0.2
Strontium	< 0.005	0.005
Sulfur	0.432	0.05
Thallium	< 0.02	0.02
Thorium	< 0.015	0.015
Tin	<0.01	0.01
Titanium	< 0.005	0.005
Tungsten	<0.01	0.01
Uranium	<0.1	0.1
Vanadium	< 0.005	0.005
Yttrium	< 0.005	0.005
Zinc	0.032	0.005
Zirconium	< 0.005	0.005

DUPLICATE SUMMARY

010006

Sample ID CNWRA 2

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 20.06002.01.141

Lab System ID: 243225

SRR: 25770

	Sample	Duplicate	
Analysis	Result (mg/L)	Result (mg/L)	RPD
Aluminum	< 0.05	<0.05	0.00%
Antimony	< 0.02	< 0.02	0.00%
Arsenic	< 0.005	< 0.005	0.00%
Barium	0.183	0.182	0.84%
Beryllium	< 0.005	< 0.005	0.00%
Bismuth	<0.01	<0.01	0.00%
Boron	1.23	1.22	1.10%
Cadmium	< 0.005	< 0.005	0.00%
Calcium	0.248	0.242	2.27%
Chromium	< 0.015	< 0.015	0.00%
Cobalt	< 0.005	< 0.005	0.00%
Copper	< 0.005	< 0.005	0.00%
Iron	<0.1	<0.1	0.00%
Lanthanum	< 0.005	< 0.005	0.00%
Lead	< 0.005	< 0.005	0.00%
Lithium	NA	NA	NA
Magnesium	<0.05	< 0.05	0.00%
Manganese	< 0.005	< 0.005	0.00%
Molybdenum	<0.01	<0.01	0.00%
Nickel	0.016	0.015	6.04%
Palladium	< 0.005	<0.005	0.00%
Phosphorus	<0.02	< 0.02	0.00%
Potassium	NA	NA	NA
Selenium	<0.015	< 0.015	0.00%
Silicon	0.465	0.456	1.90%
Silver	< 0.005	< 0.005	0.00%
Sodium	NA	NA	NA
Strontium	< 0.005	< 0.005	0.00%
Sulfur	0.432	0.419	2.97%
Thallium	<0.02	< 0.02	0.00%
Thorium	<0.015	< 0.015	0.00%
Tin	<0.01	<0.01	0.00%
Titanium	< 0.005	< 0.005	0.00%
Tungsten	<0.01	<0.01	0.00%
Uranium	<0.1	<0.1	0.00%
Vanadium	< 0.005	< 0.005	0.00%
Yttrium	< 0.005	< 0.005	0.00%
Zinc	0.032	0.032	1.99%
Zirconium	< 0.005	< 0.005	0.00%

SAMPLE ANALYSIS DATA SHEET

010007

Sample ID CNWRA 3

Client: Division 20

Date Received: 04/14/04

Project No.: 20.06002.01.141

SRR: 25770

TO: 040415-2

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Water

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	< 0.05	0.05
Antimony	< 0.02	0.02
Arsenic	< 0.005	0.005
Barium	0.273	0.005
Beryllium	< 0.005	0.005
Bismuth	< 0.01	0.01
Boron	2.09	0.05
Cadmium	<0.005	0.005
Calcium	0.202	0.05
Chromium	< 0.015	0.015
Cobalt	< 0.005	0.005
Copper	< 0.005	0.005
Iron	<0.1	0.1
Lanthanum	< 0.005	0.005
Lead	<0.005	0.005
Lithium	<0.01	0.01
Magnesium	<0.05	0.05
Manganese	<0.005	0.005
Molybdenum	<0.01	0.01
Nickel	0.036	0.01
Palladium	< 0.005	0.005
Phosphorus	0.059	0.02
Potassium	0.316	0.2
Selenium	< 0.05	0.05
Silicon	1.57	0.05
Silver	<0.005	0.005
Sodium	4.49	0.2
Strontium	< 0.005	0.005
Sulfur	0.395	0.05
Thallium	< 0.075	0.075
Thorium	< 0.015	0.015
Tin	0.079	0.01
Titanium	< 0.005	0.005
Tungsten	<0.01	0.01
Uranium	<0.1	0.1
Vanadium	< 0.005	0.005
Yttrium	< 0.005	0.005
Zinc	0.077	0.005
Zirconium	< 0.005	0.005

PAGE 6 OF 17

SAMPLE ANALYSIS DATA SHEET

010008

Sample ID CNWRA 4

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 20.06002.01.141

Lab System ID: 243227

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<0.05	0.05
Antimony	<0.02	0.02
Arsenic	< 0.005	0.005
Barium	0.765	0.005
Beryllium	< 0.005	0.005
Bismuth	<0.01	0.01
Boron	2.01	0.05
Cadmium	< 0.005	0.005
Calcium	2.62	0.05
Chromium	< 0.015	0.015
Cobalt	< 0.005	0.005
Copper	0.008	0.005
Iron	<0.1	0.1
Lanthanum	< 0.005	0.005
Lead	< 0.005	0.005
Lithium	<0.01	0.01
Magnesium	0.537	0.05
Manganese	0.049	0.005
Molybdenum	<0.01	0.01
Nickel	0.024	0.01
Palladium	<0.005	0.005
Phosphorus	<0.02	0.02
Potassium	9.80	0.2
Selenium	< 0.015	0.015
Silicon	1.54	0.05
Silver	<0.005	0.005
Sodium	20.1	0.2
Strontium	0.014	0.005
Sulfur	1.04	0.05
Thallium	<0.02	0.02
Thorium	<0.015	0.015
Tin	<0.01	0.01
Titanium	<0.005	0.005
Tungsten	<0.01	0.01
Uranium	<0.1	0.1
Vanadium	< 0.005	0.005
Yttrium	<0.005	0.005
Zinc	0.268	0.005
Zirconium	<0.005	0.005

SAMPLE ANALYSIS DATA SHEET

010009

Sample ID CNWRA 5

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Water

Lab System ID: 243228

Client: Division 20

Date Received: 04/14/04

Project No.: 20.06002.01.141

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	0.194	0.05
Antimony	< 0.02	0.02
Arsenic	< 0.005	0.005
Barium	0.464	0.005
Beryllium	< 0.005	0.005
Bismuth	<0.01	0.01
Boron	2.47	0.05
Cadmium	< 0.005	0.005
Calcium	1.31	0.05
Chromium	< 0.015	0.015
Cobalt	< 0.005	0.005
Copper	< 0.005	0.005
Iron	<0.1	0.1
Lanthanum	< 0.005	0.005
Lead	< 0.005	0.005
Lithium	<0.01	0.01
Magnesium	0.364	0.05
Manganese	< 0.005	0.005
Molybdenum	<0.01	0.01
Nickel	<0.01	0.01
Palladium	< 0.005	0.005
Phosphorus	0.037	0.02
Potassium	1.26	0.2
Selenium	< 0.015	0.015
Silicon	2.97	0.05
Silver	< 0.005	0.005
Sodium	7.47	0.2
Strontium	0.008	0.005
Sulfur	0.987	0.05
Thallium	<0.02	0.02
Thorium	< 0.015	0.015
Tin	<0.01	0.01
Titanium	0.007	0.005
Tungsten	<0.01	0.01
Uranium	<0.1	0.1
Vanadium	< 0.005	0.005
Yttrium	< 0.005	0.005
Zinc	0.119	0.005
Zirconium	< 0.005	0.005

SAMPLE ANALYSIS DATA SHEET

010010

Sample ID CNWRA 6

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 20.06002.01.141

Lab System ID: 243229

SRR: 25770

	Sample	Reporting	
Analysis	Result (mg/L)	Limit (mg/L)	
Aluminum	< 0.05	0.05	
Antimony	< 0.02	0.02	
Arsenic	< 0.005	0.005	
Barium	0.012	0.005	
Beryllium	< 0.005	0.005	
Bismuth	< 0.01	0.01	
Boron	0.142	0.05	
Cadmium	< 0.005	0.005	
Calcium	24.7	0.05	
Chromium	< 0.015	0.015	
Cobalt	< 0.005	0.005	
Соррег	< 0.005	0.005	
Iron	<0.1	0.1	
Lanthanum	< 0.005	0.005	
Lead	< 0.005	0.005	
Lithium	0.035	0.01	
Magnesium	3.29	0.05	
Manganese	<0.005	0.005	
Molybdenum	< 0.01	0.01	
Nickel	< 0.01	0.01	
Palladium	< 0.005	0.005	
Phosphorus	0.025	0.02	
Potassium	5.53	0.2	
Selenium	< 0.015	0.015	
Silicon	24.3	0.05	
Silver	< 0.005	0.005	
Sodium	37.3	0.2	
Strontium	0.100	0.005	
Sulfur	8.52	0.05	
Thallium	<0.02	0.02	
Thorium	< 0.015	0.015	
Tin	0.016	0.01	
Titanium	< 0.005	0.005	
Tungsten	<0.01	0.01	
Uranium	<0.1	0.1	
Vanadium	<0.005	0.005	
Yttrium	<0.005	0.005	
Zinc	<0.005	0.005	
Zirconium	<0.005	0.005	

SAMPLE ANALYSIS DATA SHEET

Sample ID 10011

NWRA 7

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Water

Lab System ID: 243230

Client: Division 20

Date Received: 04/14/04

Project No.: 20.06002.01.141

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	< 0.05	0.05
Antimony	<0.02	0.02
Arsenic	< 0.005	0.005
Barium	< 0.005	0.005
Beryllium	< 0.005	0.005
Bismuth	<0.01	0.01
Boron	0.258	0.05
Cadmium	<0.005	0.005
Calcium	2.49	0.05
Chromium	< 0.015	0.015
Cobalt	< 0.005	0.005
Copper	< 0.005	0.005
Iron	0.136	0.1
Lanthanum	< 0.005	0.005
Lead	<0.005	0.005
Lithium	0.270	0.01
Magnesium	0.112	0.05
Manganese	< 0.005	0.005
Molybdenum	0.046	0.01
Nickel	<0.01	0.01
Palladium	< 0.005	0.005
Phosphorus	0.057	0.02
Potassium	3.81	0.2
Selenium	<0.05	0.05
Silicon	7.88	0.05
Silver	< 0.005	0.005
Sodium	206	0.2
Strontium	0.007	0.005
Sulfur	10.4	0.05
Thallium	< 0.075	0.075
Thorium	< 0.015	0.015
Tin	0.062	0.01
Titanium	<0.005	0.005
Tungsten	<0.01	0.01
Uranium	<0.1	0.1
Vanadium	< 0.005	0.005
Yttrium	< 0.005	0.005
Zinc	< 0.005	0.005
Zirconium	<0.005	0.005

DUPLICATE SUMMARY

010012

Sample ID CNWRA 7

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 20.06002.01.141

Lab System ID: 243230

SRR: 25770

	Sample	Duplicate	
Analysis	Result (mg/L)	Result (mg/L)	RPD
Aluminum	NA	NA	NA
Antimony	NA	NA	NA
Arsenic	NA	NA	NA
Barium	NA	NA	NA
Beryllium	NA	NA	NA
Bismuth	NA	NA	NA
Boron	NA	NA	NA
Cadmium	NA	NA	NA
Calcium	NA	NA	NA
Chromium	NA	NA	NA
Cobalt	NA	NA	NA
Copper	NA	NA	NA
Iron	NA	NA	NA
Lanthanum	NA	NA	NA
Lead	NA	NA	NA
Lithium	0.270	0.265	1.57%
Magnesium	NA	NA	NA
Manganese	NA	NA	NA
Molybdenum	NA	NA	NA
Nickel	NA	NA	NA
Palladium	NA	NA	NA
Phosphorus	NA	NA	NA
Potassium	3.81	3.82	0.39%
Selenium	NA	NA	NA
Silicon	NA	NA	NA
Silver	NA	NA	NA
Sodium	206	203	1.51%
Strontium	NA	NA	NA
Sulfur	NA	NA	NA
Thallium	NA	NA	NA
Thorium	NA	NA	NA
Tin	NA	NA	NA
Titanium	NA	NA	NA
Tungsten	NA	NA	NA
Uranium	NA	NA	NA
Vanadium	NA	NA	NA
Yttrium	NA	NA	NA
Zinc	NA	NA	NA
Zirconium	NA	NA	NA

SAMPLE ANALYSIS DATA SHEET

010013

Sample ID CNWRA 8

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 20.06002.01.141

Lab System ID: 243231

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<0.05 0.05	
Antimony	<0.02	0.02
Arsenic	0.010	0.005
Barium	0.008	0.005
Beryllium	< 0.005	0.005
Bismuth	<0.01	0.01
Boron	0.136	0.05
Cadmium	< 0.005	0.005
Calcium	13.3	0.05
Chromium	<0.015	0.015
Cobalt	<0.005	0.005
Copper	<0.005	0.005
Iron	<0.1	0.1
Lanthanum	< 0.005	0.005
Lead	< 0.005	0.005
Lithium	0.038	0.01
Magnesium	2.05	0.05
Manganese	0.006	0.005
Molybdenum	<0.01	0.01
Nickel	<0.01	0.01
Palladium	< 0.005	0.005
Phosphorus	<0.02	0.02
Potassium	5.68	0.2
Selenium	<0.015	0.015
Silicon	25.7	0.05
Silver	<0.005	0.005
Sodium	41.9	0.2
Strontium	0.067	0.005
Sulfur	6.96	0.05
Thallium	<0.02	0.02
Thorium	< 0.015	0.015
Tin	0.013	0.01
Titanium	<0.005	0.005
Tungsten	<0.01	0.01
Uranium	<0.1	0.1
Vanadium	0.006	0.005
Yttrium	<0.005	0.005
Zinc	< 0.005	0.005
Zirconium	< 0.005	0.005

MATRIX SPIKE SUMMARY

010014

Sample ID CNWRA 8

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 20.06002.01.141

Lab System ID: 243231

SRR: 25770

TO: 040415-2

	Sample	Spike	Spike	
Analysis	Result (mg/L)	Result (mg/L)	Added (mg/L)	Recovery
Aluminum	< 0.05	1.95	2	97.3%
Antimony	<0.02	0.505	0.5	101.1%
Arsenic	0.010	2.04	2	101.7%
Barium	0.008	2.03	2	100.9%
Beryllium	< 0.005	0.049	0.05	98.7%
Bismuth	NA	NA	NA	NA
Boron	NA	NA	NA	NA
Cadmium	< 0.005	0.050	0.05	99.5%
Calcium	13.3	33.7	20	102.0%
Chromium	< 0.015	0.197	0.2	98.5%
Cobalt	< 0.005	0.501	0.5	100.2%
Copper	< 0.005	0.252	0.25	100.8%
Iron	<0.1	1.08	1	108.4%
Lanthanum	NA	NA	NA	NA
Lead	< 0.005	0.497	0.5	99.3%
Lithium	NA	NA	NA	NA
Magnesium	2.05	22.4	20	101.5%
Manganese	0.006	0.509	0.5	100.7%
Molybdenum	NA	NA	NA	NA
Nickel	< 0.01	0.490	0.5	98.0%
Palladium	NA	NA	NA	NA
Phosphorus	NA	NA	NA	NA
Potassium	NA	NA	NA	NA
Selenium	< 0.015	2.23	2	111.6%
Silicon	NA	NA	NA	NA
Silver	< 0.005	0.051	0.05	102.5%
Sodium	NA	NA	NA	NA
Strontium	NA	NA	NA	NA
Sulfur	NA	NA	NA	NA
Thallium	<0.02	2.08	2	103.8%
Thorium	NA	NA	NA	NA
Tin	NA	NA	NA	NA
Titanium	NA	NA	NA	NA
Tungsten	NA	NA	NA	NA
Uranium	NA	NA	NA	NA
Vanadium	0.006	0.505	0.5	99.9%
Yttrium	NA	NA	NA	NA
Zinc	< 0.005	0.509	0.5	101.8%
Zirconium	NA	NA	NA	NA

NA- Not Applicable.

SAMPLE ANALYSIS DATA SHEET

010015

Sample ID CNWRA 9

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 20.06002.01.141

Lab System ID: 243232

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	< 0.05	0.05
Antimony	<0.02	0.02
Arsenic	0.008	0.005
Barium	0.014	0.005
Beryllium	< 0.005	0.005
Bismuth	< 0.01	0.01
Boron	0.142	0.05
Cadmium	<0.005	0.005
Calcium	12.8	0.05
Chromium	< 0.015	0.015
Cobalt	< 0.005	0.005
Copper	<0.005	0.005
Iron	<0.1	0.1
Lanthanum	< 0.005	0.005
Lead	< 0.005	0.005
Lithium	0.045	0.01
Magnesium	1.07	0.05
Manganese	< 0.005	0.005
Molybdenum	<0.01	0.01
Nickel	<0.01	0.01
Palladium	< 0.005	0.005
Phosphorus	<0.02	0.02
Potassium	3.82	0.2
Selenium	< 0.015	0.015
Silicon	26.2	0.05
Silver	<0.005	0.005
Sodium	48.6	0.2
Strontium	0.071	0.005
Sulfur	8.09	0.05
Thallium	<0.02	0.02
Thorium	< 0.015	0.015
Tin	0.012	0.01
Titanium	<0.005	0.005
Tungsten	<0.01	0.01
Uranium	<0.1	0.1
Vanadium	0.007	0.005
Yttrium	< 0.005	0.005
Zinc	< 0.005	0.005
Zirconium	< 0.005	0.005

MATRIX SPIKE SUMMARY

010016

Sample ID CNWRA 9

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 20.06002.01.141

Lab System ID: 243232

SRR: 25770

TO: 040415-2

	Sample	Spike	Spike	
Analysis	Result (mg/L)	Result (mg/L)	Added (mg/L)	Recovery
Aluminum	NA	NA	NA	NA
Antimony	NA	NA	NA	NA
Arsenic	NA	NA	NA	NA
Barium	NA	NA	NA	NA
Beryllium	NA	NA	NA	NA
Bismuth	NA	NA	NA	NA
Boron	NA	NA	NA	NA
Cadmium	NA	NA	NA	NA
Calcium	NA	NA	NA	NA
Chromium	NA	NA	NA	NA
Cobalt	NA	NA	NA	NA
Copper	NA	NA	NA	NA
Iron	NA ,	NA	NA	NA
Lanthanum	NA	NA	NA	NA
Lead	NA	NA	NA	NA
Lithium	NA	NA	NA	NA
Magnesium	NA	NA	NA	NA
Manganese	NA	NA	NA	NA
Molybdenum	NA	NA	NA	NA
Nickel	NA	NA	NA	NA
Palladium	NA	NA	NA	NA
Phosphorus	NA	NA	NA	NA
Potassium	3.82	24.1	20	101.3%
Selenium	NA	NA	NA	NA
Silicon	NA	NA	NA	NA
Silver	NA	NA	NA	NA
Sodium	48.6	68.6	20	100.1%
Strontium	NA	NA	NA	NA
Sulfur	NA	NA	NA	NA
Thallium	NA	NA	NA	NA
Thorium	NA	NA	NA	NA
Tin	NA	NA	NA	NA
Titanium	NA	NA	NA	NA
Tungsten	NA	NA	NA	NA
Uranium	NA	NA	NA	NA
Vanadium	NA	NA	NA	NA
Yttrium	NA	NA	NA	NA
Zinc	NA	NA	NA	NA
Zirconium	NA	NA	NA	NA

NA- Not Applicable.

LABORATORY CONTROL SAMPLE 010017

Sample ID

LCSW - F15W1 / F15E2

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: NA

Matrix: Water

Project No.: 20.06002.01.141

Lab System ID: NA

SRR: 25770

TO: 040415-2

	Sample	True	
Analysis	Result (mg/L)	Value (mg/L)	Recovery
Aluminum	1.91	2	95.4%
Antimony	0.490	0.5	97.9%
Arsenic	1.99	2	99.7%
Barium	2.01	2	100.6%
Beryllium	0.049	0.05	98.8%
Bismuth	NA	NA	NA
Boron	NA	NA	NA
Cadmium	0.050	0.05	99.3%
Calcium	21.0	20	104.8%
Chromium	0.208	0.2	104.2%
Cobalt	0.499	0.5	99.8%
Copper	0.252	0.25	100.8%
Iron	1.14	1	114.1%
Lanthanum	NA	NA	NA
Lead	0.497	0.5	99.4%
Lithium	NA	NA	NA
Magnesium	20.7	20	103.4%
Manganese	0.504	0.5	100.7%
Molybdenum	NA	NA	NA
Nickel	0.498	0.5	99.6%
Palladium	NA	NA	NA
Phosphorus	NA	NA	NA
Potassium	19.2	20	95.8%
Selenium	2.04	2	101.8%
Silicon	NA	NA	NA
Silver	0.050	0.05	101.0%
Sodium	19.1	20	95.3%
Strontium	NA	NA	NA
Sulfur	NA	NA	NA
Thallium	2.06	2	102.9%
Thorium	NA	NA	NA
Γin	NA	NA	NA
Titanium	NA	NA	NA
Fungsten	NA	NA	NA
Uranium	NA	NA	NA
Vanadium	0.498	0.5	99.6%
Yttrium	NA	NA	NA
Zinc	0.497	0.5	99.4%
Zirconium	NA	NA	NA

NA- Not Applicable.

BLANK SUMMARY

010018

Sample ID

PBW - F15E1 / F15E2

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: NA

Matrix: Water

Project No.: 20.06002.01.141

Lab System ID: NA

SRR: 25770

TO: 040415-2

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Aluminum	<0.05	0.05
Antimony	<0.02	0.02
Arsenic	< 0.005	0.005
Barium	< 0.005	0.005
Beryllium	< 0.005	0.005
Bismuth	<0.01	0.01
Boron	< 0.05	0.05
Cadmium	< 0.005	0.005
Calcium	< 0.05	0.05
Chromium	< 0.015	0.015
Cobalt	< 0.005	0.005
Copper	< 0.005	0.005
Iron	<0.1	0.1
Lanthanum	< 0.005	0.005
Lead	< 0.005	0.005
Lithium	<0.01	0.01
Magnesium	< 0.05	0.05
Manganese	< 0.005	0.005
Molybdenum	<0.01	0.01
Nickel	<0.01	0.01
Palladium	< 0.005	0.005
Phosphorus	< 0.02	0.02
Potassium	<0.2	0.2
Selenium	< 0.015	0.015
Silicon	< 0.05	0.05
Silver	< 0.005	0.005
Sodium	<0.2	0.2
Strontium	<0.005	0.005
Sulfur	< 0.05	0.05
Thallium	<0.02	0.02
Thorium	< 0.015	0.015
Tin	<0.01	0.01
Titanium	< 0.005	0.005
Tungsten	< 0.01	0.01
Uranium	<0.1	0.1
Vanadium	< 0.005	0.005
Yttrium	< 0.005	0.005
Zinc	< 0.005	0.005
Zirconium	< 0.005	0.005

NA- Not Applicable.

PAGE 17 OF 17

SAMPLE ANALYSIS DATA SHEET

010019

Sample ID CNWRA A

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Bromide	<0.1	0.1
Chloride	1.05	0.1
Fluoride	0.162	0.1
Nitrate-N	<0.1	0.1
Nitrite-N	<0.1	0.1
Phosphate-P	<0.1	0.1
Sulfate	133	2

DUPLICATE SUMMARY

Sample ID CNWRA A

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

	Sample	Duplicate	
Analysis	Result (mg/L)	Result (mg/L)	RPD
Bromide	<0.1	<0.1	0.00%
Chloride	1.05	1.00	4.88%
Fluoride	0.162	0.165	1.83%
Nitrate-N	<0.1	<0.1	0.00%
Nitrite-N	<0.1	<0.1	0.00%
Phosphate-P	<0.1	<0.1	0.00%
Sulfate	133	132	0.75%

SOUTHWEST RESEARCH INSTITUTE MATRIX SPIKE SUMMARY 010021

Sample ID CNWRA A

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

	Sample	Spike	Spike	
Analysis	Result (mg/L)	Result (mg/L)	Added (mg/L)	Recovery
Bromide	<0.1	3.96	4.00	99.0%
Chloride	1.05	2.85	2.00	90.0%
Fluoride	0.162	1.03	1.00	86.8%
Nitrate-N	<0.1	0.843	0.904	93.3%
Nitrite-N	<0.1	0.893	1.00	89.3%
Phosphate-P	<0.1	1.63	1.91	85.3%
Sulfate	133	211	80.0	97.5%

SAMPLE ANALYSIS DATA SHEET 010022

Sample ID CNWRA B

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Bromide	<0.1	0.1
Chloride	1.03	0.1
Fluoride	<0.1	0.1
Nitrate-N	<0.1	0.1
Nitrite-N	<0.1	0.1
Phosphate-P	<0.1	0.1
Sulfate	0.468	0.1

SAMPLE ANALYSIS DATA SHEET

010023

Sample ID CNWRA C

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Bromide	<0.1	0.1
Chloride	0.258	0.1
Fluoride	<0.1	0.1
Nitrate-N	<0.1	0.1
Nitrite-N	<0.1	0.1
Phosphate-P	<0.1	0.1
Sulfate	0.588	0.1

SAMPLE ANALYSIS DATA SHEET

010024

Sample ID CNWRA D

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Bromide	<0.1	0.1
Chloride	4.13	0.1
Fluoride	0.320	0.1
Nitrate-N	0.114	0.1
Nitrite-N	<0.1	0.1
Phosphate-P	<0.1	0.1
Sulfate	2.08	0.1

SAMPLE ANALYSIS DATA SHEET 010025

Sample ID CNWRA E

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Bromide	<0.1	0.1
Chloride	8.88	0.1
Fluoride	0.399	0.1
Nitrate-N	0.124	0.1
Nitrite-N	<0.1	0.1
Phosphate-P	0.222	0.1
Sulfate	2.86	0.1

SAMPLE ANALYSIS DATA SHEET

010026

Sample ID CNWRA F

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Bromide	<0.1	0.1
Chloride	6.84	0.1
Fluoride	1.06	0.1
Nitrate-N	1.55	0.1
Nitrite-N	<0.1	0.1
Phosphate-P	<0.1	0.1
Sulfate	25.1	2

SAMPLE ANALYSIS DATA SHEET 010027

Sample ID CNWRA G

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Bromide	<0.1	0.1
Chloride	7.96	0.1
Fluoride	3.99	0.1
Nitrate-N	<0.1	0.1
Nitrite-N	<0.1	0.1
Phosphate-P	<0.1	0.1
Sulfate	26.5	2

SAMPLE ANALYSIS DATA SHEET

010028

Sample ID CNWRA H

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

	Sample	Reporting	
Analysis	Result (mg/L)	Limit (mg/L)	
Bromide	<0.1	0.1	
Chloride	6.74	0.1	
Fluoride	2.11	0.1	
Nitrate-N	1.57	0.1	
Nitrite-N	<0.1	0.1	
Phosphate-P	<0.1	0.1	
Sulfate	21.0	2	

SAMPLE ANALYSIS DATA SHEET

010029

Sample ID CNWRA I

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Bromide	<0.1	0.1
Chloride	6.50	0.1
Fluoride	1.85	0.1
Nitrate-N	1.10	0.1
Nitrite-N	<0.1	0.1
Phosphate-P	<0.1	0.1
Sulfate	23.6	2

SAMPLE ANALYSIS DATA SHEET

010030

Sample ID CNWRA J

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

	Sample	Reporting	
Analysis	Result (mg/L)	Limit (mg/L)	
Bromide	<0.1	0.1	
Chloride	6.85	0.1	
Fluoride	1.26	0.1	
Nitrate-N	0.161	0.1	
Nitrite-N	<0.1	0.1	
Phosphate-P	<0.1	0.1	
Sulfate	20.7	2	

SAMPLE ANALYSIS DATA SHEET

010031

Sample ID CNWRA K

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/14/04

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Bromide	<0.1	0.1
Chloride	<0.1	0.1
Fluoride	<0.1	0.1
Nitrate-N	0.380	0.1
Nitrite-N	<0.1	0.1
Phosphate-P	<0.1	0.1
Sulfate	<0.1	0.1

LABORATORY CONTROL SAMPLE 010032

Sample ID LCSW

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: NA

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

Lab System ID: NA

	Sample	True	
Analysis	Result (mg/L)	Value (mg/L)	Recovery
Bromide	412	400	103%
Chloride	205	200	103%
Fluoride	101	100	101%
Nitrate-N	87.2	90.4	96.5%
Nitrite-N	99.0	101	98.0%
Phosphate-P	196	191	103%
Sulfate	411	400	103%

NA- Not Applicable.

BLANK SUMMARY

010033

Sample ID PBW

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: NA

Matrix: Water

Project No.: 06002.01.141

Task Order: 040415-2

SRR: 25770

Lab System ID: NA

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Bromide	<0.1	0.1
Chloride	<0.1	0.1
Fluoride	<0.1	0.1
Nitrate-N	<0.1	0.1
Nitrite-N	<0.1	0.1
Phosphate-P	<0.1	0.1
Sulfate	<0.1	0.1

NA- Not Applicable.

NUCLEAR PROJECT

010034

CLIENT: Division 20 TASK ORDER: 040415-2

SRR: 25770

SDG: 243222 CASE: CNWRA

VTSR: April 14, 2004

PROJECT#: 06002.01.141

Task Orders/01-QPP-015

SDG: 243222

VTSR: 04/14/04 CASE: CNWRA

Laboratory Task Order

TO #: 040415-2 Revision: 2

010035 Project(s): 06002.01.141

SRR #'s: 25770 Client(s): DIV 20 Manager(s): DAMMANN, MIKE To PM: 05/12/04

To QA: 09/14/04 To Client: 09/14/04

Instructions

DIVISION 20 - CNWRA. 30-day TAT. Using 28-day TAT for report/PM, QAU, 29-day TAT for hardcopy (subject to change). Point of Contact is Brad Werling (x6565). Analysis for Major and Minor elements ICP and Anions by IC. Work is 10 CFR 50, Part 21, Appendix B. CONTACT Charlie Butcher (ext. 5928, pager 271-5172) before starting ANY WORK on this task order. CONTACT PM WITH ANY OUESTIONS.

revision 1. corrected POC extension. (dr041504) revision 2: Updated task order. (dr091304)

Documents Related to this task order: 10102 [COC 25770]

Holding: 28 days from CED Test: DIL-DILUTION

Section: METALPREP Prep, Dilution

System ID	Туре	Cont	Matrix	Customer ID	CED	Method Date
243222		1	Water	CNWRA 1	13 Apr 04	11 May 04
243223		1	Water	CNWRA 10	13 Apr 04	11 May 04
243224		1	Water	CNWRA 11	13 Apr 04	11 May 04
243225		1	Water	CNWRA 2	13 Apr 04	11 May 04
243226		1	Water	CNWRA 3	13 Apr 04	11 May 04
243227		1	Water	CNWRA 4	13 Apr 04	11 May 04
243228		1	Water	CNWRA 5	13 Apr 04	11 May 04
243229		1	Water	CNWRA 6	13 Apr 04	11 May 04
243230		1	Water	CNWRA 7	13 Apr 04	11 May 04
243231		1	Water	CNWRA 8	13 Apr 04	11 May 04
243232		1	Water	CNWRA 9	13 Apr 04	11 May 04

Test: IC-SWRI Holding: 28 days from CED

Section: WETCHEM Ion Chromatography by SwRI Method Cnt: 11

System ID	Type	Cont	Matrix Matrix	Customer ID	CED CED	Method Date
243233		1	Water	CNWRA A	13 Apr 04	11 May 04
243234		1	Water	CNWRA B	13 Apr 04	11 May 04
243235		1	Water	CNWRA C	13 Apr 04	11 May 04
243236		1	Water	CNWRA D	13 Apr 04	11 May 04
243237		1	Water	CNWRA E	13 Apr 04	11 May 04
243238		1	Water	CNWRA F	13 Apr 04	11 May 04
243239		1	Water	CNWRA G	13 Apr 04	11 May 04
243240		1	Water	CNWRA H	13 Apr 04	11 May 04
243241		1	Water	CNWRA I	13 Apr 04	11 May 04
243242		1	Water	CNWRA J	13 Apr 04	11 May 04
243243		1	Water	CNWRA K	13 Apr 04	11 May 04

Test: ICP-SWRI Holding: 180 days from CED

ICP Analysis by SwRl Method Section: METALS

Cnt: 11

System ID	Type	Cont	Matrix	Customer ID	CED	Method Date
243222		1	Water	CNWRA 1	13 Apr 04	10 Oct 04
243223		1	Water	CNWRA 10	13 Apr 04	10 Oct 04
243224		1	Water	CNWRA 11	13 Apr 04	10 Oct 04
243225		1	Water	CNWRA 2	13 Apr 04	10 Oct 04
243226		1	Water	CNWRA 3	13 Apr 04	10 Oct 04

Southwest Research Institute

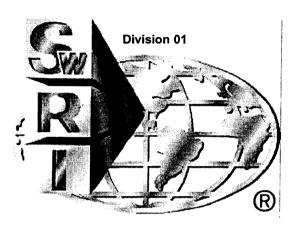
Laboratory Task Order TO #: 040415-2 Revision: 2

SDG: 243222 VTSR: 04/14/04 CASE: CNWRA

SRR #'s: 25770 Client(s): DIV 20 Project(s): 06002.01.141 Manager(s): DAMMANN, MIKE To PM: 05/12/04 To QA: 09/14/04 To Client: 09/14/04

System ID	Туре	Cont	Matrix	Customer ID	THE REPORT OF THE PROPERTY OF	Method Date
243227		1	Water	CNWRA 4	13 Apr 04	10 Oct 04
243228		1	Water	CNWRA 5	13 Apr 04	10 Oct 04
243229		1	Water	CNWRA 6	13 Apr 04	10 Oct 04
243230		1	Water	CNWRA 7	13 Apr 04	10 Oct 04
243231		1	Water	CNWRA 8	13 Apr 04	10 Oct 04
243232		1	Water	CNWRA 9	13 Apr 04	10 Oct 04

010037


CONTROLLED COPY

IF STAMP IS NOT RED, THIS DOCUMENT IS UNCONTROL! 50

01-QPP-015 Division 01 Revision 4 November 2002

Document No.

3

Chemistry and Chemical Engineering Division

QUALITY PROJECT PLAN FOR

PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIRONMENTAL CHEMISTRY

DIV. 20 SRR #25770 PROJECT #06002.01.141 CASE: DIV. 20 VTSR: 04/14/04 1045

SOUTHWEST RESEARCH INSTITUTE
Chemistry and Chemical Engineering Division
6220 CULEBRA ROAD, SAN ANTONIO, TEXAS 78238

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 4/November 2002 Page i

QUALITY PROJECT PLAN FOR PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIONMENTAL CHEMISTRY

SWRI AUTHORIZATION SIGNATORIES

This is to certify that this Quality Project Plan of Southwest Research Institute (SwRI) has been reviewed and approved by the following personnel:

Oden Bowl	10/30/02
JOANN BOYD (210) 522-2169	DATE
Quality Assurance Manager	
B. Cherry	10/30/02 DATE
REZA KARIMI (210) 522-2412	DATE
Director, Department of Analytical and Environmental Chemistry	
Ning Onell	10/30/02
MCHAEL G.MACNAUGHTON (210) 522-5162	DATE
^ν Vice President, Chemistry and Chemical Engineering Division	
CHRISTOPHER HOBSON (210) 522-5838	10/30/02
Quality Assurance Engineer	

01-QPP-015 Division 01 Rev 4/Nov 2002 Page ii

TABLE OF CONTENTS

	. Pa	ıge
1.0 INTRO	DDUCTION	. 1
2.0 SCOP	E	. 1
3.0 REFE	RENCES	. 1
4.0 APPL	ICABLE SECTIONS OF SWRI PROGRAM QUALITY PLAN (PQP-NUCLEAR)	1
4.1	Indoctrination and Training	. 1
4.2	Qualification of Personnel	
4.3	Design Control	
4.4	Right of Access	
4.5	Control of Supplier-Generated Documents	
4.6	Acceptance of Services Only	
4.7	Commercial Grade Items	
4.8	Inspection	
4.9	Inspection and Testing	
4.10	Handling, Storage, Packaging, Preservation, and Delivery	
4.11	Quality Assurance Records	
4.12	10 CFR, Part 21	
4.13	Certified Test Report	
4.14	Valid Documents List	
5.0 HISTO	PRY OF REVISIONS	6

01-QPP-015 Division 01 Rev 4/Nov 2002 Page 1 of 6

PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIRONMENTAL CHEMISTRY

1.0 INTRODUCTION

This Quality Project Plan (QPP) defines the Quality Assurance (QA) program requirements for personnel providing the chemical analyses for commercial nuclear power plants. Southwest Research Institute (SwRI) *Program Quality Plan (PQP-Nuclear)*, *Nuclear Services* shall implement the QA requirements. Project activities controlled by the PQP-Nuclear shall be accomplished as specified by the appropriate sections of 01-QAP-004, *Quality Assurance Plan for Analytical and Environmental Services* and/or nationally recognized testing methods as specified on individual purchase orders. This QPP shall be applied to all projects initiated for nuclear utilities in the Department of Analytical and Environmental Chemistry. If, as a result of complexity, duration, or other factors, it is determined that a unique, project-specific quality plan is required, the project QAE shall notify the Project Manager and a project-specific quality plan shall be generated in accordance with SOP-01-4.2.1, *Preparation and Revision of Documented Procedures*.

2.0 SCOPE

This Quality Project Plan shall be applied to the chemical analyses performed for commercial nuclear power plants by the Department of Analytical and Environmental Chemistry within the Chemistry and Chemical Engineering Division. Although the majority of the work performed for nuclear facilities resides within the Department of Analytical and Environmental Chemistry, other departments within the division may utilize this Quality Project Plan as deemed necessary when nuclear projects are conducted.

3.0 REFERENCES

- 3.1 SwRI Quality System Manual 2000
- 3.2 10 CFR 50, Appendix B, ASME NQA-1
- 3.3 SwRI Program Quality Plan (PQP-Nuclear), Nuclear Services
- 3.4 01-QAP-004, Quality Assurance Plan for Analytical and Environmental Services

4.0 APPLICABLE SECTIONS OF SWRI PROGRAM QUALITY PLAN (PQP-NUCLEAR)

4.1 Indoctrination and Training

- 4.1.1 Personnel performing duties affecting quality shall receive quality training to the SwRI Program Quality Plan (PQP-Nuclear), Nuclear Services prior to performing any work on projects for nuclear utilities. Institute Quality Systems (IQS) personnel shall perform this training and documentation shall be evident in the personnel training files maintained in Division Quality Assurance.
- 4.1.2 Indoctrination and training of personnel shall be conducted in accordance with SOP-01-6.2.1, Qualification and Training.

01-QPP-015 Division 01 Rev 4/Nov 2002 Page 2 of 6

4.2 Qualification of Personnel

- 4.2.1 Testing personnel shall be designated as qualified to perform applicable project activities as specified in **SOP-01-6.2.1**, *Qualification and Training*.
- 4.2.2 During the performance of each testing process, testing personnel shall have access to the necessary documented procedures, i.e., QPP, QAP, Work Order, Division Quality System Standard Operating Procedures (SOPs), and applicable test/analytical procedures (TAPs) available for ready reference.
- 4.2.3 Any person who has not performed testing activities associated with any particular method being used for nuclear utilities projects for a period of one year shall be reevaluated prior to the conduct of the test.
- 4.2.4 Quality Assurance personnel witnessing the testing process for nuclear utilities shall have documented evidence of qualifications maintained by Institute Quality Systems.

4.3 Design Control

Not applicable to activities conducted within the Department of Analytical and Environmental Chemistry.

4.4 Right of Access

- 4.4.1 Procurement documents shall provide for access to the suppliers' facilities and records for surveillance, inspection, or audit by SwRI and clients.
- 4.4.2 Where appropriate, quality clause **Q32** shall be noted on the procurement documents to indicate that right of access for inspection and surveillance of activities associated with the order shall be afforded to SwRI and clients.

4.5 Control of Supplier-Generated Documents

- 4.5.1 Client documents shall be controlled in accordance with SOP-01-4.2.1, Preparation and Revision of Documented Procedures. These procedures provide the requirements for the preparation, review, approval, issue, distribution, and revision of documents controlled by the Chemistry and Chemical Engineering Division.
- 4.5.2 Documents may be controlled as Plans or Work Instructions and shall be accessible through the Division Intranet link, *Contract Requirements* as PDF files.
- 4.5.3 Nationally recognized test methods shall be of the most current issue or as specified in the purchase order. Work orders shall identify the applicable test methods to be used on the nuclear project.

4.6 Acceptance of Services Only

Not applicable to activities conducted within the Department of Analytical and Environmental Chemistry.

01-QPP-015 Division 01 Rev 4/Nov 2002 Page 3 of 6

4.7 Commercial Grade Items

- 4.7.1 Where an item is to be incorporated into a test or deliverable to a client, and that item is not subject to design or specification requirements that are unique to nuclear facilities, used in applications other then nuclear facilities, and procured from the supplier on the specifications set forth in the manufacturers' published product and description, the item shall be considered "commercial grade".
- 4.7.2 Chemical reagents and standards used for testing purposes shall be ordered to specific chemical grades and certificates of analysis shall be required with each lot.
- 4.7.3 Controls for procurement planning, supplier selection, supplier performance evaluation, and acceptance of procured items and services other than chemical reagents and standards shall be as identified in SOP-01-7.4.1, *Purchasing*, and any referenced document within that procedure.
- 4.7.4 Receipt inspection of chemical reagents, standards, and test items for use on nuclear safety-related projects shall be performed by department personnel and documented on the *SwRI Receipt Traveler* or **FRM-109**, *Item Receipt Report*, as specified in **SOP-01-8.2.4**, *Monitoring and Measurement*. Any discrepancy such as a damaged container or container label shall be documented on the form and the client shall be contacted for disposition.
- 4.7.5 Prior or acceptance of a commercial grade item, the receipt inspection shall determine the following:
 - (a) Damage was not sustained during shipment;
 - (b) The item has satisfied the specified acceptance criteria; and
 - (c) Specified documentation, as applicable to the item, was received and is acceptable.
- 4.7.6 Receipt inspection of chemical reagents and standards shall also consist of verification of chemical type, grade, container integrity, certificate of analysis, and shelf life, where applicable. Upon acceptance of chemical reagents and standards, the containers shall be labeled with the following:
 - (a) Chemical name;
 - (b) Chemical grade;
 - (c) Lot code;
 - (d) Date received; and
 - (e) Shelf life, when applicable.

- 4.7.7 Expired shelf life items shall not be used for testing purposes.
- 4.7.8 Lot codes of chemical reagents and standards used during equipment standardization and testing shall be recorded on the individual testing data sheets to provide traceability.
- 4.7.9 Samples supplied to SwRI for testing shall be received by the Sample Custodian and logged into the laboratory logbook. Sample documentation and sample custody shall be maintained in accordance with TAP-01-0407-001, Sample Receipt Inspection, and TAP-01-0407-035, Organic and Inorganic Sample Security.
- 4.7.10 Samples supplied to SwRI for testing shall be labeled with the following:
 - (a) Sample control number;
 - (b) Purchase order number;
 - (c) Purchase order line item number, as applicable;
 - (d) Work order number;
 - (e) Nuclear QA label; and
 - (f) Sample retention date, when applicable.
- 4.7.11 In the event that samples are damaged upon receipt, a **Sample Discrepancy Record** shall be generated from the Division Intranet.
- 4.7.12 The testing work order shall list the project number, tests required, test methods required, and shall be labeled *Nuclear Quality*.
- 4.7.13 Identification and traceability shall be maintained in accordance with **SOP-01-7.5.1**, *Item Identification and Traceability*.

4.8 Inspection

- 4.8.1 Inspection for acceptance shall be performed by qualified persons other than those who conduct or directly supervise the work being inspected.
- 4.8.2 Institute Quality System (IQS) personnel shall perform surveillance activities as required to ensure compliance with the contract and this Quality Project Plan. Specific areas in which IQS may perform surveillance activities include, but are not limited to, the following:
 - (a) Receiving inspection and labeling of chemical reagents, standards, and testing samples;
 - (b) Testing processes;
 - (c) Calibration and major equipment;
 - (d) Sample and record retention; and

01-QPP-015 Division 01 Rev 4/Nov 2002 Page 5 of 6

(e) Test records.

4.9 Inspection and Testing

- 4.9.1 Required tests for acceptance shall be conducted under appropriate environmental conditions using the tools and equipment necessary to conduct the test in a manner to fulfill test requirements and acceptance criteria.
- 4.9.2 Tests shall be conducted, controlled, and verified in accordance with **SOP-01-8.2.4**, *Monitoring and Measurement*.
- 4.9.3 Controls for measuring and test equipment shall be as specified in **SOP-01-7.6.1**, Control of Measuring and Test Equipment.
- 4.9.4 Controls for identification, segregation, reporting, and resolution of nonconforming items and conditions shall be as specified in **SOP-01-8.3.1**, *Nonconformance Reporting*.

4.10 Handling, Storage, Packaging, Preservation, and Delivery

- 4.10.1 Controls for handling, storage, packaging, preservation, and delivery of items are identified in SOP-01-7.5.3, Handling, Storage, Packaging, Protection, and Delivery of Items.
- 4.10.2 Samples specified on the purchase order to be returned to the client shall be prepared and packaged as specified on the purchase order. Each package shall be marked legibly and indelibly with the purchase order/release number and line item number(s) relevant to the package.

4.11 Quality Assurance Records

- 4.11.1 Quality assurance records shall furnish documentary evidence that items or activities meet specified quality requirements. Documents that ensure this evidence include TAP-01-0407-014, Inventory of Case File Purges, and SOP-01-4.2.4, Storage and Maintenance of Quality Records. These documents and this QPP ensure that QA records shall be legible, identifiable, retrievable, and maintained in dual storage.
- 4.11.2 Records shall be traceable to associated items and activities and shall accurately reflect the work accomplished or information required.
- 4.11.3 Documents shall be considered valid records only if stamped, initialed or signed and dated by authorized personnel or otherwise authenticated.
- 4.11.4 Records of test analyses performed by the Department of Analytical and Environmental Chemistry are classified as nonpermanent and shall be retained for a minimum of five years. Nonpermanent records are those required to show evidence that an activity was performed in accordance with the applicable requirements, but need not be retained for the life of the item. Based on the use of the final data, the client shall be responsible for determining and implementing permanent storage requirements.

01-QPP-015 Division 01 Rev 4/Nov 2002 Page 6 of 6

4.11.5 In order to satisfy duplicate storage requirements, one copy of the QA record shall maintained by the Project Manager in Building 70 and a separate copy shall be maintained in the Division Quality Assurance Archives in Building 201. Storage requirements shall be as stated in SOP-01-4.2.4, Storage and Maintenance of Quality Records, to ensure protection against the risk of damage or destruction.

4.12 10 CFR, Part 21

- 4.12.1 SwRI procurement documents shall include requirements for reporting and approving disposition of supplier nonconformances and, when required, compliance to 10 CFR, Part 21.
- 4.12.2 The Manager of Institute Quality Assurance or Director of Institute Quality Systems shall determine if a nonconforming condition is reportable under 10 CFR, Part 21, and initiate reporting and condition in accordance with the SwRI Operating Policies and Procedures (OPP). Safety hazards or defects that could create a substantial safety hazard shall be reported. Substantial safety hazard means a loss of safety function to the extent that there is a major reduction in the degree of protection provided to public health and safety.

4.13 Certified Test Report

The Project Manager and Institute Quality Assurance Manager as complying with all contractual requirements shall certify test reports. The certified test report shall reference the purchase order/release number, the test methods performed, and the purchase order/release line item number.

4.14 Valid Documents List

The Department of Analytical and Environmental Chemistry work order shall specify all applicable documents and appropriate document revision level for each document. The work order shall then serve as the Valid Documents List (VDL) for each individual project.

5.0 HISTORY OF REVISIONS

Revision 4

Title of document changed from the Standard Project Quality Plan SPQP-CH/AN to Quality Project Plan, QPP-015

Extensive revision to comply with Project Quality Plan PQP-Nuclear, *Nuclear Services*, which replaces SwRI NQAPM, *Nuclear Quality Assurance Program Manual*.

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040415-2

SRR: 25770 SDG: 243222 CASE: CNWRA VTSR: April 14, 2004

PROJECT#: 06002.01.141

Chain of Custody/Login Paperwork

Shipper Name Address C NMRA BL	EPLI - DI D-5	ING 1 Ze 7	?		Clie	So Chemistry	uthwest Researce and Chemical En 6220 Culebra I Antonio, Texas	h Instit gineerir Road	u te ng Divisio				Requested Turn 2 Weeks 3 Weeks Other:	wk
Client													Mike D	amman
5					<u></u>		Analyses Requ	ested						ARKS
Sample Collection Date	(mm/dd/yy) Sample Collection Time	Matrix Type	Sample Type	# of Containers	Anglysis at Mayor famor elentedis ICP		SRR #25770 PROJECT #06002.01.141 CASE: DIV. 20 VTSR: 04/14/04 1045		Tuket				Preservation a = HCl to pH b = HNO ₃ to pC c = H ₂ SO ₄ to d = NaOH to e = Cool (4°C	<2 bH <2 pH <2 pH >12
	3-04	W)	X		SI ROJEC CA VTSR:		1			4	Nuclear	Sofety
CNWRA Z				1	*		CAS SP SP SP SP SP SP SP SP SP SP SP SP SP					F	related	-, Use
CNWRA 3					У		RR #2577 T #06002 SE: DIV 04/14/04	₹ [F	900001	iate OA
CNWRA 4					X		257 2600 DIV	$_{ m S}$ $oxdap$				F	proced	uves
CNWRA 5					X		770 02.0 1.20 1.4					F		
CNWRA6					X		01.12					F	POL-Brad	
CNURA 7					X		4 10					4	X6565 +	ax 5184
CNWRA 8					X		•					4		•
CNWRA 9					X							E		
CNWRA 10 -		1			X				W			4		
Matrix Types: A - Air	Sample D - Dupl		L	· · · · · ·	1	hed by (Print/Signature)	•			Da		Time	SwRI Project#:	اللبداء
B - Biota		licale Juipment F	Rinsate		500	Brown					K-on		20,060	4.01.191
D - Dust E – Emission/Stack	FB - Fie	ivironment eld Blank	•	ole	Received	by (Print/Signature)				Da	ite	Time	Received by S (Signature)	WHI Edd.
L - Liquid P - Product		eld Duplica atrix Spike			Relinquis	hed by (Print/Signature)			 	Da	ite	Time		4
Sd - Solid S - Soil	MSD - 1	Matrix Spil	ke Dup										Date	Time
SED - Sediment	10-11	ip blank										-	4 14	1045
T - Tissue W - Water					Received	by (Print/Signature)				Da	ate	Time	Samples Disp	osed:
WP - Wipe	Therm #	#: 0,5	۲.									-	_	Time
Comments:					Relinquis	hed by (Print/Signature)				Da	ate	Time	Samples Disp	osed by:
628/91 Div 01 COC Form 01-01-													Pa	ige of

Shipper Name, Address C N.	WE 2A-	PIL	120	>					chemistry a	hwest Res nd Chemic 6220 Cule	search Ins	titute ring Divi				Requested T 2 Week 3 Week Other:		
	DVI	<u> </u>					lient Purc	chase Orde	er/Other ID			5	Site/Zone	e ID		SwRI Contac	ct	
Client																. 6 1 11	\circ	
0				r		ļ <u></u>	,			Analyses	Requested	<u>1</u>		7		MIKE	Dammann	_
Sample ID	Sample Collection Date (mm/dd/yy)	Sample Collection Time	Matrix Type	Sample Type	# of Containers	Analysis of major + minor			Inket				Y.	DIV. 20 SRR #25770 PROJECT #06002.01.		Preservation a = HCl to r b = HNO ₃ to c = H ₂ SO ₄ t d = NaOH t e = Cool (4 f = Other (5)	oH <2 o pH <2 to pH <2 to pH >12 °C±2°C)	
CNWRA 11	4-13-0	4	W		1	X			1				SR C	ω (V	Ь	Nuelec	v Satetu	
													O SE	으켰다		l f	d- vse	
												-	CASE: DIV. 2 VTSR: 04/14/04	# ₀₆				-
													ζŽ	20 57 500		060664	nete and	
	 	 					<u> </u>	<u> </u>	-				4 20	70 2.0		h10560	0,67	
													20 1045	1.141			d Werling Fax518	
Matrix Types: A – Air B – Biota		Sample 1 D - Duplic ER – Equ	cate	insate				Print/Signa	ature)	E_			L	Date 4.13 ov	Time	SwRI Project#:	02.01.14	
D - Dust E - Emission/Stack L - Liquid		ES – Envi FB – Field FD – Field	d Blank d Duplica	te	le									Date	Time	Received by (Signature)	SwBLLab:	
P – Product Sd - Solid S – Soil SED – Sediment	1	MS – Mat MSD – M TB – Trip	atrix Spik			Relinqu	ished by ((Print/Signa	ature)					Date	Time	Date	Time	
T - Tissue W - Water WP - Wipe Temp: 77 - 0 00		Therm #:	05	<u> </u>		Receive	ed by (Prir	nt/Signature	e)					Date	Time	Samples Dis Date		010048
Comments:	<u> </u>			+		Relinqu	ished by ((Print/Signa	ature)					Date	Time	0	1	48
628/91																Samples Dis	sposed by:	W

Shipper Name/ Address	BRAC	N RA R	JE -	ERL DIV	ING) >			SAMPLE LIST/CHAIN OF CUSTODY Southwest Research Institute Chemistry and Chemical Engineering Division 6220 Culebra Road San Antonio, Texas 78238-5166				Requested Turnaround: 2 Weeks 3 Weeks Other: H WK								
					_/			-	Client Purc	hase Order	Other ID)		Site	e/Zone ID)			SwRI Contac	t	İ
Client											on - 1110		<u> </u>						Mike 1	Jammany	ŀ
		T	—т	·	<u> </u>	7	T		_	1		Analys	ses Re	equested						MARKS	
Sample	ID	Sample Collection Date	(mm/dd/yy)	Sample Collection Time	Matrix Type	Sample Type	# of Containers	Anicus by 1C				- (+ Wart			CASE: DIV. 20 VTSR: 04/14/04 10	PR(_	Preservation a = HCl to p b = HNO ₃ to c = H ₂ SO ₄ to d = NaOH to e = Cool (4°	oH <2 o pH <2 o pH <2 o pH >12	2
CNWI	ZA A	4-13	3-04	1	W		1	X				1				TST C	٦ ا	_	Nuclear	Safety	
CNW					1			X								AS O	SES	n -	related	1- USE	
CNU								X								<u>4</u> E	き き き	ĕ .	4 ppropi	riate OA	
cNu								X								\$ × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×	257 600	20	Proced	1	
CNW		1						X								² 0	70	_			
CNW					1			X										_	POC-Brac	Wesling	
CNU								X									141	_	x 6565		4
CNU	RA H							X													
CNU								X					/					_			
CNU	URA J	1					1	1 ×				7	7					-			
Matrix A – Air				ample 1						Print/Signat			•			Date	1	me _	SwRI Project#:		
B - Bio) - Duplic : R – Equ		Rinsate		500	Brown	t/Signature	1	Z	_		1	1:13-0	24 /	2.45	20,0600	2.01.14	11
D - Dus			- 1	S – Env	•		ple	Receiv	ed by (Prin	t/Signature	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					Date		me	Received by		
E - Em	ission/Stack			B – Field			•		• ,										(Signature)		7
L - Liqu				D - Fiel				ļ		D : ./O:						Data	 _		-	ハン	
P - Pro Sd - Sc				1S – Mat 1SD – M				Relinqu	iisnea by (i	Print/Signa	ture)					Date	''	me <	トノン	AZ .	
S - Soi				B – Trip		ike Dup													Date	Time	
	Sediment		'	,													İ				0
T - Tiss								Receiv	ed by (Prin	t/Signature)					Date	Ti	me	4/14/04		
W - Wa																			Samples Dis		004
WP - W	/ipe こて-0 ^c		+-	herm #:	02	-		\dashv											Date	Time	10
Comme				nenn #:	<u>ي ن</u>			Reling	ished by (Print/Signa	ture)					Date	 Ti	me	1		19
	•									2.3.10	,				F		- ·	_	Samples Dis	posed by:	
625	3/91																				

Shipper Name/ Address	BRAD CNU	URA- BLI	ERI Pl	-1NG V Z 7	O			Client Purc		South emistry an (San Ar	west Research	ngineering Div Road 78238-5166		ID.		Requested T 2 Weeks 3 Weeks Other: SwRI Contact	lwk	
Client				/			1	oner are	oriase Oraen	Other ID		•	Oite/2011e	10		1		
ਰੈ								1		Α	nalyses Requ	uested					ammann	
Samp	ole ID	Sample Collection Date	(initiodayy) Sample Collection Time	Matrix Type	Sample Type	# of Containers	Anions by 1C		- Infect					PRO VT	DIV. 20 SRR #25770	Preservation a = HCl to p b = HNO ₃ to c = H ₂ SO ₄ to d = NaOH to e = Cool (4°	pH <2 pH <2 pH >12	e
CN	wra k	4-13	'oy	u		1	X		$ \mathcal{Y} $					CA VTSR:	<u>s</u>	Nuclear	Safety	
														SE:#	R		- use	
		-												SE: DIV.: 04/14/04	/. 20 #257	appropr	riate qu	4
							-						-	. 20 4 1	70	proced	u√e5	
														.01.14 20 1045	•	POC-B	rac Well) nc
	4.00													. <u> </u>	•	x6565 +	ax 5184	,)
Matri	x Types:		Some	le Types:		<u> </u>	Dalingu	ished by (Print/Signatu					<u> </u>	 	20.0600	2,01,14	Ш
A – A B – B	ir		D - Du	plicate	Discorts		Heiirida	D	1	ire)	2			Date	Time	SwRI Project#:	だ	
D - D	ust		ES - E	quipmen	ntal Sam	ple	Receive	<i>בנוכבים</i> ed by (Prin	it/Signature)	n A	2			Date	10:45 Time	Received by	SwRI Lab:	
L - Lie		K	FD - F	ield Blanl ield Dupli	cate											(Signature)	\langle	\supset
P - P Sd - 8	roduct Solid			Matrix Spi - Matrix S			Relinqu	ished by (Print/Signatu	ıre)	_			Date	Time	7513	4	
S - S SED	oil – Sediment		TB – 7	rip Blank	·											-Date	Time	
T - Ti: W - W WP -	ssue /ater						Receive	d by (Prin	t/Signature)				48	Date	Time	Y Y W Samples Disp		
Temp	: 22.0	ိင	Therm	#: 07	١٦											Date	Time	005
Comr	nents:						Relinqui	shed by (Print/Signatu	ıre)				Date	Time	Samples Dist	osed by:	-0
62	8/91																,	
Div 0	1 COC Form	01-01-00	1, Rev 8	/02												Pa	nge <u> </u>	ス

Southwest Resectived By (Print Name)	earch Institute				Page 1 of 1 Log-in Date
DINO ROMAN					04/14/2004
eceived By (Signature)	2/2				
ase Number CNWRA	<i>J</i> 19	Sample Delivery Gro		SAS Number	
emarks: 06002.01.141			Corre	esponding	Remarks: Condition of Sam Shipment, etc
		EPA Sample #	Sample Tag #	Assigned Lab #	Simplificiti, etc
Custody Seal(s)	Present Absent* Intact/Broken	CNWRA 1	None	243222	Intact
Custody Seal Nos.	/ w/14	CNWRA 10	None	243223	Intact
	v w/m	CNWRA 11	None	243224	Intact
Chain-of Custody Records	resent Absent*	CNWRA 2	None	243225	Intact
Traffic Reports or Packing Lists Airbill	Present Absent Airbill/Sticker	CNWRA 3	None	243226	Intact
Attom	resen Absent*	CNWRA 4	None	243227	Intact
Airbill No.	HAND DELIVERED	CNWRA 5	None	243228	Intact
	_	CNWRA 6	None	243229	Intact
Sample Tags	Present Absent	CNWRA 7	None	243230	Intact
Sample Tag Numbers	Listed Not listed on Chain of Custody	CNWRA 8	None None	243231	Intact Intact
Sample Condition	Intact Broken*/	CNWRA A	None	243232	Intact
Cooler Temperature	Leaking 22.0C	CNWRA B	None	243234	Intact
. Does Information on custody	(es)No*	CNWRA C	None	243235	Intact
records, traffic reports, and sample tags		CNWRA D	None	243236	Intact
agree? Date Received at Lab	04/14/2004	CNWRA E	None	243237	Intact
Time Received	10:45:00	CNWRA F	None	243238	Intact
Time Received	10.43.00	CNWRA G	None	243239	Intact
Sample	Transfer	CNWRA H	None	243240	Intact
action T.	Prection	CNWRA I	None	243241	Intact
Inorg #2	Area #	CNWRA J	None	243242	Intact
DINO ROMAN	Ву	CNWRA K	None	243243	Intact
n 04/14/2004	On				
* Contact SMO and attach recor	d of resolution	•			
viewed By	1 6412-04		Logbook No.	Sample Recei	nt (25770)
ate OHIZIZ	A. SALCEDY OOY	A THE RESIDENCE A THE RESIDENCE AS A SECOND CONTRACT OF THE RESIDENCE	Logbook Page No.	5042 <i>(3E(1</i>)	

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040415-2

SRR: 25770 SDG: 243222 CASE: CNWRA VTSR: April 14, 2004

PROJECT#: 06002.01.141

Copies of Login Book

Sample Rece VTSR Date:	eipt: 25769 Apr 14, 2004	Project: 10154.01.009 VTSR Time: 10:50:00	Client: Div. 18 (Bro Manager: DAMMANN, N		
System ID	Customer Sample ID			Matrix	
243207	Filter #7			Product	
243208	Filter #8			Product	
243209	Filter #9			Product	
243210	Grease #1			Solid	
243211	Grease #2			Solid	
243212	Grease #3			Solid	
243213	Grease #4			Solid	
243214	Grease #5			Solid	
243215	N2837			Liquid	
243216	N2878			Liquid	
243217	N7338			Liquid	
243218	N7647			Liquid	
243219	O-Ring Filter #19			Product	
243220	O-Ring Filter #20			Product	
243221	WD 40			Liquid	

Sample Receipt: 25770 VTSR Date: Apr 14, 2004		Project: 06002.01.141 VTSR Time: 10:45:00	Client: D Manager: DAMMANN,	Client: DIV 20	
	•	V13R Time. 10.45.00			
System ID	Customer Sample ID		Matr	ліх	
243222	CNWRA 1		Wat	ter	
243223	CNWRA 10		Wat	ter	
243224	CNWRA 11		Wat	ter	
243225	CNWRA 2		Wat	ter	
243226	CNWRA 3		Wat	ter	
243227	CNWRA 4		Wat	ter	
243228	CNWRA 5		Wat	ter	
243229	CNWRA 6		Wat	ter	
243230	CNWRA 7		Wat	ter	
243231	CNWRA 8		Wat	ter	
243232	CNWRA 9		Wat	ter	
243233	CNWRA A		Wat	ter	

Sample Login Book Apr 14, 2004

SwRI Login Area Division 1

Sample Rece VTSR Date:	eipt: 25770 Apr 14, 2004	Client: DI Manager: DAMMANN, M		
System ID	Customer Sample ID			Matrix
243234	CNWRA B			Water
243235	CNWRA C			Water
243236	CNWRA D			Water
243237	CNWRA E			Water
243238	CNWRA F			Water
243239	CNWRA G			Water
243240	CNWRA H			Water
243241	CNWRA I			Water
243242	CNWRA J			Water
243243	CNWRA K			Water

Sample Reco	eipt: 25771 Apr 14, 2004	Project: 10192.01.10X VTSR Time: 14:00:00	Client: Lynx, Manager: SUN, G	
System ID	Customer Sample ID		Matri	ix
243247	0404081305		Wate	er
243248	0404120704		Wate	er
243249	0404120951		Wate	er
243250	0404121005		Wate	er
243251	0404121305		Wate	er
243252	0404121324		Wate	er
243253	0404130956		Wate	er

Sample Rece VTSR Date:	eipt: 25772 Apr 14, 2004	Project: 10192.01.10X VTSR Time: 14:00:00	Client: Lynx, LTD. Manager: SUN, GANG		
System ID	Customer Sample ID		Matrix		
243254	0404121410		Water		
243255	0404131030		Water		

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040415-2

SRR: 25770 SDG: 243222 CASE: CNWRA

VTSR: April 14, 2004 PROJECT#: 06002.01.141

RAW DATA

Div 20 to#040415-2, 040521-6 06002.01.141

06002.01.141							\ 54		1 Jul 10	
Tavatam id	elem	result	qual	units	rl	tv	Trec	[ug/ml	date	time
system id	eletti	resuit	quai	unito		<u> </u>				
243222"	Ag3280"	0.005	U	mg/L	0.005			-0.00032	06/15/04"	12:44". 12:44".
243222"	Al3082"	0.05		mg/L	0.05			-0.01361	06/15/04"	
243222"	As1890"	0.005		mg/L	0.005			-0.00071	06/15/04"	12:44"
243222"	B_2496"	1.69		mg/L	0.05			1.68823	06/15/04"	12:44"
243222"	Ba4934"	0.297		mg/L	0.005			0.29658	06/15/04"	12:44"
243222"	Be3130"	0.005	11	mg/L	0.005			0.00005	06/15/04"	12:44"
243222"	Bi2230"	0.01		mg/L	0.01			0.00299	06/15/04"	12:44"
243222"	Ca3179"	29.1		mg/L	0.05			29.10540	06/15/04"	12:44"
243222"	Cd2265"	0.005	П	mg/L	0.005			0.00040	06/15/04"	12:44"
243222"	Co2286"	0.005		mg/L	0.005			0.00247	06/15/04"	12:44"
243222 243222"	Cr2677"	0.015		mg/L	0.015			-0.00069	06/15/04"	12:44"
	Cu3247"	0.005		mg/L	0.005			-0.00064	06/15/04"	12:44"
243222"	Fe2714"			mg/L	0.1			0.08023	06/15/04"	12:44"
243222"	K_766	0.414		mg/L	0.2			0.4138	06/15/04	13:18:25
243222"	La3988"	0.005		mg/L	0.005			-0.00017	06/15/04"	12:44"
243222"	Li670	0.003		mg/L	0.01			0.0020	06/15/04	13:18:25
243222"	Mg2790"	0.098		mg/L	0.05			0.09757	06/15/04"	12:44"
243222"	Mn2576"	0.005		mg/L	0.005			0.00408	06/15/04"	12:44"
243222"	Mo2020"	0.003		mg/L	0.01			0.00148	06/15/04"	12:44"
243222"	Na589	3.64	_	mg/L	0.2				06/15/04	13:18:25
243222"	Ni2316"	0.059		mg/L	0.01			0.05876	06/15/04"	12:44"
243222"	P 1782"	0.03		mg/L	0.02			-0.00263	06/15/04"	12:44"
243222"	Pb220"	0.005		mg/L	0.005			0.00144	06/15/04"	12:44"
243222"	Pd3404"	0.005		mg/L	0.005			-0.00181	06/15/04"	12:44"
243222"	S_1820"	24.9		mg/L	0.05			24.93973	06/15/04"	12:44"
243222"	Sb2068"	0.02		mg/L	0.02			0.00192		12:44"
243222"	Se196"	0.015		mg/L	0.015			0.00261	06/15/04"	12:44"
243222"	Si2881"	0.274		mg/L	0.05			0.27400	06/15/04"	12:44"
243222"	Sn1899"	0.01		mg/L				-0.00092	06/15/04"	12:44"
243222"	Sr4215"	0.212		mg/L		_		0.21215	06/15/04"	12:44"
243222"	Th2837"	0.015		mg/L	0.015	_		-0.00138	06/15/04"	12:44"
243222"	Ti3349"	0.005		mg/L	0.005			0.00007		12:44"
243222" 243222"	TI1908"	0.02		mg/L		_		0.00223	06/15/04"	
	U_4090"		ilu	mg/L				0.00820	06/15/04"	12:44"
243222"	V 2924"	0.005		mg/L				0.00016	06/15/04"	12:44"
243222"	W_2079"	0.00		mg/L				-0.00129	06/15/04"	12:44"
243222"	Y_3710"	0.005		mg/L		_		-0.00015	06/15/04"	12:44"
243222"	Zn2062"	0.112		mg/L				0.11164		12:44"
243222"	Zr3496"	0.005		mg/L				0.00013		12:44"
243222"	Ag3280"	0.005		mg/L				-0.00038	06/15/04"	12:48"
243223"	Al3082"	0.05		mg/L		_		-0.01765	06/15/04"	12:48"
243223"	As1890"	0.005		mg/L		_		0.00189	06/15/04"	12:48"
243223"	B_2496"	0.138		mg/L				0.13826		12:48"
243223"	B_2490 Ba4934"	0.00	_	mg/L				0.00717		12:48"
243223"	Be3130"	0.00		mg/L				0.00005	06/15/04	12:48"
243223"	Bi2230"	0.0		mg/L				-0.00022	06/15/04	12:48"
243223"	Ca3179"	17.		mg/L				17.75094		
243223"	Cd2265"	0.00		mg/L				0.00016		12:48"
243223"	Co2286"	0.00		mg/L				0.00098		
243223"	Cr2677"	0.01		mg/L				-0.0008		
243223"	Cu3247"	0.00		mg/L				-0.0009		
243223"	Fe2714"		1 U	mg/L				0.0086		
243223" 243223"	K 766	5.0		mg/l		_			3 06/15/04	13:22:00
11243223	11/_/00		5 U	mg/l		_		-0.0002		12:48

0056

Sustan :d	Tolom	I roouls	au al	Lupíta	l ei	14.7	Iron	lug/ml	Idata	Itimo
system id	elem	result	qual	units	rl	tv	rec	ug/mi	date	time
243223"	Li670	0.035		mg/L	0.01		 	0.0353	06/15/04	13:22:00
243223"	Mg2790"	2.78		mg/L	0.01	<u> </u>	 	2.78323	06/15/04"	
243223"	Mn2576"	0.025		mg/L	0.005		 	0.02539		
243223"	Mo2020"	0.023	11	mg/L	0.003		 	0.00309		
243223"	Na589	34.9	<u> </u>	mg/L	0.01		 		06/15/04	13:22:00
243223"	Ni2316"	0.01	11	mg/L	0.01		 	0.00083	06/15/04"	12:48"
243223"	P 1782"	0.020	<u> </u>	mg/L	0.02	<u> </u>	 	0.02024		
243223"	Pb220"	0.020	11	mg/L	0.005	 	 	0.02024	06/15/04"	
243223"	Pd3404"	0.005		mg/L	0.005		<u> </u>	-0.00121	06/15/04"	12:48"
243223"	S_1820"	6.81	<u> </u>	mg/L	0.005			6.80944	06/15/04"	12:48"
243223"	Sb2068"	0.01	11	mg/L	0.02		 	0.00168	06/15/04"	
243223"	Se196"	0.02		mg/L	0.02			0.00108	06/15/04"	
243223"	Si2881"	19.5	<u> </u>	mg/L	0.05			19.50259	06/15/04"	
243223"	Sn1899"	0.015		mg/L	0.03			0.01464	06/15/04"	
243223"	Sr4215"	0.079		mg/L	0.005	L		0.07866		
243223"	Th2837"	0.015	11		0.003			-0.00249	06/15/04"	
243223"	Ti3349"	0.015		mg/L mg/L	0.015			-0.00249	06/15/04"	12:48"
243223"	TI1908"	0.003		mg/L	0.003			-0.00034	06/15/04"	12:48"
243223"	U 4090"	0.02		mg/L	0.02			0.01242	06/15/04"	12:48"
243223"	V_2924"	0.005		mg/L	0.005		<u> </u>	0.00168	06/15/04"	
243223"	W 2079"	0.003		mg/L	0.003		l	-0.00276	06/15/04"	
243223"	Y_3710"	0.005		mg/L	0.005			-0.00006	06/15/04"	
243223"	Zn2062"	0.005		mg/L	0.005			0.00027	06/15/04"	
243223"	Zr3496"	0.005		mg/L	0.005			-0.00010	06/15/04"	
243224"	Ag3280"	0.005		mg/L	0.005		 	-0.00011	06/15/04"	
243224"	Al3082"	0.05		mg/L	0.05			-0.01335	06/15/04"	12:53"
243224"	As1890"	0.005		mg/L	0.005		<u> </u>	0.00055	06/15/04"	12:53"
243224"	B 2496"	0.05		mg/L	0.05			-0.00189	06/15/04"	12:53"
243224"	Ba4934"	0.005		mg/L	0.005			0.00020	06/15/04"	12:53"
243224"	Be3130"	0.005		mg/L	0.005			0.00002	06/15/04"	
243224"	Bi2230"	0.01		mg/L	0.01			0.00227	06/15/04"	
243224"	Ca3179"	5.00		mg/L	0.05			4.99723	06/15/04"	
243224"	Cd2265"	0.005	U	mg/L	0.005			0.00045	06/15/04"	12:53"
243224"	Co2286"	0.005		mg/L	0.005			0.00012		
243224"	Cr2677"	0.015		mg/L	0.015			-0.00022		
243224"	Cu3247"	0.005		mg/L	0.005			-0.00044		12:53"
243224"	Fe2714"	0.1		mg/L	0.1			-0.00309		12:53"
243224"	K_766	0.2		mg/L	0.2				06/15/04	13:25:03
243224"	La3988"	0.005		mg/L	0.005			0.00000		12:53"
243224"	Li670	0.01		mg/L	0.01				06/15/04	13:25:03
243224"	Mg2790"	0.05		mg/L	0.05			0.00021	06/15/04"	12:53"
243224"	Mn2576"	0.005		mg/L	0.005			-0.00001	06/15/04"	12:53"
243224"	Mo2020"	0.01		mg/L	0.01			0.00020	06/15/04"	12:53"
243224"	Na589	8.86		mg/L	0.2				06/15/04	13:25:03
243224"	Ni2316"	0.01	Ū	mg/L	0.01			0.00076	06/15/04"	12:53"
243224"	P_1782"	0.02		mg/L	0.02			0.00764	06/15/04"	12:53"
243224"	Pb220"	0.005		mg/L	0.005			-0.00136	06/15/04"	12:53"
243224"	Pd3404"	0.005		mg/L	0.005			-0.00047	06/15/04"	12:53"
243224"	S_1820"	0.05		mg/L	0.05			-0.03086	06/15/04"	12:53"
243224"	Sb2068"	0.02		mg/L	0.02			-0.00051	06/15/04"	12:53"
243224"	Se196"	0.015		mg/L	0.015			-0.00264	06/15/04"	12:53"
243224"	Si2881"	0.05		mg/L	0.05			0.03229	06/15/04"	12:53"
243224"	Sn1899"	0.01		mg/L	0.01			-0.00062	06/15/04"	12:53"
243224"	Sr4215"	0.005		mg/L	0.005			0.00013		12:53"

system id	elem	result	qual	units	rl	tv	rec	ug/ml	date	time
eyetem iu_		, count	9444	-	i		1.00	<u>- g</u> ,		
243224"	Th2837"	0.015	U	mg/L	0.015			0.00156	06/15/04"	12:53"
243224"	Ti3349"	0.005		mg/L	0.005			0.00005		12:53"
243224"	TI1908"	0.02		mg/L	0.02	<u> </u>	 	-0.00021	06/15/04"	12:53"
243224"	U_4090"	0.1		mg/L	0.1		 	-0.00951	06/15/04"	12:53"
243224"	V_2924"	0.005		mg/L	0.005			0.00051	06/15/04"	12:53"
243224"	W_2079"	0.01		mg/L	0.01			-0.00089	06/15/04"	12:53"
243224"	Y_3710"	0.005		mg/L	0.005		† †	-0.00002	06/15/04"	12:53"
243224"	Zn2062"	0.005		mg/L	0.005		 	0.00031	06/15/04"	12:53"
243224"	Zr3496"			mg/L	0.005		1	0.00031	06/15/04"	12:53"
243225"	Ag3280"	0.005		mg/L	0.005		 	0.00010		12:58"
243225"	Al3082"	0.005	U		0.003		 	-0.00267	06/15/04"	12:58"
243225"	As1890"		U	mg/L	0.005			-0.00207		12:58"
243225"	B_2496"	1.23	<u> </u>	mg/L	0.005			1.23179		12:58"
		0.183		mg/L					06/15/04"	12:58"
243225"	Ba4934"			mg/L	0.005		 	0.18317 0.00004		
243225"	Be3130"			mg/L	0.005		 		06/15/04"	12:58"
243225"	Bi2230"	0.01	U	mg/L	0.01		 	0.00648	06/15/04"	12:58"
243225"	Ca3179"	0.248		mg/L	0.05		 	0.24774	06/15/04"	12:58"
243225"	Cd2265"	0.005		mg/L	0.005			0.00046	06/15/04"	12:58"
243225"	Co2286"		U	mg/L	0.005		 	0.00073	06/15/04"	12:58"
243225"	Cr2677"		U	mg/L	0.015		_	-0.00068	06/15/04"	12:58"
243225"	Cu3247"		U	mg/L	0.005			-0.00057	06/15/04"	12:58"
243225"	Fe2714"	0.1		mg/L	0.1			-0.00081	06/15/04"	12:58"
243225"	K_766		U	mg/L	0.2		ļļ.	0.1353		13:28:07
243225"	La3988"		U	mg/L	0.005			0.00015	06/15/04"	12:58"
243225"	Li670	0.01		mg/L	0.01			0.0015		13:28:07
243225"	Mg2790"	0.05		mg/L	0.05			0.03015	06/15/04"	12:58"
243225"	Mn2576"	0.005		mg/L	0.005			0.00111	06/15/04"	12:58"
243225"	Mo2020"	0.01	U	mg/L	0.01			0.00059	06/15/04"	12:58"
243225"	Na589	2.89		mg/L	0.2			2.8862		13:28:07
243225"	Ni2316"	0.016		mg/L	0.01			0.01570	06/15/04"	12:58"
243225"	P_1782"	0.02		mg/L	0.02			0.00390	06/15/04"	12:58"
243225"	Pb220"	0.005		mg/L	0.005			0.00026	06/15/04"	12:58"
243225"	Pd3404"	0.005	U	mg/L	0.005			-0.00138	06/15/04"	12:58"
243225"	S_1820"	0.432		mg/L	0.05			0.43194		12:58"
243225"	Sb2068"	0.02		mg/L	0.02			-0.00289	06/15/04"	12:58"
243225"	Se196"	0.015	U	mg/L	0.015			-0.00026	06/15/04"	12:58"
243225"	Si2881"	0.465		mg/L	0.05			0.46477	06/15/04"	12:58"
243225"	Sn1899"	0.01		mg/L	0.01			0.00157	06/15/04"	12:58"
243225"	Sr4215"	0.005	U	mg/L	0.005			0.00141	06/15/04"	12:58"
243225"	Th2837"	0.015		mg/L	0.015			-0.00143	06/15/04"	12:58"
243225"	Ti3349"	0.005	C	mg/L	0.005			0.00019	06/15/04"	12:58"
243225"	TI1908"	0.02	U	mg/L	0.02			0.00190	06/15/04"	12:58"
243225"	U_4090"	0.1	U	mg/L	0.1			0.02786	06/15/04"	12:58"
243225"	V_2924"	0.005	U	mg/L	0.005			0.00002	06/15/04"	12:58"
243225"	W_2079"	0.01	Ū	mg/L	0.01			0.00147	06/15/04"	12:58"
243225"	Y_3710"	0.005		mg/L	0.005			-0.00003	06/15/04"	12:58"
243225"	Zn2062"	0.032		mg/L	0.005			0.03244	06/15/04"	12:58"
243225"	Zr3496"	0.005	Ū	mg/L	0.005			0.00043	06/15/04"	12:58"
243225d"	Ag3280"	0.005		mg/L	0.005			-0.00014	06/15/04"	13:03"
243225d"	Al3082"	0.05		mg/L	0.05			-0.00843	06/15/04"	13:03"
243225d"	As1890"	0.005		mg/L	0.005			0.00085	06/15/04"	13:03"
243225d"	B_2496"	1.22		mg/L	0.05			1.21835	06/15/04"	13:03"
243225d"	Ba4934"	0.182		mg/L	0.005			0.18163	06/15/04"	13:03"
243225d"	Be3130"	0.005	Ū I	mg/L	0.005			0.00003	06/15/04"	13:03"
	1 = 20.00									

system id	elem	result	qual	units	rl	tv	rec	ug/ml	date	time
243225d"	Bi2230"	0.01	U	mg/L	0.01			0.00118	06/15/04"	13:03"
243225d"	Ca3179"	0.242		mg/L	0.05			0.24219	06/15/04"	
243225d"	Cd2265"	0.005	J	mg/L	0.005			0.00047	06/15/04"	
243225d"	Co2286"	0.005	U	mg/L	0.005			0.00105	06/15/04"	
243225d"	Cr2677"	0.015	U	mg/L	0.015			0.00036	06/15/04"	13:03"
243225d"	Cu3247"	0.005	U	mg/L	0.005			-0.00053	06/15/04"	
243225d"	Fe2714"	0.1	U	mg/L	0.1			0.00182	06/15/04"	13:03"
243225d"	K_766	NA								
243225d"	La3988"	0.005	U	mg/L	0.005			0.00020	06/15/04"	13:03"
243225d"	Li670	NA								
243225d"	Mg2790"	0.05	U	mg/L	0.05			0.02957	06/15/04"	13:03"
243225d"	Mn2576"	0.005		mg/L	0.005			0.00102	06/15/04"	
243225d"	Mo2020"	0.01		mg/L	0.01			0.00030	06/15/04"	
243225d"	Na589	NA								
243225d"	Ni2316"	0.015	_	mg/L	0.01			0.01478	06/15/04"	13:03"
243225d"	P_1782"	0.02	U	mg/L	0.02			0.00196	06/15/04"	
243225d"	Pb220"	0.005		mg/L	0.005	-		-0.00177	06/15/04"	
243225d"	Pd3404"	0.005	U	mg/L	0.005			-0.00187	06/15/04"	
243225d"	S_1820"	0.419		mg/L	0.05			0.41930	06/15/04"	13:03"
243225d"	Sb2068"	0.02	U	mg/L	0.02			0.00243	06/15/04"	13:03"
243225d"	Se196"	0.015	U	mg/L	0.015			-0.00019	06/15/04"	13:03"
243225d"	Si2881"	0.456		mg/L	0.05			0.45600	06/15/04"	13:03"
243225d"	Sn1899"	0.01	U	mg/L	0.01			0.00194	06/15/04"	13:03"
243225d"	Sr4215"	0.005	U	mg/L	0.005			0.00137	06/15/04"	13:03"
243225d"	Th2837"	0.015	U	mg/L	0.015			-0.00183	06/15/04"	13:03"
243225d"	Ti3349"	0.005	U	mg/L	0.005			0.00022	06/15/04"	13:03"
243225d"	TI1908"	0.02	U	mg/L	0.02			0.00119	06/15/04"	13:03"
243225d"	U_4090"	0.1	U	mg/L	0.1			0.00385	06/15/04"	13:03"
243225d"	V_2924"	0.005	U	mg/L	0.005			0.00058	06/15/04"	13:03"
243225d"	W_2079"	0.01	U	mg/L	0.01			-0.00072	06/15/04"	13:03"
243225d"	Y_3710"	0.005	U	mg/L	0.005			-0.00004	06/15/04"	13:03"
243225d"	Zn2062"	0.032		mg/L	0.005			0.03180	06/15/04"	13:03"
243225d"	Zr3496"	0.005		mg/L	0.005			0.00006	06/15/04"	13:03"
243226"	Ag3280"	0.005		mg/L	0.005			-0.00034	06/15/04"	13:07"
243226"	Al3082"	0.05	U	mg/L	0.05			0.00284	06/15/04"	13:07"
243226"	As1890"	0.005	U	mg/L	0.005			-0.00922	06/15/04"	13:07"
243226"	B_2496"	2.09		mg/L	0.05			2.09115	06/15/04"	13:07"
243226"	Ba4934"	0.273		mg/L	0.005			0.27330	06/15/04"	13:07"
243226"	Be3130"	0.005		mg/L	0.005			0.00007	06/15/04"	13:07"
243226"	Bi2230"	0.01	U	mg/L	0.01			-0.00344	06/15/04"	13:07"
243226"	Ca3179"	0.202		mg/L	0.05			0.20178	06/15/04"	13:07"
243226"	Cd2265"	0.005		mg/L	0.005			0.00016	06/15/04"	13:07"
243226"	Co2286"	0.005		mg/L	0.005			0.00078		13:07"
243226"	Cr2677"	0.015		mg/L	0.015	_		-0.00023	06/15/04"	13:07"
243226"	Cu3247"	0.005		mg/L	0.005			-0.00033		13:07"
243226"	Fe2714"	0.1	U	mg/L	0.1			-0.00830	06/15/04"	13:07"
243226"	K_766	0.316		mg/L	0.2				06/15/04	13:31:11
243226"	La3988"	0.005		mg/L	0.005			-0.00032	06/15/04"	13:07"
243226"	Li670	0.01		mg/L	0.01				06/15/04	13:31:11
	Mg2790"	0.05		mg/L	0.05			0.02926		13:07"
243226"	Mn2576"	0.005		mg/L	0.005			0.00111	06/15/04"	13:07"
243226"	Mo2020"	0.01	U	mg/L	0.01			-0.00119	06/15/04"	13:07"
243226"	Na589	4.49		mg/L	0.2				06/15/04	13:31:11
243226"	Ni2316"	0.036		mg/L	0.01			0.03557	06/15/04"	13:07"

Div 20 to#040415-2, 040521-6 06002.01.141

system id	elem	result qu	al units	rl	tv	rec	ug/ml	date	time
243226"	P_1782"	0.059	mg/L	0.02			0.05896	06/15/04"	13:07"
243226"	Pb220"	0.005 U	mg/L	0.005			0.00438	06/15/04"	13:07"
243226"	Pd3404"	0.005 U	mg/L	0.005			-0.00188	06/15/04"	13:07"
243226"	S_1820"	0.395	mg/L	0.05			0.39494	06/15/04"	13:07"
243226"	Sb2068"	0.02 U	mg/L	0.02			0.01296	06/15/04"	13:07"
243226"	Se196"	0.05 U	mg/L	0.05			0.03007	06/15/04"	13:07"
243226"	Si2881"	1.57	mg/L	0.05			1.57164	06/15/04"	13:07"
243226"	Sn1899"	0.079	mg/L	0.01			0.07918	06/15/04"	13:07"
243226"	Sr4215"	0.005 U	mg/L	0.005			0.00157	06/15/04"	13:07"
243226"	Th2837"	0.015 U	mg/L	0.015			-0.00050	06/15/04"	13:07"
243226"	Ti3349"	0.005 U	mg/L	0.005			0.00124	06/15/04"	13:07"
243226"	TI1908"	0.075 U	mg/L	0.075			-0.07278	06/15/04"	13:07"
243226"	U_4090"	0.1 U	mg/L	0.1			-0.00010	06/15/04"	13:07"
243226"	V_2924"	0.005 U	mg/L	0.005			0.00034	06/15/04"	13:07"
243226"	W_2079"	0.01 U	mg/L	0.01			-0.00817	06/15/04"	13:07"
243226"	Y_3710"	0.005 U	mg/L	0.005			-0.00001	06/15/04"	13:07"
243226"	Zn2062"	0.077	mg/L	0.005			0.07729	06/15/04"	13:07"
243226"	Zr3496"	0.005 U	mg/L	0.005			0.00058	06/15/04"	13:07"
243227"	Ag3280"	0.005 U	mg/L	0.005			-0.00038	06/15/04"	13:12"
243227"	Al3082"	0.05 U	mg/L	0.05			0.04515	06/15/04"	13:12"
243227"	As1890"	0.005 U	mg/L	0.005			-0.00135	06/15/04"	13:12"
243227"	B_2496"	2.01	mg/L	0.05			2.01249	06/15/04"	13:12"
243227"	Ba4934"	0.765	mg/L	0.005			0.76532	06/15/04"	13:12"
243227"	Be3130"	0.005 U	mg/L	0.005			0.00005	06/15/04"	13:12"
243227"	Bi2230"	0.01 U	mg/L	0.01			0.00714	06/15/04"	13:12"
243227"	Ca3179"	2.62	mg/L	0.05			2.62002	06/15/04"	13:12"
243227"	Cd2265"	0.005 U	mg/L	0.005			0.00034	06/15/04"	13:12"
243227"	Co2286"	0.005 U	mg/L	0.005			0.00194	06/15/04"	13:12"
243227"	Cr2677"	0.015 U	mg/L	0.015			0.00184	06/15/04"	13:12"
243227"	Cu3247"	0.008	mg/L	0.005			0.00836	06/15/04"	13:12"
243227"	Fe2714"	0.1 U	mg/L	0.1			0.03388	06/15/04"	13:12"
243227"	K_766	9.80	mg/L	0.2			9.8033	06/15/04	13:34:15
243227"	La3988"	0.005 U	mg/L	0.005			0.00002	06/15/04"	13:12"
243227"	Li670	0.01 U	mg/L	0.01				06/15/04	13:34:15
243227"	Mg2790"	0.537	mg/L	0.05			0.53739		
243227"	Mn2576"	0.049	mg/L	0.005			0.04853		
243227"	Mo2020"	0.01 U	mg/L	0.01			0.00114		13:12"
243227"	Na589	20.1	mg/L	0.2			+	06/15/04	13:34:15
243227"	Ni2316"	0.024	mg/L	0.01			0.02380	06/15/04"	13:12"
243227"	P_1782"	0.02 U	mg/L	0.02			0.00776	06/15/04"	13:12"
243227"	Pb220"	0.005 U	mg/L	0.005			0.00103	06/15/04"	13:12"
243227"	Pd3404"	0.005 U	mg/L	0.005			-0.00160	06/15/04"	13:12"
243227"	S_1820"	1.04	mg/L	0.05			1.03629	06/15/04"	13:12"
243227"	Sb2068"	0.02 U	mg/L	0.02			0.00148	06/15/04"	13:12"
243227"	Se196"	0.015 U	mg/L	0.015			0.00317	06/15/04"	13:12"
243227"	Si2881"	1.54	mg/L	0.05			1.53548	06/15/04"	13:12"
243227"	Sn1899"	0.01 U	mg/L	0.01			0.00687	06/15/04"	13:12"
243227"	Sr4215"	0.014	mg/L	0.005			0.01441	06/15/04"	13:12"
243227"	Th2837"	0.015 U	mg/L	0.015			-0.00089	06/15/04"	13:12"
243227"	Ti3349"	0.005 U	mg/L	0.005			0.00158	06/15/04"	13:12"
243227"	TI1908"	0.02 U	mg/L	0.02			-0.00424	06/15/04"	13:12"
243227"	U_4090"	0.1 U	mg/L	0.1			0.01053	06/15/04"	13:12"
243227"	V_2924"	0.005 U	mg/L	0.005			0.00091	06/15/04"	13:12"
243227"	W_2079"	0.01 U	mg/L	0.01		l	-0.00258	06/15/04"	13:12"

Div 20 to#040415-2, 040521-6 06002.01.141

system id	elem	result	qual	units	rl	tv	rec	ug/ml	date	time
243227"	Y_3710"	0.005	U	mg/L	0.005			0.00000	06/15/04"	13:12"
243227"	Zn2062"	0.268		mg/L	0.005			0.26835	06/15/04"	13:12"
243227"	Zr3496"	0.005	U	mg/L	0.005			0.00054	06/15/04"	13:12"
243228"	Ag3280"	0.005	U	mg/L	0.005			-0.00017	06/15/04"	13:17"
243228"	Al3082"	0.194		mg/L	0.05			0.19406	06/15/04"	13:17"
243228"	As1890"	0.005	U	mg/L	0.005			0.00020	06/15/04"	13:17"
243228"	B_2496"	2.47		mg/L	0.05			2.46841	06/15/04"	13:17"
243228"	Ba4934"	0.464		mg/L	0.005			0.46418	06/15/04"	13:17"
243228"	Be3130"	0.005	U	mg/L	0.005			0.00002	06/15/04"	13:17"
243228"	Bi2230"	0.01	U	mg/L	0.01			0.00398	06/15/04"	13:17"
243228"	Ca3179"	1.31		mg/L	0.05			1.30829	06/15/04"	13:17"
243228"	Cd2265"	0.005	U	mg/L	0.005			0.00029	06/15/04"	13:17"
243228"	Co2286"	0.005		mg/L	0.005			0.00091	06/15/04"	13:17"
243228"	Cr2677"	0.015		mg/L	0.015			0.00050	06/15/04"	13:17"
243228"	Cu3247"	0.005		mg/L	0.005			0.00096	06/15/04"	13:17"
243228"	Fe2714"		U	mg/L	0.1			0.06261	06/15/04"	13:17"
243228"	K_766	1.26	-	mg/L	0.2			1.2577	06/15/04	13:37:20
243228"	La3988"	0.005	U	mg/L	0.005			-0.00035	06/15/04"	13:17"
243228"	Li670	0.01		mg/L	0.01			0.0029	06/15/04	13:37:20
243228"	Mg2790"	0.364	<u> </u>	mg/L	0.05			0.36424	06/15/04"	13:17"
243228"	Mn2576"	0.005	U	mg/L	0.005			0.00037	06/15/04"	13:17"
243228"	Mo2020"		Ü	mg/L	0.01			-0.00015	06/15/04"	13:17"
243228"	Na589	7.47	<u> </u>	mg/L	0.2			7.4679	06/15/04	13:37:20
243228"	Ni2316"		U	mg/L	0.01			0.00023	06/15/04"	13:17"
243228"	P_1782"	0.037		mg/L	0.02			0.03730	06/15/04"	13:17"
243228"	Pb220"	0.005	П	mg/L	0.005			0.00135	06/15/04"	13:17"
243228"	Pd3404"	0.005		mg/L	0.005			-0.00217	06/15/04"	13:17"
243228"	S_1820"	0.987		mg/L	0.05			0.98693	06/15/04"	13:17"
243228"	Sb2068"	0.02	11	mg/L	0.02			-0.00365	06/15/04"	13:17"
243228"	Se196"	0.015		mg/L	0.015			0.00387	06/15/04"	13:17"
243228"	Si2881"	2.97		mg/L	0.05			2.97323	06/15/04"	13:17"
243228"	Sn1899"	0.01	11	mg/L	0.01			0.00405	06/15/04"	13:17"
243228"	Sr4215"	0.008	<u> </u>	mg/L	0.005			0.00811	06/15/04"	13:17"
243228"	Th2837"	0.015	П	mg/L	0.015			-0.00379	06/15/04"	13:17"
243228"	Ti3349"	0.007		mg/L	0.005			0.00745	06/15/04"	13:17"
243228"	TI1908"	0.02	11	mg/L	0.02			0.00098	06/15/04"	13:17"
243228"	U_4090"	0.1		mg/L	0.1			0.00440	06/15/04"	13:17"
243228"	V_2924"	0.005		mg/L	0.005			0.00107	06/15/04"	13:17"
243228"	W 2079"	0.003		mg/L	0.003			-0.00154	06/15/04"	13:17"
243228"	Y 3710"	0.005		mg/L	0.005			0.00001	06/15/04"	13:17"
243228"	Zn2062"	0.119	- -	mg/L	0.005			0.11888	06/15/04"	13:17"
243228"	Zr3496"	0.005	, 	mg/L	0.005			0.00051	06/15/04"	13:17"
243229"	Ag3280"	0.005		mg/L	0.005			-0.00031	06/15/04"	13:37"
243229"	Al3082"	0.005		mg/L	0.005			-0.02060	06/15/04"	13:37"
243229"	As1890"	0.005		mg/L	0.005		-	0.00370	06/15/04"	13:37"
243229"	B_2496"	0.142	-	mg/L	0.005			0.14166	06/15/04"	13:37"
243229"	Ba4934"	0.012		mg/L	0.005			0.01211	06/15/04"	13:37"
243229"	Be3130"	0.005		mg/L	0.005			0.00008	06/15/04"	13:37"
243229"	Bi2230"	0.003		mg/L	0.003			0.00280	06/15/04"	13:37"
243229"	Ca3179"	24.7	-	mg/L	0.07			24.72039	06/15/04"	13:37"
243229"	Cd2265"	0.005	, 	mg/L	0.005			0.00036	06/15/04"	13:37"
243229"	Co2286"	0.005		mg/L	0.005			0.00036	06/15/04"	13:37"
243229"	Cr2677"	0.005		mg/L	0.005			0.00076	06/15/04"	13:37"
243229"	Cu3247"							-0.00012	06/15/04"	
Z43ZZY	UU324/	0.005	<u> </u>	mg/L	0.005			-0.00012	UD/ 15/U4"	13:37"

...

system id	elem	result	qual	units	Trl	tv	rec I	ug/ml	date	time
oyetetti i			40.00				1.53	J		
243229"	Fe2714"	0.1	U	mg/L	0.1			-0.00319	06/15/04"	13:37"
243229"	K_766	5.53		mg/L	0.2			5.5317		13:40:24
243229"	La3988"	0.005	U	mg/L	0.005			-0.00012	06/15/04"	
243229"	Li670	0.035		mg/L	0.01			0.0352	06/15/04	13:40:24
243229"	Mg2790"	3.29		mg/L	0.05			3.28619	06/15/04"	13:37"
243229"	Mn2576"		U	mg/L	0.005	1		0.00000	06/15/04"	13:37"
243229"	Mo2020"	0.01	U	mg/L	0.01			0.00588		
243229"	Na589	37.3		mg/L	0.2			37.2965	06/15/04	13:40:24
243229"	Ni2316"	0.01	U	mg/L	0.01			-0.00131	06/15/04"	13:37"
243229"	P_1782"	0.025		mg/L	0.02			0.02484	06/15/04"	13:37"
243229"	Pb220"	0.005	U	mg/L	0.005			-0.00043	06/15/04"	13:37"
243229"	Pd3404"	0.005	U	mg/L	0.005			-0.00257	06/15/04"	13:37"
243229"	S_1820"	8.52		mg/L	0.05			8.52205	06/15/04"	13:37"
243229"	Sb2068"		U	mg/L	0.02			-0.00008	06/15/04"	13:37"
243229"	Se196"	0.015		mg/L	0.015			0.00546	06/15/04"	13:37"
243229"	Si2881"	24.3		mg/L	0.05			24.29212	06/15/04"	13:37"
243229"	Sn1899"	0.016		mg/L	0.01			0.01595	06/15/04"	13:37"
243229"	Sr4215"	0.100		mg/L	0.005			0.10041	06/15/04"	13:37"
243229"	Th2837"	0.015	U	mg/L	0.015			-0.00517	06/15/04"	13:37"
243229"	Ti3349"	0.005	U	mg/L	0.005			-0.00031	06/15/04"	13:37"
243229"	TI1908"	0.02	U	mg/L	0.02			0.00521	06/15/04"	13:37"
243229"	U_4090"	0.1	U	mg/L	0.1			0.00043	06/15/04"	13:37"
243229"	V_2924"	0.005	U	mg/L	0.005			0.00326	06/15/04"	13:37"
243229"	W_2079"	0.01	U	mg/L	0.01			-0.00160	06/15/04"	13:37"
243229"	Y_3710"	0.005	U	mg/L	0.005			-0.00009	06/15/04"	13:37"
243229"	Zn2062"	0.005	U	mg/L	0.005			0.00221	06/15/04"	13:37"
243229"	Zr3496"	0.005	U	mg/L	0.005			-0.00001	06/15/04"	13:37"
243230"	Ag3280"	0.005	U	mg/L	0.005			0.00013	06/15/04"	13:41"
243230"	Al3082"	0.05	U	mg/L	0.05			0.01895	06/15/04"	13:41"
243230"	As1890"	0.005	C	mg/L	0.005			-0.00265	06/15/04"	13:41"
243230"	B_2496"	0.258		mg/L	0.05			0.25843	06/15/04"	13:41"
243230"	Ba4934"	0.005	U	mg/L	0.005			0.00279	06/15/04"	13:41"
243230"	Be3130"	0.005		mg/L	0.005			0.00002	06/15/04"	13:41"
243230"	Bi2230"	0.01	U	mg/L	0.01			-0.00302	06/15/04"	13:41"
243230"	Ca3179"	2.49		mg/L	0.05			2.49218	06/15/04"	13:41"
243230"	Cd2265"	0.005		mg/L	0.005			0.00034	06/15/04"	13:41"
243230"	Co2286"	0.005	U	mg/L	0.005			0.00005	06/15/04"	13:41"
243230"	Cr2677"	0.015	U	mg/L	0.015			-0.00056	06/15/04"	13:41"
243230"	Cu3247"	0.005	U	mg/L	0.005			0.00153	06/15/04"	13:41"
243230"	Fe2714"	0.136		mg/L	0.1			0.13575	06/15/04"	13:41"
243230"	K_766	3.81		mg/L	0.2			3.8069	06/15/04	13:53:15
243230"	La3988"	0.005	U	mg/L	0.005			0.00030	06/15/04"	13:41"
243230"	Li670	0.270		mg/L	0.01			0.2696	06/15/04	13:53:15
243230"	Mg2790"	0.112		mg/L	0.05			0.11207	06/15/04"	13:41"
243230"	Mn2576"	0.005	U	mg/L	0.005			0.00367	06/15/04"	13:41"
243230"	Mo2020"	0.046		mg/L	0.01			0.04588	06/15/04"	13:41"
243230"	Na589	206		mg/L	0.2			205.8112	06/15/04	13:53:15
243230"	Ni2316"	0.01	U	mg/L	0.01			-0.00082	06/15/04"	13:41"
243230"	P_1782"	0.057		mg/L	0.02			0.05706	06/15/04"	13:41"
243230"	Pb220"	0.005		mg/L	0.005			0.00388	06/15/04"	13:41"
243230"	Pd3404"	0.005	U]	mg/L	0.005			-0.00002	06/15/04"	13:41"
243230"	S_1820"	10.4		mg/L	0.05			10.40335	06/15/04"	13:41"
243230"	Sb2068"	0.02		mg/L	0.02			0.01376	06/15/04"	13:41"
243230"	Se196"	0.05	U	mg/L	0.05			0.02561	06/15/04"	13:41"

Div 20 to#040415-2, 040521-6 06002.01.141

· .

system id	elem	result	qual	units	rl	tv	rec	ug/ml	date	time
243230"	Si2881"	7.88		mg/L	0.05			7.88349	06/15/04"	13:41"
243230"	Sn1899"	0.062		mg/L	0.01			0.06231	06/15/04"	
243230"	Sr4215"	0.007		mg/L	0.005			0.00696		
243230"	Th2837"	0.015	U	mg/L	0.015			-0.00020		
243230"	Ti3349"	0.005		mg/L	0.005			-0.00013		
243230"	TI1908"	0.075		mg/L	0.075			-0.07505		
243230"	U_4090"	0.1		mg/L	0.073			-0.00299		
243230"	V_2924"	0.005		mg/L	0.005		 	-0.00034		
243230"	W_2079"	0.01		mg/L	0.01			0.00136		
243230"	Y_3710"	0.005		mg/L	0.005			-0.00001	06/15/04"	
243230"	Zn2062"	0.005		mg/L	0.005			0.00001		
243230"	Zr3496"	0.005		mg/L	0.005			0.00000		
243230d	K_766	3.82	<u> </u>	mg/L	0.003				06/15/04	13:56:19
243230d 243230d	Li670	0.265		mg/L	0.2		 		06/15/04	13:56:19
243230d 243230d	Na589	203		mg/L	0.01					13:56:19
243231"	Ag3280"	0.005	U	mg/L	0.005			-0.00044		13:46"
243231"	Al3082"	0.005		mg/L	0.005		 	-0.00044		
243231"	As1890"	0.03		mg/L	0.005		 	0.00960		
243231"	B_2496"	0.010		mg/L	0.005		 	0.13600	06/15/04"	
243231"	Ba4934"	0.130		mg/L	0.005		 	0.00813	06/15/04"	
243231"	Be3130"	0.008	U	mg/L	0.005		 	0.00013	06/15/04"	13:46"
243231"	Bi2230"	0.003		mg/L	0.003			0.00011	06/15/04"	13:46"
243231"	Ca3179"	13.3	-	mg/L	0.01		 	13.29359	06/15/04"	13:46"
243231"	Cd2265"	0.005	\overline{U}	mg/L	0.05	\longrightarrow	 	0.00015	06/15/04"	13:46"
243231"	Co2286"	0.005		mg/L	0.005		-	0.00015	06/15/04"	13:46"
243231"	Cr2677"	0.005		mg/L mg/L	0.005		 	-0.00094	06/15/04"	13:46"
243231"	Cr2677 Cu3247"	0.015		mg/L mg/L	0.015		 	-0.00012	06/15/04"	13:46"
243231"	Fe2714"	0.005		mg/L	0.005		 	0.01436	06/15/04"	13:46"
243231"	K_766	5.68	-	mg/L	0.1		 		06/15/04	13:46
243231"	La3988"	0.005	U	mg/L	0.005		 	0.00002	06/15/04"	13:59:23
243231"	Li670	0.005		mg/L	0.005		+			13:59:23
243231"	Mg2790"	2.05		mg/L mg/L	0.01			2.05341	06/15/04	13:59:23
243231"	Mn2576"	0.006	—	mg/L mg/L	0.005		1	0.00565		
243231"	Mo2020"	0.006	U	mg/L mg/L	0.005		- 	0.00565		
243231"	Na589	41.9			0.01		-			13:46"
243231" 243231"	Na589 Ni2316"	0.01		mg/L mg/l	0.2			0.00021	06/15/04	13:59:23 13:46"
243231" 243231"	P_1782"	0.01		mg/L mg/l	0.01		— Н	0.00021		13:46" 13:46"
243231"	P_1782" Pb220"	0.02		mg/L mg/l	0.02			-0.00014	06/15/04"	13:46" 13:46"
243231"	Pb220" Pd3404"	0.005		mg/L mg/l	0.005		<u> </u>	0.00176	06/15/04"	13:46" 13:46"
243231"	S 1820"	6.96	<u> </u>	mg/L mg/l	0.005			6.95732		13:46" 13:46"
				mg/L mg/l					06/15/04"	
243231"	Sb2068" Se196"	0.02		mg/L mg/l	0.02		\H	0.00281	06/15/04"	13:46"
243231"		0.015	<u> </u>	mg/L	0.015			0.00352	06/15/04"	13:46" 13:46"
243231"	Si2881"	25.7		mg/L mg/L	0.05			25.68427	06/15/04"	13:46"
243231"	Sn1899"	0.013		mg/L	0.01		——— <u>—</u>	0.01292	06/15/04"	13:46"
243231"	Sr4215"	0.067		mg/L	0.005			0.06656	06/15/04"	13:46"
243231"	Th2837"	0.015		mg/L	0.015			-0.00306	06/15/04"	13:46"
243231"	Ti3349"	0.005		mg/L	0.005			-0.00031	06/15/04"	13:46"
243231"	TI1908"	0.02		mg/L	0.02			-0.00893	06/15/04"	13:46"
243231"	U_4090"	0.1	U	mg/L	0.1			0.01220	06/15/04"	13:46"
243231"	V_2924"	0.006		mg/L	0.005			0.00562	06/15/04"	13:46"
243231"	W_2079"	0.01		mg/L	0.01			0.00058	06/15/04"	13:46"
243231"	Y_3710"	0.005		mg/L	0.005			-0.00007	06/15/04"	13:46"
243231"	Zn2062"	0.005		mg/L	0.005			0.00162	06/15/04"	13:46"
243231"	Zr3496"	0.005	<u>U</u>	mg/L	0.005		1	0.00023	06/15/04"	13:46"

Div 20 to#040415-2, 040521-6 06002.01.141

system id	elem	result	qual	units	rl	tv	rec	ug/ml	date	time
243231s"	Ag3280"	0.051		mg/L	0.005	0.05	102.5%	0.05126	06/15/04"	13:51"
243231s"	Al3082"	1.95		mg/L	0.05	2	97.3%	1.94636	06/15/04"	13:51"
243231s"	As1890"	2.04		mg/L	0.005	2	101.7%	2.04387	06/15/04"	13:51"
243231s"	B_2496"	0.141		mg/L	0.05			0.14074	06/15/04"	13:51"
243231s"	Ba4934"	2.03		mg/L	0.005	2	100.9%	2.02688	06/15/04"	13:51"
243231s"	Be3130"	0.049		mg/L	0.005	0.05	98.7%	0.04937	06/15/04"	13:51"
243231s"	Bi2230"	0.01	U	mg/L	0.01			0.00819	06/15/04"	13:51"
243231s"	Ca3179"	33.7		mg/L	0.05	20	101.9%	33.68361	06/15/04"	13:51"
243231s"	Cd2265"	0.050		mg/L	0.005	0.05	99.5%	0.04974	06/15/04"	13:51"
243231s"	Co2286"	0.501		mg/L	0.005	0.5	100.2%	0.50096	06/15/04"	13:51"
243231s"	Cr2677"	0.197		mg/L	0.015	0.2	98.5%	0.19705	06/15/04"	13:51"
243231s"	Cu3247"	0.252		mg/L	0.005	0.25	100.8%	0.25190	06/15/04"	13:51"
243231s"	Fe2714"	1.08		mg/L	0.1	1	108.4%	1.08374	06/15/04"	13:51"
243231s"	K_766	NA								
243231s"	La3988"	0.005	J	mg/L	0.005			0.00010	06/15/04"	13:51"
243231s"	Li670	NA							į	
243231s"	Mg2790"	22.4		mg/L	0.05	20	101.5%	22.35152	06/15/04"	13:51"
243231s"	Mn2576"	0.509		mg/L	0.005	0.5	100.6%	0.50902	06/15/04"	13:51"
243231s"	Mo2020"	0.011		mg/L	0.01			0.01103	06/15/04"	13:51"
243231s"	Na589	NA								
243231s"	Ni2316"	0.490		mg/L	0.01	0.5	98.0%	0.48997	06/15/04"	13:51"
243231s"	P_1782"	0.029		mg/L	0.02			0.02887	06/15/04"	13:51"
243231s"	Pb220"	0.497		mg/L	0.005	0.5	99.3%	0.49663	06/15/04"	13:51"
243231s"	Pd3404"	0.005	U	mg/L	0.005			0.00004	06/15/04"	13:51"
243231s"	S_1820"	7.04		mg/L	0.05			7.03781	06/15/04"	13:51"
243231s"	Sb2068"	0.505		mg/L	0.02	0.5	101.1%	0.50545	06/15/04"	13:51"
243231s"	Se196"	2.23		mg/L	0.015	2	111.6%	2.23159	06/15/04"	13:51"
243231s"	Si2881"	25.9		mg/L	0.05			25.88962	06/15/04"	13:51"
243231s"	Sn1899"	0.013		mg/L	0.01			0.01266	06/15/04"	13:51"
243231s"	Sr4215"	0.067		mg/L	0.005			0.06747	06/15/04"	13:51"
243231s"	Th2837"	0.015	U	mg/L	0.015			-0.01570	06/15/04"	13:51"
243231s"	Ti3349"	0.005	U	mg/L	0.005			-0.00019	06/15/04"	13:51"
243231s"	TI1908"	2.08		mg/L	0.02	2	103.8%	2.07547	06/15/04"	13:51"
243231s"	U_4090"	0.1	U	mg/L	0.1			0.00811	06/15/04"	13:51"
243231s"	V_2924"	0.505		mg/L	0.005	0.5	99.8%	0.50501	06/15/04"	13:51"
243231s"	W_2079"	0.01	U	mg/L	0.01			0.00070	06/15/04"	13:51"
243231s"	Y_3710"	0.005	U	mg/L	0.005			-0.00008	06/15/04"	13:51"
243231s"	Zn2062"	0.509		mg/L	0.005	0.5	101.8%	0.50897	06/15/04"	13:51"
243231s"	Zr3496"	0.005		mg/L	0.005			0.00014	06/15/04"	13:51"
243232"	Ag3280"	0.005		mg/L	0.005			-0.00015	06/15/04"	13:56"
243232"	Al3082"	0.05	U	mg/L	0.05			0.00710	06/15/04"	13:56"
243232"	As1890"	0.008		mg/L	0.005			0.00778	06/15/04"	13:56"
243232"	B_2496"	0.142		mg/L	0.05			0.14230	06/15/04"	13:56"
243232"	Ba4934"	0.014		mg/L	0.005			0.01383	06/15/04"	13:56"
243232"	Be3130"	0.005		mg/L	0.005			0.00014	06/15/04"	13:56"
243232"	Bi2230"	0.01	U	mg/L	0.01			0.00387	06/15/04"	13:56"
243232"	Ca3179"	12.8		mg/L	0.05			12.79881	06/15/04"	13:56"
243232"	Cd2265"	0.005		mg/L	0.005			0.00023	06/15/04"	13:56"
243232"	Co2286"	0.005		mg/L	0.005			0.00000	06/15/04"	13:56"
243232"	Cr2677"	0.015		mg/L	0.015			0.00032	06/15/04"	13:56"
243232"	Cu3247"	0.005		mg/L	0.005			-0.00028	06/15/04"	13:56"
243232"	Fe2714"	0.1	U	mg/L	0.1			0.00607	06/15/04"	13:56"
243232"	K_766	3.82		mg/L	0.2				06/15/04	14:02:28
243232"	La3988"	0.005	U	mg/L	0.005			-0.00007	06/15/04"	13:56"

Div 20 to#040415-2, 040521-6 06002.01.141

system id	elem	result	qual	units	ri	tv	rec	ug/ml	date	time
byotom id	0.0	rooun	quai	- Carrico	 		1.00	l g,	-	1
243232"	Li670	0.045		mg/L	0.01			0.0448	06/15/04	14:02:28
243232"	Mg2790"	1.07		mg/L	0.05			1.06501	06/15/04"	
243232"	Mn2576"	0.005	U	mg/L	0.005			0.00023	06/15/04"	
243232"	Mo2020"	0.01		mg/L	0.01	-		0.00428	06/15/04"	
243232"	Na589	48.6		mg/L	0.2			48.5507		14:02:28
243232"	Ni2316"	0.01	Ü	mg/L	0.01	f		-0.00068	06/15/04"	
243232"	P_1782"	0.02		mg/L	0.02			0.00877	06/15/04"	
243232"	Pb220"	0.005		mg/L	0.005	 		-0.00057	06/15/04"	
243232"	Pd3404"	0.005		mg/L	0.005	<u> </u>		-0.00137	06/15/04"	
243232"	S_1820"	8.09		mg/L	0.05			8.09277	06/15/04"	
243232"	Sb2068"	0.02	U	mg/L	0.02			0.00151	06/15/04"	
243232"	Se196"	0.015		mg/L	0.015			0.00391	06/15/04"	13:56"
243232"	Si2881"	26.2	<u> </u>	mg/L	0.05			26.22082	06/15/04"	
243232"	Sn1899"	0.012		mg/L	0.01			0.01230	06/15/04"	13:56"
243232"	Sr4215"	0.071		mg/L	0.005			0.07071	06/15/04"	13:56"
243232"	Th2837"	0.015	Ū	mg/L	0.015			-0.00233	06/15/04"	13:56"
243232"	Ti3349"	0.005		mg/L	0.005			-0.00012	06/15/04"	13:56"
243232"	TI1908"	0.02		mg/L	0.02			-0.00938	06/15/04"	13:56"
243232"	U 4090"	0.1		mg/L	0.1			0.02237	06/15/04"	13:56"
243232"	V 2924"	0.007		mg/L	0.005			0.00667	06/15/04"	13:56"
243232"	W_2079"	0.01	U	mg/L	0.01			0.00052	06/15/04"	13:56"
243232"	Y_3710"	0.005		mg/L	0.005			-0.00009	06/15/04"	13:56"
243232"	Zn2062"	0.005		mg/L	0.005		<u> </u>	-0.00096	06/15/04"	13:56"
243232"	Zr3496"	0.005		mg/L	0.005			-0.00014	06/15/04"	13:56"
243232s	K_766	24.1		mg/L	0.2	20	101.3%	+	06/15/04	14:06:02
243232s	Li670	0.046		mg/L	0.01				06/15/04	14:06:02
243232s	Na589	68.6		mg/L	0.2	20	99.8%		06/15/04	14:06:02
245108"	Ag3280"	0.005	U	mg/L	0.005			-0.00012	06/15/04"	14:00"
245108"	Al3082"	0.05		mg/L	0.05			-0.01246	06/15/04"	14:00"
245108"	As1890"	0.006		mg/L	0.005			0.00613	06/15/04"	14:00"
245108"	B 2496"	0.145		mg/L	0.05			0.14501	06/15/04"	14:00"
245108"	Ba4934"	0.011		mg/L	0.005			0.01058	06/15/04"	14:00"
245108"	Be3130"	0.005	U	mg/L	0.005			0.00017	06/15/04"	14:00"
245108"	Bi2230"	0.01	U	mg/L	0.01			0.00215	06/15/04"	14:00"
245108"	Ca3179"	13.6		mg/L	0.05			13.58609	06/15/04"	14:00"
245108"	Cd2265"	0.005	U	mg/L	0.005			0.00004		14:00"
245108"	Co2286"	0.005		mg/L	0.005			0.00120	06/15/04"	14:00"
245108"	Cr2677"	0.015	U	mg/L	0.015			0.00032	06/15/04"	14:00"
245108"	Cu3247"	0.005		mg/L	0.005			0.00053		14:00"
245108"	Fe2714"	0.1		mg/L	0.1			0.01202	06/15/04"	14:00"
245108"	K 766	3.59		mg/L	0.2				06/15/04	14:09:07
245108"	La3988"	0.005	U	mg/L	0.005			0.00013		14:00"
245108"	Li670	0.042		mg/L	0.01				06/15/04	14:09:07
245108"	Mg2790"	1.34		mg/L	0.05			1.34495		14:00"
245108"	Mn2576"	0.005	U	mg/L	0.005			0.00174		14:00"
245108"	Mo2020"	0.01		mg/L	0.01			0.00819		14:00"
245108"	Na589	51.7		mg/L	0.2				06/15/04	14:09:07
245108"	Ni2316"	0.01	U	mg/L	0.01			0.00000	06/15/04"	14:00"
245108"	P 1782"	0.02		mg/L	0.02			0.01716		14:00"
245108"	Pb220"	0.005		mg/L	0.005			-0.00151	06/15/04"	14:00"
245108"	Pd3404"	0.005		mg/L	0.005			0.00060	06/15/04"	14:00"
245108"	S 1820"	9.43	-	mg/L	0.05			9.42693	06/15/04"	14:00"
245108"	Sb2068"	0.02	U	mg/L	0.02			-0.00049	06/15/04"	14:00"
245108"	Se196"	0.015		mg/L	0.015			0.00025	06/15/04"	14:00"

system id	elem	result	qual	units	rl	tv	rec	ug/ml	date	time
Systemia	CICIII	Tesuit	quai	uiiis		ιν	160	lug/IIII	uale	ume
245108"	Si2881"	19.7		mg/L	0.05			19.70862	06/15/04"	14:00"
245108"	Sn1899"	0.01	U	mg/L	0.01			0.00415	06/15/04"	
245108"	Sr4215"	0.075		mg/L	0.005			0.07474	06/15/04"	14:00"
245108"	Th2837"	0.015	II .	mg/L	0.015			-0.00297	06/15/04"	14:00"
245108"	Ti3349"	0.005		mg/L	0.005			-0.00026	06/15/04"	14:00"
245108"	TI1908"	0.02		mg/L	0.02			-0.00225	06/15/04"	14:00"
245108"	U_4090"	0.02		mg/L	0.02			0.00223	06/15/04"	14:00"
245108"	V_2924"	0.013	<u> </u>	mg/L	0.005		 	0.01334	06/15/04"	14:00"
245108"	W_2079"	0.013	11	mg/L	0.003			0.00567	06/15/04"	14:00"
245108"	Y_3710"	0.005		mg/L	0.005		 	-0.00013	06/15/04"	14:00"
245108"	Zn2062"	0.005		mg/L	0.005		1	0.00154	06/15/04"	14:00"
245108"	Zr3496"	0.005		mg/L	0.005			0.00061	06/15/04"	14:00"
245108 245108d"	Ag3280"	0.005			0.005		 	-0.00002	06/15/04"	14:05"
245108d"	Al3082"	0.005		mg/L	0.005			-0.02038	06/15/04"	14:05
245108d"	As1890"	0.009	<u> </u>	mg/L	0.005		-			14:05
		0.009		mg/L				0.00854	06/15/04"	
245108d"	B_2496"			mg/L	0.05			0.13992	06/15/04"	14:05"
245108d"	Ba4934"	0.010	11	mg/L	0.005			0.01033	06/15/04"	14:05"
245108d"	Be3130"	0.005		mg/L	0.005			0.00020	06/15/04"	14:05"
245108d"	Bi2230"	0.01	U	mg/L	0.01			0.00460	06/15/04"	14:05"
245108d"	Ca3179"	13.2	11	mg/L	0.05			13.20116	06/15/04"	14:05"
245108d"	Cd2265"	0.005		mg/L	0.005			0.00044	06/15/04"	14:05"
245108d"	Co2286"	0.005		mg/L	0.005			0.00004	06/15/04"	14:05"
245108d"	Cr2677"	0.015		mg/L	0.015			-0.00036	06/15/04"	14:05"
245108d"	Cu3247"	0.005		mg/L	0.005			0.00058	06/15/04"	14:05"
245108d"	Fe2714"	0.1	U	mg/L	0.1			0.00315	06/15/04"	14:05"
245108d"	K_766	3.58		mg/L	0.2			3.5812		14:12:11
245108d"	La3988"	0.005	U	mg/L	0.005			0.00000	06/15/04"	14:05"
245108d"	Li670	0.043		mg/L	0.01				06/15/04	14:12:11
245108d"	Mg2790"	1.31		mg/L	0.05			1.30866	06/15/04"	14:05"
245108d"	Mn2576"	0.005		mg/L	0.005			0.00158		14:05"
245108d"	Mo2020"	0.01	U	mg/L	0.01			0.00826		14:05"
245108d"	Na589	51.8		mg/L	0.2				06/15/04	14:12:11
245108d"	Ni2316"	0.01		mg/L	0.01			0.00068	06/15/04"	14:05"
245108d"	P_1782"	0.02		mg/L	0.02			0.01283		
245108d"	Pb220"	0.005		mg/L	0.005			-0.00035	06/15/04"	14:05"
245108d"	Pd3404"	0.005	U	mg/L	0.005			-0.00075	06/15/04"	14:05"
245108d"	S_1820"	9.20		mg/L	0.05			9.20236	06/15/04"	14:05"
245108d"	Sb2068"	0.02		mg/L	0.02			0.00174	06/15/04"	14:05"
245108d"	Se196"	0.015	U	mg/L	0.015			0.00108	06/15/04"	14:05"
245108d"	Si2881"	19.1		mg/L	0.05			19.13470	06/15/04"	14:05"
245108d"	Sn1899"	0.01	U	mg/L	0.01			0.00501	06/15/04"	14:05"
245108d"	Sr4215"	0.073		mg/L	0.005			0.07274	06/15/04"	14:05"
245108d"	Th2837"	0.015	U	mg/L	0.015			-0.00187	06/15/04"	14:05"
245108d"	Ti3349"	0.005	U	mg/L	0.005			-0.00013	06/15/04"	14:05"
245108d"	TI1908"	0.02	U	mg/L	0.02			-0.00342	06/15/04"	14:05"
245108d"	U_4090"	0.1	U	mg/L	0.1			0.01616	06/15/04"	14:05"
245108d"	V_2924"	0.013		mg/L	0.005			0.01314	06/15/04"	14:05"
245108d"	W_2079"	0.01	U	mg/L	0.01			0.00355	06/15/04"	14:05"
245108d"	Y_3710"	0.005	U	mg/L	0.005			-0.00004	06/15/04"	14:05"
245108d"	Zn2062"	0.005	U	mg/L	0.005			0.00277	06/15/04"	14:05"
245108d"	Zr3496"	0.005	U	mg/L	0.005			0.00043	06/15/04"	14:05"
245108s"	Ag3280"	0.050		mg/L	0.005	0.05	100.9%	0.05043	06/15/04"	14:10"
245108s"	Al3082"	1.94		mg/L	0.05	2	97.0%	1.93996	06/15/04"	14:10"
245108s"	As1890"	2.03		mg/L	0.005	2	101.1%	2.02830	06/15/04"	14:10"

. , , ,

system id	elem	result	qual	units	rl	tv	rec	ug/ml	date	time
9,0,0,	1									
245108s"	B_2496"	0.142		mg/L	0.05			0.14203	06/15/04"	14:10"
245108s"	Ba4934"	2.01		mg/L	0.005	2	99.8%	2.00761	06/15/04"	14:10"
245108s"	Be3130"	0.049		mg/L	0.005	0.05	97.8%	0.04892	06/15/04"	14:10"
245108s"	Bi2230"	0.01	U	mg/L	0.01	0.00	5,1675	0.00733	06/15/04"	14:10"
245108s"	Ca3179"	33.8		mg/L	0.05	20	100.9%	33.77074	06/15/04"	14:10"
245108s"	Cd2265"	0.049		mg/L	0.005	0.05	98.4%	0.04920	06/15/04"	
245108s"	Co2286"	0.498		mg/L	0.005	0.5	99.6%	0.49792	06/15/04"	14:10"
245108s"	Cr2677"	0.195		mg/L	0.015	0.2	97.6%	0.19523	06/15/04"	14:10"
245108s"	Cu3247"	0.251		mg/L	0.005	0.25	100.5%	0.25133	06/15/04"	14:10"
245108s"	Fe2714"	1.06		mg/L	0.1	1	106.0%	1.06004	06/15/04"	
245108s"	K_766	24.1		mg/L	0.2	20	102.8%		06/15/04	14:15:15
245108s"	La3988"	0.005	U	mg/L	0.005		102.075	-0.00017	06/15/04"	14:10"
245108s"	Li670	0.042		mg/L	0.01				06/15/04	14:15:15
245108s"	Mg2790"	21.8		mg/L	0.05	20	102.1%	21.75639	06/15/04"	14:10"
245108s"	Mn2576"	0.501		mg/L	0.005	0.5	100.1%	0.50070	06/15/04"	14:10"
245108s"	Mo2020"	0.01	U	mg/L	0.01			0.00901	06/15/04"	
245108s"	Na589	72.1		mg/L	0.2	20	101.9%		06/15/04	14:15:15
245108s"	Ni2316"	0.482		mg/L	0.01	0.5	96.5%	0.48245		14:10"
245108s"	P_1782"	0.023		mg/L	0.02			0.02298	06/15/04"	14:10"
245108s"	Pb220"	0.494		mg/L	0.005	0.5	98.8%	0.49408	06/15/04"	14:10"
245108s"	Pd3404"	0.005	U	mg/L	0.005		*	-0.00092	06/15/04"	14:10"
245108s"	S_1820"	9.31		mg/L	0.05			9.31152	06/15/04"	14:10"
245108s"	Sb2068"	0.501		mg/L	0.02	0.5	100.3%	0.50131	06/15/04"	14:10"
245108s"	Se196"	2.17		mg/L	0.015	2	108.6%	2.17253	06/15/04"	14:10"
245108s"	Si2881"	19.4		mg/L	0.05			19.42317	06/15/04"	14:10"
245108s"	Sn1899"	0.01	U	mg/L	0.01			0.00309	06/15/04"	14:10"
245108s"	Sr4215"	0.074		mg/L	0.005			0.07378	06/15/04"	14:10"
245108s"	Th2837"	0.015	U	mg/L	0.015			-0.01507	06/15/04"	14:10"
245108s"	Ti3349"	0.005	U	mg/L	0.005			-0.00026	06/15/04"	14:10"
245108s"	TI1908"	2.08		mg/L	0.02	2	104.0%	2.07903	06/15/04"	14:10"
245108s"	U_4090"	0.1	U	mg/L	0.1			0.00060	06/15/04"	14:10"
245108s"	V_2924"	0.507		mg/L	0.005	0.5	98.8%	0.50713	06/15/04"	14:10"
245108s"	W_2079"	0.01	C	mg/L	0.01			0.00700	06/15/04"	14:10"
245108s"	Y_3710"	0.005	U	mg/L	0.005			-0.00018	06/15/04"	14:10"
245108s"	Zn2062"	0.508		mg/L	0.005	0.5	101.7%	0.50840	06/15/04"	
245108s"	Zr3496"	0.005	U	mg/L	0.005			0.00003	06/15/04"	14:10"
245109"	Ag3280"	0.005	U	mg/L	0.005			-0.00010	06/15/04"	14:15"
245109"	Al3082"	0.084		mg/L	0.05			0.08377	06/15/04"	14:15"
245109"	As1890"	0.017		mg/L	0.005			0.01671	06/15/04"	14:15"
245109"	B_2496"	0.167		mg/L	0.05			0.16706	06/15/04"	14:15"
245109"	Ba4934"	0.007		mg/L	0.005			0.00741	06/15/04"	14:15"
245109"	Be3130"	0.005		mg/L	0.005			0.00024	06/15/04"	14:15"
245109"	Bi2230"	0.01	U	mg/L	0.01			0.00180	06/15/04"	14:15"
245109"	Ca3179"	6.69		mg/L	0.05	1		6.69064	06/15/04"	14:15"
245109"	Cd2265"	0.005		mg/L	0.005	J		0.00069	06/15/04"	14:15"
245109"	Co2286"	0.005		mg/L	0.005			0.00079	06/15/04"	14:15"
245109"	Cr2677"	0.015		mg/L	0.015			0.00088		14:15"
245109"	Cu3247"	0.005		mg/L	0.005			0.00096		14:15"
245109"	Fe2714"	0.1	U	mg/L	0.1			0.03502	06/15/04"	14:15"
245109"	K_766	2.76		mg/L	0.2				06/15/04	14:18:19
245109"	La3988"	0.005	U	mg/L	0.005			-0.00002		14:15"
245109"	Li670	0.089		mg/L	0.01				06/15/04	14:18:19
245109"	Mg2790"	0.550		mg/L	0.05			0.54993		14:15"
245109"	Mn2576"	0.005	U	mg/L	0.005	l		0.00061	06/15/04"	14:15"

Div 20 to#040415-2, 040521-6 06002.01.141

· ·

system id	elem	result	qual	units	rl	tv	rec	ug/ml	date	time
ļ									2011-12-11	
245109"	Mo2020"	0.01	U	mg/L	0.01			0.00646	06/15/04"	14:15"
245109"	Na589	77.2		mg/L	0.2			77.1561	06/15/04	14:18:19
245109"	Ni2316"	0.01	U	mg/L	0.01			-0.00032	06/15/04"	14:15"
245109"	P_1782"	0.033		mg/L	0.02			0.03319	06/15/04"	14:15"
245109"	Pb220"	0.005		mg/L	0.005			0.00076	06/15/04"	14:15"
245109"	Pd3404"	0.005	U	mg/L	0.005			0.00015	06/15/04"	14:15"
245109"	S_1820"	7.36		mg/L	0.05			7.35884	06/15/04"	14:15"
245109"	Sb2068"	0.02		mg/L	0.02			0.00200	06/15/04"	14:15"
245109"	Se196"	0.015	U	mg/L	0.015			0.00585	06/15/04"	14:15"
245109"	Si2881"	25.6		mg/L	0.05			25.62435	06/15/04"	14:15"
245109"	Sn1899"	0.01	U	mg/L	0.01			0.00801	06/15/04"	14:15"
245109"	Sr4215"	0.031	l	mg/L	0.005			0.03147	06/15/04"	14:15"
245109"	Th2837"	0.015	U	mg/L	0.015			-0.00032	06/15/04"	14:15"
245109"	Ti3349"	0.005	U	mg/L	0.005			0.00056	06/15/04"	14:15"
245109"	TI1908"	0.02	U	mg/L	0.02			-0.00642	06/15/04"	14:15"
245109"	U_4090"	0.1	U	mg/L	0.1			0.00299	06/15/04"	14:15"
245109"	V_2924"	0.005	U	mg/L	0.005			0.00473	06/15/04"	14:15"
245109"	W_2079"	0.01	J	mg/L	0.01			0.00064	06/15/04"	14:15"
245109"	Y_3710"	0.005	U	mg/L	0.005			0.00006	06/15/04"	14:15"
245109"	Zn2062"	0.005	U	mg/L	0.005			0.00279	06/15/04"	14:15"
245109"	Zr3496"	0.005	U	mg/L	0.005			0.00085	06/15/04"	14:15"
245110"	Ag3280"	0.005	U	mg/L	0.005			-0.00048	06/15/04"	14:20"
245110"	Al3082"	0.05	U	mg/L	0.05			-0.02370	06/15/04"	14:20"
245110"	As1890"	0.007		mg/L	0.005			0.00737	06/15/04"	14:20"
245110"	B_2496"	0.141		mg/L	0.05			0.14082	06/15/04"	14:20"
245110"	Ba4934"	0.011		mg/L	0.005			0.01066	06/15/04"	14:20"
245110"	Be3130"	0.005	U	mg/L	0.005			0.00022	06/15/04"	14:20"
245110"	Bi2230"	0.01	U	mg/L	0.01			0.00246	06/15/04"	14:20"
245110"	Ca3179"	13.6		mg/L	0.05			13.63298	06/15/04"	14:20"
245110"	Cd2265"	0.005	U	mg/L	0.005			0.00000	06/15/04"	14:20"
245110"	Co2286"	0.005	U	mg/L	0.005			0.00091	06/15/04"	14:20"
245110"	Cr2677"	0.015		mg/L	0.015			-0.00106	06/15/04"	14:20"
245110"	Cu3247"	0.005	U	mg/L	0.005			-0.00037	06/15/04"	14:20"
245110"	Fe2714"	0.1		mg/L	0.1			0.00296	06/15/04"	14:20"
245110"	K_766	3.71		mg/L	0.2			3.7062	06/15/04	14:21:23
245110"	La3988"	0.005	U	mg/L	0.005			-0.00042	06/15/04"	14:20"
245110"	Li670	0.044		mg/L	0.01			0.0436	06/15/04	14:21:23
245110"	Mg2790"	1.34		mg/L	0.05			1.34392	06/15/04"	14:20"
245110"	Mn2576"	0.005	U	mg/L	0.005			0.00163	06/15/04"	14:20"
245110"	Mo2020"	0.01		mg/L	0.01			0.00798	06/15/04"	14:20"
245110"	Na589	52.8		mg/L	0.2				06/15/04	14:21:23
245110"	Ni2316"	0.01	U	mg/L	0.01			0.00093	06/15/04"	14:20"
245110"	P_1782"	0.027		mg/L	0.02			0.02714	06/15/04"	14:20"
245110"	Pb220"	0.005	u l	mg/L	0.005			-0.00082	06/15/04"	14:20"
245110"	Pd3404"	0.005		mg/L	0.005			-0.00164	06/15/04"	14:20"
245110"	S_1820"	9.46		mg/L	0.05			9.45732	06/15/04"	14:20"
245110"	Sb2068"	0.02	U	mg/L	0.02			0.00397	06/15/04"	14:20"
245110"	Se196"	0.015		mg/L	0.015			0.00383	06/15/04"	14:20"
245110"	Si2881"	19.6		mg/L	0.05			19.64123	06/15/04"	14:20"
245110"	Sn1899"	0.017		mg/L	0.01			0.01658	06/15/04"	14:20"
245110"	Sr4215"	0.075		mg/L	0.005			0.07517	06/15/04"	14:20"
245110"	Th2837"	0.015	$\frac{1}{U}$	mg/L	0.015			-0.00175	06/15/04"	14:20"
245110"	Ti3349"	0.005		mg/L	0.005			-0.00029	06/15/04"	14:20"
245110"	TI1908"	0.003		mg/L	0.003			-0.00023	06/15/04"	14:20"
2 4 3110	111900	0.02	<u></u> _	my/L	0.02	1		-0.01743	00/10/04	14.20

Div 20 to#040415-2, 040521-6 06002.01.141

...

system id	elem	result	qual	units	rl	tv	rec	Jug/ml	date	time
245110"	U_4090"	0.1	U	mg/L	0.1			0.00769	06/15/04"	14:20"
245110"	V_2924"	0.013		mg/L	0.005			0.01326	06/15/04"	14:20"
245110"	W_2079"	0.01	U	mg/L	0.01			-0.00068	06/15/04"	14:20"
245110"	Y_3710"	0.005	U	mg/L	0.005			-0.00014	06/15/04"	14:20"
245110"	Zn2062"	0.005	J	mg/L	0.005			-0.00016	06/15/04"	14:20"
245110"	Zr3496"	0.005	U	mg/L	0.005			0.00020	06/15/04"	14:20"
245111"	Ag3280"	0.005	U	mg/L	0.005			0.00000	06/15/04"	14:39"
245111"	Al3082"	0.396		mg/L	0.05			0.39623	06/15/04"	14:39"
245111"	As1890"	0.010		mg/L	0.005			0.00993	06/15/04"	14:39"
245111"	B_2496"	0.171		mg/L	0.05			0.17053	06/15/04"	14:39"
245111"	Ba4934"	0.008		mg/L	0.005			0.00812	06/15/04"	14:39"
245111"	Be3130"	0.005	U	mg/L	0.005			0.00029	06/15/04"	14:39"
245111"	Bi2230"	0.01	U	mg/L	0.01			0.00311	06/15/04"	14:39"
245111"	Ca3179"	6.97		mg/L	0.05			6.96974	06/15/04"	14:39"
245111"	Cd2265"	0.005	U	mg/L	0.005			0.00009	06/15/04"	14:39"
245111"	Co2286"	0.005	U	mg/L	0.005			0.00077	06/15/04"	14:39"
245111"	Cr2677"	0.015	U	mg/L	0.015			0.00064	06/15/04"	14:39"
245111"	Cu3247"	0.005	U	mg/L	0.005			0.00052	06/15/04"	14:39"
245111"	Fe2714"	0.138	-	mg/L	0.1			0.13786	06/15/04"	14:39"
245111"	K_766	2.89		mg/L	0.2			2.8883	06/15/04	14:34:14
245111"	La3988"	0.005	U	mg/L	0.005			0.00075	06/15/04"	14:39"
245111"	Li670	0.093		mg/L	0.01			0.0932	06/15/04	14:34:14
245111"	Mg2790"	0.604		mg/L	0.05			0.60413	06/15/04"	14:39"
245111"	Mn2576"	0.005	U_	mg/L	0.005			0.00083	06/15/04"	14:39"
245111"	Mo2020"	0.01	U	mg/L	0.01			0.00923	06/15/04"	14:39"
245111"	Na589	80.3	_	mg/L	0.2			80.2902	06/15/04	14:34:14
245111"	Ni2316"	0.01	U	mg/L	0.01			0.00093	06/15/04"	14:39"
245111"	P_1782"	0.039		mg/L	0.02			0.03884	06/15/04"	14:39"
245111"	Pb220"	0.005	U	mg/L	0.005			0.00260	06/15/04"	14:39"
245111"	Pd3404"	0.005	U	mg/L	0.005			0.00034	06/15/04"	14:39"
245111"	S_1820"	7.42		mg/L	0.05			7.42317	06/15/04"	14:39"
245111"	Sb2068"	0.02	U	mg/L	0.02			0.00097	06/15/04"	14:39"
245111"	Se196"	0.015	U	mg/L	0.015			0.00800	06/15/04"	14:39"
245111"	Si2881"	27.0		mg/L	0.05			26.99124	06/15/04"	14:39"
245111"	Sn1899"	0.023		mg/L	0.01			0.02337	06/15/04"	14:39"
245111"	Sr4215"	0.033		mg/L	0.005	_		0.03319	06/15/04"	14:39"
245111"	Th2837"	0.015		mg/L	0.015			-0.00114	06/15/04"	14:39"
245111"	Ti3349"	0.005	U	mg/L	0.005			0.00363	06/15/04"	14:39"
245111"	TI1908"	0.02	U	mg/L	0.02			-0.00486	06/15/04"	14:39"
245111"	U_4090"	0.1	U	mg/L	0.1			0.02911	06/15/04"	14:39"
245111"	V_2924"	0.005	U	mg/L	0.005			0.00495	06/15/04"	14:39"
245111"	W_2079"	0.01	U_	mg/L	0.01			0.00000	06/15/04"	14:39"
245111"	Y_3710"	0.005	U	mg/L	0.005			0.00017	06/15/04"	14:39"
245111"	Zn2062"	0.005	U	mg/L	0.005			0.00171	06/15/04"	14:39"
245111"	Zr3496"	0.005	U	mg/L	0.005			0.00129	06/15/04"	14:39"
245112"	Ag3280"	0.005		mg/L	0.005			-0.00030	06/15/04"	14:44"
245112"	Al3082"	0.05		mg/L	0.05			-0.01757	06/15/04"	14:44"
245112"	As1890"	0.005		mg/L	0.005			-0.00103	06/15/04"	14:44"
245112"	B_2496"	0.05		mg/L	0.05			-0.00168	06/15/04"	14:44"
245112"	Ba4934"	0.005		mg/L	0.005			0.00014	06/15/04"	14:44"
245112"	Be3130"	0.005		mg/L	0.005			0.00029	06/15/04"	14:44"
245112"	Bi2230"	0.01	U	mg/L	0.01			0.00554	06/15/04"	14:44"
245112"	Ca3179"	10.0		mg/L	0.05			10.01406	06/15/04"	14:44"
245112"	Cd2265"	0.005	U	mg/L	0.005			0.00102	06/15/04"	14:44"

Div 20 to#040415-2, 040521-6 06002.01.141

system id	elem	result	qual	units	rl	tv	rec	ug/ml	date	time
245112"	Co2286"	0.005	U_	mg/L	0.005			0.00085	06/15/04"	14:44"
245112"	Cr2677"	0.015		mg/L	0.015			-0.00022	06/15/04"	
245112"	Cu3247"	0.005	U	mg/L	0.005			0.00006	06/15/04"	14:44"
245112"	Fe2714"	10.1		mg/L	0.1			10.13740	06/15/04"	14:44"
245112"	K_766	9.08		mg/L	0.2			9.0834	06/15/04	14:37:18
245112"	La3988"	0.005	U	mg/L	0.005			-0.00030	06/15/04"	14:44"
245112"	Li670	0.01	د	mg/L	0.01			0.0015	06/15/04	14:37:18
245112"	Mg2790"	9.84		mg/L	0.05			9.83796	06/15/04"	14:44"
245112"	Mn2576"	0.005	U	mg/L	0.005			-0.00003	06/15/04"	14:44"
245112"	Mo2020"	0.01	U	mg/L	0.01			0.00182	06/15/04"	14:44"
245112"	Na589	8.94		mg/L	0.2			8.9422	06/15/04	14:37:18
245112"	Ni2316"	0.01	U	mg/L	0.01			-0.00030	06/15/04"	14:44"
245112"	P_1782"	0.02	U	mg/L	0.02			0.00779	06/15/04"	14:44"
245112"	Pb220"	0.005	U	mg/L	0.005			0.00174	06/15/04"	14:44"
245112"	Pd3404"	0.005	U	mg/L	0.005			-0.00138	06/15/04"	14:44"
245112"	S_1820"	0.05		mg/L	0.05			-0.02917	06/15/04"	
245112"	Sb2068"	0.02		mg/L	0.02			-0.00127	06/15/04"	14:44"
245112"	Se196"	0.015		mg/L	0.015			-0.00280	06/15/04"	14:44"
245112"	Si2881"	0.05	U	mg/L	0.05	-		0.00677	06/15/04"	14:44"
245112"	Sn1899"	0.01	U	mg/L	0.01			0.00041	06/15/04"	14:44"
245112"	Sr4215"	0.005	U	mg/L	0.005			0.00021	06/15/04"	14:44"
245112"	Th2837"	0.015	U	mg/L	0.015			-0.00970	06/15/04"	14:44"
245112"	Ti3349"	0.005	U	mg/L	0.005			0.00029	06/15/04"	14:44"
245112"	TI1908"	0.02	U	mg/L	0.02			0.00765	06/15/04"	14:44"
245112"	U_4090"	0.1	U	mg/L	0.1			0.01455	06/15/04"	14:44"
245112"	V_2924"	0.005	U	mg/L	0.005			-0.00039	06/15/04"	14:44"
245112"	W_2079"	0.01	U	mg/L	0.01			-0.00232	06/15/04"	14:44"
245112"	Y_3710"	0.005	U	mg/L	0.005			-0.00012	06/15/04"	14:44"
245112"	Zn2062"	0.005		mg/L	0.005			0.00039	06/15/04"	14:44"
245112"	Zr3496"	0.005	U	mg/L	0.005			0.00011	06/15/04"	14:44"
245113"	Ag3280"	0.100		mg/L	0.005			0.10009	06/15/04"	14:49"
245113"	Al3082"	0.075		mg/L	0.05			0.07520	06/15/04"	14:49"
245113"	As1890"	0.092		mg/L	0.005			0.09205	06/15/04"	14:49"
245113"	B_2496"	0.05	U	mg/L	0.05			-0.00325	06/15/04"	14:49"
245113"	Ba4934"	0.101		mg/L	0.005			0.10052	06/15/04"	14:49"
245113"	Be3130"	0.097		mg/L	0.005			0.09660	06/15/04"	14:49"
245113"	Bi2230"	0.01	U	mg/L	0.01			-0.00116	06/15/04"	14:49"
245113"	Ca3179"	9.96		mg/L	0.05			9.95879	06/15/04"	14:49"
245113"	Cd2265"	0.100		mg/L	0.005			0.09956	06/15/04"	14:49"
245113"	Co2286"	0.099		mg/L	0.005			0.09875	06/15/04"	14:49"
245113"	Cr2677"	0.097		mg/L	0.015			0.09681	06/15/04"	14:49"
245113"	Cu3247"	0.096		mg/L	0.005			0.09593	06/15/04"	14:49"
245113"	Fe2714"	10.1		mg/L	0.1			10.11630	06/15/04"	14:49"
245113"	K_766	8.99		mg/L	0.2			8.9893	06/15/04	14:40:22
245113"	La3988"	0.005	U	mg/L	0.005			-0.00027	06/15/04"	14:49"
245113"	Li670	0.01	U	mg/L	0.01				06/15/04	14:40:22
245113"	Mg2790"	9.77		mg/L	0.05			9.77278	06/15/04"	14:49"
245113"	Mn2576"	0.101		mg/L	0.005			0.10069	06/15/04"	14:49"
245113"	Mo2020"	0.092		mg/L	0.01			0.09239	06/15/04"	14:49"
245113"	Na589	8.91		mg/L	0.2			8.9059	06/15/04	14:40:22
245113"	Ni2316"	0.098		mg/L	0.01			0.09824	06/15/04"	14:49"
245113"	P_1782"	0.02	U]	mg/L	0.02			0.00441	06/15/04"	14:49"
245113"	Pb220"	0.099		mg/L	0.005			0.09874	06/15/04"	14:49"
245113"	Pd3404"	0.005	U]	mg/L	0.005			-0.00129	06/15/04"	14:49"

Div 20 to#040415-2, 040521-6 06002.01.141

· · · ·

system id	elem	result	qual	units	rl	tv	rec	ug/ml	date	time
245113"	S_1820"	0.05	U	mg/L	0.05			-0.04056	06/15/04"	14:49"
245113"	Sb2068"	0.096		mg/L	0.02			0.09574	06/15/04"	14:49"
245113"	Se196"	0.094		mg/L	0.015			0.09388	06/15/04"	14:49"
245113"	Si2881"	0.05	U	mg/L	0.05			0.00695	06/15/04"	14:49"
245113"	Sn1899"	0.01	U	mg/L	0.01			-0.00094	06/15/04"	14:49"
245113"	Sr4215"	9.91		mg/L	0.005			9.91195	06/15/04"	14:49"
245113"	Th2837"	0.091		mg/L	0.015			0.09090	06/15/04"	14:49"
245113"	Ti3349"	0.005	J	mg/L	0.005			0.00005	06/15/04"	14:49"
245113"	TI1908"	0.103		mg/L	0.02			0.10306	06/15/04"	14:49"
245113"	U_4090"	0.1	U	mg/L	0.1			0.03286	06/15/04"	14:49"
245113"	V_2924"	0.098		mg/L	0.005			0.09802	06/15/04"	14:49"
245113"	W_2079"	0.01		mg/L	0.01			-0.00022	06/15/04"	14:49"
245113"	Y_3710"	0.005	U	mg/L	0.005			-0.00009	06/15/04"	14:49"
245113"	Zn2062"	0.099		mg/L	0.005			0.09861	06/15/04"	14:49"
245113"	Zr3496"	0.005		mg/L	0.005			-0.00027	06/15/04"	14:49"
245114"	Ag3280"	0.005		mg/L	0.005			-0.00012	06/15/04"	14:54"
245114"	Al3082"	0.05		mg/L	0.05			-0.02662	06/15/04"	14:54"
245114"	As1890"	0.005		mg/L	0.005			-0.00248	06/15/04"	14:54"
245114"	B_2496"	0.05		mg/L	0.05			-0.00238	06/15/04"	14:54"
245114"	Ba4934"	0.005		mg/L	0.005			0.00007	06/15/04"	14:54"
245114"	Be3130"	0.005		mg/L	0.005			0.00028	06/15/04"	14:54"
245114"	Bi2230"		U	mg/L	0.01			0.00532	06/15/04"	14:54"
245114"	Ca3179"	0.05		mg/L	0.05			-0.00018	06/15/04"	14:54"
245114"	Cd2265"	0.005		mg/L	0.005			0.00031	06/15/04"	14:54"
245114"	Co2286"	0.005		mg/L	0.005			0.00056	06/15/04"	14:54"
245114"	Cr2677"	0.015		mg/L	0.015			-0.00043	06/15/04"	14:54"
245114"	Cu3247"	0.005	U	mg/L	0.005			-0.00027	06/15/04"	14:54"
245114" 245114"	Fe2714"			mg/L	0.1			-0.00667	06/15/04"	14:54"
245114 245114"	K_766 La3988"	0.2 0.005		mg/L	0.2 0.005			0.00042	06/15/04 06/15/04"	14:43:26
245114"	Li670	0.003		mg/L	0.003				06/15/04	14:54" 14:43:26
245114"	Mg2790"	0.01		mg/L mg/L	0.01			0.00030	06/15/04"	14:43.20
245114"	Mn2576"	0.005		mg/L	0.005			0.00000	06/15/04"	14:54"
245114"	Mo2020"	0.003		mg/L	0.003			0.00000	06/15/04"	14:54"
245114"	Na589	0.2		mg/L	0.2				06/15/04	14:43:26
245114"	Ni2316"	0.01		mg/L	0.01			0.00030	06/15/04"	14:54"
245114"	P 1782"	0.02		mg/L	0.02			0.00610	06/15/04"	14:54"
245114"	Pb220"	0.005		mg/L	0.005			-0.00056	06/15/04"	14:54"
245114"	Pd3404"	0.005		mg/L	0.005			0.00044	06/15/04"	14:54"
245114"	S_1820"	0.05		mg/L	0.05			-0.03566	06/15/04"	14:54"
245114"	Sb2068"	0.02		mg/L	0.02			-0.00493	06/15/04"	14:54"
245114"	Se196"	0.015		mg/L	0.015			-0.00115	06/15/04"	14:54"
245114"	Si2881"	0.05		mg/L	0.05			0.00611	06/15/04"	14:54"
245114"	Sn1899"	0.01		mg/L	0.01			-0.00165	06/15/04"	14:54"
245114"	Sr4215"	0.005		mg/L	0.005			0.00011	06/15/04"	14:54"
245114"	Th2837"	0.015		mg/L	0.015			-0.00182	06/15/04"	14:54"
245114"	Ti3349"	0.005		mg/L	0.005			0.00001	06/15/04"	14:54"
245114"	TI1908"	0.02		mg/L	0.02			0.00043	06/15/04"	14:54"
245114"	U_4090"	0.1	U_	mg/L	0.1			0.00701	06/15/04"	14:54"
245114"	V_2924"	0.005	U	mg/L	0.005			-0.00010	06/15/04"	14:54"
245114"	W_2079"	0.01	U	mg/L	0.01			-0.00148	06/15/04"	14:54"
245114"	Y_3710"	0.005	U	mg/L	0.005			-0.00003	06/15/04"	14:54"
245114"	Zn2062"	0.005		mg/L	0.005			-0.00144	06/15/04"	14:54"
245114"	Zr3496"	0.005	U	mg/L	0.005			0.00005	06/15/04"	14:54"

Ag3280'	system id	elem	result	qual	units	rl	tv	rec	ug/ml	date	time
245115											
245115	245115"	Ag3280"	0.005	U	mg/L	0.005			0.00025	06/15/04"	14:58"
245115' B_2496' 0.142 mg/L 0.005 0.00522 0.615/04' 14.58' 245115' B_4934' 0.012 mg/L 0.005 0.01175 0.615/04' 14.58' 245115' B_86130' 0.005 U mg/L 0.005 0.001175 0.615/04' 14.58' 245115' B_86130' 0.005 U mg/L 0.005 0.00029 0.615/04' 14.58' 245115' B_82130' 0.01 U mg/L 0.005 0.00029 0.615/04' 14.58' 245115' 0.22179' 14.0 mg/L 0.005 0.00039 0.615/04' 14.58' 245115' 0.2228' 0.005 U mg/L 0.005 0.00048 0.615/04' 14.58' 245115' 0.2228' 0.005 U mg/L 0.005 0.00048 0.615/04' 14.58' 245115' 0.2228' 0.005 U mg/L 0.005 0.00048 0.615/04' 14.58' 245115' 0.0224' 0.005 U mg/L 0.005 0.00067 0.615/04' 14.58' 245115' 0.0224' 0.005 U mg/L 0.005 0.00067 0.615/04' 14.58' 245115' 0.122 mg/L 0.015 0.00067 0.615/04' 14.58' 245115' 0.122 mg/L 0.015 0.00067 0.00074 0.615/04' 14.58' 245115' 0.122 mg/L 0.015 0.00067 0.00074 0.615/04' 14.58' 245115' 0.122 mg/L 0.02 3.6892 0.015/04 14.47/00 245115' 0.0938 0.005 U mg/L 0.005 0.00027 0.615/04' 14.58' 245115' 0.0938 0.005 U mg/L 0.05 0.00027 0.615/04' 14.58' 245115' 0.005 0.005 0.00027 0.615/04' 14.58' 245115' 0.005 0.005 0.0005 0.00027 0.615/04' 14.58' 245115' 0.005 0.005 0.0005 0.0005 0.00										06/15/04"	14:58"
245115" B 2496" 0.142 mg/L 0.005 0.14155 06/15/04" 14:56" 245115" Ba4934" 0.012 mg/L 0.005 0.00175 06/15/04" 14:56" 245115" Be3130" 0.006 U mg/L 0.005 0.00029 06/15/04" 14:56" 245115" Bi2230" 0.01 U mg/L 0.001 0.00036 06/15/04" 14:56" 245115" Ca3179" 14:0 mg/L 0.05 13:97375 06/15/04" 14:56" 245115" Ca2265" 0.005 U mg/L 0.005 0.00048 06/15/04" 14:56" 245115" Co2266" 0.005 U mg/L 0.005 0.00049 06/15/04" 14:56" 245115" Co2266" 0.005 U mg/L 0.005 0.00067 06/15/04" 14:56" 245115" Co2267" 0.015 U mg/L 0.015 0.00067 06/15/04" 14:56" 245115" Co2247" 0.005 U mg/L 0.015 0.00067 06/15/04" 14:56" 245115" Co2247" 0.005 U mg/L 0.015 0.00074 06/15/04" 14:56" 245115" K 766 3.69 mg/L 0.2 3.8892 06/15/04 14:56" 245115" Li670 0.043 mg/L 0.05 0.00027 06/15/04" 14:58" 245115" Mg2790" 1.42 mg/L 0.05 1.41950 0.00027 06/15/04 14:58" 245115" Mg2790" 1.42 mg/L 0.05 1.41950 0.00434 06/15/04 14:58" 245115" Mg2790" 1.42 mg/L 0.05 1.41950 0.00434 06/15/04 14:58" 245115" Mg2790" 1.42 mg/L 0.05 1.41950 0.00434 0.014 14:58" 245115" Mg2790" 1.42 mg/L 0.05 0.00432 0.06/15/04 14:58" 245115" Mg2816" 0.005 U mg/L 0.005 0.00452 0.06/15/04 14:58" 245115" Na599 52:3 mg/L 0.2 52:2764 06/15/04 14:58" 245115" Na599 52:3 mg/L 0.00 0.00739 06/15/04 14:58" 245115" Na599 52:3 mg/L 0.00 0.00739 06/15/04 14:58" 245115" S12881" 0.07 mg/L 0.005 0.00030 06/15/04 14:58" 245115" S12881" 0.005 U mg/L 0.005 0.00039 06/15/04 14:58" 245115" S12881" 0.005 U mg/L 0						0.005			+		
245115" Ba930" 0.012 mg/L 0.005 0.01175 06/15/04" 14:58" 245115" B8230" 0.010 mg/L 0.005 0.00029 06/15/04" 14:58" 245115" B8230" 0.011 mg/L 0.01 0.00038 06/15/04" 14:58" 245115" C02268" 0.005 mg/L 0.05 0.00048 06/15/04" 14:58" 245115" C02268" 0.005 mg/L 0.005 0.00048 06/15/04" 14:58" 245115" C02268" 0.005 mg/L 0.005 0.00048 06/15/04" 14:58" 245115" C02268" 0.005 mg/L 0.005 0.00067 06/15/04" 14:58" 245115" C02247" 0.015 mg/L 0.015 0.00032 06/15/04" 14:58" 245115" C02247" 0.015 mg/L 0.015 0.00074 06/15/04" 14:58" 245115" C02247" 0.005 mg/L 0.005 0.00074 06/15/04" 14:58" 245115" K.766 3.69 mg/L 0.1 0.18186 06/15/04" 14:58" 245115" La3988" 0.005 mg/L 0.05 0.00027 06/15/04" 14:58" 245115" Mg2790" 1.42 mg/L 0.05 0.00027 06/15/04" 14:58" 245115" Mg2790" 1.42 mg/L 0.05 0.00027 06/15/04" 14:58" 245115" Mg2790" 1.42 mg/L 0.05 0.00042 06/15/04" 14:58" 245115" Mg2790" 0.01 mg/L 0.05 0.00027 06/15/04" 14:58" 245115" Mg2898 52.3 mg/L 0.05 0.00042 06/15/04" 14:58" 245115" Na599 52.3 mg/L 0.01 0.00790 06/15/04" 14:58" 245115" Na599 52.3 mg/L 0.02 52.2764 06/15/04 14:58" 245115" Na599 52.3 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" P0220" 0.005 0.005 0.003718 06/15/04" 14:58" 245115" P0240" 0.005 0.005 0.003718 06/15/04" 14:58" 245115" P0240" 0.005 0.005 0.003718 06/15/04" 14:58" 245115" S02068" 0.005 0.005 0.00039 06/15/04" 14:58			+			-				06/15/04"	
245115"										<u> </u>	
245115" Bi2230" 0.01 mg/L 0.05 1.00036 06/15/04" 14:58" 245115" Ca3179" 14.0 mg/L 0.005 0.005 0.00048 06/15/04" 14:58" 245115" Cd2286" 0.005 mg/L 0.005 0.00067 06/15/04" 14:58" 245115" Cd2286" 0.005 mg/L 0.005 0.00067 06/15/04" 14:58" 245115" Ci227" 0.015 mg/L 0.005 0.00067 06/15/04" 14:58" 245115" Ci2247" 0.005 mg/L 0.005 0.00074 06/15/04" 14:58" 245115" Fe2714" 0.182 mg/L 0.01 0.18186 06/15/04" 14:58" 245115" Fe2714" 0.182 mg/L 0.01 0.18186 06/15/04" 14:58" 245115" K,766 3.69 mg/L 0.02 3.8882 06/15/04" 14:58" 245115" K,766 3.69 mg/L 0.05 0.00027 06/15/04" 14:58" 245115" Mg2790" 1.42 mg/L 0.05 0.00027 06/15/04" 14:58" 245115" Mg2790" 1.42 mg/L 0.05 0.0043 06/15/04" 14:58" 245115" Mg2790" 1.42 mg/L 0.05 0.005 0.00027 06/15/04" 14:58" 245115" Mg2790" 0.001 mg/L 0.005 0.00452 06/15/04" 14:58" 245115" Mg2790" 0.001 mg/L 0.005 0.00452 06/15/04" 14:58" 245115" Na5899 52.3 mg/L 0.01 0.00790 06/15/04" 14:58" 245115" Ni2316" 0.01 mg/L 0.005 0.000452 06/15/04" 14:58" 245115" Ni2316" 0.01 mg/L 0.005 0.00030 06/15/04" 14:58" 245115" P 1782" 0.037 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" P 3404" 0.005 0.005 0.00030 06/15/04" 14:58" 245115" Sh2068" 0.00 mg/L 0.005 0.00030 06/15/04" 14:58" 245115" Sh2068" 0.00 0.00030 06/15/			4	U	Y						
245115" Ca2285" 0.005 U mg/L 0.005 0.00048 06/15/04" 14:58" 245115" Ca2286" 0.005 U mg/L 0.005 0.00067 06/15/04" 14:58" 245115" Ca2286" 0.005 U mg/L 0.005 0.00067 06/15/04" 14:58" 245115" Ca2287" 0.005 U mg/L 0.015 -0.00023 06/15/04" 14:58" 245115" Ca2247" 0.005 U mg/L 0.015 -0.00023 06/15/04" 14:58" 245115" Fe2714" 0.182 mg/L 0.11 0.18186 06/15/04" 14:58" 245115" K,766 3.69 mg/L 0.02 3.6892 06/15/04" 14:58" 245115" La3988" 0.005 U mg/L 0.05 0.00027 06/15/04" 14:58" 245115" La3988" 0.005 U mg/L 0.05 0.00027 06/15/04" 14:58" 245115" Li670 0.043 mg/L 0.05 0.00452 06/15/04" 14:58" 245115" Mo220" 0.01 mg/L 0.05 0.00452 06/15/04" 14:58" 245115" Mo220" 0.01 mg/L 0.005 0.00452 06/15/04" 14:58" 245115" Mo220" 0.01 mg/L 0.01 0.00790 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.2 52.2764 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" P.1782" 0.037 mg/L 0.005 0.00452 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" Na589 0.01 U mg/L 0.01 0.00012 06/15/04" 14:58" 245115" Sal20" 0.005 U mg/L 0.005 0.003718 06/15/04" 14:58" 245115" Sal20" 0.005 U mg/L 0.005 0.00303 06/15/04" 14:58" 245115" Sal20" 0.005 u mg/L 0.005 0.00303 06/15/04" 14:58" 245115" Sal20" 0.015 U mg/L 0.015 0.00030 06/15/04" 14:58" 245115" Sal20" 0.015 U mg/L 0.015 0.00030 06/15/04" 14:58" 245115" Sal20" 0.015 U mg/L 0.015 0.00030 06/15/04" 14:58" 245115" Sal20" 0.015 U mg/L 0.015 0.00030 06/15/04" 14:58" 245115" Sal20" 0.005 U mg/L 0.005 0.00030 06/15/04" 14:58" 245115" Sal20" 0.005 U mg/L 0.005 0.00030 06/15											
245115"			+	-			 -				
245115" Co2266" 0.005 U mg/L 0.005 0.00067 06/15/04" 14:58" 245115" Co2267" 0.015 U mg/L 0.015 0.00023 06/15/04" 14:58" 245115" Fe2714" 0.182 mg/L 0.01 0.18186 06/15/04" 14:58" 245115" Fe2714" 0.182 mg/L 0.1 0.18186 06/15/04" 14:58" 245115" K.766 3.69 mg/L 0.1 0.18186 06/15/04" 14:58" 245115" La3988" 0.005 U mg/L 0.005 0.00027 06/15/04" 14:700 245115" La3988" 0.005 U mg/L 0.005 0.00027 06/15/04" 14:700 245115" Li670 0.043 mg/L 0.01 0.0434 06/15/04" 14:58" 245115" Ma2790" 1.42 mg/L 0.05 1.41956 06/15/04" 14:58" 245115" Ma2790" 0.142 mg/L 0.05 0.00452 06/15/04" 14:58" 245115" Ma2576" 0.005 U mg/L 0.01 0.00052 0.00452 06/15/04" 14:58" 245115" Ma2576" 0.010 mg/L 0.01 0.00012 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.2 52.2764 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.02 52.2764 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" P_1782" 0.037 mg/L 0.005 0.00012 06/15/04" 14:58" 245115" P_2782" 0.037 mg/L 0.005 0.00032 06/15/04" 14:58" 245115" P_3804" 0.005 U mg/L 0.005 0.00033 06/15/04" 14:58" 245115" S_1820" 9.50 mg/L 0.005 0.00033 06/15/04" 14:58" 245115" S_1820" 9.50 mg/L 0.05 0.00033 06/15/04" 14:58" 245115" S_1820" 9.005 U mg/L 0.005 0.00033 06/15/04" 14:58" 245115" S_18281" 20.7 mg/L 0.05 0.00033 06/15/04" 14:58" 245115" S_18281" 20.7 mg/L 0.05 0.00033 06/15/04" 14:58" 245115" S_14215" 0.075 mg/L 0.005 0.00033 06/15/04" 14:58" 245115" S_14215" 0.075 mg/L 0.005 0.00033 06/15/04" 14:58" 245115" S_14215" 0.075 mg/L 0.005 0.00033 06/15/04" 14:58" 245115" T.0003" 0.0005 0.0005 0.00033 06/15/04" 14:58" 245115" T.0003" 0.0005 0.00033 06/15/04" 14:58"		_		U							
245115"											
245115" Cu3247" 0.005 U mg/L 0.005 0.00074 06/15/04" 14:58" 245115" Fe2714" 0.182 mg/L 0.1 0.18186 06/15/04" 14:58"											
245115" Fe2714" 0.182 mg/L 0.1 0.18186 06/15/04" 14:58" 245115" La9988" 0.005 U mg/L 0.02 0.0027 06/15/04" 14:58" 245115" La9988" 0.005 U mg/L 0.001 0.00434 06/15/04" 14:58" 245115" Mg2790" 1.42 mg/L 0.05 1.41956 06/15/04" 14:58" 245115" Mg2790" 1.42 mg/L 0.05 1.41956 06/15/04" 14:58" 245115" Mg2790" 0.01 U mg/L 0.005 0.00452 06/15/04" 14:58" 245115" Mg2020" 0.01 U mg/L 0.01 0.00790 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.02 52.2764 06/15/04" 14:58" 245115" P.1782" 0.037 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" P.1782" 0.037 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" P.1782" 0.037 mg/L 0.005 0.00318 06/15/04" 14:58" 245115" P.1782" 0.005 U mg/L 0.005 0.00318 06/15/04" 14:58" 245115" P.1820" 0.005 U mg/L 0.005 0.00318 06/15/04" 14:58" 245115" P.1820" 0.005 U mg/L 0.005 0.00330 06/15/04" 14:58" 245115" S.1820" 0.005 U mg/L 0.005 0.00230 06/15/04" 14:58" 245115" S.1820" 0.005 U mg/L 0.02 0.00330 06/15/04" 14:58" 245115" S.1820" 0.005 0.00530 06/15/04" 14:58" 245115" T.13349" 0.005 0.005 0.00799 06/15/04" 14:58" 245115" T.13349" 0.005 0.005 0.00799 06/15/04" 14:58" 245115" T.13496" 0.005 0.005 0.00030 06/15/04" 14:58" 245115" T.13496" 0.005 0.005 0.00030 06/15/04" 14:58" 245116" A.2920" 0.005 0.005 0.00030 06/15/04" 14:58" 245116" A.2920" 0.005 0.005 0.00030 06/											
245115" K_766 3.69 mg/L 0.2 3.6892 06/15/04" 14:47:00 245115" La3988" 0.005 0.005 0.00027 06/15/04" 14:47:00 245115" Li670 0.043 mg/L 0.01 0.0434 06/15/04 14:47:00 245115" Mg2790" 1.42 mg/L 0.05 1.41956 06/15/04" 14:58" 245115" Mn2576" 0.005 0.005 0.00452 06/15/04" 14:58" 245115" Mn2576" 0.005 0.005 0.00452 06/15/04" 14:58" 245115" Mn2020" 0.01 U mg/L 0.01 0.00790 06/15/04" 14:58" 245115" Na589 52:3 mg/L 0.2 52:2764 06/15/04" 14:58" 245115" Ni2316" 0.01 U mg/L 0.01 0.00012 0.00712 06/15/04" 14:58" 245115" P_1782" 0.037 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" Pb220" 0.005 U mg/L 0.005 0.00030 06/15/04" 14:58" 245115" Pd3404" 0.005 U mg/L 0.005 0.00030 06/15/04" 14:58" 245115" S_1820" 9.50 mg/L 0.05 9.50225 06/15/04" 14:58" 245115" S_1820" 9.50 mg/L 0.05 9.50225 06/15/04" 14:58" 245115" Se196" 0.015 U mg/L 0.015 0.000230 06/15/04" 14:58" 245115" Se196" 0.015 U mg/L 0.05 0.00030 06/15/04" 14:58" 245115" Si2881" 20.7 mg/L 0.05 20.73791 06/15/04" 14:58" 245115" Si2881" 20.7 mg/L 0.05 20.73791 06/15/04" 14:58" 245115" Sr4215" 0.077 mg/L 0.05 0.00630 06/15/04" 14:58" 245115" Sr4215" 0.077 mg/L 0.05 0.00630 06/15/04" 14:58" 245115" Ti3349" 0.015 U mg/L 0.015 0.00630 06/15/04" 14:58" 245115" Ti2837" 0.015 U mg/L 0.015 0.00630 06/15/04" 14:58" 245115" Ti2839" 0.005 U mg/L 0.005 0.00739 06/15/04" 14:58" 245115" Ti2839" 0.005 U mg/L 0.005 0.00039 06/15/04" 14:58" 245115" Ti2839" 0.005 U mg/L 0.005 0.00039 06/15/04" 14:58" 245115" Ti2839" 0.005 U mg/L 0.005 0.00039 06/15/04" 14:58" 245115" Ti2839" 0.005 U mg/L 0.005 0.00031 06/15/04" 14:58" 245116" Asa920" 0.005 U mg/L 0.005 0.00030 06/1											-
245115" La3988" 0.005 U mg/L 0.005 0.0027 06/15/04" 14:47:00 14:58" 245115" Li670 0.043 mg/L 0.015 0.015 0.0434 06/15/04" 14:47:00 14:58" 245115" Mg2790" 1.42 mg/L 0.005 0.005 0.00452 06/15/04" 14:58" 245115" Mo2020" 0.01 U mg/L 0.01 0.00790 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.2 52.2764 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.01 0.00012 06/15/04" 14:58" 245115" P. 1782" 0.037 mg/L 0.01 0.00012 06/15/04" 14:58" 245115" P. 1782" 0.037 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" P. 1782" 0.005 U mg/L 0.005 -0.0030 06/15/04" 14:58" 245115" P. 163404" 0.005 U mg/L 0.005 -0.00215 06/15/04" 14:58" 245115" S. 1820" 9.50 mg/L 0.05 9.50225 06/15/04" 14:58" 245115" S. 1820" 9.50 mg/L 0.05 9.50225 06/15/04" 14:58" 245115" S. 1820" 9.50 mg/L 0.05 0.0030 06/15/04" 14:58" 245115" S. 1820" 9.50 mg/L 0.05 0.0030 06/15/04" 14:58" 245115" S. 1820" 9.50 mg/L 0.05 0.0030 06/15/04" 14:58" 245115" S. 1820" 0.015 U mg/L 0.015 0.00503 06/15/04" 14:58" 245115" S. 1820" 0.015 U mg/L 0.015 0.00503 06/15/04" 14:58" 245115" S. 1820" 0.077 mg/L 0.05 0.073791 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.015 0.00379 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.015 0.00379 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Th2837" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Th2837" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Th2837" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245116" A30802" 0.005 U mg/L 0.005 0.00310 06/15/04" 14:58" 245116" A30802" 0.005 U mg/L 0.005 0.00310 06/15/04" 15:											•
245115" Li670 0.043 mg/L 0.01 0.0434 06/15/04 14:47:00 245115" Mg/2790" 1.42 mg/L 0.05 1.41956 06/15/04" 14:58" 245115" Mm2676" 0.005 U mg/L 0.005 0.00452 06/15/04" 14:58" 245115" Mm2676" 0.005 U mg/L 0.01 0.00790 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.02 52.2764 06/15/04" 14:58" 245115" Ni2316" 0.01 U mg/L 0.01 0.00012 06/15/04" 14:58" 245115" P. 1782" 0.037 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" P. 1782" 0.037 mg/L 0.005 0.00318 06/15/04" 14:58" 245115" P. 1782" 0.005 U mg/L 0.005 0.00300 06/15/04" 14:58" 245115" P. 1820" 9.50 mg/L 0.005 0.00030 06/15/04" 14:58" 245115" S. 1820" 9.50 mg/L 0.005 0.00236 06/15/04" 14:58" 245115" S. 1820" 9.50 mg/L 0.005 0.00236 06/15/04" 14:58" 245115" S. 18281" 0.015 U mg/L 0.015 0.00236 06/15/04" 14:58" 245115" S. 18281" 20.7 mg/L 0.05 20.73791 06/15/04" 14:58" 245115" S. 1829" 0.011 U mg/L 0.015 0.00831 06/15/04" 14:58" 245115" S. 1829" 0.015 U mg/L 0.005 0.00891 06/15/04" 14:58" 245115" S. 1829" 0.015 U mg/L 0.005 0.00891 06/15/04" 14:58" 245115" S. 1829" 0.015 U mg/L 0.005 0.00891 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.005 0.00039 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.005 0.00039 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.005 0.00039 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.005 0.00039 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.005 0.00039 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.005 0.00039 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.005 0.00039 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.005 0.00039 06/15/04" 14:58" 245115" Th2837" 0.005 U mg/L 0.005 0.00039 06/15/04" 14:58" 245116" D.				U							
245115" Mg2790" 1.42 mg/L 0.05 1.41956 06/15/04" 14:58" 245115" M02020" 0.01 U mg/L 0.01 0.00790 06/15/04" 14:58" 245115" M02020" 0.01 U mg/L 0.01 0.00790 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.2 52.2764 06/15/04 14:47:00 245115" Ni2316" 0.01 mg/L 0.01 0.00012 06/15/04" 14:58" 245115" P.1782" 0.037 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" P.1782" 0.037 mg/L 0.005 0.003718 06/15/04" 14:58" 245115" P.1782" 0.037 mg/L 0.005 0.00718 06/15/04" 14:58" 245115" P.1782" 0.005 U mg/L 0.005 0.00718 06/15/04" 14:58" 245115" P.1782" 0.005 U mg/L 0.005 0.00715 06/15/04" 14:58" 245115" S.1820" 9.500 mg/L 0.005 9.50225 06/15/04" 14:58" 245115" S.1820" 9.500 mg/L 0.02 0.00236 06/15/04" 14:58" 245115" S.18281" 20.7 mg/L 0.015 0.00503 06/15/04" 14:58" 245115" S.18281" 20.7 mg/L 0.015 0.00503 06/15/04" 14:58" 245115" S.18281" 20.7 mg/L 0.01 0.00891 06/15/04" 14:58" 245115" S.1829" 0.015 U mg/L 0.01 0.00891 06/15/04" 14:58" 245115" S.1829" 0.015 U mg/L 0.01 0.00891 06/15/04" 14:58" 245115" T.12337" 0.015 U mg/L 0.005 0.00399 06/15/04" 14:58" 245115" T.12337" 0.015 U mg/L 0.015 0.00399 06/15/04" 14:58" 245115" T.12337" 0.015 U mg/L 0.005 0.00399 06/15/04" 14:58" 245115" T.12349" 0.005 U mg/L 0.005 0.00399 06/15/04" 14:58" 245115" T.12349" 0.005 U mg/L 0.005 0.00399 06/15/04" 14:58" 245115" T.12349" 0.005 U mg/L 0.005 0.00399 06/15/04" 14:58" 245115" T.12349" 0.005 U mg/L 0.005 0.00399 06/15/04" 14:58" 245115" T.12349" 0.005 U mg/L 0.005 0.00399 06/15/04" 14:58" 245116" A.13280" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" A.13280" 0.005 U mg/L 0.005 0.00138 06/15/04" 15:03" 245116" B.24934"			+								
245115" Mn2576" 0.005 U mg/L 0.005 0.00452 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.2 52.2764 06/15/04 14:45" 14:58" 245115" Na589 52.3 mg/L 0.2 52.2764 06/15/04 14:45" 245115" Ni2316" 0.01 U mg/L 0.01 0.00012 06/15/04" 14:58" 245115" P.1782" 0.037 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" P.1782" 0.037 mg/L 0.05 0.00303 06/15/04" 14:58" 245115" P.0220" 0.005 U mg/L 0.005 0.00030 06/15/04" 14:58" 245115" P.0220" 0.005 U mg/L 0.005 0.00030 06/15/04" 14:58" 245115" S.1820" 9.50 mg/L 0.05 9.50225 06/15/04" 14:58" 245115" S.02068" 0.02 U mg/L 0.05 9.50225 06/15/04" 14:58" 245115" S.02068" 0.02 U mg/L 0.015 0.00530 06/15/04" 14:58" 245115" S.02088" 0.02 U mg/L 0.015 0.00530 06/15/04" 14:58" 245115" S.02088" 0.00 U mg/L 0.015 0.00530 06/15/04" 14:58" 245115" S.02088" 0.01 U mg/L 0.015 0.00530 06/15/04" 14:58" 245115" S.02088" 0.01 U mg/L 0.015 0.00530 06/15/04" 14:58" 245115" S.02088" 0.01 U mg/L 0.015 0.00630 06/15/04" 14:58" 245115" S.02088" 0.0077 mg/L 0.005 0.07695 06/15/04" 14:58" 245115" Tip3349" 0.005 U mg/L 0.015 0.00630 06/15/04" 14:58" 245115" Tip3349" 0.005 U mg/L 0.015 0.00379 06/15/04" 14:58" 245115" Tip3349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" U 4090" 0.1 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" V.2924" 0.014 mg/L 0.005 0.000380 06/15/04" 14:58" 245115" V.2924" 0.014 mg/L 0.005 0.000390 06/15/04" 14:58" 245115" V.2924" 0.005 U mg/L 0.005 0.00030 06/15/04" 14:58" 245116" Ag3220" 0.005 U mg/L 0.005 0.00030 06/15/04" 14:58" 245116" Ag3220" 0.005 U mg/L 0.005 0.00030 06/15/04" 14:58" 245116" Ba4934" 0.008 mg/L 0.005 0.00030 06/15/04" 15:03" 245116" Ba2930"											
245115" Mac920" 0.01 U mg/L 0.01 0.00790 06/15/04" 14:58" 245115" Na589 52.3 mg/L 0.2 52.2764 06/15/04 14:47:00 245115" Ni2316" 0.01 U mg/L 0.01 0.00012 06/15/04" 14:58" 245115" P_1782" 0.037 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" Pp220" 0.005 U mg/L 0.005 -0.0030 06/15/04" 14:58" 245115" Pd3404" 0.005 U mg/L 0.005 -0.00230 06/15/04" 14:58" 245115" S_1820" 9.50 mg/L 0.05 9.50225 06/15/04" 14:58" 245115" Sp2088" 0.02 U mg/L 0.02 0.00238 06/15/04" 14:58" 245115" Sp196" 0.015 U mg/L 0.05 0.00503 06/15/04" 14:58" 245115" Sp196" 0.015 U mg/L 0.05 0.00503 06/15/04" 14:58" 245115" Sp196" 0.010 U mg/L 0.015 0.00503 06/15/04" 14:58" 245115" Sp1981" 20.7 mg/L 0.05 20.73791 06/15/04" 14:58" 245115" Sp1981" 0.07 mg/L 0.05 0.00503 06/15/04" 14:58" 245115" Sp1981" 0.07 mg/L 0.015 0.00891 06/15/04" 14:58" 245115" Sp1981" 0.010 0.005 0.07695 06/15/04" 14:58" 245115" Sp1981" 0.005 0.005 0.07695 06/15/04" 14:58" 245115" Tp13349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Tp13349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Tp13349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Tp13349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Tp13349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Tp13349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Tp13349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Tp13349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Tp13349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Tp13349" 0.005 U mg/L 0.005 0.000380 06/15/04" 14:58" 245116" Dp13340" 0.005 U mg/L 0.005 0.000380 06/15/04" 14				U							
245115" Na589 52.3 mg/L 0.2 52.2764 06/15/04 14:47:00 245115" Ni2316" 0.01 0.0371 0.0012 06/15/04" 14:58" 245115" Pb220" 0.005 U mg/L 0.005 -0.00030 06/15/04" 14:58" 245115" Pb220" 0.005 U mg/L 0.005 -0.00030 06/15/04" 14:58" 245115" Pd3404" 0.005 U mg/L 0.005 -0.00215 06/15/04" 14:58" 245115" S_1820" 9.50 mg/L 0.05 9.50225 06/15/04" 14:58" 245115" Sb2068" 0.02 U mg/L 0.02 0.00236 06/15/04" 14:58" 245115" Se196" 0.015 U mg/L 0.015 0.00503 06/15/04" 14:58" 245115" Si2881" 20.7 mg/L 0.05 20.73791 06/15/04" 14:58" 245115" Si2881" 20.7 mg/L 0.05 20.73791 06/15/04" 14:58" 245115" Si2818" 20.7 mg/L 0.01 0.00891 06/15/04" 14:58" 245115" Si2837" 0.015 U mg/L 0.01 0.00891 06/15/04" 14:58" 245115" Sr4215" 0.077 mg/L 0.005 0.07695 06/15/04" 14:58" 245115" Ti3349" 0.005 U mg/L 0.015 0.00379 06/15/04" 14:58" 245115" Ti3349" 0.005 U mg/L 0.015 0.00379 06/15/04" 14:58" 245115" Ti3349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" V_2924" 0.014 mg/L 0.01 0.00985 06/15/04" 14:58" 245115" V_2924" 0.014 mg/L 0.01 0.00985 06/15/04" 14:58" 245115" V_2924" 0.014 mg/L 0.005 0.00399 06/15/04" 14:58" 245115" V_2924" 0.014 mg/L 0.005 0.00140 0.016											
245115" Ni2316" 0.01 U mg/L 0.01 0.00012 06/15/04" 14:58" 245115" P_1782" 0.037 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" Pb220" 0.005 U mg/L 0.005 -0.00030 06/15/04" 14:58" 245115" Pd3404" 0.005 U mg/L 0.005 -0.00215 06/15/04" 14:58" 245115" S_1820" 9.50 mg/L 0.05 9.50225 06/15/04" 14:58" 245115" Sb2068" 0.02 U mg/L 0.05 0.00236 06/15/04" 14:58" 245115" Sp2068" 0.02 U mg/L 0.05 0.00330 06/15/04" 14:58" 245115" Si2881" 20.7 mg/L 0.05 20.73791 06/15/04" 14:58" 245115" Si2881" 20.7 mg/L 0.05 20.73791 06/15/04" 14:58" 245115" Si4215" 0.077 mg/L 0.01 0.00891 06/15/04" 14:58" 245115" Si4215" 0.077 mg/L 0.01 0.00891 06/15/04" 14:58" 245115" Ti2837" 0.015 U mg/L 0.015 0.00639 06/15/04" 14:58" 245115" Ti2837" 0.015 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Ti3349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Ti3349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Ti4990" 0.1 U mg/L 0.01 0.00891 06/15/04" 14:58" 245115" U 4090" 0.1 U mg/L 0.01 0.00895 06/15/04" 14:58" 245115" V 2924" 0.014 mg/L 0.01 0.005 0.00379 06/15/04" 14:58" 245115" V 2924" 0.014 mg/L 0.01 0.005 0.00039 06/15/04" 14:58" 245115" V 2924" 0.014 mg/L 0.005 0.00187 06/15/04" 14:58" 245115" V 2924" 0.014 mg/L 0.005 0.00039 06/15/04" 14:58" 245115" V 2924" 0.005 U mg/L 0.005 0.00039 06/15/04" 14:58" 245115" V 2924" 0.005 U mg/L 0.005 0.00039 06/15/04" 14:58" 245116" A3082" 0.005 U mg/L 0.005 0.00039 06/15/04" 14:58" 245116" A3082" 0.005 U mg/L 0.005 0.00039 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00039 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00039											
245115" P_1782" 0.037 mg/L 0.02 0.03718 06/15/04" 14:58" 245115" Pb220" 0.005 U mg/L 0.005 -0.00030 06/15/04" 14:58" 245115" Pd3404" 0.005 U mg/L 0.005 -0.00215 06/15/04" 14:58" 245115" S_1820" 9.50 mg/L 0.05 9.50225 06/15/04" 14:58" 245115" Sb2068" 0.02 U mg/L 0.02 0.00236 06/15/04" 14:58" 245115" Sb2068" 0.015 U mg/L 0.015 0.00503 06/15/04" 14:58" 245115" Si2881" 20.7 mg/L 0.05 20.73791 06/15/04" 14:58" 245115" Si2881" 20.7 mg/L 0.01 0.00503 06/15/04" 14:58" 245115" Si1899" 0.01 U mg/L 0.01 0.00891 06/15/04" 14:58" 245115" Sr4215" 0.077 mg/L 0.005 0.07695 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.015 0.007695 06/15/04" 14:58" 245115" Ti3349" 0.005 U mg/L 0.015 0.00379 06/15/04" 14:58" 245115" Ti1908" 0.02 U mg/L 0.02 0.00902 06/15/04" 14:58" 245115" U_4090" 0.1 U mg/L 0.01 0.00985 06/15/04" 14:58" 245115" U_2090" 0.1 U mg/L 0.01 0.00985 06/15/04" 14:58" 245115" U_709" 0.01 U mg/L 0.01 0.00985 06/15/04" 14:58" 245115" U_709" 0.01 U mg/L 0.01 0.00985 06/15/04" 14:58" 245115" U_73710" 0.005 U mg/L 0.01 0.00187 06/15/04" 14:58" 245115" U_73710" 0.005 U mg/L 0.01 0.00187 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00114 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00118 06/15/04" 14:58" 245116" Ba4934" 0.008 mg/L 0.005 0.00188 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.00019				U	r						
245115"											
245115"				U							
245115" S 1820" 9.50		+									
245115" Sb2068" 0.02 U mg/L 0.02 0.00236 06/15/04" 14:58" 245115" Se196" 0.015 U mg/L 0.05 0.00503 06/15/04" 14:58" 245115" Si2881" 20.7 mg/L 0.05 20.73791 06/15/04" 14:58" 245115" Sn1899" 0.01 U mg/L 0.01 0.00891 06/15/04" 14:58" 245115" Sr4215" 0.077 mg/L 0.005 0.07695 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.005 0.00391 06/15/04" 14:58" 245115" Ti3349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Ti1908" 0.02 U mg/L 0.02 0.00379 06/15/04" 14:58" 245115" U 4090" 0.1 U mg/L 0.02 0.00379 06/15/04" 14:58" 245115" U 4090" 0.1 U mg/L 0.01 0.00985 06/15/04" 14:58" 245115" U 2924" 0.014 mg/L 0.01 0.00985 06/15/04" 14:58" 245115" V 2924" 0.014 mg/L 0.015 0.01362 06/15/04" 14:58" 245115" V 2924" 0.014 mg/L 0.01 0.00985 06/15/04" 14:58" 245115" V 3710" 0.005 U mg/L 0.005 0.00187 06/15/04" 14:58" 245115" V 3710" 0.005 U mg/L 0.005 0.00099 06/15/04" 14:58" 245115" Zn2062" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00113 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.005 0.0013 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.0035 0.0035 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.0035 0.0035 06/15/04" 15:03" 245116" Ba2496" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Ca2266" 0.005 U mg/L 0.005 0.00012 06/15/04" 15:03" 245116" Ca2266" 0.005 U mg/L 0.005 0.00012 06/15/04" 15:03" 245116" Ca2266" 0.005 U mg/L 0.005 0.00012 06/15/04" 15:03" 245116"											
245115" Se196" 0.015 U mg/L 0.015 0.00503 06/15/04" 14:58" 245115" Si2881" 20.7 mg/L 0.05 20.73791 06/15/04" 14:58" 245115" Sn1899" 0.01 U mg/L 0.01 0.00891 06/15/04" 14:58" 245115" Sr4215" 0.077 mg/L 0.005 0.07695 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.015 -0.00073 06/15/04" 14:58" 245115" Ti3349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Ti1908" 0.02 U mg/L 0.02 -0.00902 06/15/04" 14:58" 245115" U_4090" 0.1 U mg/L 0.01 0.00985 06/15/04" 14:58" 245115" V_2924" 0.014 mg/L 0.015 0.01362 06/15/04" 14:58" 245115" W_2079" 0.01 U mg/L 0.01 -0.00187 06/15/04" 14:58" 245115" W_2079" 0.01 U mg/L 0.005 0.00009 06/15/04" 14:58" 245115" X_3710" 0.005 U mg/L 0.005 0.00009 06/15/04" 14:58" 245115" X_32062" 0.005 U mg/L 0.005 0.000187 06/15/04" 14:58" 245115" X_3296" 0.005 U mg/L 0.005 0.000113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3820" 0.498 mg/L 0.005 0.00118 06/15/04" 15:03" 245116" Ag1890" 0.005 U mg/L 0.005 0.00188 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00188 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00188 06/15/04" 15:03" 245116" Ba230" 0.01 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Ca3179" 7.31 mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Ca3179" 7.31 mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Ca3179" 7.31 mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Ca2266" 0.005 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Ca2266" 0.005 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Ca2266" 0.005 U mg/L 0.005 0.00019 06/15/				U							
245115" Si2881" 20.7 mg/L 0.05 20.73791 06/15/04" 14:58" 245115" Sn1899" 0.01 U mg/L 0.01 0.00891 06/15/04" 14:58" 245115" Sr4215" 0.077 mg/L 0.005 0.07695 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.015 0.00073 06/15/04" 14:58" 245115" Th2837" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Ti1908" 0.02 U mg/L 0.02 -0.00902 06/15/04" 14:58" 245115" U 4090" 0.1 U mg/L 0.1 0.00985 06/15/04" 14:58" 245115" V 2924" 0.014 mg/L 0.01 0.00985 06/15/04" 14:58" 245115" V 2924" 0.014 mg/L 0.005 0.01362 06/15/04" 14:58" 245115" V 2979" 0.01 U mg/L 0.01 -0.00187 06/15/04" 14:58" 245115" V 3710" 0.005 U mg/L 0.01 -0.00187 06/15/04" 14:58" 245115" V 3710" 0.005 U mg/L 0.005 0.00009 06/15/04" 14:58" 245115" Zn2062" 0.005 U mg/L 0.005 0.00114 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" As1890" 0.005 U mg/L 0.005 0.00188 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.05 0.00188 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.05 0.00188 06/15/04" 15:03" 245116" Ba3130" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Ba3130" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Ca3179" 7.31 mg/L 0.005 0.000125 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.000125 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.000125 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.000125 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.000125 06/15/04" 15:03" 245116" Ca2247" 0.005 U mg/L 0.005 0.000049 06/15/04" 15:03" 245116" Ca2247" 0.005 U mg/		+									
245115" Sn1899" 0.01 U mg/L 0.01 0.00891 06/15/04" 14:58" 245115" Sr4215" 0.077 mg/L 0.005 0.07695 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.005 0.00037 06/15/04" 14:58" 245115" Ti3349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Ti1908" 0.02 U mg/L 0.02 -0.00902 06/15/04" 14:58" 245115" U 4090" 0.1 U mg/L 0.1 0.00985 06/15/04" 14:58" 245115" V 2924" 0.014 mg/L 0.01 0.0035 0.01362 06/15/04" 14:58" 245115" V 2079" 0.01 U mg/L 0.005 0.01362 06/15/04" 14:58" 245115" V 23710" 0.005 U mg/L 0.005 0.00009 06/15/04" 14:58" 245115" V 3710" 0.005 U mg/L 0.005 0.00009 06/15/04" 14:58" 245115" Zr3496" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245115" Zr3496" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00113 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.005 0.00188 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00188 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.0035 0.0035 0.0035 06/15/04" 15:03" 245116" Ba230" 0.010 mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Ba230" 0.010 mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Ca3179" 7.31 mg/L 0.05 0.00035 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Ca2266" 0.005 U mg/L 0.005 0.00012 06/15/04" 15:03" 245116" Ca2266" 0.005 U mg/L 0.005 0.00049 06/15/04" 15:03" 245116" Ca2266" 0.005 U mg/L 0.005 0.00049 06/15/04" 15:03" 245116" Ca2266" 0.005 U mg/L 0.005 0.00049 06/15/04" 15:03" 245116" Ca2266" 0.005 U mg/L 0.005 0.00049 06/15/04" 15:03" 245116" Ca2266"											
245115" Sr4215" 0.077 mg/L 0.005 0.07695 06/15/04" 14:58" 245115" Th2837" 0.015 U mg/L 0.015 -0.00073 06/15/04" 14:58" 245115" Ti3349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Ti1908" 0.02 U mg/L 0.02 -0.00902 06/15/04" 14:58" 245115" U 4090" 0.1 U mg/L 0.1 0.00985 06/15/04" 14:58" 245115" V 2924" 0.014 mg/L 0.005 0.01362 06/15/04" 14:58" 245115" V 2924" 0.014 mg/L 0.005 0.01362 06/15/04" 14:58" 245115" V 2924" 0.01 U mg/L 0.01 -0.00187 06/15/04" 14:58" 245115" V 3710" 0.005 U mg/L 0.001 -0.00187 06/15/04" 14:58" 245115" Zn2062" 0.005 U mg/L 0.005 0.00009 06/15/04" 14:58" 245115" Zr3496" 0.005 U mg/L 0.005 0.00114 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00113 06/15/04" 15:03" 245116" Ag1890" 0.005 U mg/L 0.005 0.00188 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.005 0.00188 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00188 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00835 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00035 0.00035 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Ba230" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Ba230" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.00009 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.00009 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.00009 06/15/04" 15:03" 245116" Ca2265" 0.005 U mg/L 0.005 0.00009 06/15/04" 15:03" 2451				IJ							
245115" Th2837" 0.015 U mg/L 0.015 -0.00073 06/15/04" 14:58" 245115" Ti3349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" Ti1908" 0.02 U mg/L 0.02 -0.00902 06/15/04" 14:58" 245115" U_4090" 0.1 U mg/L 0.01 0.00985 06/15/04" 14:58" 245115" V_2924" 0.014 mg/L 0.005 0.01362 06/15/04" 14:58" 245115" W_2079" 0.01 U mg/L 0.001 -0.00187 06/15/04" 14:58" 245115" Y_3710" 0.005 U mg/L 0.005 0.00114 06/15/04" 14:58" 245115" Zn2062" 0.005 U mg/L 0.005 0.00114 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00113 06/15/04"		-									
245115" Ti3349" 0.005 U mg/L 0.005 0.00379 06/15/04" 14:58" 245115" TI1908" 0.02 U mg/L 0.02 -0.00902 06/15/04" 14:58" 245115" U_4090" 0.1 U mg/L 0.01 0.00985 06/15/04" 14:58" 245115" V_2924" 0.01 U mg/L 0.01 -0.00187 06/15/04" 14:58" 245115" V_23710" 0.005 U mg/L 0.005 0.00187 06/15/04" 14:58" 245115" Y_3710" 0.005 U mg/L 0.005 0.000197 06/15/04" 14:58" 245115" Zn2062" 0.005 U mg/L 0.005 0.00114 06/15/04" 14:58" 245115" Zn2062" 0.005 U mg/L 0.005 0.00114 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.49776 06/15/04				U							
245115" TI1908" 0.02 U mg/L 0.02 -0.00902 06/15/04" 14:58" 245115" U_4090" 0.1 U mg/L 0.1 0.00985 06/15/04" 14:58" 245115" V_2924" 0.014 mg/L 0.005 0.01362 06/15/04" 14:58" 245115" W_2079" 0.01 mg/L 0.001 -0.00187 06/15/04" 14:58" 245115" Y_3710" 0.005 U mg/L 0.005 0.00019 06/15/04" 14:58" 245115" Zn2062" 0.005 U mg/L 0.005 0.00114 06/15/04" 14:58" 245115" Zn2062" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00113 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.005 0.017214 06/15/04" 15:03" <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
245115" U_4090" 0.1 U mg/L 0.1 0.00985 06/15/04" 14:58" 245115" V_2924" 0.014 mg/L 0.005 0.01362 06/15/04" 14:58" 245115" W_2079" 0.01 mg/L 0.01 -0.00187 06/15/04" 14:58" 245115" Y_3710" 0.005 U mg/L 0.005 0.00009 06/15/04" 14:58" 245115" Zn2062" 0.005 U mg/L 0.005 0.00114 06/15/04" 14:58" 245115" Zr3496" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 -0.00031 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.05 0.49776 06/15/04" 15:03" 245116" Be2496" 0.172 mg/L 0.005 0.17214 06/15/04" 15:03" 245116" Be3330" 0.005 mg/L 0.00		+									
245115" V_2924" 0.014 mg/L 0.005 0.01362 06/15/04" 14:58" 245115" W_2079" 0.01 U mg/L 0.01 -0.00187 06/15/04" 14:58" 245115" Y_3710" 0.005 U mg/L 0.005 0.00009 06/15/04" 14:58" 245115" Zn2062" 0.005 U mg/L 0.005 0.00114 06/15/04" 14:58" 245115" Zr3496" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.00113 06/15/04" 15:03" 245116" Al3082" 0.498 mg/L 0.05 0.49776 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.005 0.0188 06/15/04" 15:03" 245116" B_2496" 0.172 mg/L 0.05 0.17214 06/15/04" 15:03"											
245115" W_2079" 0.01 mg/L 0.01 -0.00187 06/15/04" 14:58" 245115" Y_3710" 0.005 U mg/L 0.005 0.00009 06/15/04" 14:58" 245115" Zn2062" 0.005 U mg/L 0.005 0.00114 06/15/04" 14:58" 245115" Zr3496" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 -0.00031 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.05 0.49776 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.005 0.0188 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00835 06/15/04" 15:03" 245116" Be3130" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
245115" Y_3710" 0.005 U mg/L 0.005 0.00009 06/15/04" 14:58" 245115" Zn2062" 0.005 U mg/L 0.005 0.00114 06/15/04" 14:58" 245115" Zr3496" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 0.49776 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.005 0.00188 06/15/04" 15:03" 245116" Bs2496" 0.172 mg/L 0.05 0.17214 06/15/04" 15:03" 245116" Bs4934" 0.008 mg/L 0.005 0.00835 06/15/04" 15:03" 245116" Be3130" 0.005 U mg/L 0.005 0.0035 06/15/04" 15:03" 245116" Bi2230" 0.01 U mg/L 0.01 0.00210 06/15/04" 15:03" <td></td> <td></td> <td></td> <td>U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				U							
245115" Zn2062" 0.005 U mg/L 0.005 0.00114 06/15/04" 14:58" 245115" Zr3496" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 -0.00031 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.005 0.00188 06/15/04" 15:03" 245116" B_2496" 0.172 mg/L 0.05 0.00188 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00835 06/15/04" 15:03" 245116" Be3130" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Bi2230" 0.01 U mg/L 0.01 0.00210 06/15/04" 15:03" 245116" Ca3179" 7.31 mg/L 0.05 7.31458 06/15/04" 15:03"											
245115" Zr3496" 0.005 U mg/L 0.005 0.00113 06/15/04" 14:58" 245116" Ag3280" 0.005 U mg/L 0.005 -0.00031 06/15/04" 15:03" 245116" Al3082" 0.498 mg/L 0.05 0.49776 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.005 0.017214 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00835 06/15/04" 15:03" 245116" Be3130" 0.005 U mg/L 0.005 0.0035 06/15/04" 15:03" 245116" Bi2230" 0.01 U mg/L 0.01 0.00210 06/15/04" 15:03" 245116" Ca3179" 7.31 mg/L 0.05 7.31458 06/15/04" 15:03" 245116" Cd2265" 0.005 U mg/L 0.005 0.00125 06/15/04" 15:03" 245116" Cc2286" 0.005 U mg/L 0.005											
245116" Ag3280" 0.005 U mg/L 0.005 -0.00031 06/15/04" 15:03" 245116" Al3082" 0.498 mg/L 0.05 0.49776 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.005 0.00188 06/15/04" 15:03" 245116" B_2496" 0.172 mg/L 0.05 0.17214 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00835 06/15/04" 15:03" 245116" Be3130" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Bi2230" 0.01 U mg/L 0.05 7.31458 06/15/04" 15:03" 245116" Ca3179" 7.31 mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Co2286" 0.005 U mg/L 0.005 0.000125 06/15/04" 15:03" 245116"											
245116" Al3082" 0.498 mg/L 0.05 0.49776 06/15/04" 15:03" 245116" As1890" 0.005 U mg/L 0.005 0.00188 06/15/04" 15:03" 245116" B_2496" 0.172 mg/L 0.05 0.17214 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00835 06/15/04" 15:03" 245116" Be3130" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Bi2230" 0.01 U mg/L 0.05 7.31458 06/15/04" 15:03" 245116" Cd2265" 0.005 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Cd2265" 0.005 U mg/L 0.005 0.0019 06/15/04" 15:03" 245116" Cr2677" 0.015 U 0.005 0.00020 06/15/04" 15:03" 245116"											
245116" As1890" 0.005 U mg/L 0.005 0.00188 06/15/04" 15:03" 245116" B_2496" 0.172 mg/L 0.05 0.17214 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00835 06/15/04" 15:03" 245116" Be3130" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Bi2230" 0.01 U mg/L 0.05 7.31458 06/15/04" 15:03" 245116" Ca3179" 7.31 mg/L 0.05 7.31458 06/15/04" 15:03" 245116" Cd2265" 0.005 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Co2286" 0.005 U mg/L 0.015 0.00020 06/15/04" 15:03" 245116" Cr2677" 0.015 0.005 0.00049 06/15/04" 15:03" 245116" Fe2714"											
245116" B_2496" 0.172 mg/L 0.05 0.17214 06/15/04" 15:03" 245116" Ba4934" 0.008 mg/L 0.005 0.00835 06/15/04" 15:03" 245116" Be3130" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Bi2230" 0.01 U mg/L 0.01 0.00210 06/15/04" 15:03" 245116" Ca3179" 7.31 mg/L 0.05 7.31458 06/15/04" 15:03" 245116" Cd2265" 0.005 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Co2286" 0.005 U mg/L 0.015 0.00020 06/15/04" 15:03" 245116" Cr2677" 0.015 U 0.00020 06/15/04" 15:03" 245116" Fe2714" 0.167 mg/L 0.1 0.16654 06/15/04" 15:03" 245116" K_766 2.96		+		U							
245116" Ba4934" 0.008 mg/L 0.005 0.00835 06/15/04" 15:03" 245116" Be3130" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Bi2230" 0.01 U mg/L 0.01 0.00210 06/15/04" 15:03" 245116" Ca3179" 7.31 mg/L 0.05 7.31458 06/15/04" 15:03" 245116" Cd2265" 0.005 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Co2286" 0.005 U mg/L 0.015 0.00020 06/15/04" 15:03" 245116" Cu3247" 0.005 U mg/L 0.005 0.00020 06/15/04" 15:03" 245116" Cu3247" 0.005 U mg/L 0.005 0.00049 06/15/04" 15:03" 245116" Fe2714" 0.167 mg/L 0.1 0.16654 06/15/04" 15:03" <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
245116" Be3130" 0.005 U mg/L 0.005 0.00035 06/15/04" 15:03" 245116" Bi2230" 0.01 U mg/L 0.01 0.00210 06/15/04" 15:03" 245116" Ca3179" 7.31 mg/L 0.05 7.31458 06/15/04" 15:03" 245116" Cd2265" 0.005 U mg/L 0.005 0.0019 06/15/04" 15:03" 245116" Co2286" 0.005 U mg/L 0.015 0.00125 06/15/04" 15:03" 245116" Cr2677" 0.015 U 0.0020 06/15/04" 15:03" 245116" Cu3247" 0.005 U 0.00049 06/15/04" 15:03" 245116" Fe2714" 0.167 mg/L 0.1 0.16654 06/15/04" 15:03" 245116" K_766 2.96 mg/L 0.2 2.9600 06/15/04 14:50:04											
245116" Bi2230" 0.01 mg/L 0.01 0.00210 06/15/04" 15:03" 245116" Ca3179" 7.31 mg/L 0.05 7.31458 06/15/04" 15:03" 245116" Cd2265" 0.005 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Co2286" 0.005 U mg/L 0.015 0.00020 06/15/04" 15:03" 245116" Cr2677" 0.015 U 0.00020 06/15/04" 15:03" 245116" Cu3247" 0.005 U 0.00049 06/15/04" 15:03" 245116" Fe2714" 0.167 mg/L 0.1 0.16654 06/15/04" 15:03" 245116" K_766 2.96 mg/L 0.2 2.9600 06/15/04 14:50:04				U							
245116" Ca3179" 7.31 mg/L 0.05 7.31458 06/15/04" 15:03" 245116" Cd2265" 0.005 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Co2286" 0.005 U mg/L 0.005 0.00125 06/15/04" 15:03" 245116" Cr2677" 0.015 U mg/L 0.015 0.00020 06/15/04" 15:03" 245116" Cu3247" 0.005 U mg/L 0.05 0.00049 06/15/04" 15:03" 245116" Fe2714" 0.167 mg/L 0.1 0.16654 06/15/04" 15:03" 245116" K_766 2.96 mg/L 0.2 2.9600 06/15/04 14:50:04											
245116" Cd2265" 0.005 U mg/L 0.005 0.00019 06/15/04" 15:03" 245116" Co2286" 0.005 U mg/L 0.005 0.00125 06/15/04" 15:03" 245116" Cr2677" 0.015 U 0.0020 06/15/04" 15:03" 245116" Cu3247" 0.005 U mg/L 0.005 0.00049 06/15/04" 15:03" 245116" Fe2714" 0.167 mg/L 0.1 0.16654 06/15/04" 15:03" 245116" K_766 2.96 mg/L 0.2 2.9600 06/15/04 14:50:04				-							
245116" Co2286" 0.005 U mg/L 0.005 0.00125 06/15/04" 15:03" 245116" Cr2677" 0.015 U mg/L 0.015 0.00020 06/15/04" 15:03" 245116" Cu3247" 0.005 U mg/L 0.005 0.00049 06/15/04" 15:03" 245116" Fe2714" 0.167 mg/L 0.1 0.16654 06/15/04" 15:03" 245116" K_766 2.96 mg/L 0.2 2.9600 06/15/04 14:50:04		· · · · · · · · · · · · · · · · · · ·		U			*				
245116" Cr2677" 0.015 U mg/L 0.015 U 0.00020 06/15/04" 15:03" 245116" Cu3247" 0.005 U mg/L 0.005 U 0.00049 06/15/04" 15:03" 245116" Fe2714" 0.167 Mg/L 0.1 0.16654 06/15/04" 06/15/04" 15:03" 245116" K_766 2.96 Mg/L 0.2 2.9600 06/15/04 14:50:04											
245116" Cu3247" 0.005 U mg/L 0.005 0.00049 06/15/04" 15:03" 245116" Fe2714" 0.167 mg/L 0.1 0.16654 06/15/04" 15:03" 245116" K_766 2.96 mg/L 0.2 2.9600 06/15/04 14:50:04											
245116" Fe2714" 0.167 mg/L 0.1 0.16654 06/15/04" 15:03" 245116" K_766 2.96 mg/L 0.2 2.9600 06/15/04 14:50:04											
245116" K_766 2.96 mg/L 0.2 2.9600 06/15/04 14:50:04											
$_{0}-$	245116"	La3988"		U	mg/L	0.005				06/15/04"	

lovetom id	Tolom	rocult	aual	Lunito	rl	+1	Iron	lug/ml	Idata	Itimo
system id	elem	result	qual	units	rl	tv	rec	ug/ml	date	time
245116"	Li670	0.100		ma/l	0.01			0.0005	06/15/04	14:50:04
245116"	Mg2790"	0.640		mg/L	0.01			0.64045		15:03"
245116"	Mn2576"	0.005	11	mg/L	0.005			0.00119		15:03"
245116"	Mo2020"	0.003		mg/L	0.003			0.00519		15:03"
		85.3	0	mg/L	0.01			+	06/15/04	14:50:04
245116"	Na589		1.1	mg/L				0.00020		15:03"
245116"	Ni2316"	0.01	0	mg/L	0.01				06/15/04"	
245116"	P_1782"	0.039	1.1	mg/L	0.02			0.03913	06/15/04"	15:03"
245116"	Pb220"	0.005		mg/L	0.005			0.00125	06/15/04"	15:03"
245116"	Pd3404"	0.005	U	mg/L	0.005			0.00003	06/15/04"	15:03"
245116"	S_1820"	7.57		mg/L	0.05			7.56595	06/15/04"	15:03"
245116"	Sb2068"	0.02		mg/L	0.02			0.00438	06/15/04"	15:03"
245116"	Se196"	0.015	U	mg/L	0.015			0.00833	06/15/04"	15:03"
245116"	Si2881"	27.8		mg/L	0.05			27.83803	06/15/04"	15:03"
245116"	Sn1899"	0.027		mg/L	0.01			0.02658	06/15/04"	15:03"
245116"	Sr4215"	0.036		mg/L	0.005			0.03553	06/15/04"	15:03"
245116"	Th2837"	0.015		mg/L	0.015			0.00044	06/15/04"	15:03"
245116"	Ti3349"	0.005		mg/L	0.005			0.00430	06/15/04"	15:03"
245116"	TI1908"	0.02		mg/L	0.02			-0.02628	06/15/04"	15:03"
245116"	U_4090"	0.1	U	mg/L	0.1			0.01155	06/15/04"	15:03"
245116"	V_2924"	0.005		mg/L	0.005			0.00360	06/15/04"	15:03"
245116"	W_2079"	0.01	U	mg/L	0.01			-0.00520	06/15/04"	15:03"
245116"	Y_3710"	0.005	U	mg/L	0.005			0.00011	06/15/04"	15:03"
245116"	Zn2062"	0.005	د	mg/L	0.005			0.00210	06/15/04"	15:03"
245116"	Zr3496"	0.005	U	mg/L	0.005			0.00120	06/15/04"	15:03"
lcsw-F15W1"	Ag3280"	0.050		mg/L	0.005	0.05	101.0%	0.05048	06/15/04"	12:39"
lcsw-F15W1"	Al3082"	1.91		mg/L	0.05	2	95.4%	1.90805	06/15/04"	12:39"
lcsw-F15W1"	As1890"	1.99		mg/L	0.005	2	99.7%	1.99471	06/15/04"	12:39"
lcsw-F15W1"	B_2496"	0.05	U	mg/L	0.05			0.00225	06/15/04"	12:39"
lcsw-F15W1"	Ba4934"	2.01		mg/L	0.005	2	100.6%	2.01247	06/15/04"	12:39"
lcsw-F15W1"	Be3130"	0.049		mg/L	0.005	0.05	98.8%	0.04939	06/15/04"	12:39"
lcsw-F15W1"	Bi2230"	0.01	U	mg/L	0.01			0.00485	06/15/04"	12:39"
lcsw-F15W1"	Ca3179"	21.0		mg/L	0.05	20	104.8%	20.95761	06/15/04"	12:39"
lcsw-F15W1"	Cd2265"	0.050		mg/L	0.005	0.05	99.3%	0.04966	06/15/04"	12:39"
lcsw-F15W1"	Co2286"	0.499		mg/L	0.005	0.5	99.8%		06/15/04"	12:39"
lcsw-F15W1"	Cr2677"	0.208		mg/L	0.015	0.2	104.2%	0.20842	06/15/04"	12:39"
lcsw-F15W1"	Cu3247"	0.252		mg/L	0.005	0.25	100.8%	0.25189	06/15/04"	12:39"
lcsw-F15W1"	Fe2714"	1.14		mg/L	0.1	1	114.1%	1.14084	06/15/04"	12:39"
lcsw-F15E2	K 766	19.2		mg/L	0.2	20	95.8%		06/15/04	13:15:21
lcsw-F15W1"	La3988"	0.005	U	mg/L	0.005			0.00026		12:39"
lcsw-F15E2	Li670	0.01		mg/L	0.01				06/15/04	13:15:21
lcsw-F15W1"	Mg2790"	20.7		mg/L	0.05	20	103.4%	20.68613		12:39"
lcsw-F15W1"	Mn2576"	0.504		mg/L	0.005	0.5	100.7%	0.50362	06/15/04"	12:39"
lcsw-F15W1"	Mo2020"	0.01	11	mg/L	0.01	0.0	1001770	0.00089		12:39"
lcsw-F15E2	Na589	19.1		mg/L	0.2	20	95.3%		06/15/04	13:15:21
lcsw-F15W1"	Ni2316"	0.498		mg/L	0.01	0.5	99.6%	0.49792	06/15/04"	12:39"
lcsw-F15W1"	P_1782"	0.498	ıı l	mg/L	0.02	0.5	33.370	-0.00113	06/15/04"	12:39"
lcsw-F15W1"	Pb220"	0.02	-	mg/L	0.005	0.5	99.4%	0.49702	06/15/04"	12:39"
lcsw-F15W1"	Pd3404"	0.005	П	mg/L	0.005	0.5	JJ. 4 /0	0.00077	06/15/04"	12:39"
lcsw-F15W1"	S_1820"	0.005		mg/L	0.005			0.00077	06/15/04"	12:39"
lcsw-F15W1"	Sb2068"	0.490	-	mg/L	0.03	0.5	97.9%	0.48964	06/15/04"	12:39"
lcsw-F15W1"	Se196"	2.04		mg/L	0.02	2	101.8%	2.03529	06/15/04"	12:39"
lcsw-F15W1"	Si2881"	0.050	11	mg/L	0.015		101.076	0.02767	06/15/04"	12:39"
		0.050			0.03			-0.00142	06/15/04"	12:39"
lcsw-F15W1"	Sn1899"			mg/L						
lcsw-F15W1"	Sr4215"	0.005	U	mg/L	0.005		i	0.00074	06/15/04"	12:39"

Div 20 to#040415-2, 040521-6 06002.01.141

system id	elem	result	qual	units	rl	tv	rec	ug/ml	date	time
lcsw-F15W1"	Th2837"	0.015	U	mg/L	0.015			-0.01280	06/15/04"	12:39"
lcsw-F15W1"	Ti3349"	0.005	U	mg/L	0.005			0.00015	06/15/04"	12:39"
lcsw-F15W1"	TI1908"	2.06		mg/L	0.02	2	102.9%	2.05851	06/15/04"	12:39"
lcsw-F15W1"	U_4090"	0.1	U	mg/L	0.1			-0.00082	06/15/04"	12:39"
lcsw-F15W1"	V_2924"	0.498		mg/L	0.005	0.5	99.6%	0.49807	06/15/04"	12:39"
lcsw-F15W1"	W_2079"	0.01	U	mg/L	0.01			-0.00013	06/15/04"	12:39"
lcsw-F15W1"	Y_3710"	0.005	U	mg/L	0.005			-0.00012	06/15/04"	12:39"
lcsw-F15W1"	Zn2062"	0.497		mg/L	0.005	0.5	99.4%	0.49694	06/15/04"	12:39"
lcsw-F15W1"	Zr3496"	0.005	U	mg/L	0.005			0.00027	06/15/04"	12:39"
pbw-F15E1	Ag3280"	0.005	J	mg/L	0.005			0.00078	06/15/04"	12:34"
pbw-F15E1	Al3082"	0.05	U	mg/L	0.05			0.00668	06/15/04"	12:34"
pbw-F15E1	As1890"	0.005	U	mg/L	0.005			-0.00197	06/15/04"	12:34"
pbw-F15E1	B_2496"	0.05	C	mg/L	0.05			0.00335	06/15/04"	12:34"
pbw-F15E1	Ba4934"	0.005	C	mg/L	0.005			0.00005	06/15/04"	12:34"
pbw-F15E1	Be3130"	0.005	C	mg/L	0.005			0.00000	06/15/04"	12:34"
pbw-F15E1	Bi2230"	0.01	U	mg/L	0.01			0.00318	06/15/04"	12:34"
pbw-F15E1	Ca3179"	0.05	U	mg/L	0.05			0.01301	06/15/04"	12:34"
pbw-F15E1	Cd2265"	0.005	U	mg/L	0.005			0.00051	06/15/04"	12:34"
pbw-F15E1	Co2286"	0.005		mg/L	0.005			0.00090	06/15/04"	12:34"
pbw-F15E1	Cr2677"	0.015		mg/L	0.015			0.01298	06/15/04"	12:34"
pbw-F15E1	Cu3247"	0.005	U	mg/L	0.005			0.00011	06/15/04"	12:34"
pbw-F15E1	Fe2714"	0.1	U	mg/L	0.1			0.09873	06/15/04"	12:34"
pbw-F15E2	K_766	0.2	U	mg/L	0.2			-0.0828	06/15/04	13:12:17
pbw-F15E1	La3988"	0.005	U	mg/L	0.005			0.00112	06/15/04"	12:34"
pbw-F15E2	Li670	0.01	U	mg/L	0.01			0.0006	06/15/04	13:12:17
pbw-F15E1	Mg2790"	0.05	U	mg/L	0.05			0.00807	06/15/04"	12:34"
pbw-F15E1	Mn2576"	0.005	Ü	mg/L	0.005			0.00133	06/15/04"	12:34"
pbw-F15E1	Mo2020"	0.01	U	mg/L	0.01			0.00206	06/15/04"	12:34"
pbw-F15E2	Na589	0.2	U	mg/L	0.2			-0.0511	06/15/04	13:12:17
pbw-F15E1	Ni2316"	0.01	U	mg/L	0.01			0.00815	06/15/04"	12:34"
pbw-F15E1	P_1782"	0.02	U	mg/L	0.02			0.00398	06/15/04"	12:34"
pbw-F15E1	Pb220"	0.005	U	mg/L	0.005			0.00006	06/15/04"	12:34"
pbw-F15E1	Pd3404"	0.005	C	mg/L	0.005			0.00414	06/15/04"	12:34"
pbw-F15E1	S_1820"	0.05	U	mg/L	0.05			0.00535	06/15/04"	12:34"
pbw-F15E1	Sb2068"	0.02	C	mg/L	0.02			0.00509	06/15/04"	12:34"
pbw-F15E1	Se196"	0.015	U	mg/L	0.015			-0.00115	06/15/04"	12:34"
pbw-F15E1	Si2881"	0.050	U	mg/L	0.05			0.02544	06/15/04"	12:34"
pbw-F15E1	Sn1899"	0.01	U	mg/L	0.01			-0.00098	06/15/04"	12:34"
pbw-F15E1	Sr4215"	0.005	U	mg/L	0.005			0.00005	06/15/04"	12:34"
pbw-F15E1	Th2837"	0.015		mg/L	0.015			-0.00158	06/15/04"	12:34"
pbw-F15E1	Ti3349"	0.005		mg/L	0.005			-0.00003	06/15/04"	12:34"
pbw-F15E1	TI1908"	0.02		mg/L	0.02			0.00076	06/15/04"	12:34"
pbw-F15E1	U_4090"	0.1		mg/L	0.1			0.04867	06/15/04"	12:34"
pbw-F15E1	V 2924"	0.005		mg/L	0.005			0.00034	06/15/04"	12:34"
pbw-F15E1	W_2079"	0.01		mg/L	0.01			0.00027	06/15/04"	12:34"
pbw-F15E1	Y_3710"	0.005		mg/L	0.005			0.00000	06/15/04"	12:34"
pbw-F15E1	Zn2062"	0.005		mg/L	0.005			0.00047	06/15/04"	12:34"
pbw-F15E1	Zr3496"	0.005		mg/L	0.005			0.00077	06/15/04"	12:34"

TRACE METALS PREPARATORY LABORATORY DIGESTION LOG

SOUTHWEST RESEARCH INSTITUTE SAN ANTONIO, TEXAS 78228

BOOK/PAGE: 56 214

CLIENT(S):	Div. 2	20							010075
TASK ORDE	ER(S): 0404/	5-2/040	521-	چ_SD	G(S):_	243	222	/24	15/08
	10(S): 0600				. ,				
	005A3050B			3020A	7760A	774	0A	HCIO4_	H₂SO₄ Sb
Microwave_	FusionTef	lonRock_	_OTHE	R Str.	Aliga	ct	(I)	rale:	#2)
	aterSoilB								
1	NT: GFAAICP								
ACID INORG	G #: HNO₃# -X	<u>.</u> ₩HCI#_	X	<u>X</u> H₂SO₄#		HCI	10 ₄ #		HF#,
INTERNAL S	STD: Sc @ 10 PP	M <u>.∠</u> Be @ 10	PPM_	_SOURCE:_	1/_	NORG:	# 02-10	01-02 EX	(P: 7-15-04 AMT: 50pl
Oven/Hotpla	te ID: N/A	Tempera	ture (°C)						
SAM	IPLE IDENTIFICA	ATION	рН	WT (g)	I.V.	(mL)	F.V	. (mL)	
	FISEI				5		3		
	F15E; *								
15/64 245 2	243222								
	1 23r	- 6 lat					1		
	237 KE	424/15/00						-	
	24 _r				<u> </u>		5		
	25r						+-+		<u> </u>
	25dr 26r						+		
	271				\vdash		+		<u> </u>
	78/								
	291								
	30 r								
	31r								
	31 Sc#								
V	32/						-		<u> </u>
2451	108								
	dy								
	Sr*								
	110/								
	Wr						-		
	1120				1				
	1131								
	1146								
	115r								
	1168				\		1		
TSOM Sp	sike -1(Sy	1 ex, \$ 4	306,00	10/04)					
20 pl 1	CA 6-16 Sp.	ex, # 45		WA.3/05)	1	1		1 1	LOCATION:
* RLB 02-	042-02	190 HNOF	3,58	o HCl.	(PBU	ILCSW	on	7	NA
PREPARED E	BY: Kely	U { O <		tager or	DATE:	4-	15-0	4	
REVIEWED B	~ //	.002			DATE:		5-26	· ·	
		<u></u>			DATE	672			
DISPOSAL IN	IT/DATE/LOC: _								FRM-191 (Rev 2/Mar 03)

TRACE METALS PREPARATORY LABORATORY DIGESTION LOG

SOUTHWEST RESEARCH INSTITUTE SAN ANTONIO, TEXAS 78228

BOOK / BACE	. 4	5	6	21	5
BOOK / PAGE:		$\overline{}$	v	<u>_</u>	•

			1000	,	010076
CLIENT(S): <u>D1V. 20</u> TASK ORDER(S): <u>0 40415-2 / 0 40</u>	C= . 1		(Spectro	/	OTOLO
		SD0	G(S): <u>24 32</u>	22/245	708
PROJECT NO(S): 06002.01.141					
METHOD:3005A3050B3050B-7.5)AHClO₄_	H₂SO₄ Sb
MicrowaveFusionTeflonRock_					
MATRIX: Water Soil Biota Solid					
INSTRUMENT: GFAAICP_VICP-MS_					
ACID INORG #: HNO ₃ ## ACIH_ INTERNAL STD: Sc @ 10 PPMBe @ 10	**	H ₂ SO ₄ #	HCI	0 ₄ #	HF#
			UINORG	02-101-62 EX	(P: 7/15/04 AMT: 50/L)
Oven/Hotplate ID: <u> </u>	ture (°C):				
SAMPLE IDENTIFICATION	рН	WT (g)	I.V. (mL)	F.V. (mL)	
PBW-FISEL			5	5	
LCSW- FISEZ #			1	1	
243222					
23					
24			· · · · ·		
25			 		
26					
27					
29					
30					<u> </u>
30d					
31					
32					
J 32d 5 * 48 6/15/0	1				
245108					
1 d					
S &					
(09					
110					
10					
112					
1/3					
114					
11/5					
J 116				Ψ .	
* Soul Spike-1 (Spex, +	1(2)	(6.44	10/04)		
					LOCATION:
70 1(AL-1 (Spex, ## RLB 02-042-02 19, HNO	4 (3)	HCL (P	sw/lcsw	1	N/A
			•	216-04	
PREPARED BY: Plan Willy			DATE: 6	1500	
DISPOSAL INT/DATE/LOC:			JAIE:	13.04	
DISPOSAL IN I/DATE/LUC:					

CLP SPK SOLW @ ILMO4.1 GFAA LUL

CLP Spiking Solution @ GFAA LVL ILMO 4.1

OLI O	OLI Opining Coldion & CLIVIC TELLIO TIT										
Elem.	Source	Inorg #	Exp.	Init.Conc.	Amt.Added		Final Conc.	FV			
			Date	(ppm)	(uL)		(ppm)	(mL)			
As	IV	4433	02/0105	1000	400		4	100			
Cd	IV	4467	03/01/05	1000	50		0.5	100			
Pb	IV	4313	11/01/04	1000	200		2	100			
Sb	IV	4464	03/01/05	1000	1000		10	100			
Se	IV	4152	07/01/04	1000	100		1	100			
TI	IV	4435	02/01/05	1000	500		5	100			

Prepped by:JWILKS

ISS prepped in 1%HNO3, Fisher, Inorg # . #4580

Date: 06/1404 Exp Date: 07/01/04

ISS-02-101-02 1000PPM Sandium Solution IV Jaorg # 4262 Exf: 10-1-04 JuitiAl Com: 10000/pm Amount Added 10ml / Final Conc. 1000pm / FV 100ml

Piepped in 1% Anos Fisher, Inor # 4580 DC 6-14-04

155-02-101-03 ippin M2E #3 for Menter Copp. MDL. 10/6 HNUS # 4582 elem. Source ICH exp. FC Amt. added FC F.V.

MEE#3 Spex H 4366 12130104 10ppm Iml 1-cppm 10ml.

prep. dute 6-22-04 exp. 9-22-04. Kelf EO = 6/22/04

155-02-101-04 1ppm te prepid 4/18/04
Added 100 LL of 1000 ppm te #4435 exp2/05
to 100 ml vol flash a brought up to mark W/ 11 HN03 # 4582 corduña 6/22/04

15502-101-05 10 ppb te prept 4/18/04 exp2/15
Added Ime I ppm te (15502-101-04) to 100 ml
NOW flash a brought up to mark w/ 11/ HNO3#4582.
Covarina 4/22/04

Trace Metals Reagent Logbook

010078

SOUTHWEST RESEARCH INSTITUTE SAN ANTONIO, TEXAS 78228

BOOK / PAGE: 02 042

Reagent I.D.:	Preparation Description:	Prep Date:	Exp Date:	Initials:
RLB02-042-01	50% HN 03 # 4562	6-10-04		KE
	50% HCL # 4586))	
	Dilute Some Each to 1.02		, l	4
RLB-02-042-02	190 HN63 #4580 (IM)	6-14-04	9-14-04	KE
	540 HCL # 4586 (Sml)		1	
	STU HCL # 4586 (Sml) dilute to 100% ml Di-water		L	1
	,			
R1B-02-042-03	EFBA1 TCLP ~ 1311			
	66.8 a NaOH # 4207, exp. 8/13			
	148,2ml Acetic Acid # 0707 049.44	50 6-22-04	9-22-04	KE
	dilute to 26L Di-water	6-22-04	9-22-04	KE
				····
				· .
			·	

BOOK/ PAGE 07 300

010079

SOUTHWEST RESEARCH INSTITUTE®

6220 Culebra Rd San Antonio, Texas 78228

TJA_2 TRACE ICP DAILY LOG

ANALYST	1		DATE	6-15-A		
As 189.042 Prof	ile Line			As Intensity: 387.51	4	
PEAK POSITION VERNIER POSITION				STDs PREP DATE: CLP_STD1_S0 CLP_STD2_S0		
QC PREP DATE			1	CLP_STD3_SC		
	04821		1	CLP_STD4_S(
	04602			CLP_STD5_SC		
ICSA	A]	CLP_STD6_SC	04KZ5	
ICSAB]	BLK_S(04EZ1	
COMMENTS	FILE	CLIENT	TO#	PROJECT NO.	METHOD	
B4CA15Z	Y04 JUN	Div 20	CACA15-2	066201,141	SURI SEZ	14
B 4061010	104 30.0	Suffel	10.010.0	06355.24.06	601UB 57 11	
B 406111		Lestin		05827.04.006	57 11	10
			1			
		1-6	15-04			
		1				
6						· .
	<u> </u>					
COMMENTS:						
MAINTENANC	E:					
REVIEWED BY	: ()	rdura		DATE:	4/22/04	

FRM-223 (Rev 1/Apr 03)

Page 1 of 2

BOOK/ PAGE 18 212

SOUTHWEST RESEARCH INSTITUTE

6220 Culebra Rd San Antonio, Texas 78228

010080

SPECTRO ICP DAILY LOG

ANALYSTT	· ()	Or LOTIK	DATE L	-15-04		
	2		5/112			
POWER:	700		FLOWS:	Aux 40 Coolant 60 Mass Flow Contro	ller 1054	
CURRENT	PROPOS	SED	7			
CURRENT		SEU	1		9	
4991	4997		Na			
4765	4765		Fe			
4907	4909		Sr			.
				CLP STD1 SC	04 for 04	EZS
QC PREP DATE:				CLP_STD2_SC	6 2	OH 675-04
	64621		1	CLP_STD3_SC		1
		0	1	CLP_STD4_SC	1/.	1
CRI	11 1 (1)		-			1
ICSA			4	CLP_STD5_SC		
ICSAB				BLK_SC	4621	j
FILE	CLIENT	TO#	PROJECT NO.	METHOD	PREP PAGE	
040615	Divito	040415-2	66007.01.141	LIKNA	56215	
						1
	<u> </u>	2				1
		1	15-A			1
		1/1	115			†
		W C			1	1
				 	1	-
						į
						1
]
						İ
COMMENTS						
COMMENTS:						-
					····	-
						-
MAINTENANCE:						1
Classed Tassb.	V50	O	THER:			
Cleaned Torch: Changed Pump Tub						
Cleaned Optics:						
Polished Optics:	YES					_
						~ -
					1	1
REVIEWED BY:	Orduna			DATE: 7/	2/04	

ICP Calibration Blank/ICB/CCB Solution

ICF Campiation Statistics	000 00.00.0.	•
ID: BLK- CA E Z \ Date Prepared: 5-Z1-04	Propored Bys	
	Frepared by.	010081
Make up as needed in 1000ml volumetric flask.		
Added 10 ml HNO3 INORG #: 4561		
Added 50 ml HCL INORG #: 4554	VIT \ EVD Date:	10-1-04 INODG #: 1713-
Added 1000ul of 10000ppm Sc (INORG. VEI	VI.) EXP. Date:	70 1 01 INONG #. 4 26 -
ICP Calibration Blank/ICB/	CCB Solution	
ID: BLK- O4 FZ 1		
Date Prepared: 6-21-04	Prepared By:	D1+
Make up as needed in 1000ml volumetric flask.		
Added 10 ml HNO3 INORG #:_ 4-5-% 2		
Added 50 ml HCL INORG #: 4556		10-1-04 (1)-04
Added 50 ml HCL INORG #: 4556 Added 1000ul of 10000ppm Sc (INORG. VEI	NT.) EXP. Date:	4262 OF INORG #: 4262
ICP Calibration Blank/ICB/	CCB Solution	
	oob columon	
ID: BLK-	Proposed Pvr	
	Frepared by.	en en en en en en en en en en en en en e
Make up as needed in 1000ml volumetric flask.		
Added 10 ml HNO3 INORG #:		
Added 50 ml HCL INORG #: Added 1000ul of 10000ppm Sc (INORG. VEI	VIT / EYP Date:	INORG #:
Added 1000ul of 10000ppill Sc (INChd. VEI	VI.) LAF. Date.	
ICP Calibration Blank/ICB/	CCB Solution	
ID: BLK-		
Date Prepared:	Prepared By:_	·
Make up as needed in 1000ml volumetric flask.		
Added 10 ml HNO3 INORG #:		
Added 50 ml HCL INORG #:		
Added 1000ul of 10000ppm Sc (INORG. VEI	NT.) EXP. Date:	INORG #:

ICP ICV/CCV SOLUTION

010082

CCV-04E21

Date Prepared:_	6-21-04	Prepared By:	D.L	

HN03 INORG #: 4554 HCI INORG #: 4554

Make up as needed in 1000ml volumetric flask in 1% HNO3 AND 5% HCl.

Element	Std Conc	Amt added	Check	Source	Inorg #	Stock Conc	Exp Date
	(ppm)					(ppm)	
Sc	10	1ml		INORGVENT	4262	10000	10-1-04
В	5	5ml		SPEX	4564	1000	4-30-05
Li	5	5ml		SPEX	4439	1000	1-30-05
Мо	5	5ml		SPEX	4440	1000	1-30-05
Р	5	5ml		SPEX	4307	1000	10-30-04
Si	5	5ml		SPEX	4232	1000	8-36-A
Ti	5	5ml		SPEX	4234	1000	8-30-04
Sr	5	5ml		SPEX	4308	1000	16-30-4
Sn	5	5ml	7	SPEX	4565	1000	4-30-05
Bi	5	5ml	/	SPEX	4475	1000	2-28.05
La	5	5ml		SPEX	4438	1000	4-30-05
Υ	5	5ml		SPEX	444 \	1000 👫	114-30-05
Pd	1	1ml		SPEX	4417	1000	1-15-05
S	1	1ml		SPEX	4140	1000	6-30-A
Th	1	1ml		SPEX	4233	1000	8-30-0
U	1	1mi		SPEX	4142	1000	6-30-A
W	1	1ml	/	SPEX	4212	1000	8-15-04
Zr	5	5ml		SPEX	4566	1000	4-30-05
Na	10	1ml		SPEX	4443	10000	1-30-05
ICV-2A	vary	10ml	/	SPEX	9328	mix	11-30-64
ICV-2B	vary	1ml		SPEX	4329	mix	11-30-64
ICV-2C	vary	10ml		SPEX	4330	mix	11-30-4

Expiration Date: 6-30-A

ICP Calibration Standards

010083

Date Prepared: 5-25-c4	Prepared By:
• -	_HCI INORG #:

Make up as needed in 500 ml volumetric flasks in 1% HNO3 and 5% HCl.

Prepared	Standard	Element	Std Conc	Added	Check	Source	INORG #	Stock Conc	Exp Date	ļ
	Name		(ppm)	ml			<u> </u>	(ppm)		ł
							 	10000	l c . x	1
	STD1-	Al	50	2.50	1	INORVENT	4220	10000	9-1-04	
,	2	Ca	50	2,50	•	INORVENT	4436	10000	2-1-5	
/	x'	Fe	50	2,50)	INORVENT	4470	10000	3-1-05	
15	\S\\	К	50	2.50	سن	INORVENT	4320	10000	12-1-4	
KEZ	الريكار	Mg	25	1,25	<u>'</u>	INORVENT	4204	10000	4-1-04	1
r.	16° N	Na	50	2.50		INORVENT	4205	10000	40-1-04	ļ
,	6	Li	10	5.00	-	INORVENT	4149	1000	7-1-04	ļ
	-	Sc	10	0.500	ن	INORVENT	4262	10000	10-1-04	1
						<u> </u>				ļ
	STD2-	Ва	10	5.00	٧	INORVENT	4465	1000	3-1-65	ابد ا
HE25	STD2-	Be	5	2.50	-	INORVENT	406Z	1000	6-1-045	P
. 27	1 6.0°C	Cr	10	5.00	i/	INORVENT	4318	1000	12-1-04	-
A.	Ni	Cu	10	5.00	i/	INORVENT	4469	1000	3-1-05	l
U	1 5 N	Ni	10	5.00	/	INORVENT	4472	1000	3-1-05	l
	vi	Sc	10	0.500	V	INORVENT	4762	10000	10-1-04-	
	1						 	4600	2.1	
	STD3-	Cd	10	5.00	i	INORVENT	4467	1000	3-1-05	ł
OX 125	1 20	Co	10	5.00		INORVENT	4468	1000	3-1-05	ł
15	1 15	Mn	10	5.00		INORVENT	4434	1000	2-1-25	
100	4 6,000	V	10	5.00		INORVENT	4321	1000	12-1-04	ł
X	6.6	Zn	10	5.00		INORVENT	435	1000	10-1-04	1
U	1 7 6' Y	Sc	10	0.500		INORVENT	4 262	10000	10-1.0+	ł
						INODY/ENT	A-727	1000	9-1-04	1
	STD4- 5	Ag	2	1,00	1	INORVENT	4222	1000	7-1-05	1
		As	10	5.00	7	INORVENT	4433	1000	11.1.0	ł
öxers	1 1	Pb	10	5.00		INORVENT	4313	1000	31-05	ł
, V	10 15	Sb	10	5.00	1	INORVENT	4964	1000	7-1-04	1
<i>X</i>	1 /2 /2	Se	10	5.00		INORVENT	4152	1000	7-1-05	1
O	5.05.00	TL	10	5.00	1	INORVENT	4435	1000	1	1
		Sc	10	0.500		INORVENT	4262	10000	10124	5.4
	3					INODVENE	11251	1000	8-104	1
	STD5-	В	10	5.00	U	INORVENT	4201	1000	3-1-05	ł
	501	Мо	10	5.00	I V	INORVENT	4471	1000	6-1-04	ر د د
,		Р	10	5.00	$ U_{f} $	INORVENT	4049	1000	2-1-05	Γ.
1	1 3	Si	10	5.00	1	INORVENT	4437	1000	12-1-04	1
ح.1 .	Show Show	Ti	10	5.00	1	INORVENT	4332	1000	7-104	1
\\\\\	1 19 35	Sr	10	5.00	0	INORVENT		1000	4-1-05	†
X.	, , , , ,	Sn	10	5.00	V	INORVENT	4512	1000	8-1-04	1
Ü	١ ٧	Bi	5	2.50	0	INORVENT	4200	10000	10-1-04	1
	رار ماند	Sc	10	0.500	<i>''</i>	INORVENT	4262	10000	101:01	1
	مان اخ	d				INOR! (EVE	+	1000	9-1-04	1
	STD6-	La	10	5,00		INORVENT	4221	1000	8-1-4	1
	1 20	1144	1 1	0.05		INORVENT	4205	1000	3-1-05	1
	1 1/2	Pd	10	5.00	<u> </u>	INORVENT	4477	1000	12-1-04	1
/	IN X	S	10	5.00		INORVENT	437	1000	11-1-04	1
44	1 70	Th	10	5.00		INORVENT	4283	1000		:
(kb'	1 45	U	10	5.00	9	INORVENT	4443		3-1-65	1
Atis	<i>'</i> '	W	5	2.50		INORVENT	4203	1000	8-1-04	†
V		Y	10	5.00		INORVENT	4513	1000		4
		Zr	10	5.00	/	INORVENT	9442	1000	1 0 1	
		SC	10	0.500		INORVENT	4262	10000	10-1-54	_

Expiration Dates:

STD1: 7-1-64

STD4: 7.1-A

STD2: 6-1-4

STD5: 6-1-04

STD3: 8-24-A

STD6: 8-1-A

FRM-299 (Rev 0/May 02) ICP Calibration Standards

_____ HCI INORG #:___

010084

Date Prepared:	6-2	-01	Pı
----------------	-----	-----	----

HNO3 INORG #: 4567

_ Prepared By:

4557

Make up as needed in 500 ml volumetric flasks in 1% HNO3 and 5% HCl.

Prepared	Standard	Element	Std Conc	Added	Check	Source	INORG #	Stock Conc	Exp Date	1
	Name		(ppm)	ml				(ppm)]
										1
										4
	STD1-	Al	50	2.50		INORVENT		10000	<u> </u>	1
		Ca	50	2.50		INORVENT		10000		1
		Fe	50	1 2:58	`	TNORVENT		10000		1
	1	K	50//	6 2.50		INORVENT		10000		1
		Mg	285	1.25		INORVENT		10000		1
	_	Na	50	2.50		INORVENT		10000		_
		<u>Li</u>	10	5.00		INORVENT		1000		1
		Sc	10	0.500		INORVENT		10000		4
						11100115115	LA 4 7 2	1000	9 1 1	1
	STD2-	Ba	10	5.00		INORVENT	4465	1000	3-1-05	-
20	7.	Be	5	2.50	1	INORVENT	4592	1000	6-1-65	-
-1-	1 x CO	Cr	10	5.00		INORVENT	4318	1000	12-1-04	1
1st	of for	Cu	10	5.00		INORVENT	4469	1000	3-1-65	ļ
		Ni	10	5.00	$\overline{\nu}$	INORVENT	4472	1000	3-1-08	1
		Sc	10	0.500		INORVENT	4262	10000	10-1-04	1
	STD3-		10	E 00		INODVENT	+	1000	 	1
	3103-	Cd	10	5.00		INORVENT	-	1000		1
		Co		5.00			-	1000	ļ	1
		Mn	10	5.00 5.00		INORVENT INORVENT	 	1000	 	-
		Zn	10	5.00		INORVENT		1000		1
		Sc	10	0,500		INORVENT		10000		ł
		30		0.500	$-\!\!\!/$	INORVENT		10000		1
	STD4-	Ag	2.3	1.00		INORVENT	 	1000		
	0104	As .	7. 90	5.00		INORVENT		1000		1
		Pb h	10	5.00		INORVENT		1000		1
		86	10	5.00		INORVENT		1000		
		Se	10	5.00		INORVENT		1000		
		TL	10	5.00		INORVENT		1000		L
		Sc	10	0.500		INORVENT		10000		
							 			
	STD5-	В	10	5.00	~	INORVENT	4201	1000	8-1-04	1
	1.	Мо	10	5.00		INORVENT	4201	1000	3-1-05	
	1	Р	10	5.00	1-	INORVENT	4593	1000	6-1-05	
٨	1002	Si	10	5.00		INORVENT	4437	1000	2-1-05	
04	Agoz	Ti	10	5.00	_	INORVENT	4332	1000	12-1-04	
6 ·E		Sr	10	5.00		INORVENT	4154	1000	7-1-04	
-		Sn	10	5.00		INORVENT	4512	1000	4-1-04	4-1
		Bi	5	2.50		INORVENT	4200	1000	7-1-04	"
		Sc	10	0.500		INORVENT	4262	10000	10-1-04	
						1110511515		1000		
	STD6-	<u>La</u>	10	5.00		INORVENT		1000		
		Na	1	0.05		INORVENT		10000		
		Pd	10	5.00		INORVENT		1000		
		S	10	5.00		INORVENT		1000		
		Th	10	5.00	2.04	INORVENT	 	1000		
		U	10	5 60		INORVENT	ļ	1000		}
		W		2.50		INORVENT		1000		
		Υ	10	5.00		INORVENT		1000		
		Zr	10	5.00		INORVENT		1000		
		SC	10	0.500		INORVENT		10000		l

Expiration Dates:

STD1: ----

STD4: ~~

STD2: 8-1-04

STD5: 7-1-04

STD3:

STD6: ----

FRM-299 (Rev 0/May 02)

1	77	ANAL	YSIS

	PROJ. NO.				MATRIX	LOGBK PG
060C	5201.141	Divzo	040415-2	6-15-04	watel	56 215
		·				
	INSTRUM	ENT: Sp	recto	FILl	ENAME: 04	70615
	INICITALIM	ENT DI .				

eep last result visible enabled ...

tarting run ...

reating high priority queue entries ...

ACKGROUND CORRECTED INTENSITIES

dentity 1 : BLK_SC Identity 2 : Type : STD

eight: 1.0000 Volume: 1.00 Printed: 12:45:32 PM June 15, 2004

	K_766	L1670	Na589	Sc361
# i	14.0	-9.5	46.5	4298.0
# 2	1.0	-12.5	37.5	4246.0
ean	7.5	-11.0	42.0	4272.0
Đ	9.2	2.1	6.4	36.8
RSD	122.6	19.3	15.2	0.9

NTENSITIES

dentity 1 : BLK_SC Identity 2 : Type : STD

eight: 1.0000 Volume: 1.00 Printed: 12:45:32 PK June 15, 2004

	K_766	L1670	Na589	Sc361
# i	ື	-0.0	Ø. Ø	4298.0
# 2	0.0	-0.0	0.0	4246.0
ean	0.0	-0.0	0.0	4272.0
D	0.0	0.0	Ø. Ø	36.8
RSD	122.3	20.1	14.3	Ø.9

JJ1 24/04 5-15-04 5-4 6-15-04 105-404

ACKGROUND CORRECTED INTENSITIES

eight: 1.0000 Yolume: 1.00 Printed: 12:48:40 PM June 15, 2004

K_766 L1670 Na589 # 1 4829.5 49728.0 28336.5 # 2 4825.5 49500.0 28229.5

ean 4827.5 49614.0 28283.0 D 2.8 161.2 75.7 RSD 0.1 0.3 0.3

NTENSITIES

eight: 1.0000 Volume: 1.00 Printed: 12:48:40 FM June 15, 2004

L1670 Na589 K 766 # 1 1.1 11.6 6.6 11.6 6.6 i.i i.i 11.6 6.6 ean Ø. Ø Ø. Ø D Ø. Ø RSD 0.1 Ø. i 0.1

ACRGROUND CORRECTED INTENSITIES

eight : 1.0000 Volume : 1.00 Printed : 12:51:48 PM June 15, 2004

K_766 L1670 Na589 Sc Sc361 # i 1881.0 23766.0 16334.5 4316.5 4316.5 4267.5 1863.0 23661.0 16333.5 4267.5 1872.0 23713.5 16334.0 4292.0 4292.0 ean 0.7 34.6 74.2 34.6 Đ 12.7 RSD 0.7 ũ.3 ହି. ହି Ø. 8 Ø. 8

PPARENT CONCENTRATIONS

dentity 1 : CLP_CCV_SC Identity 2 : Type : CV

eight: 1.0000 Volume: 1.00 Printed: 12:51:48 PM June 15, 2004

	K_766	L1670	Na589	Sc	Sc361
	mqq	ppm	mqq		mąą
# i	19.2673	4.7503	28.5975	4316.500 H	101.0433
# 2	19.3022	4.7836	28. 9250	4267.500	99.8945
ean	19.2847	4.7669	28.7612	4292.000 H	100.4689
Đ	0.0247	0.0235	0.2315	34.648	0.8123
RSD	Ø.1279	0.4940	Ø.8 Ø 50	0.807	0.8085

hecking calibration verification ...

ACHGROUND CORRECTED INTENSITIES

dentity 1 : Calibration blank Identity 2 : Type : CB

eiaht : 1.0000 Volume : 1.00 Frinted : 12:56:04 PM June 15, 2004

Sc361 Na589 K 766 L1670 Sc 23.5 4319.0 -2.0 # 1 16.0 4319.0 a a ೧೧ ⊏ ಚರ್ಣದ ಎ ಚರ್ಮದ ಮ 8 8

ean	12.0	-1.0	22.0	4294.5	4294.5
D	5.7	1.4	2.1	34.6	34.6
RSD	47.1	141.4	9.6	Ø. 8	v.8
PPARENT C	ONCENTRATION	iS			
dentity i	: Calibrati	on blank	Identity 2 :	Type : CB	
eight : i	.0000 Volum	ne : 1.00	Printed : 12	:56:04 PN Ju	ne 15, 2004
	K_766	Li670	Na589	Sc	Sc361
			mqq		ppm
# i	0.0865	0.0018 L	-0.0333	4319.000 H	101.1019
# 2	0.0052	0.0022 L	-0.0381	4270.000	99.9531
ean	Ø. 0 459	0.0020 L	-0.0357	4294.500 H	100.5275
D	0.0575	0.0003	0.0034	34.648	0.8123
RSD 1	25. 2847	13.9730	9.6094	Ø.807	Ø. 808Ø

 dentity 1: Calibration blank
 Identity 2

 eport name
 CRDL
 Value

 _766
 0.100
 0.046

 1670
 0.010
 0.002

 a589
 0.050
 -0.036

 c361
 0.000
 100.527

```
VOLUTION by Micro-Active Australia Fty Ltd 1:06:50 FM June 15, 2004
ACKGROUND CORRECTED INTENSITIES
dentity : pbw-F15E2 Identity 2 : pg56-215 Type : SAMPLE
                                                                                010089
eight : i.ພິພິພິພິ Volume : i.ພິພິ frinted : i2:59:12 PM June i5, 2004
                                  Na589
                                                  Sc
                                                           Sc361
                      L1570
          K 766
                                                              4.0
                                                  4.1
                                     20.0
                       -21.0
# 1
             8.0
                                                  ى . 1
                                                              1.0
                       -ii. ŵ
                                     8.0
             4.0
# 2
                                                              2.5
                                                  2.5
             6.0
                       -16.0
                                     14. ŵ
ean
                                                              2.1
                         7.i
                                                  2. i
             2.8
                                                 84.9
                                                             84.9
                        44.2
            47.1
RSD
PPARENT CONCENTRATIONS
                                dentity i : pbw-Fi5E2
                       Ident
                               Printed: 12:59:12 PM June 15, 2004
eight : i. ບິບິບິບິ Volume :
                      L1670
                                  Na589
                                                  Sc
                                                           Sc361
          K_766
                                                             ppm
                        ppm
                                     ppm
            ppm
                     -4.5252
                                  37.8094
                                                4.000 L
                                                          -0.0586
         88.708 L
# 1
     H
                                                1.000 1
                                  60.5397
        177.4852 L
                     -9.4838 H
# 2
     H
                                                2.500 L
                                                          -0.0938
                      7.0045
                                  49.1745
     H
         33.1019
ean
                                                           0.0497
                                  16.0728
                                                2.121
                      3.5063
         62,7816
ũ
                                               84.853
                                                          53.0330
                     50.0573
                                  32.6851
         47, 1681
RSD
tarting run ...
reating high priority queue entries ...
ACKGROUND CORRECTED INTENSITIES
dentity 1 : CLP_CCV_SC Identity 2 : Type : CV
eight : 1.0000 Volume : 1.00 Printed : 1:05:44 PM June 15, 2004
```

	K_766	Li67@	Na589	Sc	Sc361
# i	1874.5	23414.5	16144.0	4287.5	4287.5
# 2	1852.5	23237.5	15993.0	4245.5	4245.5
ean	1863.5	23326.0	16068.5	4266.5	4266.5
D	15.6	125.2	106.8	29.7	29.7
RSD	Ø.8	0. 5	0.7	0.7	ŵ.7

PPARENT CONCENTRATIONS

ientity 1 : CLP_CCV_SC Identity 2 : Type : CV eight : 1.0000 Volume : 1.00 Printed : 1:05:44 PM June 15. 2004

	K_766	Li670	Na589	Sc	Sc361
	mqq	maq	mqq		ppm
# 1	19.3309	4.7117	28.4548	4287.500 H	100.3634
ÿ 2	19.2928	4.7223	28.4676	4245.500	99.3787
∍an	19.3118	4.7170	28.4612	4265.500	99.8711
)	Ø. Ø269	0.0075	0.00 9 0	29.698	Ø. 6962
RSD	Ø.13 9 3	0.15 9 5	0.0317	Ø. 696	Ø. 6971

necking calibration verification ...

eport name	Low limit	Value	High limit
_766	18.000	19.312	22.000
1670	4.500	4.717	5.500
a589	27.000	28.461	33.000

ACKGROUND CORRECTED INTENSITIES

dentity 1 : Calibration blank Identity 2 : Type : CB

eight : 1.0000 Volume : 1.00 Printed : 1:09:58 FM June 15, 2004

K 766 L1670 Na589 Sc Sc351 8.5 -5. Ø # 1 28.5 4359.0 4359.0 # 2 i8.5 -4.0 22.5 4340.0 4340.0 ean 13.5 -4.5 25.5 4349.5 4349.5 Đ 7.1 Ø. 7 4.2 13.4 13.4 RSD 52.4 15.7 16.6 Ø.3 Ø.3

PPARENT CONCENTRATIONS

dentity i : Calibration blank Identity 2 : Type : CB

eight : 1.0000 Volume : 1.00 Frinted : 1:09:58 PM June 15, 2004

	K_766	Li670	Na589	Sc	Sc361
	maa	mqq	ppm		ppm
# 1	ø. 00 86	0.0012 L	-0.0250	4359.000 H	102.0396
# 2	0.1113	0.0014 L	-0.0352	4340.000 H	101.5942
ean	0.0600	0.0013 L	-0.0301	4349.500 H	101.8169
D	0.0726	0.0001	0.0073	13.435	0.3150
RSD	121.0705	10.3455	24.1128	0.309	0.3093

hecking calibration blank ...

	•		_
eport	name	CRDL	Value
_766		0.100	0.060
i670		0.010	0.001
a58 9		ø. ø5ø	-0.030
c36i		ଡ. ଡଡଡ	101.817

ACKGROUND CORRECTED INTENSITIES

dentity i : pbw-F15E2 Identity 2 : pg56-215 Type : SAMPLE eight : 1.0000 Volume : 1.00 Printed : 1:12:32 PM June 15, 2004

	K_766	L1670	Na589	Sc	Sc361
# i	-5. ຍົ	-11.0	8.0	4269.5	426 9 .5
# 2	4.0	-5. છ	18.0	4197.5	4197.5
ean	-ŵ.5	-8.0	13.0	4233.5	4233.5
3	6.4	4.2	7.1	50.9	50.9
RSD	1272.8	53. ช	54.4	1.2	1.2

PPARENT CONCENTRATIONS

ientity 1 : pbw-Fi5E2 Identity 2 : pg56-215 Type : SAMPLE
=ight : 1.0000 Volume : 1.00 Printed : 1:12:34 PM June 15, 2004

		K_766	Li670	Na589	Sc	Sc361
		ppm	ppm	ppm		ppm
# i	Ĺ	-0.1299 L	-0.0000 L	-0.0603	4269.500	99.9414
# 2	L	-0. 0356	0.0012 L	-0.0420	4197.500	98.2534
∍an	L	-0.0828	0.0006 L	-0.0511	4233.500	99.0974
5		0.0667	ଡ.ଡଡଡଃ	0.0129	50.512	1.1936
RSD		80.5456	141.7299	25.2919	1.203	1.2044

ACKGROUND CORRECTED INTENSITIES

K 766 Li670 - Na589 Sc Sc361

	K_766	Li670	Na589	Sc	Sc361
# i	572.0	188.0	22666.5	4929.5	4929.5
# 2	572.0	189.0	22705.5	4909.5	4909.5
ean	572.0	188.5	22686.0	4919.5	4919.5
D	0.0	0.7	27.6	14.1	14.1
RSD	Ø. Ø	0.4	Ø. i	Ø.3	Ø. 3

PPARENT CONCENTRATIONS

dentity 1 : 243223 Identity 2 : pg56-215 Type : SAMPLE

eight : 1.0000 Volume : 1.00 Printed : 1:21:58 PM June 15, 2004

	K_766	L1670	Na589	Sc	Sc361
# 1	рр т 5.0733	ppm 0.0351	ppm 34.7645	4999 50 0 H	maa

ean	5. 08 38	ข.	34.8656 0.1429	4919.500 H :	115.1799 0.3315
D RSD	0.0148 0.2919	0.6209	0.4099	v. 287	0.3313 0.2879
dentity	D CORRECTED 1 : 243224 1.0000 Volu	Identity 2	: pg56-215	Type : SAMPLE 1:25:04 PM June	e 15, 2004
# i # 2	к_766 13.5 4.5	Li670 -11.0 -6.0	Na589 5793.5 5805.5	Sc 4915.0 4924.0	Sc361 4915.0 4924.0
ean D RSD	9. 0 6. 4 70. 7	-8.5 3.5 41.6	5799.5 8.5 0.1		4919.5 6.4 0.1
dentity	CONCENTRATIO 1 : 243224 1.0000 Volu	Identity 2	: pg56-215 Printed :	Type : SAMPLE 1:25:06 PM Jun	e 15, 2004
	K_766	L1670	Na589 maq	Sc	Sc361 ppm
# 1 # 2 L	ppm 0.0440 -0.0374	ppm 0.0003 0.0012	8.8565 8.8587		115.0744 115.2854
ean D RSD 1		0.0007 0.0006 85.1517	8.8576 0.0015 0.0171		115.1799 0.1492 0.1295
dentity	ID CORRECTED 1 : 243225 1.0000 Volu	Identity 2	: pg56-215 Printed :	Type : SAMPLE 1:28:14 PM Jun	e 15, 2004
# i # 2	K_766 21.0 27.0	L1670 -5.0 -3.0	Na589 1950.5 1953.5	Sc 4980.0 5011.0	5c361 4980.0 5011.0
ean) RSD	24.0 4.2 17.7	1.4	2 i	4995.5 21.9 0.4	21.9
PPARENT	CONCENTRATION 1: 243225	ONS Identity 2	: pg56-215	Type : SAMPLE 1:28:14 PM Jun	: e 15, 2004
# 1 # 2		ррт 0.0014	Na589 ppm 2.8931 2.8793	4980.000 H	5c361 ppm 116.5983 117.3250
ean) RSD	0.0368	0.0002	0.00 9 8	4995.500 H 21.920 0.439	0.5139
ientity	ND CORRECTED 1: 243226 1.0000 Vol	Identity 2	: pg56-215	Type : SAMPLE 1:31:22 PM Jur	1 ne 15, 2004
† 1 † 2	K_766 39.0 50.0	Li670 5.0 7.0	3010.0	Sc 4977.5 5042.5	4977.5

```
VOLUTION by Micro-Active Australia Pty Ltd
                                              1:37:56 PM June 15, 2004
             7.8
                         1.4
                                    10.6
                                                 46.0
                                                             46. 0
            17.5
RED
                                      Ø. 4
                        23.6
                                                 Ø.9
                                                              Ø. 9
PPARENT CONCENTRATIONS
dentity 1: 243226 Identity 2: pg56-215 Type: SAMPLE
eight : 1.0000 Volume : 1.00 Printed : 1:31:22 PM June 15, 2004
          K 766
                      L1670
                                  Na589
                                                  Sc
                                                           Sc361
            ppm
                        ppm
                                    ppm
                                                             ppm
                      0.0031
# i
          Ø. 2699
                                  41.5073
                                             4977.500 H
                                                         116.5397
# 2
          Ø.3623
                      0.0034
                                  4.4708
                                             5042.500 H
          0.3161
                      0.0033
                                  4.4891
                                             5010.000 H
                                                       117.3016
ean
          0.0653
Đ
                      0.0002
                                  0.0258
                                              45.962
                                                           1.0775
RSD
         20.6620
                      7.1939
                                  0.5753
                                              · 0.917
                                                           0.9186
ACKGROUND CORRECTED INTENSITIES
dentity 1: 243227 Identity 2: pg56-215 Type: SAMPLE
eight: i.0000 Volume: 1.00 Printed: 1:34:30 PM June 15, 2004
          K_766
                      L1670
                                  Na589
                                                  Sc
                                                           Sc361
# i
          1100.5
                        -4.5
                                 13115.0
                                              4928.0
                                                           4928.0
# 2
          1099.5
                         1.5
                                 13228.0
                                              4956.0
                                                           4956.0
ean
          1100.0
                        -1.5
                                 13171.5
                                              4942.0
                                                           4942.0
Đ
             0.7
                         4.2
                                    79.9
                                                19.8
                                                             19.8
RSD
             ŵ.i
                       282.8
                                     ŵ.6
                                                 Ø. 4
                                                             ŵ. 4
PPARENT CONCENTRATIONS
dentity 1: 243227 Identity 2: pg56-215 Type: SAMPLE
eight : 1.0000 Volume : 1.00 Printed : 1:34:30 PM June 15. 2004
          K 766
                      L1670
                                  Na589
                                                 Sc
                                                           Sc361
            mag
                        ppm
                                    ppm
                                                             ppm
# 1
          9.8358
                      0.0014
                                 20.0897
                                            4928.000 H
                                                        115.3792
          9.7708
                     0.0025
                                 20.1486
                                            4956.000 H
                                                        116.0356
ean
         9.8033
                     0.0020
                                 20.1192
                                            4942.000 H
                                                        115.7074
ũ
          0.0459
                     0.0007
                                  0.0416
                                              19.799
                                                          0.4642
RSD
          0.4686
                     37.8783
                                  0.2068
                                               0.401
                                                          0.4012
ACKGROUND CORRECTED INTENSITIES
dentity 1: 243228 Identity 2: pg56-215 Type: SAMPLE
eight : 1.0000 Volume : 1.00 Printed : 1:37:40 PM June 15, 2004
```

K 766 L1670 Na589 Sc Sc361 # 1 151.5 2.0 4930.5 4938.0 4938.0 # 2 146.5 6.0 4929.5 4967.0 4967.0 149.0 4.0 4930.0 4952.5 ean 4952.5 3.5 2.8 0.7 20.5 20.5 RSD 2.4 70.7 Ø. Ø 0.4 Ø. 4

PPARENT CONCENTRATIONS

dentity 1 : 243228 Identity 2 : pg56-215 Type : SAMPLE

eight : 1.0000 Volume : 1.00 Printed : 1:37:40 PM June 15, 2004

	K_766	L1670	Na589	Sc	5c361	
	ppm	bbw	ppm		ppm	
ř 1	1.2841	0.00 26	7.4908	4938.000 H	115.6136	
# 2	1.2314	0.003 3	7.4451	4967.000 H	116.2 9 35	
200	1 0577	മ മരാമ	7 4670	1050 500 U	115 0500	

RSD 2.9594 16.7910 0.4327 0.414 0.4146

ACKGROUND CORRECTED INTENSITIES

dentity 1 : 243229 Identity 2 : pg56-215 Type : SAMPLE

eight : 1.0000 Volume : 1.00 Printed : 1:40:46 PM June 15, 2004

# i # 2	K_766 614.5 615.5	Li670 189.0 183.0	Na589 23946.5 24064.5	Sc 4850.0 4884.0	Sc361 4850.0 4884.0
ean	615.0	186. Ø	24005.5	4867.0	4867.0
Ð	0.7	4.2	83.4	24.0	24.0
RSD	Ø. i	2.3	Ø.3	Ø.5	0.5

PPARENT CONCENTRATIONS

dentity 1: 243229 Identity 2: pg56-215 Type: SAMPLE

eight: 1.0000 Volume: 1.00 Printed: 1:40:46 PM June 15, 2004

	K_766	L1670	Na589	Sc	Sc361
	ppm	ppm	ppm		ppm
# i	5.5467	0. 0358	37.3352	4850.000 H	113.5506
# 2	5.5167	0. 0345	37.2579	4884.000 H	114.3477
ean	5.5317	0.0352	37.29 65	4867.000 H	113.9491
D	0.0213	ଡ. ଡଡଡ ଼	0.0547	24.042	Ø.5636
RSD	0.3843	2.59 9 7	0.1467	0.494	Ø. 4946

ACKGROUND CORRECTED INTENSITIES

dentity 1 : CLP_CCV_SC Identity 2 : Type : CV

eight: 1.0000 Volume: 1.00 Printed: 1:46:06 PM June 15, 2004

	K_766	L1670	Na589	Sc	Sc361
# i	1893.5	23696.0	16299.5	4382.0	4382.0
# 2	1898.5	23748.0	16364.5	4380.0	4380.0
ean	1896.0	23722.0	16332.0	4381.0	4381.0
Ð	3.5	36.8	46. Ø	1.4	1.4
RSD	0. 2	0.2	0. 3	ଡି. ଡି	Ø. Ø

PPARENT CONCENTRATIONS

ientity 1 : CLP_CCV_SC Identity 2 : Type : CV

eight: 1.0000 Volume: 1.00 Printed: 1:46:08 PM June 15, 2004

	K_766	Li670	Na589	Sc	Sc361
	ppm	ppm	ppm		ppm
# 1	19.1048	4.6655	28.1084	4382.000 H	102.5788
# 2	19.1642	4.677 9	28.2337	4380.000 H	102.5319
∍an	19.1345	4.6717	28.1711	4381.000 H	102.5554
5	0.0420	0.0 087	0.0886	1.414	0.0332
RSD	0.2196	0.1872	0.3145	0.032	0.0323

necking calibration verification ...

eport name	Low limit	Value	High limit
_766	18.000	19.134	22.000
i670	4.500	4.672	5.500
a589	27.000	28.171	33.000

ACKGROUND CORRECTED INTENSITIES

dentity i : Calibration blank Identity 2 : Type : CB

eight : 1.0000 Volume : 1.00 Frinted : 1:50:20 PM June 15, 2004

010095

	K_766	Li670	Na589	Sc	Sc361
# i	17.0	-8.5	34.5	4450.0	4450.0
# 2	10.0	-11.5	27.5	4411.0	4411.0
ean	13.5	-10.0	31.0	4430.5	4430.5
Ù	4.9	2.1	4.9	27.6	27.6
RSD	36.7	21.2	16.0	છ . 6	Ø.6

PPARENT CONCENTRATIONS

dentity 1 : Calibration blank Identity 2 : Type : CB

eight: 1.0000 Volume: 1.00 Printed: 1:50:22 PM June 15, 2004

	K_766	Li670	Na589	Sc	Sc361
	ppm	ppm	ppm		ppm
# i	0.0917	0.0006 L	-0.0157	4450.000 H	104.1730
# 2	0.0227 L	-0.0000 L	-0.0273	4411.000 H	103.2587
ean	0.0572	0.0003 L	-0.0215	4430.500 H	103.7159
D	Ø. Ø488	Ø. ØØØ4	0.0081	27.577	0.6465
RSD	85.2665	155.8242	37,8338	0. 622	0.6234

hecking calibration blank ...

dentity i : Calibration blank Identity 2 :

eport na	ame i	CRDL '	ialue
_766		0.100	0. 0 57
1670		0.010	ଡ. ଡଡଡ
a589		0. 050	-0.022
c361		ଡ. ଡଡଡ	103.716

ACKGROUND CORRECTED INTENSITIES

dentity 1 : 243230 Identity 2 : pg56-215 Type : SAMPLE

eight: 1.0000 Volume: 1.00 Printed: 1:53:30 FM June 15, 2004

	K_766	L1670	йа589	Sc	Sc361
# 1	351.5	1245.5	109227.0	4134.0	4134.0
# 2	352.5	1248.5	109382.0	3917.0	3917.0
ean	352.0	1247.0	109304.5	4025.5	4025.5
D	Ø.7	2.1	109.6	153.4	153.4
RSD	0.2	0.2	Ø.i	3.8	3.8

PPARENT CONCENTRATIONS

dentity 1: 243230 Identity 2: pg56-215 Type: SAMPLE

eight: 1.0000 Volume: 1.00 Printed: 1:53:30 PM June 15, 2004

	й_766	Li670	Na589	Sc	Sc361
	mqq	ppm	ppm		ppm
# i	3.6967	0.2620 H	200.1161	4134.000	96.7647
# 2	3.9171	0.2771 H	211.5064	3917.000	91.6774
ean	3.8069	Ø.2696 Н	205.8112	4025.500	94.2211
Ď	0. 1559	0.0106	8.0541	153.442	3.5 9 73
RSD	4.0946	3,9489	3.9134	3.812	3.8179

ACKGROUND CORRECTED INTENSITIES

dentity 1 : 243230d Identity 2 : pg56-215 Type : SAMFLE

eight : 1.0000 Volume : 1.00 Printed : 1:56:38 PN June 15, 2004

ע קבב : אבקה משבמם ביי ביים:

-					
; 2	353. Ø	1237.0	108319.0	3 9 42. Ø	3 942. Ø
ean	3 54.5	1231.5	108001.0	4037.5	4037.5
5	2. i	7.8	449.7	135.1	i35.i
(SD	Ø. 6	ŵ. 6	Ø. 4	3.3	3.3
ientity	CONCENTRATI 7 1 : 243230d 8 1.0000 Vol	Identity	2 : pg56-21 Frinted :	5 Type : SAN 1:56:38 PM 3	(PLE Tune 15, 2004
	K_766	Li670	Na589	Sc	Sc361
	ppm	ppm	ppm		ppm
; 1	3.7 459	0.2580 H	197.3340	4133.000	96.7413
; 2	3.8974		208.1214		92.2635
an				4037.500	
)	0.1071		7.6278		
ISD	2.8030	3.943Ø	3.7626	3.345	3.3505
CKGROL	IND CORRECTED	INTENSITIE	S		
entity	1 : 243231	Identity 2	: pg56-215	Type : SAMF	
					une 15, 2004
	K_766	L1670	Na589	Sc	Sc361
i	633.0			4907.0	
2	641.0	201.5	27225.5	4915.0	4915.0
an	637.0	204.5	27219.0	4911.0	4911.0
	5.7	4.2	9.2	5.7	
SD	Ø. 9	2. 1	0.0	ŵ. i	Ø. i
	CONCENTRATI				
entity	1 : 243231	Identity 2		Type : SAMF 1:59:46 PM 3	LE June 15, 2004
entity	' 1 : 243231 1.0000 Vol K_766	Identity 2 ume : 1.00 Li670	Printed: Na589		Sc361
entity ight :	7 1 : 243231 1.0000 Vol K_766 ppm	Identity 2 ume : 1.00 Li670 ppm	Printed: Na589 ppm	1:59:46 PM 3	Sc361
entity ight :	1: 243231 1.0000 Vol K_766 ppm 5.6488	Identity 2 ume : 1.00 Li670 ppm 0.0387	Printed: Na589 ppm 41.9436	1:59:46 PM 3 Sc 4907.000 F	Sc361 ppm 1 114.8869
entity ight :	7 1 : 243231 1.0000 Vol K_766 ppm	Identity 2 ume : 1.00 Li670 ppm 0.0387	Printed: Na589 ppm 41.9436	1:59:46 PM 3	Sc361 ppm 1 114.8869
entity ight : 1 2	1: 243231 1.0000 Vol K_766 ppm 5.6488	Identity 2 ume : 1.00 Li670 ppm 0.0387 0.0376	Printed: Na589 ppm 41.9436 41.8953	1:59:46 PM 3 Sc 4907.000 F	Sc361 ppm 1 114.8869 1 115.0744
entity ight : i 2 an	7 1 : 243231 1.0000 Vol K_766 ppm 5.6488 5.7117	Identity 2 ume : 1.00 Li670 ppm 0.0387 0.0376	Printed: Na589 ppm 41.9436 41.8953	1:59:46 PM 3 Sc 4907.000 F 4915.000 F	Sc361 ppm 1 114.8869 1 115.0744
entity ight : i 2 an	7 1 : 243231 1.0000 Vol K_766 ppm 5.6488 5.7117 5.6802 0.0445	Identity 2 ume: 1.00 Li670 ppm 0.0387 0.0376	Printed: Na589 ppm 41.9436 41.8953 41.9194 0.0342	1:59:46 PM 3 Sc 4907.000 F 4915.000 F 4911.000 F 5.657	Sc361 ppm 1 114.8869 1 115.0744
entity eight : 1 : 2 ean : :SD	1: 243231 1.0000 Vol K_766 ppm 5.6488 5.7117 5.6802 0.0445 0.7835	Identity 2 ume: 1.00 Li670 ppm 0.0387 0.0376 0.0381 0.0008 2.0623	Printed: Na589 ppm 41.9436 41.8953 41.9194 0.0342 0.0816	1:59:46 PM 3 Sc 4907.000 F 4915.000 F 4911.000 F 5.657 0.115	Sc361 ppm 1 114.8869 1 115.0744 1 114.9807 0.1326 0.1153
Mentity Pight: 1 1 2 2 Pan CKGROU Mentity	1: 243231 1.0000 Vol K_766	Identity 2 ume: 1.00 Li670 ppm 0.0387 0.0376 0.0381 0.0008 2.0623 INTENSITIE Identity 2	Printed: Na589 ppm 41.9436 41.8953 41.9194 0.0342 0.0816	1:59:46 PM 3 Sc 4907.000 F 4915.000 F 5.657 0.115	Sc361 ppm 1 114.8869 1 115.0744 1 114.9807 0.1326 0.1153
entity ight: 1 2 an SD CKGROU	1: 243231 1.0000 Vol K_766 ppm 5.6488 5.7117 5.6802 0.0445 0.7835 UND CORRECTED 1: 243232 1.0000 Vol K_766	Identity 2 ume: 1.00 Li670 ppm 0.0387 0.0376 0.008 2.0623 INTENSITIE Identity 2 ume: 1.00 Li670	Printed: Na589 ppm 41.9436 41.8953 41.9194 0.0342 0.0816 S : pg56-215 Printed: Na589	1:59:46 PM 3 Sc 4907.000 F 4915.000 F 5.657 0.115 Type : SAMF 2:02:56 PM 3	Sc361 ppm 114.8869 115.0744 114.9807 0.1326 0.1153 CLE fune 15, 2004 Sc361
entity ight: 1 2 an CKGROU entity ight:	1 : 243231 1.0000 Vol K_766 ppm 5.6488 5.7117 5.6802 0.0445 0.7835 UND CORRECTED 1 : 243232 1.0000 Vol K_766 428.0	Identity 2 ume: 1.00 Li670 ppm 0.0387 0.0376 0.0381 0.0008 2.0623 INTENSITIE Identity 2 ume: 1.00 Li670 242.0	Printed: Na589 ppm 41.9436 41.8953 41.9194 0.0342 0.0816 : pg56-215 Printed: Na589 31305.5	1:59:46 PM 3 Sc 4907.000 F 4915.000 F 5.657 0.115 Type : SAMF 2:02:56 PM 3	Sc361 ppm 114.8869 115.0744 114.9807 0.1326 0.1153 CLE fune 15. 2004 Sc361 4887.5
entity ight: 1 2 an SD CKGROU entity ight:	1: 243231 1.0000 Vol K_766 ppm 5.6488 5.7117 5.6802 0.0445 0.7835 UND CORRECTED 1: 243232 1.0000 Vol K_766	Identity 2 ume: 1.00 Li670 ppm 0.0387 0.0376 0.008 2.0623 INTENSITIE Identity 2 ume: 1.00 Li670	Printed: Na589 ppm 41.9436 41.8953 41.9194 0.0342 0.0816 : pg56-215 Printed: Na589 31305.5	1:59:46 PM 3 Sc 4907.000 F 4915.000 F 5.657 0.115 Type : SAMF 2:02:56 PM 3	Sc361 ppm 114.8869 115.0744 114.9807 0.1326 0.1153 CLE fune 15. 2004 Sc361 4887.5
entity ight: 1 2 an CKGROU entity ight:	1 : 243231 1.0000 Vol K_766 ppm 5.6488 5.7117 5.6802 0.0445 0.7835 UND CORRECTED 1 : 243232 1.0000 Vol K_766 428.0 432.0	Identity 2 ume: 1.00 Li670 ppm 0.0387 0.0376 0.0381 0.0008 2.0623 INTENSITIE Identity 2 ume: 1.00 Li670 242.0	Printed: Na589 ppm 41.9436 41.8953 41.9194 0.0342 0.0816 S: pg56-215 Printed: Na589 31305.5 31536.5	1:59:46 PM 3 Sc 4907.000 F 4915.000 F 5.657 0.115 Type : SAMF 2:02:56 PM 3	Sc361 ppm 114.8869 115.0744 114.9807 0.1326 0.1153 CLE Sune 15. 2004 Sc361 4867.5 4904.5
entity ight: 1 2 an SD CKGROU entity ight: 1 2 an	1: 243231 1.0000 Vol K_766 ppm 5.6488 5.7117 5.6802 0.0445 0.7835 UND CORRECTED 1: 243232 1.0000 Vol K_766 428.0 430.0	Identity 2 ume: 1.00 Li670 ppm 0.0387 0.0376 0.0381 0.0008 2.0623 INTENSITIE Identity 2 ume: 1.00 Li670 242.0 242.0	Printed: Na589 ppm 41.9436 41.8953 41.9194 0.0342 0.0816 S: pg56-215 Printed: Na589 31305.5 31536.5	1:59:46 PM 3 Sc 4907.000 F 4915.000 F 4911.000 F 5.657 0.115 Type : SAMF 2:02:56 PM 3 Sc 4887.5 4904.5	Sc361 ppm 114.8869 115.0744 114.9807 0.1326 0.1153 CLE fune 15. 2004 Sc361 4887.5 4904.5
entity ight: 1 2 an SD CKGROU entity ight: 1 2 an	1 : 243231 1.0000 Vol K_766 ppm 5.6488 5.7117 5.6802 0.0445 0.7835 UND CORRECTED 1 : 243232 1.0000 Vol K_766 428.0 432.0	Identity 2 ume: 1.00 Li670 ppm 0.0387 0.0376 0.0381 0.0008 2.0623 INTENSITIE Identity 2 ume: 1.00 Li670 242.0 242.0 0.0	Printed: Na589	1:59:46 PM 3 Sc 4907.000 F 4915.000 F 4911.000 F 5.657 0.115 Type : SAMF 2:02:56 PM 3 Sc 4887.5 4904.5 4896.0 12.0	Sc361 ppm 114.8869 115.0744 114.9807 0.1326 0.1153 CLE Sune 15. 2004 Sc361 4887.5 4904.5 4896.0 12.0
dentity eight: 1; 2 ean CKGROU dentity eight: 2; 2 ean CKGROU dentity eight: 4; 2 ean CKGROU dentity eight:	1 : 243231 1.0000 Vol K_766 ppm 5.6488 5.7117 5.6802 0.0445 0.7835 UND CORRECTED 1 : 243232 1.0000 Vol K_766 428.0 432.0 430.0 2.8 0.7	Identity 2 ume: 1.00 Li670 ppm 0.0387 0.0376 0.0381 0.0008 2.0623 INTENSITIE Identity 2 ume: 1.00 Li670 242.0 242.0 0.0 0.0 ONS Identity 2	Printed: Na589 ppm 41.9436 41.8953 41.9194 0.0342 0.0816 : pq56-215 Printed: Na589 31305.5 31536.5 31421.0 163.3 0.5 : pq56-215	1:59:46 PM 3 Sc 4907.000 F 4915.000 F 4911.000 F 5.657 0.115 Type : SAMF 2:02:56 PM 3 4887.5 4904.5 4896.0 12.0 0.2	Sc361 ppm 114.8869 115.0744 114.9807 0.1326 0.1153 CLE fune 15. 2004 Sc361 4887.5 4904.5 4896.0 12.0 0.2
entity ight: 1 2 an CKGROU entity ight: 2 an CKGROU entity ight:	1 : 243231 1.0000 Vol K_766 ppm 5.6488 5.7117 5.6802 0.0445 0.7835 UND CORRECTED 1 : 243232 1.0000 Vol K_766 428.0 432.0 430.0 2.8 0.7	Identity 2 ume: 1.00 Li670 ppm 0.0387 0.0376 0.0381 0.0008 2.0623 INTENSITIE Identity 2 ume: 1.00 Li670 242.0 242.0 0.0 0.0 ONS Identity 2	Printed: Na589 ppm 41.9436 41.8953 41.9194 0.0342 0.0816 : pq56-215 Printed: Na589 31305.5 31536.5 31421.0 163.3 0.5 : pq56-215	1:59:46 PM 3 Sc 4907.000 F 4915.000 F 4911.000 F 5.657 0.115 Type : SAMF 2:02:56 PM 3 4887.5 4904.5 4896.0 12.0 0.2	Sc361 ppm 114.8869 115.0744 114.9807 0.1326 0.1153 CLE fune 15. 2004 Sc361 4887.5 4904.5 4896.0 12.0 0.2
entity ight: 1 2 ean CKGROU entity ight: 2 ean PARENT	1 : 243231 1.0000 Vol K_766 ppm 5.6488 5.7117 5.6802 0.0445 0.7835 UND CORRECTED 1 : 243232 1.0000 Vol K_766 428.0 432.0 430.0 2.8 0.7	Identity 2 ume: 1.00 Li670 ppm 0.0387 0.0376 0.0381 0.0008 2.0623 INTENSITIE Identity 2 ume: 1.00 Li670 242.0 242.0 0.0 0.0 ONS Identity 2	Printed: Na589 ppm 41.9436 41.8953 41.9194 0.0342 0.0816 : pq56-215 Printed: Na589 31305.5 31536.5 31421.0 163.3 0.5 : pq56-215	1:59:46 PM 3 Sc 4907.000 F 4915.000 F 4911.000 F 5.657 0.115 Type : SAMF 2:02:56 PM 3 4887.5 4904.5 4896.0 12.0 0.2	Sc361 ppm 114.8869 115.0744 114.9807 0.1326 0.1153 CLE fune 15. 2004 Sc361 4887.5 4904.5 4896.0 12.0 0.2

4887.500 H 114.4297

	,			2:12:36 F	
ean	3.8210	Ø. Ø448	48.5507	4896.000 H	114.6290
				12.021	
				0.246	
KSD	0.4207	W. 2334	0.2/4/	0.24 0	Ø. 2430
ACKGROU	ND CORRECTED	INTENSITIES			
dentity	1 : 243232s	Identity 2	: pg56-215	Type : SAMP	LE
eight:	i. ซิซิซิซิ Voi	ume : i.00	Frinted :	2:05:04 PM Ju	ne 15. 2004
					•
	K_766		Na589	Sc	
				4737.0	
# 2	25 72.0	244.0	42785.0	4725. Ø	4725. €
020	2575 A	241 5	42860 D	4731.0	473: 6
		3.5		8.5	
		1.5			
מכא	v. 2	1.5	₩. ∠	ν. ∠	ŵ. 2
PPARENT	CONCENTRATI	ONS			
dentity	1 : 2432328	Identity 2	: pg56-215	Type : SAMP	LE
eight :	1.0000 Vol	ume : 1.00	Printed :	2:06:04 PM Ju	ne 15, 2004
	v 766	Li670	Na 500	Sc	Chact
				50	
.11 7	ppm	ppm	bbw	1000 000 11	ppm
				4737.000 H	
# 2	24.0870	0.0468 H	68.5334	4725.000 H	110.6201
ean	24.0845	0.0462 H	68.5664	4731.000 H	110.7608
				8.485	
				0.179	
dentity	1 : 23100	identity 2	: pg56-215	CO 4/2A 104 Type : SAMPL 2:09:14 PM Ju	E
dentity	1 : 243108 1.0000 Vol	identity 2 s ume : 1.00 f	: pg56-215 Printed :	Type : SAMPL 2:09:14 PM Ju	E ne 15. 2004
dentity	1: 243108 1.0000 Vol	identity 2 : ume : 1.00 ; Li670	: pg56-215 Printed : Na589	Type : SAMPL 2:09:14 PM Ju Sc	E ne 15, 2004 Sc361
dentity eight:	1: 243108 1.0000 Vol K_766 397.0	Identity 2 : ume : 1.00	: pg56-215 Printed : Na589 33186.0	Type : SAMPL 2:09:14 PM Ju Sc 4871.0	E ne 15. 2004 Sc361 4871.0
dentity eight : # 1 # 2	1:243108 1.0000 Vol K_766 397.0 409.0	Identity 2 : ume : 1.00	: pg56-215 Printed : Na589 33186.0 33417.0	Type : SAMPL 2:09:14 PM Ju Sc 4871.0 4878.0	E ne 15. 2004 Sc361 4871.0 4878.0
<pre>dentity eight : # 1 # 2 ean</pre>	1: 243108 1.0000 Vol K_766 397.0 409.0	Identity 2 : ume : 1.00	: pg56-215 Printed : Na589 33186.0 33417.0	Type : SAMPL 2:09:14 PM Ju Sc 4871.0 4878.0	E ne 15. 2004 Sc361 4871.0
dentity eight : # 1 # 2	1: 243108 1.0000 Vol K_766 397.0 409.0 403.0 8.5	ldentity 2 : ume : 1.00	: pg56-215 Printed : Na589 33186.0 33417.0	Type : SAMPL 2:09:14 PM Ju Sc 4871.0 4878.0	E ne 15. 2004 Sc361 4871.0 4878.0
<pre>dentity eight : # 1 # 2 ean</pre>	1: 243108 1.0000 Vol K_766 397.0 409.0	Identity 2 : ume : 1.00	: pg56-215 Printed : Na589 33186.0 33417.0	Type : SAMPL 2:09:14 PM Ju Sc 4871.0 4878.0 4874.5 4.9	E ne 15. 2004 Sc361 4871.0 4878.0
dentity eight: # 1 # 2 ean D RSD	1: 243108 1.0000 Vol K_766 397.0 409.0 403.0 8.5 2.1	ldentity 2 sume : 1.00 F Li670 221.0 225.0 223.0 2.8 1.3	: pg56-215 Printed : Na589 33186.0 33417.0 33301.5 163.3 0.5	Type : SAMPL 2:09:14 PM Ju Sc 4871.0 4878.0 4874.5 4.9 0.1	E ne 15. 2004 Sc361 4871.0 4878.0 4874.5 4.9
dentity eight: # 1 # 2 ean D RSD	1: 243108 1.0000 Vol K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATIO	1dentity 2 sume : 1.00 f Li670 221.0 225.0 223.0 2.8 1.3	: pg56-215 Printed : Na589 33186.0 33417.0 33301.5 163.3 0.5	Type: SAMPL 2:09:14 PM Ju Sc 4871.0 4878.0 4874.5 4.9 0.1	E ne 15. 2004 Sc361 4871.0 4878.0 4874.5 4.9 0.1
dentity eight: # 1 # 2 ean D RSD PFARENT dentity	1: 243108 1.0000 Vol K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATION 1: 243100	1dentity 2 sume : 1.00 f Li670 221.0 225.0 223.0 2.8 1.3 DNS 245109 Identity 2 :	: pg56-215 Printed : Na589 33186.0 33417.0 33301.5 163.3 0.5 0.5 pg56-215	Type : SAMPL 2:09:14 PM Ju Sc 4871.0 4878.0 4874.5 4.9 0.1 A OA	Ene 15. 2004 Sc361 4871.0 4878.0 4874.5 4.9 0.1
dentity eight: # 1 # 2 ean D RSD PFARENT dentity	1: 243108 1.0000 Vol K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATION 1: 243100	1dentity 2 sume : 1.00 f Li670 221.0 225.0 223.0 2.8 1.3 DNS 245109 Identity 2 :	: pg56-215 Printed : Na589 33186.0 33417.0 33301.5 163.3 0.5 0.5 pg56-215	Type: SAMPL 2:09:14 PM Ju Sc 4871.0 4878.0 4874.5 4.9 0.1	Ene 15. 2004 Sc361 4871.0 4878.0 4874.5 4.9 0.1
dentity eight: # 1 # 2 ean D RSD PFARENT dentity	1: 243108 1.0000 Vol. K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATION 1: 243100 1.0000 Vol.	1dentity 2 sume : 1.00 f Li670 221.0 225.0 223.0 2.8 1.3 DNS 245109 Identity 2 :	: pg56-215 Printed : Na589 33186.0 33417.0 33301.5 163.3 0.5 0.5 pg56-215	Type : SAMPL 2:09:14 PM Ju Sc 4871.0 4878.0 4874.5 4.9 0.1 A OA	Ene 15. 2004 Sc361 4871.0 4878.0 4874.5 4.9 0.1
dentity eight: # 1 # 2 ean D RSD PFARENT dentity	1: 243108 1.0000 Vol K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATIO 1: 243100 1.0000 Vol K_766	Identity 2 : ume : 1.00	: pg56-215 Printed : Na589 33186.0 33417.0 33301.5 163.3 0.5 0.5 pg56-215 Printed : Na589	Type: SAMPL 2:09:14 PM Ju 5c 4871.0 4874.5 4.9 0.1 A O4 Type: SAMPL 2:09:14 PM Ju	E ne 15. 2004 Sc361 4871.0 4878.0 4874.5 4.9 0.1 E ne 15. 2004 Sc361
dentity eight: # 1 # 2 ean D RSD PFARENT dentity eight:	1: 243108 1.0000 Vol. K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATION 1: 243100 1.0000 Vol. K_766 ppm	1dentity 2 : ume : 1.00	: pg56-215 Printed : Na589 33186.0 33417.0 33301.5 163.3 0.5 0.5 pg56-215 Printed : Na589 ppm	Type: SAMPL 2:09:14 PM Ju Sc 4871.0 4878.0 4874.5 4.9 0.1 A OA Type: SAMPL 2:09:14 PM Ju	Ene 15. 2004 Sc361 4871.0 4878.0 4874.5 4.9 0.1 Ene 15. 2004 Sc361 ppm
dentity eight: # 1 # 2 ean D RSD PFARENT dentity eight:	1: 243108 1.0000 Vol. K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATIO 1: 243100 1.0000 Vol. K_766 ppm 3.5402	Identity 2 : ume : 1.00	Printed: Na589 33186.0 33417.0 33301.5 163.3 0.5 0.5 pg56-215 Printed: Na589 ppm 51.5459	Type: SAMPL 2:09:14 PM Ju Sc 4871.0 4874.5 4.9 0.1 A (O4) Type: SAMPL 2:09:14 PM Ju Sc 4871.000 H	E ne 15. 2004 Sc361 4871.0 4878.0 4874.5 4.9 0.1 E ne 15. 2004 Sc361 ppm 114.0429
dentity eight: # 1 # 2 ean D RSD PFARENT dentity eight:	1: 243108 1.0000 Vol. K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATIO 1: 243100 1.0000 Vol. K_766 ppm 3.5402	Identity 2 : ume : 1.00	Printed: Na589 33186.0 33417.0 33301.5 163.3 0.5 0.5 pg56-215 Printed: Na589 ppm 51.5459	Type: SAMPL 2:09:14 PM Ju Sc 4871.0 4878.0 4874.5 4.9 0.1 A OA Type: SAMPL 2:09:14 PM Ju	E ne 15. 2004 Sc361 4871.0 4878.0 4874.5 4.9 0.1 E ne 15. 2004 Sc361 ppm 114.0429
dentity eight: # 1 # 2 ean D RSD PFARENT dentity eight:	1: 2-3108 1.0000 Vol K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATIO 1: 2-43100 1.0000 Vol K_766 ppm 3.5402 3.6443	Identity 2 : ume : 1.00	Printed: Na589 33186.0 33417.0 33301.5 163.3 0.5 0.5 co \(\buildrel{Q} \) 2 pg56-215 rinted: Na589 ppm 51.5459 51.8306	Type: SAMPL 2:09:14 PM Ju Sc 4871.0 4874.5 4.9 0.1 A (O4) Type: SAMPL 2:09:14 PM Ju Sc 4871.000 H	Ene 15. 2004 Sc361 4871.0 4874.5 4.9 0.1 Ene 15. 2004 Sc361 ppm 114.0429 114.2070
dentity eight: # 1 # 2 ean D RSD PFARENT dentity eight: # 1 # 2	1: 243108 1.0000 Vol K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATIO 1: 243100 1.0000 Volv K_766 ppm 3.5402 3.6443 3.5922	Identity 2 : ume : 1.00	: pg56-215 Printed : Na589 33186.0 33417.0 33301.5 163.3 0.5 0.5 co \(\begin{align*} 2 \) 2 2 pg56-215 Printed : Na589 ppm 51.5459 51.8306 51.6882	Type: SAMPL 2:09:14 PM Ju 5c 4871.0 4874.5 4.9 0.1 A O4 Type: SAMPL 2:09:14 PM Ju 5c 4871.000 H 4878.000 H	Ene 15. 2004 Sc361 4871.0 4874.5 4.9 0.1 Ene 15. 2004 Sc361 ppm 114.0429 114.2070
dentity eight: # 1 # 2 ean D RSD PFARENT dentity eight: # 1 # 2 ean	1:243108 1.0000 Vol K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATIO 1:243100 1.0000 Vol K_766 ppm 3.5402 3.6443 3.5922 0.0736	Identity 2 : ume : 1.00	: pg56-215 Printed : Na589 33186.0 33417.0 33301.5 163.3 0.5 0.5 pg56-215 Printed : Na589 ppm 51.5459 51.8306 51.6882 0.2013	Type: SAMPL 2:09:14 PM Ju 5c 4871.0 4874.5 4.9 0.1 A OA Type: SAMPL 2:09:14 PM Ju 5c 4871.000 H 4878.000 H 4874.500 H 4.950	Ene 15. 2004 Sc361 4871.0 4878.0 4874.5 4.9 0.1 Ene 15. 2004 Sc361 ppm 114.0429 114.2070 114.1250 0.1160
dentity eight: # 1 # 2 ean D RSD PFARENT dentity eight: # 1 # 2 ean D RSD	1:243108 1.0000 Vol K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATIO 1:243100 1.0000 Vol K_766 ppm 3.5402 3.6443 3.5922 0.0736 2.0475	Identity 2 : ume : 1.00	: pg56-215 Printed : Na589 33186.0 33417.0 33301.5 163.3 0.5 0.5 co \(\begin{align*} 2 \) 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 6	Type: SAMPL 2:09:14 PM Ju 5c 4871.0 4874.5 4.9 0.1 A OA Type: SAMPL 2:09:14 PM Ju 5c 4871.000 H 4874.500 H 4874.500 H 4.950 0.102	Ene 15. 2004 Sc361 4871.0 4878.0 4874.5 4.9 0.1 Ene 15. 2004 Sc361 ppm 114.0429 114.2070 114.1250 0.1160 0.1017
dentity eight: # 1 # 2 ean D RSD PFARENT dentity eight: # 1 # 2 ean D RSD ACKGROUK	1:243108 1.0000 Vol K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATIO 1:243100 1.0000 Vol K_766 ppm 3.5402 3.6443 3.5922 0.0736 2.0475	Identity 2 : ume : 1.00	Printed: Na589 33186.0 33417.0 33301.5 163.3 0.5 20 4 2 pg56-215 Printed: Na589 ppm 51.5459 51.8306 51.6882 0.2013 0.3895	Type: SAMPL 2:09:14 PM Ju 5c 4871.0 4874.5 4.9 0.1 A O4 Type: SAMPL 2:09:14 PM Ju 5c 4871.000 H 4878.000 H 4874.500 H 4.950 0.102	Ene 15. 2004 Sc361 4871.0 4878.0 4874.5 4.9 0.1 Ene 15. 2004 Sc361 ppm 114.0429 114.2070 114.1250 0.1160 0.1017
dentity eight: # 1 # 2 ean D RSD PFARENT dentity eight: # 1 # 2 ean D RSD ACKGROUN dentity	1:243108 1.0000 Vol K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATIO 1:243100 1.0000 Vol K_766 ppm 3.5402 3.6443 3.5922 0.0736 2.0475 ID CORRECTED 1:2431066	Identity 2 : ume : 1.00	: pg56-215 Printed : Na589 33186.0 33417.0 33301.5 163.3 0.5 20.5 20.2 25 25 26 26 27 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	Type: SAMPL 2:09:14 PM Ju Sc 4871.0 4874.5 4.9 0.1 A O4 Type: SAMPL 2:09:14 PM Ju Sc 4871.000 H 4878.000 H 4878.000 H 4.950 0.102 CO Q Q Q Q Q Q Q Q Q	Ene 15. 2004 Sc36i 4871.0 4878.0 4874.5 4.9 0.1 Ene 15. 2004 Sc36i ppm 114.0429 114.0429 114.1250 0.1160 0.1017
dentity eight: # 1 # 2 ean D RSD PFARENT dentity eight: # 1 # 2 ean D RSD ACKGROUN dentity	1:243108 1.0000 Vol K_766 397.0 409.0 403.0 8.5 2.1 CONCENTRATIO 1:243100 1.0000 Vol K_766 ppm 3.5402 3.6443 3.5922 0.0736 2.0475 ID CORRECTED 1:2431066	Identity 2 : ume : 1.00	: pg56-215 Printed : Na589 33186.0 33417.0 33301.5 163.3 0.5 20.5 20.2 25 25 26 26 27 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	Type: SAMPL 2:09:14 PM Ju 5c 4871.0 4874.5 4.9 0.1 A O4 Type: SAMPL 2:09:14 PM Ju 5c 4871.000 H 4878.000 H 4874.500 H 4.950 0.102	Ene 15. 2004 Sc36i 4871.0 4878.0 4874.5 4.9 0.1 Ene 15. 2004 Sc36i ppm 114.0429 114.0429 114.1250 0.1160 0.1017

K_766 L1670 Na589 Sc361 Sc 406.0 224.0 33406.0 4890.0 4890.0 # 2 4913.0 402.0 234.0 33669.0 4913.0

```
VOLUTION by Micro-Active Australia Pty Ltd
                                               2:18:54 PM June 15, 2004
Đ
             2.8
                         7.1
                                    186.0
                                                 16.3
                                                             16.3
RSD
             Ø. 7
                         3.1
                                     0.6
                                                  0.3
                                                              0.3
                                                4/24/04
                                          CO
FFARENT CONCENTRATIONS 249108d
dentity 1: 242108d Identity 2: pq56-215 Type: SAMFLE
eight : 1.0000 Volume : 1.00 Printed : 2:12:20 PM June 15, 2004
          K 766
                      L1670
                                  Na589
                                                  Sc
                                                           Sc361
            ppm
                        ppm
                                    mag
                                                             ppm
          3.6079
# 1
                      0.0417 H
                                 51.6862
                                             4890.000 H
                                                         114.4883
# 2
          3.5545
                      0.0433 H
                                 51.8494
                                             4913.000 H
          3.5812
                      0.0425 H
                                 51.7678
                                             4901.500 H
                                                         114.7579
ean
Đ
          0.0378
                      0.0011
                                  0.1155
                                               16.263
                                                           0.3813
RSD
          1.0544
                      2.6122
                                  0.2230
                                                Ø. 332
                                                           Ø.3322
                                               CO 6 124 104
ACKGROUND CORRECTED INTENSITIES 2451095
dentity 1 : 249108 Identity 2 : pg56-215 Type : SAMPLE
eight: 1.0000 Volume: 1.00 Printed: 2:15:30 PM June 15, 2004
          K 766
                      L167@
                                  Na589
                                                  Sc
                                                           Sc361
          2569.0
                       219.5
# 1
                                 44833.5
                                               4724.0
                                                           4724.0
          2593.0
                       219.5
                                 45263.5
                                               4736.0
                                                           4736.0
ean
          2581.0
                       219.5
                                 45048.5
                                               4730.0
                                                           4730.0
Đ.
            17.0
                         Ø. Ø
                                   304.1
                                                  8.5
                                                              8.5
             Ø. 7
                         Ø. Ø
                                     0.7
                                                  0.2
                                       CO4/24/04
PPARENT CONCENTRATIONS 2451085
dentity 1 : 243108s Identity 2 : pg56-215 Type : SAMPLE
eight : 1.0000 Volume : 1.00 Printed : 2:15:30 PM June 15, 2004
                      L1670
          K 766
                                  Na589
                                                  Sc
                                                           Sc361
            ppm
                        ppm
                                    ppm
# 1
         24.0640
                      0.0423 H
                                 71.8335
                                            4724.000 H
                                                         110.5966
                      0.0422 H
# 2
         24.2278
                                 72.3392
                                            4736.000 H
                                                         110.8780
         24.1459
                      0.0422 H
∍an
                                 72. 0863
                                            4730.000 H
                                                         110.7373
5
         0.1158
                      0.0001
                                  0.3576
                                                8.485
                                                           0.1989
```

RSD 0.4797 0.1700 0.4961 0.179 0:1796

CO 4124 104 ACKGROUND CORRECTED INTENSITIES 245109 ientity 1 : 243109 Identity 2 : pg56-215 Type : SAMPLE ∍ight : 1.0000 Volume : 1.00 Printed : 2:18:38 PM June 15, 2004

	K_766	L1670	Na589	Sc	Sc361
 i	316.5	484.0	50107.0	4910.5	4910.5
¥ 2	309.5	500.0	49653.0	4876.5	4876.5
∍an	313.0	492.0	49880.0	4893.5	4893.5
5	4.9	11.3	321.0	24.0	24.0
RSD	1.6	2.3	0. 6	Ø.5	0. 5

004/24/04 PRARENT CONCENTRATIONS 245109 ientity 1 : 245109 Identity 2 : pg56-215 Type : SAMPLE eight: 1.0000 Volume: 1.00 Printed: 2:18:38 PM June 15, 2004

	K_766	Li670	Na589	Sc	Sc361
	ppm	ppm	ppm		ppm
¥ 1	2.7834	0.0872 H	77.2393	4910.500 H	114.9689
¥ 2	2.7396	0.0906 H	77.0729	4876.500 H	114.1718
28 N	2, 7615	A. AAAA H	77.1561	4843.500 H	114.5784

RSD 1.1209 2.7210 0.1524 ŵ. 491 0.4920 2A CO 4/24/04 ACKGROUND CORRECTED INTENSITIES 246110 dentity 1 : 243110 Identity 2 : pg56-215 Type : SAMPLE eight : 1.0000 Volume : 1.00 Printed : 2:21:46 PM June 15, 2004 K_766 L1670 Na589 Sc Sc361 412.0 232.0 34412.0 4945.0 4945.0 # i 244.0 34799.0 # 2 434.0 4979.0 4979.0 423.0 238.0 34605.5 4962.0 4962.0 ean 273.7 Đ 15.6 8.5 24.0 24.0 RSD 3.7 3.6 Ø.8 ŵ.5 ŵ.5 CO 4/24/04 PPARENT CONCENTRATIONS 245110 dentity 1: 243110 Identity 2: pg56-215 Type: SAMPLE eight : 1.0000 Volume : 1.00 Printed : 2:21:46 PM June 15, 2004 K_766 L1670 Na589 Sc Sc361 ppm ppm ppm ppm # i 0.0427 H 52.6519 3.6208 4945.000 H 115.7778 # 2 3.7917 0.0445 H 52.8807 4979.000 H 116.5748 3.7062 0.0436 H 52.7663 4962.000 H 116.1763 ean D 0.1208 0.0013 24.042 0.1618 0.5636 3.2605 RSD 2.9240 0.3067 0.485 Ø. 4852 ACKGROUND CORRECTED INTENSITIES ientity 1 : CLP_CCV_SC Identity 2 : Type : CV ∍ight : 1.0000 Volume : 1.00 Printed : 2:27:06 PM June 15, 2004 K 766 Na589 L1670 Sc Sc361 # 1 1912.5 23794.5 16328.0 4413.5 4413.5 # 2 1897.5 23756.5 16319.0 4383.5 4383.5 23775.5 1905.0 16323.5 4398.5 4398.5 ∍an 5 10.6 26.9 6.4 21.2 21.2 RSD 0.6 Ø. 1 Ø. Ø Ø.5 Ø.5 PARENT CONCENTRATIONS ientity 1 : CLP_CCV_SC Identity 2 : Type : CV eight: 1.0000 Volume: 1.00 Printed: 2:27:06 PM June 15, 2004 K_766 L1670 Na589 Sc Sc361 ppm mag ppm ppm **#** 1 19.1590 4.6515 27.9562 4413.500 H 103.3173 # 2 19.1387 4.6758 28.1325 4383.500 H 102.6140 19.1489 4.6637 28.0444 4398.500 H 102.9657 ean > 0.0143 0.0172 0.1246 21.213 0.4973 RSD 0.0748 0.3691 Ø. 4445 Ø. 482 0.4830 necking calibration verification ...

port name	Low limit	Value	High limit
766	18.000	19.149	22.000
1670	4.500	4.664	5. 500
1589	27.000	28.044	33.000

∍ight : 1.0000 Volume : 1.00 Printed : 2:34:28 PM June 15, 2004

K 766 Li670 Na589 Sc Sc361 # i 328.0 511.0 51254.0 4885.0 4885.0 324.0 519.0 52245.0 4873.0 4873.0 ean 326.0 515.0 51749.5 4879.0 4879.0 2.8 5.7 700.7 8.5 8.5) RSD 0.9 1.1 1.4 0.2 0.2

CO 4/24/04 PARENT CONCENTRATIONS 245111

ientity i : 243114 Identity 2 : pq56-215 Type : SAMPLE

eight: 1.0000 Volume: 1.00 Printed: 2:34:28 PM June 15, 2004

	K_766	L1670	Na589	Sc	Sc361
	ppm	ppm	ppm		ppm
ÿ i	2.9028	0.0924 H	79.4219	4885.000 H	114.3711
¥ 2	2.8737	0.0941 H	81.1585	4873.000 H	114.0898
ean	2.8883	0.0932 H	80.2902	4879.000 H	114.2305
)	0.0206	0.0012	1.2280	8.485	0.1989
₹SD	0.7124	1.2420	1.5294	0.174	0.1741

CO 4/24/04 ACKGROUND CORRECTED INTENSITIES 245112 ientity 1: 243112 Identity 2: pg56-215 Type: SAMPLE

eight: 1.0000 Volume: 1.00 Printed: 2:37:36 PM June 15, 2004

L1670 Na589 Sc351 K 765 Sc

```
WULUNION by Micro-Active Australia Fty Ltd
                                              2:44:08 PM June 15, 2004
         1031.5
                        -8.5
                                  5966.0
                                              4993.0
                                                          4993.0
                                  5942.5
          1030.5
                        -4.0
                                              4993.5
                                                          4993.5
ean
                                                Ø.7
Ð.
             1.4
                         6.4
                                    33.2
                                                            0.7
                                     0.6
                                                 0.0
                                                             0.0
             ø. i
                       159.1
RSD
                                   CO 4/24/04
PRESENT CONCENTRATIONS 246112
dentity 1: 243112 Identity 2: pa56-215 Type: SAMPLE
eight : 1.0000 Volume : 1.00 Printed : 2:37:36 PM June 15, 2004
          K 766
                      L1670
                                  Na589
                                                          Sc361
                                                 Sc
            ppm
                        ppm
                                    ppm
          9.0736
                      0.0023
                                  8.9057
                                            4994.000 H
                                                        116.9265
# 2
          9.0932
                      0.0008
                                  8.9788
                                            4993.000 H
                                                       116.9031
          9.0834
                      0.0015
                                  8.9422
                                            4993.500 H
                                                       116.9148
ean
                      0.0011
                                  0.0517
                                               0.707
D
          0.0139
                                                          0.0166
          0.1527
                     71.8559
                                  Ø.5782
                                               0.014
                                                          0.0142
                                             CO 4/24/04
ACKGROUND CONRECTED INTENSITIES 246113
dentity 1 : 243148 Identity 2 : pg56-215 Type : SAMPLE
eight: 1.0000 Volume: 1.00 Frinted: 2:40:44 PM June 15, 2004
          K 766
                      L1670
                                  Na589
                                                 Sc
                                                          Sc361
                        -0.5
                                  5908.0
                                                          4966.0
# i
          1018.5
                                              4966.0
                        -2.5
                                  5936.0
                                              5027.0
          1022.5
                                                          5027.0
          1020.5
                        -i.5
                                  5922.0
                                              4996.5
                                                          4996.5
ean
Ð
                                    19.8
                                                43.i
             2.8
                        i.4
                                                            43.1
                                                 0.9
RSD
             Ø.3
                        94.3
                                     Ø.3
                                                             Ø. 9
PFARENT CONCENTRATIONS 245 113
dentity 1: 243113 Identity 2: pg56-215 Type: SAMPLE
eight: 1.0000 Volume: 1.00 Printed: 2:40:44 PM June 15, 2004
          N_766
                      Li670
                                  Na589
                                                          Sc361
                        ppm
            mag
                                    ppm
                                                            ppm
                                  8.9395
# 1
          9.0269
                      0.0021
                                            4966.000 H
                                                       116.2701
          8.9517
                      0.0018
                                  8.8723
                                            5027.000 H
          8.9893
                      0.0020
                                  8.9059
                                            4996.500 H
                                                       116.9851
ean
Ũ
          0.0531
                      Ø. ØØØ2
                                  0.0475
                                              43.134
                                                          1.0112
          0.5912
                     12.3230
                                  Ø. 5334
                                               0.863
                                                          0.8644
ACKGROUND CORRECTED INTENSITIES 245 114
                                            CO 4/24/04
dentity 1 : 245114 Identity 2 : pg56-215 Type : SAMPLE
eight : 1.0000 Volume : 1.00 Frinted : 2:43:50 PM June 15, 2004
         K_766
                     L1670
                                  Na589
                                                          Sc361
                                                 Sc
                        -7.5
           25.0
                                   18.0
                                              5021.0
                                                          5021.0
           13.0
                        ŵ.5
                                    19.0
                                              5085.0
                                                          5085.0
           19.0
                        -3.5
                                    18.5
                                              5053.0
                                                          5053.0
ean
                         5.7
                                     Ø.7
Ð
            8.5
                                                45.3
                                                            45.3
           44.7
                       161.6
                                     3.8
                                                             0.9
RSD
                                                 0.9
                                         CO 6/24/04
PPARENT CONCENTRATIONS 245114
dentity 1: 243114 Identity 2: pg56-215 Type: SAMPLE
eight : 1.0000 Volume : 1.00 Printed : 2:43:52 PM June 15, 2004
          K_766
                     L1670
                                  Na589
                                                 Sc
                                                          Sc361
           ppm
                        ppm
                                    ppm
          0.1431
                     0 0009 i
                                 -0 0473
                                            500: 000 U
                                                        117 5545
```

ean D RSD	0.0893 0.0760 85.1309	0.0016 L 0.0010 59.9695	-0.0468 0.0008 1.7365	5053.000 H 45.255 0.896	
ACKUKOUN	ND CORRECTED	INTENSITIES?	245115	0.0 1.1 -	104
eight:	i.0000 Volu	ime: 1.00 F	rinted:	2:47:00 PM Jun	ne 15, 2004
# 1 # 2	K_766 416.0 426.0	236.5 237.5	Na589 34023.5 34532.5	Sc 4940.0 4982.0	
ean D RSD	421.0 7.1 1.7	237.0 0.7 0.3	34278.0 359.9 1.0	29.7	4961.0 29.7 0.6
PPARENT	CONCENTRATIO	ONS 245 115	00	0124/04	
dentity	1 : 243115	Identity 2:	pg56-215	Type : SAMPLI 2:47:00 PM Jun	E ne 15, 2004
	K_766		Na589	Sc	Sc361 ppm
# 1 # 2	ррт 3.6604 3.7180	ppm 0.0435 H 0.0433 H	ppm 52.1094 52.4435	4940.000 H 4982.000 H	115.6605
ean D RSD		0.0434 H 0.0001 0.2849	52.2764 0.2363 0.4520	4961.000 H 29.698 0.599	0. 6962
ientity	1 : 2 13116	Identity 2:	pg56-215	Type : SAMPLI 2:50:08 PM Jun	E
-		Li670			Sc361
# 1 # 2	310.0 313.0			4556.0 4548.0	
ean D RSD	311.5 2.1 0.7	513.5 2.8 0.6	51316.5 410.1 0.8		4552.0 5.7 0.1
	CONCENTRATIO			4/24/04	
ientity	1 : 243116	Identity 2:	pg56-215	Type : SAMPL 2:50:08 PM Ju	E ne 15. 2004
	K_766	L1670	Na589	Sc	Sc361
# i # 2	ppm 2.9427 2.9773	ррт 0.0990 Н 0.1000 Н		4556.000 H 4548.000 H	
ean D RSD		0.0995 H 0.0007 0.6600	0.7888	5.657	0. 1326

ACKGROUND CORRECTED INTENSITIES

eight : 1.0000 Volume : 1.00 Printed : 2:55:28 PM June 15, 2004

010103

# 1 # 2	K_766 1891.0 1924.0	L1670 23773.5 23758.5	Na589 16331.0 16348.0	5c 4413.0 4388.0	Sc361 4413.0 4388.0
ean	19 0 7.5	23766.0	16339.5	4400.5	4400.5
D	23.3	10.6	`12.0	17.7	17.7
RSD	1.2	0.0	Ø.i	0.4	0.4

PPARENT CONCENTRATIONS

eight: 1.0000 Volume: 1.00 Printed: 2:55:28 PM June 15, 2004

	K_766	L1670	Na589	Sc	Sc361
	p pm	ppm	ppm		ppm
# i	18.9449	4.6479	27.9645	4413.000 H	103.3056
# 2	19.3871	4.6714	28.1536	4388.000 H	102.7195
ean	19.1660	4.6597	28. 0591	4400.500 H	103.0125
Đ	0.3127	0.0166	0.1337	17.678	Ø. 4144
RSD	1.6316	0. 3569	0.4765	0.402	0.4023

hecking calibration verification ...

eport name	Low limit	Value	High limit
_766	18.000	19.166	22.000
1670	4.500	4.660	5.500
a589	27.000	28. 059	33.000

ACKGROUND CORRECTED INTENSITIES

eight: 1.0000 Volume: 1.00 Printed: 2:59:42 PM June 15, 2004

	K_766	Li670	Na589	Sc	Sc361
# i	8.0	-8.5	37.0	4420.0	4420.0
# 2	20.0	-5.5	30.0	4406.0	4406.0
ean	14.0	-7. ŵ	33.5	4413.0	4413.0
D	8.5	2. i	4.9	9.9	9.9
RSD	60.6	30.3	14.8	Ø. 2	0.2

PPARENT CONCENTRATIONS

dentity 1 : Calibration blank Identity 2 : Type : CB

eight: 1.0000 Volume: 1.00 Printed: 2:59:42 PM June 15, 2004

	K_766	L1670	Na589	Sc	Sc361
	ppm	ppm	ppm		ppm
# i	0.0024	0.0006 L	-0.0111	4420.000 H	103.4697
# 2	0.1236	0.0011 L	-0.0229	4406.000 H	103.1415
ean	ø. 0 63 0	0.0009 L	-0.0170	4413.000 H	103.3056
ũ	0.0857	0.0004	0.0084	9.899	0.2321
RSD	136.0060	48.2341	49.2798	0.224	0.2247

hecking calibration blank ...

c361

ଡ. ଉଚ୍ଚ

103.306

ICP	ANALYSIS
- 1 - C	

	PROJ.	NO.	PROJ			DATE	MATRIX	LOGBK PG
06	5002.01.	. 141	Div i	0 <u>20</u> (05	240415-Z 240521-6	6-15-A	WAtel	56214
			•					
								
	INSTF	RUM	ENT:	The	10£2_	FILI	ENAME: B	404152
			-					
	INSTR	RUM	ENT I	DL:				

Method: DATLY? Standard: blk

Run Time: 06/15/04 11:40:18

010106

113/11	The Mr. Contract of the State of State					U	TOTOO
Elem	Ag328Ø	A13Ø82	As1890	B_2496	Ba4934	Be3130	Bi2230
Avge	-, 0000	. 0005	ଉଉଉଉ	. 0 000	-, 0000	" ØØØ1	-, 2020
SDev	. ወወወወ	୍କ ମମ୍ବାହାହା	ወወወወ	, (አርነርነርነ	" (Z) (Z) (Z) (Z)	" (Z1(Z1(Z1(Z1	የአኒስኒስኒክ
%RSD	8,843	.3134	48.50	16.08	11.71	1.761	115.7
# i			0001	. ወወወድ	- " ወወወወ	-, (1001	, ÇIĞIĞIĞIĞI
#2	ପ୍ରଦ୍ରହ	. 0005	ଉଚ୍ଚତ	. 0001	ଉଉଉଉ	0001	ଉପସସ
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Avge	. 0000	0000	0000	. 0000	. 0004	. 0000	.0003
SDev	. 0000	. ପ୍ରଦ୍ରହ	. ମହହତ	. 0000	. 0000	. ଉଉଉଉ	. 0000
%RSD	2.744	25.03	56.50	175.4	1.208	22.40	7.967
7814-232) # 1 ··· } ··· }	toursult in 1900 suit	00 x 000	3. 1 (3.9 m ⁻¹)	alle and the second second	· h # * * *	, w ,
#1	. ଉପସସ	ଉତ୍କର	ଅହାହାହା	ଉଷ୍ଟର	. ଉପର4	. ଉପପଦ	. 0003
#2	. ଉଉଉଉ	ଉଉଉଡ	ଉଉଉଉ	. ଉଉଦଦ	. 0004	. ଉଉପଥ	. 0003
Elem	La3988	Li6707	Mg279Ø	Mn2576	Mo2020	Na3302	Na5889
Avge	0000	. ଉଉଉଡ	. ଡିଡଡଡ	. 0000	0000	0002	0104
SDev	. ଅପାସପ	. ଉଉଉଉ	. ଉପପଦ	. 0000	. ଉତ୍ତତ	. ଉଉଉଉ	. ଉଉଉଡ
%RSD	424.9	16.15	47.07	141.4	75.48	6.810	. 1181
# 1	. ଉଦ୍ଭଦ	. ଉପସପ	. ଉପସସ	. ଉପସସ	ଉପପସ	0002	0104
井戸	ଉପପପ	. 0001	. ଉଉପପ	. ଉଉଉଡ	0000	ଉଉଉଞ	0103
F*** *L		gra	ی و پیسپوسریسریس	رسر و رست پهنورسررس	Fr. 3 / /	r. 3 m.m.m.	to be more to to
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	5_1820	Sb2068
Avge		. 0000	.0001	ଉଉଉଉ	.0001	. 0008	0012
SDev		. ØØØØ 		. ଉପସର			. ወወወወ 1705
%R:3D	358.6	.0758	16.39	47.81	31.88	2.561	.6705
# 1	ØØØØ	. ØIØIØIØI	. ØØØ1	ØØØØ	. (21/21/21)	. ወወወብ	~ ØØ12
井亭	. ଉପସାସ		. 0001	0000	. 0001	. ଉଉଉନ	ØØ1∂
Elem	Sc3613	1960/1	1960/2	812881	Sn1899	Sr4215	Th2837
Avge	64.50	0002	. ଉଉଡୀ	. ଉଉଟଡ	. ଉଉଉଉ	. ଉଉଉଉ	. ଉଉଉଡ
SDev	. Ø5	. 0001	. ଉପପା	ଉଉଉଉ	. 0001	. ወወወወ	୍କ ଓାହାହାହା
%RSD	. 0760	32.56	77.01	.9194	381.7	7.368	34.21
#1	64.47	0001	. 0001	.0020	0000	. ଉଉଉଉ	. ଉଉପୀ
#2	64.53	0002	.0002	. 0020	. 0001	. ଉପଉପ	. ଉପଉପ
Elem	Ti3349	T11908	U_4090	V_2924	W_2079	Y_3710	Zn2062
						. 0000	
Avge SDev	ଉଉପୀ . ଉଉପର	0002 . 0001	ଉଉପ4 . ଉଉପର	ଉଷଷଷ . ଉଷଷଷ	. ଉଉଷଥ . ଉଉଷଷ	. 0000 . 0000	. ଉଉପ 1 . ଉଉପ ଉ
			5.313		16.60		11.75
%RSD	15.59	51.12	ವಕನಕನ	5.313	T CD * CD K3	28.21	s. s / W
#1	0001	0001	0004	ଉପସସ	. 0002	. ଉଷ୍ଟର	. 0001
特定	0001	0002	0003	ଉଉଉଉ	.0002	. ଉପଉପ	. 0001
£-1-1- 11				.104			
Elem	Zr3496			1034/	0		

#1 ,0001 #2 ,0001

Avge

SDev

XRSD

. 0001

. 0000

31.47

Jel 6-15-04-1

Jan Hoy

IntStd	1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc	*****	******	*****	10000 00000	*****	*****
Wavlen	361.384	*****	*****	/ssee A0000	*****	*****	
Avge	644924	10000	retting papers	****	objeka forma	****	****
SDev	488.6108	. ଉଉଉଉଉଉଉ	*****	*4000 10000		1000 1100	
%RSD	.0757625	. 00000000	******	*****	9000 Perse	*****	****
#1	644579	10000	*****	····		,,,,,,	******
#8	6.45870	10000	****	1444 *****	*****	*****	****

Method: Run Time	DAILY2 : 06/15/04		d: clp_sto	14		0.1	10108
Elem Avge SDev %RSD	Ag3280 . 0830 . 0000 . 0341	As1890 .1171 .0000 .0350	22 0 3/1 .3023 .0003 .1009	2203/2 .2612 .0000 .0096	S52068 . 1806 . 0006 . 3068	1960/1 . 2615 . 0002 . 0842	1960/2 2682 0006 2399
# 1 # 2	. Ø83Ø . Ø83Ø	.1171 .1172	.3025 .3021	.2611 .2612	. 1802 . 1810	.2613 .2617	. 2677 . 2687
Elem Avge SDev %RSD #1	T11908 .2216 .0006 .2874 .2221						
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 648023 630.7393	2 Time 10000 .000000	3 NOTUSED 	4 NOTUSED 	S NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	647577 648469	1	****	****	*****	****	*****

.....

Method: DAILY2 Standard: clp stdi 010109 Run Time: 06/15/04 11:49:27 Elem A13082 Ca3179 Fe2714 K_7664 Mg279Ø Li6707 Na3302 3.220 Avne . 1182 . 1878 . 0984 .2078 .0852 .0089 ୍ଥ ପ୍ରତ୍ୟପ୍ତ . 0001 . 0006 SDev . 0000 .015 . 0000 . 00000 %RSD .0257 .0303 .0126 .2753 . 4586 .0288 .0786 #1 .1122 . 1877 .0984 .2074 3.231 .0852 . 0089 .1122 .1878 3.210 排記 .0984 .2082 .0852 . 0089 7 IntStd 2 3 6 Mode *Counts Time NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED Elem Sc ----Wavlen 361,384 Avge 643217 10000 ***** **....** ----SDev 127,2792 . 000000000197879 %RSD . ଡାଉଡାଡାଡାଡାଡ #1 643307 10000 ----排出 643127 1 (0) (0) (0) (0) ---

Standardization Rpt.

Ø6/15/Ø4 11:56:36 AM

page 1

Method: 1 Run Time	DAILY2 : 06/15/04		rd: clp_std	15			
Elem Avge SDev %RSD	B_2496 .1685 .0004 .2399	Bi2230 .0342 .0001 .3288	Mo2020 .3294 .0017 .5112	P_1782 .0161 .0001 .9211	Si2881 .1754 .0005 .2989	Sn1899 .1511 .0002 .1114	Sr4215 2.610 .004 .1543
#1 ##	.1682 .1688	.0343 .0341	.3282 .3306	.0162 .0160	. 1758 . 1751	.1513 .1510	2.607 2.613
Elem Avge SDev %RSD	Ti3349 2.598 . QQ2 . Q6Q5						
#1 #@	2.597 2.599						
IntStd Mode Elem Wavlen	1 *Counts Sc 361.384	Z Time	3 NOTUSED 	A NOTUSED	5 NOTUSED 	6 NOTUSED 	7 NOTUSED

10000

10000

10000

2438.104 .00000000

.3767565 .0000000

647130

645406

648854

Avge

SDev

%RSD

#1

排出

Method: DAILY2 Standard: clp_std2

Run Time: 06/15/04 11:56:47

010111

						010	111
Elem	Ba4934	Be3130	Cn2677	Cu3247	Ni2316		
Avge	1, 155	1.300	. 3989	. 3194	. 3348		
SDev	. ØØ 1	. ØØ2	. 0001	. 0005	. ØØØ4		
%RSD	.0538	. 1635	.0378	.1563	.1122		
# 1	1.156	1.299	. 3988	.3198	. 3346		
#2	1.155	1.302	. 3990	.3191	. 3351		
IntStd	1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc				****		
Wavlen	361.384		****	****		44-15 5-1-1-2	*****
Avge	646431	1 ଉପ୍ତତ୍ତ	****	*****			
SDev	2026.568	. ଉଉଉଉଉଉଉ	****			*****	*****
%RSD	.3135011	. ଉପଉପପପପ	10004 10000	**** ****	*****	*****	*8(** *****
#1	644998	10000	*****	*****	1**** *****	pages 400°0.	1000 1000.
#2	647864	10000	*****		*****	***** *****	*****

Method: DAILY2 Standard: clp_std3

Run Time: 06/15/04 12:00:06

Elem Avge SDev %RSD	Cd2265 . 9303 . 0006 . 0669	Co2286 .2052 .0003 .1358	Mn2576 .8268 .0001 .0137	V <u>2</u> 924 .1886 .ทิศตร .1138	Zn2062 .2732 .0000 .0139	01	0112
# 1 #:>	. 9307 . 9298	. 2054 . 2050	. 8269 . 8267	.1888 .1885	. 2731 . 2732		
IntStd Mode Elem Wavlen Avge SOev	1 *Counts Sc 361.384 649341 1798.880	2 Time 10000 .0000000	3 NOTUSED 	A NOTUBED	S NOTUBED	6 NOTU:3::0	7 NOTUSED
%RSD #1 #2	. 277Ø316 65Ø613 648Ø69	. ወወወወወወ 1 ወወወወ 1 ወወወወ					

Method: Run Time	DAILY2 : 06/15/04		d: clp_sto	1 6		01	10113
Elem Avge SDev %RSD	La3988 .4844 .0001 .0296	Na5889 .1160 .0008 .6760	Pd3404 .2106 .0003 .1664	5_1820 . 0357 . 0002 . 5491	Th2837 . 1124 . ๗๗๗3 . 2734	<u>U_</u> 4090 . 0759 . 0003 . 3942	W_2079 2004 0008 4195
排 1 排注	. 4845 . 4843	.1155	.2109 .2104	. 0356 . 0359	.1126	.0761 .0757	. 2010 . 1998
Elem Avge SDev %RSD #1 #2	Y_3710 .7869 .0016 .2007 .7881 .7858	Zr3496 1.935 .002 .0942 1.936 1.933					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts 5c 361.384 641001 2815.699	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	639010 642992	1 0000 1 0000	*****		1.00 per		

Method:	DAILYS	Slo	ppe = Conc(SIR)/IR		010114
P 7	1.1	Listenska medamel	l mara managan	@1 mmn	V i m.b. m.cn.m.m.m.b.	Date Standardized
	Wavelen	High std clp_std4	Low std	Slope	Y-intercept .000635	06/15/04 12:03:46
Ag3280	328.068		blk	24.0914	206454	Ø6/15/Ø4 12:Ø3:46
A13Ø82	308.215	clp_std1	blk	447.553		
As189Ø	189.042	clp_std4	b1k	85.3400	.003970	06/15/04 12:03:46
B_2496	249.678	clp_std5	blk	59.4010	009764	06/15/04 12:03:46
Ba4934	493.409	clp_std2	blk	8.65696	.000161	06/15/04 12:03:46
Be3130	313.042	clp_std2	blk	3.84438	. 000459	06/15/04 12:03:46
Bi2230	223.061	clp_std5	blk	144.922	.002471	06/15/04 12:03:46
Ca3179	317.933	clp_std1	blk	266.390	010946	06/15/04 12:03:46
Cd2265	226.502	clp_std3	blk	10.7460	.000283	06/15/04 12:03:46
Co2286	228.616	clp_std3	blk	48.7321	.000378	06/15/04 12:03:46
Cr2677	267.716	clp_std2	blk	25.0695	000486	06/15/04 12:03:46
Cu3247	324.753	clp_std2	blk	31.3491	013392	06/15/04 12:03:46
Fe2714	271.441	clp_std1	blk	508.561	014984	06/15/04 12:03:46
K_7664	766.491	clp_std1	blk	240.995	078844	06/15/04 12:03:46
La3988	398.853	clp_std6	blk	20.6605	. 000080	06/15/04 12:03:46
Li6707	670.784	clp_std1	blk	3.10552	000147	06/15/04 12:03:46
Mg2790	279.078	clp_std1	b1k	293.428	000682	06/15/04 12:03: 46
Mn2576	257.610	clp_std3	blk	12.0959	000075	06/15/04 12:03:46
Mo2 020	202.030	clp_std5	b1k	30.3568	. 000706	06/15/04 12:03:46
Na33 0 2	330.232	clp_std1	blk	5451.53	1.24262	06/15/04 12:03:46
Na5889	588.991	clp_std6	blk	7.95428	.082377	06/15/04 12:03:46
Ni2316	231.604	clp_std2	blk	29.8645	.000301	06/15/04 12:03:46
P_1782	178.287	clp_std5	blk	623.130	006763	06/15/04 12:03:46
2203/1	220.351	clp_std4	blk	33.0945	004003	06/15/04 12:03:46
2203/2	220.352	clp_std4	b1k	38.2847	.001425	06/15/04 12:03:46
Pd3404	340.458	clp_std6	blk	48.7631	003705	Ø6/15/Ø4 12:Ø3:46
S_1820	182.040	clp_std6	blk	286.042	225976	06/15/04 12:03:46
Sb2Ø68	206.838	clp_std4	blk	55.0063	.064650	Ø6/15/Ø4 12:Ø3:46
Sc3613	361.384	blk	dark	1.55038	. ଉପପପପପ	Ø6/15/Ø4 12:Ø3:46
1960/1	196.021	clp_std4	blk	38.2202	. 006933	Ø6/15/Ø4 12:Ø3:46
1960/2	196.022	clp_std4	blk	37.3048	004829	Ø6/15/Ø4 12:03:46
Si2881	288.158	clp_std5	blk	57.4359	113905	Ø6/15/Ø4 12:Ø3:46
Pb220	220.353	NONE	NONE	1.00000	. ଉଉଉଉଉଉ	*NOT STANDARDIZED
Se196	196.086	NONE	NONE	1.00000	. ଉପପପପପ	*NOT STANDARDIZED
Sn1899	189.989	clp_std5	blk	66.2107	001128	0 6/15/04 12:03:46
Sr4215	421.552	clp_std5	blk	3.83124	ଉଉଉଉ56	Ø6/15/Ø4 12:Ø3:46
Th2837	283.730	clp_std6	b1k	92.8931	004178	06/15/04 12:03:46
Ti3349	334.941	clp_std5	blk	3.84891	.000463	06/15/04 12:03:4 6
T119Ø8	190.864	clp_std4	blk	45.082i	.007338	06/15/04 12:03:46
U_4Ø9Ø	409.014	clp_std6	blk	138.641	.049337	06/15/04 12:03:46
V_2924	292.402	clp_std3	b1k	53.0046	.002219	06/15/04 12:03:46
ผ <u>ื</u> ≥Ø79	207.914	clp_std6	blk	24.9624	004432	06/15/04 12:03:4 6
Y_3710	371.030	clp_std6	b1k	12.7050	000049	06/15/04 12:03: 46
Zn2062	206.200	clp_std3	blk	36.6208	003095	06/15/04 12:03:46
Zr3496	349.621	clp_std6	blk	5.65061	000609	Ø6/15/Ø4 12:Ø3:46

Analysis Report QC Standard 06/15/04 12:12:23 PM

page 1

010115

Run Time: Ø6/15/Ø4 12:07:49

Method: DAILY2 Sample Name: icv/ccv

Operators

Comment:

A Contract of Contract	(144.)	<i>y</i>					
Elem	Ag328Ø	A13082	As 1890	B_2496	Ba4934	Be3130	Bi2230
Units							
	ppm "9907	ppm o coa	рр ж 4.953	ppm A 303	្រុស្គ 10.01	ppm	ppm s aaa
Avge		9.691		4. 793		. 9737	5
SDev	.0010	.005	.003	. 000	.01	. 0006	. 007
%RSD	. 1057	. 0502	.0647	.0027	. 1025	. Ø669	. 1379
#1	. 9900	9.688	4.955	4.793	10.01	. 9742	5.005
#2	.9914	9.694	4.950	4.793	9.999	. 9733	4, 995
Tr k	# 3 3 3 W	Ja W Ja	7,000	THE LOW	J# J J J	n Druses	The Contract
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	1.000	10.00	5.000	5.000	10.00	1.ወወወ	5.000
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units			ppm	ppm	ppm	ppm	ppm
Avge	ppm 20.20	рр и .9977	4.968	1.947	2.018	10.17	18.20
****	.21		. 006	.004	.002	. 04	. Ø4
SDev		. 0006				.3727	.2353
%RSD	1.060	. Ø596	. 1306	. 1889	.0935	* 5/57	* ಮನ್ನಿನ
# 1	20.05	.9973	4.972	1.950	2.016	10.19	18.17
#2	20.35	.9982	4.963	1.945	2.019	10.14	18.23
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	20.00	1.000	5.000	2.000	2.000	10.00	20.00
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
wande	3. 43.4. 43.43	3. 03.4. 03.03	s con a conco), (C) a (C) (C)	3. U.C. W. C.C.C.	3. 40.4 40.40	K 40.2 40.40
Elem	La3988	Li6707	Mg:279Ø	Mn2576	Mosasa	Na3302	Na5889
Units	opm	ppm	$p \circ n$	ppa	15 to m	ppm	ppm
Avge	4.935	Q4.471	19.89	1.008	4.942	Q26.9Ø	018.98
SDev	. ଉପର	.011	. aa	. ଉଉଉ	.017	. 10	. Ø4
%RSD	. 0075	.2390	. 1075	.0165	. 3371	.3538	, 1993
#1	4.935	04.479	19.90	1.009	4.930	Q26.96	Q18.95
#2	4.935	Q4. 464	19.87	1.008	4.953	Q26.83	019.00
	a ar ar troi tage	200 F # 2 200 F	all of the barrie	de de To-Tas-Tas-	F W Sec Sec	Service Section Sections	to a comment
Errors	QC Pass	QC Fail	QC Pass	QC Pass	QC Pass	QC Fail	QC Fail
Value	5.000	5.000	20.00	1. ወወወ	5.000	30.00	30.00
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	C 1020	Sb2068
Units		*****				5_1820	
	ppm	ppm 4 000	ppm 4 oos	ppm 4 oo4	ppm	ppm	ppm
Avge	4.873	4.928	4.985	4.986	1.022	.9916	.9843
SDev	.012	.333	.000	.023	.001	.0244	.0058
%RSD	. 2506	6.748	.0018	. 4564	.0751	2.462	.5897
# 1	4.881	4.693	4.985	5.002	1.022	" 9743	.9802
#2	4.864	5.163	4.985	4.970	1.023	1.009	. 9884
Errors	QC Pass	QC Pass	NOCHECK	NOCHECK	QC Pass	QC Pass	QC Pass
Value	5.000	5.000			1.000	1.000	1 , (7)(7)(7)
Range	10.00	10.00			10.00	10.00	10.00
Elem	Sc3613	1960/1	1960/2	812881	Pheed	Se196	Sn1899
ence we have drift	entral sections of the	an a territorial all	and a section to the	and the test test of	a e. de de Tan'	and an of the fact	and the state of the state of

Analysis	Report	QC Stan	dard	06/15/	23 PM	p age 2	
Units	%R	ppm	ppm	ppm	ppm	PPM	PPM
Avge	100.6	5.184	5.170	4.932	4.986	5.175	4.908
SDev	.3	.003	.007	.006	.015	.005	.001
%RSD	.2747	.0597	.1295	.1158	.3049	.1068	.0232
#1	100.4	5.186	5.175	4.928	4.996	5. 178	4.907
#足	100.8	5.182	5.165	4.937	4.975	5. 171	4.909
Errors Value Ran ge	NOCHECK	NOCHECK	NOCHECK	QC Pass 5.000 10.00	0C Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	PPM	ppm	ppm	ppm	ppm	ppm	PP#
Avge	5.048	.9715	4.870	5.167	.9821	4.941	.9934
SDev	.002	.0021	.003	.032	.0132	.002	.0021
%RSD	.0401	.2169	.0656	.6166	1.343	.0307	.2148
#1	5,050	.9730	4.872	5. 145	.9728	4, 940	.9919
#流	5,047	.9700	4.868	5. 190	.9914	4, 948	.9949
Errors	QC: Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	00 Pass
Value	5.000	1.000	5.000	5.000	1.000	5.000	1.000
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem Units Avge SDev %RSD	Y_3710 ppm 4.969 .002 .0302	Zn2062 ppm 1.004 .012 1.158	Zr3496 ppm 4.805 .019 .4035				
#1 #2	4.97Ø 4.968	.9961 1.012	4.792 4.819				
Errors Value Range	QC Pass 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00				

Analysis Report		QC Standard		06/15/04 12:12:23 PM			page 3	
IntStd Mode	i *Counts	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED	
Elem	Sc	***** *****		*****	****	****	****	
Wavlen	361.384	******		1-075 3955	4,400 03000		*****	
Avge	648851	1 ወወወወ	****	****	***** *****	*****	****	
SDev	1808.779	. ଉଉଉଉଉଉଉ	*****	*****	******	*****		
%RSD	.2787665				*****	*****	Ann 6074	
#1	647578	10000	****	******	1000 0000	(CMA) 1-1-81	····	
#2	650130	1 ወወወወ		1811.	*****	*****	*****	

Analysis Report Blank Sample 06/15/04 12:18:59 PM page 1

Method: DAILYS Sample Name: ICB/CCB Operator:

Run Time: 06/15/04 12:14:25

Comment:

mode: co	MC COLL	recont i					
Elem	Ag328Ø	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
		• •		•	• •	. ପ୍ରଥିଷ୍	• •
Avge	. 0003	0027	.0015	. 0048	. 0001		. ଉଉଦର
SDev	. 0004	. 0050	.0016	. 0008	. 0000		.0038
%RSD	119.3	183.1	109.8	16.52	.0925	156.8	416.5
# 1	. ଉଉଉଚ	0063	. 0026	. 0054	.0001	0000	. 0036
#2	.0001	. 0008	. 0003	. 0043	. 0001	. ଉଷଷଷ	0018
	-						
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	. 0050	. 0500	. 0050	. 0500	. ଉପ୍ତର୍ଶ	. 0050	. Ø1ØØ
Low	0050	0500	0050	0500	0050	0050	0100
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Unite	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0021	. 0005	0003	. ØØØ	" ହାହାରାଧ	,0121	.0013
SDev	. 0009	. 0003	.0003	. 0000	. 0001	. 0036	.0043
				43.53			338, N
%RSD	43.14	58.66	100.1	<i>್ಕಾ</i> ಫಾರ್	44.21	29,54	ಬೆಂಬೆಂಬೆ ⊭ಿ43
#1	. 0028	.0007	0005	. 0003	. 0001	0146	. 0043
#2	.0015	. 0003	0001	. 0005	. ወወወድ	" ØØ195:	ØØ17
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	. Ø5ØØ	. 0050	. 0050	. 0050	. ØØ5Ø	. Ø25Ø	. 1 (7) (7) (7)
Low	0500	0050	0050	0050	0050	0250	1000
r	1 - 70 O O	1 3 F 777 779 779	tea	h.d	had all one of the other of the	to the company of the	ki er m m m
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	pp m	bbw.	bb m	bbm	bbw	pp m	bbw
Avge	. 0005	. 0001	.0012	. ହାହାହା 1	H. 0070	. (2)(2)(2) 1	. 0014
SDev	. 0002	. ଉଉଉଡ	.0026	. 0000	. 0003	.0319	. 0003
%RSD	49.18	14.31	216.7	69.53	4.352	23820.	24.46
# 1	. 0006	. 0001	0006	. 0000	H. 0072	0224	.0012
#2	.0003	. 0001	.0031	. 0001	H. 0068	.0227	.0016
₩ x	* 6060602	" KIKIKIT	* 66621	" KIKIKI I	H. GGGG	. William /	* KIKI I D
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC Pass
High	. 0050	. 0050	. 0500	. 0050	. 0050	. 0500	. 0500
Low	0050	0050	0500	0050	0050	0500	0500
E	M Ton' Ton' Ton' Ton'	M. Book The Land Boy'	All "Man" Sout" Was " West"	28 Man Man Coup Man	M. Mar. Ber Lead Mer.	W. San San San San	St. Mar. State State State
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	pp m	ppm	ppm —	ppm	ppm	ppm	ppm
Avge	ଉଡବଡ	0005	0000	. ହାହାହାୟ	. 0014	0062	ଉଉଟର
SDev	. ଉଉଉउ	.0103	. ଉଉଉଞ	. 0005	.0017	. ଉଉଥର	. 0049
%RSD	1151.	2142.	2374.	125.8	116.5	129.6	188.8
# 1	0003	.0068	0006	(NO)O) O	Ordina m	Ch Ch Ch ch	Outstants
				.0008	.0003	0005	. 0009
#2	. WWYP	0077	. ଉଦଦ5	. ወወወወ	. WASE	LØ118	ØØ6 t
Errors	LC Pass	LC Pass	NOCHECK	NOCHECK	I.C Pass	LC Pass	LC Pass
High	. 0050	. 0100			. 0050	, 01 00	. 0100
••••	0050	2122			0050	0100	
Low						" (Ce I reste	0100
Elem	Sc3613	1960/1	1960/2	Si2881	Pb22Ø	Se196	Sn1899
							• •

Analysis	Report	Blank S	Sample	0 6/15/	/04 12:18:5	59 PM	page 2
Units	%R	PPM	PP#	pp#	ppm	ppm	ppm
Avge	99.78	—. ଉଷପଷ	0026	. 0020	.0003	0017	0001
SDev	.08	. ଉଷଷଚ	.0030	. 0009	.0001	.0017	.0018
%RSD	.0795	292ୟ.	117.2	47. 52	33.16	100.2	3356.
#1	99.72	0007	0004	.0013	. 0003	0005	.0012
#2	99.84	. 0006	0047	.0026	. 0008	0029	0013
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	IC Pass "0050 —"0050
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	PPM	ppm	ppm	ppm	ppm	ppm	FFM
Avge	.0000	0014	.0001	H.0100	.0266	. 0005	.0029
SDev	.0000	.0002	.0000	.0076	.0181	. 0003	.0011
%RSD	50.25	10.87	23.35	76.26	68.04	62.16	36.81
#1	. 0001	0015	. 0001	H. 0154	.0394	. ØØØ3	.0037
#2	. 0000	0013	. 0001	. 0046	.0138	. ØØØ7	.0022
Errors	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC Pass	LC Pass
High	.0050	.0100	.0050	.0100	.1000	.0050	.0100
Low	0050	0100	0050	0100	1000	0050	0100
Elem Units Avge SDev XRSD	Y_3710 ppm .0001 .0000 70.86	Zn2062 PPM - 0002 .0001 54.72	Zr3496 PP# . 0006 . 0003 44. 08				
#1 #2	. 0001 . 0000	0001 0003	. ଉଉପନ . ଉଉପ4				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

Hnaiysis	Report	натк дашріе		Ø6717c	page 3			
IntStd	1	2	3	4	5	6	7	
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED	
Flem	:3c	-2100 4-450	*****	****	***** *****			
Wavlen	361.384	****** *****	*****		*****	**** ****	C100.0 40	
Avge	643561	10000	····· ^···	*****	*1840 4-703	****	*****	
SDev	489.3179	. ଉପସମସମୟ	*****	*****	***** *****		40017 40007	
%RSD	.0760329	. ଉପଉପସସସ	*****	2004		***************************************		
# 1	643215	10000	*****		****		****	
井己	643907	10000	****	****	****		ADDES ARREST	

06/15/04 12:39:07 PM page 1

Method: DAILYS Sample Name: pbw-F15E1 pg56-214 Operator: Run Time: 06/15/04 12:34:34

Comment:

mode: co	uve corr.	ractor: 1					
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	pp m	ррж
Avge	. ଉତ୍କଷ୍ଟ	. 0067	0020	. 0034	. 0001	ଉଉଉଡ	. ØØ32
ALI/							
SDev	. 0006	. 0005	.0002	. 0007	. 0001	. ଉପରର	.0016
%RSD	78,69	7.159	11.46	19.76	82.86	40.43	51.80
# 1	.0018	. 0070	-,0021	. 0038	. 0001	ଉଉଉଉ	.0043
#2	. ଉଉଉଓ	.0070	0018	. ØØ29			
FF 1	" &:&:&:&:?	* KiKiD "2	" KIKI T CI	" MAGE A	የአይነፈነፈነ	, ØØØØØ	, (ZIQIE)(ZI
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	. 0050	. 0500	. 0050 	, Ø5ØØ	, AA5A	. 0050	Ø11 Ø1Ø1
Low	0050	0500	0050	0500	0050	0050	0100
Elem	Ca3179	Cd2265	Co2286	[""	("" "" . "" / . "")	for an engineer 4 to	17 ""F F F F
				Cr2677	Cu3247	Fe2714	K_7664
Units	bbm	ppm	ppm	bb.m	bbw.	ppm	bbm
Avge	.0130	, 0005	. ଅଧାର	H. Ø13Ø	. ପ୍ରୟୁଷ୍ଟ 1	H. Ø987	.0311
SDev	.0035	. ଉଉଉଓ	. ଉଉଡ3	. 0003	. ଉଉଉଟ	. 0247	. Ø356
%RSD	27.06	61.56	34, 83	2.158	173.5	24.97	114.4
# 1	.0155	. 0007	. 0011	H. 0128	. 0003	H. 1162	.0563
#2	.0105	. 0003	. 0007	H. Ø132	ଉତ୍ତର	H. Ø813	. 0059
£7 book	# 40. 3. 40. CD	a warms warn	a sassassas 1	1 1 w 425 32 523 52	- 2 V. V. V. V. V.	11 m 40 (13 d. 13	# 9090 CO O
Errors	LC Pass	LC Pass	LC Pass	LC High	LC Pass	LC High	LC Pass
High	.0500	.0050	. 0050	.0050	. 0050	.0250	. 1000
l.ow	0500	0050	0050	0050	0050	0250	1000
1	, 0000	* 6606	. 6636		. 6.66.		1 6,6,6
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na33Ø2	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	. 20211	.0001	.0081	.0013	.0021	H. 2533	.0021
SDev	. 0006	. 0001	.0047	. 0000	.0003	. 4154	.0048
%RSD	52.19	83.02	58.63	2.032	15.11	164.0	225.2
/41(D1)	and a design		ಇದಿ* ದಿಇ	E. COE	1 1 1	104.6	E E E E
# 1	.0015	.0000	.0114	.0013	.0018	H. 5470	.0055
#2	. 0007	. ହାହାହାହା	. 0047	. 0014	. മമല	0405	MM13
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC Pass
High	. ଉଉଚର	. 0050	. 0500	. 0050	. 0050	. 0500	. ២១២២
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	F_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	blam	bbm	ppm ppm	ppm	១១៣	bbw	ppm
Avge	H. ØØ82	. 0040	.0003	, ØIØIØI <u>1</u>	. (2)(2)4 1	. 0054	. 01015-1
SDev	. 0007	.0015	.0011	.0013	. 0076	. 0028	.0035
%RSD	8.806	36.71	373.7	1556.	183.5	51.96	68.66
	and the second second	/3 /3 ·** /4	professional professional	عد ميدريان		, or	
	H. 0087	.0030	0005	0010	H. 0095	.0034	.0076
#2	H. ØØ76	. 0050	. 0011	. ଉଉଷର	0012	.0073	. 0026
Errors	LC High	LC Pass	NOCHECK	NOCHECK	LC Pass	LC Pass	LC Pass
High	. 0050	.0100			.0050	.0100	.0100
	0050	0100					
Low	" descensive	" 47. 7. 47.147.1			0050	0100	0100
Elem	803613	1960/1	1960/2	Si2881	Pb22Ø	Se196	Sn1899

Analysis	Report			06/15/	06/15/04 12:39:07 PM		
Units Avge SDev XRGD	%R 98.64 .51	ppm .0021 .0056 263.5	ppm 0028 .0013 47.86	PPM H. 0254 . 0022 8. 709	PPM .0001 .0013 2025.	PPM 0012 .0010 88.75	F4·M 0010 . 0018 184. 9
# 1 # P	99.00 98.88	. 0060 0018	0038 0019	H. Ø27Ø H. Ø239	ଉପଦର . ଉପଦର	-, 0005 0018	, ଉଉଉ ଓ - , ଉଉ ଥିଓ
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC High .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem Units Avge SDev %RSD	Sr4215 PP# . 0001 . 0000 42. 28	Th2837 ppm 0016 . 0007 45.54	Ti3349 ppm - 0000 .0000 7.343	T11908 ppm .0008 .0003 32.66	U_4090 ppm .0487 .0390 80.08	V_2924 ppm .0003 .0004 130.1	W_2079 ppm .0003 .0023 822.9
#1 #溫	. 0001 . 0000	0021 0011	ଉଉଉଉ ଉଉଉଉ	. ଉଉପନ . ଉପଜନ	.0762 .0211	. 0000 . 0007	.0019 0013
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .1000 1000	LC Pass .0050 0050	LC Pass .0100 0100
Elem Units Avge SDev %RSD	Y_3710 PPM 0000 .0001 590.4	Zn2062 ppm .0005 .0001 29.94	Zr3496 ppm . 0008 . 0003 37. 83				
# 1 # @		. 0006 . 0004	. 0010 . 0006				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

010123

Analysis Report

06/15/04 12:39:07 PM page 3

Ir	ntStd	1	2	3	4	5	6	7
Мc	ode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
E	lem	Sc		*****	****	*****	****	
Wē	avlen	361.384	,,	****	*****	*****	*****	****
Ĥ١	vge	636165	10000	*****	*****	*****	*****	****
SI)ev	3252.691	. ଉପପପପପପ		*****	*****		****
% F	35D	.5112968	. 0000000		*****	****		
# 1	I	638465	10000	51620 61664	>>>> 10000	35500 IMMO	*****	
#4.3	5	633865	1 (2) (2) (2) (2)	#1449 ####	*****	*****	*****	····

Analysis Report

06/15/04 12:43:53 PM page 1

Method: DAILYP Sample Name: lcsw-F15W1 Operators

Run Time: 06/15/04 12:39:19

Comment:

Mode: CO	NC Corr	Factor: 1					
Elem	Ag328Ø	A13082	As189Ø	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	bba	៦៦៣	bbw
Avge	. 0505	1.908	1,995	. 0023	2.012	" Ø494	" ØØ49
SDev	.0005	.003	. 000	. ଉଉଉଉ	.001	. ଅପ୍ରଥମ	. 0085
	, 9734	. 1466	. 1003	1.971	. Ø41Ø	" Ø39Ø	174.6
%RSD	" 2 C 2 A	W. TE A. CO. CO.	# J. W. W. W.				
# 1	. 0508	1.910	1.993	.0088	2,013	. 0494	.0108
	, 0505 , 0501	1.906	1,996	.0023	2.012	. Ø494	0011
#2	" KI"IKIT	1. 700	3. H D 17 W				
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	bbw	ppm	ppm	ppm	ppm	to to m
Avge	20.96	.0497	.4992	. 2084	.2519	1.141	17.05
SDev	. 01	.0003	. 0001	.0011	. 0005	.019	୍କ ହାହା
%RSD	.0293	.6727	.0145	.5297	.2099	1.626	.0236
74OD	. തമാക	# C5 / E /	a the star P too				
#1	20.96	.0499	. 4993	.2092	.2523	1.154	17.04
#2	20.95	.0494	. 4992	.2076	.2515	1.128	17.05
11 1	STEEL SECTION AND ADDRESS.	# 45°F 5 °F					
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	bbm	bbw
Avge	.0003	. 0001	20.69	. 5036	. ଉଉପର	17.78	12.28
SDev	. 0001	. 0001	.03	.0001	. 0007	. 202	. Ø 1
%RSD	55.05	47.95	. 1689	.0105	79.64	.0174	. 1080
ANGD	Program Angeres						
#1	. 0004	. 0001	20.71	.5037	. 0014	17.78	12.29
#2	. 2002	. 0001	20.66	. 5036	. 0004	17.79	12.27
77 km							
Elem	Ni2316	P_1782	2203/1	2203/2	Pd34Ø4	S_182Ø	862068
Units	to to as	btan	btom	to to m	to tem	b.b.m	to to an
Avge	. 4979	0011	. 4981	. 4965	. ଉଉଉଞ	. 0017	. 4896
SDev	. 0017	.0210	. 0026	. ወወወወ	. 0016	. 0031	" ହାହାହାର
%RSD	. 3340	1860.	.5306	. 0082	813.8	184.8	. 0410
						N N	1 mm m
#1	. 4991	0160	. 4962	. 4964	ØØØ4	" ØØ39	. 4898
# (2)	. 4967	.0138	.5000	. 4965	.0019	0005	. 4895
					an	m 4 m /	Sn1899
Elem	Sc3613	1960/1	1960/2	Si2881	Pb22Ø	Se196	
Units	%R	ppm	bbm	bbw	ppm	ppm	ppm aata
Avge	97.50	2.026	2.040	.0277	. 4970	2.035	0014
SDev	. 34	.021	. Ø8Ø	. 0009	. 0009	.020	. 0001
%RSD	.3533	1.018	.9925	3.332	. 1787	1.001	10.49
				and and any and	4044	2.021	0015
# 1	97.74	2.011	2.026	.0270	. 4964	2.050	0013
#2	97.25	2.041	2.054	.0283	. 4977	E . C	a Valva a C
			Ti3349	T119Ø8	U_4Ø9Ø	V_2924	W_2079
Elem	Sr4215	Th2837				ppm	ppm —
Units	ppm	ppm	ppm	ppm	ppm −.0008	, 4981	0001
Avge	.0007	0128	.0002	2.059	-, adas . ads	. 0004	.0010
SDev	. ଅମଧ୍ୟ	. ଉପସର	. 0001	.012	1076.	. 0870	756.7
%R30	2.140	5.951	32.68	.5656	3. 363 7 CD #	# MOND F MO	a northern a
	agg Aus. 642, 14949	para a may my	Ch Ch Ch 4	2,050	" aass	. 4984	, ØØØØ16
# 1	. 0007	0133	. ØØØ	2.067	0071	. 4978	0009
井戸	. 0008	0183	. 0000	C. 1000 /	и чана ().	# 1 W 1 T W	

06/15/04 12:43:53 PM page 2

Elem Units Avge SDev %RSD	Y_3710 ppm 0001 .0000 11.89	Zn2062 ppm .4969 .0016 .3251	Zr3496 ppm .0003 .0003 97.89				
#1	0001	. 4958	. 0005				
#2	0001	. 4981	.0001				
IntStd	1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc	****		****	****	****	*****
Wavlen	361.384	*****	*****	****	****	****	
Avge	628807	10000		*****	*****		F-111 00-11-
3Dev	2187.788	. ଉପ୍ରପ୍ରପ୍ରପ୍ର	11100	****	*****	\$4698 T-161	190mg y-200m
%RSD	. 3479269		****	18004 00000	*****		ADD-1- 04F24
#1	630354	10000	******	*****	10-100	214 39	*****
#2	627260	1 ØØØØØ		*****	*****	serve color	**** ****

Method: DAILY? Sample Name: 243222 Operator: Run Time: 06/15/04 12:44:05

Comment:

mode: t	unu Larr	. ractor:	1.				
Elem Units Avge	Ag3280 ppm —.0003	A13082 ppm 0136	As1890 ppm — "0007	B_2496 PPM 1.688	Ba4934 ppm "2966	Be3130 ppm "თთთქ	Bi2230 ppm "0030
SDev	. 0004	. 0032	.0010	.011	. 0014	. ଉଉଉଉ	. 0008
%RSD	129.4	23.73	136.1	.6219	, 4832°	21.86	25,63
witch	3 NT 17 n 19	வக்க 7 கூ	វជាធិត្រូវ	* 12)1. 1. 2	n megarin	E 1 " C.D.	E. W. W. Co.
# 1	ଉଉଉଚ	0159	0014	1.696	. 2956	, ଉତ୍ତର	. 0025
#2	0000	0113	" ପ୍ରାଦ୍ରାଦ୍ର	1.681	.2976	, 010101 t	.0025
PF L	······································		# 61616161	T # D CO T	* 5.275	" Kikiki i	# 8080 Cr
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units							
	ppm 29.11	ррт .0004	.0025	ррт 0007	0006	.0802 ppm	. 1416
Avge							
SDev	. 04	. 0000	. 0001	.0001	. 0003	.0011	.0058
%RSD	.1349	5.568	3.929	9.294	49.43	1.381	4.096
#1	29,08	. 2024	. 0024	0007	ଉଉଉ୨	.0810	. 1457
			.0025			.0795	.1375
井己	29.13	. ଉଉଷ4	· www.	0007	0004	. 4793	.13/3
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na33 0 2	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0002	.0002	.0976	. 0041	.0015	2.930	1.865
SDev	. 0004	. 0000	. 0004	. 0000	. 0000	.077	. 006
%RSD	239.4	14.57	.3797	1.061	2.018	2.623	.3338
							
# 1	0005	. 0002	.0973	.0041	.0015	2.984	1.860
#2	. 0001	. ଉଉପ 1	.0978	. 0041	.0015	2.875	1.869
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	862068
Units	bbm	bb.w	b tom	p.p.m	to tom	totom	tetem.
Avge	. 0588	− . ଉଉଟ6	ଉଉଉଞ	.0025	0018	24,94	.0019
SDev	. ଉଷ୍ଟେଧ	. 0085		. 0011	. ØØØ1	401	. ØØ36
%RSD	4.446	380.6	252.7	43.46	5.638	1.587	186.5
11. 4	. 0569	ØØ86	0022	ChOLA C	ØØ17	mater many	. 0045
#1				. 0018		25.22	
排记	. 0606	. 0033	. ଉଉଉଚ	. 0033	-, 0019	84.66	0006
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	104.9	. ଉଦ୍ଧର	0010	.2740	. 0014	. 0026	ØØØ9
SDev	. 1	. 0005	.0014	.0063	.0014	. 0008	. 0008
%RSD	.1162	4.870	139.5	2.300	95.70	29.89	89.18
					.		
# 1.	104.9	.0102	0020	.2695	. 0005	.0021	0015
#2	105.0	. 0095	ଉତ୍ତତ	.2785	.0024	.0032	0003
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U4Ø9Ø	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm -
Avge	.2122	0014	.0001	.0022	.0082	. ଉପଉଥ	0013
SDev	. 0002	. 0003	. ଉଉଡ1	. 0026	.0129	. 0001	. aaii
%RSD	.1089	22.02	184.9	116.1	157.6	28.70	86.41
#1	.2120	0012	. ଉଉଉଉ	. ወወወ4	ØØØ9	. ଉଉଷନ	0005
井戸	.2123	0016	. 0001	. 2041	.0174	. 2001	0021

06/15/04 18:48:38 PM page 8

Elem Units Avge SDev %RSD	Y_3710 ppm 0002 .0000 26.15	Zn2062 ppm .1116 .0001 .1205	Zr3496 ppm . 0001 . 0001 94.89				
#1 #記	0002 0001	.1117	. 0000 . 0002				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 676798 796.2022	2 Time — 10000 .000000 .000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED	7 NOTUSED
#1 #2	676835 677361	1		1000 11/10 Eman week		water start	pro- dec-

Method: DAILY2 Sample Name: 243223 Operator:

Run Time: 06/15/04 12:48:50 Comment:

Elem	Ag3280	A13082	As1890	B 2496	Ba4934	Be3130	Bi2230
Units	90 m	ppm	ppm	ppm	ppm	ppm	ррт
Avge	0004	0177	. 0019	.1383	. 0072	, Ø1Ø1Ø11	" ይነውነው:
SDev	. 0004	.0001	.0003	, ଉଷ୍ଟର	. ଉପପପ	. 0000	. 0031
%RSD	95.42	. 3041	15.19	1.478	. 4997	11.03	1346.
7411 CO	or solar in the	H 1.3146.31-F 3.	at the man of	3 # 17 %	# OF A A I	A D B WALL	13.7.7.30.0
# 1	0001	0177	.0017	.1397	.0071	. 0001	.0019
#2	, ØØØ6	0176	" ØØ21	. 1368	. ወወንዖ	. QIQIQI 1	ØØ:24
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K7664
Units	to to m	ppm	ppm	to to m	ppe	btom	t et en
Avge	17.75	. ଉପରଚ	. 0010	0009	0010	.0087	4.888
SDev	. Ø4	. 0003	.0014	. 0001	. ወወወ3	. ଉଷ୍ଟେଚ	.017
%RSD	.2057	186.8	141.0	14.44	29.41	75.67	. 3484
#1	17.78	. 0004	.0020	ଉଉଉଣ	ଉଉଉଞ	.0133	4.876
井巴	17.73	0001	. ଉପଉଷ	0009	0012	. 0040	4.900
r	1		had or or or or	had	Mo2020	Na3302	Na5889
Elem Units	La3988	Li6707	Mg2790	Mn2576			
	ppm	ppm	ppm	ppm	ppm	ppm	ppm 2 ∅. 99
Avge	0002	.0283	2.783	.0254	.0031	32 .0 5	
SDev	.0002	.0001	.002	.0001	.0014	.07	.02
%RSD	94.73	. 3177	. Ø888	.5084	43.77	.2100	.0973
# 1	0003	. 0284	2.785	. 0255	.0021	32.00	20.97
#2	0001	.0283	2.781	.0253	. 0041	32.10	21.00
IF I	a district t	a William (ii)	L a 7 V.S.L.	a With the time	# 40.40 mr 3.	COSTON AND AND AND	E. E. H. WOWL
Elem	Ni2316	P_1782	2203/1	2203/2	Pd34Ø4	5_1820	Sb2Ø68
Units	ppm	ppm	ppm	ppm	ppm -	ppm	ppm
Avge	. 0008	. ଉଚ୍ଚର	0033	. 0036	0018	6.809	.0017
SDev	. 0003	. ØØ81	, ଉଉପର	. 0004	୍କ ହାହାହାୟ	. ወጀነ6	. 0044
%RSD	38.83	39.88	24.42	10.05	32.08	. Ø846	260.1
#1	. 0011	. 0860	ØØ39	. 0033	- , Ø ØØ9	6.814	ØØ14
井沙	. 0006	.0145	0027	. 0039	0015	6.805	. 0048
Elem	Sc3613	1960/1	1960/2	Si2881	Ph22Ø	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	103.8	.0186	. 0004	19,50	. 0013	. 0065	. Ø146
SDev	. 7	. 0033	. 0024	. Ø6	. 0005	. 0005	.0016
%RSD	.6597	17.88	634.4	.3219	39.23	8.193	10.72
#1	103.3	.0162	. 0021	19.55	. 0010	. 0068	.0158
#2	104.3	.0209	0013	19.46	.0017	.0061	.0135
Pr L	3. 925 mp a - 1,3	a 4211425 J	a www.x	1 7 A TO	# VANCO A. 7	* KINICI T	a With City City
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U_4Ø9Ø	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm —	ppm	ppm —
Avge	.0787	0025	0003	0124	.0111	.0017	0028
SDev	. 0001	. 0008	.0001	.0013	. 0060	.0003	.0020
%RSD	. 1200	30.74	24.51	10.65	54.87	17.46	72.30
7#13+33.7	ar at souther the	CONOR ETT	Rest "T # Su2 de	a ya wa ka saa	SHETT H. NO. E	(# TT_\)	e kaa waa waa
# 1	. 0786	0030	@@@4	0134	.0154	.0015	0042
井邑	.0787	0020	0003	0115	.0069	.0019	0013

06/15/04 12:53:24 PM page 2

Elem Units Avge SDev %RSD	Y_3710 From 0001 .0001 117.6	Zn2062 ppm .0003 .0004 161.3	Zr3496 FFM 0001 .0007 182.3				
#1	ଉଉଉଉ	. 0006	. ବ୍ରବ୍ରବ				
#2	0001	ଉଉଉଉ	0003				
IntStd	1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc	***************************************	18074 00000			*****	
Wavlen	361.384	****	98094 3+180		****	****	****
Avge	669552	10000	Sabile Sepre				
SDev	4429.317	. ଉପରପରସର	****	****	*****	50050 AANGE	*****
%RSD	.6615344	. ଉଉଉଉଉଉଉ	****	*****	*****	****	*****
#1	666480	10000	*****		****	22.00 E-200	
#2	672684	1 ወወወወ	*****	*****	***** *****		****

Analysis Report

06/15/04 12:58:10 PM page 1

Method: DAILY2 Sample Name: 243224

Operator:

Run Time: 06/15/04 12:53:36

Comment:

						-	
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0001	0134	. 0006	0019	. 0002	. ଅପ୍ରପଦ	.0023
SDev	. 0001	. 0038	.0083	.0002	. 0000	. 0000	. 2246
%RSD	89.77	29.36	415.6	10.78	4.618	158.1	201.0
AROD	07.77	മത-കത	of Luin C	3.42 n / CD	of a O LO	រៈ ភេសា 🖈 🛈	E'' 925 3 10 925
# 1	ଉପଦଦ	0107	. ଉଷ୍ଟର	0017	. ଉଷରଚ	,	. 0055
#2	ଉଉଉଚ	0160	0011	୭୭୧୭	. 0002	. ଉଉଉଉ	- , 2021 (7)
Tr km.	# 4,1414.15	n 40 3 10 40	и ч. ч. з. з.	a governa va	a was was was his	# 47.0.4.4.	p 4. 4. 1. 4.
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	to to us	ррж	pppm	to to m	ppm	kekem
Avge	4.997	. 0005	. 0001	0002	୍କ ଉଉଷ୍ୟ	-, 0031	.0012
SDev	. 005	. ଉଉଉଓ	. 0001	. (21/21/21/4	. ØØØ1	. ØØ21	. ØØ54
%RSD	. 09:29	72.82	120.2	176.2	88.81	66.96	450.0
7 - 7 - 1 - 11	a was a sure	There is the tree		A 6 34 77 - 1	The Property of the Control of the C	7447 3447 WE AR 7447	C Sant Sant B Sant
#1	5.001	. 0007	୍କ ହାହାହା:	. ଉପପ	ØØØ	, ØØ46	. 0050
#2	4.994	. ଉଉଉଥ		0005	0005	0016	0026
Elem	La3988	Li6707	Mg2790	Mn2576	Ma2020	Na33 0 2	Na5889
Units	ppm	ppm	ppm	ppm	b la w	pp m	ppm
Avge	ଉଉଉଉ	0002	. 0002	ଉପସସ	. 0002	7.468	4.521
SDev	. 0003	. 0000	.0013	.0001	.0003	. 109	. ଉଉଦ
%RSD	6430.	21.73	578.1	276.0	159.0	1.460	.0097
# 1	0002	0002	0007	. ଉଉଉଉ	ଉଉଉଉ	7.391	4.522
#2	.0002	0002	.0011	0001	. 0004	7.545	4.521
r 3	842 mm 4 m	pm, 4 mm/m, cm,	erro erro erro erro e e	and any and missing and	m iii m Aire A	0.1000	mu mar n
Elem	Ni2316	P_1782	2203/1	2203/2	Pd34Ø4	5_1820	Sb2 0 68
Units	ppm	ppm	bbw	ppm	bbw	ppm	bbw
Avge	. ଉଉଉଞ	.0076	0035	0003	0005	0309	0005
SDev	.0010	. 0047	.0013	.0017	. ଉଉଉନ	.0128	. ହାହାହାହା
%RSD	186.8	62.03	37.43	498.5	158.7	41.54	6.443
#1	. 0001	. 0110	0025	0015	Ø1Ø11Ø1	Ø21A	ØØØ5
#2		. 0043		. 0009			0005
₩	. 0014	. WW43	0044	" www.a	.0001	Ø399	" (2)(2)(2)(2)
Elem	Sc3613	1960/1	1960/2	Si2881	Ph/220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	opm
Avge	104.1	. 2121421	- . ଉଉଡେ	.0323	0014	-, ØØ26	-, ØØØ6
SDev	1.1	.0034	.0001	.0083	.0007	.0010	. 0008
%RSD	1.016	84.16	2.480	7.071	51.56	38.62	134.1
7413 (232)	a a sa a co	ALFOR W. LLALO	E. H. T. C. W.	1 H Mar 1 35	and the factors	tare to the tare to	, , w
# 1	103.4	.0016	0059	.0307	0019	0034	0000
#2	104.9	. 0064	0061	.0339	- . ଉଉପର	ØØ19	0012
		500					
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U_4Ø9Ø	V_2924	W_2079
Units	ppm	ppm	ppm	bbm	ppm	bbw	ppm
Avge	.0001	.0016	.0001	0002	0095	. 0005	0009
SDev	. ଅମଧ୍ୟର	.0016	. ଉଉଉଡ	. 0005	.0062	. ଉପପର	. 0007
%RSD	4.540	102.9	71.43	251.3	64.66	123.1	81.63
	, we see .	244. 1992. 1495. A	244. 344. 344. ·	, mag. 1940. 1940. man	مد سد و پور	,000. 000. 000. ·	991. Nov
#1	. 0001	. 0004	. 0001	. 0002	0139	. 0001	0014
井正	. 0001	.0027	. ପପପପ	0006	0052	.0010	0004

06/15/04 12:58:10 PM page 2

Elem Units Avge SDev XR:3D	Y_3710 ppm 0000 .0001 329.1	Zn2062 ppm . 0003 . 0000 1. 006	Zr3496 ppm . 0003 . 0001 85. 74				
# 1	. ଉପସସ	. 0003	. 0004				
排出	0001	. 0003	.0002				
IntStd Mode	i *Counts	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	Sc	***** *****		*****	deben Annes	*****	*****
Wavlen	361.384		*****	****** >*****	***************************************	wette eases	**** ****
Avge	671668	10000	*****	*****	*****	*****	
SDev %RSD	6832.773 1.017285	. ଉଉଉଉଉଉଉ . ଉଉଉଉଉଉଉ		1000 0000	*****	******	**** ****
# 1	666836	10000		*****	*****	*****	****
#2	676499	10000		*****	*****	*****	

Operator:

page 1

Method: DAILY2 Sample Name: 243225

Run Time: 06/15/04 12:58:21

Comment:

Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	bbw	ppm	ppm	ppm	ppm	ppm	ppm
Avge		0027	ଉଉପ1	1.232	. 1832	. ଉଉଉଉ	. 0065
SDev	. 0004	.0048	.0018	. ଉଦ୍ଧର	. ଉଉଡ3	. ଉତ୍କର	.0045
%RSD	370.7	180.7	1344.	. 7070	. 1493	36.63	68.90
# 1	. 0004	. 0007	. 0011	1.238	. 1834	. 0001	. 0096
#2	ଉଉଷଥ	aa61	0014	1.226	. 1830	. ଉଉଉଡ	. 0033
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	Ectora	ppm	ppm	ppm	to to m	ppm	t tom
Avge	. 2477	. 0005	.0007	0007	0006	0008	.0682
SDev	.0021	. 0002	.0010	. ଉପପାଧ	. ጀነሪነሪነ 1	. 0035	, ØØ53
%RSD	.8574	46.80	139.9	. 1800	10.14	434.9	7.779
#1	. 2492	. 0006	. 0015	<i>0</i> 0007	ଉ ଉଉଞ	, ØØ333	, Ø6.45
井戸	. 8468	. 0003		0007	0006	.0017	. 0720
Elem	La3988	Li67Ø7	Mg2790	Mn2576	Mo2Ø2Ø	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	. ØØØ2	. 0001	.0302	.0011	. 0006	2.317	1.360
SDev	. ଉଉଉଓ	. ଉପଉପ	.0024	. 0000	. 0003	.043	.005
%RSD	201.2	. 7869	7.880	1.180	53.83	1.856	. 3440
# 1	. ଉଉପ4	. 0001	.0318	.0011	. 0008	2.348	1.364
#2	0001	. 0001	. 0285	.0011	. 0004	2.287	1.357
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2Ø68
Units	ppm	ppm	bbw	bbm	ppm	ppm	pp m
Avge	.0157	.0039	0018	.0013	0014	.4319	0029
SDev	. 0003	.0020	. 0004	. 0005	. 0040	.0171	. 0064
%RSD	1.749	51.08	20.57	40.76	284.8	3.971	222.9
# 1	.0159	.0053	0016	. ଉପସବ	. 0014	. 4441	. 0017
井で	.0155	.0025	0021	.0016	ØØ4R	.4198	0074
Elem	Se3613	1960/1	1960/2	Si2881	Pb22Ø	Se196	Sn1899
Units	%R	$DD\mathbf{w}$	obm	ppm	la la m	ppm	bbw
Avge	104.0	. 006 3	ØØ36	. 4648	. ወወወ3	, ውውው	. 0016
SDev	. 4	. ØØ34	. 0021	. 0007	, ଉଉଉନ	. 0006	.0010
%RSD	. 3634	38.60	59.28	. 1534	83, 33	228.1	66, 29
# 1	103.8	. 0080	0050	. 4653	. 0001	0007	. 0008
#2	104.3	. 0046	ØØ21	, 4643	. ØØØ4	. ଉଉଉଚ	.0023
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U4@9@	V_2924	W_2079
Units	pbw.	bbw	bbm	ppm	bbw	₽pm —	t-to w
Avge	.0014	0014	.0002	.0019	.0279	. ଉପଉଉ	.0015
SDev	. 0000	. 0001	. 0000	. 0008	.0233	.0001	. WOLL
%RSD	. 3380	5.852	12.76	39.25	83.59	389.1	147.1
#1	. 2014	0014	. 0002	.0024	.0443	ଉଉପପ	0001
井戸	.0014	0015	.0002	.0014	.0114	.0001	. 0030

06/15/04 01:02:55 PM page 2

Elem Units Avge SDev %RSD #1	Y_3710 PPM - 0000 . 0000 100.9 - 0000 - 0001	Zn2062 PPM .0374 .0007 2.185 .0329 .0319	Zr3496 ppm .0004 .0001 23.99 .0005				
IntStd	1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc	18927 00000	*****	****	****	*****	*****
Wavlen	361.384	****	****	*****	tem	*****	*****
Avge	671044	10000	*****			****	*****
SDev	2440.226	. ଉପରସ୍ପର୍ଯ୍ୟ	*****			*****	*****
%RSD	.3636458	. ଉଷ୍ଟର୍ଷ୍ଟର୍ଷ୍ଟ				*****	**** *****
# 1.	669319	10000	****				****
#2	672770	10000	*****	***** *****	****	1000	Makir gramm

Analysis	Report						
	ONTI VO	Sample Nam	e: 2432250	1	Oper	rat or #	
Method: I	06/15/04	13:03:07					
Comment:	(CID) I D) C.						
Mode: COM	un Conn.	Factor: 1					
made: co	40.			m m/m/	Ba4934	Be3130	Bi2230
Elem	Ag328@	A13082	As1890	B_2496	ppm	ppm	ььш
Units	ppm	ppm	bbm	ppm	. 1816	. ଉଉଉଉ	.0012
Avge	ØØØ1	0084	. 0009	1.218	.0003	. ଉଉଉଉ	. 0036
SDev	.0003	.0053	.0013	.006	. 1390	26.48	304.3
%RSD	207.7	62.53	145.7	.5000	* 7000		
74 3 7 CL3 2L7				A	. 1818	. 0000	.0037
# 1	.0001	0047	0000	1.283	. 1815	. ହାହାହାହା	00114
#2	0004	0122	.0017	1.214	n di tar		
TT has				Cr2677	Cu3247	Fe2714	K_7664
Elem	Ca3179	Cd2265	Co2286		ppm	ppm	ppm
Units	ppm	ppm	bbm	pp™ .0004	0005	୍ଷରୀଞ	. 0602
Avge	. 2422	.0005	.0011	, 00003 , 0003	, 0005	. 0136	. ØØ68
SDev	. 0010	.0001	. 0001		91.38	748.4	11.22
%R30	. 4086	14.09	14.16	70.16	3 A # 1314		
7-14-7-7				24 (24 (24 CE)	- , ØØØ2	. 00114	, Ø5554
#1	.2415	. 0004	<u>"</u> ØØØØ9	. 0005	- , 0009	0078	. 0650
#记	, 2429	.0005	.0018	. 0000	# W.S		
TV CO.	, ,			Mn2576	Masded	NaBBØ2	Na5889
Elem	La3988	L16707	Mg279Ø		ppm	[2:[3:m	្រុក្សា
Units	ppm	ppm	$p_0 m$	ppm	, 000	2.161	1.347
Avge	. 0002	. 0001	. Ø296	. 0010	. 0007	.093	. 006
SDev	.0003	୍କ ଉପସଦ	. 0005	.0001	221.9	4.283	, 4226
%RSD	142.7	11.24	1.649	9.088	721 F. 18 18 18		
/#14 CD LD				2212	0002	2.226	1.343
# 1	0000	. 0001	. 0299	.0010	. 0008	2.095	1.351
#2	. 0004	. 0001	.0292	. 0011	" Citizani.		
FI. Free					Pd34Ø4	S_1820	Sb2068
Elem	Ni2316	P_1782	2203/1	2203/2		ppm 	ppm
Units	ppm	ppm	ppm	ppm	0019	.4193	.0024
Avge	.0148	.0020	0017	0018	. ଉଦ୍ଭଦ୍ଧ	.0033	. 0032
SDev	.0014	. 0046	. 00004	. 0020	46.26	.7968	133.4
%RSD	9.503	234.5	25.80	109.9	4 C * 100 C		
MEGN	J # 122 41 111				0025	. 4169	. 0001
# 1	.0158	. 0052	0020	0004	-, 0013	.4217	.0047
# 2	.0138	0013	0014	0033	···· , 125125 3. W		
44	Mar de time san				P9550	Se196	Sn 1899
Elem	Sc3613	1960/1	1960/2	Si2881		ppm	ppm
Units	%R	ppm	ppm	bbw _	– "Ø Ø18	ଉଷଷଟ	. 0019
	105.3	. 0071	- , ØØ39	. 4560	.0018	.0002	. 0006
Avge	1.0	.0035	.0014	. 0022		117.5	33, 16
SDev	. 9075	48.56	35.78	. 4873	67.97	3. 3. 7 8 4.	
%RSD	H 3457 W				, ଉଉପ୍ତ	, മശമമ	.0024
# 1	104.6	. 0096	0049	. 4576	-, ØØ26	-, हाहारा4	. 0015
#2	106.0	. 0047	esiyi y	. 4544	" (C. (C.) "		
TF 1	16: T01: 25: 80 T11			men a de maria da	U_4090	V_2924	W_2079
Elem	Sr4215	Th2837	Ti3349	T11908		btem	ErE m
Units		ppm	ppm .	to the same of the	. 0039	. 0006	0007
Avge	.0014	0018	. ଉପଉଥ	.0012	.0132	. ହାହାହାହା	. ଉଉଉଓ
	. ଉତ୍କର	.0015	. 0001	. 0002	340.7	2.449	43.40
SDev %RSD	.9277	84.36	51.18	15.93	-DMMS# I	*****	
VCDV	er un tout f			ه د مخروس	.0132	. ଉଉପର	-, 00005
# 1	. 0014	-,0029	. 0003	.0011		, 0006	-,0010
	.0014	0007	. 0001	.0013	" With my	ay The tree of	
#2	H Am. Am. of						

06/15/04 01:07:41 PM page 2

Elem Units Avge SDev %RGD	Y_3710 PPM 0000 .0000 98.81	Zn2062 ppm .0318 .0009 2.802	Zr3496 ppm .0001 .0001 95.99				
#1	0001	. Ø324	ହାହାହାହା				
#2	2002	.0318	. 0001				
IntStd	1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc		42075 00000	****	140hr 400F	*****	
Wavlen	361.384		**** ****	****	*****	***** *****	
Avge	679264	10000		****			**** ******
SDev	6206.983	. ଉପରପରସର	****	****		***** *****	····
%RSD	.9137807	. ଡଡଡଡଡଡଡ		*****	******	*****	49311 69644
# 1	674875	10000		**************************************		******	
#2	683653	10000		*****	*****	*****	*****

Method: DAILYP Sample Name: 243226 Operator:

Run Time: 06/15/04 13:07:58

Comment:

mode: U	unu Lann	. ractor:	3.				
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ррш
Avge	0003	.0028	0092	2.091	.2733	. 0001	0034
	. 0001						
SDev		.0007	.0001	.018	.0002	. 0000	.0060
%RSD	41.93	23.03	1.303	. 8487	. Ø598	10.07	172.8
# 1	0002	.0033	0091	2.104	.2734	. 0001	0077
#2	2024	.0024	ØØ93	2.079	.2732	.0001	. ଉଉଉଚ
/ 7	C	CHOOKE	C - OOD	/** · · · · / · · · · · · · · · · · ·	/"\"\."\."\./.""	pro costo 4 A	12 mm - 2 2 2
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm coas	ppm	ppm	bbw	bbw	ppm	bbw
Avge	.2018	.0002	. ଉଦ୍ଭଷ	ଉଉଉଥ	0003	0083	.1393
SDev	. 0014	. 0004	" ହାହାହାୟ	. 0003	. ଉଡ଼ଜଥ	" ଉତ୍ତାଧର	. 0072
%RSD	. 7149	227.2	88.82	180.0	50.04	95.99	5.136
#1	. 2008	0001	.0013	, ହାହାତାତା	ଉଉଉଚ	-, Ø139	. 1340
#2	. 2028	. 0004	. ଉଉଉଓ	0004	0005	0027	. 1443
p== 4	1 , , ,	1 . 2	يون بدر بسر يدر			g, g speet, speet, drag, speet,	
Elem	La3988	Li67Ø7	Mg279Ø	Mn2576	Marørø	Na33Ø2	Na5889
Units	bbw	bbm	bb m	to to ma	bbm	blow	0.0 m
Avge	-, ଉହାହାର	" ବାହାର୍ଜ୍ୟନ	. Ø293	. 0011	ØØ12	3.616	8,261
SDev	. ହହାହାଧ	. 0001	.0038	. ଉଉଉୀ	.0005	, 255	. 001
%RSD	187.4	7.984	13.08	4,489	39.86	7.059	. Ø529
#1	0006	. ଉଉଉଚ	. Ø266	. 0011	ଉଦର	3,435	2.260
#2	ହାହାହାହା	. ଉଉଉଚ	. 0320	. 0011	0015	3.796	2.261
p '3	1, 1 · ,,,	رسي پدر وستان ال					
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	bbw	ppm	bbm	bbw	pbw —	bbm	bbw -
Avge	. Ø356	.0590	. 0063	. 0034	0019	.3949	.0130
SDev	. 0004	.0026	.0024	.0023	. 0026	.0024	.0024
%RSD	1.089	4.377	37.43	67.54	140.1	.6145	18.44
#1	.0353	.0571	. 0046	. 0050	0038	. 3932	.0147
排記	.0358	. 0608	. 0080	.0018	ଉଉଉଉ	.3967	.0113
11	w was too too	a de la constant	a sansantan	# 4040 3 CS	2 42,42,42,42	. 0.707	* Wasa
Elem	Sc3613	1960/1	1960/2	Si2881	Pb22Ø	Se196	Sn1899
Units	%R	bbm	ppm	bb m	bb m	bbw	bbw
Avge	108.0	.0678	.0112	1.572	. 0044	.0301	"Ø792
SDev	. 9	.0042	. 0046	.015	. 0007	.0017	.0025
%RSD	. 8676	6.205	41.44	.9247	16.98	5.605	3.185
# 1	107.3	.0708	.0079	1.582	. 0049	. 0889	. 0774
#2	108.7	. Ø649	.0145	1.561	. ØØ39	.0313	.0810
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U_4090	V_2924	W_2079
Units	t-t-m	bbw.	bbw	bbw	bba	ts to m	E cf. cm
Avge	.0016	0005	.0018	0728	0001	. 0003	0088
SDev	. ଉପପର	. ଉଉଉଓ	. 0001	. 0078	. Ø176	. 0004	. ወወወ3
%RSD	. 7993	54.28	8.083	10.66	17480.	104.8	3.159
# 1	. 0016	2027	.0013	0673	0125	. ØØØ6	-, ØØ84
		0003					
井闩	.0016	" KUKUKU "	.0018	0783	.0183	. 0001	-, 0080

Elem Units Avge SDev %RSD #1	Y_3710 PPM 0000 .0001 621.6 .0000	Zn2062 ppm .0773 .0001 .1840 .0774 .0772	Zr3496 ppm .0006 .0001 21.00 .0007 .0005				
IntStd Mode Elem Wavlen Avge 3Dev %RSD	1 *Counts Sc 361.384 696538 6064.855	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSEO	6 NOTUSED	7 NOTUSED
#1 #2	692250 700827	. ወወወወወወወ 10000 10000			****		

Operators

Analysis Report

06/15/04 01:17:18 PM page 1

Method: DATLYP Sample Name: 243227 Run Time: 06/15/04 13:18:38

Comment:
Mode: CONC Corr. Factor: 1

Mode: C	ONC Corr.	Factor: :	L				
Elem	Ag328Ø	A13082	As 1890	B_2496	Ba4934	Be3130	Bi2230
Units	bbw -	ppm	ppm	00 m	meter	ppm	ppm
Avge	0004	. 0452	0014	2.012	. 7653	. 0001	. ØØ71
SDev	. 0003	.0013	.0015	.010	.0012	. 0000	. 0030
%RSD	72.73	2.837	114.3	. 4937	. 1589	10.75	41.43
# 1	0006	.0442	0024	2.020	.7645	. 0001	.0092
#2	0002	. Ø461	0003	2.005	.7662	. 0001	. 0050
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	2.620	.0003	.0019	.0018	.0084	.0339	8.919
SDev	.001	. 0003	. 0003	. ଉପପପ	. 0003	.0101	. Ø39
%RSD	.0418	85.99	15.69	2.050	3.164	≥9.87	. 4357
#1	2.621	.0001	.0017	. 0018	.0085	. ØP67	8.891
井戸	2.619	. ଉପରେ	.0022	.0019	.0088	.0410	A. 946
	4 11 ⁴ 5 2 ¹⁵ 100 100		a. a			e, a many sang daga dang	61 " # # # # # # # # # # # # # # # # # #
Elem	La3988	Li6707	Mย2790	Mn2576	Ma2Ø2Ø	Na330P	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm 11 aa
Avge	. ଉପସର	. ଉଉଉନ	. 5374	. Ø485	.0011	18.17	11,90
SDev	.0001	. 0000	.0032	. 0000	. 0003	.28	.01
%RSD	578.7	5,350	.5858	.0134	22.74	1.588	.0514
#1	0001	. 0006	. 5358	. 0485	.0013	18.36	11.89
#2	.0001	. ଉଉଉଚ	. 5396	. 0485	. ଉହା 1 ହା	17.97	11,90
11	a divide de la	H 45.14.14.11.1	n subserve sus	a wareda	H 4.4.1.4.	3 1 8 3 1	2 A B 2 W
Elem	Ni2316	P_1782	2203/1	2203/2	Pd34Ø4	S_1820	Sb2068
Units	ppm	ppm	ppm	ББш	ppm	Di.m	ppm
Avge	.0238	.0078	.0015	.0007	0016	1.036	.0015
SDev	.0015	.0126	. 0006	. 0008	. 0014	. 004	. 0025
%RSD	6.352	161.9	41.19	104.7	87.99	.3484	167.4
# 1	. Ø249	0011	.0020	. 0002	0026	1.034	.0032
井已	. Ø227	.0167	. 0011	.0013	0006	1.039	0003
Elem	Sc3613	1960/1	1960/2	Si2881	Pb22Ø	Se196	Sn1899
Units	%R	bbw	bbw	ppm -	ppm	bb m	ppm
Avge	102.7	.0146	0025	1.535	.0010	.0032	. 0069
SDev	.5	.0014	.0023	.007	.0003	.0010	.0017
%RSD	. 4632	9.632	88.68	. 4346	29.69	32.58	25.23
# 1	102.4	.0156	0041	1.540	. ଉଉଉଧ	. 0024	. 0081
#2	103.0	.0136	ØØØ9 -	1.531	.0012	. 0039	. 0056
77 h	3. 4% (C) # - 4%	a Van Lanta	a governor o	al e sabilità	# 40.40 T.	a 4040 to 5	# MOMON. 15.5
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U_4@9@	V_2924	W_2079
Units	tetem.	ppm	to to as	ppm	bba	DE:N	t-t-m
Avge	.0144	0009	.0016	0042	.0105	. 0009	0026
SDev	. ଉଚ୍ଚୟନ	. 0007	. ወወወ1	. Ø1Ø14 1	. 0033	. DIDIDIP	, Ø1Ø11 Ø1
%RSD	. 1870	79.85	3.010	96.38	31,88	17.36	36.81
# i	. 0144	0004	. 0016	, ØØ7 1	. DOS	. 001 101	0033
井 ,②	.0144	0014	.0016	-,0014	. 0129	. 0008	0019

010139

# f0	uliu Mari Jana	%RSD	SDev	Avge	Wavlen	Elem	Mode	IntStd	# 10	#	XRSD	SDev	Avge	Units	Elem	
66460U	660287	, 4630390	3067.429	007450	361, 384	ņ	*Counts	justs .	୍, ଉଉଉଉ	. 0001	975.8	. 0001	. ଉଉଉଉ	10 m	Y_3710	
1 ଉନ୍ଦର୍ଶନ	1 ଉତ୍ତରତ		. ଉପ୍ରପ୍ରପ୍ରପ୍ରପ	1 0000	1	1	Time	ro	.2674	. 2694	បាលប្រ មា	. OO 14	. 2684	Edd.	Znewse	
I		***	i	•		1	NOTUSED	Ы	. ଉଷ୍ଟର	. ଉଦ୍ଭପ୍ତ	13.99	. ଉଉପ 1	. ଉଉଉଟ	m d d	Zr3496	
****	*****	*****	****	-	10.000 to40	****	NOTUSED	4								
****	*****	*****	COMPAN COLORS	***	DATE COL	****	NOTUSED	្								
****	****	40174 48010		***	Company Company	*****	NOTUGED									
*****	****	*****	****	*	****	**************************************	NOTUSED	7								

Operator: 010140

Run Time: 06/15/04 13:17:23

Method: DAILYP Sample Name: 243228

Comment:

mode: La	ant trans	. Factor:	1				
Elem	Ag3280	A13092	As189Ø	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	pp m	ppm	ppm	$\rho \rho m$	ppm	bbm
Avge	ଉଉପଟ	1941	. ଉଉଉନ	2.468	. 4642	" <i>ር</i> ካርካርካርካ	, ØØ4Ø1
SDev	. 0001	. 0096	. ଉଉଉନ	. 009	. 0007	. ଉପପପ	. 0041
%RSD	33.68	4.958	116.9	. 3446	. 1494	39.96	103.5
# 1	0001	. 2009	. ଉଉଉଉ	2.474	. 4647	. 0000	. 0011
#2	0002	. 1873	. 0004	2.462	. 4637	. ଉପସସ	. ØØ69
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units							
	ppm 1 300	ppm	. 0009	ppm	ppm aata	ppm excer	.9038
Avge	1.308	.0003		.0005	.0010	. Ø686	
SDev	. ପଠାର	. 0002	. 0001	. ଉଉଉଉ	.0005	. 0059	. 0020
%RSD	.0116	69.23	5.150	3.246	51.59	9.481	.2221
#1	1.308	. 0004	. 0009	.0005	. 0006	.0668	.9024
井已	1.308	. 0002	. ଉଉଦ୍ଦର	. 0005	.0013	. Ø584	.9052
Elem	La3988	L16707	Mg2790	Mn2576	Ma2020	Na3302	Na5889
Units	ppm	b lo w	سحادا	ppm	ppm	bbm	ppm
Avge	ØØØ4	. 0005	. 3642	. ଉଉପ4	ØØØØ	6.128	3.827
SDev	. 0005	. ଉଉଉଉ	. 0060	. 0001	. 0001	.038	.013
%RSD	151.6	8.194	1.656	PP. 94	76.35	.6181	. 3405
# 1	. 0000	. 0005	.3685	. 0003	-, 0001	6.102	3, 836
#2	0007	. 0005	. 36ØØ	. ଅପଅ4	0002	6, 155	3.817
Elem	Ni2316	P_1782	2203/1	2203/2	Pd34Ø4	S_1820	Sb2068
Units	E: E: m	bt.w	ppm	ppm	ppm	ppm	tetem
Avge	.0002	.0373	0002	.0021	0022	. 9869	0037
SDev	.0017	.0122	.0016	. ØØ24	.0010	.0153	. 0035
%RSD	707.6	32.68	1041.	116.2	44.98	1.554	96.35
#1	ଉଉଉ୨	.0287	.0010	. 0004	0015	. 9761	0061
#2	.0014	. 0459	0013	.0038	0029	.9978	0012
Elem	Sc3613	1960/1	1960/2	Si2881	Pb22Ø	Se 196	Sn1899
Units	%R						
	104.0	ppm .Ø134	ppm	ppm	рр т .0014	bbw bbw	ppm ppm
Avge			ØØØ9	2.973		. 0039	.0041
SDev	. 7	. 0060	. 0004	.030	.0011	.0017	.0012
%RSD	.6455	44.95	48.99	.9952	79.81	44.17	30.15
# 1	103.5	.0176	0012	2.994	. 0006	. 2051	. 0049
#2	104.5	.0091	0006	2.952	.0021	.0027	.0032
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U_4090	V_2924	W_2079
Units	t-tom	b to m	ppm	ppm	ppm	bbw	to to m
Avge	.0081	0038	.0075	.0010	. 0044	.0011	0015
SDev	. 2021	.0019	. ଉଉଉଚ	.0025	. 0050	. ØØØ4	" ØlØlØlØ
%RSD	. 7050	49.96	2.165	257.1	112.7	36.84	57.22
# 1	SBMM .	-, 0051	. 0076	. 00 28	. ØØØØ9	ANNO,	, VIV IPP
井戸	. 0081	-, 0025	.0073	0008	. 0079	. 0014	-, 0009
**		• • •					

n	1	0	1	4	1
v		U	•	4	

	\	7	77407			U	10141
Elem Units Avge SDev XRSD	Y_3710 PP# .0000 .0002 1260.	Zn2062 ppm .1189 .0014 1.153	Zr3496 ppm . 0005 . 0005 92. 06				
#1 #高	0001 .0002	.1199 .1179	.0002 .0008				
IntStd Mode Elem Wavlen Avge SDev *RSD	1 *Counts 9c 361.384 670641 4352.949	2 Time 10000 .000000	3 NOTUSED 	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
# 1 # 2	667563 673719	10000 10000	****	and the		1000 0000	

. 9000

PERRO

. 9000

Se196

. 9000

Sn1899

4.500

513802

LOW

Elem

4,500

1960/1

1960/2

188Si2

Method: DAILYP Sample Name: - CCVE Operator: 6.15-08 CCBZ Run Time: 06/15/04 13:85:49 010142 Comment: Mode: CONC Corr. Factor: 1 Elem Ag3280 A13082 As1890 B_2496 Ba4934 Be3130 Bi2230 Unite ppm ODB arga OOM mejer. 993 ppen 1-,0001 L-, 0034 L. 0026 1.0074 1,00001 1 . 0101011 1 - " (\$1\$1\$16) Avge SDev .0005 .0037 .0036 .0016 . 2000 . 00000 .0047 %RSD 487.9 21,53 14,99 25.31 551.4 107.6 138.5 L. 0000 L-. 0060 L. 0001 L.0085 1.0001 1. 0001 1..0025 #1 1 -. 0004 L-, 0008 L. 0063 L. 0001 L. 00001 1-,0042 排出 L.0052 LC Low LC Low LC Low Errors LC Low LC Low LC Low LC Low 1.100 11.00 5.500 5.500 11.00 1.100 5.500 High 9.000 4.500 9.000 . 9000 4.500 LOW . 9000 4.500 Elem Ca3179 Cd2265 Co2286 Cr2677 Cu3247 Fe2714 K_7664 Units maqq maga ODM ppm ppm ppm ppm L. 0071 L. 0005 L. 00000 L-. 0002 L-. 0034 L-.0032 Avge L-.0010 .0099 SDev .0001 . 0005 .0016 .0022 .0002 . 0001 %RSD 28.21 69.30 138.4 1290. 20,42 64.05 45.37 #1 L. 0002 L. 0004 L. 0004 L-. 0009 L-. 0001 L-. 0023 L-. 0048 #2 1.0141 L. 0006 L-. 0003 L-.0012 L-. 0003 L-. 0046 L-. 0016 LC Low LC Low Errors 1.C 1.ow LC Low LC Low LC Low LC Low 2.200 22.00 5,500 2.200 11.00 22.00 High 1.100 Low 18.00 . 9000 4.500 1.800 1.800 9.000 18.00 PARCEM Elem La3988 Li6707 Mg279@ Mn2576 Mc2020 NaBBØR Units ppm OOM gom ppmppm OOM ឲ្យខាត Avge 1-.0002 L. OWNER L. 0015 L -- , Ø1Ø1Ø1Ø1 L. 0009 L -- , 00045 1.0016 SDev , ପଉପପ . ଉଉପାସ . 0006 . 0000 . 0004 . Ø268 . 0007 %RSD 29.12 168.3 46,90 42,65 41,46 110.1 593.5 L-. Ø235 #1 L-.0001 1.-. 0000 L.0012 1.0021 L. 0000 1.. 0011 #2 L-. 0002 L-. 00000 L. DOZO L-. 0000 L. 0006 L. Ø144 L. DONE LC Low LC Low LC Low LC Low LC Low LC Low Errors LC Low 33.00 5.500 5.500 5.500 22.00 1.100 33.00 High 27.00 Low 4.500 4.500 18.00 . 9000 4.500 27.00 Elem P 1782 2203/1 2203/2 Pd3404 5_1820 Sb2Ø68 Ni2316 Units ppm ppm mqq ppm ppm ppm ppmL. 0044 Avge L-. 0006 -.0017 L-.0011 L.0031 L.0038 .0001 . 0004 . 0041 .0038 .0022 .0007 .0050 .0020 SDev %RSD 67.76 108.3 220.7 2936. 64.07 164.1 46.11 L-.0008 L. 0009 .0010 .0016 L-. 0006 1.-. 0005 # 1 L. 0030 井三 L-. 0003 L. 0067 -. 0044 -.0015 L-. 0016 L. 0066 L. 0059 LC Low LC Low LC Low NOCHECK NOCHECK LC Low LC Low Errors 5.500 High 5.500 1.100 1.100 1. 100

·	·					0	10143
Units Avge SDev	%R 100.8 .2	ррт .0046 .0027	ppm 0028 .0013	ppm L.0105 .0008	ppm L0005 .0027	ррт L—. 0003 . 0000	ppm L0004 "0001
%RSD	. 1706	58.04	45.64	7.575	536.8	9.350	18.51
#1 #2	100.9 100.7	.0027 .0065	0019 0037	L.0099 L.0110	L.0014 L0024	L0004 L0003	L 0003 L 0004
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Low 5.500 4.500	LC Low 5.500 4.500	LC Low 5.500 4.500	LC Low 5.500 4.500
Elem Units Avge SDev %RSD	Sr4215 ppm L.0000 .0000 44.92	Th2837 ppm L 0021 . 0009 41. 49	Ti3349 ppm L.0000 .0002 4352.	T11908 ppm L0067 .0002 2.541	U_4090 ppm L.0195 .0070 35.87	V_2924 ppm L.0004 .0005 128.9	W_2079 ppm L.0016 .0005 32.34
#1 #2	L. ଉଉଉଉ L. ଉଉଉଉ	L0015 L0028	L. 0001 L 0001	L0068 L0065	L.Ø244 L.Ø145	L. ØØØ7 L. ØØØØ	1.0019 1.0012
Errors High Low	LC Low 5.500 4.500	LC Low 1.100 .9000	LC Low 5.500 4.500	LC Low 5.500 4.500	LC: Law 1.100 .9000	LC Law 5,500 4,500	LC: Law 1.100 .9000
Elem Units Avge SDev XRSD	Y_3710 ppm L0000 .0001 223.1	Zn2062 ppm L.0015 .0032 215.9	Zr3496 ppm L.0001 .0004 305.4				
#1 #2	L.0000 L0001	L0008 L.0038	L.0004 L0002				
Errors High Low	LC Low 5.500 4.500	LC Low 1.100 .9000	LC Low 5.500 4.500				

Analysis Report

06/15/04 01:30:22 PM page 3

IntStd	1	2	3	4	5	6 0101	14,4
	.i.					NOTUSED	, NOTUSED
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	MOTODEO	MOTOSED
Elem	Sc		*****	***** *****	*****	***** *****	and he seems
Wavlen	361.384	****	*****		NAME OF THE PERSON NAMED IN COLUMN NAMED IN CO	***** (****	****
Avge	649998	1 (2)(2)(2)(2)		*****	****	19400 9 4000	}*************************************
SDev	1071.867	. 0000000	*****	*****	********	. 44 17-19	****
%RSD	.1648109	. ወወወወወወወ		*****	****	****	14 MANNE
#1	650755	10000	44-49 31545	****	21488 No.46	STARR STARR	
#2	649240	1 ርካርካርካርካ	empr 10115	****	1077 1110	*****	** *****

Method: DATLYP Sample Name: CCBP
Run Time: 06/15/04 13:38:84 CCV2 OH 6-15-04 Operator: 010145

Comment:

Elem	Ag328Ø	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	bb m	ppm	bbw	bbw	ppm	pp m	bbw
Avge	H. 9899	H9.677	H4.922	H4.769	H9.978	H. 972Ø	H4.988
SDev	.0019	. 029	.016	.001	.006	.0025	.012
%RSD	.1920	.2965	.3154	. Ø829	. 0594	.2615	.2419
#1	H. 9912	H9.697	H4.933	H4.768	H9.973	H. 9738	H4.997
#2	H. 9885	H9.656	H4.911	H4.770	н9.982	H. 9702	H4.979
Errors	••••	LC High	LC High	LC High	LC High	LC High	LC High
High	. 0050	.0500	. 0050	.0500	. 0050	.0050	.0100
L.OW	0050	0500	0050	0500	0050	0050	0100
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	bbm
Avge	H20.00	H. 9955	H4.957	H1.945	H2.014	H10.15	H18.24
SDev	. Ø1	.0016	. 007	. 003	. 000	. Ø 1	. Ø1
%RSD	. Ø68Ø	. 1587	. 1390	. 080 3	. Ø864	, ଉଧ୍ୟୟ	, 0 285
井 1	H20.01	H. 9966	H4.968	H1.946	H2.015	H10.15	H18.23
#2	H19,99	H. 9944	H4.952	H1.944	H2.013	H1Ø14	H18, 24
Errors		LC High	LC High	LC High	LC High	LC High	LC High
High	. 0500	. 0050	. 0050	. 0050	. 0050	, 0250	1 (21(21(2)
L.ow	0500	0050	0050	0050	0050	0250	1000
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	pp m	ppm	ppm
Avge	H4.927	H4. 441	H19.84	H1.006	H4.942	H26.84	H18.95
SDev	. 001	.019	.03	.001	. 004	. 88	. Ø1
%RSD	.0118	. 4323	. 1367	.1365	. Ø874	1.042	.0637
# 1	H4.928	H4.427	H19.86	H1.007	H4.939	H27.04	H18.94
#2	H4.927	H4.454	H19.82	H1.005	H4.945	H26.65	H18.96
Errors	****	LC High	LC High	LC High	LC High	LC High	LC High
High	.0050	.0050	.0500	. 0050	. 0050	. 0500	. 0500
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	F_1782	2203/1	2203/2	Pd34Ø4	S_1820	Sb2 0 68
Units	bbw	ppm	ppm	ppm	plam	ppm	ppm
Avge	H4. 858	H4.918	4,994	4.961	H1.017	H. 9918	H. 9852
SDev	.003	.094	. ଉଦ୍ଧର	. 006	. 008	. Ø2Ø4	. 0054
%RSD	. 0603	1.902	. 1660	. 1117	.1613	2.052	. 5506
# 1	H4. 956	H4.984	4.999	4.965	H1.016	H1.006	H. 9814
#2	H4. 860	H4.852	4.988	4,,957	Hi.Øi8	H. 9774	H. 9891
Errors	•••	LC High	NOCHECK	NOCHECK	LC High	LC High	LC High
High	. 0050	. 0100			. AA5A	. ମଧ୍ୟ	. ወነ ወወ
Law	. 0050	0100			0050	··. Ø1ØØ	2122
Elem	863613	1960/1	1960/2	Si2881	PbP2Ø	Aet9A	Sn 1 899

						V	0146
Units Avge SDev	%R 99.43 .Ø8	ppm 5.161 .013	ppm 5.147 .016	ррт H4.943 .003	PP™ H4.972 .006	PPM H5.151 .015	рр м Н4.911 .003
%RSD	.0765	. 2425	. 3179	.0589	.1299	.2927	.0648
#1 #@	99.37 99.48	5.152 5.170	5. 135 5. 158	H4.945 H4.941	H4.976 H4.967	H5.141 H5.162	H4.914 H4.909
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC High .0100 0100	LC High "0030 –"0030	LC High .0050 0050	LC High .0050 0050
Elem Units Avge SDev %RSD	Sr4215 ppm H5.049 .008 .1601	Th2837 ppm H.9684 .0021 .2153	Ti3349 ppm H4.857 .001 .0213	T11908 ppm H5.170 .020 .3919	U_4090 ppm H.9760 .0202 2.072	V_2924 prom H4.928 .001 .0287	W_2079 ppm H.9860 .0027 .2786
#1 #2	H5.055 H5.043	H. 9699 H. 9669	H4.858 H4.856	H5.157 H5.186	H.99Ø3 H.9617	H4.929 H4.927	H. 984Ø H. 9879
Errors High Low	LC High .0050 0050	LC High .0100 0100	LC High .0050 0050	LC High .0100 0100	LC High .1000 1000	LC High .0050 0050	LC High .0100 0100
Elem Units Avge SDev %RSD	Y_3710 ppm H4.967 .007 .1355	Zn2062 ppm H.9953 .0000 .0005	Zr3496 ppm H4.808 .023 .4882				
#1 #倍	H4.972 H4.962	H. 9953 H. 9953	H4.792 H4.825				
Errors High Low	LC High .0050 –.0050	LC High .0050 0050	LC High .0050 –.0050				

Analysis Report

Ø6/15/Ø4 Ø1:36:59 PM page 3

IntSt	td 1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Flem	:3c :	****	18897 - 475	*****	*****	*****	
Wavle	en 361.384	*****	10/11 5000			66×14 550×1	plane Above.
Avge	641224	10000	***** *****	*****	*****	*****	
SDev	460.3265	. ଉଉଉଉଉଉଉ	*****	1200 00000		**** 50-51	40727 This
XRSD	. 0717888	. ଉଉଉଉଉଉଉ	*****		****		***** ****
#1	640898	10000				****	error trans
44.0	641549	10000	****	*****	****		seem ham

05 /15 /04 01 -41 -44 PM

page 1

-. 0026

-. 0006

-.0171

.0180

.0155

-.0050

-.0003

-.0003

-.0043

-.0061

. 1004

. 1004

#1

#3

.0027

.0038

Analysis Report				06/15/04 01:41:44 PM PAge				
Method:	DAILY2 : 06/15/04		ame: 243229					
Comment:	* (DC) X (D) (D)	1.00						
Mode: CO	NC Corr.	Factor: 1	1.					
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230	
Units		ppm	ppm	ppm	ppm	bbm	ppm	
	ppm —. തെൽ1	-, 0206	.0037	.1417	.0121	. ହାହାହା 1	. ଉଷ୍ଟେଶ	
Avge	. 0004	. 0029	.0025	. 0020	. 0001	. ଉଉଉଉ	.0013	
SDev %RSD	365.9	14.17	68.18	1., 394	. 7040	28,39	44,63	
JI 4	0004	0887	. 0019	. 1431	.0121	. 0001	.0019	
#1 #2	. 0000	0185	. 0055	. 1403	.0122	. የአውነን ነ	. 0037	
p 3	m - 7 1 77 ()	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K7664	
Elem	Ca3179		DEM	ts tom	tatem.	t:t:m	t-ct-cm	
Units	pp m 24.7€	. 0004	. 0008	0000	-, ଉଉଡାୀ	0032	5.348	
Avge SDev	. 215	. 0002	. Ø1Ø1Ø11	, @@@@	, ભળવા	. 0005-1	. Ø18'	
%R30	. 1959	43.45	19.27	2550.	269.4	160.2	. 2214	
			,···	- " ହାହାହାଳ	, ହାହାହା 1	-, ØØ68	5, 340	
#1	24.69	. 0003	. 0007	. 0001	0004	. 0004	5.357	
特色	24.75	. 0005	. 0009	* 10/0/07	- Country	* *************************************		
Elem	La3988	Li6707	Mg2790	Mn2576	Ma2020	Na33 0 2	Na5889	
Units	ppm	ppm	ppm	ppm	ppm	bbm	ppm	
Avge	0001	. 0298	3,286	ଉପପସ	. ØØ59	34.42	22.50	
SDev	. 0008	. 0001	.005	.0001	. ଉଉପଥ	. 14	. Ø 1	
%RSD	592.0	. 2006	. 1555	810.3	13.81	. 4115	.0632	
		0.00°	3.283	. 0000	.0065	34.32	22.49	
#1 #2	0007 . 0004	.0297 .0298	3.290	0001	.0053	34.58	22.51	
PF 5	" (C. (C. (C.) -)	E To Some of the						
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2Ø68	
Units	ррш	ppm	ppm	bbw	ppm	ppm	bbm	
Avge	0013	. Ø248	0036	.0011	0026	8.522	0001	
SDev	.0013	. 0066	2000.	.0014	. 0034	, Ø38	, ଦାହାହାତ	
%RSD	100.6	26.53	14.90	123.7	132.5	, 4486	10.41	
11. 4	ርክርክርክ ለ	, 020 2	0033	. 0021	-,0050	6.549	- , ÇIÇIÇI 1	
# 1 # 2	0004 0088	, Ø295	0040	.0001	0002	8.495	0001	
			40000	SiSABI	Pheed	Se196	Sm1899	
Elem	863613	1960/1	1960/2			ppm	99 m	
Units	% R	bbm	ppm	ညည္။ ကိုန္တင္တာ	ppm -, (NA)(N4	. 0055	. 0160	
Avge	103.9	. 0176	0006	24.29	. 20211	. 0001	. 0054	
SDev	. 1	. 0003	. 0003	. 11	260.2	1.557	34.07	
%RSD	. 1065	1.695	45.09	. 4673	2. C. C.C. 2	3 H 5250.5 F		
#1	104.0	.0174	0004	24.37	. 0004	.0055	.0198	
#2	103.9	.0178	ଉଉପର	24.21	0012	. 0054	. Ø121	
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U4090	V_2924	W_2079	
Units	ppm SP4C10	ppm	ppm	ppm	ppm	bbm	ppm	
	. 1004	0052	0003	.0052	. 0004	. 0033	0016	
Avge	. 2222	.0013	. ଉଉଉଉ	.0145	. 0248	. ଉଉଉଞ	.0015	
SDev %RSD	. 0364	24.24	9.554	277.7	5642.	24.11	90.89	
O.C. ZIA	# SET WEST							

0	1	0	1	Λ	a
U	ı	U	1	7	J

						UIU	1143
Elem	Y_3710	Zn2Ø62	Zr3496				
Units	bbw	btom	ppm				
Avge	0001	. ଉଷ୍ଟଳ	0000				
SDev	. ይነይነይነይነ	. 00003	ድወወል "				
%RSD	41.80	15.43	1625.				
#1	0001	. 0025	. ወወወድ				
#2	0001	. ଉଉଟଡ	0002				
IntStd	1	2		4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc		1340-3040	*****	****		*****
Wavlen	361.384	6004 Serve	****	*****	**** 1,4,	*****	***** *****
Avge	670390	10000	1214× 20000		****	***** 1000*	***** ******
SDev	677.4083	. ଉଚ୍ଚତ୍ତ୍ରତ୍ତ	***	deader react	*****	******	1****
%RSD	. 1010469	. ଉପ୍ତର୍ଶ୍ୱରତ୍ତ		***************************************	10000 14001	*******	*********
# 1	670/869	10000	*****	*****	·····	*****	****
#2	669911	1 0000	1244 1884	***** *****	*****		*****

Method: DAILY? Sample Name: 243230

Operator:

Run Time: 06/15/04 13:41:56 Comment:

mode: Li	anu corr	ractor:	1				
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	. 0001	.0190	0027	.2584	.0028	. ଉଉଉଉ	0030
SDev	.0007	.0010	.0034	.0052	. 0001	. 0000	.0063
							207.7
%RSD	532.5	5.149	127.4	1.999	2.456	114,3	#W/ # /
# 1	0004	.0183	0003	.2621	. ଉଉଅଞ	. ଉଉଉଡ	0075
#2	, ଉଦଦର	.0196	0050	" 2548	. 00 257	. ଉପସର	. 0014
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K7664
Units	ppm	DDM DDM				ppm	
Avge	2.498	.0003	.0001 ppm	0006 	.0015	. 1358	ррв 4.511
SDev	. ØP 1	. 0001	. 0001	, Ø1Ø1Ø19	. ଉଉଦା 1	. ansi	, Ø5Ø
%RSD	. 8504	R3.43	115.8	167.4	5.382	6.005	1.109
# 1	2.507	. 0004	. 0001	0012	.0015	. 1415	4.546
#2	2.477	. 0003	. ଉଉଉଉ	. 0001	.0016	. 1300	4,475
Elem	La3988	Li67Ø7	Mg2790	Mn2576	Ma20120	Na33 0 2	NaSSAS
Units			ppm	ppm			
	ppm	ppm		• •	ppm	ppm	ppm
Avge	.0003	.2591	. 1121	.0037	. Ø459	213.4	127.8
SDev	.0012	.0035	. 0055	.0007	. 0009	3.5	2.0
%RSD	4014.0	1.342	4.891	18.39	2.076	1.662	1.544
# 1	0006	.2615	.1082	.0042	. 0466	215.9	129.2
#2	.0012	.2566	.1160	.0032	.0452	210.9	126.5
Elem	Ni2316	P_1782	2203/1	2203/2	Pd34Ø4	S_1820	Sb2 0 68
Units		••••					
	ppm	ppm	ppm	bbw.	ppm	ppm	bbm
Avge	0008	. 0571	. 0044	.0036	0000	10.40	.0138
SDev	.0014	.0030	.0020	. 0059	. 0043	. 21	. 0060
%RSD	175.3	5.210	44.96	163.7	19960.	1.981	43.39
#1	0018	. 0592	. 0030	. 0077	0031	10.55	.0180
井高	. 0002	. 0550	. 0058	ଉଉପର	. 0030	10.26	. 0095
Elem	903613	1960/1	1960/2	Si2881	Pheeø	Se196	Sn1899
Units	%R						
		DDw	ppm	ppm	ppm	၇၇၈	ppm
Avge	87.83	. 0546	.0111	7,883	. ØØ39	. 0256	, Ø623
SDev	1.93	"Ø814	. ଉଉଷର	. 886	. 0032	.0065	.0183
%RSD	2.200	39.21	8.045	2.865	83.48	25.54	29.31
# 1	86.46	.0697	.0105	8.043	.0062	. 0302	.0758
#2	89.19	. Ø395	.Ø117	7.724	. ØØ16	. Ø81Ø	. Ø494
Elem	Sr4215	Th2837	Ti3349	T11908	U_4Ø9Ø	V_2924	W 2079
Units							
	ppm	ppm	ppm	ppm	ppm	ppm	pipin .
Avge	. 0070	0002	0001	0751	0030	0003	.0014
SDev	. ଉପସମ	.0032	.0002	.0022	.0245	.0011	.0019
%RSD	. 1029	1556.	109.2	2.888	818.6	307.0	142.2
#1	. 0070	. 0020	, ସହସହ	0 735	0203	0011	ଅପ୍ରଦେଶ
#2	.0070	0024	0000	0766	.0143	. 0004	.0027

Elem Units Avge SDev %RGD	Y_3710 ppm 0000 .0001 475.3	Zn2062 ppm .0001 .0005 626.6	Zr3496 ppm . 0001 . 0001 69.97			01	0151
#1 #2	2021 . 0000	. 0005 0003	. ወወወ1				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 566438 12483.97 2.203945	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	S NOTUSED 	6 NOTUSED	7 NOTUSED
#1 #2	557610 575265	1		**************************************	****	****	·····

Method: DAILY2 Sample Name: 243231

Run Time: 06/15/04 13:46:41

Comment:

Mode: CONC Corr. Factor: 1

Operator: 010152

mode: Ct	uve corr.	ractor: 3	l.				
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ррв	ppm	ppm	
Avge	0004	0199	. 0096	.1360	.0081	. 0001	ppm .0018
SDev	. 0004	.0037	.0043	.0016			
%RSD	87.31				. 0000	. 0000	.0063
ARSD	07.01	18.50	44.46	1.155	. 2856	8.566	343.4
# 1	0007	0173	.0126	. 1371	.0082	. 0001	.0063
#2	0002	0226	. 0066	. 1349	. 0081	. 0001	0026
			Cl. The The bas bas		H 45.7 () ()	n 40,40,40,40	# 4.14.15 C.
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	b b u	bbw	ppm	bba	to to m	ppm	popm
Avge	13.29	. ଉ ଉଉଥ	. 0009	0001	<i>ଉପର</i> 6	.0144	5.487
SDev	. Ø5	. ወወወ 1	. 0001	. ଅପ୍ରଥାନ	የነርነርነርነ	. 0015	, Ø43
%RSD	.3715	30.09	16.31	237.4	3.883	10.42	. 7770
11. 4	A 1004 200, 20						
#1	13.26	. 0001	.0011	0003	0005	.0154	5., 457
井亭	13, 33	. ଉଉଉଚ	. ଉଉଦ୍ଧର	. 0001	0006	.Ø133	5.518
Elem	La3988	Li6707	Mg2790	Mn2576	Morara	Na33 0 2	Na5889
Units	pom	ppm	ррш	OOM	(3)3m	ppm	ppm
Avge		.0310	2.053	. 0057	. 0098	39.08	25.33
SDev	. 0006	.0001	.015	. 0000	. 0001	.00	. 16
%RSD	2163.	. 3252	. 7379	. 1634	1.238	. 0045	.6361
7 7 7 4	for the bar bar #	A look last him		n 3. C.ST	J. H. E. C. V.S.	a (2.14.1)	* 6'261
# 1	0004	.0310	2.043	.0057	. 0098	39,08	25.22
#2	. ହହାହାୟ	.0311	2.064	.0057	. 0097	39.08	25.45
							turn bac et 2 h
Elem	Ni2316	P_1782	2203/1	2203/2	Pd34Ø4	5_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0002	.0187	0010	.0003	.0018	6.957	.0028
SDev	.0016	.0109	. 0020	.0013	. ଉଉପର	.025	.0022
%RSD	737.7	58.50	195.0	459.1	54.10	.3575	79.95
	m. m						
# 1	.0013	.0110	. 0004	.0012	. 0024	6.975	. 2244
林門	0009	.0264	0025	0006	.0011	6.940	.0012
Elem	Sc3613	1960/1	1960/2	Si2881	PBSSØ	Se196	Sn1899
Units	%R	ppm	ppm	bbw	ppm	ppm	
Avge	104.1	.0137	0016	25.68	0001	.0035	, Ø129
SDev	. 9	.0088	.0015	. 18	.0015		
%RSD	. 8688	15.96	93.83	. 4819		. 0003	. 0001
,m33 CD3D	" come com	3 Ma 70	ಶರುಕಳಾರ	. 4012	1079.	7.623	, 3784
# 1	103.5	.0153	0027	25.77	. 0009	.0033	.0130
#2	104.7	.0122	2025	25.60	0012	. DD37	.Ø129
Elem	Sr4215	Th2837	Ti3349	77.1000	D 4000	11 0007	1 4
Units				T11908	U_4Ø9Ø	V_2924	W_2079
	toba.	ppm	ppm	ppm	ppm	ppm	tstem
Avge	. 0666	0031	0003	0089	.0122	. 0056	. 0006
SDev	. 0004	.0018	" ବ୍ୟବ୍ୟର	.0030	.0121	. DODE	. (21/21/21/6
%RSD	. 5745	59.78	9.299	33.93	99.02	4, 291	103.7
# 1	.0663	0044	0003	0111	.0207	.0055	. 0002
#8	.0668	0018	0003	0068	.0037		
77)	" N'A P'A P'A L''S	a Analy V C3	* KIKKKI	" KIKICICIC	" 60002 /	.0058	.0010

page 2

Elem Units Avge SDev %RSD	Y_3710 PPM 0001 .0000 50.94	Zn2062 PP# . 0016 . ბთბბ 2.194	Zr3496 prm .0002 .0001 27.96				
#1 #2	ଉଉଉପ ଉଉଉ t	.0016 .0017	. 0003 . 0002				
IntStd	1	₽	3	4		6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc		*****	*****	*****	47970 MALLA	Store Short
Wavlen	361.384	*****		****		tone out	
Avge	671378	1 ወወወወ			****	*****	****
SDev	5786.962		1000 hours	*****	*****	MARK -1411	
%RSD	.8619528	. ଉପଦପ୍ରଦ୍ୟ	****	£20.00 000\$0	***** *****	***** ****	*****
# 1	667286	10000	COMP AND A	*****	****	MARIT SEC	*****
#2	675470	10000	*****	*****	*****	*****	

page 1

Analysis Report 06/15/04 01:56:01 PM

Method: DATLY2 Sample Name: 243231s Operator:

Run Time: 06/15/04 13:51:27

Comment:

mode: La	unt tomm	, ractor:	1				
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	to to w	ppm	ppm	pp m	ខ្លួក	ppm	ррт
Avge	.0513	1.946	2.044	. 1407	2.027	.0494	. 0082
SDev	.0005	. 004	. ଉଦ୍ଧନ	.0002	.004	. 0000	. 0046
%RSD	1.025	.2134	.3922	. 1608	. 1938	. 0047	55.81
AROD	1.405.0	# 122 J 434		* T & & C	* 1200	# Q3Q3~F 7	រស់លាក់ ដោធ
# 1	.0516	1.943	2.038	. 1409	2.024	. 0494	.0114
#2	. 0509	1.949	2.050	. 1406	2.030	. 0494	. 0050
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K7664
Units	bbw	ppm	bbm	ppm	ppm	bbm	bbw
Avge	33,68	.0497	.5010	. 1971	.2519	1.084	27.47
SDev	, Ø6	. ଉଉପୀ	. ଉଦପ୍ତନ	. 0013	. 0007	.015	10
%RSD	. 1741	.2350	.1690	.6459	. ≈643	1.410	.3747
#1	33.64	. 0 497	" 5ØØ4	. 1980	. 2514	1.073	27.40
井戸	33.73	. 0498	. 5016	.1962	, 2524	1.095	27.55
14 1	-ാവം /വ	. 2478	, 083.5	. 176cm		1 (0.27)	ST F # subside
Elem	La3988	Li67Ø7	Mg279Ø	Mn2576	Masded	NaBBØR	Na5A89
Units	ppm	ppm	ppm	က္ကဏ	ppm	ស្រុក ត	ppm
Avge	. ØØØ1	. Ø348	22,35	5090	. 201120	61.56	40.81
SDev	. 0006	. 0001	.05	. 0000	.0007	. 27	.02
%RSD	552.Ø	. 2740	. 2055	. 0039	6.365	. 4462	. 01414
# 1	0003	. Ø349	22, 32	. 5090	.0105	61.36	40.80
#2	. ଅନ୍ୟର	.0348	22.38	. 5090	.0115	61.75	40.83
Elem	Ni2316	P_1782	2203/1	5503/5	Pd3404	5_1820	Sb2068
Units	ppm	pp.m	ppm –	pbm	bbw	ppm	bbw
Avge	. 4900	. 0289	. 4949	. 4975	. ଉଉଉଉ	7.038	.5055
SDev	. 0005	. ØØ89	.0017	. 0005	. ଉହାସ୍ଥର	. 264	.0015
%RSD	. 1074	30.86	. 3441	.0990	2094.	.9100	.2911
# i	.4903	.0352	. 4961	. 4978	ØØØ6	7.083	. 5044
				. 4971			.5065
排記	. 4896	. 0226	. 4937	. 4971	. 0007	6.993	. 5065
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	100.7	2.243	2.226	25.89	. 4966	2.232	.0127
SDev	.2	.008	.015	.05	. 0009	.013	.0026
%RSD	.2380	. 3776	.6636	.2073	. 1504	.5677	20.77
S T T T TABLE	W. Book St. There But	# 1.27 / 1.17	R to the to to	H. Berr Walf C. Serl	R II C.PWF F	H SEPSON F F	to so a r
# 1	100.5	2.249	2,836	25.93	. 4973	2.241	.0145
#2	100.8	2.237	2.216	25.85	. 4960	9.223	. 0108
>		1900 1 .00. 200, 1100 1100		****			
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U_4Ø9Ø	V_2924	W_2079
Units	ppm	bb.w	bbw.	bbw	to to m	btom	t-t-m
Avge	.0675	0157	0002	2.075	.0081	. 5030	. 0007
SDev	. 0001	. 0046	. 0001	(7) (7) 4	" ରାଧାରତ	. होहो १ हो	୍କ ହାହାହାର
%RSD	. 1367	29.10	36.07	.2165	6.908	. 2012	126.2
#1	. 0674	Ø189	VIVIZI1	2.072	" ØØ177	.5043	, Ø1Ø1Ø11
排出	.0675	Ø125	0 002	2.079	. 0085	.5057	.0013

Elem Units Avge SDev %RSD	Y_3710 ppm 0001 .0001 121.0	Zn2062 ppm .5090 .0015 .2892	Zr3496 ppm .0001 .0001 99.45				
#1	Ø1Ø1Ø11	. 5079	୍କ ହାହାହାହା				
井戸	ଥଉଉଉ	.5100	. 0002				
IntStd	1	2	3	4	E	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSEO	NOTUSED	NOTUSED
Elem	Sc	*****	****	*****	**** ****	store three	
Wavlen	361.384	****	*****	1000	10048 4 184	*** : 14	
Avge	649190	1 ወጀወወ		****	****	*17** 14000	Anne 4441
SDev	1520.280	. ወወወወወወወ		souls sous	. 1000	21130 3250	****
%RSD	.2341810	. ଉପରସମ୍ପର	*****		****	Mart 3000	pro- 44
		. ****					
井 1	648115	10000	4304s 1454s	****	***** *****	***** 1-44	*****
#2	650265	10000		*****		*****	

page 1

06/15/04 02:00:47 PM

Analysis Report

Method: DAILYS Sample Name: 243238

Operator:

Run Time: 06/15/04 13:56:13

Comment:

Tropical at 16.4	, 44.	# 1 CAC O C-1 #	•				
Elem	Ag328Ø	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	opm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	ØØØ	.0071	. 0078	.1423	.0138	. 0001	ผิฬ39
SDev			.0014			. 0000	. 0007
	. 0004	.0053		.0024	. 0000		
%RSD	234.9	74.08	17.52	1.705	.3017	2.176	17.00
# 1	.0001	.0108	.0068	. 1440	.0138	. 0001	.0043
#2	0004	. 0034	. 0088	. 1406	.0139	.0001	. 0034
,···• *	,	سنتو مرسرورسرو يسر	م بحر بعد بسر	ومددودت مريدي يمير	ومدر مدس مدس	,	ر در در و ۱۰۰۰
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	bbw -	ppm	ppm	bbm	bbw	bbm	bbw
Ävge	12.80	. ଉଉଉଥ	. ଉଉଉଡ	. ଉଉଉउ	0003	. 0061	3.814
SDev	. Ø1	. ଅଟେଅଟ	. ଉଉଉଓ	. ଉହରଥ	. ଉଉଉନ	. 0027	. ଉଉଚ
%RSD	.0717	.2813	11800.	245.7	203.9	44.77	. 1987
#1	12.79	. ଉଉଉଥ	. 0003	- . ଉଉଉଥ	. ଉଉପ 1	. ଉଷ୍ଟର	3,819
#2	12.81	. 0002	0002	. 0009	0007	. 0048	3.808
Elem	La3988	Li67Ø7	Mg279Ø	Mn2576	Mo2Ø2Ø	Na33 0 2	Na5889
Units	bbm	is is m	bbm	ឯ៦៣	lo lo m	bba	Up m
Avge	ØØØ1	.0385	1.065	. ଉପସମ	. 0043	45. 98	29.A7
SDev	. ଉଉଉଓ	. ଉପରୀ	. 005	.0002	. 0005	. Ø1	. Ø4
%RSD	333.0	. 1595	. 4953	91.21	12.32	. Ø326	. 12:59
# 1	. 0001	. 0384	1.069	. 0004	. 0039	45.97	29.90
#2	0003	.0385	1.061	. ØØØØ1	. (20147	45, 99	89.84
Elem	Ni2316	E 1700	2203/1	2203/2	Pd3404	C 1000	Sb2 0 68
Units		P_1782				S_1820	
	ppm	ppm	ppm	ppm	ppm	ppm	bbw
Avge	0007	. 0088	.0011	0014	0014	8.093	.0015
SDev	. 0004	. 0088	.0013		.0021	. 108	.0026
%RSD	61.97	100.4	121.4	64.58	150.0	1.331	168.2
# 1	0010	.0150	.0020	ଉଷଷର	. 0001	8.169	ØØØ3
#2	0004	.0025	.0002	0021	0028	8.017	.0033
Elem	Sc3613	1960/1	1960/2	Si2881	PPSSØ	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ррм
Avge	102.9	.0167	0025	26.22	0006	. 0039	.0123
SDev	1.2	.0069	. 0054				.0022
				. 19	.0010	.0059	
%RSD	1.183	41.31	218.9	.7273	182.5	151.0	17.88
# 1	102.0	.0215	.0014	26.36	. ଉପସମ	.0081	.0139
#2	103.7	.0118	ØØ63	26.Ø9	0013	ଉଉଉଓ	. 0107
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U_4Ø9Ø	V_2924	W_2079
Units	to to us	ppm	ppm	ppm	ppm 	ppm	to to m
Avge	.0707	0023	0001	0094	.0884	.0067	. 0005
SDev	. ଉଉପର	. 0031	. 0002	.0015	, Ø884	. ଉଉଉଓ	.0003
%RSD	. 0290	134.6	187.8	15.84	100.3	4.169	337.7
28331.234	A NOTE OF MA	action of mobile	h to f n to	3. s.,2 n = 5.3 mg	n namen a e co	THE RESERVE OF	CASSA F W F
# 1	. Ø7Ø7	ØØ145	, Ø1Ø1Ø1Ø1	0104	. Ø388	. 0065	. 0015
井津	.0707	0001	0000	-,0083	. 0065	. 0069	0007

Ø6/15/04 Ø2:00:47 PM page 2

Elem Units Avge SDev %RSD	Y_3710 ppm 0001 .0000 42.55	Zn2062 ppm 0010 .0003 26.84	Zr3496 ppm 0001 .0002 114.2				
#1	0001	0008	0003				
#2	0001	0011	0000				
IntStd	1	P	3	4	E	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sic		****	****	****		
Wavlen	361.384	****		*****	TOTAL TOMA		****
Avge	663352	1 ወወወወ		*****			
SDev	7814,837	. ଉଦ୍ପର୍ଶ୍ୱର	****	*****			·····
%RSD	1.177992	୍କ ହାହାହାହାହାହା		*****	****	*****	****
# 1	657827	10000	*****	*****	*****	36 30 1770	*****
#2	668878	10000	*****	*****			ones, 200+4

Analysis Report

#1

排戶

. 0746

.0749

-, 0047

-.0012

-.0003

-. 0003

-, 0026

-.0019

.0174

.0134

· Ø134

.0133

. 00771

.0043

06/15/04 02:05:33 PM

page 1

Method: DAILYS Sample Name: 845108 Openation: Run Time: 06/15/04 14:00:58 Comment: Mode: CONC Corr. Factor: 1 Be313Ø Bi2230 Elem Ag3280 A13082 As1890 B 2496 Ba4934 Units ppm oom opm opm ODM OBB ទទទ . 0000 -,0125 . 0061 . 1450 . 00106 .0022 Avge -- , (21(21(21) SDev .0001 .0026 .0018 .0008 . 0000 . 0000 .0015 %RSD 59.76 21.16 29,28 . 5430 . 1696 14.52 72.01 -.0002 -.0106 . 0049 .0000 .0011 #1 . 1445 .0106 . 0002 #2 -. 0001 -.0143 . 0074 . 1456 . 0106 .0032 Elem Ca3179 Cd2265 Co2286 Cr2677 Cu3247 Fe2714 K_7664 Units ppm ppm maga ppm ppm ppm COM 13,59 3.705 Avge . ଉଉଉଡ .0012 .0003 .0005 .0120 .02 . 008 SDev . 0000 . 0005 . 0009 . 0002 .0110 .2253 **XRSD** .1350 76.03 38.58 274.5 29.32 91.84 #1 13.57 . ØØØØ . 0009 . 2121219 . ଉଉଉଓ .0198 3.699 3.710 排户 13.60 .0001 .0015 -.0003 . 0004 . 0042 Na5889 Na3302 Elem La3988 Li6707 Mg279@ Mn2576 Mo2020 Units ppm ppm ppm mege ppm DOM ppm . 00001 .0372 1.345 .0017 SEING. 50.06 32.54 Avge . 0001 .0001 . 0001 . 0005 . 18 SDev .005 . 203 44.40 4. 2020 6.237 . 2409 818B. "ARSD .1373 ,3919 #1 . 0001 .0378 1.341 .0018 , ØØ/A6 49.98 32.52 #2 . 0000 . 0371 1.349 . 0017 . 2079 50.15 32,56 Sb2068 Elem Ni2316 P 1782 2203/1 2203/2 Pd3404 \$ 1820 pepen Units ppem ppm pom ppm ppm pepen -.0005 Avge -, 0000 .0178 -.0023 -.0012 . 0006 9.427 SDev .0010 . ଉଉପର . 0007 .0035 . 0004 .031 . 0017 **XRSD** 207000. 300.2 75,80 .3255 350.9 3.386 30.64 9.449 -.0036 . 0003 . 00007 #1 . 0007 .0168 -.0028 -.0017 . 0009 9.405 #3 -.0007 .0176 -.0018 .0013 Elem Sc3613 1960/1 1960/2 Si2881 Pb220 Se196 Sn1899 Units XR. ppm ppm ppm ppm ppm ppm 102.9 19.71 -.0015 .0003 .0042 Avge . 0096 -.0045 SDev . 4 .0017 . 0014 .07 .0026 . 0003 . 0006 31.06 .3508 168.1 138.6 14.03 %RSD .3549 17.96 102.7 .0084 -.0035 19.76 -.0033 .0005 . 0046 #1 #2 103.2 .0108 -. 0054 19.66 . 0003 . 2020 .0037 Elem Sr4215 Th2837 Ti3349 T119Ø8 U 4090 V_2924 W_2079 Units pepen ppm ppm ppm prom ppm pqpm .0747 .0057 -. 0030 -,0003 -.0023 .0154 Avge .0133 , anara: . 0025 . ଉଉଉଉ . 0005 . 0028 . MARA 1000 SDev %RSD . 2074 82,96 4.678 22,68 18,35 35.22 .3668

06/15/04 02:05:33 PM page 2

Elem Units Avge SDev %RSD	Y_3710 PPm 0001 .0001 49.46	Zn2062 ppm .0015 .0005 31.31	Zr3496 ppm .0006 .0001 9.715				
# 1	000i	.0019	. ଉଉଉଧ				
#2	0002	.0012	.0007				
IntStd	1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sic	*****	*****	*****	***** *****	44 MP 88000	*****
Wavlen	361.384	*****	*****	*****	*****	speed reage	*****
Avge	663732	1 0 0 0 0	***/* *****		120cc 460cc	*****	
SDev	2319,310	. ଉପସ୍ଥ୍ୟଥନ	*****		week care		****
%RSD	.3494347	. ଅହାସହାହାହାଥ	*****	A1146 0000E		****	der derin
# 1	668098	10000	1988 - 20. 11	1971 - 1772	****	orana coma	****
#2	665372	1 ହାହାହାହା		***** *****	*****	****	

Operator:

page 1

Method: DAILY2 Sample Name: 245108d

Run Time: 06/15/04 14:05:44 Comment:

Mode: cr	ayt. Later	" recount					
Elem	Ag32 80	A13082	As189Ø	B_2496	Ba4934	Be3130	Bi2230
Units	ppm ကြော	$\rho \rho m$	ម្រុសណ	ppm	ppm	ည္က	ppm
Avge	ଅପଅପ	ወ <u>ድ</u> ወ4	. 0085	. 1399	EBIB.	. ወወወ:	. 0046
Spev	. 0006	, ଉଷ୍ଟର	.0017	. 0001	୍କ ହାହାହାହା	, ଉଷ୍ଟାଷ୍ଟ	. 0016
%RSD	2164.	10.75	19.91	. 1103	.3152	19, 45	35, 77
2 4 3 4 Vin 3 4m²	E. J. C. T. II	3. 4.14 / 0.2	2. 2 H 2 3.	B 36 4. 1-167	gr s - et te-te	20 W W W W	
# 1		0188	.0097	.1398	.0103	. ଉଉଷନ	. 0058
#2	, 00004	0219	. ወወ73	. 1400	.0104	. 0002	. MØ34
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	bbw	ppm	bbw	bbw	bbw	bbw	b b w
Avge	13.2Ø	. ଉହାପ୍ତ4	. ପପପପ	2024	. ଉଉପର	. 0038	3.593
SDev	. ଅପ	. 0003	. 0001	. 0011	. 0001	. ପଦାଥୟ	" ଉଦ୍ଧର
%RSD	.0200	57.08	113.9	287.9	14.60	64.36	. Ø579
#1	13.20	. ଉଉଉଧ	. ଉଉଉଡ	. 0004	. ଉଉଉଚ	.0017	3.591
						. 0046	3.594
#2	13.80	.0003	. 0001	0011	. 0005	* KIKI+0	ಎ.ವ೪ಇ
Elem	La3988	Li67Ø7	Mg279Ø	Mn2576	Mo2020	Na33Ø2	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	ଉଉଉଉ	. 0361	1.309	.0016	. 0083	48.93	31.58
SDev	. 0004	. 0001	.002	. ଉପପର	. 0002	. 014	.03
%RSD	82510.	. 3504	1444	2.072	1.985	.0878	. 0955
3 4 4 4 CL3 4L3	ter the took of the fi	# 1? tus? 7 ?	H .1. 7 7 7	Ec. R. Sap. F. Zoor	a a constant	as the second	7 3. 12 60 1.
# 1	0003	.0360	1.310	.0016	. 0084	48.96	31.60
#2	. മമമട	.0361	1.307	. 0016	. 0082	48.90	31,56
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	S62068
Units	btom	bbw	k-t-m	to to m	ks kom	ks ks m	tetem
Avge	. 0007	. 0188	0036	.0012	-, ଉଉଉନ	9.202	.0017
SDev	. 0015	. ØØ84	. ወወወ6	" ጀነጀነጀነ4	. ହାହା 1 ହା	. 0 33	. ઇ પ્લેસ્ટ 1
%RSD	217.1	65.56	17.80	33.04	131.8	.3498	181.8
AL 4	<i>(2) (2)</i> 4 177	. 0069	0031	. 0010	0015	9.225	EEMM.
#1	.0017				0001		
#2	0004	.0188	0040	.0015	" 101/01/01	9.180	. 0002
Elem	Sc3613	1960/1	1960/2	Si2881	PBSSØ	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	mqq	ppm
Avge	106.0	. 0066	0017	19.13	0004	.0011	. 0050
SDev		. 0014	.0005	. 09	.0001	. 0001	.0007
%RSD	. 1447	20.59	27.22	. 4610	16.68	13.38	14.80
MNOD	u 3. ~+~+ /	SELECTION SELECTION	Ann I is Southern	A TEND A VA	ate had an had to	di tura turti s	
排 1	106.1	.0076	ଉଉ ପଡ	19.20	0004	.0012	.0055
#2	105.9	. 0057	0014	19.07	0003	.0010	. 0045
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U4Ø9Ø	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	bbw
Avge	.0727	0019	0001	0034	.0162	.0131	. 0036
SDev	. ଉଉଷର	.0014	. ØØØ1	.0028	.0101	. 0005	. 0018
%RSD	.2162	73.07	87.57	82.20	68.39	3.808	34.49
11. 4	, mg, mmg , mm, , yr	ma ma ma	Th the the the	175 175 4 2.	graph control and and	Ch 4 Cars	בייי וייי וכיו וכיו
#1	. Ø726	ØØPA	NØØP	ØØ14	. 0 233	. 0128	. 0027
林色	. 07R9	0009	0001	0054	. 0090	.Ø135	. 0044

Elem Units Avge SDev %RSD	Y_3710 ppm 0000 .0000 33.23	Zn2062 ppm .0028 .0004 14.72	Zr3496 ppm . @@@4 . @@@2 53. @8				
#1 #2	ଉଉଉଉ ଉଉଉଉ	.0031 .0025	. 0006 . 0003				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 683556 990.6566 .1449270	2 Time 10000 .000000 .0000000	3 NOTUSED 	4 NOTUSED	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
# 1 #2	684856 682855	1 ଉପପତ 1 ପଦପତ			etala () ()	11-14 Addres	

Operator:

Method: DAILY2 Sample Name: 245108s

Run Time: 06/15/04 14:10:30

Comment:

Mode: U	UNU Carr	" ractor:	3.				
Elem	Ag328Ø	A13082	As1890	B_2496	Ba4934	Be3130	Bi223Ø
Units	9 13 m	pom	1313m	ppm	opm	io io m	ppm
Avge	" Ø5Ø4	1.940	2. Ø28	. 1420	୍ଥ୍ୟ ଅଧ୍ୟ	. Ø4A9	. ØØ73
***	. 0003	. 003	.001	. 0002	. 004	. ପ୍ରଦ୍ରତ	. 0037
SDev							
%RSD	. 6 1 8′9	.1658	"Ø673	, 1561	, 1881	"Ø79B	50,34
# 1	. 0507	1.938	2. Ø39	. 1488	2.005	. 0489	. 0099
#2	. 0502	1.942	2. Ø27	. 1419	2.010	. Ø49Ø	. ወወ47
		•					
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K7664
Units	bbw	bbm	bbw	bbw	bbm	ppm	bbw
Avge	33.77	.0492	. 4979	. 1952	.2513	1.060	26.00
SDev	. Ø5	. 0003	. ଉଉପୀ	. ØØ16	. 0004	. ଉପ୍ତାତ୍ର	. Ø12
%RSD	. 1545	.5418	. Ø3ØØ	. 7975	. 1774	. 2462	.0759
11. 4	33.73	. 0490	4 D T D	4 15 1. 4	.2510	a merior	7F 55
# 1			. 4978	. 1941		1.062	25.99
井己	33.81	.0494	. 4980	.1963	.2517	1.058	26.01
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	maqq
Avge	0002	. 0404	21.76	.5007	. 0090	72.50	47.49
SDev	.0003	. 0000	. 01	.0003	. 0006	. 12	.05
%RSD	170.3	. 0755	. 0465	. 0660	7.090	. 1681	. Ø949
AROD	1. / 43 n	n 4247 xx3 xx3	" 65 m C m	* &ເບຕະ	1. 6.26.	" TOOT	# 425 D = 4 D
# 1	0004	. 0404	21.75	. 5005	. 0086	72.42	47.53
#2	. ଉଉପଦ	. 0404	21.76	. 5009	. 0095	72.59	47.46
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	5_1820	Sb2Ø68
Units	to to m	bbw -	bbm	bbm	to tom	btom	tetem
Avge	. 4825	.0830	. 4958	. 4938	0009	9,312	.5013
SDev	. 0037	. Ø119	. 2034	. ØØ13	. 00010	, Ø99	. ØØ79
%RGD	.7669	51,95	.6819	.2599	110.7	1.061	1.571
11. 4	1. **** 1° 1. 1° 2	.Ø314	1. P3 *** 1.	j. p	memera e	m m a	1. F. 127 77
# 1	. 4798		. 4934	.4923	0016	9.381	. 4957
井戸	. 4851	. 0145	. 4982	. 4941	ଉଉଷଟ	9.848	. 5069
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ррт	mejej	ppm	ppm	ppm	ppm
Avge	102.7	2.176	2.171	19.42	. 4941	2.173	.0031
SDev	. 1	.011	.014	.07	.0080	.013	.0007
%RSD	. 1453	. 4900	.6443	.3498	.3995	.5927	22.72
# 1	102.8	2.183	2.181	19.47	. 4927	2.182	. 0036
#2	102.6	2.168	2.161	19.38	. 4955	2.163	. 0026
Elem	Sr4215	Th2837	Ti3349	T11908	U 4090	V 2924	W 2079
						*****	*****
Units	ppm	ppm	ppm	ppm -	ppm	ppm	bbm_
Avge	.0738	0151	0003	2.079	. 0006	.5071	.0070
SDev	. ଉଉଉଉ	.0036	. ଉପପର	. 014	. 0042	.0021	.0018
%RSD	.0071	24.01	16.45	.6730	695.3	. 4125	25.27
# 1	. 0738	Ø176	0003	2. 0 69	-,00024	.5086	. 8888
#.=	. 07 38	0125	0003 	2. Ø89	. 0036	. 5057	. 2058
44	# 4017 - 3 KB			C. 4007	" KUCLTE	" (1830) \(\)	" KIKITI'

Elem Units Avge SDev XRSD	Y_3710 ppm 0002 .0001 29.42	Zn2062 ppm .50A4 .0009 .1854	Zr3496 ppm .0000 .0002 594.6				
# 1	0002	.5077	0001				
#2	0001	.5091	.0002				
IntStd Mode Elem Wavlen Avge	1 *Counts Sc 361.384 662188	2 Time 10000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
SDev	965.2007		****	****		*****	1504 9004
%RSD	.1457594	. ଉଷ୍ଡଷ୍ଟବ୍ୟ	*****	*****	*****	*****	*****
#1 #2	66287 0 6615 0 5	1 0000 1 0000		***************************************	****	OM A G	***************************************

Analysis Report

06/15/04 02:19:50 PM page 1

Method: DAILY2 Sample Name: 245109 Run Time: 06/15/04 14:15:16

Operator:

Comment:

Mode: C0	INC Corr.	. Factor:	1				
Elem	Ag328Ø	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	្រុក	ppm	ppm
Avge	ØØØ1	. Ø838	.0167	. 1671	. 0074	. ወወወድ	. 0018
SDev	.0001	.0067	. 0001	.0018		. 0000	. 0001
%RSD	61.67	7.962	.5235	. 7063	.5671	.1158	7.517
w1/577	723 35 m 723 Y	F a DAME	m setti siitset	H I WOUNGS	# 5a35a3 / 3	# 3. 3. sassas	Fin in St. I
# 1	ØØØt	. 0885	.0168	. 1679	.0074	. 0000	.0019
#2	- , ØØØØ1	. 0791	.0167	. 1662	. 0074	" QIQIQIS [,]	, 00x17
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	pr.m	ppm	ppm	ppm	E-E-M
Avge	6.691	.0007	. 0008	. 0009	.0010	. 0350	3.029
SDev	. 006	. 0001	. 0001	. 0004	. 0004	. 0005	"Ø14
%RSD	.0953	14.86	5.847	46.46	44,86	1.406	. 4667
#1	6.686	. ଉଉଉନ	. ଉଦ୍ଭର	. ଉଉଷର	. ଉଉପଟ	. Ø354	3.019
井巴	6.695	.0008	. 0008	.0012	.0013	.Ø347	3.039
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm -	ppm	ppm	ppm	ppm
Avge	ଉଉଉଡ	. 0828	.5499	. 0006	.0065	77.91	49.43
SDev	. 0002	. ଉଉଉଉ	. 0085	.0001	.0012	.01	. 07
%RSD	588.9	.0457	1.547	10.03	19.14	.0170	. 1454
AROD	200.7	* C(*+ 13 /	3. a. 13*** /	3 Ki.* Ki.?	37 n 3.44	. C. 1. 7 C.	a & My suffer
# 1	0001	. 0828	.5439	. 0006	.0056	77.90	49.38
#2	. 0001	. Ø829	.5560	. 0007	. 0073	77.92	49.48
Elem	Ni2316	P_1782	2203/1	5503/5	Pd3404	S_1820	Sb2068
Units	bbw	bbm	bbw	bbm	bbm	bbw	to to m
Avge	- . ଉଉପ୍ତ	. 0332	0015	.0019	. 0000	7.359	.0020
SDev	. ଉଉଉଚ	.Ø126		. ልል59	. ØØ39	. 01401	. ውጥሥራ
%RSD	177.1	37.98	50.19	155.6	2548.	. 5371	129.2
# 1	- . ØØØ7	.0843	ØØ	. 0039	WW56	7. 387	" ØØGS
排記	. 0001	.0481	0010	00002	. 0029	7.331	. ଉଷଷଟ
	H WARRANT E	W. Marting T.	an martiner to mar	# H. M. M. M. M. M. M. M. M. M. M. M. M. M.	W MARKET L. L.	V W 1.01.01.01	er militarian mentana
Elem	Sc3613	1960/1	1960/2	Si2881	PhareM	Se196	Sin 1899
Units	%R	55m	bbm	50m	bbm	ia ta m	obm
Avge	102.7	.0163	. ଉପଦର	25.62	. ଉଦ୍ଭଷଣ	. 0059	୍କ ହାହାଥାଏ
SDev	. 1	.0068	. 0011	. 10	.0017	. 0030	. 0016
%RSD	.0611	41.37	184.7	. 4073	221.2	50.90	2 0. 39
#1	102.7	.0211	.0014	25.70	. ଉପ୍ତମଣ	. 0080	. 0092
#2	102.8	.0116	0002	25.55	0004	.0037	. 0069
Elem	C~AO15	Th2837	Ti3349	T11908	11 A Ø(\$) Ø(u sasa	₩ Φ σ (70
	Sr4215				U_4@9@	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0315	0003	. 0006	0064	.0030	. 0047	. 0006
SDev	. 0001	. 0005	. ଉପସା	. 0039	.0132	. 0003	.0023
%RSD	. 23 9 3	156.9	15.95	60.92	440.0	6.356	351.8
# 1	. 2314		. 0005	0092	0063	. 0045	2010
#2	.0315	0007	. 0006	0037	.0183	.0049	.0022
* * * * * * * * * * * * * * * * * * *	per open break after break	in that the fleet f	m ne die Louige.	va take territori f	and the state of t	en entrope e e	er year their feet

06/15/04 02:19:50 PM page 8

Elem Units Avge SDev XRSD	Y_3710 ppm .0001 .0001 183.6	Zn2062 ppm .0028 .0004 14.11	Zr3496 ppm .0009 .0002 22.47				
# 1	. 0000	.0031	. 0007				
#2	. 0001	.0025	.0010				
IntStd Mode	1 *Counts	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	Sc	*****	****	*****	*****	***** *****	****
Wavlen	361.384			*****	1400 0100	****	*****
Avge	662605	10000		·····	****	*****	
SDev	386.0803	. ଉପରପ୍ରପ୍ର	***** *****	**************************************	****	*****	*****
%RSD	.0582670	. ଉଉଉଉଉଉଉ	****		****	*****	
# 1	668338	10000	*****	#### 1970a	*****	*****	*****
#2	662878	10000	*****	1,000 6000		*****	2017 2200

Operator:

Analysis Report 06/15/04 08:84:36 PM page 1

Method: DAILY2 Sample Name: 245110

Run Time: 06/15/04 14:80:02

Comment:

			-				
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	66 m	ppm	ppm	ppm	ppm	ppm	ppm
Avge	-,0005	0237	. 0074	. 1408	.0107	. 0002	. ดดอธ
SDev	. 0004	.0035	. ଉଉଉଉ	.0012	. 0001	. 0000	. 0008
%RSD	85.59	14.78	. 3772	. 8444	1,334	9.563	30.78
763 (C) (C)	\$653m3# 3m3 m3	3. Tr # 7 3.3	n v.3 f f b.	# V V # #	A. H. WAYLAND	DR WINDLY	unan 733
# 1	0008	0212	. 0074	.1417	. 0106	. ଉଉଉଚ	. 0030
#2	- , (21/21/21/21	0262	. 0074	. 1400	. 0108	" ØIØIØIP	. 0019
** ****	B 3. 3. 3. 4. 7	H THE WAY SHOULD	a successive r	a a raca	W W W		
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	to to m	p) r • m	p p cm	ppm	ptom	rer em	E ct cm
Avge	13.63		. 0009	0011	0004	. 0030	3.725
SDev	. Ø3	. शशकाका	. ପ୍ର ପ୍ରପ୍ର	Ø1Ø1Ø14	. የነሪካርካ 1	. 08:4P	. Ø331
%RSD	.2174	8986.	28., 3 9	33, 59	21.85	816.1	. 8300
# 1	13.61	0002	. 0011	ଉପପର	ØØØ4	Ø141	3.703
#2	13.65	. 0002	.0007	0013	0003	.0201	3.746
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2Ø2Ø	Na3302	Na5889
Units	ppm	ррш	ppm	ppm	ppm	ppm	ppm
Avge	0004	.0371	1.344	.0016	.0080	50.11	32.51
SDev	. 0006	. 0002	.008	.0001	. 0004	.22	. Ø8
%RSD	151.4	. 4212	.5872	6.630	4.621	. 4364	.2498
7437 CJ25	3. t.3 3. n **F	n TELL A ELL	# WW / Sill	0.000	The Commit	* ****	# 100 PF 17 CN
# 1	0009	.0373	1.338	.0016	.0077	49.96	32.46
#2	. ଉଦଉଦ	.0370	1.350	.0017	. 0082	50.27	32.57
## 1	8.1.2 (m. m. 4.7)	pro. 4 mm /m .m.	arra arra arra mina di di	and any one one of a single	programme and an arms a	m + mmm	ma mener e
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_182Ø	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	bbw	ppm
Avge	. 0009	.0271	0041	. 0008	0016	9.457	. 0040
SDev	. 0001	.0165	. 0020	.0013	.0019	. Ø85	. 20033
%RSD	9.784	6 0. 75	47.78	162.2	114.0	. 8959	AR. 60
#1	. മമമ	. Ø388	- . 0055	- " Ø\Ø\Ø\1	ଉଷ୍ଟର	9.517	. 0063
#2	.0010	.0155	0027	.0017	0003	9.397	.0017
	W Mar Will D. Mar	H Was I votas	* ***********************************	H 4.54.5 16 1	H Martin Martin	# 13 3 T	W 42-42-3-7
Elem	803613	1960/1	1960/2	Si2881	Ph220	Se196	Sn1899
Units	%R	ppm	ppm	bbm	ppm	ppm	្រក្សា
Avge	104.0	. Ø166	0026	19.64	, ହାହାହାର	BEING .	, Ø1166
:3Dev	. e	. 2010	. 0018	. 04	.0015	.0015	. 0028
%RSD	. 20191	5.906	70.14	"229Ø	181.9	39.79	16.65
H 1	103.9	.0173	0013	19.67	0019	. 0049	.0185
井己	104.2	.0159	0038	19.61	. 0002	. ØØ28	. Ø146
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U_4Ø9Ø	V_2924	W_2079
Units	ppm	ррш	ppm	ррт	ppm	ppm	ррж
Avge	.0752	0018	0003	0174	.0077	.0133	0007
SDev	. 0001	.0017	. 0000	.0015	.0112	. 0007	.0010
%RSD	.0859	98.60	8.534	8.678	145.3	5.566	141.8
	· · · · · · · · · · · · · · · · · · ·			· · ·		· 	5
#1	.0752	0005	0003	0164	0002	.0138	. ଉପସସ
排品	.0751	0030	ଉଉ ଉ ଓ	0185	.0156	.0127	0014

06/15/04 00:84:36 PM page 8

Elem Units Avge SDev %RGD	Y_3710 ppm 0001 .0001 74.27	Zn2062 ppm 0002 _ 0003 163.1	Zr3496 ppm .0002 .0003 146.0				
#1 #3	ଉଉପନ ଉଉପ1	. ଉଉପର —. ଉଉପ4	ØØØØ . ØØØ4				
IntStd Mode	i *Counts	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	Se		and the second		and the state of t	and the same and t	many same
Wavlen	361.384		*****	*****	****	****	****
Avge SDev	670985 1401.486	1	*****			*****	*****
%RSD	.2088699						18072 1900
#1	669994	1 ଉଉଉଉ 1 ଉଉଉଉ		****	****	****	****
#2	671976	TAIKIKIKI	***** ****	**** ****	*****	*****	*****

Comment:

mode: Lt	and Cori	r, ractor;	ı.				
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	L0001	L0119	L.0016	L.0018	L.0001	L.0002	L. 0066
		.0081		. 0006		. 0000	. 0084
SDev	. 0004		. 0000		. ଡଡଡଡ		
%RSD	321.Ø	17.48	.5175	31.80	37.92	10.40	126.5
# 1	L0004	L0134	L.0016	L. 0022	1.0001	L. 0000	L.0125
#2	1.0001	L Ø1Ø5	L. 0016	L. 0014	1.0001	L. ØØØ	L. (1007)
2.6	go at the there are on	Appearance of the second second	Inc. B. T. To. ch to.	Face II W. C. Wall Like II	E. H. Mart Mart Mart all.	In a distant	Land Hart State of St
Errors	LC Low	LC Low	LC Low	LC Low	LC Low	LC Low	LC Low
High	1.100	11.00	5.500	5. 500	11.00	1.100	5. SØØ
Low	. 9000	9.000	4.500	4.500	9.000	. 9000	4.500
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K7664
Unite							
	ppm . sss.	13 J3 M	ppm	ppm	pom	998	ppm
Avge	L. 0004	L. 0004	1.0005	L-, ØØØ3	L.0003	L 0056	1 - , 0013
SDev	. 0003	. 0002	. 0004	.0003	. 0001	.0210	.0078
%RSD	85. 10	52.87	94, 23	117.7	24.93	378.6	583,8
# 1	L. 0006	L.0003	L.0002	L-, 0000	L.0003	L.0093	10042
#2	L.0001	L. 0006	L.0008	L0005	L. 0004	L ØP04	L ØØ69
							
Errors	LC Low	LC Low	LC Low	LC Low	LC Low	LC Low	LC Low
High	22.00	1.100	5.500	2.200	2.200	11.00	22.00
Low	18.00	. 9000	4.500	1.800	1.800	9.000	18.00
Elem	La3988	Li6707	Mg279Ø	Mn2576	Mo2020	Na33 0 2	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	L.0003	L. ØØØ2	L.0032	L0001	L.0011	L 0007	L.0100
SDev	. 0001		.0071	.0002	.0015	.0014	.0003
%RSD	53.80	1.991	226.Ø	331.9	140.8	211.9	3.132
# 1	L.0002	L. ØØØE	L0019	L0002	L.0000	L.0003	L.0102
#2	L. 0003	L.000P	L.0082	L . 00001	L. ØØ22	L0017	1.0098
77 him	Secret Mr. 1 Mar Text Sec. 1	han H Was Was 4.	Research Mar Mar Mar Mar	Access to	In. H 4. An In.	ton. Mr. Mart Mart all I	En B. Mariner of Co.
Errors	LC Low		LC Low	LC Low	LC Low	LC Low	LC Low
High	5.500	5.500	22. ØØ	1.100	5.500	33. 00	33 .00
1.ow	4.500	4.500	18.00	. 9000	4.500	27.00	27.00
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	១៦៣	ឯ៦៣	១៦៣	pom	ស្សា	ខ្លួក	bbw
Avge	1 2002	L.0028	Ø1Ø1Ø11	(2) (2) 1 (2)	L , ወወ14	L 0235	1.00021
SDev	. 0001	. 0095	. 0058	.0007	.0007	. 0079	.0025
%RSD	48.11	336.9	3883.	69. Ø6	48,47	33, 69	116.4
# 1	L 0002	L ØØ39	. 0039	.0015	L 0009	L0179	10039
#2	L0003	L. 0095	0042	. ØØØ5	L0018	L Ø291	L. ØØØ4
Errors	LC Low	LC Low	NOCHECK	NOCHECK	LC Low	LC Low	LC Low
High	5.500	5.500			1.100	1.100	1.100
Low	4,500	4.500			. 9000	. 9000	. 9000
Elem	Sc3613	1960/1	1960/2	512881	Pbeeø	Se196	Sn1899

06/15/04 02:33:02 PM page 2

Units Avge SDev %RSD	%R 100.8 .1 .0960	PPM . 0021 . 0029 135. 9	ppm 0030 .0011 36.48	ppm L.0055 .0013 23.10	PP# L.0006 .0024 372.8	PPM 10013 .0017 133.3	ppm L.0014 "0020 142.4
#1 #?	100.8 100.7	. 0001 . 0041	0037 0088	L. ØØ46	L.0023 L0010	L	1 .
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Low 5.500 4.500	LC Low 5.500 4.500	LC Low 5.500 4.500	10 1 aw 5.500 4.500
Elem Units Avge SDev %RSD	Sr4215 ppm L.0000 .0000 44.16	Th2837 ppm L0034 .0013 39.77	Ti3349 ppm L.0001 .0000 23.38	T11908 ppm L.0022 .0010 46.28	U_4090 ppm L.0197 .0021 10.87	V_2924 ppm L.0003 .0004 118.1	W_2079 ppm L0015 .0023 152.2
#1 #2	L.0000 L.0000	L0024 L0043	L.0001 L.0001	L.0030 L.0015	L.0212 L.0182	L.0006 L.0001	L0038 L.0001
Errors High Low	LC Low 5.500 4.500	LC Low 1.100 .9000	LC Low 5.500 4.500	LC Low 5.500 4.500	LC Low 1.100 .9000	LC Low 5,500 4,500	LC Low 1.100 .9000
Elem Units Avge SDev %RSD	Y_3710 ppm t0000 .0000 55.48	Zn2062 ppm L0011 .0002 18.23	Zr3496 ppm L.0007 .0001 18.96				
# 1 #ご	L-, 0001 L 0000	L0012 L0010	L.0008 L.0006				
Errors High Low	LC Law 5.500 4.500	LC Low 1.100 .9000	LC Low 5.500 4.500				

Analysis Report

06/15/04 02:33:02 PM page 3

IntStd Mode Elem Wavlen Avge SDev	1 *Counts Sc 361.384 649814 560.7357	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	E NOTUSED 	7 NOTUSED
%RSD #1	.0862917 650211	. 0000000 10000			****	****	
#2	649418	10000	***** *****			Address Charles	***** *****

Analysis Report

06/15/04 02:39:38 PM page 1

Operators

Comment:

Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm Hysese		DDW	DD# 6_5426	064224	552126	ppm
Avge	H. 9846	рр м Н9.644	H4.918	H4. 748	H9.9Ø8	H. 9699	H4.979
SDev	, 0003	. ଉଉଚ	. 002	.011	. 001	.0012	. 007
%RSD	.0311	.0169	.0421	, Parê	. Ø1Ø8	.1237	. 1410
2 m f 5 toor door	P MONEY II II.	H day at the	# 4a* 1 22.	F & V. Th. Acc	at the state of	B .1 E . V. V	H 3 F 3 43
# 1	H. 9848	H9.643	H4.919	H4.740	H9.907	H. 9691	H4.984
#2	H. 9844	H9.645	H4.916	H4.756	H9.9Ø9	H. 97Ø8	H4.975
Errors	LC High	LC High	LC High	LC High	LC High	LC High	LC High
High	. 0050	. 0500	. 0050	. 0500	.0050	. 0050	. Ø11 Ø1Ø1
Low	0050	0500	0050	0500	0050	0050	0100
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm —
Avge	H19.97	н. 9882	H4.928	H1.943	H2.013	H10.10	H18.3Ø
SDev	. Ø8	.0027	. 008	. 004	.001	. Ø3	.05
%RSD	.3868	.2743	.1642	. 1934	. 0403	.3177	.2597
.1.2. 4	11175 751	11 AAA	114 BOO	114 15 479	3 3 275 - 275 4 - 2	1110 00	11475 ****
#1 #2	H19.91 H20.02	H. 9862 H. 99Ø1	H4.922 H4.934	H1.940 H1.945	H2.014 H2.012	H10.08 H10.12	H18.33
rr i	France Com.	m, boki	F144 2 044	F11 # 2443	ram, war	13 T 62 C T 12.	H18.26
Errors	LC High	LC High	LC High	LC High	LC High	LC High	LC High
High	. 0500	.0050		. 0050	. 0050	. 0250	. 1000
Law	0500	0050	0050	0050	0050	0250	1000
p							
Elem	La3988	Li6707	Mg2790	Mn2576	M02020	Na33 0 2	Na5889
Units	ppm NA OSE	ppm ua aza	ppm	ppm	998	ppm now as	ppm
Avge SDev	H4, 925 , 003	H4.434 .010	H19,81 ,03	H1.003 .001	H4.936 .027	H27.03 .03	H18.88 .04
%RSD	, Ø635	. 2284	.1582	. Ø942	"E543	, 1 0 169	. 2375
rm a s suiraur	n Aragin and and	gr. h. h. Austrij	n 3. 5. 55.54.	a 40 J = 15.	H W. C. C. C. C. C. C. C. C. C. C. C. C. C.	# 3. W. C. D	n 5. 4.1 f 4.5
#1	H4.983	H4.441	H19.79	H1.002	H4.917	H27.06	H18.91
#2	H4.927	H4.427	H19.83	H1.004	H4.956	H27.Ø1	H18, 85
!	1 (5) 11: 1	1 2000 1 1 1			. 700		
Errors	LC High	LC High	LC High	LC High	LC High	LC High	LC High
High Low	. 0050 0050	. 0050 0050	.0500	. 0050 0050	. 0050	. 0500	. Ø5ØØ
1 " 1 2 AA		" (C(C) (_) (C)	0500	···· * 42425403	0050	0500	0500
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_182Ø	Sb2068
Units	ppm	ppm	ррт	opm	ppm	ppm	ppm
Avge	H4.787	H4.976	4.943	4.939	H1.020	H. 9887	н. 9809
SDev	. 004	.145	.009	.023	.001	. 0066	. 0040
%RSD	.0838	2.916	.1572	. 4716	. 1065	.6628	.4023
44 1	UA 704	H5.079	A G 77	A 15 mm	114 0240	U 0004	
#1	H4.784 H4.789	H3.079	4.937 4.950	4.922	H1.019	H. 9934	H. 9837
#2	m4.707	5744 C3 / 44	4. 7UV	4.955	H1.020	H. 9841	H. 9782
Errors	LC High	LC High	NOCHECK	NOCHECK	LC High	LC High	LC High
High	. 0050	.0100			. ଉଷ୍ଟର	.0100	. Ø1ØØ ¯
Low	0050	0100			0050	0100	0100
**** **	group and the same	ه د دو پښتو پښتو	g pro pr van a saa	ph	,		
Elem	803613	1960/1	1960/2	812881	Phopo	Se196	Sn1899

Units	%R	prm	PPM	рр т	рр ж	PPM	From
Avge	100.0	5.178	5.123	Н4.897	Н4.940	H5.141	H4.904
SDev	.4	.004	.039	.004	.019	.027	. 005
%RSD	.3714	.0770	.7551	.0768	.3767	.5274	. 0978
# 1	100.3	5.175	5.096	H4. 899	H4.927	H5.122	H4.901
#运	99.74	5.181	5.150	H4. 894	H4.953	H5.160	H4.907
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC High .0100 0100	LC High .0030 0030	LC High .0050 –.0050	LC High .0050 0050
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	H5.064	H.9634	H4.843	H5.154	H.9829	H4.896	H.9760
SDev	.003	.0031	.001	.043	.0065	.001	.0076
%RSD	.0680	.3217	.0109	.8270	.6589	.0253	.7808
#1	H5.061	H. 9656	H4.842	H5. 124	H. 9784	H4.897	H. 9706
#2	H5.066	H. 9618	H4.843	H5. 184	H. 9875	H4.895	H. 9814
Errors	LC High	LC High	LC High	LC High	LC High	LC High	10 High
High	.0050	.0100	.0050	.0100	.1000	.0050	.0100
Low	0050	0100	0050	0100	1000	0050	0100
Elem Units Avge SDev XRSD	Y_3710 FFM H4.954 .002 .0333	Zn2062 ppm H.9986 .0069 .6888	Zr3496 PPM H4.880 .002 .0455				
#1 #2	H4.955 H4.952	H.9938 H1.003	H4.882 H4.878				
Errors High Low	LC High .0050 0050	LC High .0050 0050	LC High .0050 0050				

Analysis Report

Ø6/15/Ø4 Ø2:39:38 PM page 3

IntStd	1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc.	1011 1900	*****	A444 - 1114	*****	****	****
Wavlen	361.384			.um Hu	raine block	*****	*****
Avge	644960	10000		2022 PART	****	****	***************************************
SDev	2440.226	. ଉହଉଦହେଶ		****	****	****	*****
%RSD	. 3783587	. ወወወወወወወ	*****	*****		M(4) 1000	proceedings.
計1	646686	1 ርካርካርካርካ			Table \$50/1	MAR 1800	Live is the ex-
井戸	643835	10000	12780 1 21	(2)(4) (2) (4)		110 BM	211 19 01

Analysis Report

- Ø6/15/04 Ø2:44:24 PM - ρage 3

Run Time: 06/15/04 14:39:50

Method: DAILYS Sample Name: 245111

Operators

Comment:

mode: (3	INL: Larr.	- Factor:	1				
Elem	Ag328Ø	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ro para	ppm	ppm	ppm	ppm	ppm
Avge	. ଉହରତ	.3962	. 0099	. 1705	. 0081	. 0003	. 0031
SDev	.0005	.0493	.0050	. 0004	. 0002	. ଉଉଉଉ	. 0083
%RSD	169700.	12.44	50.37	.2268	2.418	4, 187	266.0
							
# 1	0004	. 4311	.0135	.1708	. 0083	. 0003	0027
#2	. 0004	.3614	. 0064	. 1703	. 0080	. 0003	. ଉଦ୍ଧର
rr 1	a Withit and	a costos de me	W AmariniI.	a .h. / %, s)	All Marie Marie San & Marie	4 K. W. W. U.	W. Marinar Li Mari
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	6.970	.0001	. ଉଉଉଞ	. 0006	. 0005	.1379	3.126
SDev	.075	.0001	. 0005	. ወወወ6	. 0001	.0023	"Ø73
%RSD	1.077	154.5	67.83	91.80	19.77	1.657	2.337
#1	6.917	ଅମସ୍ଥାୟ	.0012	. 0011	. 0005	.1363	3,075
排产	7.023	. 0000	. ଉହସ୍ୟ	.0002	. 0006	.1395	3.178
Elem	La3988	Li6707	Mg279Ø	Mn2576	Mazøsø	Na3302	Na5889
Unite	ppm	ppm	ppm	ppm ppm	99 (9 m	$\rho \rho m$	opm
Avge	. ଉଉଉଚ	. Ø847	.6041		. 0092	79. BB	50,66
SDev	. 0004	. 0008	. 0009	. aaae	. ଉପପର	1.39	. 69
%RSD	46.95	. 8851	.1472	22.00	.2013	1.748	1. Bed)
# 1	.0010	. Ø848	.6035	. 0010	"ØØ92	78.40	50.17
#2	, ଉଦ୍ଦର୍ଶ	. Ø852	. 6048	. ผิดเดิ	. ØØ93	80.36	54.15
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2Ø68
Units	bbw	ppm	DDM	DE-B	ppm		ppm
Avge	. 0009	. Ø388	. 0006	.0036	. 0003	ppm 7.483	.0010
SDev	.0003	. ØØ94	. ØØ27	. 0020	.0003	.134	.0016
%RSD	244.5	24.23	445.6	55.36	542.6	1.798	162.8
26.82 (20.82)	The state of the same	M** # M.S	440.0	<i>ವರ್⊪-36</i> 2	34E - C	3. # 7 77 73	1 C C C
# 1	.0025	.0455	0013	. aaee	0010	7.518	ଉଉପୀ
#2	0007	.0322	.0025	.0050	.0017	7.329	.0021
	a - 10- 11- 11- 1	2	27 - Teat 1867 1864	a 66- 211- 1115- 661-	20 100 1000 1000 1	1 2 100	, to
Elem	Sc3613	1960/1	1960/2	Si2881	PPSSØ	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	101.6	.0239	୍କ ପ୍ରତାହା	26.99	.0026	. ଉପରଷ	. Ø234
SDev	. Ø	. 0034	. 0086	. 17	.0022	. 0069	.0032
%RSD	.0027	14.14	30430.	.6138	84.70	85.75	13.76
#1	101.6	. ØR63	. 0061	27.11	.0010	.0189	.0256
#2	101.6	.0215	0061	26.87	. ØØ42	.0032	. ØP11
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U_4Ø9Ø	V_2924	W_2079
Units	pepen		ppm				
Avge	. Ø332	0011	" 0039 FrF."	рри 0049	рµи "Ø≳9 t	рги . 0050	- . ଉଉ ଉଡ
SDev	. ଜନ୍ମ ର	. 0018	, ଓଡ଼ାର , ଅଫ୍ଲୋସ		. 0017 (. 0025		
50eV %RSD	. 8210	159.9	10.28	188.1	8.781	. ወወው 15 47	, 00115c
AND U	# CONT. JESO	3. ա <i>.</i> 7	A MAN TO PT	E CONT. ii A	On COL	18.64	35060.
#1	" piedo	. ØØØ1	. MM39	. ØØ14	, Ø33Ø9	, 0054	(2) (2) (2)
# ?? # ??	, Ø334	00334	. 00334	-, Øttt	, Ø273	, 0045	
44 v.	# MCDCDM	" " SCOCK" 4	# 1000000 M	······································	n 405° (* +5)	" RUMA !!!	0011

		_	_	_		
-	١.	1 /	N	1	7	5
U	Ι.	L	v	1	ı	J

						OTC	1110
Elem	Y_3710	Zn2062	Zr3496				
Units	ppm	ppm	ppm				
Avge	.0002	.0017	.0013				
SDev	.0002	.0003	.0002				
%RSD	102.8	20.71	14.76				
# 1	. ଉଉଉଓ	. ଉପାଥଉ	. 0014				
井戸	, ଉପସସ	.0015	.0012				
IntStd	1	P	3	4	E	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc.				*****	27.70 1884-	4- 44-1-
Wavlen	361.384		*****		11/84 10/00	57 (5.5 -) (- 5	*****
Avge	654986	1 ወወወወ		****		Labor Div-	
Spev	9.899495		7444 /	*****	1000	,-100 · 100	***** *****
%RSD	.0015114		1711 1000	*****	*****	***** 887	*****
# 1	654979	10000	****	98200 mmm -	ages and the	*****	Adapt value
#2	654993	10000	****	*****	*****		pages after

%R(37)

#1

#:0

1.560

. 2000:

· OWNE

30,68

-. 0076

-.0118

50.69

. QUQUQU;

. 00004

06/15/04 0P:49:10 PM Method: DAILYR Sample Name: 245112 Run Time: 06/15/04 14:44:36 Operator: Comment: 010176 Mode: CONC Corr. Factor: 1 Elem Aq328Ø A13082 As1890 B 2496 Ba4934 Unite Be3130 OOM ODB Bi2230 ppm pom Avge -. 0003 OOM 99B -. 0176 opm -. 0010 -. 2017 SDev . CHOICH I . 0001 . 00003 . 0008 . DOSS . 0009 .0014 %RSD . 0001 19.75 . 00000 4.715 . 0047 84,32 84.71 39,43 1.212 84.27 #1 -.0003 -. 0170 -. 0004 -.0007 排泛 . 0000 -. 0003 . 0003 -.0182 . 0089 -.0017 -.0027 . 0001 EQUAS . . 0022 Elem Ca3179 Cd2265 Co2286 Cr2677 Units Cu3247 maga Fe2714 K 7664 ppm ppm ppm Avge 10,01 PDM ppm . 0010 ppm . 0009 -. 00002 SDev . 0001 10.14 . 21 .0002 7.902 . 0004 .0003 . 2000 %RSD . 1166 . 014 21.54 810. 42.67 112.9 296.5 . 4042 .2235 #1 10.02 .0012 . 0006 -. 0004 排户 -. 0001 10,01 10.17 . 0009 7,914 .0011 -. 0000 . 0000 10.11 7.889 Elem La3988 Li6707 Mg279@ Mn2576 Units Mo2020 Na3302 ppm PRBEAM ppm ODm pom Avne oom -. 0003 [313m -. 2121211 ppm 9.838 -. 0000 SDev PINN. . 0003 7.891 5.220 . 20200 .017 . 0001 %RSD . 00000 86.77 . 111 25.27 . 003 . 1749 200.4 12.22 1.412 . 2569 # 1 -. 0001 -.0001 9,850 . 0000 #2 . 2017 -. 0005 -. 00002 7.970 5,218 9.826 -- , Ø1Ø1Ø13 . WORD 7,812 5,000 Elem Ni2316 P_1782 2203/1 2203/2 Units Pd34@4 ppm 5_1820 pom Sb2068 Opm ppm Avge prom -.0003 .0078 DOM pepers . 0004 . 0024 SDev -.0014 . 0005 -.0290 .0139 -.0013 . 0026 .0013 %RSD . 20006 174.3 . WORK 178.6 EERIN . 682.5 53, 37 44.51 2.745 257.8 # 1 . 0001 -.0021 -.0015 .0015 排戶 -. 00009 -. 0007 -.0297 -. 0036 . 0176 .0022 .0033 -.0018 -. 0286 .0010 Elem Sc3613 1960/1 1960/2 Si2881 Units Pbeeø %R Se196 DDm Sn1899 ppm ppm Avge 102.6 ppm ppm .0024 ppm -.0054 . 0068 .0017 SDev . 4 -.0028 . 0049 . 0004 . 0047 . 0019 %RSD .0017 .3505 .0048 206.3 .0005 87.32 28.52 99,14 170.8 120.6 # 1 102.4 -.0011 -.0088 . 0081 #2 . 0005 102.9 -.0062 . 0059 . ଉଉଉଞ -.0021 . 0054 . 0030 . 00006 . 0001 Elem Sr4215 Th2837 Ti3349 T119Ø8 Units U_4090 V 2924 ppm ppm W_2079 ppm ppm Avqe ppm . 0002 ppm -.0097 .0003 prom .0077 SDev -0146 .. (2)(2)(2)(2) -. 0004 . 0030 -.0023 . 0101011

. 0027

34.74

. ØØ95

. 0058

.0122

83.60

. 2833

. 0060

ENGINE ..

82,86

SINNY ...

-- , ØØØA

. 00007

31.76

- . **DOG**E

- 0019

						U .	
Elem	Y_3710	Zn2062	Zr3496				
Units	ppm	ppm	ppm				
Avge	0001	. 0004	. 0001				
SDev	. ଉଉପସ	. 0001					
%RSD	21.42	23.04	267.1				
# i	0001	. 0005					
井戸	0001	.0003	0001				
IntStd	1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc	*****	·····		**** ****	4220- 40-40	anira sena
Wavlen	361,384		5345423	1466 14111	****	. 100 1 100	bases 00000
Avge	66199Ø	1 ወወወወ	*****	Par G 1888	*****		
SDev	2382,950	. ପ୍ରତ୍ୟବସଦ୍ୟ	1400 -4404	r - 16 plants	r villable and reserve	*****	****
%RSD	. 3599676	" ଧର୍ଧଧର୍ଯ୍ୟର	10-11 19800	4000 4500	****	••••	
# 1	660305	10000	MD 0.11	****	1005 · 10	6 MF 524	****
#2	663675	1 (21(21(21(2)	***** *****		Janua, 60000		v u m

Method: DAILY2 Sample Name: 245113

Run Time: 06/15/04 14:49:22

Comment:

Mode: CONC Corr. Factor: 1

Operator:

010178

PICCE C	rant receive.	A Francis Corre	.s.				
Elem	Ag328Ø	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Unite	$\rho \bar{\rho}$ m	ppm	pom	es es m	opm —	ទូទ្	to to an
Avge	. 1001	. 0752	. 0921	-, 0033	. 1005	" Ø966	-, MM12
SDev	.0015	.0012	. 0035	. 00001	. 0000	. 0000	. 0021
%RSD	1., 460	1.608	3.816	2,414	. PØRB	. 1650	183.6
.74 3 3 ALD AD	a a metales	The state of the s	6 18 N 13 No.	ho. H . "F A. "F	20 K. W. W. W.	# 3 to to 40	3. V., V. V.
# 1	. 1011	. 0761	. 0 896	- . 0 033	. 1007	.0967	. 0003
#2	.Ø991	. 0743	.0945	- . 0 033	. 1004	. Ø965	พพ.7
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units							*****
	ppm 9.959	. Ø996	. 0 988	.0968	ppm .0959	ppm 10.18	р рм 7.932
Avge							
SDev	.011	. 0009	. 0007	.0010	. 0004	. 01	.037
%RSD	.1060	.8649	.6761	1.088	.3936	. 1061	. 4642
# 1	9.966	. 1002	.0992	.0976	.0962	10.11	7.958
#8	9.951	.0990	.0983	.0961	.0957	10.18	7.906
Elem	La3988	Li6707	M0700	Mn2576	Mo2020	Na3302	Na5889
Unite			Mg2790				
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	-, 0003	0001	9.773	. 1007	.0924	8.140	5.288
30ev	.0003	. 0000	.015	. 0004	.0087	. Ø83	.016
%RSD	111.5	26.07	. 1491	. 4249	2.911	1.016	.3087
# 1	0001	0001	9.783	. 1010	. 0905	8.198	5.300
#2	0005	0000	9.762	. 1004	, Ø943	8.081	5.,277
Elem	KES COURT & CO	Fo. 4 77 (3 /7)	month of the Art	errormoras maio escrito	ምን፤ ነማ ሊ ለማ ሊ	C 1050	ma mount
	Ni2316	P_1782	2203/1	2203/2	Pd34Ø4	5_1820	862068
Units	ppm ppm	ppm	prom	teta.	t-t-m	ppm	tet em
Avge	.0982	. 0044	.0975	. 0994	0013	0406	.0957
SDev	. ØØØ8	.0107	. ØØØ6	.0032	. 0015	.01102	" ØlØlØl?"
%RSD	. 8565	242.3	.6512	3.216	118.1	25.23	.2148
# 1	.0977	.0120	.0970	.0971	0023	-,0478	. Ø959
#5	. Ø9A8	0031	. ด979	. 1016	- .	0333	. 0 956
Elem	Sc3613	1960/1	1960/2	Si2881	Pb28Ø	Se196	Sn1899
Units	*R						
	103.0	ppm	ppm	рр т .0070	ppm	. 09 39	ppm
Avge		.0981	.0917		.0987		ØØØ9
SDev	. 7	.0016	.0025	.0016	.0023	.0011	.0017
%RSD	.7272	1.624	2.695	22.67	2.371	1.184	179.4
# 1	102.4	. 0993	. 0900	.0081	.0971	.0931	. 0003
#2	103.5	. 0970	.0935	. 0058	. 1004	.0947	0021
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U_4Ø9Ø	11 2024	U 0070
Units						V_2924	W_2079
	ppm A A13	ppm	ppm	ppm	ppm	ppm ecoe	ppm
Avge	9.912	.0909	. 0001	. 1031	. 0329	. 0980	0002
SDev	.020	.0031	. ଉଉପର	. 0009 241	. 0029 0 070	. ØØØ4 4500	.0014
%RGD	. 2055	3.417	29.52	. 8611	8.878	. 4583	649.5
# 1	9,926	. Ø887	. ØØØ t	. 1024	. Ø349	. Ø983	. WAR
排出	9,898	. 0931	. ଉପପଦ	. 1037	. 0308	. 0977	0018

Elem Units	Y_3710	Zn2062 ppm	Zr3496 ppm			01	10179
Avge	0001	. 0986	0003				
SDev	. ଅପଅପ	. 0004	. 0001				
%RSD	27.48	. 4404	33.15				
3.1. 4	775 775 775 4	30.00	ma ma ma ma				
# 1	0001	. Ø989	0002				
#2	0001	.0983	0003				
IntStd	1	2	3	4		6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	\mathbb{S}_C					****	
Wavlen	361.384	****	mu nen		Mari #8889	terr	*****
Avge	664100	10000	In	*****		****	· · · · · · · · · · · · · · · · · · ·
SDev	486 0. 652	. ମମସମସମସ	···•			patên ded/ê	
%RSD	. 7319157		****	*****	, 9886 -	Philips decree	the state of
計 1	660663	1 (2) (2) (2) (2)		MATE - 60-14			
井中	667537	10000	equal at the	10.10 mg/s			VI

Method: DAILYP Sample Name: 245114

Run Time: Ø6/15/Ø4 14:54:Ø7

Comment:

Mode: CONC Corr. Factor: 1

Operator:

010180

Elem	Ag328Ø	A13082	As 1890	B_2496	Ba4934	Be3130	Bi2230
Unite	ppm	ប្រកាស	biom	bbw	$\circ \circ \mathbf{m}$	ស្សា	bbw
Avge	,	0266	-,0025	0024	(2) (2) (2)	" የአይነፈንር	. 0053
SDev	.0003	.0018	.0012	. 0004	, ମଣ୍ଡମଣ	. ଉଷ୍ଟର	.0028
%RSD	235 .0	4.429	48.03	16.60	10.98	.6Ø54	564, 30
# 1	-, 0003	ØR58	0016	0021	. 0001	. 0003	. 0034
#2	. 0001	ØP75	EERNIN	ØØ27	" <i>(</i> 21/21/21 <u>1</u>	. ØØØØ3	. ØØ73
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	- .000 2	.0003	.0006	ppm 0004	00003 ppm	ppm −.0067	ppm 0054
Avge SDev	. ହାହାହାଳ	. 0001	. 0003	. 2221	. ପ୍ରଦେଶ	. Ø246	. 0065
%RSD	104.8	28.44	46.10	21.78	67.50	368.6	120.9
# 1	0003	. 0004	. 0004	0004	0004	.0107	ହାହାହାର
井沼	0000	. 0003	. 0007	0005	0001	0241	0099
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2Ø2Ø	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	. 0004	0001	. 0003	. 0000	. ଉଉପ୍ଟ	0124	0005
SDev	.0011	. ଉଉଉଉ	. 0011	.0001	. 0002	.0241	. ଉଉଉଉ
%RSD	252.2	4.944	358.Ø	1066.	25.28	195.Ø	5.616
# 1	ଉଉଉଓ	-, 0001	. 0011	ଉଉଉଉ	.0011	. 0047	ଉଉଉର
#2	. 0012	0001	0005	. ଉପସଦ	୍କ ହାହାହାର	0294	-, 0005
Elem	Ni2316	P_1782	2203/1	2203/2	Pd34@4	S_1820	Sb2 0 68
Units	to to m	bitum 	ppm	ppm	ppm	Estru - Trond	tetem
Avge	. 0003	.0061	0031	.0007	. 0004	Ø.357	0049
SDev	. ØØØ1	. ØØ89	. 0044	. മമ 36	. 001A	. ØØ78	SERM.
%R(3D)	81.78	145.3	143.4	548.1	394.6	81.97	65.45
# 1	. ଉଉଉ ଞ	.0124	-, ଉଷ୍ଟେଥ	0019	,	-, Ø3Ø1	- " ØØ72
井戸	. 0003	0002	. 0000	. 0032	.0017	0412	0027
					, the	m. 4 m. r.	2000 A 2000 PT - 200
Elem	Sc3613	1960/1	1960/2	Si2881	PP550	Se196	Sn1899
Units	%R 101.7	ppm .0057	рр и — . 004 6	ppm .0061	ppm 0006	ppm 0012	ppm 0017
Avge SDev	1 1	. ØØ37 . ØØ39	. 0019	. 0017	. 0039	. 0003	. 2244
%RSD	1.037	51.21	40.58	27.14	681.0	23.72	267.2
				<u> </u>			
# 1	101.0	. 0036	0033	.0073	0033	0010	0048
#2	102.5	. 0077	0059	. 0049	.0022	0013	.0015
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U_4@9@	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ррж	ppm	ppm
Avge	.0001	0018	. ଉଡଡଡ	. 0004	. 0070	0001	0015
SDev	. 0001	. 0034	. 0001	. 0001	.0130	. 0004	. 0002
%RSD	50.43	187.1	925.9	28.88	185.1	344.7	18.49
# 1	୍ମ ଅହାୟାଥ	. 0006	. 2021	. ABAB	0022	-, ଉପଦ୍ୟ	ØØ16
#3	. 2001	2042	0001	. 0005	.0167	. 0000	0014

Elem Units Avge SDev %RSD	Y_3710 ppm 0000 .0001 355.7 0001	Zn2062 ppm 0014 .0001 7.001	Zr3496 ppm .0001 .0000 29.10				
排置	. ଉପସସ	0014	. ଉପଉପ				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 656188 6807.317	2 Time 10000 .0000000	3 NOTUSED	4 NOTUSED 	5 NOTUSED 	6 NOTUSED	7 NOTUSED
# 1 # (2)	651374 661001	10000 10000	****	· · · · · · · · · · · · · · · · · · ·			**** ****

Method: DAILYS Sample Name: 245115

Run Time: 06/15/04 14:58:53

Comment:

Mode: CONC Corr. Factor: 1

Operator:

none: C	MAC CALL	'a Franciscos a	.				
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	. 0003	.3362	. 0052	. 1416	.0118	. 0003	-, 0004
	. 2000 . 2000		.0011	. 0005	. 0000	, 0000	. 0047
SOEV		.0510					
%RSD	63,24	15.16	2 0. 22	. 3849	. 3086	7.501	184984
# 1	. 0001	.3788	. 0060	. 1419	.0118	, മമമ	. 0030
#2	. ØØØ4	. 3001	. 0045	. 1412	.0117	" ØDDØS	ØØ37
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K7664
Units	bhw	b + w	bka	to tom	k-k-m	tet en	kek em
Avge	13.97	. 0005	. 0007	0008	.0007	. 1819	3.774
SDev	. Ø5	. 0001	. ଉଉଷଞ	. ଉଉପର	. ØØØ3	"Ø197	. WEB
%RSD	. 3590	11.78	44.63	245.5	34.90	10.84	.6804
#1	13.94	. ହାହାହା4	. 0005	. 0002	. 0006	. 1958	3,756
#2	14.01	.0005	. 0009	0006	. 0009	. 1679	3.792
17 1 .	1. ** # GC 1.	" www.	, www.	" «(«(«)«)	# 63424257	* 70/2	.3# 7 9 C
Elem	La3988	Li6707	Mg279Ø	Mn2576	Mo2020	Na3302	Na5889
Units	bba	ppm	ppm	ppm	bbw	bbw	bbm
Avge	. 0003	.0374	1.420	.0045	. 0079	50.67	32.79
SDev	.0002	. 0000	. 004	.0002	. 0014	.13	.03
%RSD	66.30	.0541	.2856	5.366	17.17	.2655	.0944
	and any and a	. of . con. only poor		جنده و بالعراقة	ente ente ente	promoting promoting	مر وسد رسار مدد
# 1	. 0001	.0375	1.417	.0047	.0089	5 0. 58	38.76
#2	. 2224	.0374	1.422	. 0044	. ØØ69	50.77	32.81
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	8_1820	Sb2Ø68
Units	ppm	ppm	ppm	ppm	ppm	ppm —	E-E-W
Avge	. 0001	.0378	0019	.0005	-,0022	9.508	.0024
SDev	. 0006	. 0048	. 0044	. 0035	. DOSS	. 170	. 0013
%RSD	466.6	13.01	231.9	781.8	101.2	1.789	54.22
#1	ଉ ଉଉଓ	, Ø338	.0012	. 0029	-,0037	9.622	. ଅଷ ୍ଟେଶ
#0	. 0005	. 0406	0051	ØØEØ	00006	9.380	.0015
Elem	Sc3613	1960/1	1960/2	Si2881	Phaad	Se196	Sn1899
Units	%R	ppm	DDM	ia ia m	ppm	(3 (3 m)	(3)DM
	103.2	.0145	. 0003	20.74	-, ØØØ	, 0050	. ØØ89
Avge							
SDev	1.1	.0077	.0005	.28	. 00.38	. 0022	. 0008
%RSD	1.020	52.98	2 0 8.2	1.357	1261.	43.97	9.103
# 1	102.4	.0091	. 0006	20.94	. 0024	.0035	.0095
#2	103.9	. Ø2ØØ	0001	20.54	0030	. 0066	EA ØØ .
r	C	760077	Ti3349	T14000	11 A OVA O	H 000A	LL COCCO
Elem	Sr4215	Th2837		T119Ø8	U_4Ø9Ø	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0770	0007	.0038	0090	.0099	.0136	0019
SDev	. ØØØE	.0013	. 0004	.0048	.0171	. 0003	. 0004
%RSD	.2929	180.6	11.17	53,26	173.1	2.574	22.91
#1	.0768	0017	. 0041	a a56	0022	"Ø139	-,0022
#.0	.0771	.0002	.0035	0124	.0219	.0134	0016
	n and to a	a war mar mar had	gg - The Title The Stand	a mar a too a	en months of the off	and the state of	the state of the sail

Elem Units Avge SDev XRSD	Y_3710 PP# .0001 .0000 13.00	Zn2062 ppm .0011 .0002 17.41	Zr3496 ppm .0011 .0000 .4020			01	10183
# 1 # (2)	.0001 .0001	.0013 .0010	.0011 .0011				
IntStd Mode Elem Wavlen Avge SDev	1 *Counts Sc 361.384 665406 6843.379	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
%RSD #1 #2	1.028452 660567 670245	. ଉପ୍ତପ୍ତପ୍ତପତ୍ତ 1 ପ୍ରଦ୍ୱପତ୍ର 1 ପ୍ରଦ୍ୱପତ୍ର					

Method: DAILYS Sample Name: 845116

Run Time: 06/15/04 15:03:39

Comment:

Mode: CONC Corr. Factor: 1

Operator:

1.177/70 m m - 1/2/	. 1141 (* 1 C2/2 /5/23 N	1				
Elem	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units					ppm	ppm	ppm
	ppm	ppm 4070	ppm .ØØ19	ppm .1721	" ØØ84	. ØØØ4	. ØØ21
Avge	0003	. 4978					
SDev	. 0002	. 1567	.0031	. 0020	. 0001	. 0000	.0045
%RSD	58.51	31.48	165.8	1.185	1.203	11.90	P12.8
# 1	ଉଉପ୍ତା	. 6085	. 2041	. 1736	. 0034	. 0003	. 005 3
#2	ØØØ4	.3870	0003	. 1707	EBIND	" Ø1Ø1Ø14	, Ø1Ø1 <u>1</u> 1
r	O To 1 770	mumme m	r:	ememe emperary	#7#7.#4.##	F''' 477'''7 4 A	17 - 77 E. E. A
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	peper	ppm	ppm	popum	ppm *****	tdos
Avge	7.315	. 0002	.0013	. 0000	.0005	.1665	3.224
SDev	. 021	. ଉଉପପ	. 0005	. ወወወ1	. ØØØ4	, Ø273	, Ø15:
%R50	. 8881	22, 17	41.87	69.79	72.54	16.41	. 4656
#1	7.300	. ØØØØ	. 0009	. 0001	. 0007	. 1859	3.214
排产	7.389	. ଉଉଉଚ	. 0016	.0003	. ଉଉଷଟ	. 1472	3,235
Elem	La3988	Li6707	Mg279Ø	Mn2576	Mo2Ø2Ø	NaBBØ2	Na5889
Units	ppm	ppm	ppm	ppm	ppm	opm	ppm
Avge	. 0005	.0879	.6405	.0012	.0052	82.50	52.47
SDev	. 0005	.0075	.0403	. 0001	. 0005	.51	.21
%RSD	107.3	. 5711	2.139	13.01	9.945	.6160	. 3935
MMDD	1927 v a	# 45 7 3. 3.	E. 107	3. 55 # 425 3.	7. 7. J.	" (2) Y (2) K2	ar with at subsect
#1	. 0001	. 0876	.6501	.0013	. 0048	82.14	52.32
#2	. ଉଉଉଚ	.0883	.6308	.0011	. 0056	82.86	52.62
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	5_1820	Sb2068
Units	ppm	ppm —	ppm	ppm	ppm	ppm .	popm
Avge	.0002	.0391	0019	.0088	. 0000	7.566	. 0044
SDev	. 0001	.0155	.0027	. 0008		.128	. 0023
%RS0	23.19	39.66	137.7	28.06	1877.	1.694	53.30
	ing ing ing inc.	و باهد مندا باهد	one one one a	one one one o	.~e~e~e.	j. j. j	entente en ente
#1	, ଉଉଉନ	. 0501	ଉପସ <u>ା</u>	. 0034	0005	7,657	. 0060
井戸	, ଉପରେ	. Ø282	0038	.0023	. 0006	7.475	.0027
Elem	563613	1960/1	1960/2	Si2881	PbSSØ	Se196	Sin 1899
Units	%R	$p \rho m$	mcqq	33 (3 M)	ဝုဂ္ကာ	$p \circ m$	(3 (3 M
Avge	98,94	. 0255	-, ØØØ3	27.84	. DOI:3	EBMM	. Ø6°66
SDev	. 76	.0019	.0043	.61	.0014	. 0035	. 0050
%RSD	.7636	7.378	1513.	2.206	1184.8	41.97	19.00
# 1	98.40	, Ø269	. 0028	28, 27	. 00 23	. 0108	.0302
#2	99.47	. Ø242	-,0033	27.40	. 0003	. 0059	, 0230
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U_4090	V_2924	W_2079
Units	bbw	ppm	ppm	ppm	bbm	bbw	bbw
Avge	.0355	. 0004	. 0043	0263	. Ø116	. 0036	0052
SDev	. ØØØØ1	. 0020	.0013	.0021	. 0068	. ଉପପପ	. 0020
%RSD	. 4836	463 . 2	30.84	8.001	58.64	. 2739	3 8. 46
# 1	. 0354	0010	. 0052	0248	.0163	. 0036	-, 0066
#2	.0356	. 2019	. 0034	0278	.0068	. 0036	0038

						ىق ∪	O.L.O.O
Elem Units Avge SDev XRSD	Y_3710 FPM .0001 .0000 .8400	Zn2062 ppm .0021 .0004 21.13	Zr3496 prm .0012 .0005 40.81				
#1 #记	. 0001 . 0001	. 0024 . 0018	. 0016 . 0009				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 638104 4838.732 .7582989	2 Time — 10000 .000000 .000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	634682 641525	10000 10000			.,		

Method: OAILY2 Sample Name: ccv4

Run Time: 06/15/04 15:14:52

Comment:

Mode: CONC Corr. Factor: 1

Operator:

mode: EU	1440	h hactor:	••				
Elem Units	Ag328Ø	A13082	As1990	B_2496	Ba4934 pp m	Be3130	Bi2230
Avge	.9813	9.668	4.894	4,745	9.925	.9651	4.957
Spev	. 0001	.003	.003	. ଉଉଡ	.001	. 0001	. 004
%RSD	.0120	.0321	.0581	. 0045	. 0087	.0179	. 0766
#1	. 9814	9.670	4,898	4.744	9.984	.9650	4.960
#2	.9812	9.666	4.896	4.745	9,925	.9651	4,955
Errors	LC Pass	LC Pass	LC Pass 5.500	LC Pass	LC Pass	LC Pass	LC Pass
High Low	1,100 ,9000	11.00 9.000	4.500	5.500 4.500	11.00 9.000	1.100 .9000	5.500 4.500
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units Avge	рр т 19.86	ppm "9823	ppm 4.898	рр т 1 , 931	ppm 2.013	ှောက္ကာ 101.014	18.38 18.38
SDev	. 02	. 0021	. 003	. 002	. 003	. @@	. 05
%RSD	. Ø819	.2107	. 0571	. 1275	. 1634	. 1874	. eeee
# 1	19.85	. 9809	4.896	1.989	2.011	10.03	18.34
#2	19.87	.9838	4, 900	1.933	2.015	10.05	18.42
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	22.00	1.100	5.500	2.200	2.200	11.00	22.00
Ł.ow	18.00	. 9000	4.500	1.800	1.800	9.000	18.00
Elem	La3988	Li6707	Mg279Ø	Mn2576	Mo2020	Na3302	Na5889
Units	pp m	ppm	bbw	ppm	ppm	ppm	ppm
Units Avge	ppm 4.925	ррв L4.457	рр м 19.73	три .9989	pp⊪ 4.92Ø	ppm L26.92	ррж L18.9 1
Units Avge SDev	ppm 4.925 .001	ppm L4.457 .006	ррм 19.73 .Ø1	PPM .9989 .0005	ലലം 4.920 .020	ppm L26.92 .05	ppm L18.91 .02
Units Avge	ppm 4.925	ррв L4.457	рр м 19.73	три .9989	pp⊪ 4.92Ø	ppm L26.92	ppm L18.91
Units Avge SDev %RSD #1	ppm 4.925 .001 .0302 4.924	ppm L4.457 .006 .1251	ppm 19.73 .01 .0727	pp# .9989 .0005 .0521	PPM 4.98ൽ .020 .4008 4.906	ppm L26.92 .05 .1984	ppm L18.91 .02 .1274 L18.90
Units Avge SDev %RSD	ppm 4.925 .001 .0302	ppm L4.457 .006 .1251	ppm 19.73 .01 .0727	ppm .9989 .0005 .0521	PP8 4.980 .080 .4008	PPM L26.92 .05 .1984	ppm L18.91 .02 .1274
Units Avge SDev %RSD #1 #2	ppm 4.925 .001 .0302 4.924 4.926	PPM L4.457 .006 .1251 L4.461 L4.453	ppm 19.73 .01 .0727 19.72 19.74	ppm .9989 .0005 .0521 .9986 .9993	PPM 4.980 .020 .4008 4.906 4.934	PPM L26.92 .05 .1984 L26.89 L26.96	ppm L18.91 .02 .1274 L18.90 L18.93
Units Avge SDev %RSD #1 #2 Crrors High	ppm 4.925 .001 .0302 4.924 4.926 LC Pass 5.500	ppm L4.457 .006 .1251 L4.461 L4.453 LC Low 5.500	ppm 19.73 .01 .0727 19.72 19.74 LC Pass 22.00	ppm .9989 .0005 .0521 .9986 .9993 LC Pass	PPM 4.920 .020 .4008 4.906 4.934 LC Pass 5.500	PPM L26.92 .05 .1984 L26.89 L26.96	PPM L18.91 .02 .1274 L18.90 L18.93 LC Low 33.00
Units Avge SDev %RSD #1 #2	ppm 4.925 .001 .0302 4.924 4.926	PPM L4.457 .006 .1251 L4.461 L4.453	ppm 19.73 .01 .0727 19.72 19.74	ppm .9989 .0005 .0521 .9986 .9993	PPM 4.980 .020 .4008 4.906 4.934	PPM L26.92 .05 .1984 L26.89 L26.96	ppm L18.91 .02 .1274 L18.90 L18.93
Units Avge SDev %RSD #1 #2 Errors High Low Elem	PPM 4.925 .001 .0302 4.924 4.926 LC Pass 5.500 4.500 Ni2316	PPM L4.457 .006 .1251 L4.461 L4.453 LC Low 5.500 4.500	PPM 19.73 .01 .0727 19.72 19.74 LC Pass 22.00 18.00	ppm .9989 .0005 .0521 .9986 .9993 LC Pass 1.100 .9000	PP# 4.980 .020 .4008 4.906 4.934 LC Pass 5.500 4.500	PPM L26.92 .05 .1984 L26.89 L26.96 LC Low 33.00 27.00	PPM L18.91 .02 .1274 L18.90 L18.93 LC Low 33.00 27.00
Units Avge SDev %RSD #1 #2 Errors High Low Elem Units	ppm 4.925 .001 .0302 4.924 4.926 LC Pass 5.500 4.500 Ni2316	PPM L4.457 .006 .1251 L4.461 L4.453 LC Low 5.500 4.500 P_1782 PPM	PPM 19.73 .01 .0727 19.72 19.74 LC Pass 22.00 18.00	ppm .9989 .0005 .0521 .9986 .9993 LC Pass 1.100 .9000	PPM 4.980 .020 .4008 4.906 4.934 LC Pass 5.500 4.500	PPM L26.92 .05 .1984 L26.89 L26.96 LC Low 33.00 27.00 S_1820 PPM	PPM L18.91 .02 .1274 L18.90 L18.93 LC Low 33.00 27.00 Sb2068 PPM
Units Avge SDev %RSD #1 #2 Errors High Low Elem Units Avge	PPM 4.925 .001 .0302 4.924 4.926 LC Pass 5.500 4.500 Ni2316 PPM 4.759	PPM L4.457 .006 .1251 L4.461 L4.453 LC Low 5.500 4.500 P_1782 PPM 4.873	ppm 19.73 .01 .0727 19.72 19.74 LC Pass 22.00 18.00 2203/1 ppm 4.927	PPM .9989 .0005 .0521 .9986 .9993 LC Pass 1.100 .9000 2203/2 PPM 4.993	PPM 4.980 .020 .4008 4.906 4.934 LC Pass 5.500 4.500 Pd3404 PPM 1.084	PPM L26.92 .05 .1984 L26.89 L26.96 LC Low 33.00 27.00 S_1820 PPM .9855	ppm L18.91 .02 .1274 L18.90 L19.93 LC Low 33.00 27.00 Sb2068 ppm .9846
Units Avge SDev %RSD #1 #2 Errors High Low Elem Units	ppm 4.925 .001 .0302 4.924 4.926 LC Pass 5.500 4.500 Ni2316	PPM L4.457 .006 .1251 L4.461 L4.453 LC Low 5.500 4.500 P_1782 PPM	PPM 19.73 .01 .0727 19.72 19.74 LC Pass 22.00 18.00	ppm .9989 .0005 .0521 .9986 .9993 LC Pass 1.100 .9000	PPM 4.980 .020 .4008 4.906 4.934 LC Pass 5.500 4.500	PPM L26.92 .05 .1984 L26.89 L26.96 LC Low 33.00 27.00 S_1820 PPM	PPM L18.91 .02 .1274 L18.90 L18.93 LC Low 33.00 27.00 Sb2068 PPM
Units Avge SDev %RSD #1 #2 Errors High Low Elem Units Avge SOev	PPM 4.925 .001 .0302 4.924 4.926 LC Pass 5.500 4.500 Ni2316 PPM 4.759 .001	PPM L4.457 .006 .1251 L4.461 L4.453 LC Low 5.500 4.500 P_1782 PPM 4.873 .067	PPm 19.73 .01 .0727 19.72 19.74 LC Pass 22.00 18.00 2203/1 PPm 4.927	PPM .9989 .0005 .0521 .9986 .9993 LC Pass 1.100 .9000 2203/2 PPM 4.893 .003	PPM 4.980 .020 .4008 4.906 4.934 LC Pass 5.500 4.500 Pd3404 PPM 1.084 .003	PPM L26.92 .05 .1984 L26.89 L26.96 LC Low 33.00 27.00 S_1820 PPM .9855 .0041	PPM L18.91 .02 .1274 L18.90 L18.93 LC Low 33.00 27.00 Sb2068 PPM .9846 .0009
Units Avge SDev %RSD #1 #2 Errors High Low Elem Units Avge SDev %RSD	PPM 4.925 .001 .0302 4.924 4.926 LC Pass 5.500 4.500 Ni2316 PPM 4.759 .001	PPM L4.457 .006 .1251 L4.461 L4.453 LC Low 5.500 4.500 P_1782 PPM 4.873 .067 1.384	PPM 19.73 .01 .0727 19.72 19.74 LC Pass 22.00 18.00 2203/1 9PM 4.927 .015	PPM .9989 .0005 .0521 .9986 .9993 LC Pass 1.100 .9000 2203/2 PPM 4.893 .003 .0620	PPM 4.980 .020 .4008 4.906 4.934 LC Pass 5.500 4.500 Pd3404 PPM 1.024 .003 .3361	PPM L26.92 .05 .1984 L26.89 L26.96 LC Low 33.00 27.00 S_1820 PPM .9855 .0041 .4152	PPM L18.91 .02 .1274 L18.90 L18.93 LC Low 33.00 27.00 Sb2068 PPM .9846 .0009 .0953
Units Avge SDev %RSD #1 #2 Errors High Low Elem Units Avge SOev %RSD #1 #2 Errors	PPM 4.925 .001 .0302 4.924 4.926 LC Pass 5.500 4.500 Ni2316 PPM 4.759 .001 .0116 4.759 4.758 LC Pass	PPM L4.457 .006 .1251 L4.461 L4.453 LC Low 5.500 4.500 P_1782 PPM 4.873 .067 1.384 4.921 4.825 LC Pass	PPM 19.73 .01 .0727 19.72 19.74 LC Pass 22.00 18.00 2203/1 9PM 4.927 .015 .3083	PPM .9989 .0005 .0521 .9986 .9993 LC Pass 1.100 .9000 2203/2 PPM 4.893 .003 .0620	PPM 4.980 .020 .4008 4.906 4.934 LC Pass 5.500 4.500 Pd3404 PPM 1.024 .003 .3361 1.026 LC Pass	PPM L26.92 .05 .1984 L26.89 L26.96 LC Low 33.00 27.00 S_1820 PPM .9855 .0041 .4152 .9884 .9886 LC Pass	PPM L18.91 .02 .1274 L18.90 L18.93 LC Low 33.00 27.00 Sb2068 PPM .9846 .0009 .0953 .9852 .9839 LC Pass
Units Avge SDev %RSD #1 #2 Errors High Low Elem Units Avge SOev %RSD #1 #2 Errors	PPM 4.925 .001 .0302 4.924 4.926 LC Pass 5.500 4.500 Ni2316 PPM 4.759 .001 .016 4.758 LC Pass 5.500	PPM L4.457 .006 .1251 L4.461 L4.453 LC Low 5.500 4.500 P_1782 PPM 4.873 .067 1.384 4.921 4.825 LC Pass 5.500	PPm 19.73 .01 .0727 19.72 19.74 LC Pass 22.00 18.00 2203/1 PPm 4.927 .015 .3083 4.937 4.916	PPM .9989 .0005 .0521 .9986 .9993 LC Pass 1.100 .9000 .9000 2203/2 PPM 4.893 .0620 4.891 4.895	PPM 4.920 .020 .4008 4.906 4.934 LC Pass 5.500 4.500 Pd3404 PDM 1.024 .003 .3361 1.026 LC Pass 1.100	PPM L26.92 .05 .1984 L26.89 L26.96 LC Low 33.00 27.00 S_1820 PPM .9855 .0041 .4152 .9844 .9826 LC Pass 1.100	PPM L18.91 .02 .1274 L18.90 L18.93 LC Low 33.00 27.00 Sb2068 PPM .9846 .0009 .0953 .9852 .9839 LC Pass
Units Avge SDev %RSD #1 #2 Errors High Low Elem Units Avge SOev %RSD #1 #2 Errors	PPM 4.925 .001 .0302 4.924 4.926 LC Pass 5.500 4.500 Ni2316 PPM 4.759 .001 .0116 4.759 4.758 LC Pass	PPM L4.457 .006 .1251 L4.461 L4.453 LC Low 5.500 4.500 P_1782 PPM 4.873 .067 1.384 4.921 4.825 LC Pass	PPm 19.73 .01 .0727 19.72 19.74 LC Pass 22.00 18.00 2203/1 PPm 4.927 .015 .3083 4.937 4.916	PPM .9989 .0005 .0521 .9986 .9993 LC Pass 1.100 .9000 .9000 2203/2 PPM 4.893 .0620 4.891 4.895	PPM 4.980 .020 .4008 4.906 4.934 LC Pass 5.500 4.500 Pd3404 PPM 1.024 .003 .3361 1.026 LC Pass	PPM L26.92 .05 .1984 L26.89 L26.96 LC Low 33.00 27.00 S_1820 PPM .9855 .0041 .4152 .9884 .9886 LC Pass	PPM L18.91 .02 .1274 L18.90 L18.93 LC Low 33.00 27.00 Sb2068 PPM .9846 .0009 .0953 .9852 .9839 LC Pass

·	·					01	.0187
Units	%R	ppm	PP#	ppm	PP#	ppm	PP8
Avge	100.7	5.178	5.119	4.926	4.904	5.139	4.887
SDev	.1	.005	.007	.001	.003	.003	, 000
%RGD	.0958	.0997	.1321	.0168	.0620	.0540	.0414
# 1	100.8	5.182	5.114	4, 925	4. 90K	5. 137	4.889
# iP	100.6	5.174	5.184	4, 925	4. 908	5. 140	4.886
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC: Pass 5.500 4.500	LC Pass 5.500 4.500	LC Pass 5.300 4.500	LC Pass 5.500 4.500
Elem	Sr4215	Th2837	Ti3349	T119Ø8	U_4090	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	PP#
Avge	5.065	.9635	4.850	5.125	.9755	4.871	.9762
SDev	.000	.0034	.003	.068	.0142	.002	.0040
%RSD	.0097	.3581	.0697	1.321	1.454	.0454	.4073
#1	5.065	.9610	4.847	5.077	.9654	4.869	.9734
#@	5.066	.9659	4.852	5.173	.9855	4.872	.9790
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	5.500	1.100	5.500	5.500	1.100	5.500	1.100
Low	4.500	.9000	4.500	4.500	.9000	4.500	.9000
Elem Units Avge SDev %RSD	Y_3710 PP# 4.945 .004 .0870	Zn2062 ppm .9879 .0007 .0673	Zr3496 ppm 4.779 .024 .5104				
#1 #2	4.948 4.948	.9874 .9883	4.761 4.796				
Errors High Low	LC Pass 5.500 4.500	LC Pass 1.100 .9000	LC Pass 5.500 4.500				

							0188
IntStd	1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc				*****		
Wavlen	361.384			*****	V-1004 10000		
Avge	649448	10000		*****			1100 1 1101
SDev	596.0910	. ଉପରସମ୍ପର	,	****	****	*****	*****
%RSD	.0917842			, comp. and me	*****		ATT : 6000
# 1	649870	10000	*****	*****	****	*****	1877 ABN
#2	649027	10000					

Operator:

010189

Method: DAILYP Sample Name: ccb4

Run Time: 06/15/04 15:21:28

Comment:

Mode: CONC Corr. Factor: 1

Elem	Ag3280	A13082	As189Ø	B_2496	Ba4934	Be3130	Bi2230
	•						ppm
Unite	opm	pp m	ppm.	bb#	ppm	oran	
Avge	QQQ1	ØP24	. 0011	. 0 037	୍କ ହାହାହାର	. (2000 4	- , ØtØt † A
(34) # V	, 0008	. 0058	, ଉପପଥ	. 0020	. 0003	୍କ ହାହାହା 1	, ØØ23
%RSD	580.3	25.76	1,248	53, 14	9Ø.21	13.33	127.A
31. 4	. 0004	0183	. 0011	. 0051	. ଉଉପୀ	" <i>(2</i>)(2)(2)4	0008
# 1							
#8	ZIZIZI7	-, Ø265	. 00111	୍ମ ହାହାଟ୍ର ଓ	. ØØØ5	Ø1Ø1Ø14	MASS
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	. 0050	. 0500	. 0050	, ଉଦ୍ପର	. മമ ടമ	. 0050	. 01100
Low	0050	0500	0050	0500	0050	0050	0100
11.2 6-4	a varanti	* Andrew Andrew	H Mat Mat 11.3 Mat	M. Mary track days Mary	H Wat Not You	Was was the state	W That als That the
n: n		proc. s. am., am., pr. gram	pag pag. pr	, , , , , , , , , , , , , , , , , , ,	,··· ,	y ,,y .; ,	17
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	bbw	ppm	ppm	ppm	ppm	ppm	bbm
Avge	.0016	. 0004	ØØØ1	-, 2014	. 0004	0052	- , 00 38
Sõev	. 0005	. 0001	. 0002	. 0000	. 0004	.0043	. 0047
%RSD	28.84	36.56	145.2	1.174	86.36	82.11	125.9
2 to 2 to 142 Aur	Same Same All Control of	the term the term	at. I had it tam		The Control of the Co		
	.mma .m.	, eng. , eng., gener	.mmm.	22.24	and and and an	100 100 100 100 100 100 100 100 100 100	0004
# 1	.0013	.0005	. 0000	0014	. 0002	0082	
#2	. 0020	. 0003	0003	0014	. 0007	0022	0071
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	, 0500	. 0050	. 0050	.0050	. 0050	, Ø25Ø	1 (2)(2)(2)
Low	0500	0050	0050	0050	0050	0250	10000
1(3W)	···· # - 60-3 6000	* detect 71 det		" detaet : 7 act	* ANALONIAN	# 400 1 - 13 40	n 4. 4. 4. 54. 5
						a and many sets and	6. 5. 9° pm, pm, pm,
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	bbw	ppm	ppm	ppm	la la m	្សាក្ ត
Avge	- , 0000 3	. 0002	-, 0046	,	H. 0062	H. 0550	. 00 87
SDev	.0003	. 0001	. 0050	. 0001	.0016	.0180	. 0010
%RSD	121,2	30.34	109.2	3669.	25, 83	32.6A	11.76
14. 1 2 min Tra	3 K" 3 n K"	Clarks in Clariff	3 W. 1 . F H 3	7 177 77 7 W	h. v. a. V., v.	Will B City	1 3 B 1 X 1
	, and , and , and , and	A. M. M. W.		monon a	e e .mm. non con.	a a language samp	and and an a
# 1	-, 2000	. 000-	0011	0001	H. 0073	H. Ø677	. 0094
排出	BBB5	୍କ ହାହାହାଞ	-, MMS;	दोदोदो 🗓	H. 0050	.Ø483	"MARQ
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC High	LC High	LC Pass
High	. 0050	. മമടമ	. 0500	. 0050	. 0050	. 0500	, 0500
Low	0050	0050	0500	0050	0050	0500	0500
113 6.8	ar and and the area	n 4", 4", (", 4",	ar Markov Markov	a de de de de de	W Marker Career	B Was day day not	W 47. (7. 47. 47.
· · ·	61 * # # # 1 P	grav. 4 many pro, 100.	and and and a	are, are, peg, area, y pee,	err. 1 mr. 1 ans 1	person de procures criss	man man to m
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	5_1820	Sb2 0 68
Units	bbm	ppm	pp m	ppm	ppm	bb m	ppm
Avge	0005	.0027	0003	20204	ଉଉପ୍ଟ	L0155	. 0003
SDev	. 2021	.0214	.0011	. 0007	. 0028		.0024
%RSD	28.15	799.2	416.5	188.7	506.9	5.980	899.1
14 1 7 m 1m	handed in the hand	I of all materials	"F 3. \3 # \33	3. 3.33.3 a 7	makama n	my w meganyan	Surface of the calc
	AND 1000	سسير سر	ه در بافد بافد	ang anna anna a	د د پېښيوس	, one a res	,000, 100, a a
# 1	0006	L0125	0011	. 0001	.0014	L0149	0014
#2	0004	H.0178	. 0005	- . ØØØ9	0026	L0162	. 0020
Errors	LC Pass	LC Pass	NOCHECK	NOCHECK	LC Pass	LC Low	LC Pass
	.0050	.0100	· · · · · · · · · · · · · · · · · · ·	The same of the same of the	, 0050	. 0100	. alpa
High							
Low	-,0050	0100			0050	0100	-,0100
Elem	803613	1960/1	1960/2	912881	Pb22Ø	Se196	Sn1899

						Ο.	10100
Units	%R	բբտ	PP#	PP#	ppm	ppm	120.9
Avge	101.8	.0035	- 0008	.0059	0003	.0006	
SDev	.4	.0030	- 0035	.0014	.0001	.0013	
%RSD	.4256	86.48	427.2	22.92	31.41	213.4	
# 1	101.5	. 0014	.0017	. 0068	0003	. 0016	00 02
#ご	102.1	. 0056	0033	. 0049	0004	0003	0028
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	ppm	ppm	PPM	ppm	ppm	ppm	PPM
Avge	.0001	0014	- 0000	.0081	.0023	0003	.0009
SDev	.0001	.0005	. 0000	.0000	.0118	. 0007	.0002
XRSD	104.5	31.37	129.7	.5143	519.5	63.24	25.59
# 1	, ହାଉଥାସ	0011	ଉପ୍ଟର	. 0080	. Ø1Ø6	" ወወወ4	. 0011
# 产	. ଉଉଥାନ	0018	ଉପ୍ଟର	1800 .	ØØ6Ø	" ወወወ t	. 0008
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC: Pass	LC Fass
High	.0050	.0100	.0050	.0100	.1000	.0050	.0100
Low	0050	0100	0050	0100	1000	0050	0100
Elem Units Avge SDev %RSD	Y_3710 ppm .0001 .0001 161.0	Zn2062 ppm 0011 .0001 6.482	Zr3496 ppm .0018 .0003 15.04				
#1 #ご	0000 . 0002	0011 0010	.0020 .0016				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

IntStd	1	2	3	4	5	6 0	10191
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	Notusen
Elem	Sc		*****	*****	****	****	****
Wavlen	361.384	*****	****	1474			
Avge	656498	10000		*****	····	*****	1400.000
SDev	2836.912	. ଉପ୍ଟେପ୍ଟେପ୍ଟ			*****	report andre	40
%RGO	. 4321281	. ଉଦ୍ପର୍ଶନ୍ତର	*****		17 766 - 44764	****	*****
13 4	r (m. 1 1 rs. m.	a mananana					
#1	654492	1 (ካርካርካርካ		****	*****	Truck Mari	11 · 10 · 10
#=	658504	10000	*****	****	77 Nag 1844		****

DIV 20 06002.01.141 040415-2 Heinkart Junel 5/25/04

Analyst: RSS Method: EPA 300

			· · · · · · · · · · · · · · · · · · ·				18		1019
			Conc	RESULT			-		ll .
	System ID	Analyte	mg/L	mg/L	Qual	DL	TV	or RPD	DF
		 							1
04/25/04		Fluoride	0.162	0.162		0.1			1
	243233	Chloride	1.052	1.05		0.1			
	243233	Nitrite-N	0.000	0.1		0.1			·
	243233	Bromide	0.000	0.1		0.1			<u> </u>
	243233	Nitrate-N	0.082	0.1		0.1			
	243233	Phosphate-P	0.014	0.1	U	0.1			_ '
	243233	Sulfate	132.874	133		2			20
	243233D	Fluoride	0.165	0.165		0.1		1.83%	·
	243233D	Chloride	1.003	1.00	<u> </u>	0.1		4.77%	·
	243233D	Nitrite-N	0.000	0.1		0.1		0.00%	41
	243233D	Bromide	0.000	0.1		0.1		0.00%	4)
	243233D	Nitrate-N	0.081	0.1		0.1		0.00%	41
	243233D	Phosphate-P	0.015	0.1	U	0.1		0.00%	41
	243233D	Sulfate	131.925	132		2		0.72%	41
04/25/04	243233S	Fluoride	1.029	1.03		0.1	1		<u> </u>
	243233S	Chloride	2.846	2.85		0.1	2		41
	243233S	Nitrite-N	0.893	0.893		0.1	1	 	41
	243233S	Bromide	3.955	3.96		0.1	4		·
	243233S	Nitrate-N	0.843	0.843		0.1	0.904		·
	243233S	Phosphate-P	1.632	1.63		0.1	1.91	85.4%	11
	243233S	Sulfate	211.071	211		2	80	97.7%	20
04/25/04		Fluoride	0.086	0.1	U	0.1			·
04/25/04		Chloride	1.034	1.03		0.1			·
04/25/04		Nitrite-N	0.000	0.1		0.1			•
04/25/04	· · · · · · · · · · · · · · · · · · ·	Bromide	0.000	0.1		0.1			•
04/25/04		Nitrate-N	0.019	0.1		0.1			•
04/25/04		Phosphate-P	0.000	0.1	U	0.1			·
04/25/04	243234	Sulfate	0.468	0.468		0.1			•
04/25/04	243235	Fluoride	0.061	0.1	U	0.1			·
04/25/04	243235	Chloride	0.258	0.258		0.1			·
04/25/04	243235	Nitrite-N	0.000	0.1		0.1			_
04/25/04	243235	Bromide	0.000	0.1		0.1			•
04/25/04	243235	Nitrate-N	0.018	0.1	U	0.1			·
04/25/04	243235	Phosphate-P	0.000	0.1	J	0.1			·
04/25/04	243235	Sulfate	0.588	0.588		0.1	·		·
04/25/04	243236	Fluoride	0.320	0.320		0.1			·
04/25/04	243236	Chloride	4.129	4.13		0.1			•
04/25/04	243236	Nitrite-N	0.018	0.1	U	0.1			1
04/25/04	243236	Bromide	0.000	0.1	U	0.1			1
04/25/04	243236	Nitrate-N	0.114	0.114		0.1			1
04/25/04	<u> </u>	Phosphate-P	0.033	0.1	U	0.1			1
04/25/04		Sulfate	2.075	2.08		0.1			·
04/25/04		Fluoride	0.399	0.399		0.1			
04/25/04		Chloride	8.877	8.88		0.1			
04/25/04		Nitrite-N	0.013	0.1	U	0.1			
04/25/04		Bromide	0.000	0.1		0.1			1
04/25/04		Nitrate-N	0.124	0.124		0.1			
04/25/04		Phosphate-P	0.222	0.222		0.1			
04/25/04		Sulfate	2.855	2.86		0.1			
04/25/04		Fluoride	1.063	1.06		0.1			1
04/25/04		Chloride	6.839	6.84		0.1			
	243238	Nitrite-N	0.011	0.1	U	0.1			-

04/25/04	243238	Bromide	0.033	0.1	Tu	0.1		
04/25/04		Nitrate-N	1.549	1.55	 	0.1		
04/25/04		Phosphate-P	0.015	0.1	lu	0.1	04	04.00
04/25/04		Sulfate	25.101	25.1		2	01	019 3
04/25/04	1	Fluoride	3.985	3.99		0.1		
04/25/04	· · · · · · · · · · · · · · · · · · ·	Chloride	7.961	7.96		0.1		
04/25/04		Nitrite-N	0.000	0.1	Ū	0.1		
04/25/04		Bromide	0.043	0.1		0.1		
04/25/04		Nitrate-N	0.000	0.1		0.1		
04/25/04		Phosphate-P	0.000	0.1		0.1		
04/25/04		Sulfate	26.543	26.5		2		
04/25/04		Fluoride	2.113	2.11		0.1		
04/25/04		Chloride	6.736	6.74		0.1		
04/25/04		Nitrite-N	0.017	0.1	U	0.1		
04/25/04		Bromide	0.040	0.1		0.1		
04/25/04		Nitrate-N	1.568	1.57		0.1		
04/25/04		Phosphate-P	0.017	0.1	U	0.1		
04/25/04	243240	Sulfate	20.971	21.0		2		
04/25/04	243241	Fluoride	1.850	1.85		0.1		
04/25/04	243241	Chloride	6.497	6.50		0.1		
04/25/04	243241	Nitrite-N	0.000	0.1	U	0.1		
04/25/04	243241	Bromide	0.037	0.1	U	0.1		
04/25/04	243241	Nitrate-N	1.098	1.10		0.1		
04/25/04	243241	Phosphate-P	0.000	0.1	U	0.1		
04/25/04	243241	Sulfate	23.583	23.6		2		
04/25/04		Fluoride	1.260	1.26		0.1		
04/25/04	243242	Chloride	6.848	6.85		0.1		
04/25/04	243242	Nitrite-N	0.023	0.1	U	0.1		
04/25/04	243242	Bromide	0.035	0.1	U	0.1		
04/25/04		Nitrate-N	0.161	0.161		0.1		
04/25/04		Phosphate-P	0.000	0.1	U	0.1		
04/25/04		Sulfate	20.707	20.7		2		
04/25/04		Fluoride	0.000	0.1		0.1		
04/25/04		Chloride	0.008	0.1		0.1		
04/25/04	243243	Nitrite-N	0.000	0.1		0.1		
04/25/04	l b	Bromide	0.000		U	0.1		
04/25/04	243243	Nitrate-N	0.380	0.380		0.1		
04/25/04		Phosphate-P	0.000	0.1		0.1		
04/25/04	243243	Sulfate	0.043	0.1	U	0.1		

U = UNDETECTED

Analyst: RSS

Analyst: KSS Method: EPA 300 010194

			Conc	RESULT				% Rec
	System ID	Analyte	mg/L	mg/L	Qual	DL	TV	or RPD
04/25/04	ICV	Fluoride	101.380	101		0.1	100	101%
04/25/04	ICV	Chloride	205.282	205		0.1	200	103%
04/25/04	ICV	Nitrite-N	99.008	99.0		0.1	101	98.0%
04/25/04	ICV	Bromide	412.332	412		0.1	400	103%
04/25/04	ICV	Nitrate-N	87.245	87.2		0.1	90.4	96.5%
04/25/04	ICV	Phosphate-P	196.451	196	·	0.1	191.0	103%
04/25/04	ICV	Sulfate	411.068	411		0.1	400	103%
04/25/04	ICB	Fluoride	0.000	0.1	U	0.1		
04/25/04	ICB	Chloride	0.004	0.1	J	0.1		
04/25/04	ICB	Nitrite-N	0.000	0.1	J	0.1		
04/25/04	ICB	Bromide	0.000	0.1	U	0.1		
04/25/04	ICB	Nitrate-N	0.000	0.1	U	0.1		
04/25/04	ICB	Phosphate-P	0.000	0.1	U	0.1		
04/25/04	ICB	Sulfate	0.000	0.1	U	0.1		

U = UNDETECTED

HYLLOVES	BOOK NO. 164
Work continued from Page	SwRI®
147-01-164 20ppm Anions M	
5 Anion Stavol, Conc. Inorg	Spey Lot# eyp.dat
Fluoride 0,2ml 1000mg/L 4388	25-5AS 1/15/05 7-147VY 1/15/05
Nitrita-N 4480 4106	7-158VY 3115105 23-52AS 5/30/04 25-85AS 1/15/05
Nitrate N Phosphate P Sulfate 4390 4180	
15 Diluted to 10ml Dl H2O.	Eppendorfs;
147-02-164 <u>15pm Anions</u> 3ml 147-01-164 1 me DI	H20 1000 G 200.H
20 147-03-14 1 Oppm Anions 2m1 147-01-14 + 2m1 D1	Jaiwice "O)
147-04-14 5 ppm Anions 2m1147-03-104 2m1 D	11/20
147-05-1CH Imm Anions 4m1 D) H20 + 1 mi	147-04-104
30 2mi 147-05-14 2mi [D1H20
4.0 ml 147-06-104 + 1 ml	Anim 1 147-06-164
35 147-08-1C4 D prom.	Work continued to Page
www.scientificbindery88yrs.com	DATE 1 2/04
DISCLOSED TO AND UNDERSTOOD BY DATE	DATE DATE
Un Children	!

146 PROJECT NO. BOOK NO. CH	TITLE	JO2N	QC	
Work continued from Page SWRI® 5 L Q-O - CH N th 5 ml of Nithte 4 10ml D H ₂ O.	rle-N, -(Spex	101 mg/L 23-2348,	010196 (Inorg#4107) 1000mg/L NO2	
5		x e o x		
5	2894			
Www.scientificbinderyogyrs.com SIGNATURE DISCLOSED TO AND UNDIRESTOOD BY	DATE 4/12/04	WITNESS	Work continued to Page DATE HOLD)4

Book/Page: 11 143

Southwest Research Institute

	Client	Project #	TO #	Analytical Method
NFT		06232.3 .006	040324-3	300
/CCV/MS: 1 st Source_	SPEX C		d Source Noty	iteN,
Lot #: CCV Conc:	25-145AS		Lot #: <u> 40</u>	10-01-1C4 20
MS Conc:_	1:100			100
		DDED	FV = 2.0	L DI H20
	UENT SOLUTION I Sodium Bicarbonate		0+	ım Carbonate
EL	UENT SOLUTION	TREE.		

____ mA-Autoregen (ASRS)

Book/Page: 11 145

Southwest Research Institute

Dionex DX500 Ion Chromatography Daily Log

010198

Analyst: Spur

Date: 4/20/04

Client	Project #	TO#	Analytical Method
			200
Curve	n=		300
PES		_	9056
:			

		· · · · · · · · · · · · · · · · · · ·							·	
	Lo	op: 4	Dul	er en en	Met	thod:	anion	s 0404.	20	
	Colu	nn: ASI	1#		Calibra	tion:		4/20/04		
	Comme	nts:				_				***************************************
ICV/CC	V/MS·			\						
,	1 st Sour	ce SPE	X /#	4518)	2 nd	Source	Nitr	TeN		
	Lot	200	45AS	· · · · · · · · · · · · · · · · · · ·		Lot #:	146	1)1-1C4		
	CCV Cor	nc: /:a	0		CCV	Conc:	/:	20		
. ہے	MS Cor				_ _ MS	Conc:	1.	100		
	ee pg.	ELUENT SO	I I ITION D	DDED.			FV = 2.0I	DI H20		
<u></u>	1177	-mM Sodium B		KEF.				m Carbonate		
		TILLYI SOUTUIN 13	icai oonate			1016	HIM SOUL	in Carbonate		
,	Weight:			NaHCO₃ ¾	42a	Veight:			N	Ia ₂ CO ₃
	Source:			RSS		Source:				
	Lot:			1		Lot:				
					₫ ∵					
		Other Eluent:				**	T ag			
	50									
	$\frac{\mathcal{O}}{\mathcal{O}}$.	mA-Autorege	n (ASRS)							
		Other Regen:								
I	-	doct.	5000	.1			11	1. 1. 1	•	
Ĩ.	-pper	ndorfs:		EDM 226 (D			$\mathcal{H}_{\mathcal{A}}$	7/6/04		
			10001	Page 2 o			v ₂ 0			

Book/Page: 11 149

Southwest Research Institute

Dionex DX500 Ion Chromatography Daily Log

Analyst: RSpie	<u>»</u>	Date:	465704
Conductivity: 17.9			
Client	Project #	TO #	Analytical Method
01720	06002.DI.141	040415-2	300.
·			
Loop: 40.00 Column: ASIUH015 Comments:	Mer -02-087 Calibra		ns 040420 H20/04
ICV/CCV/MS: 1 st Source Spex (3) Lot #: 25 - 145 CCV Conc: 1:20 MS Conc: 1:100	AS ccv		e N -01-1C4 20 :100
Weight: O. 1689 Source: 15308E	$\frac{1}{1000} \frac{1}{2626} = \frac{3}{1000}$ $\frac{1}{1000} \frac{1}{2626} = \frac{3}{1000}$	Weight: 0,7	LDIH20 Im Carbonate Norg # 4033 419 Na ₂ CO ₃ A USAr O GM 34
Other Eluent:			
mA-Autoregen (ASRS) Other Regen:)		
Balance XIL	FRM-226 (Rev 3/Mar 03) Page 2 of 2	Eppen	dorfs 5000 J 1000 H 200 J

Line	Sample	Sample Type	Level	Method	Data File	Dilution
1	ICV	Sample		anions040420.met	040425_001.dxd	20
	ICB	Sample		anions040420.met	040425_002.dxd	1
2	243233	Sample		anions040420.met	040425_003.dxd	1 04000
4	243233D	Sample		anions040420.met	040425_004.dxd	1010200
	243233S	Sample		anions040420.met	040425_005.dxd	1
5 6 7	243234	Sample		anions040420.met	040425_006.dxd	1
7	243235	Sample		anions040420.met	040425_007.dxd	1
8	243236	Sample		anions040420.met	040425_008.dxd	1
9	243237	Sample		anions040420.met	040425_009.dxd	1
10	243238	Sample		anions040420.met	040425_010.dxd	1
11	243239	Sample		anions040420.met	040425_011.dxd	1
12	243240	Sample		anions040420.met	040425_012.dxd	1
13	CCV	Sample		anions040420.met	040425_013.dxd	20
14	CCB	Sample		anions040420.met	040425_014.dxd	1
15	243241	Sample		anions040420.met	040425_015.dxd	1
16	243242	Sample		anions040420.met	040425_016.dxd	1
17	243243	Sample		anions040420.met	040425_017.dxd	1
18	243233	Sample		anions040420.met	040425_018.dxd	20
19	243233D	Sample		anions040420.met	040425_019.dxd	20
20	243233S	Sample		anions040420.met	040425_020.dxd	20
21	243234	Sample		anions040420.met	040425_021.dxd	20
22	243235	Sample		anions040420.met	040425_022.dxd	20
23	243236	Sample		anions040420.met	040425_023.dxd	20
24	243237	Sample		anions040420.met	040425_024.dxd	20
25	CCV	Sample		anions040420.met	040425_025.dxd	20
26	CCB	Sample		anions040420.met	040425_026.dxd	1
27	243238	Sample		anions040420.met	040425_027.dxd	20
28	243239	Sample		anions040420.met	040425_028.dxd	20
29	243240	Sample		anions040420.met	040425_029.dxd	20
30	243241	Sample		anions040420.met	040425_030.dxd	20
31	243242	Sample		anions040420.met	040425_031.dxd	20
32	243243	Sample		anions040420.met	040425_032.dxd	20
33	CCV	Sample		anions040420.met	040425_033.dxd	20
34	CCB	Sample		anions040420.met	040425_034.dxd	1
35	CCB	Sample		astop.met	040425	1

Default Method Path: C:\PEAKNET\METHOD Default Data Path: c:\peaknet\data\040425

Comment:

TO # 040415-2 06002.01.141 **DIV 20**

Sample Name : ICV Dilution Factor: 20.00

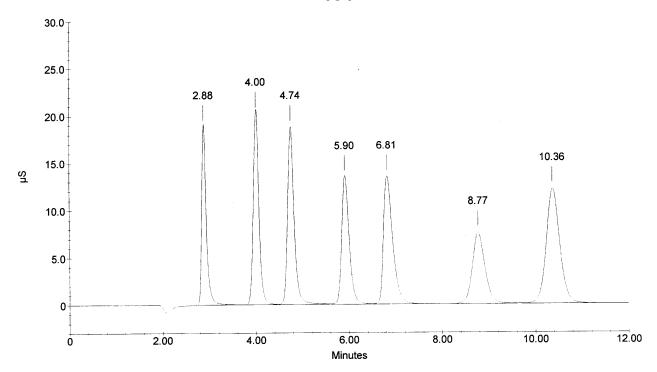
Injection Number: 1

Data File Name: c:\peaknet\data\040425\040425_001.DXD

Method File Name : c:\peaknet\method\anions040420.met Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 6:11:59 PM

System Name: Dx-500


Detector Name : Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096 010201

System Operator: RSS

	Peak Information : All Components									
Pk. Num		Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta			
1	2.88	FLUORIDE	101.380	187915	1304165	2	-1.48			
2	4.00	CHLORIDE	205.282	201730	1745029	2	-0.58			
3	4.74	NITRITE-N	99.008	187527	1846515	2	-1.39			
4	5.90	BROMIDE	412.332	134235	1524149	2	-0.62			
5	6.81	NITRATE-N	87.245	134466	1870665	2	1.19			
6	8.77	PHOSPHATE-P	196.451	75230	1415134	2	0.80			
7	10.36	SULFATE	411.068	121219	2464002	2	-0.61			
			total(s)							
	0.00		1512.766		12169658					

Current Date: 4/25/0

Current Time: 18:26:3

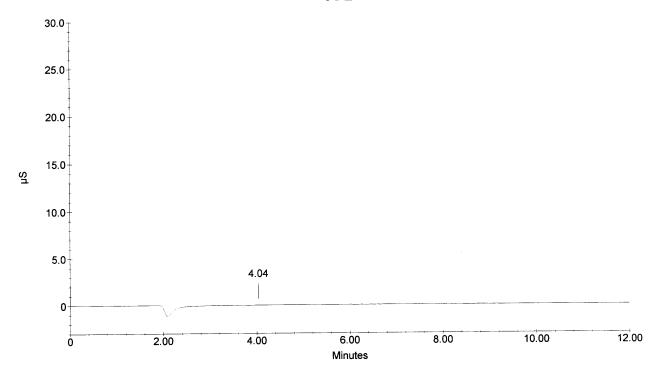
Sample Name : ICB Dilution Factor: 1.00

Injection Number: 2 Data File Name: c:\peaknet\data\040425\040425_002.DXD

Method File Name : c:\peaknet\method\anions040420.met Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 6:26:43 PM

System Name: Dx-500


Detector Name : Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096

System Operator: RSS

Peak Information : All Components									
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta		
1		CHLORIDE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	0.004 0.004	89 89	614 614		0.41 0.41		
	0.00		total(s) 0.008		1227				

Page 1 of 1

Current Date: 4/25/0

010202

Current Time: 18:41:1

Sample Name: 243233 Dilution Factor: 1.00

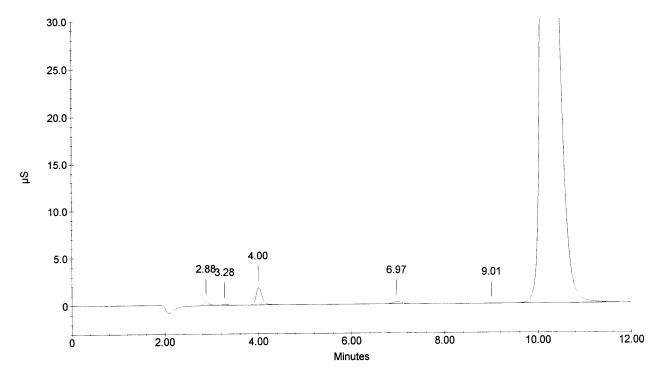
Injection Number: 3

Data File Name : c:\peaknet\data\040425\040425_003.DXD Method File Name : c:\peaknet\method\anions040420.met

Schedule File Name : c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 6:41:24 PM

System Name: Dx-500


010203 Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

Peak Information : All Components									
Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta			
2 88	FLUORIDE	0.162 ✓	4451	28555	1	-1.48			
	CHLORIDE NITRITE-N ✓	1.052 🗸	18156	167199	1	-0.58			
6 97		0.082 🗸	2449	34069	1	3.57			
		0.014 🗸	117	1875	1	3.56			
		23.336	975429	20641835	1	-2.02			
		total(s)							
	2.88 4.00 6.97 9.01 10.21	NITRITE-N↓ BROMIDE ↓ 6.97 NITRATE-N	(ppm) 2.88 FLUORIDE	(ppm) 2.88 FLUORIDE	(ppm) 2.88 FLUORIDE	(ppm) Code 2.88 FLUORIDE 0.162			

Current Date: 4/25/0 Current Time: 18:55:5

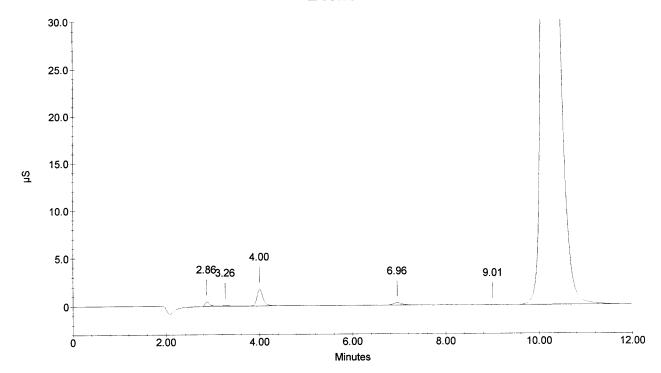
Sample Name: 243233D Dilution Factor: 1.00 Injection Number: 4

Data File Name : c:\peaknet\data\040425\040425_004.DXD Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 6:56:05 PM

System Name: Dx-500


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

			Peak Information : All Compor	nents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.86	FLUORIDE	0.165 ✓	4426	29416	1	-1.94
3	4.00		1.003 🗸	17509	159285	1	-0.58
4	6.96		0.081	2422	33655	1	3.37
5	9.01	PHOSPHATE-P	0.015✓	126	2005	1	3.56
6	10.20	SULFATE	23.655	973671	20596598	1	-2.14
	0.00		total(s) 24.919		20820959		

243233D

Current Date: 4/25/0

010204

Current Time: 19:10:4

Sample Name: 243233S Dilution Factor: 1.00

Injection Number: 5

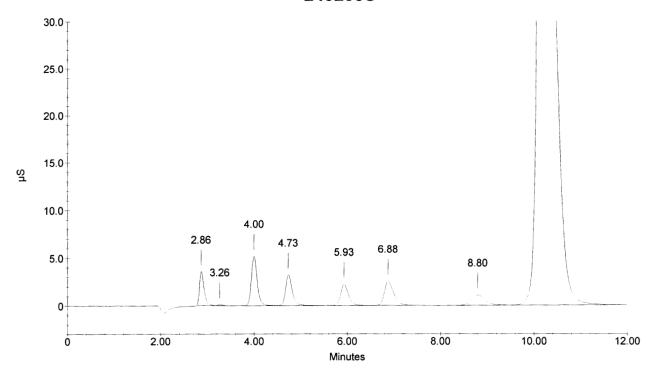
Data File Name: c:\peaknet\data\040425\040425_005.DXD

Method File Name : c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 7:10:47 PM

System Name: Dx-500


010205 Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

			Peak Information : All Compo	nents			
Pk. Num		Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.86	FLUORIDE	1.029✔	34971	241706	2	-1.94
3	4.00	CHLORIDE	2.846 √	51733	457726	2	-0.58
4	4.73	NITRITE-N	0.893✓	32103	330981	2	-1.66
5	5.93	BROMIDE	3.955✔	22275	261967	2	-0.17
6	6.88	NITRATE-N	0.843 ✔	25332	351749	2	2.18
7	8.80	PHOSPHATE-P	1.632 ✓	10860	220786	2	1.11
8	10.20	SULFATE	21.642	981725	20878769	2	-2.14
	0.00		total(s) 32.840		22743684		

243233S

Page 1 of 1

Current Date: 4/25/0 Current Time: 19:25:2

Sample Name: 243234 Dilution Factor: 1.00

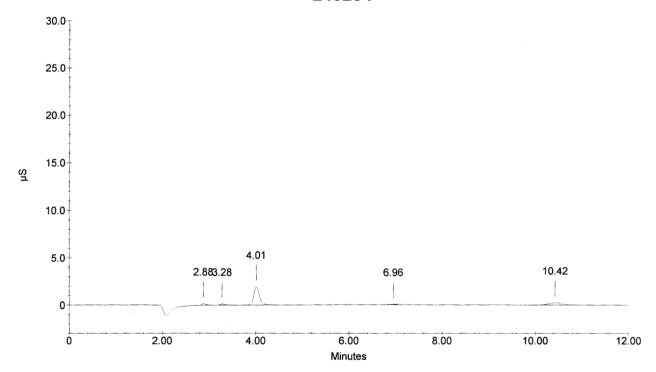
Injection Number: 6 Data File Name: c:\peaknet\data\040425\040425_006.DXD

Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 7:25:28 PM

System Name: Dx-500


Detector Name: Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096010206

System Operator: RSS

			Peak Information : All Compon	ents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.88	FLUORIDE	0.086✓	1687	10193	1	-1.48
3	4.01	CHLORIDE NITRITE-N↓ BROMIDE ✓	1.034 ✓	19261	164292		-0.25
4	6.96	NITRATE-N ✓ PHOSPHATE-P ✓	0.019 ✓	561	7707	1	3.37
5	10.42	SULFATE	0.468 ✓	2436	50312	1	0.03
	0.00		total(s) 1.607		232504		

243234

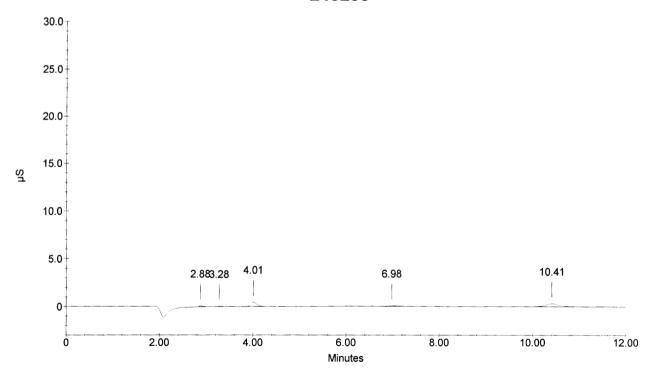
Current Date: 4/25/0 Current Time: 19:40:0

Sample Name: 243235 Dilution Factor: 1.00 Injection Number: 7

Data File Name: c:\peaknet\data\040425\040425_007.DXD

Method File Name: c:\peaknet\method\anions040420.met Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 7:40:09 PM


System Name: Dx-500

Column Type : AS14-#015724 AG14-#1018096 **010207**System Operator : BS2

System Operator: RSS

			Peak Information : All Compo	nents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.88	FLUORIDE	0.061,	778	4222	1	-1.48
3	4.01	CHLORIDE NITRITE-N√ BROMIDE √	0.258 v	4519	40696	1	-0.25
4	6.98		0.018 _v	552	7353	1	3.76
5	10.41	SULFATE	0.588 🗸	3004	63230	1	-0.10
	0.00		total(s) 0.924		115501		

243235

Current Date: 4/25/0 Current Time: 19:54:4 Sample Name: 243236 Dilution Factor: 1.00

Injection Number: 8

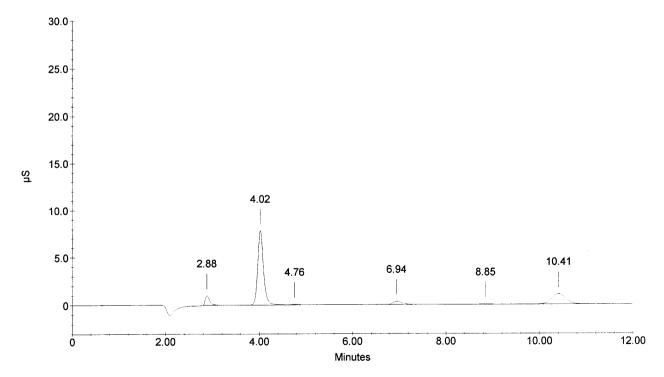
Data File Name: c:\peaknet\data\040425\040425_008.DXD

Method File Name : c:\peaknet\method\anions040420.met Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 7:54:49 PM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010208

System Operator : RSS

			Peak Information : All Compor	nents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.88	FLUORIDE	0.320 🗸	9948	67091	1	-1.48
2	4.02	CHLORIDE	4.129 v	78126	670010	2	0.08
3	4.76	NITRITE-N BROMIDE ✓	0.018	633	6812	2	-1.11
4	6.94	NITRATE-N	0.114✔	3348	47349	1	3.17
5	8.85	PHOSPHATE-P	0.033 🗸	249	4424	1	1.72
6	10.41	SULFATE	2.075 🗸	10760	224844	1	-0.10
			total(s)				
	0.00		6.690		1020531		

Current Date: 4/25/0 Current Time: 20:09:2 Sample Name: 243237 Dilution Factor: 1.00

Injection Number: 9

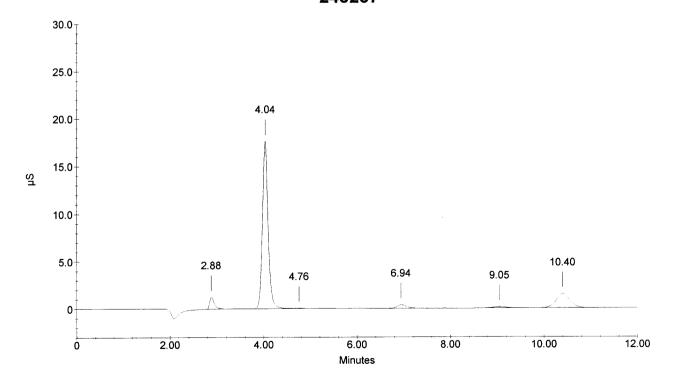
Data File Name: c:\peaknet\data\040425\040425_009.DXD Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 8:09:30 PM

010209

System Name: Dx-500


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

			Peak Information : All Compon	ents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.88	FLUORIDE	0.399 ✔	12389	86242	1	-1.48
2	4.04		8.877 ⁄	175913	1492504	3	0.41
3	4.76	NITRITE-N BROMIDE ✓	0.013 🗸	470	4659	4	-1.11
4	6.94	NITRATE-N	0.124 🗸	3693	51591	1	3.17
5	9.05	PHOSPHATE-P	0.222 🗸	1402	29757	1	4.02
6	10.40	SULFATE	2.855 ✓	14969	310496	1	-0.22
			total(s)				
	0.00		12.490		1975250		

243237

Current Date: 4/25/0 Current Time: 20:24:0 Sample Name: 243238 Dilution Factor: 1.00

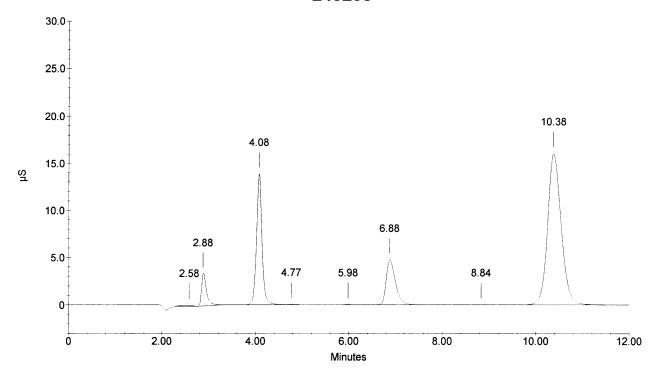
Injection Number: 10 Data File Name: c:\peaknet\data\040425\040425_010.DXD

Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected : 4/25/04 8:24:11 PM

System Name: Dx-500


010210 Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

Peak Information : All Components									
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta		
2	2.88	FLUORIDE	1.063 _V	33277	250160	1	-1.48		
3	4.08	CHLORIDE	6.839✓	138905	1131843	3	1.41		
4	4.77	NITRITE-N	0.011	394	3977	4	-0.83		
5	5.98	BROMIDE	0.033	210	2138	1	0.73		
6	6.88	NITRATE-N	1.549 v	47201	649941	1	2.18		
7	8.84	PHOSPHATE-P	0.015 ✔	114	1975	1	1.57		
8	10.38	SULFATE	25.806	160689	3207087	1	-0.35		
	0.00		total(s) 35.316		5247121	····			

243238

: PeakNet 5.1

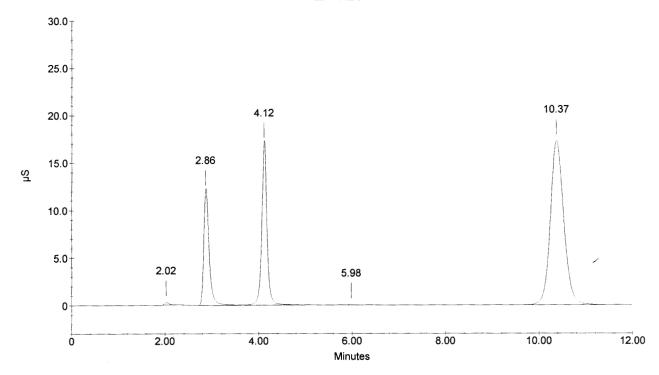
Current Date: 4/25/0 Current Time: 20:38:4 Sample Name: 243239

Dilution Factor: 1.00 Injection Number: 11

Data File Name: c:\peaknet\data\040425\040425_011.DXD Method File Name : c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 8:38:53 PM


System Name: Dx-500

Column Type: AS14-#015724 AG14-#1018096 10211
System Operator: PSS

System Operator: RSS

			Peak Information : All Compo	nents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
2	2.86	FLUORIDE	3.895✓	119041	984002	2	-1.94
3	4.12	CHLORIDE NITRITE-N ✔	7.961 _v	168672	1328948	2	2.40
4	5.98	BROMIDE NITRATE-N ✓ PHOSPHATE-P √	0.043✔	245	2789	1	0.73
5	10.37	SULFATE	27.411	172222	3447295	1	-0.48
	0.00		total(s) 39.310		5763034		

243239

Current Date: 4/25/0 Current Time: 20:53:2 Sample Name : 243240 Dilution Factor : 1.00

Injection Number: 12

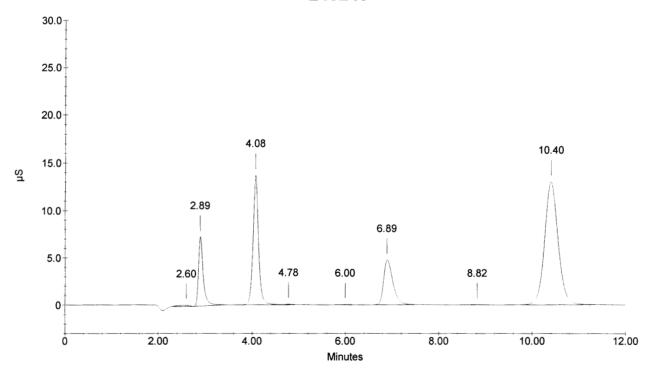
Data File Name : c:\peaknet\data\040425\040425_012.DXD

Method File Name: c:\peaknet\method\anions040420.met Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 8:53:34 PM

System Name : Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010212

System Operator: RSS

			Peak Information : All Compor	nents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
2	2.89	FLUORIDE	2.113 ✓	72914	515740	1	-1.03
3	4.08	CHLORIDE	6.736 ✔	136581	1113894	3	1.41
4	4.78	NITRITE-N	0.017 🗸	590	6197	4	-0.55
5	6.00	BROMIDE	0.040 ✓	247	2579	1	0.95
6	6.89	NITRATE-N	1.568	47243	657909	1	2.38
7	8.82	PHOSPHATE-P	0.017 🗸	105	2308	1	1.42
8	10.40	SULFATE	21.591	129810	2605975	1	-0.22
	0.00		total(s) 32.081		4904600		

Current Date : 4/25/0 Current Time : 21:08:0 Sample Name : CCV Dilution Factor : 20.00 Injection Number : 13

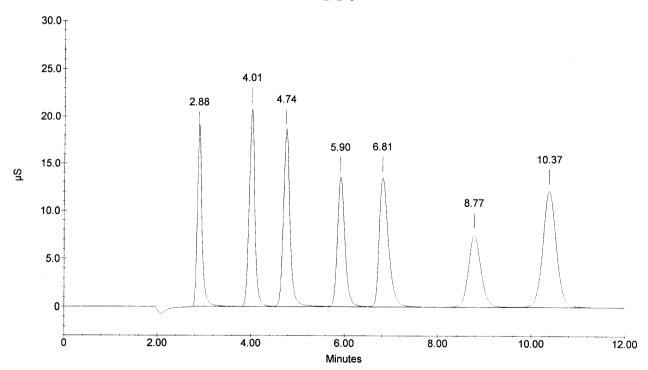
Data File Name: c:\peaknet\data\040425\040425_013.DXD Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 9:08:15 PM

System Name : Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010213

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.88	FLUORIDE	101.164	181769	1301175	2	-1.48
2	4.01	CHLORIDE	205.235	207324	1744597	2	-0.25
3	4.74	NITRITE-N	98.288	184852	1832979	2	-1.39
4	5.90	BROMIDE	411.304	133863	1519728	2	-0.62
5	6.81	NITRATE-N	86.678	134378	1858089	2	1.19
6	8.77	PHOSPHATE-P	196.028	75230	1411840	2	0.80
7	10.37	SULFATE	408.945	121499	2449593		-0.48
	0.00		total(s)				
	0.00		1507.641		12118003		

CCV

Current Date: 4/25/0 Current Time: 21:22:5 Sample Name : CCB Dilution Factor : 1.00

Injection Number: 14

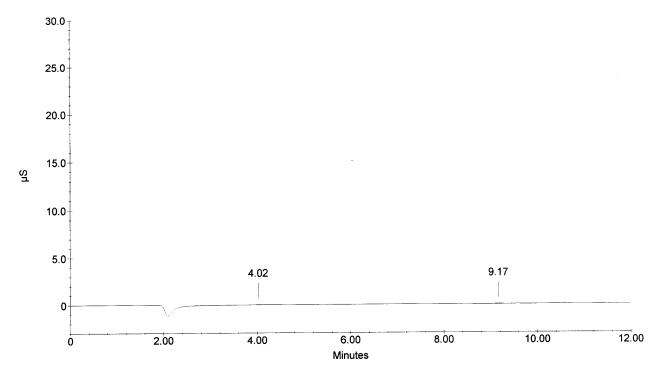
Data File Name : c:\peaknet\data\040425\040425_014.DXD Method File Name : c:\peaknet\method\anions040420.met

Schedule File Name : c:\peaknet\schedule\25apr04.sch

Date Time Collected : 4/25/04 9:22:56 PM

System Name : Dx-500

Detector Name : Conductivity Detector


Column Type : AS14-#015724 AG14-#1018096

010214

System Operator : RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.02	CHLORIDE	0.006	104	908	1	0.08
1	4.02		0.006	104	908	1	0.08
2	9.17		0.004	45	600	1	5.40
	0.00		total(s) 0.016		2417		

Current Date: 4/25/0 Current Time: 21:37:3 Sample Name: 243241 Dilution Factor: 1.00 Injection Number: 15

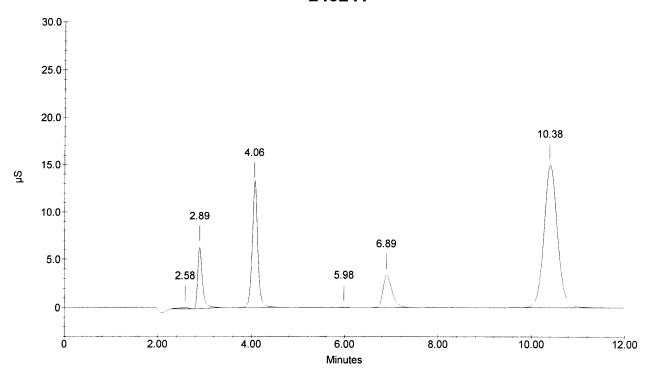
Data File Name: c:\peaknet\data\040425\040425_015.DXD Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 9:37:37 PM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010215

System Operator: RSS

			Peak Information : All Compor	nents			
Pk. Num		Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
2	2.89	FLUORIDE	1.850✔	63579	448635	1	-1.03
3	4.06	CHLORIDE NITRITE-N√	6.497 √	129326	1072514	1	1.08
4	5.98	BROMIDE	0.037 ✔	224	2368	1	0.73
5	6.89	NITRATE-N PHOSPHATE-P√	1.098 🗸	33034	458819	1	2.38
6	10.38	SULFATE	24.331	149183	2992059	1	-0.35
	0.00		total(s) 33.813		4974396		

243241

Current Time: 21:52:1

Current Date: 4/25/0

Sample Name: 243242 Dilution Factor: 1.00

Injection Number: 16

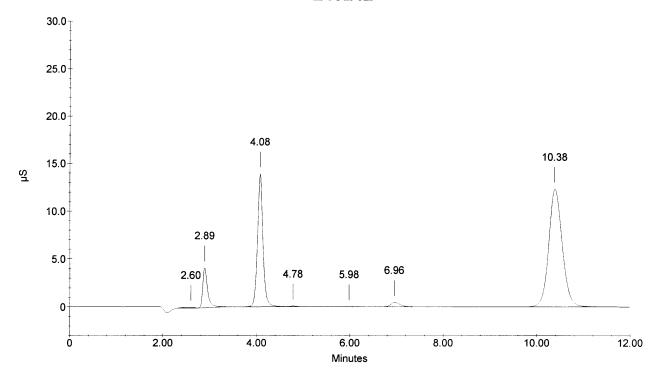
Data File Name: c:\peaknet\data\040425\040425_016.DXD Method File Name : c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 9:52:17 PM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010216

System Operator: RSS

Peak Information : All Components						
Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
2.89	FLUORIDE	1.260 ✓	41520	299539	1	-1.03
4.08	CHLORIDE	6.848✓	138863	1133489	2	1.41
4.78	NITRITE-N	0.023✔	773	8674	2	-0.55
5.98	BROMIDE	0.035✔	225	2263	1	0.73
6.96	NITRATE-N PHOSPHATE-P ✓	0.161 ✓	4695	66894	1	3.37
10.38	SULFATE	20.617	122952	2472605	1	-0.35
0.00		total(s) 28.945		3983465		
	2.89 4.08 4.78 5.98 6.96 10.38	4.78 NITRITE-N 5.98 BROMIDE 6.96 NITRATE-N PHOSPHATE-P ✓ 10.38 SULFATE	Ret Time Component Name Concentration (ppm) 2.89 FLUORIDE 1.260 √ 4.08 CHLORIDE 6.848 √ 4.78 NITRITE-N 0.023 √ 5.98 BROMIDE 0.035 √ 6.96 NITRATE-N 0.161 √ PHOSPHATE-P ✓ 10.38 SULFATE 20.617	Ret Time Component Name Concentration (ppm) Height 2.89 FLUORIDE 1.260 ✓ 41520 4.08 CHLORIDE 6.848 ✓ 138863 4.78 NITRITE-N 0.023 ✓ 773 5.98 BROMIDE 0.035 ✓ 225 6.96 NITRATE-N 0.161 ✓ 4695 PHOSPHATE-P ✓ 10.38 SULFATE 20.617 122952	Ret Time Component Name Concentration (ppm) Height Area 2.89 FLUORIDE 1.260 ✓ 41520 299539 4.08 CHLORIDE 6.848 ✓ 138863 1133489 4.78 NITRITE-N 0.023 ✓ 773 8674 5.98 BROMIDE 0.035 ✓ 225 2263 6.96 NITRATE-N 0.161 ✓ 4695 66894 PHOSPHATE-P ✓ 20.617 122952 2472605	Ret Time Component Name Concentration (ppm) Height Height Height Code Area Bl. Code 2.89 FLUORIDE 1.260 ✓ 41520 299539 1 4.08 CHLORIDE 6.848 ✓ 138863 1133489 2 4.78 NITRITE-N 0.023 ✓ 773 8674 2 5.98 BROMIDE 0.035 ✓ 225 2263 1 6.96 NITRATE-N PHOSPHATE-P ✓ 0.161 ✓ 4695 66894 1 10.38 SULFATE 20.617 122952 2472605 1

243242

Current Date: 4/25/0 Current Time: 22:06:5

Sample Name: 243243 Dilution Factor: 1.00 Injection Number: 17

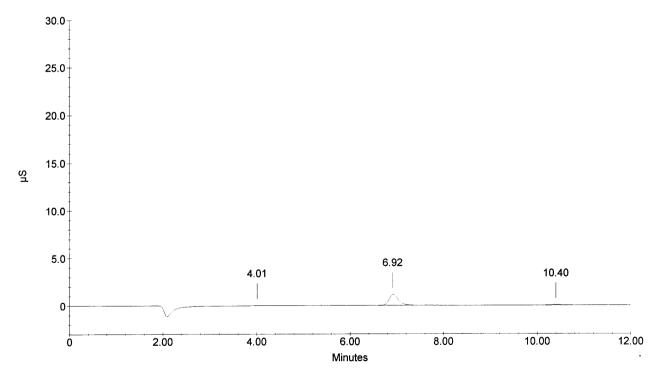
Data File Name: c:\peaknet\data\040425\040425_017.DXD Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 10:06:58 PM

System Name : Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010217

System Operator: RSS

			Peak Information : All Compon	ents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.01	CHLORIDE	0.008 v	173	1203	1	-0.25
1		CHLORIDE NITRITE-N V BROMIDE ✓	0.008,	173	1203	1	-0.25
2	6.92	NITRATE-N PHOSPHATE-P ✓	0.380 ✓	11266	157815	1	2.77
3	10.40	SULFATE `	0.043 🗸	264	4586	1	-0.22
	0.00		total(s) 0.437		164807		

Current Date: 4/25/0 Current Time: 22:21:3

Sample Name: 243233 Dilution Factor: 20.00

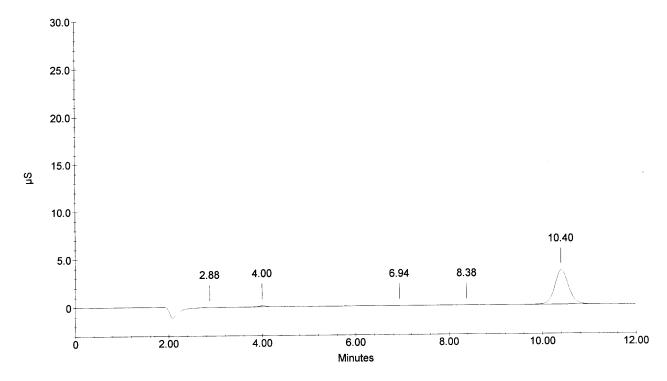
Injection Number: 18

Data File Name : c:\peaknet\data\040425\040425_018.DXD Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name : c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 10:21:38 PM

System Name: Dx-500


010218 Detector Name : Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096

System Operator: RSS

			Peak Information : All Compor	ents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.88	FLUORIDE	0.917	96	451	1	-1.48
2	4.00		1.383	1245	10912	1	-0.58
3	6.94	NITRATE-N	0.065	113	1343	1	3.17
4		PHOSPHATE-P	0.149	77	996	1	-3.64
5		SULFATE	132.874 ✓	35498	735981	1	-0.22
			total(s)				
	0.00		135.386		749684		

Current Date: 4/25/0 Current Time: 22:36:1

Sample Name: 243233D Dilution Factor: 20.00

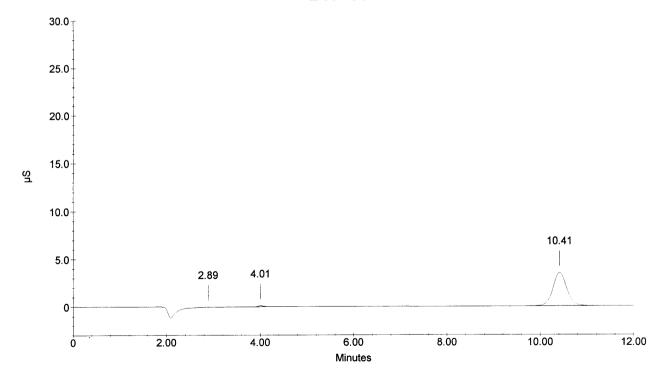
Injection Number: 19

Data File Name: c:\peaknet\data\040425\040425_019.DXD Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 10:36:18 PM

System Name: Dx-500


010219 Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

	Peak Information : All Components									
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta			
1	2.89	FLUORIDE	0.925	135	553	1	-1.03			
2	4.01	CHLORIDE NITRITE-N BROMIDE NITRATE-N	1.371	1165	10821	1	-0.25			
3	10.41	PHOSPHATE-P SULFATE	131.925✓	35167	730552	1	-0.10			
	0.00		total(s) 134.221		741926					

243233D

Current Date: 4/25/0 Current Time: 22:50:5 Sample Name : 243233S Dilution Factor : 20.00

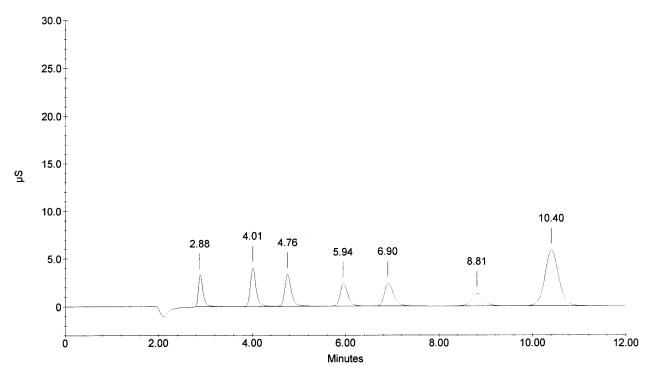
Injection Number : 20
Data File Name : c:\peaknet\data\040

Schedule File Name : c:\peaknet\schedule\25apr04.sch

Date Time Collected : 4/25/04 10:50:59 PM

System Name : Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010220

System Operator : RSS

			Peak Information : All Compor	ients			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.88	FLUORIDE	19.552	32042	228947	1	-1.48
2	4.01	CHLORIDE	42.742	40058	342008	2	-0.25
3	4.76	NITRITE-N	17.550	32954	325256	2	-1.11
4	5.94	BROMIDE	80.902	22883	268035	1	0.06
5	6.90	NITRATE-N	15.819	23541	329898	1	2.58
6	8.81	PHOSPHATE-P	37.160	12875	251830	1	1.26
7	10.40	SULFATE	211.071 ✓	58120	1193081	1	-0.22
	0.00		total(s) 424.796		2939055		

Sample Name: 243234 Dilution Factor : 20.00

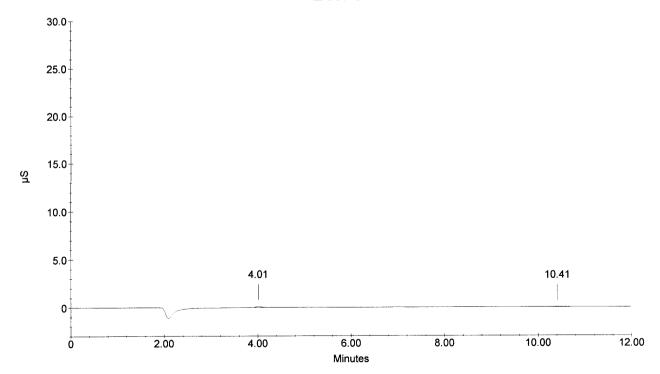
Injection Number: 21

Data File Name: c:\peaknet\data\040425\040425_021.DXD

Method File Name: c:\peaknet\method\anions040420.met Schedule File Name : c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 11:05:39 PM

System Name: Dx-500


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

Peak Information : All Components									
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta		
	4.01	CHLORIDE	1.151	1082	9081	1	-0.25		
1	4.01	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	1.151	1082	9081	1	-0.25		
2	10.41		0.454	133	2435	1	-0.10		
	0.00		total(s) 2.755		20598				

Current Date: 4/25/0 Current Time: 23:20:1

010221

Page 1 of 1

Sample Name: 243235

Dilution Factor: 20.00 Injection Number: 22

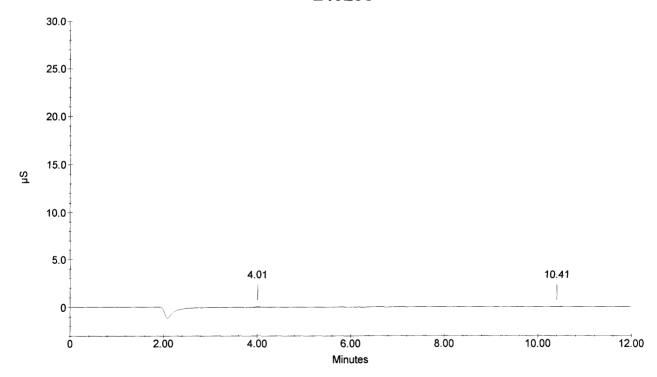
Data File Name: c:\peaknet\data\040425\040425_022.DXD

Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/25/04 11:20:20 PM

System Name : Dx-500


Detector Name : Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096 010222

System Operator: RSS

	Peak Information : All Components									
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta			
1	4.01	CHLORIDE	0.273	299	2154	1	-0.25			
1	4.01	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	0.273	299	2154	1	-0.25			
2	10.41		0.544	157	2920	1	-0.10			
	0.00		total(s) 1.090		7228					

243235

Page 1 of 1

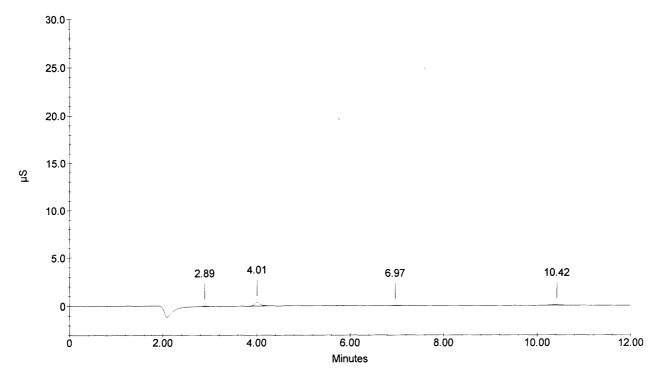
Current Date: 4/25/0 Current Time: 23:34:5 Sample Name: 243236 Dilution Factor: 20.00

Injection Number: 23

Data File Name: c:\peaknet\data\040425\040425_023.DXD Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected : 4/25/04 11:35:01 PM 010223


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.89	FLUORIDE	1.056	390	2141	1	-1.03
2	4.01	CHLORIDE NITRITE-N BROMIDE	4.292	3723	33903	1	-0.25
3	6.97	NITRATE-N PHOSPHATE-P	0.095	162	1973	1	3.57
4	10.42	SULFATE	1.870	517	10040	1	0.03
	0.00		total(s) 7.314		48058		

Page 1 of 1

Current Date: 4/25/0 Current Time: 23:49:3

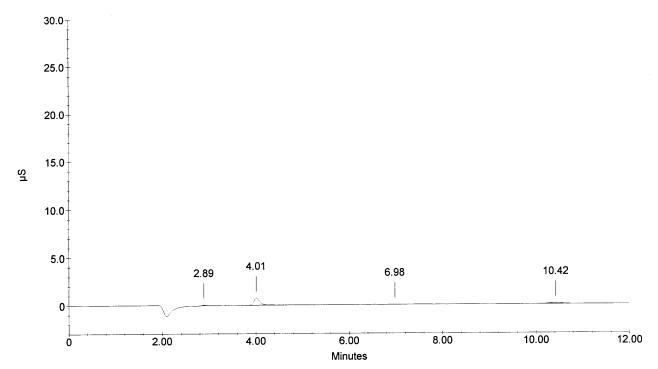
Sample Name : 243237 Dilution Factor : 20.00

Injection Number : 24

Schedule File Name : c:\peaknet\schedule\25apr04.sch

Date Time Collected : 4/25/04 11:49:41 PM

System Name : Dx-500


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.89	FLUORIDE	1.074	466	2357	1	-1.03
2	4.01	CHLORIDE NITRITE-N BROMIDE	8.380	7430	66291	1	-0.25
3	6.98		0.077	152	1601	1	3.76
4	10.42	SULFATE	4.083	1044	21925	1	0.03
		· · · · · · · · · · · · · · · · · · ·	total(s)				
	0.00		total(s) 13.614		92175		

010224

Sample Name: CCV Dilution Factor: 20.00

Injection Number: 25

Data File Name: c:\peaknet\data\040425\040425_025.DXD

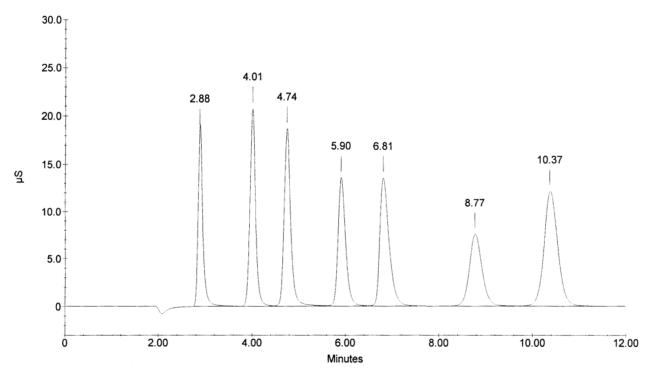
Method File Name : c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/26/04 12:04:21 AM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010225

System Operator: RSS

			Peak Information : All Compo	onents			
Pk. Num		Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.88	FLUORIDE	101.624	183999	1307533	1	-1.48
2	4.01	CHLORIDE	205.354	206712	1745697	2	-0.25
3	4.74	NITRITE-N	98.453	185926	1836075	2	-1.39
4	5.90	BROMIDE	412.668	135413	1525592	2	-0.62
5	6.81	NITRATE-N	87.137	135124	1868273	2	1.19
6	8.77	PHOSPHATE-P	197.399	75520	1422533	2	0.80
7	10.37	SULFATE	410.463	121170	2459891	2	-0.48
	0.00		total(s) 1513.097		12165594		

Current Date: 4/26/0 Current Time: 00:18:5 Sample Name: CCB Dilution Factor: 1.00

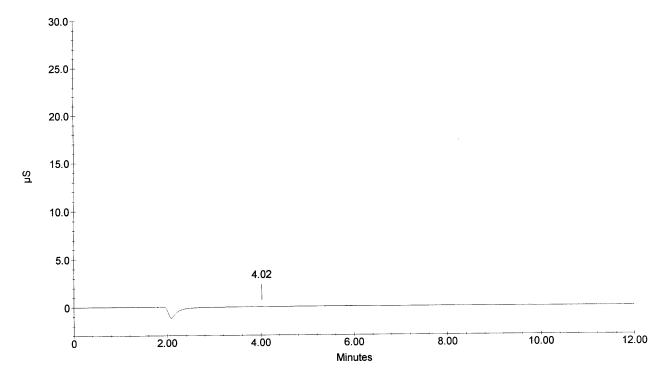
Injection Number: 26

Data File Name: c:\peaknet\data\040425\040425_026.DXD Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name : c:\peaknet\schedule\25apr04.sch

Detector Name : Conductivity Detector Column Type: AS14-#015724 AG14-#1018096

010226


Date Time Collected: 4/26/04 12:19:02 AM

System Operator: RSS

System Name : Dx-500

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1 1	4.02 4.02		0.006 0.006	133 133	919 919		0.08
	0.00		total(s) 0.012		1839		

Sample Name : 243238 Dilution Factor : 20.00

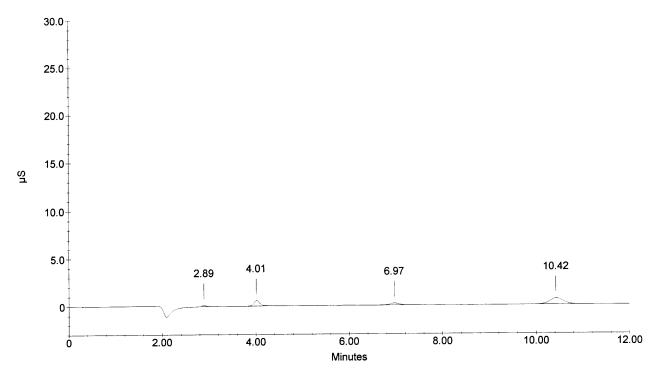
Injection Number: 27

Data File Name: c:\peaknet\data\040425\040425_027.DXD Method File Name: c:\peaknet\method\anions040420.met Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/26/04 12:33:43 AM

System Name : Dx-500

Detector Name : Conductivity Detector


Column Type : AS14-#015724 AG14-#1018096

System Operator: RSS

010227

			Peak Information : All Compone	ents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.89	FLUORIDE	1.552	1379	8134	1	-1.03
2	4.01	CHLORIDE NITRITE-N BROMIDE	6.576	5786	51989	1	-0.25
3	6.97	NITRATE-N PHOSPHATE-P	1.446	2133	30003	1	3.57
4	10.42	SULFATE	25.101	6487	135456	1	0.03
			total(s)				
	0.00		34.675		225581		

243238

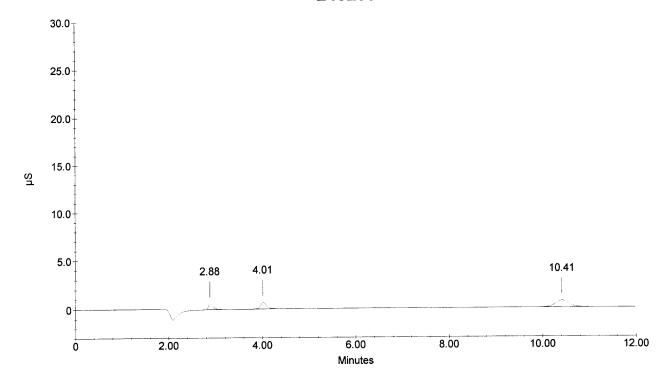
Current Date: 4/26/0 Current Time: 00:48:1 Sample Name: 243239 Dilution Factor: 20.00

Injection Number: 28

Data File Name : c:\peaknet\data\040425\040425_028.DXD Method File Name : c:\peaknet\method\anions040420.met Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/26/04 12:48:23 AM

System Name: Dx-500


Detector Name : Conductivity Detector

010228 Column Type : AS14-#015724 AG14-#1018096

System Operator: RSS

			Peak Information : All Compone	ents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.88	FLUORIDE	4.015	5539	38011	1	-1.48
2	4.01	CHLORIDE NITRITE-N BROMIDE NITRATE-N	7.550	6684	59705	1	-0.25
3	10.41	PHOSPHATE-P SULFATE	26.543 🗸	6865	143291	1	-0.10
	0.00		total(s) 38.108		241007		

Current Date: 4/26/0 Current Time: 01:02:5 Sample Name : 243240 Dilution Factor : 20.00

Injection Number: 29

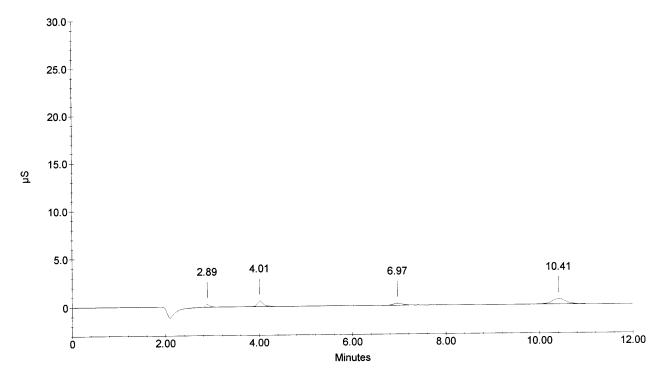
Data File Name : c:\peaknet\data\040425\040425_029.DXD Method File Name : c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/26/04 1:03:03 AM

System Name : Dx-500

Detector Name : Conductivity Detector


or 010229

Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	Bl. Code	%Delta
1	2.89	FLUORIDE	2.420	2911	18659	1	-1.03
2	4.01		6.434	5718	50861	1	-0.25
3	6.97		1.364	2076	28288	1	3.57
4	10.41		20.971 ✓	5464	113062	1	-0.10
	0.00		total(s) 31.189		210870		

Current Date: 4/26/0 Current Time: 01:17:3 Sample Name: 243241 Dilution Factor: 20.00 Injection Number: 30

Data File Name: c:\peaknet\data\040425\040425_030.DXD

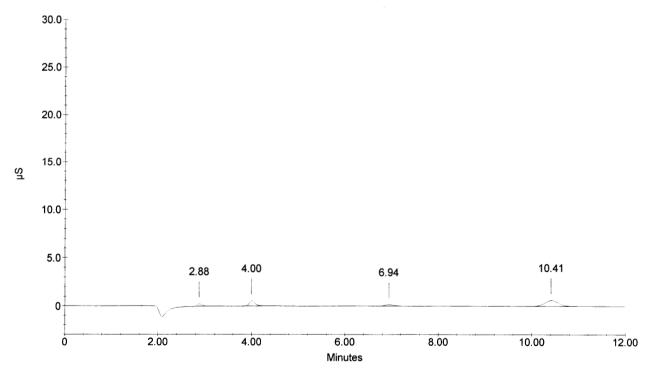
Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/26/04 1:17:43 AM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010230

System Operator : RSS

			Peak Information : All Compon	ents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.88	FLUORIDE	2.188	2537	15839	1	-1.48
2	4.00	CHLORIDE NITRITE-N BROMIDE	6.205	5483	49052	1	-0.58
3	6.94		0.951	1473	19720	1	3.17
4	10.41		23.583	6182	127222	1	-0.10
			total(s)				
	0.00		32.927		211833		

243241

Current Date: 4/26/0 Current Time: 01:32:1 Sample Name : 243242 Dilution Factor : 20.00

Injection Number : 31
Data File Name : c:\peaknet\data\040425\040425_031.DXD

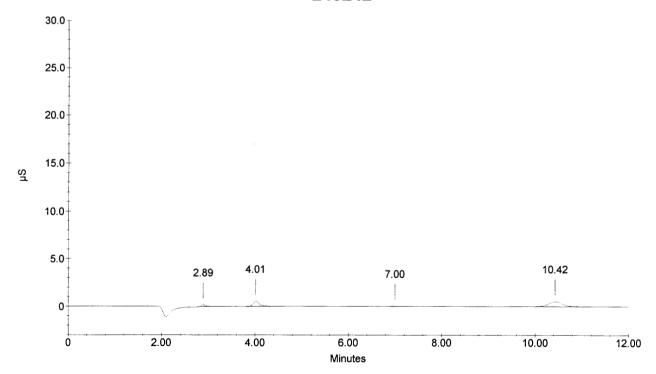
Method File Name: c:\peaknet\data\040425\040425_031.DXD

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/26/04 1:32:23 AM

System Name : Dx-500

Detector Name : Conductivity Detector


010231

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

Peak Information : All Components								
Pk. Num		Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta	
1	2.89	FLUORIDE	1.733	1709	10333	1	-1.03	
2	4.01	CHLORIDE NITRITE-N BROMIDE	6.330	5402	50036	1	-0.25	
3	7.00		0.118	197	2439	1	3.96	
4	10.42	SULFATE	20.707 🗸	5287	111630	1	0.03	
	0.00		total(s) 28.887		174438			

243242

Current Date: 4/26/0 Current Time: 01:46:5 Sample Name: 243243 Dilution Factor: 20.00

Injection Number: 32

Data File Name: c:\peaknet\data\040425\040425 032.DXD

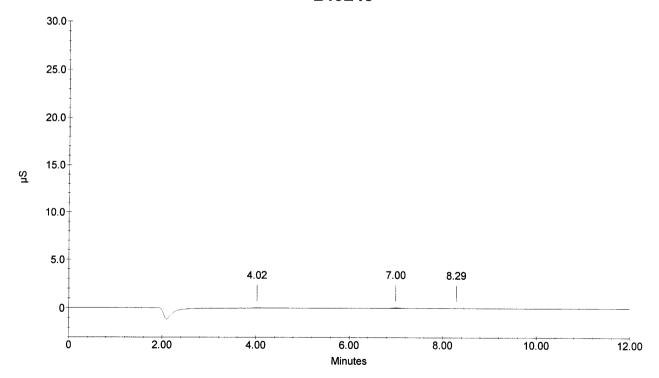
Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/26/04 1:47:04 AM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010232

System Operator: RSS

Peak Information : All Components							
Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta	
4.02	CHLORIDE	0.266	250	2100	1	0.08	
4.02	CHLORIDE NITRITE-N BROMIDE	0.266	250			0.08	
7.00	NITRATE-N	0.361	529	7484	1	3.96	
8.29	PHOSPHATE-P SULFATE	0.057	50	382	1	-4.71	
0.00		total(s) 0.950		12065			
	4.02 4.02 7.00 8.29	4.02 CHLORIDE 4.02 CHLORIDE NITRITE-N BROMIDE 7.00 NITRATE-N 8.29 PHOSPHATE-P SULFATE	Ret Time Component Name Concentration (ppm) 4.02 CHLORIDE 0.266 4.02 CHLORIDE 0.266 NITRITE-N BROMIDE 0.361 7.00 NITRATE-N 0.361 8.29 PHOSPHATE-P 0.057 SULFATE total(s)	Ret Time Component Name Concentration (ppm) Height 4.02 CHLORIDE 0.266 250 4.02 CHLORIDE 0.266 250 NITRITE-N BROMIDE 0.361 529 7.00 NITRATE-N 0.057 50 8.29 PHOSPHATE-P 0.057 50 SULFATE total(s)	Ret Time Component Name Concentration (ppm) Height Area 4.02 CHLORIDE 0.266 250 2100 4.02 CHLORIDE 0.266 250 2100 NITRITE-N BROMIDE 7.00 NITRATE-N 0.361 529 7484 8.29 PHOSPHATE-P 0.057 50 382 SULFATE total(s)	Ret Time Component Name Concentration (ppm) Height (ppm) Area (ppm) BI. Code 4.02 CHLORIDE (ppm) 0.266 (ppm) 250 (ppm) 2100 (ppm) 1 4.02 CHLORIDE (ppm) 0.266 (ppm) 250 (ppm) 2100 (ppm) 1 NITRITE-N (ppm) BROMIDE (ppm) 0.361 (ppm) 529 (ppm) 7484 (ppm) 7.00 NITRATE-N (ppm) 0.057 (ppm) 50 (ppm) 382 (ppm) 8.29 PHOSPHATE-P (ppm) 0.057 (ppm) 50 (ppm) 382 (ppm) SULFATE total(s) total(s) total(s)	

Current Date: 4/26/0 Current Time: 02:01:3

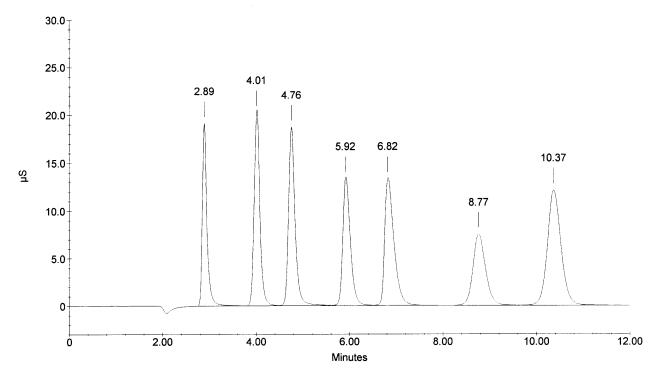
Sample Name : CCV Dilution Factor: 20.00 Injection Number: 33

Data File Name: c:\peaknet\data\040425\040425_033.DXD Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch

Date Time Collected: 4/26/04 2:01:44 AM

System Name: Dx-500


010233 Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

			Peak Information : All Components				
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.89	FLUORIDE	101.727	191015	1308952	1	-1.03
2	4.01	CHLORIDE	204.990	202382	1742337	2	-0.25
3	4.76	NITRITE-N	98.764	186900	1841916	2	-1.11
4	5.92	BROMIDE	411.380	133291	1520056	2	-0.39
5	6.82	NITRATE-N	86.729	133300	1859210	2	1.39
6	8.77	PHOSPHATE-P	196.499	75343	1415513	2	0.80
7	10.37	SULFATE	409.484	121285	2453249	2	-0.48
. 4.							
	0.00		total(s) 1509.572		12141234		

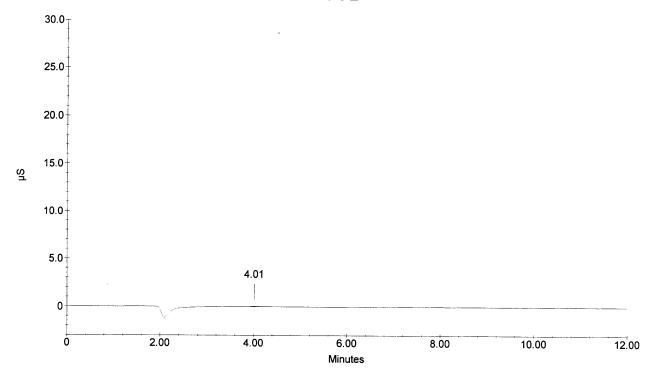
Sample Name : CCB Dilution Factor: 1.00

Injection Number: 34

Data File Name : c:\peaknet\data\040425\040425_034.DXD

Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\25apr04.sch


Date Time Collected: 4/26/04 2:16:24 AM

System Name : Dx-500

Column Type : AS14-#015724 AG14-#1018096
System Operator : RSS

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1 1	4.01 4.01	CHLORIDE CHLORIDE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	0.021 0.021	403 403	3357 3357		-0.25 -0.25
	0.00		total(s) 0.043		6714		

Current Date: 4/26/0 Current Time: 02:31:0

Schedule File: C:\PeakNet\schedule\040420.sch

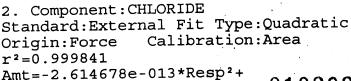
Line	Sample	Sample Type	Level	Method	Data File	Dilution
1 2	0 PPM 147-08-IC4 0.1 PPM 147-07-IC4	Calibration St Calibration St	1 2	anions040420.met anions040420.met	040310_001.dxd 040310_002.dxd	1 010235
3	0.5 PPM 147-06-IC4	Calibration St	3	anions040420.met	040310_003.dxd	1 010233
, 4	1 PPM 147-05-IC4	Calibration St	4	anions040420.met	040310_004.dxd	1
5	5 PPM 147-04-IC4	Calibration St	5	anions040420.met	040310_005.dxd	1
6	10 PPM 147-03-IC4	Calibration St	6	anions040420.met	040310_006.dxd	1
7	15 PPM 147-02-IC4	Calibration St	7	anions040420.met	040310_007.dxd	1
8	20 PPM 147-01-IC4	Calibration St	8	anions040420.met	040310_008.dxd	1
9	ICV	Sample		anions040420.met	040310_009.dxd	20
10	ICB	Sample		anions040420.met	040310_010.dxd	1

Default Method Path: C:\PEAKNET\METHOD Default Data Path: c:\peaknet\data\040420A

Comment:

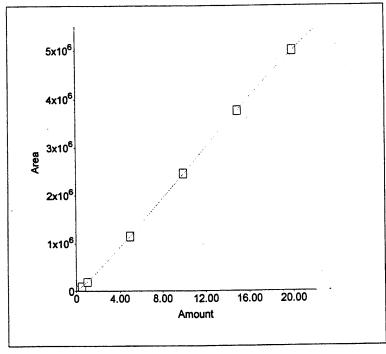
EPA300 & SW 846 9056

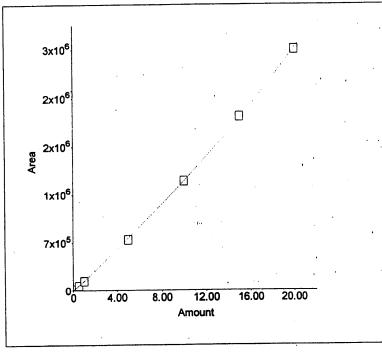
ICV/CCV_DSpex 25-145AS (morg# 4518) DSpier 4/20/04


F 100 mg/L C1 200 NO3N 90.4 Br 400 PO4P 191 SO4 400

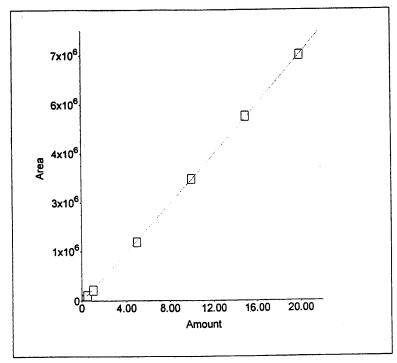
> 3 Nitrate Std 146-01-1CH TV = 101 mg/L

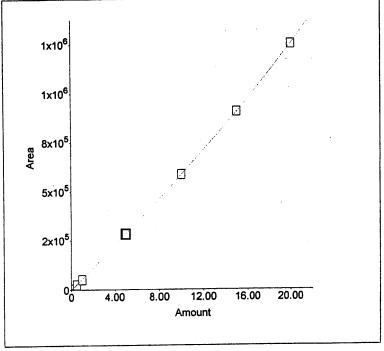
1. Component:FLUORIDE Standard:External Fit Type:Cubic Origin:Include Calibration:Area r²=0.999978 Amt=2.818379e-020*Resp³+


-2.523882e-013*Resp²+


4.134292e-006*Resp+0.04397

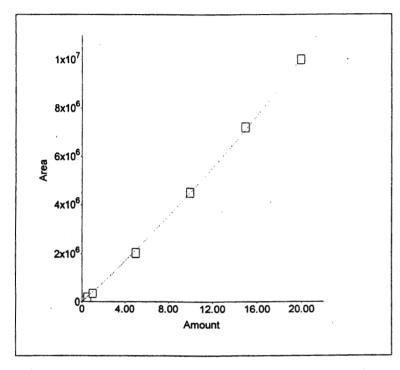
6.338169e-006*Resp+0

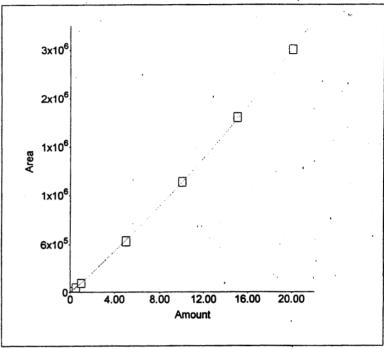

010236



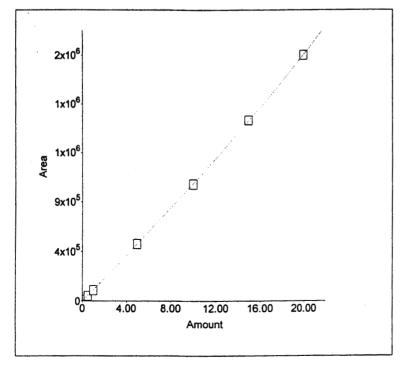
3. Component:NITRITE-N
Standard:External Fit Type:Quadratic
Origin:Force Calibration:Area
r²=0.999824
Amt=-1.112930e-014*Resp²+
2.701499e-006*Resp+0

4. Component:BROMIDE
Standard:External Fit Type:Quadratic
Origin:Force Calibration:Area
r²=0.999975
Amt=-1.245935e-012*Resp²+
1.542562e-005*Resp+0


PeakNet 5.1


Page 1 of 2

4/21/04 11:14:51 AM


5. Component:NITRATE-N
Standard:External Fit Type:Quadratic
Origin:Force Calibration:Area
r²=0.999622
Amt=-4.257776e-014*Resp²+
2.411569e-006*Resp+0

6. Component:PHOSPHATE-P
Standard:External Fit Type:Quadratic
Origin:Force Calibration:Area
r²=0.999897
Amt=-3.755264e-013*Resp²+
7.472485e-006*Resp+0

7. Component:SULFATE
Standard:External Fit Type:Quadratic
Origin:Force Calibration:Area
r²=0.999985
Amt=-3.966894e-013*Resp²+
9.318922e-006*Resp+0

Sample Name: 0 PPM 147-08-IC4

Dilution Factor: 1.00 Injection Number: 1

Data File Name: c:\peaknet\data\040420a\040310_001.DXD

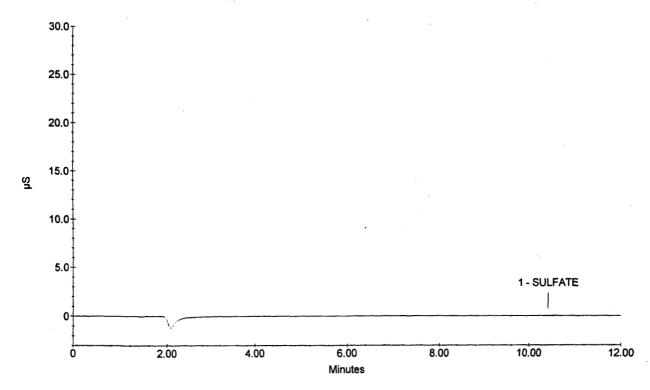
Method File Name : c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\040420.sch

Date Time Collected : 4/20/04 9:53:51 PM Date Time Updated : 4/20/04 10:08:25 PM

System Name : Dx-500

Detector Name : Conductivity Detector


010238

Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

Peak Information : All Components							
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height		
1	10.41	SULFATE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P	0.00	863	72		
1	10.41	SULFATE	0.00	863 ····	72		
					4.		

0 PPM 147-08-IC4

Sample Name: 0.1 PPM 147-07-IC4

Dilution Factor: 1.00 Injection Number: 2

Data File Name : c:\peaknet\data\040420a\040310_002.DXD Detector Name : Conductivity Detector

Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\040420.sch

Date Time Collected: 4/20/04 10:08:29 PM Date Time Updated: 4/20/04 10:23:04 PM

System Name : Dx-500

010239

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

Peak Number	Peak Retention	Peak Information Component Name	Concentration,	Peak Area	Peak Height
	Time		ppm (ppm)		
1	2.88	FLUORIDE	0.10	18319	2789
2	4.01	CHLORIDE	0.10	16811	1738
3	4.77	NITRITE-N	0.10	28889	3014
4	6.00	BROMIDE	0.10	5593	502
5	7.00	NITRATE-N	0.10	33049	2350
6	8.78	PHOSPHATE-P	0.10	11059	613
7	10.46	SULFATE	0.10	11158	528
					•

0.1 PPM 147-07-IC4

Sample Name: 0.5 PPM 147-06-IC4

Dilution Factor: 1.00 Injection Number: 3

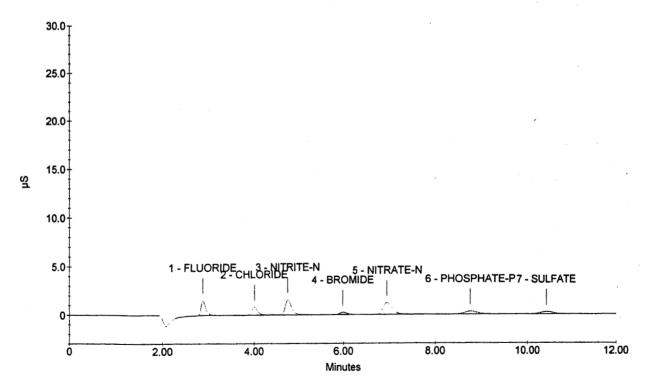
Data File Name: c:\peaknet\data\040420a\040310_003.DXD

Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\040420.sch

Date Time Collected: 4/20/04 10:23:10 PM

Date Time Updated : 4/20/04 10:37:43 PM System Name: Dx-500


Detector Name : Conductivity Detector

Column Type: AS14-#015724 AG14-#1018096

System Operator: RSS

Peak Information : All Components								
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height			
1	2.88	FLUORIDE	0.50	107119	15538			
2	4.01	CHLORIDE	0.50	74993	8511			
3	4.76	NITRITE-N	0.50	156006	15619			
4	5.98	BROMIDE	0.50	30051	2518			
5	6.96	NITRATE-N	0.50	173033	12269			
6	8.76	PHOSPHATE-P	0.50	63628	3182			
7	10.42	SULFATE	0.50	51323 ···	2502			

0.5 PPM 147-06-IC4

Sample Name: 1 PPM 147-05-IC4

Dilution Factor: 1.00 Injection Number: 4

Data File Name : c:\peaknet\data\040420a\040310_004.DXD Detector Name : Conductivity Detector

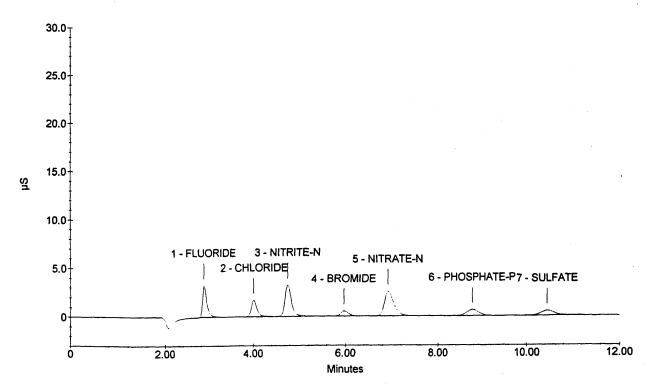
Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\040420.sch

Date Time Collected: 4/20/04 10:37:48 PM

Date Time Updated: 4/20/04 10:52:22 PM

System Name : Dx-500


Column Type: AS14-#015724 AG14-#1018096

010241

System Operator: RSS

Peak Information : All Components								
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height			
,	2.88	FLUORIDE	1.00	221360	32303			
2	4.01	CHLORIDE	1.00	149962	16962			
3	4.76	NITRITE-N	1.00	323570	32434			
4	5.97	BROMIDE	1.00	60560	5149			
5	6.92	NITRATE-N	1.00	355512	25118			
6	8.77	PHOSPHATE-P	1.00	125936	6426			
7	10.44	SULFATE	1.00	105133	5028			

1 PPM 147-05-IC4

Sample Name: 5 PPM 147-04-IC4

Dilution Factor: 1.00 Injection Number: 5

Data File Name : c:\peaknet\data\040420a\040310_005.DXD

Method File Name : c:\peaknet\method\anions040420.met

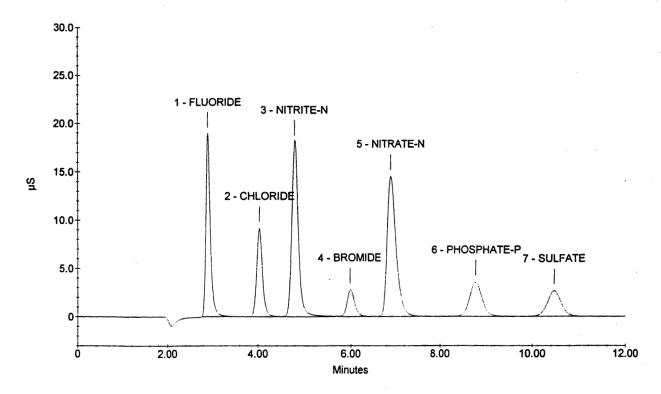
Schedule File Name : c:\peaknet\schedule\040420.sch

Date Time Collected : 4/20/04 10:52:27 PM

Date Time Updated : 4/20/04 11:07:01 PM

System Name: Dx-500

Detector Name : Conductivity Detector


Column Type: AS14-#015724 AG14-#1018096

010242

System Operator: RSS

Peak Information : All Components								
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height			
1	2.89	FLUORIDE	5.00	1280883	188409			
2	4.02	CHLORIDE	5.00	788307	91335			
3	4.77	NITRITE-N	5.00	1809370	180362			
4	5.97	BROMIDE	5.00	330995	27375			
5	6.86	NITRATE-N	5.00	2043782	144858			
6	8.77	PHOSPHATE-P	5.00	676037	35132			
7	10.45	SULFATE	5.00	549367 ···	26190	•		

5 PPM 147-04-IC4

Sample Name: 10 PPM 147-03-IC4

Dilution Factor: 1.00

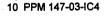
Injection Number: 6

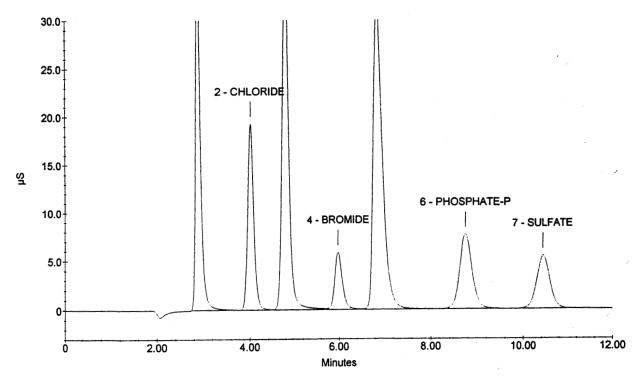
Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\040420.sch

Date Time Collected: 4/20/04 11:07:07 PM

Date Time Updated : 4/20/04 11:21:41 PM


010243


System Name: Dx-500

Column Type: AS14-#015724 AG14-#1018096

System Operator : RSS

Peak Number	Peak Retention	Peak Information : Component Name	Concentration,	Peak Area	Peak Height
	Time		ppm (ppm)		
,	2.89	FLUORIDE	10.00	2737065	386731
2	4.02	CHLORIDE	10.00	1696803	192569
3	4.78	NITRITE-N	10.00	3778355	371173
4	5.97	BROMIDE	10.00	686832	58413
5	6.81	NITRATE-N	10.00	4519802	314669
6	8.74	PHOSPHATE-P	10.00	1441734	76461
7	10.42	SULFATE	10.00	1122694	54137
				•	

Sample Name: 15 PPM 147-02-IC4

Dilution Factor: 1.00 Injection Number: 7

Data File Name : c:\peaknet\data\040420a\040310_007.DXD

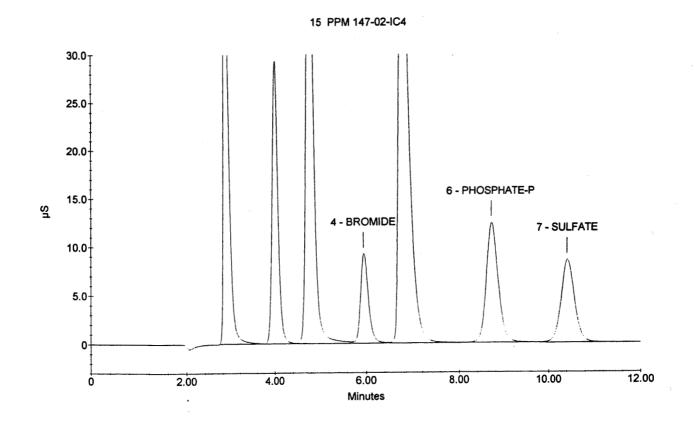
Method File Name: c:\peaknet\method\anions040420.met

Schedule File Name: c:\peaknet\schedule\040420.sch

Date Time Collected: 4/20/04 11:21:47 PM

Date Time Updated: 4/20/04 11:36:20 PM

System Name: Dx-500


Detector Name: Conductivity Detector

Column Type : AS14-#015724 AG14-#1018096

010244

System Operator : RSS

Peak Information : All Components					
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height
1	2.89	FLUORIDE	15.00	4177109	552888
2	4.02	CHLORIDE	15.00	2688431	293273
3	4.80	NITRITE-N	15.00	5730746	545022
4	5.94	BROMIDE	15.00	1066642	91268
5	6.77	NITRATE-N	15.00	7222347	496708
6	8.70	PHOSPHATE-P	15.00	2286699	122840
7	10.40	SULFATE	15.00	1745255	84660

Sample Name: 20 PPM 147-01-IC4

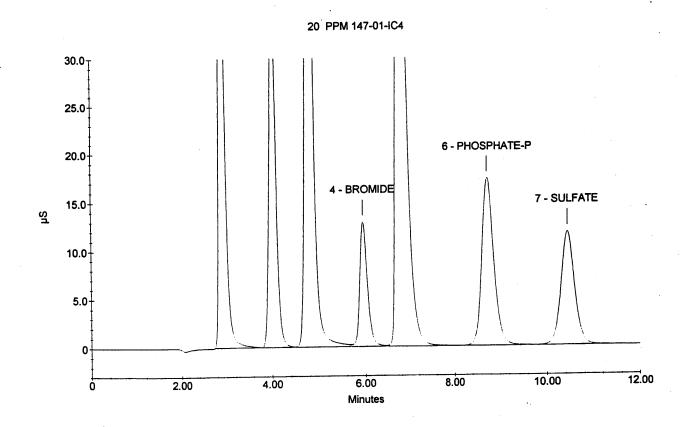
Dilution Factor: 1.00 Injection Number: 8

Data File Name : c:\peaknet\data\040420a\040310_008.DXD Detector Name : Conductivity Detector

Method File Name : c:\peaknet\method\anions040420.met Schedule File Name: c:\peaknet\schedule\040420.sch

Date Time Collected: 4/20/04 11:36:25 PM

Date Time Updated : 4/20/04 11:50:59 PM


System Name: Dx-500

Column Type : AS14-#015724 AG14-#1018096

010245

System Operator: RSS

Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height
<u> </u>	2.92	FLUORIDE	20.00	5544111	726338
2	4.02	CHLORIDE	20.00	3712925	382664
3	4.81	NITRITE-N	20.00	7616766	690331
4	5.94	BROMIDE	20.00	1469814	128470
- 5	6.73	NITRATE-N	20.00	10028721	676278
6	8.70	PHOSPHATE-P	20.00	3175648	172099
7	10.42	SULFATE	20.00	2386278	117297

Sample Name: ICV Dilution Factor: 20.00 Date Time Collected: 4/20/04 11:51:04 PM System Name: Dx-500

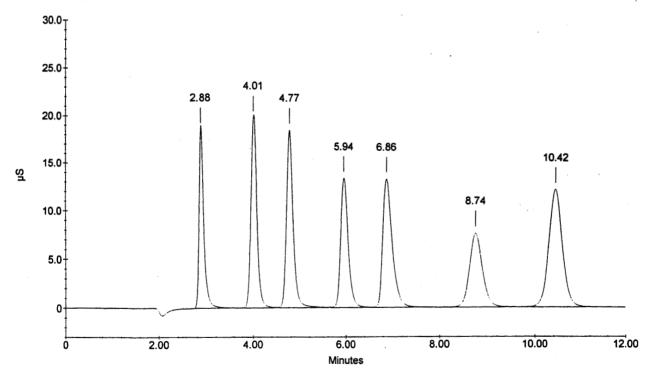
010246

Injection Number: 9

Detector Name: Conductivity Detector

Data File Name: c:\peaknet\data\040420a\040310_009.DXD

Method File Name: ...\ANIONS040420.met


Column Type: AS14-#015724 AG14-#1018096

Schedule File Name: c:\peaknet\schedule\040420.sch

System Operator: RSS

Peak Information : All Components						
Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
2.88	FLUORIDE	101.700	185223	1308587	1	-1.48
4.01	CHLORIDE	204.513	197196	1737950	2	-0.25
4.77	NITRITE-N	98.361	184361	1834344	2	-0.83
5.94	BROMIDE	412.120	132987	1523236	2	0.06
6.86	NITRATE-N	87.014	132260	1865537	2	1.98
8.74		197.191	75522	1420908	2	0.50
10.42	SULFATE	410.936	120646	2463101	2	0.03
0.00		total(s) 1511.834		12153662	-	
	2.88 4.01 4.77 5.94 6.86 8.74	4.77 NITRITE-N 5.94 BROMIDE	Ret Time Component Name Concentration (ppm) 2.88 FLUORIDE 101.700 4.01 CHLORIDE 204.513 4.77 NITRITE-N 98.361 5.94 BROMIDE 412.120 6.86 NITRATE-N 87.014 8.74 PHOSPHATE-P 197.191 10.42 SULFATE 410.936	Ret Time Component Name Concentration (ppm) Height 2.88 FLUORIDE 101.700 185223 4.01 CHLORIDE 204.513 197196 4.77 NITRITE-N 98.361 184361 5.94 BROMIDE 412.120 132987 6.86 NITRATE-N 87.014 132260 8.74 PHOSPHATE-P 197.191 75522 10.42 SULFATE 410.936 120646	Ret Time Component Name Concentration (ppm) Height Area 2.88 FLUORIDE 101.700 185223 1308587 4.01 CHLORIDE 204.513 197196 1737950 4.77 NITRITE-N 98.361 184361 1834344 5.94 BROMIDE 412.120 132987 1523236 6.86 NITRATE-N 87.014 132260 1865537 8.74 PHOSPHATE-P 197.191 75522 1420908 10.42 SULFATE 410.936 120646 2463101	Ret Time Component Name Concentration (ppm) Height Area Bl. Code 2.88 FLUORIDE 101.700 185223 1308587 1 4.01 CHLORIDE 204.513 197196 1737950 2 4.77 NITRITE-N 98.361 184361 1834344 2 5.94 BROMIDE 412.120 132987 1523236 2 6.86 NITRATE-N 87.014 132260 1865537 2 8.74 PHOSPHATE-P 197.191 75522 1420908 2 10.42 SULFATE 410.936 120646 2463101 2

ICV

Current Date: 4/21/0 Current Time: 11:16:5 Sample Name: ICB Dilution Factor: 1.00 Date Time Collected: 4/21/04 12:05:43 AM

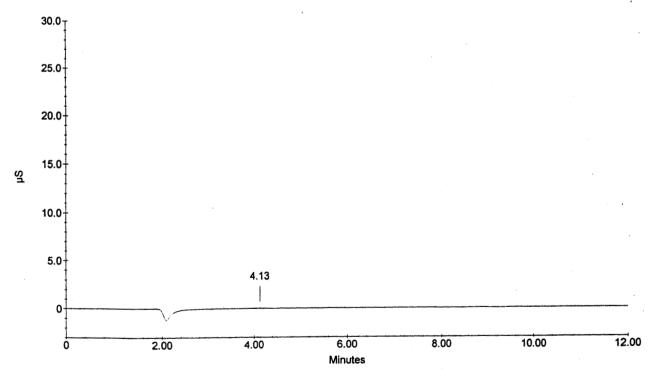
010247

Injection Number: 10

System Name: Dx-500

Data File Name: c:\peaknet\data\040420a\040310_010.DXD

Detector Name : Conductivity Detector Column Type: AS14-#015724 AG14-#1018096


Method File Name: ...\ANIONS040420.met

System Operator: RSS

Schedule File Name: c:\peaknet\schedule\040420.sch

Peak Information : All Components							
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1. 1	4.13 4.13	NITRITE-N	0.005 0.005	80 80	863 863		2.74 2.74
		BROMIDE NITRATE-N PHOSPHATE-P SULFATE					•
				•	<i>I</i> 0		
	0.00		total(s) 0.011		1726	•	

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040415-2

SRR: 25770 SDG: 243222 CASE: CNWRA

VTSR: April 14, 2004 PROJECT#: 06002.01.141

Certificates of Analysis

FISHER SCIENTIFIC TRACEMETAL GRADE NITRIC ACID **CERTIFICATE OF ANALYSIS**

Catalog No. A509	Release Date:	1104010 Janua ry, 2004 Janua ry, 2007
Tests	Unita	Value
Assay	%	70%
Color	APHA	<10
Aluminum	ppb	<0.5
Antim ony	pp b	<0.1
Arsenic	pp b	∢0.1
Barium	ppb	<0.1
Beryllium	ppb	<0.1
Bismuth	ppb	<0.1
Boron	ppb	<1
Cadmium	ppb	<0.1
Calcium	ppb	<1
Chromium	ppb	<0.2
Cobalt	ppb	<0.1
Copper	ppb	<0.1
iron	ppb	<1
Lead	ppb	<0.1
Lithium	ppb	<0.1
Magnesium	ppb	<0.2
Manganese	ppb	<0.1
Mercury	ppb	<0.2
Molybdenum	ppb	<0.1
Nickel	ppb	<0.1
Potass ium	ppb	<0.2
Selenium	ppb	<0.1
Silver	ppb	< 0.1
Sodium	ppb	<0.2
Strontium	ppb	<0.1
Therium	ppb	<0.1
Tin	ppb	<0.1
Titanium	ppb	<0.1
Uranium	ppb	≪0.1
Vanadium	ppb	<0.1
Znc	ppb	<0.2
Zirconium	ppb	<0.1

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Ai, Mg & Mn will increase due to storage in glass bottles.

B McKelvey

Dr. B. McKelvey QA/QC Manager

Fisher Scientific Chemical Division Pittsburgh, PA., 15275 Phone (412) 490-8300

INORBANIC LABS/RADCHEM LABS
DATE RECEIVED: _____O6/01/04 ____
DATE EXPIRED: _____O6/01/04___
DATE OPENED: ______O6/01/01/01 INDRG: 4580-4585 FO: F53383

FISHER SCIENTIFIC TRACEMETAL GRADE NITRIC ACID CERTIFICATE OF ANALYSIS

Catalog No. A509	Lot No: 11 Release Date: Fe Expiry Date: Fe	sbruary, 2004
lests	Units	Value
Assay	%	70%
Color	APHA	<10
Aluminum	ppb	<0.5
Antim ony	ppb	<0.1
Arsenic	ppb	<0.1
Barium	ppb	<0.1
Beryllium	ppb	<0.1
Bismuth	ppb	<0.1
Boron	ppb	<1
Cadmium	dqq	<0.1
Calcium	ppb	<1
Chromium	ppb	<0.2
Cobalt	ppb	<0.1
Copper	ppb	<0.1
iron	ppb	<1
Lead	ppb	<0.1
Lithium	ppp	<0.1
Magnesium	ppb	<0.2
Manganese	ppb	<0.1
Mercury	ppb	<0.2
Molybdenum	ppb	<0.1
Nickel	ppb	<0.1
Potassium	ppb	<0.2
Selenium	ppib	<0.1
Silver	ppb	<0.1
Sodium	ppb	<0.2
Strontium	ppb	<0.1
Thorium	ppb	<0.1
Tin	ppb	<0.1
Titanium	ppb	<0.1
Uranium	ppb	<0.1
Vanadium	ppb	∢ 0.1
Zinc	ppb	<0.2
Zirconlum	dog	<0.1

DATE RECEIVED: 050504

DATE EXPIRED: 08/05/04

DATE OPENED: 05/05/04

INDRG: 4558-4563 FD: E533T3

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

8 Hckduy

Dr. B. McKelvey QA/QC Manager

Fisher Scientific Chemical Division Pittsburgh, PA., 15275 Phone (412) 490-8300

Fisher Chemical

A Fisher Scientific Company

FISHER SCIENTIFIC TRACEMETAL GRADE HYDROCHLORIC ACID

CERTIFICATE OF ANALYSIS

Catalog No. A508	Lot No:	4103101
•	Referm Date:	Janua rv. 2004
		Janua ry, 2007
<u>Iests</u>	Units	Yalue
Assay	%	35%
Color	APHA	<10
Aluminum	ppb	<0.5
Antim ony	ppb	<0.1
Arsenic	ppb	<0.1
Barium	ppb	<0.1
Beryllium	ppb	<0.1
Bişmuth	ppb	<0.1
Boron	ppb	<0.5
Cadmium	ppb	<0.1
Calcium	ppb	<0.5
Chromium	ppb	<0.1
Cobelt	ppb	<0.1
-Copper	ppb	<0.1
iron	ppb	<0.5
Lead	ppb	<0.1
Lithium	ppb	<0.1
Magnesium	ppb	<0.5
Manganesa	ppb	<0.1
Mercury	ppb	<0.2
Molybdenum	ppb	'<0.1
Nicke	ppb	<0.1
Potass ium	ppb	<0.1
Selenium	ppb	<0.1
Silver	dqq	<0.1
Sodium	ppb	<0.5
Stronti um	ppb	< 0.1
Thorium	ppb	<0.1
Tin	ppb	<0.1
Titanium	dag	<0.1
Uranium	ppb	<0.1
Vanadium	ppb	<0.1
Zinc Zinc	dqq	<0.5

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca. Si. K. Na, B. Al, Mg & Mn will increase due to storage in glass bottles.

ppb

<0.1

B M: Kelvey

Zirconium

Dr. B. McKelvey QA/QC Manager

Fisher Scientific Chemical Division Pittsburgh, PA., 15275 Phone (412) 490-8300

INDRGANIC LABS/RADCHEM LABS

DATE RECEIVED: 06/01/04

DATE EXPIRED: 06/01/04

DATE OPENED: 06/01/04

INDRG: 45%-4591 PO: E53393

FISHER SCIENTIFIC TRACEMETAL GRADE HYDROCHLORIC ACID

CERTIFICATE OF ANALYSIS

Catalog No. A508 Lot No: 4103101 Release Date: January

Release Date: January, 2004 Expiry Date: January, 2007

	Expry Date: January, 2007		
<u>Tests</u>	Linits	Yalus	
Assay	%	35%	
Color	APHA	<10	
Aluminum	ppb	<0.5	
Antim ony	ppb	<0.1	
Arsenic	ppb	<0.1	
Barium	ppb	<0.1	
Beryllium	ppb	⊲ 0.1	
Bismuth	ppb	<0.1	
Boron	· ppb	<0.5	
Cadmium	ppb	<0.1	
Calcium .	ppb	<0.5	
Chromium	ppb	<0.1	
Cobalt	ppb	<0.1	
Copper	ppt	<0.1	
iron	ppb	<0.5	
Lead	ppb	<0.1	
Lithium	ppb	<0.1	
Megnesium	ρpb	<0.5	
Manganese	ppb	<0.1	
Mercury	ppb	<0.2	
Molybdenum	ppb	<0.1	
Nickel	ppb	≪0.1	
Potass ium	ppb	<0.1	
Seienium	ppb	<0.1	
Silver	ppb	<0.1	
Sedium	ppb	<0.5	
Stronti um	dad	<0.1	
Thorium	ppb	<0.1	
Tin	ppb	<0.1	
Titanium	ppb	<0.1	
Urànium	dqq	<0.1	
Vanadium	ppb	<0.1	
Znc	daa	<0.5	
Zirconium	ppb	<0.1	
F1	-4' at the second	4 h-Mi	

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

8 Mckelvey

Dr. B. McKelvey QA/QC Manager

Fisher Scientific Chemical Division
Pittsburgh, PA., 15275 Phone (412) 490-8300

INDRGANIC LABS/RADCHEM LABS

DATE RECEIVED: ____05/05/04

DATE EXPIRED: ____05/05/04

DATE OPENED: ____05/05/04

INDRG: 4553-4557_PO: ____53373

DATE RECEIVED: ///3/(/3)
DATE EXPIRED: ///3/084

DATE OPENED: ///3/03
INORG: 4304 PO: FS3

SPEXertificate™

Certificate of Reference Material

Catalog Number:

SPIKE-1

Lot No.: 25-23AS

Description:

Spike Sample Standard 1

Matrix:

5% Nitric Acid/tr Tartaric Acid - HF

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM	Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Al	200	199.51	3101a	Рb	50	49.98	3128
As	200	199.89	3103a	Sb	50	50.02	3102a
Ba	200	199.68	3104a	V	50	49.95	3165
Se	200	200.10	3149	Zn	50	50.02	31 68a
TL	200	200.07	3158	Cu	25	25.34	3114
Fe	100	99.91	3126a	Cr	20	20.04	3112a
Co	50	50.25	3113	Ag	5	5.00	3151
Mn	50	49.98	3132	Be	5	5.00	3105a
Ni	50	50.11	3136	Cd	5	4.99	3108

Spex Reference Multi: Lot #2-61BD, 17-55AS, 19-85ASREF

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single component exceeding +/- 2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

OCT - - 2003

Certifying Officer: N. Kochertakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the dilutent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k, =s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

DATE EXPIRED: 03/30/05 DATE UPENED: 03/30/305 INDRG: 4514 BD: 25/30/04

SPEXertificate™

Certificate of Reference Material

Catalog Number:

ICAL-1

Lot No.: 25-178AS

Description:

Instrument Calibration Standard 1

Matrix:

5% Nitric Acid

This ASSURANCE ©certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Ca	5,000	4,984.92	3109a
K	5,000	4,990.26	3141a
Mg	5,000	4,991.82	3131a
Na	5,000	4,998.07	3152a

Spex Reference Multi: Lot #10-100AS, 12-113AS, 5-198VY, 6-28VY-REF

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single element exceeding +/-2%. This includes uncertainty of measurements and other effects, such as transpiration losses. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: MAR == 2001 Certifying Officer: N. Kochestakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

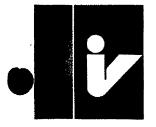
m = the sub-sampling mass

 k_i = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level


 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

10,000 µg/mL Scandium IN 5% HNO, (abs)

Catalog Number: CGSC10-1 and CGSC10-5

		INORGANIC LABS/RADCHEM LABS
Lot Number: T-SC02053		DATE RECEIVED: 09/24/03
		DATE EXPIRED: 10/01/2004 VOS
Starting Material:	Sc₂O₃	DATE OPENED: 09/24/03
Starting Material Purity:	99,999%	INORG: 4262 FO: F58838
Starting Material Lot No:	632-5721	ann beit bem som auffregeligt steb virte beite feit. 1940 1140 1440 1940 1940 1940 1940 1940

CERTIFIED CONCENTRATION: 10,047 \pm 29 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

n = number of measurements

Certified Value
$$(\bar{x}) = \frac{\sum x_i}{n}$$
Uncertainty $(\pm) = \frac{2[(\sum_{\bar{x}})^2]^{1/2}}{(n)^{1/2}}$

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 10,047 ± 29 µg/mL

Method: EDTA Titration vs NIST SRM 928 Lead Nitrate.

 $x_i = individual results$

Instrument Analysis: 9994 ± 41 µg/ml.

(x) = mean

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3148a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu g/mL$:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm .

0 <u>M</u> Te <0.030	Pr ·	M	<0.010	Li	<u>M</u>	< 0.0060	Ðу	<u>M</u>	< 0.070	Ai	<u>o</u>
<u>M</u> Tb <0.00030	Re ·	<u>M</u>	< 0.00040	Lu	<u>M</u>	< 0.0050	Er	M	< 0.00050	Sb	M
<u>M</u> TI <0.0010	Rh ·	M	< 0.030	Mg	<u>M</u>	< 0.0030	Eu	M	< 0.010	As	M
M Th 0.028	Rb -	M	<0.0040	Mn	<u>M</u>	< 0.0010	Gd	<u>M</u>	< 0.010	Ba	M
M Tm <0.00040	Ru -	M		Hg	į	<0.0010	Ga	M	< 0.00050	Be	M
<u>M</u> Sn <0.0050	Sm -	М	<0.0020	Mo	M	< 0.0060	Ge	M	0.043	Bi	M
<u>n</u> Ti	Sc	2	< 0.0020	Nd	<u>M</u>	< 0.0030	Au	<u>M</u>	< 0.034	В	Q
<u>M</u> W <0.010	Se -	<u>o</u>	<0.084	Ni	Q	0.030	Hf	M	< 0.0030	Cd	М
<u>M</u> U <0.0020	Si •	<u>o</u>	< 0.00050	Nb	M	< 0.00050	Но	M	0.17	Ca	Ω
<u>M</u> V <0.0020	Ag	M		Os	<u>n</u>	< 0.0010	In	<u>M</u>	< 0.0050	Ce	M
<u>M</u> Yb <0.0010	Na •	<u>o</u>	< 0.0050	₽d	M	< 0.0050	le	M	< 0.00030	Cs	M
0 <u>M</u> Y <0.040	Sr •	M		P	į	< 0.16	Fe	<u>o</u>	< 0.0050	Çr	M
<u>M</u> Zn 0.075	S	Ω	< 0.0020	Pt	M	< 0.00050	La	<u>M</u>	< 0.0030	Co	<u>M</u>
<u>M</u> Zr 0.32	Ta ·	M	< 5.01	K	<u>o</u>	0.0050	Pb	М	<0.0060	Cu	M
M Zn 0.07	\$	n		Pt		<0.00050	La	<u>M</u>	<0.0030	Co	M

i - spectral interference

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.073 g/mL

O - checked by ICP-OES

(over)

s - solution standard element

QA:KL Rev.02120200

M - checked by ICP-MS

Pail R. Haines

n - not checked for

Expires:

Quality Assurance Manager

QUALITY STANDARD DOCUMENTATION

ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ),

Spain (AENOR), Switzerland (SQS)

- 2. ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate 883.02
- 3. ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing -Accredited A2LA Certificate 883.01
- 4 MIL-STD-45662A
- 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities 5.
- 6. 10CFR21 - Nuclear Regulatory Commission - Reporting Defects and Non-Compliance Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 μm filter and in-house procedure

IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No, is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

Catalog Number: PLB9-2X/2Y/2T

Lot No. 10-119B

Description:

1000 mg/L Boron

Matrix:

H20

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM 3107

The CRM is prepared gravimetrically using high purity (NH4)2B4O7-4H2O Lot# 08001E. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1001 mg/L

Method: Titration with Sodium Hydroxide using Phenolphthalein as indicator. Sodium Hydroxide

standardized against Potassium Biphthalate NIST SRM #84k

Instrumental Analysis by ICP spectrometer: 1001 mg/L

Uncertified Properties:

Density: 1.001 @ 22.3 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.06	Cu	< 0.001	Pb	< 0.001
As	< 0.001	Fe	0.001	Re	< 0.001
Ag	0.002	Ga.	< 0.001	Rb	< 0.001
Ba	<0.001	In	<0.001	Sr	<0.001
Be	< 0.001	K	<0.06	Sb	< 0.001
Bi	0.03	Li	<0.001	Si	0.01
Cd	<0.001	Mn	<0.001	Ti	< 0.001
Co	<0.001	Mo	<0.001	TI	< 0.001
Ca	0.001	Mg	<0.001	V	0.003
Cr	<0.001	Na	0.01	Zr	< 0.001
		Ni	0.001	Zn	0.004

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

APR U

Certifying Officer: N. Kocherlakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megolum, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where $X = T_{YU} = V_{YU} = V_$

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_{ce} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Catalog Number: PLLI2-2X/2Y

Lot No. 10-12LI

Description:

1000 mg/L Lithium

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 997.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM 3129a

The CRM is prepared gravimetrically using high purity Lithium Carconate Lot# 03021A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997

997 mg/L

Method: Evaporate to dryness. Fume with Sulfuric Acid. Ignite and weigh as Li2SO4.

Instrumentation Analysis By ICP spectrometer: 998 mg/L

Uncertified Properties:

Density: 1.014 @ 22.2 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	100.0	Cu	<0.001	Pb	< 0.001
As	< 0.001	Fe	0.007	Re	< 0.001
Ag ·	< 0.003	Ga	< 0.001	Rb	< 0.001
В	< 0.008	In	< 0.001	Sr	< 0.001
Ba	0.001	K	0.20	Sb	< 0.001
Be	< 0.001	Mn .	< 0.001	Si	0.007
Bi	< 0.001	Mo	< 0.001	Ti	< 0.001
Ca	0.017	Mg	< 0.001	Tl	< 0.001
Cr	< 0.001	Na	0.01	V	< 0.001
Cd	0.008	Ni	< 0.001	Zr	< 0.001
Co	< 0.001			Zn	0.035

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

JAN '04

Certifying Officer: N. Kochestakota

DATE EXPIRED: 01/30/305 W

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k₂ = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Catalog Number: PLMO9-2X/2Y/2T

Lot No. 10-74MO

Description:

1000 mg/L Molybdenum

Matrix:

H₂O

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 998 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L

Certified Value is Traceable to: NIST SRM #3134

The CRM is prepared gravimetrically using high purity (NH4)6Mo7(O)24 Lot# 03011C. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 998 mg/L

Method: Precipitation using 8 Hydroxy Quinoline, filter, dry and weigh as MoO2 (C9H6NO)2.

Instrumental Analysis by ICP spectrometer: 999 mg/L

Uncertified Properties:

Density: 0.9989 @ 23.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.002	Cu	0.003	. Pb	0.002
As	0.04	Fe	<0.10	Re	0.03
Ag	<0.001	Ga	<0.001	Rb	< 0.001
В	< 0.006	In	<0.001	Sr	< 0.001
Ba	0.001	K	0.01	Sb	0.005
Ве	<0.01	Li	< 0.001	Si	< 0.50
Bi	< 0.001	Mg	0.10	Ti	0.004
Ca	0.01	Mn	0.001	TI	< 0.001
Cr	< 0.002	Na	0.007	v	0.003
Cd	<0.10	Ni	<0.001	Zr	< 0.001
Co	0.002			Zn	0.009

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: Certifying Officer: N. Kocherlakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_1=s^2m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_t = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Catalog Number: PLP9-2X/2Y/2T

Lot No. 9-150P

Description:

1000 mg/L Phosphorus

Matrix:

H20

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1002.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3139a

The CRM is prepared gravimetrically using high purity (NH4)H2(PO4) Lot# W1002B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1003 mg/L

Method: Precipitation using Magnesia Mixture. Filter, ignite, and weigh as Mg2P2O7.

Instrumentation Analysis By ICP spectrometer: 1002 mg/L

Uncertified Properties:

Density: 0,9996 @ 24.0 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.002	Cu	<0.001	Pb	<0.001
As	0.001	Fe	< 0.001	Rb	< 0.001
Ag	<0.002	Ga	< 0.001	Re	< 0.001
В	<0.002	In	< 0.001	Sn	< 0.001
Ba	<0.001	K	0.006	Sr	< 0.001
Be	<0.001	Li	< 0.001	Sb	0.004
Bi	< 0.001	Mg	< 0.001	Ti	0.004
Ca	0.004	Mn	< 0.001	TI	< 0.001
Cr	<0.008	Mo	< 0.001	V	< 0.006
Cd	< 0.001	Na	0.003	Zr	< 0.001
Со	< 0.001	Ni	< 0.001	Zn	0.07

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

ACT -- 2003

Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s = s^2 m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_i = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ew} \sqrt{\sum u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA
732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647
CRMSales@spexcsp.com • www.spexcsp.com
Always Providing Superior Quality . . . Unparalleled Service™

Catalog Number: PLSI9-2X/2Y/2T

Lot No. 10-07SI

Description:

1000 mg/L Silicon

Matrix:

H2O / 0.4% F-

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 998.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM #3150

The CRM is prepared gravimetrically using high purity (NH4)2SiF6 Lot# 02021D. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L

Method: Precipitation using Ammonium Molybdate and 8-Hydroxy Quinoline. Filter, dry, and weigh as

(C9H7ON)4(H4)[Si(Mo12O40)]

Instrumentation Analysis By ICP spectrometer: 1000 mg/L

Uncertified Properties:

Density: 1.010 @ 26.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.002	Cu	<0.001	Pb	< 0.001
As	<0.001	Fe	0.020	Rb	<0.001
Ag	<0.001	Ga	<0.001	Re	<0.001
В	<0.003	ln	< 0.001	Sr	<0.001
Ba	<0.001	K	<0.010	Sb	0.03
Be	<0.001	Li	<0.001	Ti	<0.001
Bi	<0.001	Mg	<0.001	Tì	<0.001
Ca	0.018	Mn	<0.001	V	<0.001
Cr	<0.002	Мо	<0.001	Zr	0.05
Cd	<0.001	Na	0.02	Za	0.06
Co	<0.001	Ni	0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the dilutent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k = s m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Catalog Number: PLTI9-2X/2Y/2T

Lot No. 10-38TI

Description:

1000 mg/L Titanium

Matrix:

H2O/ 0.24% F-

This ASSURANCE @ certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods

relevent to the certified properties listed below.

Certified Value: 1001 mg/L Uncertainty Associated with Measurement: Certified Value is Traceable to: NIST SRM #3162a

The CRM is prepared gravimetrically using high purity (NH4)2TiF6 certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1003 mg/L

Method: Precipitation using Ammonium Hydroxide. Filter, ignite, and weigh as TiO2.

Instrumentation Analysis By ICP spectrometer: 999 mg/L

Uncertified Properties:

Density: 1.001 @ 22.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.006	Cu	<0.10	Pb	<0.001
As	<0.001	Fe	<0.01	Rb	<0.001
Ag	< 0.001	Ga	< 0.001	Re	< 0.001
В	0.003	In	< 0.001	Si	0.52
Ba	< 0.001	K	<0.01	Sr	0.001
Ве	< 0.001	Li	< 0.001	Sb	< 0.001
Bi	< 0.001	Mg	< 0.001	Ti	< 0.001
Ca	0.013	Mn	< 0.001	v	< 0.001
Cr	<0.003	Mo	< 0.001	Zr	0.01
Cd	< 0.001	Na	0.02	Zn	0.03
Co	0.002	Ni	<0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: .

Certifying Officer: N. Kochevlakol

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=s'm is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e-}\sqrt{\Sigma}u_i^2$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate *

Certificate of Reference Material

Catalog Number: PLSR2-2X/2Y/2T

Lot No. 9-166SR

Description:

1000 mg/L Strontium in 2% HNO3

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1002.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3153a

The CRM is prepared gravimetrically using high purity Strontium Carbonate Lot# 02001B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1002 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2

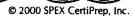
NIST SRM #928.

Instrumentation Analysis By ICP spectrometer: 1003 mg/L

Uncertified Properties:

Density: 1.010 @ 22.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:


Element	mg/L	Element	mg/L	Element	mg/L
Al	0.02	Cu	< 0.001	Pb	< 0.001
As	< 0.001	Fe	0.001	Rb	< 0.001
Ag	< 0.002	Ga	<0.001	Re	< 0.001
В	< 0.003	In	< 0.001	Si	0.043
Ba	0.008	K	0.10	Sb	< 0.001
Ве	< 0.001	Li	0.007	Ti	< 0.002
Bi	< 0.001	Mg	< 0.003	Tl	< 0.001
Ca	0.014	Mn	< 0.001	v	< 0.001
Cr	0.001	Mo	<0.001	Zr	< 0.001
Cd	< 0.001	Na	0.01	Zn	0.04
Co	<0.001	Ni	< 0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

OCT -- 2003

Certifying Officer: N. Kochedakela

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=2m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_l and $u_{e^-}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA
732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647
CRMSales@spexcsp.com • www.spexcsp.com
Always Providing Superior Quality . . . Unparalleled Service™

Catalog Number: PLSN5-2X/2Y/2T

Lot No. 10-87SN

Description:

1000 mg/L Tin

Matrix:

20% HCL

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1003 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L Certified Value is Traceable to: NIST SRM 3161a

The CRM is prepared gravimetrically using high purity $\,$ Tin Metal $\,$ Lot# $\,$ 05021C. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1004 mg/L

Method: Precipitation using Ammonium Hydroxide. Filter, ignite, and weigh as SnO2.

Instrumental Analysis by ICP spectrometer:

1001 mg/L

Uncertified Properties:

Density: 1.034 @24.8C Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.003	Cu	0.001	Pb	0.004
As	<0.20	Fe	0.18	Rb	< 0.001
Ag	0.006	Ga	< 0.001	Re	< 0.001
В	< 0.002	In	0.05	Si	0.20
Ba	0.004	K	< 0.20	Sr	< 0.001
Ве	< 0.001	Li	< 0.001	Sb	0.003
Bi	< 0.001	Mg	0.004	Ti	0.009
Ca	0.02	Mn	0.003	TI	< 0.001
Cr	0.02	Mo	< 0.001	٧	< 0.40
Cd	0.002	Na	0.02	Zr	< 0.001
Co	0.007	Ni	0.06	Zn	0.05

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: APR '04 Certifying Officer: N. Kochenskofa

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the dilutent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,-s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e-}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate "

Certificate of Reference Material

Catalog Number: PLBI4-2X/2Y

Lot No. 10-68BI

Description:

1000 mg/L Bismuth

Matrix:

10% HNO3

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement: +/-3

+/-3.0mg/L

Certified Value is Traceable to:

NIST SRM 3106

The CRM is prepared gravimetrically using high purity Bismuth Metal Lot# 04941B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: EDTA titration using Xylenol Orange as indicator. EDTA standardized against Pb(NO3)2 NIST

SRM #928.

Instrumental Analysis by ICP spectrometer: 1002 mg/L

Uncertified Properties:

Density: 1.052@23.1 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.006	Cu	0.002	Pb	0.009
As	<0.001	Fe	0.001	Re	< 0.001
Ag	<0.001	Ga	<0.001	Rb	<0.001
В	<0.003	In	<0.001	Sr	< 0.001
Ba	< 0.001	K	0.002	Sb	0.002
Ве	< 0.001	Li	< 0.001	Si	< 0.01
Cd	< 0.001	Mn	< 0.001	Ti	< 0.001
Co	< 0.001	Mo	<0.001	TI	< 0.001
Ca	0.006	Mg	0.002	v	< 0.001
Cr	< 0.001	Na	0.009	Zr	< 0.001
		Ni	0.001	Zn	0.01

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: ______ Certifying Officer: N. Kochertakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s = mass$ of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

ue is obtained by combining the individual element standard uncertainty components u₁ and ue √Σu₁²

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Catalog Number: PLLA2-2X/2Y

Lot No. 10-27LA

Description:

1000 mg/L Lanthanum

Matrix:

2% HNO3

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1000 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L Certified Value is Traceable to: NIST SRM #3127a

The CRM is prepared gravimetrically using high purity La(NO3)3-6H2O Lot# 03951B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2

NIST SRM #928.

Instrumentation Analysis By ICP spectrometer: 999 mg/L

Uncertified Properties:

Density: 1.010 @ 22.3 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ce	0.02	Lu	< 0.001	Th	< 0.001
Ca	0.029	Mn	< 0.001	Tm	< 0.001
Dy	<0.001	Mo	< 0.001	Ti	< 0.001
Er	<0.001	Nd	<0.001	Tb	< 0.001
Eu	< 0.001	Ni	< 0.001	Ta	< 0.001
Fe	0.005	Na	0.01	TI	< 0.001
Gd	< 0.001	Рг	< 0.001	v	< 0.001
Ga	< 0.001	Rb	<0.001	W	<0.001
Hf	< 0.001	Sc	0.002	Y	< 0.001
Но	< 0.001	Sm	< 0.001	Yb	< 0.001
ln .	<0.001			Zr	< 0.001

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: U4 Certifying Officer: N. Kocherlakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Ouantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_a = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Catalog Number: PLY2-2X/2Y/2T

Lot No. 9-152Y

Description:

1,000 mg/L Yttrium

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1001.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM 3167a.

The CRM is prepared gravimetrically using high purity $\mbox{Yttrium Oxide}$ Lot# 08001A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1002 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2

NIST SRM #928.

Instrumentation Analysis By ICP spectrometer: 1001 mg/L

Uncertified Properties:

Density: 1.010 @ 24.8 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ce	~ <0.001	- La	< 0.001	Tb	< 0.001
Ca	0.007	Lu	< 0.001	Tm	< 0.001
Dy	< 0.001	Mn	< 0.001	TI	< 0.001
Er	< 0.001	Mo	< 0.001	Th	< 0.001
Eu	< 0.001	Nd	< 0.001	Ta	< 0.001
Fe	0.003	Ni	< 0.001	Ti	< 0.001
Gd	< 0.001	Na	0.005	V	< 0.001
Ga	< 0.001	Pr	<0.001	W	< 0.001
Hf	< 0.001	Rb	<0.001	Yb	< 0.001
Но	< 0.001	Sc	< 0.001	Zr	0.003
In	< 0.001	Sm	< 0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: _____ Certifying Officer: N. Kochestakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 35: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact the certifying organization.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 35, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_a=s^2m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The uncertainty of the certified value listed on the reverse of this document is the total uncertainty U.

 $U = 2U_c + B mg/L$

Where U_c = combined uncertainty components associated with volumetric and gravimetric factors, B is the uncertainty component of two independent methods of analysis (including the systematic and random uncertainties)

95% confidence limits = $X + t_{0.05} \sqrt{\Sigma U_c^2}$

where X = grand mean

 $t_{0.05}$ = the percentile of the student's t distribution for (k-1) degrees of freedom.

Certification Traveler Report:

All certified values reported were derived from the Traveler Report identified by the lot number of this CRM. For further information contact the certifying organization.

Legal Notice:

DATE RECEIVED: 01

SPEXertificate

Certificate of Reference Material

Catalog Number: PLPD3-2X/2Y

Lot No. 10-108PD

Description:

1000 mg/L Palladium

Matrix:

10% HCl

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1002.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3138

The CRM is prepared gravimetrically using high purity Palladium Powder Lot# 01021A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1002 mg/L

Method: Precipitation using Glyoxime. Filter, dry, and weigh as Pd(C4H7O2N2)2

Instrumental Analysis by ICP spectrometer: 1003 mg/L

Uncertified Properties:

Density: 1.017 @ 23.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.01	Fe	0.024	Re	<0.001
Au	0.003	Ga	<0.001	Rh	0.001
Ag	0.005	Ir	< 0.001	Rb	< 0.001
В	< 0.002	In	< 0.001	Ru	< 0.001
Be	< 0.003	Mg	0.008	Sn	0.007
Bi	< 0.001	Mn	< 0.001	Te	< 0.002
Ca	0.014	Na	0.02	Ti	< 0.001
Cd	< 0.001	Ni	< 0.001	W	< 0.001
Co	0.004	Pb	0.002	Zr	< 0.001
Cr	< 0.003	Pt	< 0.001	Zn	1.0
Cu	0.001				

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

 \mathcal{N}

Certifying Officer: N. Kochertakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k, s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate "

Certificate of Reference Material

Catalog Number: PLS9-2X/2Y/2T

Lot No. 8-74S

Description:

1000 mg/L Sulfur

Matrix:

H₂O

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1003 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3154

The CRM is prepared gravimetrically using high purity Ammonium Sulfate Lot# 05891M. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1003 mg/L

Method: Precipitation using barium chloride, filter, ignite and weigh as BaS04.

Instrumentation Analysis By ICP spectrometer: 1003 mg/L

Uncertified Properties:

Density: 1.007 @ 23.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al .	< 0.001	Cu .	<0.001	Ръ	0.002
As	< 0.001	Fe	0.008	Rb	<0.001
Ag	< 0.001	Ga	<0.00i	Re	< 0.001
В	< 0.004	ln	< 0.001	Sn	< 0.001
Ba	< 0.001	K	< 0.001	Sr	< 0.001
Ве	<0.001	Li	< 0.001	Sb	<0.001
Bi	<0.001	Mg	0.005	Ti	< 0.002
Ca	0.009	Mn	< 0.001	T!	< 0.001
Cr	< 0.004	Mo	< 0.001	V	< 0.001
Cd	< 0.001	Na	0.02	Zr	< 0.001
Co	< 0.001	Ni	< 0.001	Zn	0.0075

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: JIN '03 Certifying Officer: N. Kochestakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_a = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U-ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e = \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA
732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647
CRMSales@spexcsp.com • www.spexcsp.com
Always Providing Superior Quality . . . Unparalleled Service™

Catalog Number: PLTH2-2X/2Y

Lot No. 10-24TH

Description:

1000 mg/L Thorium

Matrix:

2% HNO3

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 999 mg/L

Uncertainty Associated with Measurement:

+/- 3.0 mg/L

Certified Value is Traceable to:

NIST SRM #3159

The CRM is prepared gravimetrically using high purity Th(NO3)4-4H2O certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1000 mg/L

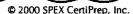
Method: EDTA titration using Xylenol Orange as indicator. EDTA syandardized against Pb(NO3)2 NIST

SRM #928.

Instrumentation Analysis By ICP spectrometer: 998 mg/L

Uncertified Properties:

Density: 1.010 @ 22.0 Degrees Celsius


Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ce	0.01	La	0.003	ТЪ	< 0.001
Ca	0.27	Lu	< 0.001	Tm	< 0.001
Dy	< 0.001	Mn	< 0.001	Ti	<0.002
Er	<0.001	Mo	< 0.001	Ta	< 0.001
Eu	< 0.001	Nd	0.003	Tl	< 0.001
Fc	< 0.01	Ni	< 0.001	V	<0.001
Gd	< 0.001	Na	0.04	w	<0.001
Ga	< 0.001	Pr	< 0.001	Y	0.002
Hf	< 0.001	RЬ	< 0.001	Yb	< 0.001
Но	< 0.001	Sc	< 0.03	Zr	< 0.001
In	< 0.001	Sm	<0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kochertako

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k = s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_{*} = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e = \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate

Certificate of Reference Material

Catalog Number: PLU2-2X/2Y

Lot No. 9-179U

Description:

1000 mg/L Uranium

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 999.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3164.

The CRM is prepared gravimetrically using high purity Uranium Oxide Lot# 04001D. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

y: 999 mg/L

Method: Evaporate to dryness. Ignite and weigh as U3O8.

Instrumentation Analysis By ICP spectrometer: 1000 mg/L

Uncertified Properties:

Density: 1.010 @ 23.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.005	Cu	0.02	Pb	0.004
As	0.06	Fe	0.011	Rb	< 0.001
Ag	< 0.001	Ga	< 0.001	Re	< 0.001
В	< 0.005	In	< 0.001	Si	< 0.10
Ba	0.004	K	0.008	Sr	0.003
Be	< 0.001	Li	< 0.001	Sb	0.003
Bi	< 0.001	Mg	0.003	Ti	< 0.001
Ca	0.012	Mn	0.003	T1	< 0.001
Cr	<0.010	Mo	0.006	V	< 0.003
Cd	<0.001	Na	0.10	Zr	< 0.001
Co	< 0.001	Ni	<0.001	Zn	0.008

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

UN U

ion:

Certifying Officer: N. Kochertakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025; Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_i=s^2m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

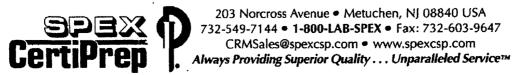
m = the sub-sampling mass

 k_i = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

 $U=ku_c$ where k=2 is the coverage factor at the 95% confidence level


 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e = \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLW9-2X/2Y

Lot No. 9-177W

Description:

1000 mg/L Tungsten

Matrix:

H20

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1.000 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3163

The CRM is prepared gravimetrically using high purity Ammonium Tungstate Lot# 02001H. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: Fume with Sulfuric Acid to dryness. Ignite and weigh as WO3.

Instrumentation Analysis By ICP spectrometer: 1000 mg/L

Uncertified Properties:

Density: 0.9979 @ 23.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L	
Al	0.002	Cu	<0.001	Pb	<0.001	
As	0.01	Fe	< 0.01	Rb	< 0.001	
Ag	< 0.003	Ga	< 0.001	Re	0.004	
В	< 0.005	In	< 0.001	Si	.56	
Ba	< 0.001	K	0.05	Sr	< 0.001	
Be	< 0.001	Li	<0.001	Sb	0.001	
Bi	< 0.001	Mg	<0.001	Ti	< 0.001	
Ca	0.009	Mn	<0.001	TI	<0.001	
Cr	< 0.001	Mo	0.005	V	0.001	
Cd	< 0.001	Na	0.03	Zπ	< 0.001	
Co	0.001	Ni	<0.001	Zn	0.01	

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: US Certifying Officer: N. Kocherakela.

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=3m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 CRMSales@spexcsp.com • www.spexcsp.com Always Providing Superior Quality . . . Unparalleled Service™

SPEXertificate

Certificate of Reference Alaterial

Catalog Number: PLZR2-2X/2Y/2T

Lot No. 10-05ZR

Description:

1000 mg/L Zirconium

Matrix:

2% HNO3

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 997 mg/L

Uncertainty Associated with Measurement: +/-3.0 mg/L

NIST SRM 3169

Certified Value is Traceable to: The CRM is prepared gravimetrically using high purity Zirconyl Nitrate

11011C. The

certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L

Method: Evaporate to dryness. Fume with Sulfuric Acid. Ignite and weigh as ZrO2.

Instrumentation Analysis By ICP spectrometer: 997 mg/L

Uncertified Properties:

Density: 1.010 @ 23.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

mg/L Elemen		mg/L	Element	mg/L
0.03	Cu	0.002	Pb	0.002
<0.001	Fe	0.017	Rb	< 0.001
< 0.05	Ga	< 0.001	Re	<0.001
< 0.004	In	< 0.001	Si	0.10
< 0.001	K	0.10	Sr	< 0.001
< 0.001	Li	0.002	Sb	< 0.001
< 0.001	Mg	0.003	Ti	< 0.001
0.11	Mn	< 0.001	Tì	< 0.001
< 0.009	Mo	< 0.001	v	< 0.001
0.004	Na	0.04	Zn	0.02
< 0.001	Ni	< 0.001		
	0.03 <0.001 <0.05 <0.004 <0.001 <0.001 <0.001 <0.009 0.004	0.03 Cu <0.001 Fe <0.05 Ga <0.004 In <0.001 K <0.001 Li <0.001 Mg 0.11 Mn <0.009 Mo 0.004 Na	0.03 Cu 0.002 <0.001 Fe 0.017 <0.05 Ga <0.001 <0.004 In <0.001 <0.001 K 0.10 <0.001 Li 0.002 <0.001 Mg 0.003 0.11 Mn <0.001 <0.009 Mo <0.001 0.004 Na 0.04	0.03 Cu 0.002 Pb <0.001 Fe 0.017 Rb <0.05 Ga <0.001 Re <0.004 In <0.001 Si <0.001 K 0.10 Sr <0.001 Li 0.002 Sb <0.001 Mg 0.003 Ti 0.11 Mn <0.001 T1 <0.009 Mo <0.001 V 0.004 Na 0.04 Zn

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kocherlakota

© 2000 SPEX CertiPrep, Inc.

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k = s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k₄ = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

SPEXertificate

Certificate of Reference Material

Catalog Number: PLNA2-3X/3Y

Lot No. U8-128NA

Description:

10,000 mg/L Sodium

Matrix:

5% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 9998 mg/L

Uncertainty Associated with Measurement: +/- 30 mg/L

Certified Value is Traceable to: NIST SRM 3152a.

The CRM is prepared gravimetrically using high purity Sodium Carbonate Lot# 02021A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 9998 mg/L

Method: Evaporate to dryness. Fume with Sulfuric Acid. Ignite and weigh as Na2SO4.

Instrumentation Analysis By ICP spectrometer: 9998 mg/L

Uncertified Properties:

Density: 1.049 @ 23.9 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.02	Cu	0.003	Pb	<0.001
As	< 0.003	Fe	0.03	Re	< 0.001
Ag	< 0.03	Ga	< 0.001	Rb	< 0.001
В	< 0.03	In	< 0.001	Sr	< 0.002
Ba	0.03	K	0.14	Sb	< 0.001
Ве	< 0.02	Li	< 0.002	Sn	< 0.001
Bi	< 0.001	Mg	0.30	Ti	< 0.004
Ca	0.52	Mn	0.008	TI	< 0.001
Cr	< 0.004	Мо	< 0.001	V	< 0.001
Cd	< 0.001	Ni	< 0.002	Zr	<0.001
Co	< 0.001			Zn	<0.03

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

W '04

Certifying Officer: N. Kocherakota

DATE EXPIRED: 01/39/3005 VO DATE GPENED: 01/39/3005 VO DATE GPENED: PG: E53308

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s=s^2m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_0 is obtained by combining the individual element standard uncertainty components u_i and $u_0 + \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 CRMSales@spexcsp.com • www.spexcsp.com Always Providing Superior Quality . . . Unparalleled Service™

010295

SPEXertificate™

Certificate of Reference Material

Catalog Number:

ICV-2A

Lot No.: 24-84AS

Description:

Initial Calibration Verification Standard II

Matrix:

5% Nitric Acid

This **ASSURANCE** [©]certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM	Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Ca	2,000	2,005.40	3109a	Ni	500	500.58	3136
K	2,000	1,997.89	3141a	V	500	504.23	3165
Mg	2,000	1,992.26	3131a	Cr	200	203.21	3112a
Na	2,000	1,992.99	3152a	Cu	200	199.75	3114
Al	1,000	1,005.90	3101a	Ag	100	100.46	3151
Ba	1,000	1,001.51	3104a	Be	100	100.04	3105a
Fe	1,000	1,003,17	3126a	Mn	100	100.64	3132
Co	500	505.10	3113	Zn	100	100.52	3168a

Spex Reference Multi: Lot #4-63BD, 14-125AS

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single component exceeding +/- 2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: _____ Certifying Officer: N. Kochertakola.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=5²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ex}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 CRMSales@spexcsp.com • www.spexcsp.com Always Providing Superior Quality . . . Unparalleled Service™ **SPEXertificate**

010297

Certificate of Reference Material

Catalog Number: PLSB7-2X/2Y/2T

Lot No. 10-43SB

Description:

1000 mg/L Antimony

Matrix:

H2O/0.6Tart.Acid/tr.HNO3

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1004 mg/L

+/-3.0mg/L Uncertainty Associated with Measurement:

Certified Value is Traceable to: NIST SRM 3102a

The CRM is prepared gravimetrically using high purity Antimony Metal certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1005 mg/L

Method: Evaporate to dryness. Fume with Nitric Acid. Ignite and weigh as Sb2O4.

Instrumental Analysis by ICP spectrometer:

1002 mg/L

Uncertified Properties:

Density: 1.046 @ 25.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L	
Al	0.03	Cu	0.002	Pb	0.009	
As	<0.001	Fe	0.03	Rb	< 0.001	
Ag	< 0.001	Ga	<0.001	Re	< 0.001	
В	< 0.004	In	<0.001	Sr	< 0.001	
Ba	< 0.001	K	0.01	Si	<0.01	
Be	< 0.001	Li	< 0.001	Ti	< 0.003	
Bi	0.002	Mg	0.005	Τl	< 0.001	
Ca	0.14	Mn	< 0.001	V	< 0.001	
Cr	< 0.002	Mo	<0.001	Zr	< 0.001	
Cd	< 0.001	Na	0.005	Zn	0.02	
Co	< 0.001	Ni	<0.001			

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

NOV --Date of Certification:

Certifying Officer: N. Kochertakola

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition ASTM Guide D6362-98

010298

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where $X = T_{Y}$ value (Labeled Value), $U = E_{Y}$ Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

010299

SAPCXertificate™

Certificate of Reference Material

Catalog Number:

ICV-2C

Lot No.: 24-85AS

Description:

Initial Calibration Verification Standard II

Matrix:

5% Nitric Acid

This ASSURANCE occitified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
As	500	497.85	3103a
Pb	500	495.41	3128
Se	500	501.98	3149
TL	500	501.89	3158
Cd	100	99.77	3108

Spex Reference Multi: Lot #4-51BDREF, 15-39AS, 11-173AS

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single element exceeding +/- 2%. This includes uncertainty of measurements and other effects, such as transpiration losses. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

NOV - 2003 Certifying Officer: N. Kochestakota

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k-s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA
732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647
CRMSales@spexcsp.com • www.spexcsp.com
Always Providing Superior Quality ... Unparalleled Service™

inorganic ventures

195 lehigh avenue, suite 4, lakewood, ni 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade	10000 µg/mL Aluminum in 5% (abs) HNO
-----	--------------------	--------------	--------------------------------------

Catalog Number:

CGAL10-1 and CGAL10-5

Lot Number:

W-AL04008

Starting Material:

Al metal

Starting Material Purity (%):

99.998460

INORGANIC LABS/RADCHEM LABS%.1.62

Starting Material Lot No

607116

DATE RECEIVED: 08/06/03

Matrix:

5% (abs) HNO3

DATE EXPIRED: _____09/01/2004 VOS DATE OPENED: _______08/26/03 INDRG: 400 PO: F5004

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

 $10070 \pm 31 \,\mu g/mL$

Certified Density:

1.059 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = *22 X

(C) = mean

x, = individual results

n = number of measurements

Uncertainty (±) = $2[(e_r s)^2]^{1/2}$

BS = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

10006 ± 55 µg/mL

ICP Assay NIST SRM 3101a Lot Number: 992003

Assay Method #2

10070 ± 31 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>s</u> ai	<u>M</u> Dy < 0.02695	<u> 0</u> 니 0.00011	M Pr < 0.00135	<u>M</u> Te < 0.13473
M Sb < 0.00225	M Er < 0.02245	<u>M</u> Lu < 0.00180	<u>M</u> Re < 0.00449	M Tb < 0.00135
<u>M</u> As < 0.04491	M Eu < 0.01347	<u>O</u> Mg 0.00470	M Rh < 0.00449	<u>M</u> TI < 0.00449
M Ba < 0.04491	M Gd < 0.00449	<u>M</u> Mn < 0.01796	M Rb < 0.00449	<u>M</u> Th < 0.00449
O Be < 0.00017	M Ga < 0.00449	<u>O</u> Hg < 0.00700	M Ru < 0.00898	<u>M</u> Tm < 0.00180
M Bi < 0.00180	<u>M</u> Ge < 0.02695	<u>M</u> Mo < 0.00898	M Sm < 0.00449	M Sn < 0.02245
O B 0.01164	M Au < 0.01347	M Nd < 0.00898	M Sc < 0.04491	M TI < 0.22454
M Cd < 0.01347	M Hf < 0.00898	Q Ni < 0.00600	M Se < 0.03593	<u>M</u> W < 0.04491
O Ca 0.01903	M Ho < 0.00225	M Nb < 0.00225	<u>O</u> SI 0.07389	<u>M</u> U < 0.00898
<u>M</u> Ce < 0.02245	<u>O</u> In < 0.03000	<u>n</u> Os	M Ag < 0.00898	<u>M</u> V < 0.00898
M Cs < 0.00135	M ir < 0.02245	M Pd < 0.02245	Q Na 0.03359	M Yb < 0.00449
O Cr 0.00336	O Fe 0.00493	O P < 0.03000	M Sr < 0.00225	<u>M</u> Y < 0.17963
M Co < 0.01347	M La < 0.00225	M Pt < 0.00898	O S < 0.10000	M Zn < 0.08982
M Cu < 0.02695	M Pb < 0.01347	O K 0.02911	<u>M</u> Ta < 0.03144	M Zr < 0.02245
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not ilmited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

010303

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight: Valence: Coordination Number; Chemical Form in Solution - 26.98154; +3, 6; A(H,O)."

Chemical Compatibility - Soluble in HCl, HNO,, HF and H,SO. Avoid neutral media. Soluble in strongly basic NaOH forming the A(OH), (H,O), 'species. Stable with most metals and inorganic anions. The phosphate is insoluble in water and only slightly soluble in acid.

Stability - 2-100 ppb levels stable for months in 1% HNO. / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO. / LDPE container.

Al Containing Samples (Preparation and Solution) - Metal (Best dissolved in HCI / HNO₂); α-Al₂O₂ (Na₂CO₂ fusion in Pt[®]); γ-Al₂O₂ (Soluble in acids such as HCI); Ores (Carbonate fusion in Pt[®] followed by HCI dissolution); Organic Matrices (sulfunic/peroxide digestion or nitric / sulfunic / perchloric acid decomposition, or dry ash and dissolution in dilute HCI.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Onder	Type	Interferences (underlined indicates severe at valloncs.)
ICP-OES 394,401 rum	0.05 / 0.006 µg/mL	1	atom	U, Ce
ICP-OES 396.152 nm	0.03 / 0.006 µg/mL	1	atom	Mò, Zr, Ce
ICP-0ES 167 078 nm	0.1 / 0.009 ug/mL	1	ion	Fe
ICP-MS 27 amu	30 ppt	nÆ	M'	'?C'% "C'% 'H'?C'% 'B'% *C;" *F6"

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Belging (SIC), Boston (AFAQB), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SiQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 • 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS.	RADCHEM LABSPO 3 4 3
DATE RECEIVED:	08/96/03
NUTE EXPIRED:	09/01/2004 VIDS
DATE UPENED:	08/aa/ø3
INDRG: 4320	PO: F53334

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 13, 2003

Expiration Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Galnes, Chemist, Senior Technical Director

Known and Park Aain

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Calcium in 1.4% (abs) HNO3

Catalog Number:

CGCA10-1, CGCA10-2, and CGCA10-5

Lot Number:

W-CA03022

Starting Material:

CaO

Starting Material Purity (%):

99.999389

Starting Material Lot No Matrix:

3.0

C27L01

1.4% (abs) HNO₃

INORGANIC LABS/RADCHEM LABS 19-24-2

DATE RECEIVED: ____O1/30/04

DATE EXPIRED: 03/01/3005 VOS

DATE OPENED: 01/20/04

INORG: 4436 PO: 759303

Certified Concentration: 9968 ± 18 μ

CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration: 9968 ± 18 µg/mL

1.038 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx.

Certified Density:

(Cat= mean

n

x_i = Individual results

n = number of measurements

Uncertainty $(\pm) = 2[(\underline{\varphi} \cdot \underline{\varsigma}_i)^2]$

IS = The summation of all significant estimated errors
(Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 · Assay

Assay Method #1

9968 ± 18 µg/mL

ICP Assay NIST SRM 3109a Lot Number: 000622

Assay Method #2

9973 ± 25 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	Al		0.00013	М	Dy	<	0.03067	Q	Li		0.00011	M	Pr	<	0.00153	М	Те	<	0.15333
M	Sb	<	0.00256	M	Er	<	0.02556	M	Lu	<	0.00204	M	Re	<	0.00511	М	Tb	<	0.00153
M	As	<	0.05111	M	Eu	<	0.01533	<u>0</u>	Mg		0.03453	M	Rh	<	0.00511	М	TI	<	0.00511
Q	Ba		0.00063	M	Gd	<	0.00511	Q	Mn	<	0.00030	M	Rb	<	0.00511	М	Th	<	0.00511
Q	8e	<	0.00009	M	Ga	<	0.00511	Q	Hg	<	0.01100	M	Ru	<	0.01022	М	Tm	<	0.00204
M	Bi	<	0.00204	М	Ge	<	0.03067	M	Мо	<	0.01022	М	Sm	<	0.00511	М	Sn	<	0.02556
Q	В	<	0.00054	М	Au	<	0.01533	M	Nd	<	0.01022	Q	Sc	<	0.00002	M	Ti	<	0.25555
Q	Cd	<	0.00450	M	Hf	<	0.01022	Q	Ni	<	0.00230	Q	Se	<	0.00620	М	W	<	0.05111
<u>s</u>	Ca			М	Ho	<	0.00256	M	Nb	<	0.00256	Q	Si		0.00253	М	U	<	0.01022
M	Се	<	0.02556	ō	ln	<	0.00200	n	Os			M	Ag	<	0,01022	Q	٧	<	0.00090
M	Cs	<	0.00153	М	ir	<	0.02556	M	Pd	<	0.02556	Q	Na	<	0.00010	M	Yb	<	0.00511
<u>0</u>	Cr		0.00183	Q	Fe	<	0.00110	Q	P	<	0.00480	Q	Sr		0.02021	M	Y	<	0.20444
Q	Co	<	0.00120	М	La	<	0.00256	M	Pt	<	0.01022	Q	s		0.01053	Q	Zn		0.02232
<u>0</u>	Cu	<	0.00400	M	Pb	<	0.01533	Q	ĸ	<	0.00170	M	Ta	<	0.03578	M	Zr	<	0.02556
M - C	heck	æd	by ICP-MS	0-	Che	cke	by ICP-OES	i-S	pecti	al Is	nterference	n - t	Not C	hec	ked For	\$ -	Soluti	on (Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 40.078; +2; 6; Ca(H,O),*7

Chemical Competibility - Soluble in HCl and HNO. Avoid H,SO., HF, H,PO. and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate and tungstate in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO, / LDPE container.

Ca Containing Samples (Preparation and Solution) - Metal (best dissolved in diluted HNO,) Ores (Carbonate tusion in Pt* followed by HCl dissolution); Organic Matrices (dry ash and dissolution in dilute HCl. Do not heat when dissolving to avoid precipitation of SiO,). The exide, hydrexide, carbonate, phosphate, and fluoride of calcium are soluble in % levels of HCl or HNO. The sulfates (gypsum, anhydrite, etc.), certain silicates and complex compounds require fusion with Na,CO, followed by HCl / water dissolution. Contamination is a very real problem when analyzing for trace levels.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/L	ine	Estimated D.L.	Order	Type	Interferences (underlined indicates	severe at alconos.)
ICP-OES	393.366 nm	0.0002/0.00004 µg/mL	1	ion	U, Ce	
ICP-OES	396.847 nm	0.0005 / 0.00006 µg/mL	1	ion	Th	
ICP-OES	422.673 nm	0.01 / 0.001 ua/mL	1	atom	Ge	
ICP-MS	44 amu	1200 ppt	n/a	M'	"O,"C, "SI"O, "Sr"	

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA).

Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS	/RADCHEM LABS PS. 2.49
DATE RECEIVED:_	01/20/04 02/01/205 vp3
DATE EXPIRED:	09/01/3005 VPS
DATE OFENED:	01/90/04
INORG: 4436	_F0: _ F5a3o3

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 23, 2003

Expiration Date:

152005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Struttere Known on Park Lain

inorganic ventures $^{\circ}$ 14 labs

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com 5061-106-SE7 :xst • 0061-106-SE7 • 997-909-008 :anortq 195 lehigh avenue, suite 4, lakewood, nj 08701 usa

3.0

certificate of analysis

and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles." and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 0.1

0.2 Custom-Grade 10000 µg/mL Iron in 3.5% (abs) DESCRIPTION OF CRM

CGFE10-1, CGFE10-2, and CGFE10-5 Catalog Number:

M-FE03030 Lot Number:

Fe metal Starting Material:

699666'66 Starting Material Purity (%):

23166 Starting Material Lot No

3.5% (abs) HNO3 :xintsM

10,016 ± 25 µg/mL Certified Concentration:

CERTIFIED VALUES AND UNCERTAINTIES

1.050 g/mL (measured at 22° C) Certified Density:

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the

calculation of the certified value and the uncertainty:

Uncertainty (±) = $\frac{2|(Q+S_1)^{2}|^{1/2}}{(1)^{1/2}}$ u = unuper of measurements x_i = individual results ueau = (□) XY2 = (C) sulk V belithe()

MIST SPAM certificate of analysis.) weighing, dilution to volume, and the fixed error reported on the (Most common are the error strom instrumental measurement, $\mathbf{g}\mathbf{g}=\mathbf{T}$ The summation of all significant estimated errors

DATE OPENED:

INORG: 4470 P.O. F5933

DATE RECEIVED: 09/05/0/2005

40/26/60

INDERENIC LABS/RADCHEM LABS 13.1.042

confirmation of the accuracy of this CRM. confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a The independent samples 1-test was used to determine if there is agreement between the above assay methods at the 95%

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 0.4

(01.3 noifinñab, £661, .ba national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd □ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually

reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are

F# bortieM ysseA

10,031 ± 33 µg/mL

10,016 ± 25 µg/mL

ICP Assay NIST SRM 3126a Lot Number: 000606

Assay Method #2

EDTA NIST SRM 928 Lot Number: 880710

01030 NUF

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001 The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy, The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos, 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

O AI < 0.00270	M Dy < 0.02413	O U < 0.00003 M Pr < 0.00121	M Te < 0.12066
M Sb < 0.00201	1 -	M Lu < 0.00161 M Re < 0.00402	M Tb < 0.00121
M 30 < 0.00201	<u>M</u> Er < 0.02011	M La 1 0.00101 M 1/6 1 0.00402	<u>M</u> 15 - 0.55121
<u>M</u> As < 0.04022	<u>M</u> Eu < 0.01207	O Mg < 0.00006 M Rh < 0.00402	<u>M</u> T1 < 0.00402
<u>M</u> Ba < 0.04022	M Gd < 0.00402	<u>O</u> Mn < 0.02000 <u>M</u> Rb < 0.00402	M Th < 0.00402
<u>O</u> Be < 0.00005	<u>M</u> Ga < 0.00402	O Hg < 0.01100 M Ru < 0.00804	<u>M</u> Tm < 0.00161
<u>M</u> Bi < 0.00161	į Ge	<u>M</u> Mo < 0.00804 <u>M</u> Sm < 0.00402	<u>M</u> Sn < 0.02011
O B < 0.00090	M Au < 0.01207	M Nd < 0.00804 M Sc < 0.04022	<u>M</u> TI < 0.20109
M Cd < 0.01207	M Hf < 0.00804	<u>O</u> Ni < 0.05000 <u>M</u> Se < 0.03218	<u>M</u> W < 0.04022
O Ca 0.00291	M Ho < 0.00201	M Nb < 0.00201 Q Si < 0.01000	<u>M</u> U < 0.00804
M Ce < 0.02011	M in < 0.04022	<u>n</u> Os <u>M</u> Ag < 0.00804	<u>M</u> V < 0.00804
M Cs < 0.00121	<u>M</u> ir < 0.02011	M Pd < 0.02011 O Na 0.00776	M Yb < 0.00402
M Cr < 0.02011	<u>s</u> Fe	<u>i</u> P <u>M</u> Sr < 0.00201	<u>M</u> Y < 0.16087
O Co < 0.00110	M La < 0.00201	<u>M</u> Pt < 0.00804 <u>O</u> S < 0.07200	<u>M</u> Zn 0.04876
M Cu < 0.02413	M Pb < 0.01207	O K < 0.00170 M Ta < 0.02815	<u>M</u> Zr < 0.02011
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4.40. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight: Valence: Coordination Number: Chemical Form in Solution - 55.847; +3; & Fe(H₂O).

Charmical Competibility - Stable in HCI, HNO₃, H₂SO₄, HF and H₂PO₄. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ /LDPE container.

Fe Containing Samples (Preparation and Solution) - Metal (Soluble in HCI). Oxides (If the oxide has been at a high temperature then Na₂CO₂ fusion in Pt^a followed by HCI dissolution otherwise dissolve in dilute HCI). Ores (See Oxides above using only the fusion approach).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	Line	Estimated D.L.	<u>Order</u>	Type	Interferences (underlined indicates severe at will oncs.)
ICP-OES	238.204 nm	0.005 / 0.001 µg/ml.	1	ion	Ru, Co
ICP-OES	239.562 nm	0.005 / 0.001 µg/ml.	1	ion	Co, W, Cr
ICP-OES	259.940 nm	0.006 / 0.001 µg/mL	1	ion	Hf, Nb
ICP-MS	56 amu	970 ppt	n/a	M'	""Ar' "N"H, ""Ar"O, ""Ar"O"H, ""Ar"O, ""CI"O"H, ""Ca"O

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RVA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INURGANIC LABS/	RADCHEM LABS \$ 3043
DATE RECEIVED:	09/95/04
DATE EXPIRED:	03/079002 702
DATE OPENED:	03/25/04
	PU: F53333

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 20, 2003

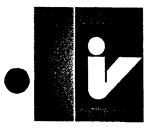
Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant


Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Knowen an Paux Lain

2.0

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Custom-Grade 10000 µg/mL Potassium in 1.4% (abs) HNO3

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

Catalog Number:	CGK10-1, CGK10-2, a	nd CGK10-5
Lot Number:	W-K02111	
Starting Material:	KNO3	INORGANIC LABS/RADCHEM LABS
Starting Material Purity (%):	99.997230	DATE RECEIVED: 1/5/03
Starting Material Lot No	K18J19	DATE EXPIRED: 12/1/2014 06
Matrix:	1.4% (abs) HNO ₃	DATE OPENED:

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

DESCRIPTION OF CRM

Certified Concentration: $9930 \pm 9 \, \mu g/mL$

Certified Density: 1.024 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx (C) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(ers_i)]^{1/2}$ **BS** = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 9926 ± 62 µg/mL

ICP Assay NIST SRM 3141a Lot Number: 891312

Assay Method #2 9930 ± 9 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

												,									
Q ,	Aj	<	0.00090	M	Dy	· <	0.02400	ō	Li	<	0.00003	M	Pr	<	0.00120		M	Те	<	0.11998	
<u>M</u> :	S b	<	0.00200	M	Er	<	0.02000	M	Lu	<	0.00160	M	Re	<	0.00400		M	Tb	<	0.00120	
M	As	<	0.03999	M	Eu	٠ <	0.01200	Q	Mg		0.00100	M	Rh	<	0.00400		M	TI	<	0.00400	
<u>M</u> 1	Ba	<	0.03999	М	Go	j <	0.00400	0	Mn	<	0.00003	M	Rb		0.49948		<u>M</u>	Th	<	0.00400	
<u>o</u> 1	Ве	<	0.00020	М	G	} <	0.00400	<u> 0</u>	Hg	<	0.01500	<u>M</u>	Ru	<	0.00800		М	Tm	<	0.00160	
M	BI	<	0.00160	Q	Ge	• <	0.00150	M	Мо	<	0.00800.0	M	Sm	<	0.00400		<u>M</u>	Sn	<	0.02000	
<u>o</u> !	В	<	0.00060	0	Αu	, <	0.00300	M	Nd	<	0.00800	<u>o</u>	Sc	<	0.00002		0	Ti	<	0.00070	
, <u>м</u>	Cd	<	0.01200	М	Hf	•	0.00800	<u>0</u>	Ni	<	0.00230	2	Se	<	0.05000		M	W	<	0.03999	
Q	Са		0.00075	М	Ho	, 4	0.00200	M	Nb	<	0.00200	Ō	Si	<	0.00340		M	Ü	<	0.00800	
M	Се	<	0.02000	M	in	•	0.03999	Ū	Os			M	Ag	<	0.0800.0		<u>0</u>	٧	<	0.00090	
M	Cs	<	0.00120	М	lr	4	0.02000	M	Pd	<	0.02000	0	Na		0.21730		M	Yb	<	0.00400	
<u>M</u>	Cr	<	0.02000	으	Fe	•	0.00212	0	P	<	0.00250	M	Sr	<	0.00200		M	Y	<	0.15998	
M	Со	<	0.01200	М	Le	1	0.00200	М	Pt	<	0.00800	Q	S	<	0.07200		ō	Zn		0.00050	
M	Cu	<	0.02400	M	Pt	, •	0.01200	<u>s</u>	к			M	Ta	<	0.02800		M	Zr	<	0.02000	
M - C	neck	ed	by ICP-MS	0-	Che	ecke	ed by ICP-OES	1-8	Spect	rai l	nterference	n - 1	Not C	he	cked For	8	5 - 5	Soluti	on :	Standard Ele	ment

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 °C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chamical Form in Solution - 29.0983; +1; (6); K'(eq) (Coordination Number in parentheses is assumed, not certain.)

Chemical Compatibility - Soluble in HCl, HNOs, H₂SOs and HF aqueous matrices. Avoid use of HClOs due to insolubility of the perchlorate. Stable with all metals and inorganic anions except ClOs.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ /LDPE container.

K Containing Samples (Preparation and Solution) - Metal (Dissolves very repidly in water): Ores (Sodium carbonate fusion in Pt* followed by HCI dissolution-blank levels of K in sodium carbonate critical); Organic Matrices (Sulfuric/peroxide digestion.)

Atomic Spectroscop	ic Information (ICP-0ES D	LLs are g	iven as	ractici /extal view):
TechniqueLine	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at actioncs.)
ICP-OES 766,490 m	n 0.4 / 0.001 µg/mL	1	atom	2 rd order radiation from R.E.s on some optical designs
ICP-OES 771.531 m	n 1.0/0.03 µg/mL	1	atom	2 ^m order radiation from R.E.s on some optical designs
ICP-OES 404,721 ru	n 1.1/0.05 µg/mL	1	atom	U, Cc.
ICP-MS 39 amu	10 ppt	nda	M'	"ArH, "Na"O, "Se"

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and Is guaranteed to be homogeneous.

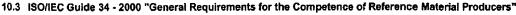
10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)


Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Polynol (AFACE), Singapore (RSR), Slovenia (SIQ), Spring (AFACE), Suffred and (SOS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf-life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

INOF	GANIC	LABS	/RADCH _!!\5/a \d.[1]\da !!\5\!\3	IEM L	ABS	٦.
DATE	RECEI	AFD: -	_111.340	<u></u>	00	<u> </u>
DATE	EXPIR	ED:	947490	4	f.#2	
DATE	OLEVE	D:4	(1777)	-===		
INDRE	i: 4∴	\ -} 6	PO:	it da	<u> </u>	

Certification Date: January 30, 2003

Expiration Date:

010316

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten knowen an Paux Aain

1.0

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials." and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Sodium in 1.4% (abs) HNO3 21.0

Catalog Number:

CGNA10-1, CGNA10-2, and CGNA10-5

Lot Number:

T-NA03006

Starting Material:

Na2CO3

INORGANIC LABS/RADCHEM LABS \$1 # 2

Starting Material Purity (%):

99.999936

DATE RECEIVED: 07/31/03

Starting Material Lot No

42095

DATE EXPIRED: 08/01/3004 you

Matrix:

1.4% (abs) HNO₃

DATE OPENED: 08/01/03 INORG: 4805 PO: F58391

310 **CERTIFIED VALUES AND UNCERTAINTIES**

n .

Certified Concentration:

 $10,005 \pm 7 \,\mu g/mL$

Certified Density:

1.032 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = erx,

(Di=mean

x = individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha \cdot s_i)^2]^{4/2}$

ES = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM...

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

The property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

10,067 ± 75 µg/mL

ICP Assay NIST SRM 3152a Lot Number: 990907

Assay Method #2

10.005 ± 7 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 - Class 1 and 692476A - Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION - The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- GLASSWARE CALIBRATION · In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

<u>o</u>	A	<	0.00090	М	Dy	<	0.02499	<u>o</u>	Li	<	0.00003	М	Pr	<	0.00125	М	Те	<	0.12494
M	Sb	<	0.00208	М	Er	<	0.02082	<u>M</u>	Lu	<	0.00167	М	Re	<	0.00417	<u>M</u>	Tb	<	0.00125
M	As	<	0.04165	М	Eu	<	0.01249	Q	Mg		0.00015	М	Rh	<	0.00417	<u>M</u>	Tì	<	0.00417
M	Ва	<	0.04165	М	Gd	<	0.00417	<u>o</u>	Mn	<	0.00003	M	Rb	<	0.00417	<u>M</u>	Th	<	0.00417
<u>o</u>	Ве	<	0.00020	М	Ga	<	0.00417	<u>0</u>	Hg	<	0.01500	M	Ru	<	0.00833	<u>M</u>	Tm	<	0.00167
<u>M</u>	Bi	<	0.00167	<u>o</u>	Ge	<	0.00150	M	Мо	<	0.00833	<u>M</u>	Sm	<	0.00417	M	Sn	<	0.02082
ō	В	<	0.00060	ō	Au	<	0.00300	<u>M</u>	Nd	<	0.00833	<u>o</u>	Sc	<	0.00002	<u>0</u>	Ti	<	0.00070
М	Cd	<	0.01249	М	Hf	<	0.00833	<u>o</u>	Ni	<	0.00230	<u>o</u>	Se	<	0.05000	<u>M</u>	W	<	0.04165
Q	Ca		0.00160	M	Но	<	0.00208	M	Nb	<	0.00208	0	Si	<	0.00340	М	U	<	0.00833
M	Сө	<	0.02082	М	In	<	0.04165	<u>n</u>	Os			<u>M</u>	Ag	<	0.00833	<u>0</u>	V	<	0.00090
M	Cs		0.00104	М	Ir	<	0.02082	<u>M</u>	Pd	<	0.02082	<u>\$</u>	Na			M	Yb	<	0.00417
M	Cr	<	0.02082	<u>o</u>	Fe	<	0.00110	<u>0</u>	P	<	0.04000	M	Sr	<	0.00208	<u>M</u>	Y	<	0.16658
M	Со	<	0.01249	<u>M</u>	La	<	0.00208	<u>M</u>	Pt	<	0.00833	<u>o</u>	s	<	0.07200	<u>o</u>	Zn		0.00130
<u>o</u>	Cu	<	0.00140	М	Pb	<	0.01249	<u>o</u>	κ		0.00873	M	Та	<	0.02915	M	Zr	<	0.02082
M - C	heck	ted	by ICP-MS	0-	Chec	kec	by ICP-OES	i-S	pecti	al I	nterference	n - N	lot C	hec	ked For	s - S	Solutio	on S	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keeptightly sealed when not in use. Store and use at 20 ± 4~©. Do not pipet from container, Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 22.98977; +1; (6); Ne'(eq) largely ionic in nature (Coordination Number in parentheses is assumed, not certain.)

Chemical Competibility - Soluble in HCl, HNO, H, SO, and HF aqueous matrices. Stable with all metals and inorganic anions. Stability - 2-100 ppb levels stable for months in 1% HNO_a /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO_a /LDPE container.

Na Containing Samples (Preparation and Solution) - Metal (Dissolves very rapidly in water). Ores (Lithium carbonate fusion in graphite crucible followed by HCI dissolution - blank levels of Na in lithium carbonate critical). Organic Matrices (Sulfuric / peroxide digestion or nitric/sulturic/perchloric acid decomposition).

AKUTTEC SP	ectroscopic ini	DUMINION (ICP-OES ILL.)	e ere grø	DN 85	(<u>8018/248)</u> VIEW):
Technique	Line	Estimated D.L.	Onder	Type	Interferences (underlined indicates severe at afforcs.)
ICP-OES	589.595 nm	0.07 / 0.00009 µg/mL	1	atom	2 st order radiation from R.E.s on some optical designs
ICP-OES	588.995 nm	0.03 / 0.006 µg/mL	1	etom	2 st order radiation from R.E.s on some optical designs
ICP-OES	330.237 nm	2.0 / 0.09 µg/mL	1		Pd. Zn
ICP-MS	23 emu	310 pd	nie	M'	48[[12] 44C#12

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

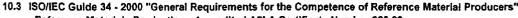
10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMi Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)


Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (8mwA), Belgium (BELTEST) (8KO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarity by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mi, low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

INORGANIC LABS/RADCHEM LABS 18-30-12 DATE RECEIVED: ___01/31/03 DATE EXPIRED: 08/01/3004 W INDRG: 4805 PD: F50

Certification Date: January 24, 2003 **EXPIRES Expiration Date:**

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debble Newman, LIMS Administrator

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Aleberi Newman

Paux Alaim

Certificate of Analysis

STOW-GRADE SOLUTION

1000 μ g/mL Lithium in 0.1% HNO₃ (abs)

Catalog Number: CGLI1-1, CGLI1-2 and CGLI1-5

Lot Number:	W-LI0206	6
-------------	----------	---

Starting Material: Starting Material Purity: Starting Material Lot No:

Li,CO, 99.999% 1053

INORGANIC LABS/RADCHEM LABS

DATE RECEIVED: ____OG/ao/03_ DATE EXPIRED: 07/01/2004

DATE OPENED: ___________________ INDRG: 4149 PD: F52370

CERTIFIED CONCENTRATION: 998 \pm 2 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value
$$(\bar{x}) = \frac{\sum x_i}{n}$$

Uncertainty (±) =
$$2[(\sum_{s} j^2]^{1/2}]$$

(n)^{1/2}

 $(\bar{x}) = mean$

x. = individual results

n = number of measurements $\sum S_i = The summation of all significant$ estimated errors.

Classical Wet Assay: 998 ± 2 µg/mL

Method: Gravimetric as the Sulfate vs NIST weights #822/254143-94.

Instrument Analysis: 1000 ± 4:µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3129a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN μ g/mL:

Custom Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm .

Q	Al	< 0.010	М	Dy	< 0.00060	<u>s</u>	Li	Ye. A S	M	Pr	< 0.000030	Q	Te	< 0.0090
M	Sb	< 0.000050	<u>M</u>	Er	< 0.00050	<u>M</u>	Lu	< 0.000040	<u>M</u>	Re	<0.00010	M	Tb	< 0.000030
Q	As	< 0.044	M	Εu	< 0.00030	Q	Mg	< 0.00010	. <u>M</u>	Rh	< 0.00010	M	TI	< 0.00010
M	Ba	< 0.0010	M	Gd	< 0.00010	<u>o</u>	Mn	< 0.00020	. M.	Rþ	< 0.00010	M	Th	< 0.00010
Q	Ве	< 0.000050	M	Ga	< 0.00010	<u>o</u>	Hg	< 0.0070	<u>M</u>	Ru	< 0.00020	<u>M</u>	Tm	< 0.000040
M	Bi	<0.000040	M	Ge	< 0.00060	<u>M</u>	Mo	< 0.00020	<u>M</u>	Sm '	< 0.00010	· <u>M</u>	Sn	< 0.00050
Q	В	< 0.0060	<u>o</u>	Au	< 0.010	<u>M</u>	Nd	< 0.00020	<u>M</u>	Sc	< 0.0010	<u>o</u>	Ti	< 0.00030
Q	Cd	< 0.0018	M	Hf	< 0.00020	<u>0</u>	Ni	< 0.0040	Q	Se	< 0.020	M	W	< 0.0010
<u>0</u>	Ca	0.051	M	Ho	< 0.000050	<u>M</u>	Nb	< 0.000050	<u>o</u>	Si	0.023	<u>M</u>	U	< 0.00020
M	Ce	< 0.00050	0	In	< 0.030	п	Os		<u>0</u>	Ag	< 0.0040	<u>0</u>	٧	< 0.0010
M	Cs	0.0018	M	!r	< 0.00050	M	Pd	< 0.00050	<u>0</u>	Na	< 0.10	<u>M</u>	Yb	< 0.00010
<u>0</u>	Cr	< 0.0020	<u>0</u>	Fe	< 0.0020	Q	P	< 0.030	<u>0</u>	Sr	< 0.0010	<u>M</u>	Υ	< 0.0040
M	Со	< 0.00030	M	La	< 0.000050	M	Pt	< 0.00020	0	S	< 0.050	<u>0</u>	Zn	< 0.030
M	Cu	< 0.00060	M	Pb	< 0.00030	<u>0</u>	K	0.0070	M	Ta	< 0.00070	M	Zr	< 0.00050
М -	chec	ked by ICP-MS	0 - 0	heck	ed by ICP-OES	i - sı	ectra	l interference	n - no	t chec	ked for	s - soluti	on sta	andard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.004 g/mL

(over)

QA:KL Rev.DZZ408DN

195 Lehigh Avenue • Suite 4 • Lakewood, NJ 08701 Orders: 800-669-6799 • FAX (732) 901-1903 Technical Support: 800-569-6799

Quality Assurance Manager

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ŌQS), Belgium (Avinter), Brazii (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS),

Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- 2. ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life - The I

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 μ m filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119018, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa

phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Cadmium in 2% (abs) HNOs 2.0

Catalog Number:

CGCD1-1, CGCD1-2, and CGCD1-5

Lot Number:

W-CD01127

Starting Material:

Cd shot

Starting Material Purity (%):

99.998904

Starting Material Lot No

C14M30

INDRGANIC LABS/RADCHEM LABS 1.142

Matrix:

3.0

2% (abs) HNO3

DATE RECEIVED: 02/25/04 DATE EXPIRED: 03/01/2005 VOS

DATE OFENED: ____OA/35/04___

INDRG: 4467 FO: F52323

Certified Concentration:

 $1007 \pm 2 \mu g/mL$

Certified Density:

1.014 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

CERTIFIED VALUES AND UNCERTAINTIES

x_i = individual results

n = number of measurements

Uncertainty $(\pm) = 2[(\alpha_1 \beta_1)^2]^2$

BS = The summation of all significant estimated errors.

(Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

D "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $1007 \pm 2 \mu g/mL$

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2

1005 ± 5 µg/mL

ICP Assay NIST SRM 3108 Lot Number: 890312

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate atl Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	Al	<	0.00090	M	Į	Dy	<	0.01191	9	2	Li	<	0.00002	М	Pr	<	0.00060	ᄋ	Te	<	0.00700
M	Sb		0.00039	M	ļ	Er	<	0.00993	Ī	<u>/1</u>	Lu	<	0.00079	M	Re	<	0.00199	<u>M</u>	Tb	<	0.00060
M	As	<	0.01985	M	<u>!</u>	Eu	<	0.00596	2	2	Mg		0.00002	М	Rh	<	0.00199	М	π	<	0.00199
M	Ba	<	0.01985	M	Į	Gd	<	0.00199	Ŋ	<u> </u>	Mn	<	0.00794	<u>M</u>	Rb	<	0.00199	М	Th	<	0.00199
М	Ве	<	0.00099	M	Į.	Ga	<	0.00199	2	2	Hg	<	0.01200	M	Ru	<	0.00397	М	Tm	<	0.00079
M	Bi	<	0.00079	M	!	Ge	<	0.01191	1	<u> </u>	Мо	<	0.00397	<u>M</u>	Sm	<	0.00199	M	Sn	<	0.00993
Q	В	<	0.00900	M	1	Au	<	0.00596	<u> </u>	<u>M</u>	Nd	<	0.00397	М	Sc	<	0.01985	M	TI	<	0.09925
<u>s</u>	Cd			M	<u>!</u>	Hf	<	0.00397	2	2	Ni	<	0.00300	м	Se	<	0.01588	М	W	<	0.01985
<u>0</u>	Са		0.00378	M	ŧ	Но	<	0.00099	1	M	Nb	<	0.00099	0	Si	<	0.00340	М	U	<	0.00397
M	Се	<	0.00993	2	<u> </u>	In	<	0.00200	ī	3	Os			M	Ag	<	0.00397	М	٧	<	0.00397
M	Cs	<	0.00060	N	1	ir	<	0.00993	· <u>!</u>	M	Pd		0.00691	M	Na	<	0.19849	M	Yb	<	0.00199
M	Cr	<	0.00993	<u>c</u>	2	Fe	<	0.00110	9	õ	P	<	0.00300	<u>M</u>	Sr	<	0.00099	М	Y	<	0.07940
M	Со	<	0.00596	<u> </u>	1	La	<	0.00099	1	M	Pt	<	0.00397	0	S	<	0.03000	ō	Zn		0.00040
M	Cu	<	0.01191	V	1	Pb	<	0.00596	9	2	ĸ		0.00015	<u>M</u>	Ta	<	0.01389	M	Zr	<	0.00993
M - Checked by ICP-MS				O - Checked by ICP-OES i - Spectral Interference									interference	n - Not Checked For				s - Solution Standard Element			

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 . Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 112.41; +2; 4;Cd,(OH) (aq)" and Cd(OH)(aq)" Chemical Competibility - Stable in HCI, HNO, H,SO., and HF. Avoid basic media forming insoluble carbonate and hydroxide. Stable with most metals and inorganic anions in acidic media. The sulfide, carbonate, oxalate, phosphate, and cyanide are insoluble in water and soluble in HCI, HNO, and NH.OH. The chloride, bromide and fodide are soluble in water. Cdl, us one of the tewiodides soluble in ethanol. All compounds of Cd are soluble in excess Nat, due to the formation of the complex ion, Cdl.*. Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5 % HNO, /LDPE container.

Cd Containing Samples (Preparation and Solution) - Metal (soluble in HNO,), Oxides (Soluble in HCl or HNO,), Ores (Dissolve in HCl / HNO, then take to fumes with H,SO.. The silica and lead suitate are filtered off after addition of water.); Organic based (dry ash at 450 € and dissolve ash in HCI) (sulfuric/peroxide acid digestion).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/avial view):

Technique	/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at altoncs.)
ICP-OES	214,438 nm	0.003 / 0.0003 µg/ml.	1	ion	Pt, ir
ICP-OES	228.802 nm	0.003 / 0.0003 µg/ml.	1	atom	Co, kr, As, Pt
ICP-OES	226.502 nm	0.003/0.0003 µg/mL	1	ion	r
ICP-MS	111 amu	11 ppt	n/a	M'	*Mor*O

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous. 9.0

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA) Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Siovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS	VRADUHEM LABS Pg. 20f 2
DATE RECEIVED:	0a/a5/c4
DATE EXPIRED:	03/01/2005 405
DATE OPENED:	40/35/67
	PO: F53333

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: April 24, 2003

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

fold Strutten Known der Paux Ani

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Cobalt in 2% (abs) HNO3 2.0

Catalog Number:

CGCO1-1, CGCO1-2, and CGCO1-5

Lot Number:

W-QC001114

Starting Material:

Co powder

Starting Material Purity (%): Starting Material Lot No.

99.995670

22897

Matrix:

3.0

2% (abs) HNO₃

INORGANIC LABS/RADCHEM LABS 🧞 🗘 🕹 a

DATE RECEIVED: ___ 03/35/04___

CERTIFIED VALUES AND UNCERTAINTIES

DATE EXPIRED: ______03/01/2005 _____V03_

Certified Concentration:

 $1002 \pm 3 \mu g/mL$

DATE OPENED: ______ 03/35/04_____ INORG: 4468 PU: F50303

Certified Density:

1.016 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = erx.

(C) = mean

x_i = individual results

n = number of measurements

Uncertainty $(\pm) = 2[(\alpha - 5)]^{1/2}$

ES = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

998 ± 4 µg/mL

ICP Assay NIST SRM 3181 Lot Number: 000630

Assay Method #2

1002 ± 3 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u>	Ai		0.00025	M	Dу	<	0.02419	Q	Li		0.00001	<u>M</u>	Pr	<	0.00121	M	Те	<	0.12097
<u>M</u>	Sb	<	0.00202	M	Er	<	0.02016	M	Lu	<	0.00161	<u>M</u>	Re	<	0.00403	M	Tb	<	0.00121
Q	As	<	0.10000	M	Eu	<	0.01210	Q	Mg		0.00045	М	Rh	<	0.00403	<u>M</u>	TI	<	0.00403
<u>M</u>	Ва	<	0.04032	M	Gd	<	0.00403	Q	Mn		0.00003	M	Rb	<	0.00403	М	Th	<	0.00403
M	Ве	<	0.00202	M	Ga	<	0.00403	Q	Hg	<	0.05000	M	Ru	<	0.00807	M	Tm	<	0.00161
М	Bi	<	0.00161	M	Ge	<	0.02419	M	Мо	<	0.00807	M	Sm	<	0.00403	М	Sn	<	0.02016
Q	В	<	0.04000	M	Au	<	0.01210	M	Nd	<	0.00807	M	Sc	<	0.04032	M	Ti	<	0.20162
<u>M</u>	Cd	<	0.01210	M	Hf	<	0.00807	Q	Ni	<	0.02000	M	Se	<	0.03226	М	W	<	0.04032
0	Св		0.00325	М	Но	<	0.00202	M	Nb	<	0.00202	Q	Si	<	0.00400	М	U	<	0.00807
M	Се	<	0.02016	M	In	<	0.04032	<u>n</u>	Os			M	Ag	<	0.00807	M	٧	<	0.00807
<u>M</u>	Çs	<	0.00121	M	lr	<	0.02016	M	Pd	<	0.02016	Q	Na		0.00138	М	Yb	<	0.00403
M	Cr	<	0.02016	Q	Fe		0.00875	Ū	P			M	Sr	<	0.00202	М	Y	<	0.16129
<u>s</u>	Со			M	La	<	0.00202	M	Pt	<	0.00807	D	s			M	Zn	<	0.08065
M	Cu	<	0.02419	M	Pb	<	0.01210	Q	K		0.03000	M	Ta	<	0.02823	W	Zr	<	0.02016
M - Checked by ICP-MS O - Checked by ICP-OES		1 - S	pecti	al i	nterference	n - t	lot C	hec	ked For	s -	Solutio	on S	Standard Element						

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at $20 \pm 4\%$. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 58.9332; +2; 6; Co(H,O)."

Chemical Competibility - Stable in HCl, HNO, H, SO, HF, H, PO. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO, /LDPE container.

Co Containing Samples (Preparation and Solution) - Metal (soluble in HNO₂); Oxides (Soluble in HCI); Ores (Dissolve in HCI / HNO₂).

Atomic Spectroscopic information (ICP-OES D.L.s are given as radial/axial view):

Technique	Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at altonos.)
ICP-OES	238,892 nm	0.01/.002 µg/mL	1	ion	Fe, W, Ta
ICP-OES	228.616 nm	0.017.001 ug/mL	1	ion	
ICP-OES	237,862 nm	0.01/.002 ug/mL	1	ion	W, Re, Al, Ta
ICP-MS	59 amu	2 ppt	n/a	Μ.	"ča"O'H`, "Ar"O'H , "Ar"Na, "Ca"O, "Mg"Cl

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

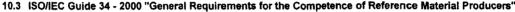
10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)


Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Poland (APCER), Singapore (PSR), Slovenia (SIQ), Spain (AFNOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 28, 2003

Expiration Date:

INDREANIC LABS/RADCHEM LABSPS.3062

DATE RECEIVED: 03/01/005 V03

DATE EXPIRED: 03/01/005 V03

DATE OPENED: 03/05/04

INDRE: 4468 PO: F50303

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

il Historia

Paux Aain

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade	1000 μg/mL Manganese in 2% (abs) HNO3
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	W-MN02036 Mn pieces	DATE RECEIVED: OV. COLUMN
3.0	CERTIFIED VALUES AND	UNCERTAINTIE	DATE OF ENGLY: DIZ BUST
	Certified Concentration:	1000 ± 2 μg/ml	INORG: <u>4434</u> PO: <u>₹5</u> 3301

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

Certified Density:

(□)i= mean

1.014 g/mL (measured at 22° C)

n

x_i = individual results

Uncertainty (±) = $2[(e_1 \cdot s_1)^2]^{1/4}$

2)1/2

n = number of measurements

S = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

 $1000 \pm 2 \mu g/mL$

ICP Assay NIST SRM 3132 Lot Number: 890903

Assay Method #2

1003 ± 3 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P1452, 176240/P14452, 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>o</u>	Al		0.00221	M	Dy	<	0.02471	Q	Li		0.00020	M	Pr	<	0.00124	M	Te	<	0.12355
M	Sb	<	0.00206	М	Er	<	0.02059	M	Lu	<	0.00165	M	Re	<	0.00412	M	Tb	<	0.00124
М	As	<	0.04118	М	Eu	<	0.01236	Q	Mg		0.03350	M	Rh	<	0.00412	М	TI	<	0.00412
M	Ва	<	0.04118	М	Gđ	<	0.00412	S	Mn			M	Rb	<	0.00412	M	Th	<	0.00412
M	Ве	<	0.00206	Q	Ga	<	0.05000	i	Hg			M	Ru	<	0.00824	М	Tm	<	0.00165
M	Bi	<	0.00165	Q	Ge	<	0.00300	M	Мо	<	0.00824	M	Sm	<	0.00412	М	Sn	<	0.02059
Q	В		0.00295	М	Au	<	0.01236	M	Nd	<	0.00824	M	Sc	<	0.04118	М	Ti	<	0.20592
M	Cd	<	0.01236	<u>M</u>	Hf	<	0.00824	M	Ni	<	0.03295	M	Se	<	0.03295	W	W	<	0.04118
Q	Ca		0.00340	M	Но	<	0.00206	M	Nb	<	0.00206	Q	Si		0.00275	M	U	<	0.00824
M	Се	<	0.02059	<u>M</u>	ln	<	0.04118	Ω	Os			M	Ag	<	0.00824	M	٧	<	0.00824
M	Çs	<	0.00124	М	Ir	<	0.02059	М	Pd	<	0.02059	Q	Na		0.00225	M	Yb	<	0.00412
<u>M</u>	Çr	<	0.02059	Q	Fe	<	0.01000	i	P			M	Sr	<	0.00206	М	Y	<	0.16474
M	Со	<	0.01238	M	La	<	0.00206	M	Pt	<	0.00824	l	s			Q	Zn		0.00250
<u>M</u>	Cu	<	0.02471	M	Pb	<	0.01236	Q	ĸ		0.00105	M	Ta	<	0.02883	M	Zr	<	0.02059
M - C	hec	ked	by ICP-MS	0-	Chec	:kec	by ICP-OES	i-S	pect	ral l	interference	n - 1	Not C	hed	ked For	s - S	Soluti	on:	Standard Elemen

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4.5. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight: Valence; Coordination Number; Chemical Form in Solution - 54.9380; +2; 6; Mn(H₂O), a

Chemical Compartibility - Stable in HCl, HNO1, H2SO4, HF, H2PO4. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5 % HNO-LDPE container.

Mn Containing Samples (Preparation and Solution) - Metal (Soluble in dilute acids); Oxides (Soluble in dilute acids), Ores (Dissolve with FICI. If silice is present add HF and then turne off silice by adding H., SO, and heat to SO, turnes - dense white tumes).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

	Transfer of the contract of th													
Technique/Line		Line	Estimated 0.L.	Order	Type	Interferences (underlined indicates severe at acconcs.)								
	ICP-OES	257,610nm	0.0014 / 0.00002 µg/mL	1	ion	Ce, W, Re								
	ICP-OES	259,373 nm	0.0016 / 0.00002 µg/mL	1	ion	U, Ta, Mo, Fe, Nb								
	ICP-OES	260.569 nm	0.0021 / 0.00002 µg/mL	1	ion	Cò								
	ICP-MS	55 amu	10 ppt	n/a	M'	"A""N'H, "K"O, "C!"O, "A"N, "A"O, "A"\"O, "A"\"O, "A"\"O, "A"								
						Ar'*O'H, **Cl''O'H, **NaS								

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001;2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS	FRADCHEM LABSPS, 04 2
DATE RECEIVED:_	40/06/10
DATE EXPIRED:	00/01/3005 VOS
DATE OPENED:	01/90/04
INORG: 4434	FO: F53301

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 04, 2003

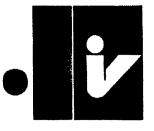
Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant


Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Stutten Known an Park Alaim

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 μ g/mL Vanadium in 1.4% HNO, (abs)

Catalog Number: CGV1-1, CGV1-2 and CGV1-5

Starting	Material	:
Starting	Material	Purity:
Starting	Material	Lot No:

Lot Number: T-V02032

TIMEN	KGANIU	LABS/	RADCH	EM L	ABS -	
DATE	RECEIV	ED:	u/5/63	<u></u>		
DATE	RECEIV EXPIRE	D:	12/1/2	2004	N	_
DATE	OPENEL	:	15/03			
INORG	OPENET	21	_PO:_	F50.	<i>258</i>	

CERTIFIED CONCENTRATION: 990 ± 2 µg/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Vanadium Pentoxide

99.999% 46

Certified Value
$$(x) = \frac{\sum x}{n}$$

Uncertainty (±) =
$$2[(\sum_{s})^2]^{1/2}$$

(x) = mean

 $x_i = individual results$

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 993 \pm 4 μ g/mL

Method: EDTA Titration vs NIST SRM 928 Lead Nitrate.

Instrument Analysis: 990 ± 2 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3165.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu g/mL$:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

М	Af	0.0095	M	Dν	< 0.00060	<u>M</u>	Li	< 0.0010	<u>M</u>	Pr	< 0.000030	M	Te	< 0.0030
			_				-					_		
M	Sb	0.042	<u>M</u>	Er	< 0.00050	M	Ļu	< 0.000040	M	Re	< 0.00010	. <u>M</u>	ТЬ	<0.000030
M	As	< 0.0010	M	Eu	< 0.00030	M	Mg	0.0089	<u>M</u>	Rh	<0.00010	M	TI	< 0.00010
M	Ba	<0.0010	W	Gd	< 0.00010	į	Mn		<u>M</u>	Rb	< 0.00010	M	Th	< 0.00010
M	Be	<0.000050	M	Ga	< 0.00010	<u>į</u>	Hg		<u>M</u>	Ru	<0.00020	<u>M</u>	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060	<u>M</u>	Мо	0.016	M	Sm	<0.00010	M	Sn	< 0.00050
M	В	< 0.0070	M	Αu	< 0.00030	M	Nd	< 0.00020	M	Sc	< 0.0010	M	Ti	< 0.0050
M	Cđ	< 0.00030	<u>M</u>	Hf	< 0.00020	Q	Ni	< 0.050	<u>o</u>	Se	<0.40	M	W	0.00055
<u>o</u>	Ca	< 0.010	<u>M</u>	Ho	<0.000050	<u>M</u>	Nb	0.00024	<u>0</u>	Si	<0.030	<u>M</u>	U	0.0011
M	Се	< 0.00050	<u>o</u>	in	<0.070	<u>D</u>	Os		<u>M</u>	Ag	0.00044	<u>s</u>	٧	
M	Cs	< 0.000030	<u>M</u>	ir	< 0.00050	M	Pd	< 0.00050	<u>o</u>	Na	< 0.090	M	Υb	< 0.00010
Q	Cr	< 0.020	<u>o</u>	Fe	< 0.050	<u>. 1</u>	P		M	Sr	<0.000050	M	Υ	< 0.0040
Q	Co	< 0.050	<u>M</u>	La	< 0.000050	M	Pt	< 0.00020	n_	S		M	Zn	0.0041
M	Cu	< 0.00060	<u>M</u>	Pb	<0.00030	Ū	K		<u>M</u>	Ta	<0.00070	M	Zr	<0.00050

M - checked by ICP-MS

O - checked by ICP-OES

i - spectral interference

n - not checked for

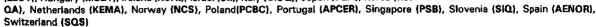
s - solution standard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.015 g/mL

(over)

QA:KLR#.082202DR

Quality Assurance Manager


Paul R. Haines

EXPIRES 182004

QUALITY STANDARD DOCUMENTATION

1. ISO 9001 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ŌQS), Belgium (Avinter), Brazil (FCAV), Cenada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCRC), Portugal (APCER), Signapore (PS

- 2. ISO Guide 25 A2LA ,Accredited (Certificate Number 0883-01)
- 3. MIL-STD-45662A
- 4. 10CFR50 Appendix B
- 5. 10CFR21

Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2

µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The In-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.


TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Zinc in 1.4% (abs) HNO3

Catalog Number:

CGZN1-1, CGZN1-2, and CGZN1-5

Lot Number:

W-ZN02018

Starting Material:

Zn shot

INORGANIC LABS/RADCHEM LABS

Starting Material Purity (%):

99.999889

DATE RECEIVED: ___id

Starting Material Lot No

J17L26

DATE EXPIRED:___
DATE OPENED:___

Matrix:

1.4% (abs) HNO₃

INORG: 43/9 FO: F53258

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1006 ± 3 µg/mL

Certified Density:

1.011 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C)⊐=mean

n

x = individual results

n = number of measurements

Uncertainty (±) = 2[(@'s_i)²]1/2

N1/2

BS = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

?: "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

11 This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

1002 ± 6 µg/mL

ICP Assay NIST SRM 3168a Lot Number: 001402

Assay Method #2

1006 ± 3 μg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98, All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

	,														
O A < 0	.00200 <u>M</u>	Dy <	0.02440	ō	Li		0.00001	M	Pr	<	0.00122	M	Te	<	0.12198
M Sb < 0	.00203 <u>M</u>	Er <	0.02033	М	Lu	<	0.00163	M	Re	<	0.00407	M	Tb	<	0.00122
<u>M</u> As < 0	.04066 <u>M</u>	Eu <	0.01220	Q	Mg		0.00011	M	Rh	<	0.00407	<u>M</u>	TI	<	0.00407
<u>M</u> Ba < 0	.04066 <u>M</u>	Gd <	0.00407	M	Mn	<	0.01626	M	Rb	<	0.00407	M	Th	<	0.00407
<u>M</u> Be < 0	.00203 <u>M</u>	Ga <	0.00407	<u>0</u>	Hg	<	0.01000	M	Ru	<	0.00813	M	Tm	<	0.00163
<u>M</u> Bi < 0	.00163 <u>M</u>	Ge <	0.02440	М	Мо	<	0.00813	<u>M</u>	Sm	<	0.00407	<u>M</u>	Sn	<	0.02033
<u>O</u> B 0	.00015 <u>M</u>	Au <	0.01220	M	Nd	<	0.00813	M	Sc	<	0.04066	M	Ti	<	0.20331
<u>₩</u> Cd < 0	.01220 <u>M</u>	Hf <	0.00813	<u>o</u>	Ni		0.00009	М	Se	<	0.03253	М	W	<	0.04066
<u>O</u> Ca 0	.00022 <u>M</u>	Ho <	0.00203	M	Nb	<	0.00203	0	Şi	<	0.00400	M	U	<	0.00813
<u>M</u> Ce < 0	.02033 <u>M</u>	in <	0.04066	ū	Os			M	Ag	<	0.00813	M	٧	<	0.00813
<u>M</u> Cs < 0	.00122 <u>M</u>	ir <	0.02033	M	Pd	<	0.02033	<u>o</u>	Na		0.00055	M	Yb	<	0.00407
<u>O</u> Cr < 0	0.00100 <u>Q</u>	Fe	0.00005	Q	P	<	0.00300	М	Sr	<	0.00203	<u>M</u>	Y	<	0.16264
<u>M</u> Co < 0	0.01220 <u>M</u>	La «	0.00203	<u>M</u>	Pt	<	0.00813	ō	S	<	0.02000	<u>\$</u>	Zn		
Q Cu < 0	0.00050 <u>M</u>	Pb <	0.01220	Q	ĸ		0.00018	M	Та	<	0.02846	M	Zr	<	0.02033
M - Checked by	y ICP-MS 0 -	Checke	d by ICP-OES	i - S	pect	al i	nterference	n - I	Not C	hed	cked For	s - :	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 = €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 65.39; +2; 4; Zn(OH)(aq)"

Chamical Compatibility - Stable in HCI, HNO, H,SO, HF, H,PO. Avoid basic media that promotes the formation of insoluble carbonate and hydroxide. Stable with most metals and inorganic anions in addic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1.5% HNO, /LDPE container.

Zn Containing Samples (Preparation and Solution) - Metal (Solutio in HNO,); Oxides (Solutio in HCl.); Ores (Dissolve in HCl.); Organic based (Dry ash at 450 © and dissolve ash in HCl.) (Sulturic/per oxide add digestion)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

<u>Technique</u>	Line	Estimated D.L.	Order	<u>Type Interferences (underlined indicates severe at affoncs.)</u>
ICP-OES :	213.856 nm	0.002 / 0.0004 µg/mL 1	atom	Ni, Ou, V
ICP-OES :	202.548 nm	0.004 / 0.0002 µg/mL 1	ion	Nb, Cu, Co, Hf
ICP-OES :	206,200 nm	0,006 / 0.0006 µg/mL 1	ion	Sb, Ta, Bi, Os
ICP-MS	66 amu	7 ppt	n/a	M· ` · ••TI••O,••Cr∗•O, ••V••O, ••S••O,, ••S••O•O, ••S••O₀, ••S••O•O,
		••		ngh S. ng,

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belglum (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Pale (AFACE), See (AFACE),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: May 02, 2003

Expiration Date:

1:2004

12.0 NAMES AND SIGNATURES OF CERTIFY

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Dad.

fold Stratter

INORGANIC LAE	S/RADCHEM	LABS 2
DATE RECEIVED:	11/5/03	247
DATE RECEIVED: DATE EXPIRED: DATE OPENED:	12/1/2004	DR
DATE OPENED:	11/5/03	
INORG: 43/9	PO: <i>P</i> 3	52568

2.0

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM	Custom-Grade 10000 µ	ıg/mL Magnesium in 1.4% (abs) HNO3	
Catalog Number: Lot Number:	CGMG10-1 and CGMG T-MG03006	÷10-5	
Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	Mg metal 99,9968 RML91191 1.4% (abs) HNO3	INORGANIC LABS/RADCHEM LABS%: DATE RECEIVED: 07/31/03 DATE EXPIRED: 08/01/03 INORG: 4304 PD: F53391	3 3
CERTIFIED VALUES AND			

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

9921 ± 20 µg/mL

Certified Density:

1.050 g/mL (measured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (s) = $\sum x$

(x) = mean

x = individual results

n = number of measurements

Uncertainty (±) = $2((\sum_{s_i})^{r_i}$

S = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

9998 ± 20 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2

9921 ± 20 µg/mL

ICP Assay NIST SRM 3131a Lot Number: 991107

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceablity numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm.

		1	1	i e
Q AI 0.02454	M Dy < 0.02455	Q Li 0.00797	M Pr < 0.00123	M Te < 0.12275
M Sb 0.00306	M Er < 0.02046	M Lu < 0.00164	M Re < 0.00409	M Tb < 0.00123
M As < 0.04092	M Eu < 0.01228	<u>s</u> Mg	M Rh < 0.00409	M TI < 0.00409
M Ba < 0.04092	M Gd < 0.00409	M Mn < 0.01637	M Rb < 0.00409	M Th < 0.00409
<u>Q</u> Be < 0.00017	M Ga < 0.00409	Q Hg < 0.00900	M Ru < 0.00818	M Tm < 0.00164
M Bi < 0.00164	M Ge < 0.02455	M Mo < 0.00818	M Sm < 0.00409	M Sn < 0.02046
<u>O</u> B 0.00871	M Au < 0.01228	M Nd < 0.00818	M Sc < 0.04092	Q Ti 0.10206
M Cd < 0.01228	M Hf < 0.00818	Q Ni 0.01404	M Se < 0.03273	<u>M</u> W < 0.04092
Q Ca 0.01070	M Ho < 0.00205	M Nb < 0.00205	<u>Q</u> Si 0.03186	M U < 0.00818
M Ce < 0.02046	M In < 0.04092	п Os	M Ag < 0.00818	M V < 0.00818
M Cs < 0.00123	M ir < 0.02046	M Pd < 0.02046	<u>O</u> Na 0.01817	M Yb < 0.00409
Q Cr 0.02315	Q Fe 0.02467	Q P < 0.01600	M Sr < 0.00205	M Y < 0.16367
M Co < 0.01228	M La < 0.00205	M Pt < 0.00818	n s	Q Zn 0.01892
Q Cu 0.00672	Q Pb 0.03236	<u>Q</u> K < 0.05000	M Ta < 0.02864	<u>M</u> Zr < 0.02046
M - Checked by ICP-MS	O - Checked by ICP-OES	I - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 \pm 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence, Coordination Number; Chemical Form in Solution - 24.305, +2; 6, Mg(H₂O), 2

Chemical Compatibility - Soluble in HCl, HNO_s, and H,SO_s avoid HF, H,PO_s and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicates, carbonates, hydroxides, oxides, and tungstates in neutral and slightly addic media.

Stability - 2-100 ppb levels stable for months in 1% HNO₁ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO₂ / LDPE container.

Mig Containing Samples (Preparation and Solution) - Metal (Best dissolved in diluted HNO₂); Oxide (Readily solutions compatible aqueous acidic solutions). Ores (Carbonate fusion in Pt¹ followed by HCI dissolution); Organic Matrices (Sulfuric / peroxide digestion or nitric / sulfuric / perchloric acid decomposition, ordry esh and dissolution in dilute HCI).

Atomic Spectroscopic Information (ICP-0ES D.L.s are given as radial/axial view):

Technique/Line		Line	Estimated D.L.	<u>Order</u>	Type	<u>Interferences (underlined indicates severe at = concs.)</u>			
ICP-C	ES	279.553 nm	0.0002 / 0.00003 µg/mL	1	ion	Th			
ICP-C	ŒS	280.270 nm	0.0003 / 0.00005 µg/mL	1	ion	U, V			
ICP-C	ÆS	285,213 nm	0.002 / 0.00003 µg/mL	1	etom	U, Hf,Cr, Zr			
ICP-N	AS.	24 amu	42 ppt	n/a	M'	/Li ¹⁸ O, ⁴⁸ Ti ¹² , ⁴⁸ Ca ¹²			

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ŌQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (ROBC), Poland (ROBC), Statistical (ROBC),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOR	GANIC	LABS/	RADCHEM	LABS1	B. 2 cf 2
DATE	RECEIV	/ED:	07/31,	/o3	
DATE	EXPIRE	ED:	08/01	12004	VØ
DATE	OPENE);	08/01/	03	
INORG	1: 420	Ψ.	_PO: F	52391	

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 28, 2002

Expiration Date:

O.1 40 00 A

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, QA Administrator

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Paux Main

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION 1000 μg/mL Silver in 3.5% HNO, (abs)

Catalog Number: CGAG1-1, CGAG1-2 and CGAG1-5

Starting Material Lot No:

Lot Number: T-AG02015		INORGANIC LABS/ DATE RECEIVED:	
Starting Material:	Silver Metal	DATE EXPIRED:	4006/10/90
Starting Material Purity:	99.999%	DATE OPENED:	<u> </u>

DATE EXPIRED: 09/01/2004 V05
DATE OPENED: 08/26/03
INORG: 4222 FO: E5224

estimated errors.

CERTIFIED CONCENTRATION: 1001 \pm 2 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value
$$\langle \bar{x} \rangle = \frac{\sum_{x_i}}{n}$$
 Uncertainty $(\pm) = \frac{2[(\sum_{s_i})^2]^{1/2}}{(n)^{1/2}}$

F15102

 $x_i = individual results$ n = number of measurements $\sum S_i$ = The summation of all significant (x) = mean

Classical Wet Assay: 1004 ± 3 µg/mL

Method: Volhard Titration vs NIST SRM 999a Potassium Chloride

Instrument Analysis: 1001 $\pm 2 \mu g/mL$

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3151.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN μ g/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm .

Q	Al	< 0.00010	M	Dv	< 0.00060	Q	ш	< 0.000030	<u>M</u>	Pr	< 0.000030	<u>0</u>	Te	< 0.030
<u>M</u>	Sb	< 0.000050	M	Er	< 0.00050	M	Lu	< 0.000040	M	Re	< 0.00010	M		<0.000030
<u>o</u>	As	< 0.0050	M	Eu	< 0.00030	ō	Ma	< 0.000040	M	Rh	< 0.00010	M	Tì	
M	Ba	<0.0010	M	Gd	< 0.00010	ō	Mn	< 0.00030	M	Rb	< 0.00010	<u>M</u>	• • •	<0.00010
<u>o</u>	Be	< 0.00050	M	Ga	< 0.00010	ō	Hg	0.00090	M	Ru	< 0.00020	M	Tm	< 0.000040
<u>M</u>	8i	< 0.000040	M	Ge	< 0.00060	M	Mo	< 0.00020	M	Sm	< 0.00010	M	Sn	< 0.00050
0	В	< 0.0020	ō	Αu	<0.012	M	Nd	< 0.00020	M	Sc	< 0.0010	ō	Ti	<0.00070
ō	Cd	< 0.0020	M	Hf	< 0.00020	2	Ni	< 0.0070	<u> </u>	Se	< 0.036	M	w	< 0.0010
ō	Ca	< 0.000050	M	Ho	< 0.000050	M	Nb	< 0.000050	<u> </u>	Si	< 0.0030	M	Ü	< 0.00020
м	Ce	< 0.00050	ō	In	< 0.020	_	Ов		-	Ag		M	V	< 0.00020
м	Ca	< 0.000030	M	ir	< 0.00050	M	Pd	< 0.00050	ō	Na	< 0.090	M	Yb	< 0.00010
<u>o</u>	Cr	< 0.0020	<u></u>	Fe	< 0,00070	ō	P	< 0.030	<u>M</u>	Sr	< 0.000050	M	Y	< 0.0040
M	Co	< 0.00030	M	Le	< 0.000050	<u>M</u>	Pt	< 0.00020	<u> </u>	S	< 0.020	ō	Zn	< 0.0010
M	Cu	< 0.00060	M	Pb	< 0.00030	<u> </u>	K	< 0.0060	<u>M</u>	Ta	< 0.00070	M	Zr	< 0.00050

M - checked by ICP-MS

O - checked by ICP-OES

i - spectral interference

n - not checked for

s - solution standard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.024 g/mL

QA:KL nov.00210200

Quality Assurance Manager

Expires:

QUALITY STANDARD DOCUMENTATION

1.ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium
(Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT).

(CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Siovenia (SIQ), Spain (AENOR), Switzerland (SQS)

2.ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate 883.02

3.ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate 883.01

4.MIL-STD-45662A

5.10CFR50 Appendix B - Nuclear Regulatory Commission - Domestic Licencing of Production and Utilization Facilities 6.10CFR21 - Nuclear Regulatory Commission - Reporting Defects and Non-Compliance

Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799 INT'L 1-732-901-1900 FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures / iv

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM 2.0

Custom-Grade 1000 µg/mL Arsenic in 1.4% (abs) HNO3

Catalog Number:

CGAS1-1, CGAS1-2, and CGAS1-5

Lot Number:

W-AS02022

Starting Material:

POLYCRYSTALINE LUMP

Starting Material Purity (%):

99.998994

Starting Material Lot No

23115

Matrix:

1.4% (abs) HNO₃

INORGANIC LABS/RADCHEM LABS 442

DATE RECEIVED: 01/30/04

3.0 **CERTIFIED VALUES AND UNCERTAINTIES** DATE EXPIRED: 0a/01/a05 4010010

DATE OPENED:

Certified Concentration:

 $1014 \pm 3 \mu g/mL$

INURG: 4433 PU: F52301

Certified Density:

1.012 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C⊒ = mean

x₁ = individual results

Uncertainty $(\pm) = 2[(\alpha + 5)]$

n = number of measurements

BS = The summation of all significant estimated errors.

(Most common are the errors from instrumental me asurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $1014 \pm 3 \mu g/mL (Avg 2 runs)$

ICP Assay NIST SRM 3103a Lot Number: 891003

Assay Method #2

1008 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P1452, 176240/P14452, 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al 0.00038	<u>M</u> Dy < 0.01596	<u>о</u> и 0.00009 <u>М</u> Pr < 0.00080	<u>M</u> Te < 0.07978
O Sb < 0.01000	<u>M</u> Er < 0.01330	<u>M</u> Lu < 0.00106 <u>O</u> Re < 0.01000	<u>M</u> Tb < 0.00080
<u>s</u> As	<u>M</u> Eu < 0.00798	<u>O</u> Mg 0.00009 <u>M</u> Rh < 0.00266	<u>M</u> Ti < 0.00266
<u>M</u> Ba < 0.02660	M Gd < 0.00266	<u>Q</u> Mn < 0.00003 <u>M</u> Rb < 0.00266	<u>M</u> Th < 0.00266
<u>M</u> Be < 0.00133	M Ga < 0.00266	<u>O</u> Hg < 0.01200 <u>M</u> Ru < 0.00532	<u>M</u> Tm < 0.00106
M Bi < 0.00106	M Ge < 0.01596	<u>M</u> Mo < 0.00532 <u>M</u> Sm < 0.00266	<u>O</u> Sn 0.00049
<u>O</u> B < 0.01200	<u>M</u> Au < 0.00798	M Nd < 0.00532 M Sc < 0.02660	<u>M</u> Ti < 0.13297
M Cd < 0.00798	<u>M</u> Hf < 0.00532	<u>M</u> Ni < 0.02128 <u>M</u> Se < 0.02128	<u>M</u> W < 0.02660
O Ca 0.00189	M Ho < 0.00133	<u>O</u> Nb < 0.00200 <u>O</u> Si 0.00415	<u>M</u> U < 0.00532
M Ce < 0.01330	<u>M</u> in < 0.02660	<u>n</u> Os <u>M</u> Ag < 0.00532	<u>M</u> V < 0.00532
M Cs < 0.00080	<u>M</u> ir < 0.01330	M Pd < 0.01330 O Na 0.00159	<u>M</u> Yb < 0.00266
M Cr < 0.01330	<u>O</u> Fe < 0.00110	Q P < 0.00260 M Sr < 0.00133	<u>M</u> Y < 0.10638
<u>M</u> Co < 0.00798	<u>M</u> La < 0.00133	M Pt < 0.00532 O S < 0.02500	O Zn 0.00057
<u>M</u> Cu < 0.01596	M Pb < 0.00798	<u>O</u> K 0.00132 <u>M</u> Ta < 0.01862	<u>M</u> Zr < 0.01330
M - Checked by ICP-MS	O - Checked by ICP-OES	I - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 74.9216; mix of +3 and +5; 6; H_aAsO_a and HAsO_a

Charrical Compatibility -Arsenic has no extionic chemistry. It is soluble in HCl, HNO₄,H₄PO₄, H₃SO₄ and HF aqueous matrices water and NH₄OH. It is stable with most inorganic anions (forms ersenate when boiled with chromate) but many cationic metals form the insoluble ersenates under pH neutral conditions. When fluorinated and / or under acidic conditions ersenate formation is typically not a problem at moderate to low concentrations.

Stability - 2-100 ppb levels stable for months alone or mixed with other elements at equivalent levels in 1% HNO₃ / LDPE container, 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

As Containing Samples (Preparation and Solution) - As* (soluble in 1:1 H₂O /HNO₈). Oxides (the oxide exists in crystalline and amorphous forms where the amorphoric form is more water soluble. The oxides typically dissolve in dilute addic solutions when boiled), Minerals (One gram of powered sample is fused in a Ni* crucible with 10 grams of a 1:1 mix of K₂CO₈ and KNO₈ and the melt extracted with hot water); Organic Matrices (0.2 to 0.5 grams of the sample are fused with 15 grams of a 1:1 Na₂CO₈ /Na₂O₂ mix in a Ni* crucible. The fuseate is extracted with water and additied with HNO₈)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/extel view):

Technique/Line	Estimated D.L. Ord	der <u>Tyme</u> atom	Intellenences (nuderlined judicates severe a rampolica")
ICP-OES 189.042 nm	0.05 / 0.005 µg/mL 1	atom	Cr ^{**}
ICP-OES 193.696 nm	0.1 / 0.01 µg/mL 1	atom	V, Ge
ICP-OES 228.812 nm	0.1 / 0.01 Light 1	etom	Cd, Pt, Ir, Co **Ap**Ci, **Co**O, **Ap**Ap**H, **Ap**Ci, **Ap**K, '**Nd**, '**Sm**
ICP-MS 75 amu	20 ppt n/e	M'	aveci' acoao' aveaviH' aveaci' avek', ave, acu

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Deliver (NSAI), Ireland (NSAI), Israel (SII), Spain (AFAQE), Switzerland (SOS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGA	NIC LABS	/RADCHEM	LABSPS.	2043
DATE RE	CEIVED:_	01/20	1/04 	
DATE EX	CEIVED:_	09(0)	12005	702
DATE OF	ENED:	01/90	104	
	4433			

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: May 01, 2003

Expiration Date: EXPIRES

11£2005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Strutten known an Paux Aaim

H

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM

Custom-Grade 1000 µg/mL Lead in 0.35% (abs) HNO3

Catalog Number:

CGPB1-1, CGPB1-2, and CGPB1-5

Lot Number:

W-PB02114

Starting Material:

Pb(NO3)2

Starting Material Purity (%):

99.999974

Starting Material Lot No

22150

Matrix:

0.35% (abs) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1006 ± 2 µg/mL

Certified Density:

1,002 g/mL (measured at 22° C)

The Certified Value is the wet assay value. The following equations are used in the calculations of the certified value and the uncertainty:

 $x_i = individual results$

Certified Value (C) = exx

(C)1 = mean

n

n = number of measurements

Uncertainty (±) = $2[(\varrho_T s_i)^2]^{1/2}$

21/12 ES = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $1005 \pm 2 \mu g/mL$

ICP Assay NIST SRM 3128 Lot Number: 991504

Assay Method #2

1006 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-iMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u>	Al	<	0.00270	M	Dу	<	0.01193	<u>0</u>	LI	<	0.00002	М	Pr	<	0.00060	!	VI	Те	<	0.05965	
M	Sb	<	0.00099	М	Er	<	0.00994	M	Lu	<	0,00080	M	Re	<	0.00199	!	M	Τb	<	0.00060	
M	As	<	0.01989	M	Eu	<	0.00597	Q	Mg		0.00008	ō	Rh	<	0.00900	9	2	TI		0.00130	
<u>M</u>	Ва	<	0.01989	M	Gđ	<	0.00199	M	Mn	<	0.00795	М	Rb	<	0.00199	ا ا	<u>v</u>	Th	<	0.00199	
М	Ве	<	0.00099	М	Ga	<	0.00199	<u>o</u>	Hg	<	0.01500	M	Ru	<	0.00398	!	M	Tm	<	0.00080	
<u>o</u>	Ві	<	0.02000	W	Ge	<	0.01193	M	Мо	<	0.00398	М	Sm	<	0.00199	ا	M	Sn	<	0.00994	
ō	В	<	0.04000	M	Au	<	0.00597	<u>M</u>	Nd	<	0.00398	М	Sc	<	0.01989	!	Ñ	TI	<	0.09942	
<u>M</u>	Cd	<	0.00597	M	Hf	<	0.00398	М	Ni	<	0.01591	М	Se	<	0.01591	1	<u>v1</u>	W	<	0.01989	_
ō	Ca		0.00009	M	Но	<	0.00099	<u>M</u>	Nb	<	0.00099	Q	Si	<	0.00340] !	<u>v</u>	U	<	0.00398	
M	Се	<	0.00994	M	In	<	0.01989	Ū	Os			М	Αg	<	0.00398	!	<u> </u>	٧	<	0.00398	
М	Cs	<	0.00060	M	lr	<	0.00994	M	Pd	<	0.00994	0	Na	<	0.00600	!	<u>vi</u>	Υb	<	0.00199	
M	Cr	<	0.00994	2	Fe		0.00011	Q	P	<	0.00500	М	Sr	<	0.00099	!	<u> </u>	Y	<	0.07954	
M	Со	<	0.00597	М	La	<	0.00099	M	Pt	<	0.00398	0	s	<	0.10000	!	<u>v</u>	Zn	<	0.03977	
M	Cu	<	0.01193	ş	Pb			Q	ĸ	<	0.00180	М	Ta	<	0.01392	Į	<u> </u>	Zr	<	0.00994	
М - С	Chec	ked	by ICP-MS	0-	Chec	kec	by ICP-OES	1 - S	pect	al I	nterference	n - I	Not C	hed	cked For	s	- S	olutio	on S	Standard Eleme	nt

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipel from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 207.2; +2; 6; Pb(H₂O), 12

Chemical Competibility - Soluble in HCl, HF and HNO₃. Avoid H₃SO₄. Stable with most metals and inorganic anions forming insoluble carbonate, borate, <u>sulfate</u>, sulfite, sulfite, phosphate, oxalate, <u>chromate</u>, tennate, indate, and cyanide in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO₃ / LDPE container.

Pb Containing Samples (Preparation and Solution) - Metal (Best dissolved in 1:1 H₂O / HNO₃) Oxides (The many different Pb oxides are soluble in HNO₃ with the exception of PbO₂ which is soluble in HCl or HF); Ores and Alloys (Best attacked using 1:1 H₂O / HNO₃) Organic Matrices (Dry ash and dissolve in dilute HCl.).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at affoncs.)
ICP-OES 168.215 nm	0.03 / 0.003 µg/mL	1	ion	Co
ICP-OES 220,353 nm	0.04 / 0.006 µg/mL	1	ion	Bi,Nb
ICP-0ES 217.000 nm	0.09 / 0.03 µg/mL	1	atom	W, Ir, Hf, Sb, Th
ICP-MS 208 amu	5 ppt	n/a	M'	(azptigo, gaosigo

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopen during which the concentration of the analyte(s) in a properly packaged, unopen during unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate te a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Januar> 23, 2003
XPIRES 3
1 2000 -
TATOUT SE

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant


Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

follow Stuttern and Park Alain

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer:

Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are
determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates
and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials,"
and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 μg/mL Antimony in 0.7% (abs) HNO₃ / 3% Tartaric Acid

Catalog Number:

CGSB1-1, CGSB1-2 and CGSB1-5

Lot Number:

W-SB02078

Starting Material:

Sb shot

Starting Material Purity (%): Starting Material Lot No

99.989188

Matrix:

D17L24 0.7% (abs) HNO₃ / 3% Tartaric Acid

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1005 \pm 2 \mu g/mL$

Certified Density:

1.019 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

n

x_i = individual results

n = number of measurements

Uncertainty $(\pm) = 2[(\alpha + 5)]^{\frac{1}{2}}$

BS = The summation of all significant estimated errors.

(Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1005 ± 2 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3102a Lot Number: 990707

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

INORGANIC LABS/RADCHEM LABS 8046 2
DATE RECEIVED: 03/04005 V05
DATE EXPIRED: 03/04005 V05
DATE OPENED: 03/05/04
INORG: 4404 PD: F5333

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P146
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q Al 0.04519	<u>M</u> Dy < 0.00597	Q Li 0.00004 M Pr < 0.00030	<u>M</u> Te < 0.02983
<u>S</u> Sb	<u>M</u> Er < 0.00497	M Lu < 0.00040 M Re < 0.00099	M Tb < 0.00030
<u>M</u> As < 0.00994	M Eu < 0.00298	Q Mg 0.00171 M Rh < 0.00099	M TI 0.00040
O Ba 0.00003	M Gd < 0.00099	<u>Q</u> Mn 0.00321 <u>M</u> Rb < 0.00099	M Th < 0.00099
Q Be < 0.00001	<u>M</u> Ga < 0.00099	Q Hg < 0.01500 M Ru < 0.00199	<u>M</u> Tm < 0.00040
M Bi 0.00170	M Ge < 0.00597	<u>M</u> Mo < 0.00199 <u>M</u> Sm < 0.00099	M Sn 0.00050
O B 0.00100	M Au < 0.00298	M Nd < 0.00199 Q Sc < 0.00016	Q Ti 0.00131
M Cd < 0.00298	<u>M</u> Hf < 0.00199	Q Ni 0.00100 M Se < 0.49711	<u>M</u> W < 0.00994
O Ca 0.00884	<u>M</u> Ho < 0.00050	<u>M</u> Nb < 0.00050 Ω Si 0.00502	<u>M</u> U < 0.00199
<u>O</u> Ce < 0.00300	<u>M</u> In < 0.00994	n Os <u>M</u> Ag < 0.00199	M V < 0.00199
M Cs < 0.00030	M ir < 0.00497	<u>M</u> Pd < 0.00497	<u>M</u> Yb < 0.00099
Q Cr 0.00954	<u>Q</u> Fe 0.01306	Q P < 0.04000 M Sr < 0.00050	<u>M</u> Y < 0.03977
M Co < 0.00298	Q La < 0.00120	M Pt < 0.00199 i S	Q Zn 0.00141
Q Cu 0.00321	M Pb 0.00060	<u>O</u> K 0.01004 <u>M</u> Ta < 0.00696	M Zr < 0.00497
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

severe at withouts.)

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 °C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 121.75; +3; & Sb(O)C.H.O.*

Charmical Compatibility - Stable in concentrated HCI, dilute or concentrated HF. Stable in dilute HNO₁ as the fluoride or tartrate complex. Avoid basic media. Stable with most metals and inorganic anions in acidic media as the tartrate provided the acidity is not too high or the acid is oxidizing causing loss of the stabilizing tartrate ion. The fluoride complex of artimony is stable in strong acid but you should only mix with other metals that are fluorinated.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-2% HNO₃ / LDPE container.

Sb Containing Samples (Preparation and Solution) - Metal and alloys (Soluble in H₂O / HF / HNO₂ mixture); Oxides (Soluble in HCl and tarteric acid or H₂O / HF / HNO₃ mixtures); Ores (Fusion with Na₂CO₂ in Pt[®] followed by dissolving the fuseate in a H₂O / HF / HNO₃ mixture); Organic based (Sulfuric acid / hydrogen peroxide digestion)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

<u>lechnique/Line</u>	ESTIMATED U.L.	Orger	IVDC	Interterences juncerlined indicates	
ICP-OES 206.833 nm	0.03 / 0.003 µg/mL.	1	atom	Ta, Cr, Ge, Hf	
ICP-OES 217.581 nm	0.05 / 0.005 µg/ml.	1	atom	Nb. W. Re, Fe,	
ICP-OES 231.147 nm	0.06 / 0.006 LighthL	1	atom	Ni. Co .Pt	
ICP-MS 121 amu	5 ppt	n.la	M'	'®Pd'®O, ®Y'®O₂	

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCBC), Portugal (APCFR), Singapore (PSB), Slovenia (SIQ), Spain (AFNOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR60 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INURGANIC	: LABS/RA	ADCHEM	LABS#3. 20	₽£
DATE RECEI	IVED:	09/95/	04	
DATE EXPIR	RED:	03/01/20	<u>25 v05</u>	
DATE OPENE	:D:	03/25/9	24	
INORG: 4	t64	0: E5	:3333	

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 23, 2003

Expiration Date:

182865

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By: JoAnn Struthers, QA Administrative Assistant

Certificate Approved By: Katalin Le, QC Supervisor

Certifying Officer: Paul Gaines, Chemist, Senior Technical Director

folh Stutten knowen an Paux Aaim

1.0

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Selenium in 1.4% (abs) HNO3 210

Catalog Number:

CGSE1-1, CGSE1-2, and CGSE1-5

Lot Number:

T-SE01102

Starting Material:

Se shot

Starting Material Purity (%):

99.9971

INORGANIC LABS/RADCHEM LABS % 1.4 2

Starting Material Lot No

C09L08

DATE RECEIVED: _____00/20/03 DATE EXPIRED: 07/01/2004

Matrix:

1.4% (abs) HNO₃

DATE OPENED: _____OG/03/03

INDRG: 415a PO: 150370

Эlo **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

995 ± 3 µg/mL

Certified Density:

1.010 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(Cor= mean:

x_i = individual results

n = number of measurements

Uncertainty $(\pm) = 2[(\underline{\alpha} + \underline{s})]^{1/2}$

#\$ = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement. weighing, dilution to volume, and the fixed error reported on the

NIST SPM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

in "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

11 This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

Assay Method #1

 $995 \pm 3 \mu g/mL (Avg. 2 runs)$

ICP Assay NIST SRM 3149 Lot Number: 992106

Assay Method #2

1002 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

ō	Al		0.00017	М	Dу	<	0.01196	0	u	<	0.00003	M	Pr	<	0.00060	M	Te	<	0.05981
M	Sb		0.00160	M	Er	<	0.00997	M	Lu	<	0.00080	0	Re	<	0.00900	M	Tb	<	0.00060
ō	As	<	0.00500	M	Eu	<	0.00598	0	Mg	<	0.00003	M	Rh	<	0.00199	М	TI	<	0.00199
M	Ва	<	0.01994	M	Gd	<	0.00199	M	Mn	<	0.00798	W	Rb	<	0.00199	M	Th	<	0.00199
Q	Ве	<	0.00009	M	Ga	<	0.00199	<u>o</u>	Hg		0.01950	0	Ru		0.00220	M	Tm	<	0.00080
<u>M</u>	Bi	<	0.00080	M	Ge	<	0.01196	<u>o</u>	Мо	<	0.00400	M	Sm	<	0.00199	M	Sn	<	0.00997
ō	В	<	0.00006	M	Αu	<	0.00598	M	Nd	<	0.00399	М	Sc	<	0.01994	М	π	<	0.09969
M	Çd	<	0.00598	M	Hf	<	0.00399	<u>o</u>	Ni	<	0.00090	<u>s</u>	Se			M	W	.<	0.01994
<u>0</u>	Ca		0.00200	M	Но	<	0.00100	<u>o</u>	Nb.	<	0.00400	Q	Si		0.00055	M	U	<	0.00399
М	Сe	<	0.00997	M	In	<	0.01994	n	Os			M	Ag		0.00070	M	٧	<	0.00399
М	Cs	<	0.00060	<u>M</u>	ir	<	0.00997	M	Pđ	<	0.00997	0	Na		0.00355	М	Yb	<	0.00199
M	Cr	<	0.00997	0	Fe		0.00060	<u>o</u>	P	<	0.00300	M	Sr	<	0.00100	М	Υ	<	0.07975
M	Со	<	0.00598	M	La	<	0.00100	М	Pt	<	0.00399	0	s		0.00500	М	Zn	<	0.03988
M	Cu	<	0.01196	M	Pb	<	0.00598	<u>o</u>	ĸ		0.00070	M	Ta	<	0.01396	<u>o</u>	Zr	<	0.00040
M - 0	Check	ed	by ICP-MS	0-	Che	kec	by ICP-OES	i - 8	pect	rai i	nterference	· n - 1	Not C	hed	cked For	s-	Soluti	on	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 . Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight: Valence: Coordination Number: Chemical Form in Solution - 78.96; +4; 6; H.SeO:

Chemical Competibility - Soluble in HCI, HNO₃, H₂PO₄, H₂SO₄ and HF aqueous matrices and water. It is stable with most inorganic anions but many extinnic metals form the insoluble selanites under pH neutral conditions. When fluorinated and/or under acidic conditions precipitation is typically not a problem at moderate to low concentrations.

Stability - 2-100 ppb levels - stable for morths alone or mixed with other elements at equivalent levels - in 1 % HNO₃ / LDPE container, 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

Se Containing Samples (Preparation and Solution) - Metal (Soluble in HNO_a); Oxides (Readily soluble in water); Minerals and alloys (Acid digestion with HNO_a or HNO_a / HF), Organic Matrices (Acid digestion with hot concentrated H₂SO₄ accompanied by the careful dropwise addition of H₂O₂ until clear)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique.		Estimated D.L.	Order	Type	Interferences (underlined indicates	severe at walloncs.)
ICP-OES	196.026 nm	0.08 / 0.006 µg/mL	1	atom	Fe	
ICP-OES	203.985 nm	0.2 / 0.05 µg/mL	1	atom	<u>Sb, Ir, Cr, Ta</u>	
ICP-OES :	206.279 nm	0.3 / 0.16 µg/mL	1	atom	Cr. <u>Pt</u>	
ICP-MS	82 amu	200 ppt	n/a	M'	'*C**Cl ₂	

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)
Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCBC), Portugal (APCER), Singapore (PSR), Slovenia (SIQ), Spain (AFNOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 • 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOR	GANIC	LABS/	RADCHE	M LA	BSR	3. a-f	2
DATE	RECEIV	ED:	06/8	0/03	<u> </u>		_
DATE	EXPIRE	D:	07/0	1/30	24	VOS	
DATE	OPENED):	06/	33/0	3		
	: 415						

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mt. low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: November 27, 2002

Expiration Date: EXPIRES

01 22 00 4

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, QA Administrator

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Paux Aaim

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Thallium in 0.5% (abs) HNO3 2.0

Catalog Number:

CGTL1-1, CGTL1-2, and CGTL1-5

Lot Number:

W-QTL01094

Starting Material:

TLNO3

Starting Material Purity (%):

99.996539

Starting Material Lot No Matrix:

3.0

22928 0.5% (abs) HNO3

INORGANIC LABS/RADCHEM LABS 8,245

DATE RECEIVED: 01/20/04

DATE EXPIRED: _______03/01/3005 **CERTIFIED VALUES AND UNCERTAINTIES** DATE OPENED:

40 ce 110 PO: F53301

Certified Concentration:

 $1001 \pm 4 \mu g/mL$

Certified Density:

1.002 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

 $x_i = Individual results$

n = number of measurements

Uncertainty (±) = $2[(\varphi_T s_j)^2]^{1/2}$

ES = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 $1001 \pm 4 \mu g/mL (Avg 2 runs)$

ICP Assay NIST SRM 3158 Lot Number: 993012

Assay Method #2

1000 ug/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

M	Αl	<	0.01000	M	Dу	<	0.00600	Q	Li	<	0.00002	M	Pr	<	0.00030	ļ !	M	Te	<	0.03000	
M	Sb	<	0.00050	M	Er	<	0.00500	M	Lu	<	0.00040	M	Re	<	0.00100	!	M	Tb	<	0.00030	
M	As	<	0.01000	M	Eu	<	0.00300	Q	Mg		0.00012	M	Rh	<	0.00100	3	£	TI			
M	Ва	<	0.01000	М	Gd	<	0.00100	М	Mn	<	0.00400	M	Rb	<	0.00100	1	M	Th	<	0.00100	
M	Ве	<	0.00050	M	Ga	<	0.00100	Q	Hg	<	0.01200	M	Ru	<	0.00200	!	M	Tm	<	0.00040	
M	Bi	<	0.00040	M	Ge	<	0.00600	<u>M</u>	Мо	<	0.00200	M	Sm	<	0.00100	1	M	Sn	<	0.00500	
Q	В	<	0.00140	M	Au	<	0.00300	<u>M</u>	Nd	<	0.00200	M	Sc	<	0.01000]	M	Ţi	<	0.05000	
Q	Cd		0.00150	М	Hf	<	0.00200	M	Ni	<	0.00800	M	Se	<	0.00800	1	M	W	<	0.01000	
Q	Ca		0.00085	M	Но	<	0.00050	M	Nb	<	0.00050	Q	Si	<	0.00340]	M	U	<	0.00200	
M	Се	<	0.00500	М	In	<	0.01000	Ω	Os			M	Ag		0.04000	· <u>!</u>	М	٧	<	0.00200	
M	Cs	<	0.00030	M	ir	<	0.00500	M	Pd	<	0.00500	Q	Na		0.00050]	M	Yb	<	0.00100	
M	Cr	<	0.00500	Q	Fe		0.00030	Q	P	<	0.00260	М	Sr	<	0.00050	ا ا	М	Y	<	0.04000	
M	Со	<	0.00300	M	La	<	0.00050	M	Pt	<	0.00200	0	s	<	0.03000	9	0	Zn		0.00110	
M	Cu	<	0.00600	M	Pb		0.00210	Q	ĸ	<	0.00180	М	Та	<	0.00700	į	M	Zr	<	0.00500	
M - (Chec	ked	by ICP-MS	٥-	Chec	ke	by ICP-OES	i - S	pect	al I	nterference	n - 1	Not C	hed	ked For	s	- \$	olutio	on S	Standard Elem	ent

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 204.383; +1; 6; TI(H,O); "

Chemical Compatibility - Soluble in HCi, HNO, and H,SO. Stable withmost metals and inorganic anions. The sulfite, thiocyanate and oxalete are moderately soluble; the phosphate and assenite are slightly soluble and the sulfide is insoluble. Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO, /LDPE container.

The Containing Samples (Preparation and Solution) - Metal (Best dissolved in HNO, which forms chiefly the Ti¹¹ Ion.); Oxide (The Ihallous oxide is readily soluble in water. The Ihallous oxide requires high levels of acid.) Ores (Carbonate fusion in Pt* followed by HCI dissolution); Organic Metrices (Sulfuric/peroxide digestion or dry ash and dissolution in HCI).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	ALine .	Estimated D.L.	<u>Order</u>	Type	Interferences (underlined indicates severe at	vedConcs.)
ICP-OES	190.864 nm	0.04 / 0.004 µg/mL	1	ion	V, Ti	
ICP-OES	276.787 nm	0.1 / 0.01 µg/mL	1	atom	Ta, V, Fe, Cr	
ICP-OES	351 .924 nm	0.2 / 0.02 µg/mL	1	atom	Th, Ce, Zr	
ICP-MS	205 amu	2 ppt	n/a	M.	'*Os*O	

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Polymet (APCER), Singapore (PSR), Slovenic (SIQ), Socie (AFNOR), Switzgland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	CINABLE	LABS/R	ADCHEM	LABST	みのみり
DATE	RECEIV	ED:	0179010	#	. miu erm airti (****
DATE	EXPIRE	D:	02/01/2	1005	V02
DATE	OPENED	# solt 1:01 pen ma	106/10	04	
INORG	3: 44 .	35	PU: IS	29307	

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: December 09, 2003

Expiration Date:

EXPIRES 1 2 1005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, Production Manager

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Klebbi Newman Knowlin an Pauk Laim

Certificate of Analysis

STOM-GRADE SOLUTION

1000 μ g/mL Lanthanum in 1.4% HNO₃ (abs)

Catalog Number: CGLA1-1 and CGLA1-5

Lot Number: T-QLA01057

Starting Material: Starting Material Purity: Starting Material Lot No: Lanthanum Oxide 99.999% LA-0-5-017

INORGANIC LABS/RADCHEM LABS DATE RECEIVED: 08/36/03 DATE EXPIRED: 09/01/2004 DATE OPENED: 08/86/03 INORG: 4201 PO: F50004

CERTIFIED CONCENTRATION: 1002 \pm 3 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (
$$x$$
) = $\sum_{n} x_n$

Uncertainty (±) = $2[(\sum_s)^2]^{1/2}$

(x) = mean

 $x_i = individual results$

= number of measurements $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 1002 ± 3 µg/mL

Method: EDTA Titration vs NIST SRM 928 Lead Nitrate.

Instrument Analysis: 1007 ± 3 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3127a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN μ g/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0:3 µm.

<u>o</u> .	ΑI	< 0.040	M	Dy	<0.00060	M	U	<0.0010	Ō	Pr	<0.020	<u>M</u>	Te	< 0.0030
M	Sb	< 0.000050	M	Er	0.0010	M	Lu	0.000040	<u>M</u>	Re	<0.00010	M	Tb	< 0.000030
<u>M</u>	Αs	< 0.0010	М	Eu	<0.00030	M	Mg	<0.0030	M	Rh	<0.00010	M	TI	< 0.00010
<u>0</u>	Ba	< 0.020	M	Gđ	0.039	M	Mn		M	Rb	< 0.00010	M	Th	< 0.00010
M	Be	< 0.000050	M	Ga	<0.00010	0	Hg	< 0.030	M	Ru	< 0.00020	M	Tm	< 0.000040
M	Bi	<0.000040	М	Ge	<0.00060	M	Мо	< 0.00020	M	Sm	0.00040	M	Sn	< 0.00050
<u>0</u>	В	< 0.020	M	Au	< 0.00030	M	Nď	0.00020	M	Sc	<0.0010	M	Ti	< 0.0050
M	Cd	< 0.00030	M	Hf	< 0.00020	<u>0</u>	Ni	< 0.050	<u>0</u>	Se	< 0.40	M	W	< 0.0010
0	Ca	< 0.010	M	Ho	0.00010	M	Nb	< 0.000050	Õ	Si	< 0.020	M	U	< 0.00020
į	Ce		Q	In	< 0.030	<u>n_</u>	Qs		M	Ag	< 0.00020	M	ν	< 0.00020
n	Св		M	ir	< 0.00050	M	Pd	< 0.00050	Q	Na	< 0.090	M	Yb	< 0.00010
M	Cr	< 0.00050	Q	Fe	< 0.050	Q	P	< 0.050	M	Sr	< 0.000050	M	Υ	< 0.0040
M	Co	< 0.00030	<u>s</u>	La		M	Pt	< 0.00020	n	S		M	Zn	< 0.0020
M	Cu	< 0.00060	M	Pb	< 0.00030	<u>n</u>	K		M	Ta	< 0.00070	M	Zr	< 0.00050

i - spectral interference

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.009 g/mL

(over)

s - solution standard element

QA:KSL Rev. 1217020H

M - checked by ICP-MS

Inorganic Ventures, Inc.

195 Lehigh Avenue • Suite 4 • Lakewood, NJ 08701 Orders: 800-669-6799 • FAX (732) 901-1903 Technical Support: 800-569-6799

O - checked by ICP-OES

Quality Assurance Manager

n - not checked for

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

> Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- 2. ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate 883.02
- 3. ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities 5.
- 6. 10CFR21 - Nuclear Regulatory Commission - Reporting Defects and Non-Compliance Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -The length of time that a properly stored and packaged standard will remain within the specified

> uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration, Inorganic Ventures' studies indicate that the shelf life of our 500 mL

bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

The date after which a standard solution should not be used. A one year expiration date is **Expiration Date** recommended by most state and federal regulatory agencies. Transpiration issues and repeated

use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

TEL 1-800-569-6799

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

E-MAIL IVtech@ivstandards.com INT'L 1-732-901-1900 FAX 1-732-901-1903

ventures inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade	1000 μg/mL Palladium in 3.3% (abs) HCL
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%):	CGPD1-1 and (W-PD02019 Pd(NO3)2 99.999248	CGPD1-5
	Starting Material Lot No Matrix:	11974A-00 3.3% (abs) H	INORGANIC LABS/RADCHEM LABS P9.40F3 DATE RECEIVED: 03/01/04 DATE EXPIRED: 03/01/005 YDO
3.0	CERTIFIED VALUES AND	UNCERTAINTIES	DATE OPENED: 03/01/04
	Certified Concentration:	994 ± 3 μg/mL	INORG: 4777 FO: F52333

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the

Certified Value (C) = exx

Certified Density:

calculation of the certified value and the uncertainty:

(C) = mean

1.022 g/mL (measured at 22° C)

x = individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(2a+5)]^{3/2}}{(n)^{1/2}}$

ES = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ *Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 994 ± 3 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3138 Lot Number: 990207

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al 0.00400	<u>M</u> Dy < 0.00060	O Li < 0.04000	<u>M</u> Pr < 0.00003	<u>O</u> Te < 0.01300
O Sb < 0.00500	<u>M</u> Er < 0.00050	M Lu < 0.00004	<u>M</u> Re < 0.00010	<u>M</u> Tb < 0.00003
O As < 0.01400	<u>M</u> Eu < 0.00030	O Mg < 0.01100	<u>O</u> Rh < 0.00600	<u>м</u> п < 0.00010
<u>M</u> Ba < 0.00100	M Gd < 0.00010	O Mn < 0.00650	<u>M</u> Rb < 0.00010	<u>M</u> Th < 0.00010
<u>O</u> Be < 0.00009	<u>M</u> Ga < 0.00010	<u>O</u> Hg < 0.01100	O Ru < 0.00200	<u>M</u> Tm < 0.00004
<u>M</u> Bi < 0.00004	<u>M</u> Ge < 0.00060	<u>M</u> Mo < 0.00020	<u>M</u> Sm < 0.00010	<u>O</u> Sn < 0.00700
<u>O</u> B < 0.00090	O Au < 0.00300	M Nd < 0.00020	<u>O</u> Sc < 0.00009	<u>Q</u> Ti < 0.00100
<u>O</u> Cd < 0.00600	M Hf < 0.00020	O Ni 0.01800	<u>M</u> Se < 0.00080	<u>M</u> W < 0.00100
<u>O</u> Ca 0.00700	<u>M</u> Ho < 0.00005	M Nb < 0.00005	<u>O</u> SI - 0.00600	<u>M</u> U < 0.00020
<u>M</u> Ce < 0.00050	<u>O</u> in < 0.03300	<u>n</u> Os	<u>O</u> Ag < 0.00670	<u>M</u> V < 0.00020
<u>M</u> Cs < 0.00003	<u>M</u> Ir < 0.00050	<u>S</u> Pd	O Na 0.01500	<u>M</u> Yb < 0.00010
O Cr 0.00450	<u>O</u> Fe 0.04600	O P 0.00600	<u>M</u> Sr < 0.00005	<u>M</u> Y < 0.00400
M Co < 0.00030	<u>M</u> La < 0.00005	O Pt < 0.00600	<u>O</u> S < 0.02500	<u>O</u> Zn < 0.00060
O Cu 0.00360	<u>M</u> Pb < 0.00030	O K < 0.02000	<u>M</u> Ta < 0.00070	<u>M</u> Zr < 0.00050
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 106.42 +2; 6; Pd(H,O),*

Chemical Competibility - Stable in HCl, HNO₃, H₃SO₄, HF, H₂PO₄ Avoid basic media. Stable with most metals and inorganic anions in acidic media. Avoid contact with water soluble organics such as aldehydes since Pd²¹ is easily reduced. Stability - 2-100 ppb levels. 2ppb Pd is stable for 1 day in 1% HNO₂ / LDPE container. 10 ppb is stable for 3d ays in 1% HNO₂ / LDPE container. 1-10,000 ppm solutions chemically stable for

years in 1-5% HNO₂ / LDPE container.

Pd Containing Samples (Preparation and Solution) - Metal (Solutie in HNO₂ or Aqua Regia), Oxides (Solutie in HCI), Ores (Dissolve in HCI / HNO₂).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial

ARCHIEC SPECIFORCHIEC BIRGHINGHICK-ACS DICTOR SIGNACHES (GRASSANG) ANSAS.											
Technique	<u>Line</u>	Estimated D.L.		Order		Interferences (underlined indicates	severe at acconcs.)				
ICP-OES	340.458 nm	0.04 / 0.003 µg/mL	1	atom	Ce, Th	, Zr					
ICP-OES	363.470 nm	0.05 / 0.007 µg/mL	1	atom							
ICP-OES	229.651 nm	0.07 / 0.004 µg/mL	1	ion	Co						
ICP-MS	105 amu	2 ppt		n/a	M'	*#W##Cfi ##A#O					

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

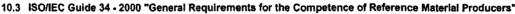
10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)


Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Poland (APCER), Singapore (PSR), Slovenia (SIQ), Spain (AFNOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SiQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BriwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RVA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life, Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 14, 2003

Expiration Date:

EXPIRES

INORGANIC LABS/RADCHEM LABS P3.0092
DATE RECEIVED: 03/01/04
DATE EXPIRED: 03/01/005 V0)
DATE OPENED: 03/01/04
INORG: 4477 P0: F50303

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Strutten known an Paux Aaim

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail; ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade 10	00 μg/mL Sulfur in H20
	Catalog Number:	CGS1-1 and CGS	S1-5
	Lot Number:	W-QS01098	INORGANIC LABS/RADCHEM LABS
	Starting Material:	H2SO4	DATE RECEIVED: 11/5/03 /03
	Starting Material Purity (%):	99.999965	DATE EXPIRED: 12/1/204 DR
	Starting Material Lot No	N38818	DATE OPENED:
	Matrix:		INORG: 43/7 FO: F52058
		H20	

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1010 \pm 2 \mu g/mL$

Certified Density:

1.000 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(⊏)≇= mean

n

x = individual results

n = number of measurements

Uncertainty (±) = 2[(275;)2]12

<u>5)²] 1/2</u>

#\$ = The summation of all significant estimated errors
(Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

D "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 A

Assay Method #1

998 ± 8 µg/mL

ICP Assay NIST SRM 3154 Lot Number: 892205

Assay Method #2

1010 ± 2 µg/mL

Acidimetric NIST SRM 84k Lot Number: 84k

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	Al		0.00025	М	Dу	<	0.01197	<u>0</u>	Li	<	0.00016	M	Pr	<	0.00060	M	Те	<	0.05984
. <u>M</u>	Sb	<	0.00100	M	Er	<	0.00997	M	Lu	<	0.00080	M	Re	<	0.00200	<u>M</u>	Tb	<	0.00060
M	As	<	0.01995	<u>M</u>	Eu	<	0.00598	Q	Mg	<	0.00004	M	Rh	<	0.00200	M	TI	<	0.00200
M	Ba	<	0.01995	M	Gd	<	0.00200	M	Mn	<	0.00798	M	Rb	<	0.00200	M	Th	<	0.00200
Q	Be	<	0.00200	M	Ga	<	0.00200	Q	Hg	<	0.01100	M	Ru	<	0.00399	M	Tm	<	0.00080
M	Bi	<	0.00080	М	Ge	<	0.01197	<u>M</u>	Мо	<	0.00399	М	Sm	<	0.00200	M	Sn	<	0.00997
Q	В	<	0.00990	W	Αυ	<	0.00598	M	Nd	<	0.00399	M	Sc	<	0.01995	M	Ti	<	0.09974
M	Çd	<	0.00598	M	Hf	<	0.00399	Q	Ni	<	0.00230	Q	Se	<	0.00620	<u>M</u>	W	<	0.01995
Q	Ca		0.00020	<u>M</u>	Но	<	0.00100	M	Nb	<	0.00100	0	Si	<	0.00410	<u>M</u>	U	<	0.00399
M	Ce	<	0.00997	W	ln	<	0.01995	n	Os		•	M	Ag	<	0.00399	М	٧	<	0.00399
M	Cs	<	0.00060	M	łr,	<	0.00997	<u>M</u>	Pd	<	0.00997	ō	Na	<	0.00010	<u>M</u>	Yb	<	0.00200
M	Cr	<	0.00997	Q	Fe		0.00015	<u>0</u>	P	<	0.00480	М	Sr	<	0.00100	<u>M</u>	Y	<	0.07979
M	Со	<	0.00598	M	La	<	0.00100	M	Pt	<	0.00399	<u>s</u>	s			<u>0</u>	Zn		0.00125
М	Cu	<	0.01197	M	Pb	<	0.00598	Q	K	<	0.00170	M	Ta	<	0.01396	M	Zr	<	0.00997
M - 0	Chec	ked	by ICP-MS	0-	Chec	kec	by ICP-OES	i-S	pect	al l	nterference	n - f	Not C	hec	ked For	s - 8	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 = €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 32.068, +6; 6 (O=), S(OH).

Chemical Compatibility - Soluble in HCI, HNO, H,PO, and HF aqueous matrices water and NH.OH. Stable with all metals and inorganic anions at low to moderate ppm levels under acidic conditions except Ba and Pb and to a lesser extent Sr, and Ca. Stability - 2-100 ppb levels - stability unknown in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in LDPE container.

S Containing Samples (Preparation and Solution) - We most often get questions about the determination of S in Rocks, Silicates and insoluble sulfates (the finely powered sample is fused in a Pt* crucible with AB*ti mes its weight of Na,CO, + 0.5 grams KNO₁. The fuseate is extracted with water. Any BaSO₂ present in the sample is transposed by the carbonate fusion to the BaCO₂ which is left behind in the water-insoluble residue. If PbSO₂ is present the fuseate should be boiled with a sodium carbonate saturated with CO₂ solution for 1 hour or more where the PbSO₂ will be transposed to the water insoluble carbonate which can be filtered off. Boiling the fuseate with a saturated carbonate solution is good insurance for samples containing Ba, Sr, and Ca. The Ba, Pb, Sr, Ca, free filtrate can be additied and measured by ICP.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axia) view):

Technique	Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at validoncs.)
ICP-OES	166.669nm	0.2 / 0.19 µg/mL	1	atom	SI,B
ICP-OES	182.034 nm	0.3 / 0.024 µg/mL	1	atom	
ICP-OES	143.328 nm	0.4 / 0.035 µg/mL	1	atom	
ICP-MS	32 amu	30,000 ppt	n/a	M'	(°O, 'N''O, 'N''O, "N''OH, 'N''O'H

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Pales (CONTEC), Seria (AFAQR), Seria (AF

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

INOF	RGANIC	LABS/	RADCHEM	DR DR
DATE	RECEIV	ED: /	1/5/03	392
DATE	EXPIRE	D: 12	11/2014	DR
DATE	OPENEI):	5/03	
INOR	3: 43	17	PO: F	5225 <u>8</u>

Certification Date: August 27, 2003

Expiration Date: EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

foller Stutters knowen an Paux Anim

Certificate of Analysis

CUSTOM-GRADE SOLUTION

1000 µg/mL Thorium in 3% HNO₃ (abs)

Catalog Number: CGTH1-1 and CGTH1-5

Lot Number: T-TH01059

Starting Material: Starting Material Purity: Starting Material Lot No: Thorium Nitrate 99.999% C01L32 INORGANIC LABS/RADCHEM LABS
DATE RECEIVED: 10/08/03
DATE EXPIRED: 11/01/3004 V05
DATE OPENED: 10/08/03
INORG: 4383 PO: F53340

CERTIFIED CONCENTRATION: 1001 ± 3 µg/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (
$$\bar{x}$$
) = $\sum_{n} x_{i}$

Uncertainty (±) =
$$\frac{2[(\sum_{s} j^2]^{1/2}}{(n)^{1/2}}$$

(x) = mean

 $x_i = individual results$

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 1001 ± 3 µg/mL

Method: EDTA Titration vs NIST SRM Lead Nitrate.

Instrument Analysis: 1002 ± 4 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3159.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN µg/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm .

											7				
0	ΑI	< 0.00090	M	Dy	0.0062	• • • • •	0	,Li	< 0.000030	M	Pr	0.00037	Q	Te	< 0.031
M	\$b	< 0.000050	M	Er	< 0.00050		M	Lu	< 0.000040	M	Re	< 0.00010	M	Tb	< 0.000030
Q	As	< 0.014	M	Ευ	< 0.00030		Q	Mg	< 0.000060	. <u>M</u>	Rh	< 0.00010	M	TI	<0.00010
M	Ba	0.0050	<u>M</u>	Gd	0.0054		Q	Mn	< 0.0000030	M	Rb	< 0.00010	<u>s</u>	Th	
0	8e	< 0.00020	M	Ga	< 0.00010	• 1	į	Hg		M	Ru	< 0.00020	<u>M</u>	Tm	<0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060		M	Мо	<0.00020	M	Sm	0.0095	<u>M</u>	Sn	<0.00050
0	В	< 0.00060	M	Αu	< 0.00030	•	M	Nd	0.0026	M	Sc	< 0.0010	<u> 0</u>	Ti	<0.00092
0	Cd	< 0.0045	M	Hf	< 0.00020		Q	Ni	< 0.0023	M	Se	< 0.010	<u>M</u>	W	< 0.0010
0	Са	< 0.030	M	Ho	0.00022		M	Nb	< 0.000050	0	Si	< 0.0034	<u>M</u>	U	0.074
M	Ce	< 0.00050	0	In	< 0.0020		n	Os		M	Ag	< 0.00020	<u>M</u>	ν	< 0.00020
M	Cs	< 0.000030	M	lr	< 0.00050		M	Pd	< 0.00050	0	Na	< 0.00010	M	Υb	< 0.00010
0	Cr	< 0.00080	Q	Fe	< 0.0011		i	Р		M	Sr	< 0.000050	M	Υ	< 0.0040
M	Co	< 0.00030	M	La	< 0.000050		M	Pt	< 0.00020	O	\$	< 0.072	Q	Zn	< 0.00058
M	Cu	< 0.00060	M	Pb	< 0.00030		0	K	< 0.0017	M	Ta	< 0.00070	M	Zr	0.0085

M - checked by ICP-MS

O - checked by ICP-OES

i - spectral interference

n - not checked for

s - solution standard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.022 g/mL

QA:KL Rev. 0508020H

(over)

Inorganic Ventures, Inc.

195 Lehigh Avenue • Suite 4 • Lakewood, NJ 08701 Orders: 800-669-6799 • FAX (732) 901-1903

Technical Support: 800-569-6799

Taul K. Haines

Quality Assurance Manager

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

> Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAY), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (Sil), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials 2. Production - Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing Accredited 3. A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities 5.
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance В. Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

The length of time that a properly stored and packaged standard will remain within the specified Shelf Life -

uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL

bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -The date after which a standard solution should not be used. A one year expiration date is

recommended by most state and federal regulatory agencies. Transpiration issues and repeate use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

TEL 1-800-569-6799

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

E-MAIL IVtech@ivstandards.com

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

INT'L 1-732-901-1900

FAX 1-732-901-1903

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Uranium in 1% (abs) HNO3

Catalog Number:

CGU1-1 and CGU1-5

Lot Number:

W-U01059

Starting Material:

UO2(NO3)2.6H2O

Starting Material Purity (%):

99.994419

Starting Material Lot No Matrix:

3.0

RB0018 1% (abs) HNO₃

INORGANIC LABS/RADCHEM LABS Po 104 2

DATE RECEIVED: ____OA/35/CH

DATE EXPIRED: 03/01/305 V23

INDRG: 4473 PD: F50303

Certified Concentration:

 $997 \pm 2 \mu g/mL$

Certified Density:

1.021 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx.

(C)t=mean

n

CERTIFIED VALUES AND UNCERTAINTIES

x_i = individual results

n = number of measurements

Uncertainty (±) = $21(\alpha - 5)\frac{7}{2}$

<u>⊬iv²</u> ⊞S = inesu

BS = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

997 ± 2 µg/ml.

ICP Assay NIST SRM 3164 Lot Number: 891509

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number; See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

М	Al		0.05166		М	Dу	<	0.01494	M	Li	<	0.02490	W	Pr	<	0.00075	M	Те	<	0.07470	
M	Sb	<	0.00125		M	Er	<	0.01245	M	Lu	<	0.00100	М	Re	<	0.00249	М	Tb		0.00003	
M	As	<	0.02490		M	Eu	<	0.00747	M	Mg	<	0.07470	М	Rh	<	0.00249	W	TI	<	0.00249	
M	Ba	<	0.02490		M	Gd		0.00310	M	Mn		0.00083	M	Rb	<	0.00249	М	Th	<	0.00249	
M	Ве	<	0.00125		M	Ga	<	0.00249	i	Hg			M	Ru	<	0.00498	М	Tm	<	0.00100	
M	Bi	<	0.00100		M	Ge	<	0.01494	М	Мо		0.00093	М	Sm		0.00010	Q	Sn	<	0.10000	
M	В	<	0.17429		M	Αu	<	0.00747	М	Nd	<	0.00498	M	Sc	<	0.02490	M	Ti		0.00258	
M	Cd		0.00103		M	Hf	<	0.00498	M	Ni	<	0.01992	M	Se	<	0.01992	M	W	<	0.02490	
ō	Ca		0.05395		M	Но		0.00052	M	Nb	<	0.00125	ı	Si			<u>s</u>	U			
M	Се		0.00010		M	In	<	0.02490	Ū	Os			М	Ag	<	0.00498	М	٧	<	0.00498	
M	Cs	<	0.00075		M	lr	<	0.01245	M	Pd	<	0.01245	Ω	Na		0.00664	М	Yb	<	0.00249	
M	Cr	<	0.01245		<u>M</u>	Fe	<	0.49798	į	P			М	Sr	<	0.00125	M	Y		0.00062	
M	Co	<	0.00747		<u>M</u>	La		0.00145	M	Pt	<	0.00498	i	s			М	Zn		0.00114	
M	Cu		0.00072		M	Pb		0.00217	i	K			M	Ta	<	0.01743	M	Zr	<	0.01245	
M - (Chec	ked	by ICP-MS	,	0 -	Chec	ke	by ICP-OES	i - S	pect	ral I	nterference	n - 1	Not C	hec	cked For	s -	Soluti	on :	Standard Ele	ment

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 238.0289; +6; 8; UO;"(uranyl)

Chamical Compatibility - Soluble in HCI and HNO. Avoid H,PO. H,SO. and HF matrices should not be a problem depending upon [U]. Although the UO, in in is distinctly basic, any U " will precipitate in basic media. UO, salts are generally soluble in water and UO," is stable with most metals and inorganic anions. The uranyl phosphate is insoluble in water. UF, and UF, are water soluble.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO, / LDPE container.

U Containing Samples (Preparation and Solution) - Metal (Dissolves rapidly in HCl and HNO₂). Oxide (Soluble in HNO₂); Ores (Digest for 1-2 hours with 1 gram of cre to 30 mL 1:1 HNO. Silica insolubles are removed by filtration after bringing the sample to fumes with conc. H,SO..)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	Line	Estimeted D.L.	Order	Type	Interferences (underlined indicates severe at alborcs.)
ICP-OES	385.958 nm	0.3 / 0.01 µg/mL	1	ion	Th, Fe
ICP-OES	367.007 nm	0.3 / 0.02 µg/mL	1	ion	Th, Ce
ICP-OES	263,553 nm	0.3 / 0.01 µg/mL	1	ion	Ce, Ir, Th, Rh, W, Zr, Ta, Ti, V, Hf, Fe, Re, Ru
ICP-MS	238 amu	2 ppt	n/a	Μ.	²₩Pb¹iO₂

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited AZLA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS/	RADCHEM LABS \$ 30+2
DATE RECEIVED:	09/35/04
DATE EXPIRED:	03/01/3005 VO
DATE OPENED:	69/35/04
INDRG: 4473	PD: F5333

*NOTICE TO ICP-MS USERS: The 235U in this standard is depleted. The certified abundances in Atom % are as follows:

		Natural Abundance	iv s Certified Abundance
	Isotope	Atom %	Atom %
Uranium	²³⁸ U	99.3	99.8 ± 0.1
	²³⁵ U	0.70	0.204 ± 0.002

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: June 10, 2003

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Dod.

1.0

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail; ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs Is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

.0	DESCRIPTION OF CRM	Custom-Grade 1000 µg/r	nL Tungsten in 1% (abs) HNO₃/1% (abs) HF
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%):	CGW1-1 and CGW1-5 W-W01080 W Powder 99,990703	INORGANIC LABS/RADCHEM LABS 13-1-4-7 DATE RECEIVED: 07/31/03 DATE EXPIRED: 08/01/3014 1005 DATE OPENED: 08/01/03 INORG: 4303 PD: E53383
	Starting Material Lot No Matrix:	21418,C31H46,D02J21, 1% (abs) HNO3/1%	E03K06,D11F29

0. **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

 $1001 \pm 2 \, \mu g/mL$

Certified Density:

1.006 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha + s)]^{4/4}$

ES = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, district to volume, and the fixed error reported on the

NIST SHW certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 1001 ± 2 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3163 Lot Number: 990209

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	AI		0.01792	М	D;	у .	<	0.00595	0	Li	<	0.00008	<u>M</u>	Pr	<	0.00030		M	Te	<	0.02974	
M	Sb	<	0.00050	М	Ė	,	<	0.00496	М	Lu	<	0.00040	į	Re				<u>M</u>	Τb	<	0.00030	
М	As	<	0.00991	М	E	u ·	<	0.00297	0	Mg		0.00120	М	Rh	<	0.00099		<u>M</u>	Ti	<	0.00099	
<u>M</u>	Ва	<	0.00991	М	G	d ·	<	0.00099	М	Mn	<	0.00397	M	Rb	<	0.00099		M	Th	<	0.00099	
M	Ве	<	0.00050	М	G	a ·	<	0.00099	0	Hg	<	0.04778	M	Ru	<	0.00198	}	M	Tm	<	0.00040	
M	Bi	<	0.00040	М	G	e ·	<	0.00595	М	Мо		0.00050	M	Sm	<	0.00099		<u>M</u>	Sn	<	0.00496	
0	8	<	1,19460	М	A	.	<	0.00297	M	Nd	<	0.00198	Q	Sc	<	0.00036		M	Ti		0.00198	
M	Cd	<	0.00297	М	Н	F ·	<	0.00198	М	Ni	<	0.00793	M	Se	<	0.00793		<u>s</u>	W			
<u>0</u>	Ca		0.00080	М	Н	٠ .	<	0.00050	0	Nb	<	0.06371	<u>o</u>	SI	<	0.01354		M	U	<	0.00198	
M	Се	<	0.00496	М	In		<	0.00991	Ū	Os			M	Ag	<	0.00198		M	٧	<	0.00198	
M	Cs	<	0.00030	M	lr		<	0.00496	M	Pd	<	0.00496	Q	Na		0.04778		M	Yb	<	0.00099	
М	Cr	<	0.00496	<u>0</u>	Fe	•	<	0.03982	ח	P			M	Sr	<	0.00050		М	Y	<	0.03965	
M	Со	<	0.00297	<u>M</u>	La	•	<	0.00050	M	Pt	<	0.00198	Ū	\$				M	Zn	<	0.01983	
M	Cu	<	0.00595	M	P	b		0.00060	<u>0</u>	K		0.03146	<u>o</u>	Ta	<	0.39820		M	Zr		0.00079	
M - 0	heck	ed	by ICP-MS	٥.	Ch	eck	ed	by ICP-OES	i-S	pec	ral	Interference	n - I	Not C	hec	ked For	:	s - S	olutio	n S	Standard Element	

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4.5. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 183.85; +6; 6,7,8,9 WOF, (chemical form as received)

Chemical Compatibility - W is very readily hydrolyzed requiring 0.1 to 1% HF solutions for stable acidic solutions. The WOF,* is soluble in % levels of HCl and HNO, provided it is in the WOF,* form. Stable at ppm levels with some metals provided it is fluorinated. Do not mix with Alkaline or Rare Earths. Is best to be mixed only with other fluorinated metals (Ti, Zr, Hf, Nb, Ta, Mo, Si, Sn, Ge). Look for yellow WO, precipitate if mixed with other transition elements at higher levels indicating instability. The yellow WO, will form over a period of weeks even in trace HF, therefore, HF levels of VV multi-element blands should be ~ 1 %. Stability - 2-100 ppb levels stable (Alone or mixed with all other metals that are at comparable levels) as the WOF,* for months in 1% HNO, / LDPE container. 1-10,000 ppm single element solutions as the WOF,* chemically stable for years in 1% HF in an LDPE container.

W Containing Samples (Preparation and Solution) - Metal (Soluble in HF / HNO₃); Oxide (Soluble in HF or NH₂OH); Organic Matrices (Dry ash at 450 ℃ in Pt* and dissolve oxide with HF).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as redial/axial view):

Technique/Line	Estimated D.L.	Order	Iype	Interferences (underlined indicates severe at accords.)
ICP-OES 207.91	1 nm 0.03 / 0.001 µg/mL		ion	Ru, In
ICP-OES 224.87	′5 nm 0.05 / 0.005 µg/mL	_ 1	ion	Co, Rh, Ag
ICP-OES 209.47	′5 mm 0.05 / 0.005 µg/mL	_ 1	ion	Mo
ICP-MS 182 a	mu 5 ppt	n/a	M.	'*Er*O

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditación, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BrnwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MiL-STD-45662A (Obsolete/Observed)

INOR	GANIC	LABS/F	RADCH	EM	LABS	Pg. 20	F
DATE	RECEIV	/ED:	07/	31/0	3		_
DATE	EXPIRE	ED:	08/0	1/20	204	vos	
DATE	OPENE):	2\\$9	77.0	3		_
INORG	: 420	3	PO:	F5:	2383		

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 10, 2003

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Paux Main

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: iysales@iystandards.com • website: www.iystandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Yttrium in 1.4% (abs) HNO3

Catalog Number:

CGY1-1, CGY1-2, and CGY1-5

Lot Number:

X-QY01101

Starting Material:

Y2O3

Starting Material Purity (%):

99.999727

Starting Material Lot No

9918901OYL

Matrix:

1.4% (abs) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1006 \pm 2 \mu g/mL$

Certified Density:

1.010 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(Coll= mean

n

x₁ = individual results

n = number of measurements

Uncertainty $(\pm) = 2[(e_1 + \epsilon_2)^2]^{1/2}$

1/2 IIIS = The summation of all significant estimated errors.

(Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1004 ± 4 µg/mL

ICP Assay NIST SRM 3167a Lot Number: 790412

Assay Method #2

 $1006 \pm 2 \,\mu g/mL$

EDTA NIST SRM 928 Lot Number: 880710

INORGANIC LABS/RADCHEM LABS 73.463

DATE RECEIVED: 03/30/04

DATE EXPIRED: 04/01/2005 Y00

DATE OPENED: 03/30/04

INORG: 45/3 FO: F53361

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P144
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	Al		0.00024	М	Dу	<	0.00595	<u>0</u>	Li	<	0.00002	М	Pr	<	0.00030	M	Te	<	0.02976
ō	Sb	<	0.01000	M	Er	<	0.00496	M	Lu	<	0.00040	W	Re	<	0.00099	М	Тb	<	0.00030
M	As	<	0.00992	M	Eu	<	0.00298	Q	Mg		0.00015	W	Rh	<	0.00099	M	TI	<	0.00099
M	Ва	<	0.00992	M	Gď	<	0.00099	Q	Mn	<	0.00002	W	Rb	<	0.00099	M	Th	<	0.00099
M	Ве	<	0.00050	M	Ga	<	0.00099	Q	Hg	<	0.02000	M	Ru	<	0.00198	M	Tm	<	0.00040
M	Bi	<	0.00040	M	Ge	<	0.00595	M	Мо	<	0.00198	M	Sm	<	0.00099	W	Sn	<	0.00496
<u>o</u>	В		0.00013	М	Αu	<	0.00298	M	Nd	<	0.00198	Q	Sc	<	0.00003	W	Ti	<	0.04959
M	Cd	<	0.00298	М	Hf	<	0.00198	M	Ni	<	0.00794	M	Se	<	0.00794	M	W	<	0.00992
<u>0</u>	Ca		0.00100	M	Но	<	0.00050	M	Nb	<	0.00050	Q	Si		0.00170	М	U	<	0.00198
M	Се	<	0.00496	M	In	<	0.00992	<u>n</u>	Os			Q	Ag	<	0.02000	ō	V	<	0.00080
M	Cs	<	0.00030	M	ir	<	0.00496	Q	Pd	<	0.10000	0	Na	<	0.05000	М	Yb	<	0.00099
<u>M</u>	Cr	<	0.00496	Q	Fe		0.00070	Q	Ρ	<	0.07000	Q	Sr	<	0.00004	<u>s</u>	Y		•
M	Со	<	0.00298	M	La	<	0.00050	M	Pt	<	0.00198	0	s	<	0.04300	Q	Zn		0.00025
M	Cu	<	0.00595	M	Pb	<	0.00298	Q	κ	<	0.10000	M	Ta	<	0.00694	Q	Zr	<	0.00070
M - 0	Chec	ked	by ICP-MS	0-	Che	cke	by ICP-OES	i - S	Spect	ral l	nterference	n-I	Not C	hed	ked For	s - S	Solutio	on S	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL $\,0\,1\,0\,3\,8\,9$

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to cortainer.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 88.9059; +3; 6; Y(OH)(H,O); '

Chemical Competibility - Soluble in HCl, H,SO, and HNO, Avoid HF, H,PO, and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO, /LDPE container.

Y Containing Samples (Preparation and Solution) - Metal (Soluble in acids); Oxide (Dissolve by heating in H₂O/HNO₂); Ores (Carbonate fusion in Pt* followed by HCl dissolution); Organic Matrices (Dry ash and dissolve in 1:1 H₂O /HCl or HNO₂).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line Estimated D.L. <u>Order</u> <u>Type</u> Interferences (underlined indicates severe at «Doncs.) 360.073 nm 0.005 / 0.000036 µg/mL ICP-OES ion Ce, Th 0.004 / 0.00007 µg/mL ICP-OES 371.030 nm Ce ion ICP-OES 0.005 / 0.0009 µg/mL Ta, Th 377,433 nm ion ICP-MS "Æe"O. '™Hf" M. 89 amu 100 8.0 n/a

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10:3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

	/RADCHEM LABS 13- 12-4-3
DATE RECEIVED:	03/30/04 04/01/3005 voo
DATE EXPIRED:	04/01/2005 VO
DATE OPENED:	03/30/04
INORG: 4513	_F0:_ <u>F53361</u>

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 24, 2004

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

fold Stutten known an Paux Laim

ventures inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Zirconium in H20 tr. HNO3 tr. HF 2.0

Catalog Number:

CGZR1-1 and CGZR1-5

Lot Number:

W-ZR01056

Starting Material:

ZrO2

Starting Material Purity (%):

99.994542

Starting Material Lot No Matrix:

22855 H₂0 tr. HNO₃ tr. HF

INORGANIC LABS/RADCHEM LABS 1-10-13

DATE RECEIVED: 01/03/04

DATE EXPIRED: 08/01/2005 VOS DATE OPENED: 01/03/04

CERTIFIED VALUES AND UNCERTAINTIES 3.0

INORG: 4442 PD: F53306

Certified Concentration:

 $1004 \pm 2 \mu g/mL$

Certified Density:

0.999 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(e_1 - s_1)^2]^{1/2}$

BS = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

☐ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1004 ± 2 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3169 Lot Number: 990109

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

_			by ICP-MS	_			by ICP-OES				nterference	. —			ked For				Standard Eleme	
М	Cu	<	0.01188	М	Pb	<	0.00594	Q	ĸ	<	0.00681	М	Та	<	0.01386	<u>s</u>	Zr			
M	Со	<	0.00594	М	La	<	0.00099	M	Pt	<	0.00396	Q	S	<	0.28033	Q	Zn	<	0.04005	
Q	Cr	<	0.00881	Ω	Fe		0.00344	Q	P	<	0.01922	М	Sr	<	0.00099	<u>o</u>	Y	<	0.00401	
M	Cs	<	0.00059	M	ir	<	0.00990	M	Pd	<	0.00990	<u>o</u>	Na	<	0.02803	M	Yb	<	0.00198	
W	Ce	<	0.00990	M	In	<	0.01981	ם	Os			Q	Ag	<	0.40048	M	٧	<	0.00396	
Q	Ca		0.00809	M	Но	<	0.00099	Q	Nb	<	0.08010	Q	Si	<	0.80096	М	U	<	0.00396	(
<u>0</u>	Cd	<	0.02123	<u>M</u>	Hf		0.04403	Q	Ni		0.01214	М	Se	<	0.01585	M	W	<	0.01981	
М	В	<	0.13864	M	Au	<	0.00594	M	Nd	<	0.00396	Q	Sc	<	0.00064	Q	Ti	<	0.16019	
M	Bi	<	0.00079	M	Ge	<	0.01188	Q	Мо	<	0.40048	M	Sm	<	0.00198	M	Sn	<	0.00990	
Q	Be	<	0.40048	М	Ga	<	0.00198	Q	Hg	<	0.04405	M	Ru	<	0.00396	М	Tm	<	0.00079	
M	Ba	<	0.01981	M	Gd	<	0.00198	Q	Mn	<	0.00401	М	Rb	<	0.00198	M	Th	<	0.00198	
M	As	<	0.01981	M	Eu	<	0.00594	Q	Mg	<	0.00012	M	Rh	<	0.00198	M	TI	<	0.00198	
М	Sb	<	0.00099	М	€r	<	0.00990	M	Lu	<	0.00079	M	Re	<	0.00198	M	Tb	<	0.00059	
Ō	Al		0.01416	M	Dy	<	0.01188	ō	Li	<	0.00012	M	Pr	<	0.00059	M	Te	<	0.05942	
			1	í			1				1									

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 °C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 91.224; +4; 6, 7,8, Zr(F),

Chemical Compatibility - Soluble in concentrated HCI, HF, H, SO. (very hot.) and HNO. Avoid H,PO. and neutral to basic media. Unstable at ppm levels with metals that would pull F away (i.e. Do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions but precipitation with phosphate, oxalete, and tartrate with a tendency to hydrolyze forming the hydrated oxide in all dilute acids except HF.

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the Zr(F), + Zr(OH), F, for morths in 1% HNO, / LDPE container. 1-10,000 ppm single element solutions as the Zr(F), or chemically stable for years in 2-5% HNO, / trace HF in an LDPE container.

Zr Containing Samples (Preparation and Solution) - Metal (Soluble in H₂O / HF / HNO₂); Oxide - unlike TiO, the ZrO, is best fused in one of the following ways (Na₂O, in NI*, Na₂CO, in Pt* or Borax in Pt*); Organic Matrices (Dry ash at 450 °C in Pt* and dissolve by fusing with Na₂CO₂ and dissolving in HF / HNO₂ / H₂O).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique		Estimated D.L.	Order	Type	Interferences (underlined indicates severe at afforcs.)
ICP-OES	343.823 nm	0.007 / 0.0004 µg/mL	1	ion	Hf, No
ICP-OES	339.198 nm	0.008 / 0.0007 µg/mL	1	ion	Th, Mo
ICP-OES	272.261 nm	0.018 / 0.001 µg/mL	1	ion	Cr. V. Th. W
ICP-MS	90 amu	2 ppt	n/a	M'	**Ge**O, **Se**O,['**X'* (where X = Hf, Ta, W)]

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Poland (APCER), Signapore (PSR), Slovenia (SIQ), Spain (AENOR), Suiterdard (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

	KGANIU LABS			
DATE	RECEIVED:_ EXPIRED:	0)/33/0	4	
DATE	EXPIRED:	6/10/80	<i>0</i> 05	vo3
DATE	OPENED:	<u>0)/93/</u> 0	24	
INORO	3: <u>444</u> 2	PO:_F5	33C6	

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 19, 2003

Expiration Date:

EXPIRES 01 \$2 00 5

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

fol Strutten known an Pour Lain

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade 1000 μς	y/mL Barium in 0.1% (abs) HNO₃			
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	CGBA1-1, CGBA1-2, a W-BA02023 Ba(NO3)2 99.999730 21879	nd CGBA1-5			
	матх:	0.1% (abs) HNO ₃	INDRGANIC LABS/RADCHEM LABS & 4 of 2 DATE RECEIVED: 02/05/04			
3.0	CERTIFIED VALUES AND	UNCERTAINTIES	DATE EXPIRED: 03/01/2005 V05 DATE OPENED: 03/25/04			
	Certified Concentration:	1001 ± 1 μg/mL	INDRG: 4465 FO: F52233			

Certified Density: 0.999 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

n

x = individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(2x-5)]^{1/2}}{(x)^{1/2}}$

II = number of measurementsII S = The summation of all significant estimated errors.

(Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 A:

Assav Method #1

998 ± 4 μg/mL

ICP Assay NIST SRM 3104a Lot Number: 992907

Assay Method #2

1001 ± 1 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001 Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>Q</u> Al 0.00011	M Dy < 0.01269	Q Li < 0.00400	<u>M</u> Pr < 0.00063	<u>M</u> Te < 0.06343
M Sb < 0.00106	M Er < 0.01057	M Lu < 0.00085	<u>M</u> Re < 0.00211	O Tb < 0.00390
M As < 0.02114	Q Eu < 0.00040	Q Mg 0.00009	M Rh < 0.00211	M TI < 0.00211
<u>s</u> Ba	O Gd < 0.00052	<u>M</u> Mn < 0.00846	M Rb < 0.00211	M Th < 0.00211
<u>M</u> Be < 0.00106	M Ga < 0.00211	Q Hg < 0.01200	M Ru < 0.00423	M Tm < 0.00085
M Bi < 0.00085	M Ge < 0.01269	<u>M</u> Mo < 0.00423	Q Sm < 0.00071	<u>M</u> Sn < 0.01057
<u>M</u> B < 0.14800	M Au < 0.00634	O Nd < 0.00330	M Sc < 0.02114	<u>M</u> Ti < 0.10571
M Cd < 0.00634	M Hf < 0.00423	M Ni < 0.01691	<u>M</u> Se < 0.01691	M W < 0.02114
Q Ca 0.00072	M Ho < 0.00106	M Nb < 0.00106	<u>Q</u> Si < 0.00340	<u>M</u> U < 0.00423
M Ce < 0.01057	<u>M</u> In < 0.02114	<u>n</u> Os	M Ag < 0.00423	<u>M</u> V < 0.00423
M Cs < 0.00063	M ir < 0.01057	M Pd < 0.01057	M Na < 0.21142	M Yb < 0.00211
M Cr < 0.01057	<u>Q</u> Fe 0.00062	<u>O</u> P < 0.00260	Q Sr 0.00379	Q Y 0.00040
M Co < 0.00634	M La < 0.00106	M Pt < 0.00423	<u>Q</u> S < 0.02500	<u>Q</u> Zn < 0.00039
M Cu < 0.01269	M Pb 0.00020	<u>Q</u> K < 0.00180	Q Ta < 0.00690	M Zr < 0.01057
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -137.33, +2; 6, Be(H₂O), 12

Chamical Compatibility - Soluble in HCl, and HNO_x. Avoid H₂SO_x, HF and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate, iodate, molybolate, sulfate and tungstate in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO_a / LDPE container, 1 -10,000 ppm solutions chemically stable for years in 1-3.5% HNO_a / LDPE container.

Ba Containing Samples (Preparation and Solution) - Metal(is best dissolved in diluted HNO₃) Ores (Carbonate fusion in Pt^a followed by HCl dissolution. If sulfate is present dissolve the fuseate using HCl /tartaric acid to prevent BaSO₄ precipitate), Organic Matrices (dry ash and dissolve in dilute HCl.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

		noninamionifica account			100000000000000000000000000000000000000
Technique	e/Line	Estimated D.L.	Order	<u>Type</u>	Interferences (underlined indicates severe at authorics.)
ICP-OES	455.403 nm	0.002 / 0.0001 µg/mL	1	ion	Zr, U
ICP-OES	233.527 nm	0.004 / 0.0003 µg/mL	1	ion	·
ICP-OES	230.424 nm	0.004 / 0.0005 µg/mL	1	ion	Mo, ir, Co
ICP-MS	138 a mu	1 ppt	n/a	M'	رية (¹²² ماريخة) 125 ماريخة (125 ماريخة) 125 ماريخة (125 ماريخة)

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (OQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Religion (SCS), Sprin (AFNOR), Switzerland (SOS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS/	RADCHEM LABS 13.3 of 3
DATE RECEIVED:	cg/a5/ch
DATE EXPIRED:	03/01/005 VOS 00/05/04
DATE OPENED:	09/35/04
INDRG: 4465	PO: F59393

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 28, 2003

Expiration Date:

1#2005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Statlen knower an Paux Dain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

analysis certificate of

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade 1000 μ	g/mL Beryllium in 2% (abs) HNO3
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	CGBE1-1, CGBE1-2, W-BE01104 Be(OOCCH3)2 99.999897 01-10-01 2% (abs) HNO3	INDRGANIC LABS/RADCHEM LABS?3.1.42
3.0	CERTIFIED VALUES AND	UNCERTAINTIES	DATE EXPIRED: 06/01/3005 VOS DATE OFENED: 06/01/04 INDRG: 4593 PO: F53393
	Certified Concentration:	1007 ± 4 μg/mL	
	Certified Density:	1.023 g/mL (measured	at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = $g_{1} \times x_{1}$

(□) = mean

x_i = individual results

n = number of measurements

Uncertainty $(\pm) = 2[(\alpha + s_i)^2]^{1/2}$

BS = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

O "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

1007 ± 4 µg/mL

ICP Assay NIST SRM 3105a Lot Number: 892707

Assay Method #2

1002 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to $0.3~\mu m$.

				•
<u>Q</u> Al < 0.00800	<u>M</u> Dy < 0.01305	<u>O</u> Li < 0.00002	<u>M</u> Pr < 0.00065	<u>M</u> Te < 0.06525
<u>M</u> Sb < 0.00109	<u>M</u> Er < 0.01087	<u>M</u> Lu < 0.00087	M Re < 0.00218	M Tb < 0.00065
<u>M</u> As < 0.02175	<u>M</u> Eu < 0.00652	Q Mg < 0.00003	M Rh < 0.00218	M Ti < 0.00218
M Ba < 0.02175	M Gd < 0.00218	<u>O</u> Mn < 0.00002	M Rb < 0.00218	<u>M</u> Th < 0.00218
<u>s</u> Be	M Ga < 0.00218	Q Hg < 0.01500	M Ru < 0.00435	<u>M</u> Tm < 0.00087
M Bi < 0.00087	M Ge < 0.01305	<u>M</u> Mo < 0.00435	M Sm < 0.00218	<u>M</u> Sn < 0.01087
<u>O</u> B < 0.01200	<u>M</u> Au < 0.00652	M Nd < 0.00435	<u>Q</u> Sc < 0.00009	<u>M</u> Ti < 0.10874
<u>M</u> Cd < 0.00652	M Hf < 0.00435	M Ni < 0.65245	<u>M</u> Se < 0.01740	<u>M</u> W < .0.02175
O Ca 0.00164	<u>M</u> Ho < 0.00109	M Nb < 0.00109	<u>Q</u> Si 0.00649	<u>M</u> U < 0.00435
M Ce < 0.01087	<u>M</u> in < 0.02175	<u>n</u> Os	<u>M</u> Ag < 0.00435	<u>M</u> V < 0.00435
M Cs < 0.00065	M ir < 0.01087	M Pd < 0.01087	<u>Q</u> Na 0.00368	<u>M</u> Yb < 0.00218
O Cr < 0.00900	<u>Q</u> Fe 0.00268	<u>л</u> Р	M Sr < 0.00109	<u>M</u> Y < 0.08699
M Co < 0.00652	M La < 0.00109	M Pt < 0.00435	į S	<u>M</u> Zn < 0.04350
<u>M</u> Cu < 0.01305	M Pb < 0.00652	<u>Q</u> K < 0.10000	<u>M</u> Ta < 0.01522	<u>M</u> Zr < 0.01087
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 9.01218; +2; 4; Be'(H₂O).¹²

Chemical Competibility - Soluble in HCl, HNO_a, H₂SO_a and HF aqueous matrices. Stable with all metals and inorganic anions. Stability - 2-100 ppb levels stable for months in 1 % HNO_a /LDPE container, 1-10,000 ppm solutions chemically stable for years in 5-10 % HNO_a /LDPE container.

Be Containing Samples (Preparation and Solution) - Metal (is best dissolved in diluted H₂SO₄); BeO (boiling nitric, hydrochloric, or sulfuric adds or KHSO₄ fusion). Ones (H₂SO₄/HF digestion or carbonate fusion in Pt^a). Organic Matrices (sulfuric/peroxide digestion or nitric/sulfuric/peroxide acid decomposition, or dry ashand dissolution according to the BeO procedure above).

Atomic Spectroscopic Information (ICP-0ES II.L.s are given as radial/axial view):

water shortoscohic	THORNON (IN ALA DIE	e min Ais		
Technique/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at «Boncs.)
ICP-OES 313.042 nm	0.0003 / 0.00009 µg/mL.	1	ion	V, Ce, U
ICP-OES 234.861 nm	0.0003 / 0.00016 µg/mL	1	atom	Fe, Ta, Mo
ICP-OES 313.107 nm	0.0007 / 0.0005 µg/mL	1	ion	Ce, Th, Tm
ICP-MS 9 amu	4 ppt	n/a	Μ,	

010401

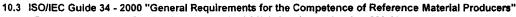
- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)


Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT). Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: January 08, 2004

Expiration Date:

1

INOF	RGANIC	LABS	/RADCHE	ΞM	LABS	Pg.3 of 8
DATE	RECEI	/ED:_	06/0	11/0	生	
DATE	EXPIRE	D:	06/0 0/ <i>0</i> 0	1/2	005	Zav
DATE	OPENE):	06/0	ΔZC	4	
			PO:			

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, Production Manager

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

010402

Geber Neuman

knowin hi

Paux Aaim

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION	$1000~\mu\mathrm{g/mL}$ Chromium $^{+3}$ in 1.4% HNO $_3$ (abs

Catalog Number: CGCR(3)1-1, CGCR(3)1-2 and CGCR(3)1-5

	abs -nc -
Starting Material Lot No: Starting Material Lot No: Starting Material Lot No: Starting Material Lot No: Starting Material Lot No: Starting Material Lot No: F16122 INDEGATE RECEIVED: 1/1/5/23 DATE EXPIRED: 1/2/1/3/44 DATE OPENED: 1/1/5/03 INDEG: 43/18 FD: F53	

CERTIFIED CONCENTRATION: 995 \pm 3 μ g/mL

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (x) = $\sum x_i$	Uncertainty $(\pm) = 2[(\sum_s)^2]^{1/2}$
n	(n) ^{1/2}

n (n) $^{1/2}$ (x) = mean x = individual results n = number of measurements $\sum S_i$ = The s

 $\sum S_i$ = The summation of all significant estimated errors.

Instrument Analysis: 995 ± 3 µg/mL (Avg of 3 runs)

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3112a.

Calculated Value: 1002 µg/mL

Method: Calculated, based on starting material.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu g/mL$:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

<u>o</u>	Αl	0.0028	<u>M</u>	Dy	<0.00060	<u>M</u>	Li	<0.0010	M	Pr	< 0.000030	<u>M</u>	Te	< 0.0030
<u>M</u>	Sb	< 0.000050	M	Er	< 0.00050	<u>M</u>	Lu	< 0.000040	<u>M</u>	Re	< 0.00010	M	Tb	< 0.000030
M	As	< 0.0010	M	Eu	< 0.00030	Q	Mg	< 0.010	M	Rh	< 0.00010	M	TI	< 0.00010
M	₿a	< 0.0010	M	Gd	< 0.00010	<u>0</u>	Mα	< 0.050	M	Rb	0.0066	M	Th	< 0.00010
M	Ве	< 0.000050	M	Ga	0.00070	Q	Hg	<0.10	M	Ru	0.017	<u>M</u>	Tm	< 0.000040
<u>M</u>	Bi	< 0.000040	M	Ge	< 0.00060	M	Mo	< 0.00020	<u>M</u>	Sm	< 0.00010	<u>M</u>	Sn	< 0.00050
M	8	< 0.0070	M	Αu	< 0.00030	M	Nd	< 0.00020	<u>M</u>	\$c	< 0.0010	<u>M</u>	Ti	< 0.0050
M	Cd	< 0.00030	M	Hf	< 0.00020	Q	Ni	< 0.10	į	Se	•	M	W	< 0.0010
O	Ca	0.0011	M	Ho	< 0.000050	M	Nb	< 0.000050	<u>o</u>	Si	<0.10	M	U	<0.00020
M	Ce	< 0.00050	0	In	< 0.10	<u>n</u>	Os		<u>M</u>	ρA	0.00070	į	٧	
M	Cs	< 0.000030	M	ir	< 0.00050	M	Pđ	< 0.00050	<u>o</u>	Na	0.016	<u>M</u>	Yb	< 0.00010
<u>s</u>	Cr		0	Fe	<0.10	i	P		<u>M</u>	Sr	<0.000050	<u>M</u>	Y	< 0.0040
Q	Ço	< 0.10	M	La	< 0.000050	M	Pt	< 0.00020	n	s		<u>o</u>	Zn	<0.10
M	Cu	< 0.00060	M	Pb	0.00039	<u>n</u>	K		M	Ta	<0.00070	<u>M</u>	Z r	<0.00050
М -	chec	ked by ICP-MS	0 - 1	check	ed by ICP-OFS	i - sı	pectra	l interference	n • no	t che	cked for	s - solution	stand	ard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.010 g/mL

(over)

QA:KSL Rev.080402JT\$

Paul R. Haines

Expires:

EXPIRES

Quality Assurance Manager

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production - Accredited A2LA Certificate 883,02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 6. 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration dat recommended by most state and federal regulatory agencies. Transpiration issues repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2

m filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.


TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 μg/mL Copper in 2% (abs) HNO3

Catalog Number:

CGCU1-1, CGCU1-2, and CGCU1-5

Lot Number:

W-CU02064

Starting Material:

Cu shot

Starting Material Purity (%):

99.999437

Starting Material Lot No Matrix:

3.0

K09C13 2% (abs) HNO₃

INORGANIC LABS/RADCHEM LABS P3. 1. 4 2

DATE RECEIVED: 09/35/04

DATE EXPIRED: 03/01/2005 VID DATE OPENED: 03/25/04

CERTIFIED VALUES AND UNCERTAINTIES

INORG: 14469 PO: F53333

Certified Concentration:

 $1005 \pm 2 \mu g/mL$

Certified Density:

1.014 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C)) = mean

x, = individual results

n = number of measurements

Uncertainty (±) = $2[(2x^2)^2]^{1/2}$

1¹¹² IBS = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1005 ± 2 µg/mL

ICP Assay NIST SRM 3114 Lot Number: 891811

Assay Method #2

1005 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Ō	Al	<	0.00090	M	i (Dy	<	0.03027	<u>0</u>	U	<	0.00002	M	Pr	<	0.00151	W	Te	<	0.15134
M	Sb	<	0.00252	M	<u>I</u> E	Er	<	0.02522	M	Lu	<	0.00202	W	Re	<	0.00504	M	Tb	<	0.00151
M	As	<	0.05045	M	<u>l</u> E	Eu	<	0.01513	O	Mg		0.00001	M	Rh	<	0.00504	М	π	<	0.00504
<u>M</u>	Ва	<	0.05045	M	Į (Gd	<	0.00504	M	Mn	<	0.02018	М	Rb	<	0.00504	М	Th	<	0.00504
<u>M</u>	Ве	<	0.00252	M		Ga	<	0.00504	ō	Hg	<	0.01500	W	Ru	<	0.01009	M	Tm	<	0.00202
<u>M</u>	Bi	<	0.00202	M	į	Зе	<	0.03027	M	Мо	<	0.01009	М	Sm	<	0.00504	<u>0</u>	Sn		0.00439
M	В	<	0.35312	M	. /	Au	<	0.01513	M	Nd	<	0.01009	М	Sc	<	0.05045	М	Ti	<	0.25223
M	Cd	<	0.01513	M	<u>į</u> į	Hf	<	0.01009	M	Ni	<	0.04036	М	Se	<	0.04036	М	w	<	0.05045
Q	Ca		0.00011	M	! }	Но	<	0.00252	M	Nb	<	0.00252	ō	SI	<	0.00340	M	U	<	0.01009
M	Се	<	0.02522	M	<u>l</u> 1	ln	<	0.05045	Ū	Os			M	Ag	<	0.01009	ō	٧	<	0.00300
M	Cs	<	0.00151	M	1	ir ·	<	0.02522	M	Pd	<	0.02522	ō	Na		0.00044	M	Υb	<	0.00504
M	Cr	<	0.02522	2	<u>)</u>	Fe		0.00054	ō	P	<	0.00260	M	Sr	<	0.00252	M	Υ	<	0.20178
M	Co	<	0.01513	M	!!	La	<	0.00252	M	Pt	<	0.01009	<u>n</u>	s			M	Zn	<	0.10089
<u>s</u>	Cu			M	1 1	Pb		0.00050	Q	ĸ	<	0.00180	M	Та	<	0.03531	M	Zr	<	0.02522
M - C	heci	ked	by ICP-MS	0	- C	hec	ked	by ICP-OES	i - \$	pect	al I	nterference	n - t	lot C	hec	ked For	s - S	Solutio	: חכ	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 63.548, +2; & Cu(H₂O), "

Chemical Competibility - Stable in HCl, HNO₃, H₂SO₄, HF, H₂PO₄. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

Cu Containing Samples (Preparation and Solution) - Metal (soluble in HNO₃), Oxides (Soluble in HCI); Ores (Dissolve in HCI/HNO₃).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique		Estimated D.L.	Order	<u>Type</u>	<u>interferences (</u> underlined indicates severe at severe at se
ICP-OES	324.754 nm	0.06/.001 µg/mL	1	atom	Nb, U, Th, Mo, Hf
ICP-OES	224,700 nm	0.01/.001µg/mL	1	ion	Pb. Ir, NI, W
ICP-OES	219.958 nm	0.01/.002 ug/mL	1	atom	Th, Ta, Nb, U, Hf
ICP-MS	63 amu	10 ppt	n/a	M'	"따라게요 "Ti "O, ''N'''C "CI, "O'"C "CI, "Ce "O, "Ne"Ca

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Portugal (APCER), Singapore (PSR), Slovenia (SIQ), Spain (AFNOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS/	RADCHEM LABS 13-3-63
DATE RECEIVED:	09/95/04
DATE EXPIRED:	03/01/2005 403
DATE OPENED:	ca/a5/c4
	PO: F53333

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Sheff Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: May 02, 2003

Expiration Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten known an Pour Aain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(les) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Nickel in 1.4% (abs) HNO3 2.0

Catalog Number:

CGNI1-1, CGNI1-2, and CGNI1-5

Lot Number:

W-NI02030

Starting Material:

Ni pieces

Starting Material Purity (%):

99.999371

Starting Material Lot No

L06L02

Matrix:

3.0

1.4% (abs) HNO3

INORGANIC LABS/RADCHEM LABS 19.100 DATE RECEIVED: ___03/35/04

DATE EXPIRED: ____O3/OV/2005

CERTIFIED VALUES AND UNCERTAINTIES

DATE OPENED: ____OD/35/04 INORG: 4472 FO: F59393

Certified Concentration:

 $1002 \pm 2 \mu g/mL$

Certified Density:

1.011 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(□) = mean

x_i = Individual results

n = number of measurements

Uncertainty (±) = $2[(e_r s_i)^2]^{1/2}$

The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

999 ± 5 µg/mL

ICP Assay NIST SRM 3136 Lot Number: 000612

Assay Method #2

1002 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

			,								1	1				1			
Q	ΑJ	<	0.00938	M	Dу	<	0.06577	Q	Li	<	0.00006	M	Pr	<	0.00329	W	Te	<	0.32886
M	Sb	<	0.00548	M	Er	<	0.05481	M	Lu	<	0.00439	M	Re	<	0.01096	M	Tb	<	0.00329
Q	As	<	0.01689	M	Eu	<	0.03289	Q	Mg		0.00002	M	Rh	<	0.01096	М	Ť	<	0.01096
M	Ba	<	0.10962	М	Gd	<	0.01096	M	Mn	<	0.04385	M	Rb	<	0.01096	М	Th	<	0.01096
<u>o</u>	Ве	<	0.00626	M	Ga	<	0.01096	Q	Hg	<	0.03441	M	Ru	<	0.02192	W	Tm	<	0.00439
M	Bi	<	0.00439	М	Ge	<	0.06577	M	Мо	<	0.02192	M	Sm	<	0.01096	M	Sn	<	0.05481
<u>0</u>	В	<	0.03097	М	Au	<	0.03289	M	Nd	<	0.02192	M	Sc	<	0.10962	М	Ti	<	0.54811
M	Cd	<	0.03289	М	Hf	<	0.02192	<u>s</u>	Ni			Q	Se	<	0.01877	<u>M</u>	W	<	0.10962
Q	Ca	<	0.01157	M	Но	<	0.00548	M	Nb	<	0.00548	Q	Si		0.00188	W	U	<	0.02192
M	Се	<	0.05481	М	ln	<	0.10962	ū	Os			M	Ag	<	0.02192	M	٧	<	0.02192
M	Cs	<	0.00329	М	ir	<	0.05481	M	Pd	<	0.05481	Q	Na		0.00102	М	Yb	<	0.01096
M	Cr	<	0.05481	Q	Fe		0.00156	Q	P	<	0.31280	<u>M</u>	Sr	<	0.00548	M	Y	<	0.43849
Q	Со		0.00182	M	La	<	0.00548	M	Pt	<	0.02192	Q	s	<	0.07820	M	Zn		0.00189
M	Cu	<	0.06577	M	Pb	`<	0.03289	Q	κ		0.00043	M	Ta	<	0.07674	М	Zr	<	0.05481
M - 0	Chec	ked	by ICP-MS	0-	Chec	ke	by ICP-OES	i - 5	Spect	rai l	nterference	n - 1	Not C	hec	ked For	s - S	Soluti	on S	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 58.69; +2; 6; Ni(H₂O).**

Chemical Competibility - Stable in HCl, HNO₁, H₂SO₂, HF, H₂PO₃. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNOs / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNOs / LDPE container.

Ni Containing Samples (Preparation and Solution) - Metal (Solutie in HNO_a), Oxides (Soluble in HCl.), Ores (Dissolve in HCl./HNO_a).

Atorric Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

ICP-OES	221.647 nm 232.003 nm 231.604 nm	Estimated D.L. 0.01 / 0.0009 µg/mL 0.02 / 0.006 µg/mL 1 0.02 / 0.002 µg/mL 1	atom Ion	Type Interferences (underlined Indicates severe at efforcs.) In Si Cr., Re, Os, Nb, Ag, Pt, Fe Sb, Ta, Co **Co***Co***H **Co***C ***No***C!
ICP-MS	60 amu	100 ppt	n/a	M' "Ca'fO'H , "Ca'fO, "Na"Cl

- HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM. 8.0
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883,02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs Indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 23, 2003

Expiration Date:

INORGANIC LABS/RADCHEM LABS Po 2002 DATE RECEIVED: ___03/35/0% DATE EXPIRED: ____ 03/01/2005_ VO) DATE OFENED: 09/35/04 INDRG: 4473 FU: F53333

7910411

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

010412

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Strutten Known in in Pour Aaim

|3.0

1.0

inorganic ventures

195 lehigh avenue, suite 4, lakewood, ni 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Boron in H20 2.0

Catalog Number:

CGB1-1, CGB1-2, and CGB1-5

Lot Number:

W-B02042

Starting Material:

H3BO3

Starting Material Purity (%):

99.99998

INORGANIC LABS/RADCHEM LABS \$ 4.4.5

Starting Material Lot No

OV0133

DATE RECEIVED: 07/31/03 DATE EXPIRED: 08/01/2004

Matrix:

H₂0

DATE OPENED: 08/0/63 INDRG: 4001 PD: E50383

CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

999 ± 2 µg/mL

Certified Density:

1.001 g/mL (measured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x = individual results

n = number of measurements

Uncertainty (±) = 21(exs) 14

The summation of all significant estimated errors.

(Most common are the errors from instrumental me ascrement, weighing, dilution to volume, and the fixed error reported on the

NIST STM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 999 \pm 2 μ g/mL (Avg 2 runs)

ICP Assay NIST SRM 3107 Lot Number: 991907

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>o</u>	AJ	<	0.00090	N	1	Dy	<	0.00600	0	Li	<	0.00002	М	Pr	<	0.00030	W	Те	<	0.03000
M	Sb	<	0.00050	N	Į	Er	<	0.00500	M	Lu	<	0.00040	M	Re	<	0.00100	М	Tb	<	0.00030
M	As	<	0.01000	<u>v</u>	1	Eu	<	0.00300	<u>o</u>	Mg	<	0.00006	M	Rh	<	0.00100	М	TI	<	0.00100
<u>o</u>	Ва	<	0.00010	N	<u>t</u>	Gd	<	0.00100	Q	Mn	<	0.00002	M	Rb	<	0.00100	М	Th	<	0.00100
Q	Be	<	0.00017	2	<u>)</u>	Ga	<	0.00160	Õ	Hg	<	0.01500	<u>M</u>	Ru	<	0.00200	W	Tm	<	0.00040
M	Bi	<	0.00040	<u> </u>	4	Ge	<	0.00600	M	Mo	<	0.00200	M	Sm	<	0.00100	М	Sn	<	0.00500
ş	В			V	1	Au	<	0.00300	M	Nd	<	0.00200	0	Sc	<	0.00002	M	Ti	<	0.05000
M	Cd	<	0.00300	Į Į	1	Hf	<	0.00200	Q	Ni	<	0.00230	0	Se	<	0.00620	М	W	<	0.01000
0	Ca	<	0.00007	Ī	Å	Но	<	0.00050	M	Nb	· <	0.00050	2	SI		0.00067	М	U	<	0.00200
Q	Ce	<	0.00300	Į.	<u> </u>	ln	<	0.01000	ū	Os			W	Ag	<	0.00200	0	V	<	0.00083
M	Cs	<	0.00030	1	1	1r	<	0.00500	M	Pd	<	0.00500	0	Na	<	0.00010	M	Yb	<	0,00100
M	Cr	<	0.00500	9	2	Fe	<	0.00110	<u>o</u>	P	<	0.00250	M	Sr	<	0.00050	М	Y	<	0.04000
<u>o</u>	Со	<	0.00110	1	4	La	<	0,00050	М	Pt	<	0.00200	0	s	<	0.10000	Q	Zn	<	0.00019
M	Cu	<	0.00600	1	4	Pb	<	0.00300	Q	ĸ	<	0.00300	M	Ta	<	0.00700	<u>M</u>	Zr	<	0.00500
M -	Chec	ked	by ICP-MS	0	- (Chec	kec	by ICP-OES	1-8	Spect	rai	Interference	n -	Not C	he	cked For	\$ - \$	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical Instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional Intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 10.811; +3; 4; B(OH), and

Chamical Compatibility - Moderately soluble in HCl, HNO_a, H₂SO_a and HF aqueous matrices and very soluble in NH₄OH. Stable with all metals and inorganic anions at low-to-moderate ppm levels.

Stability - 2-100 ppb levels stable for months in 1% HNO_x / LDPE container. 1-1,000 ppm solutions chemically stable for years in 1% HNO_x / LDPE container. 1000 -10,000 ppm stable for years in diute NH₂OH / LDPE container.

B Containing Samples (Preparation and Solution) - Metal (Crystaline torm is scarcely ettacked by acids or alkaline solutions, amorphous form is soluble in conc. HNO₂ or H₂SO₂); B(OH)₂ (verter soluble); Ores(evoid acid digestions and use caustic fusions in Pt→, Organic Matrices (dry ash mixed with Na₂CO₂ in Pt→et 450→€ then increase heat to 1000→€ to fuse; or perform a Na₂O₂ fusion in a Ni¬crucible / Pair bomb).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

		F-4:			LAufann and Amalaulia ad Institution	
<u>Techniqu</u>		Estimated D.L.	Order	rype	Interferences Aunderlined indicates	Severe at 49000003.)
ICP-OES	249.773 nm	0.003 / 0.001 µg/mL	1	atom	W, Ce, Co, Th, Ta, Mn, Mo, Fe	
ICP-OES	249.678 nm	0.004 / 0.003 µg/mL	1	atom	Os,W,Co,Cr,Hf	
ICP-OES	208.959 nm	0.007 / 0.0005 µg/mL	1	atom	Mo	
ICP-MS	11amu	700 ppt	n/a	Μ'		

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RVA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LAB	S/RADCHEM LABSP3.a43
DATE RECEIVED:	07/31/03
DATE EXPIRED:_	CON 4006/10/80
DATE OPENED:	08/01/03
INORG: 4301	FO: F50383

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Lebs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 21, 2003

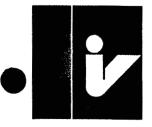
Expiration Date:

EXPIRES 122004

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant


Certificate Approved By:

Katalin Le. QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Park dain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Molybdenum in H20 tr. NH4OH 2.0

Catalog Number:

CGMO1-1, CGMO1-2, and CGMO1-5

Lot Number:

W-MO01132

Starting Material:

(NH4)6Mo7O24xH2O

Starting Material Purity (%): Starting Material Lot No

99.995947

Matrix:

3.0

21410

H₂0 tr. NH₄OH

INORGANIC LABS/RADCHEM LABS \$3.1 of 2

DATE RECEIVED: ____03/35/04

DATE EXPIRED: 03/01/3005 VOS DATE OPENED: _____ 03/35/04

Certified Concentration:

 $1004 \pm 2 \mu g/mL$

INORG: 4471 PO: F50303

Certifled Density:

0.998 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = grx

(Coll=mean

CERTIFIED VALUES AND UNCERTAINTIES

X₁ = individual results

n = number of measurements

Uncertainty (±) = $2I(ers_i)^2$

BS = The summation of all significant estimated errors. (Most common are the errors from instrumental me asurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SPM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1004 ± 2 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3134 Lot Number: 891307

Assay Method #2

1008 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

010418

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> AI < 0.	05000 M Dy	< 0.01198	Q Li	'	0.01000	Q	Pr	<	0.10000	i	Те		
M Sb 0.	00939 <u>M</u> Er	< 0.00998	M L	u <	0.00080	M	Re	<	0.00200	M	Тb	<	0.00060
M As < 0.	01997 <u>M</u> Eu	< 0.00599	<u>Q</u> M	lg <	0.05000	M	Rh	<	0.00200	М	TI	<	0.00200
<u>M</u> Ba < 0.	01997 <u>M</u> Gd	< 0.00200	м м	in <	0.00799	M	Rb		0.02445	M	Th	<	0.00200
M Be < 0.	00100 <u>M</u> Ga	< 0.00200	į H	g		M	Ru	<	0.00399	M	Tm	<	0.00080
<u>M</u> Bi < 0.	00080 <u>M</u> Ge	< 0.01198	s M	lo		М	Sm	<	0.00200	M	Sn	<	0.00998
Q B < 0.	50000 <u>M</u> Au	< 0.00599	Q N	d <	0.05000	Q	Sc	<	0.05000	Q	Ti	<	0.00500
Q Cd < 0.	50000 <u>M</u> Hf	< 0.00399	M N	i <	0.01597	M	Se	<	0.01597	M	W		0.05576
Q Ca 0.	00026 <u>M</u> Ho	< 0.00100	Q N	b <	0.10000	Q	Si	<	0.10000	M	U	<	0.00399
Q Ce < 0.	05000 <u>M</u> in	0.00235	n o	s		M	Ag	<	0.00399	M	V	<	0.00399
M Cs < 0.	00060 M Ir	< 0.00998	M P	d <	0.00998	Q	Na	<	0.10000	M	Yb	<	0.00200
M Cr < 0.	.00998 Q Fe	< 0.50000	į P)		M	Sr	<	0.00100	M	Y	<	0.07987
M Co < 0.	00599 <u>M</u> La	< 0.00100	M P	t <	0.00399	i	s			M	Zn	<	0.03993
M Cu < 0.	01198 <u>M</u> Pb	< 0.00599	QK		0.00980	M	Та	<	0.01398	M	Zr	<	0.00998
M - Checked by	ICP-MS O - Che	cked by ICP-OES	i - Spe	ctral l	nterference	n-N	Not CI	nec	ked For	s - :	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

010419

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 . Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 95.94; +6; 6,7,8,9; [MoO.] (chemical form as received)

Chemical Competibility - Mo is received in a NH.OH matrix giving the operator the option of using HCl or HF to stabilize addic solutions. The [MoO.]* is soluble in concentrated HCl [MoOC], dilute HF / HNO, [MoOF.]* and basic media [MoO.]*. Stable at ppm levels with some metals provided it is fluorinated. Do not mixwith Alkaline or Rare Earths when HF is present. Stable with most inorganic anions provided it is in the [MoO.]* chemical form.

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the [MoOF,] for months in 1% HNO, / LDPE container. 1-10,000 ppm single element solutions as the [MoO.] chemically stable for years in 1% NH.OH in a LDPE container.

Mo Containing Samples (Preparation and Solution) - Metal (Soluble in HF / HNO) or hot dilute HCI), Oxide (soluble in HF or NH.OH); Organic Matrices (Dry ash at 450 € in Pt* and dissolve exide with HF or HCI).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Techniqu	e/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe et editioncs.)
ICP-OES	202.030 nm	0.008 / 0.0002 µg/mL	1	ion	Os, Hf
ICP-OES	203.844 nm	0.012 / 0.002 µg/mL	1	ion	
ICP-OES	204.598 nm	0.012 / 0.001 µg/mL	1	ion	ir, Ta
ICP-MS	95 amu	3 ppt	n.la	M.	-Arakiro' adlirio' iros, ' abts.

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Polynd (PCBC), Polynd (APCEP), Singapore (PSR), Slovenia (SIO), Spain (AFNOR), Switzerland (SOS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANI	L LABS/	RADCHEM	LABS P3 -1	9 2 g
DATE RECE	IVED:	09/95/0	77	
DATE EXPI	RED:	03/01/6	005 $v0$	<u>5</u>
DATE OPEN	ED:	09/95/	<i>54</i>	
INORG: 4	17#	PO: F	59393	

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

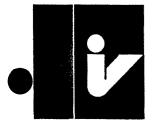
Certification Date: July 23, 2003

Expiration Date:

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant


Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

fold Stutters Known de Paux Lain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 µg/mL Phosphorus in H₂0

Catalog Number: CGP1-1, CGP1-2 and CGP1-5

Lot Number: W-P0112	3
---------------------	---

Starting Material: Starting Material Purity: Starting Material Lot No: Phosphoric Acid 99.999% J18804

INORGANIC LABS/RADCHEM LABS DATE RECEIVED: 06/01/04 DATE EXPIRED: 06/01/2005 VOS DATE OPENED: __________________ INORG: 4593 FO: F53393

CERTIFIED CONCENTRATION: 1006 \pm 4 μ g/mL

The Certified Value is the wet assay value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\bar{x}) = \sum_{x} x_{i}$

Uncertainty (\pm) = $2[(\sum_{s})^2]^{1/2}$

 $(\bar{x}) = mean$

 $x_i = individual results$

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 1006 ± 4 µg/mL

Method: Acidimetric Titration vs NIST SRM 84k KHP.

Instrument Analysis: 1002 ± 4 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3139a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu q/mL$:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

Q	Al	< 0.040	<u>M</u>	Dy	< 0.00060	M	Li	< 0.0010	<u>M</u>	Pr	< 0.000030	M	Te	< 0.0030
M	Sb	0.012	M	Er	< 0.00050	M	Lu	< 0.000040	M	Re	< 0.00010	M	Tb	< 0.000030
M	As	< 0.0010	M	Eu	< 0.00030	M	Mg	< 0.0030	M	Rh	< 0.00010	M	TI	< 0.00010
M	Ba	< 0.0010	<u>M</u>	Gd	< 0.00010	M	Mn	< 0.00040	M	Rb	< 0.00010	M	Th	< 0.00010
M	Be	< 0.000050	M	Ga	0.00070	Q	Hg	< 0.020	<u>M</u>	Ru	< 0.00020	M	Tm	< 0.000040
М	Bi	< 0.000040	M	Ge	< 0.00060	M	Mo	< 0.00020	M	Sm	< 0.00010	M	\$n	< 0.00050
M	В	< 0.0070	M	Au	< 0.00030	<u>M</u>	Nd	< 0.00020	Ω	Sc		<u>n</u>	Ti	
M	Cd	< 0.00030	M	Hf	< 0.00020	Q	Ni	< 0.050	Q	Se	< 0.40	M	W	< 0.0010
<u>0</u>	Ca	<0.010	M	Ho	< 0.000050	M	Nb	< 0.000050	<u>o</u>	Si	< 0.020	M	U	< 0.00020
M	Ce	< 0.00050	M	In	< 0.030	<u>n</u>	Os		M	Ag	< 0.00020	M	٧	< 0.00020
M	Cs	< 0.000030	M	łr	< 0.00050	M	Pd	< 0.00050	Ō	Na	< 0.090	M	Yb	< 0.00010
M	Cr	< 0.00050	<u>0</u>	Fe	< 0.050	<u>s</u>	Р		M	Sr	< 0.000050	<u>M</u>	Υ	< 0.0040
M	Co	<0.00030	M	La	< 0.000050	M	Pt	< 0.00020	<u>n</u>	S		M	Zn	0.0035
M	Cu	0.080	M	Pb	< 0.00030	ū	K		M	Ta	< 0.00070	M	Zr	< 0.00050

M - checked by ICP-MS

O - checked by ICP-OES

i - spectral interference

n - not checked for

s - solution standard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.001 g/mL

(over)

QA:KL Rev. 010804DH

QUALITY STANDARD DOCUMENTATION

1. ISO 9001;2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production - Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2

m filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

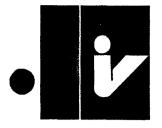
All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT


All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventu

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials." and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM	Custom-Grade 1000 µg/m	nL Silicon in H20 tr. HNO3 tr. HF
Catalog Number: Lot Number: Starting Material: Starting Material Purity (%	CGSI1-1, CGSI1-2, and W-SI02082 SiO2 99.996367	CGSI1-5
Starting Material Lot No Matrix:	C05310C H20 tr. HNO3 tr. HF	INORGANIC LABS/RADCHEM LABS 1.43 DATE RECEIVED: 0\/20/04 DATE EXPIRED: 02/01/2005 V03
3.0 CERTIFIED VALUES AN	D UNCERTAINTIES	DATE OPENED: 0/20/04 INORG: 4437 PO: F52303
Certified Concentration	: 1000 ± 5 μg/mL	The state of the s

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = erx

Certified Density:

(□) = mean

1.002 g/mL (measured at 22° C)

 $x_i = individual results$

Uncertainty (±) = $2[(\alpha + s)]^{1/2}$

n = number of measurements **BS** = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 1000 ± 5 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3150 Lot Number: 991108

Assay Method #2

1001 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u>	Al		0.02730	М	Dy	<	0.01358	ō	Li	<	0.00009	М	Pr	<	0.00068	M	Te	<	0.06791
M	Sb	<	0.00113	М	Er	<	0.01132	M	Lu	<	0.00091	M	Re	<	0.00226	М	Tb	<	0.00068
M	As	<	0.02264	М	Eu	<	0.00679	Q	Mg	<	0.04991	M	Rh	<	0.00226	M	TI	<	0.00226
<u>M</u>	Ва	<	0.02264	<u>M</u>	Go	> ا	0.00226	М	Mn	<	0.00906	M	Rb	<	0.00226	М	Th	<	0.00226
<u>0</u>	Ве	<	0.00091	М	Ga	٠ <	0.00226	0	Hg	<	0.04991	M	Ru	<	0.00453	<u>M</u>	Tm	<	0.00091
M	Bi	<	0.00091	м	Ge	. <	0.01358	W	Мо	<	0.00453	M	Sm	<	0.00226	М	Sn	<	0.01132
0	В		0.02409	М	Αu	· <	0.00679	М	Nd	<	0.00453	0	Sc	<	0.00091	ō	Ti		0.01325
M	Cd	<	0.00679	М	Hf	<	0.00453	0	Ni	<	0.01044	М	Se	<	0.01811	M	W	<	0.02264
<u>o</u>	Ca		0.00135	M	Н	, <	0.00113	М	Nb	<	0.00113	<u>s</u>	Si			<u>M</u>	U	<	0.00453
M	Се	<	0.01132	М	In	<	0.02264	ם	Os			M	Ag	<	0.00453	0	٧	<	0.00408
M	Cs	<	0.00068	M	ir	<	0.01132	M	Pd	<	0.01132	0	Na		0.02008	М	Yb	<	0.00226
<u>0</u>	Cr	<	0.00681	0	Fe	. <	0.00499	0	Ρ	<	0.02269	0	Sr	<	0.00032	М	Y	<	0.09055
M	Co	<	0.00679	M	La	<	0.00113	M	Pt	<	0.00453	0	s	<	0.11342	M	Zn	<	0.04528
<u>0</u>	Cu	<	0.00454	M	Pt	, <	0.00679	<u>0</u>	K	<	0.00771	M	Ta		0.00200	M	Zr	<	0.01132
M - 0	Check	ed	by ICP-MS	٥.	Che	cke	d by ICP-OES	1-8	pect	ral l	interference	n - 1	Not C	hed	ked For	s - :	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 28.0855; +4; 6; Si(OH)(F),2 Chemical Compatibility - Soluble in HCl, HF, H₂PO₄ H₃SO₄ and HNO₄ as the Si(OH)₄(F)₂. Avoid neutral to basic media. Unstable at ppm levels with metals that would pull F away (i.e. Do not mix with Alkaline or Rare Earths, or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions with a tendency to hydrolyze forming silicic acid (silicic acid is soluble up to ~100 ppm in water) in all dilute acids except HF.

Stability - 2-100 ppb levels - stability unknown - (alone or mixed with all other metals) as the Si(OH) $_{\rm A}$ (F) $_{\rm A}$. 1-10,000 ppm single element solutions as the Si(OH) $_{\rm A}$ (F) $_{\rm A}$ ° chemically stable for years in 2-5 % HNO $_{\rm B}$ / trace HF in a LDPE container.

Si Containing Samples (Preparation and Solution) - Metal (Soluble in 1:1:1 H $_{\rm A}$ O /HF /HNO $_{\rm B}$) Oxide - SiO $_{\rm B}$, amorphic (Dissolve by heating in 1:1:1 H $_{\rm A}$ O /HF /HNO $_{\rm B}$). Oxide - quartz (Fuse in Pi*with Na $_{\rm B}$ CO $_{\rm B}$) Geological Samples (Fuse in Pi*with Na $_{\rm B}$ CO $_{\rm B}$). followed by HCl solution of the fuseate). Organic Matrices containing silicates and non volatile silicon compounds (Dry ash at 450 % in Pt® and dissolve by gently warming with 1.1.1 H₂O / HF / H₂SO₄ or fuse / ash with Na₂CO₃ and dissolve fuseate with HCl / H.O.), Silicone Oils - dimethyl silicones depolymentae to form volatile monomer units when heated (Measure directly in alcoholic KOH /xytene mixture where 'sample is treated first with the KOH at 60-100 ℃ to "unzip" the Si-O-Si polymeric structure or digest with concentrated H2SOJH2O2 followed by cooling and dissolution of the dehydrated silice with HF.) Note that the direct analysis of silicone oils in an organic solvent will result in false high results due to high vapor pressure of volatile monomer units like hexamethyloyoldtrisiloxane. The KOH forms the K2 Si(CH2) O salt which is not volatile at room temperature.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at afforcs.)
ICP-OES	251.611 nm	0.012 / 0.003 µg/mL	1	lon	Ta, U, Zn, Th
ICP-OES	212.412 nm	0.02 / 0.01 µg/mL	1	ion	Hf, Os, Mo, Ta
ICP-OES	288.158 nm	0.03 / 0.004 µg/mL 1	ion	Ta, Ce,	Cr, Cd, Th
ICP-MS	28 amu	4000 - 8000 ppt	n/a	M	'1N, 1C TO

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.
- 10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC) Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers'

• Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SiNAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	RGANIC	LABS/	RADCHEM	LABS	By 2 of 2
DATE	RECEIV	ED:	_ov/ac/	<u> </u>	
DATE	EXPIRE	D:	09/01/3	∞ 5	VOS
DATE	OPENEL	2	01/30/	OH.	
INORG	3: 4W	137	PO: F	=522	33

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 24, 2003

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By: JoAnn

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

knowin an

Paux Aaim

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUS	TOM-	-GRAD	E SOL	UTION

1000 µg/mL Titanium in 1.4% HNO₃ (abs) tr. HF

Catalog Number: CGTI1-1, CGTI1-2 and CGTI1-5

This standard should not be prepared or stored in glass.

Lot Number: T-TI02039		INORGANIC LABS.	
		DATE RECEIVED:	
Starting Material:	Titanium Metal	DATE EXPIRED:	13/01/2004 vos
Starting Material Purity:	99.999%	DATE OPENED:	11/25/03
Starting Material Lot No:	F29I14	INORG: 4337	PO: F53879

CERTIFIED CONCENTRATION: 1010 \pm 3 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

n = number of measurements

Certified Value (\hat{x}) = $\sum x_i$	Uncertainty (\pm) = $2[(\sum_{s} \frac{1}{s})^{2}]^{1/2}$
n	(n) ^{1/2}

 $\sum S_i$ = The summation of all significant estimated errors.

Calculated Value: 1002 µg/mL

 $(\bar{x}) = mean$

Method: Calculated, based on starting material.

Instrument Analysis: 1010 ± 3 µg/mL (Average of 3 runs)

x. = individual results

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3162a.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu g/mL$:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm .

Q	Al	< 0.010	<u>M</u>	Dy	< 0.00060	<u>M</u>	Li	< 0.0010	<u>M</u>	Pr	<0.000030	<u>M</u>	Te	< 0.0030
M	Sb	< 0.000050	M	Er	< 0.00050	<u>M</u>	Lu	< 0.000040	M	Re	< 0.00010	<u>M</u>	Тb	< 0.000030
M	As	< 0.0010	<u>M</u>	Eu	< 0.00030	0	Mg	< 0.020	<u>M</u>	Rh	<0.00010	<u>M</u>	Tī	< 0.00010
M	Ba	< 0.0010	<u>M</u>	Gd	< 0.00010	M	Mn	0.0020	<u>M</u>	Rb	< 0.00010	M	Th	< 0.00010
M	Be	< 0.000050	M	Ga	< 0.00010	<u>o</u>	Hg	< 0.050	M	Ru	< 0.00020	<u>M</u>	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060	M	Mo	< 0.00020	M	Sm	< 0.00010	W	Sn	< 0.00050
Q	В	<0.050	M	Au	< 0.00030	M	Nd	< 0.00020	<u>o</u>	Sc	< 0.0020	<u>\$</u>	Ti	
M	Cd	< 0.00030	M	Hf	< 0.00020	<u>o</u>	Ni	< 0.050	<u>Q</u>	\$e	< 0.40	M	W	<0.0010
Q	Ca	< 0.010	М	Но	< 0.000050	<u>M</u>	Nb	< 0.000050	Q	Si	< 0.010	M	U	<0.00020
<u>M</u>	Ce	< 0.00050	<u>o</u>	In	< 0.020	n	Os		M	Ag	< 0.00020	M	٧	<0.00020
M	Cs	< 0.000030	M	le	< 0.00050	<u>M</u>	Pd	< 0.00050	Q	Na	0.12	<u>M</u>	Yb	<0.00010
M	Cr	< 0.00050	0	Fe	<0.010	į	₽		<u>M</u>	Sr	< 0.000050	M	Υ	<0.0040
M	Co	< 0.00030	M	La	< 0.000050	M	Pt	< 0.00020	Ĺ	\$		<u>M</u>	Zn	0.19
Q	Cu	<0.040	M	Pb	<0.00030	Ū	K	0.23	M	Ta	< 0.00070	<u>M</u>	Zr	<0.00050
М.	char	sked by ICD.MC	0 - 6	hack	ad by ICP-OES	i _ er	actra	l interference	r: - 00	t che	cked for	s - solution	etand	ard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.011 g/mL QA:KL Rev.0806020H

(over)

Expires:

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Australa (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- 2. ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 6. 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date recommended by most state and federal regulatory agencies. Transpiration issues repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

1.0

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer:

Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(les) are
determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s),
ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989
"Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM

Custom-Grade 1000 µg/mL Strontium in 0.1% (abs) HNO3

Catalog Number:

CGSR1-1, CGSR1-2, and CGSR1-5

Lot Number:

T-SR01123

Starting Material:

SrCO3

99.9951

INDRGANIC LABS/RADCHEM LABS 9.1 6 3
DATE RECEIVED: 06/80/03

Starting Material Purity (%):

99.9951

DATE EXPIRED: 07/01/8004 VO

Starting Material Lot No

22593

DATE OPENED: 06/03/03 INDRG: 4154 PD: F50070

Matrix:

0.1% (abs) HNO₃

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

998 ± 2 µg/mL

Certified Density:

1.000 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\bar{x}) = \sum_{x} x$

n

(x) = mean

x = individual results

n = number of measurements

Uncertainty (±) = $2[(\sum_{s})^2]^{1/2}$

 Σ = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The Independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- "Property of the result of a measurement of the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

998 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2

1002 ± 8 µg/mL

ICP Assay NIST SRM 3153a Lot Number: 990906

- BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 - Class 1 and 692476A - Class 2. The NIST test number is 822/260017-98, All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q AI < 0.00090	M Dy < 0.00600	요 니 < 0.00003	M Pr < 0.00030	<u>Q</u> Te < 0.10000
M Sb < 0.00050	M Er < 0.00500	M Lu < 0.00040	<u>M</u> Re < 0.00100	<u>M</u> Tb < 0.00030
Q As < 0.00500	M Eu < 0.00300	Q Mg 0.00037	<u>O</u> Rh < 0.00600	M TI < 0.00100
M Ba 0.04001	M Gd < 0.00100	<u>Q</u> Mn 0.00018	į Rb	M Th < 0.00100
Q Be < 0.00009	M Ga < 0.00100	Q Hg < 0.01500	<u>Q</u> Ru < 0.00300	<u>M</u> Tm < 0.00040
M Bi < 0.00040	M Ge < 0.00600	M Mo < 0.00200	M Sm < 0.00100	M Sn < 0.00500
Q B < 0.00060	M Au < 0.00300	M Nd < 0.00200	M Sc < 0.01000	M Ti < 0.05001
\underline{M} Cd < 0.00300	M Hf < 0.00200	Q Ni < 0.00300	Q Se < 0.05000	<u>M</u> W < 0.01000
Q Ca 0.03600	M Ho < 0.00050	M Nb < 0.00050	Q Si 0.00056	M U < 0.00200
M Ce < 0.00500	Q In < 0.00200	n Os	M Ag < 0.00200	<u>M</u> V < 0.00200
M Cs < 0.00030	M ir < 0.00500	Q Pd < 0.00400	Q Na 0.00520	M Yb < 0.00100
O Cr < 0.00080	<u>O</u> Fe 0.00080	Q P < 0.00480	<u>s</u> Sr	Q Y < 0.00004
M Co < 0.00300	M La < 0.00050	M Pt < 0.00200	n s	<u>M</u> Zn < 0.02000
<u>O</u> Cu < 0.00140	<u>M</u> Pb < 0.00300	Q K < 0.00170	<u>M</u> Ta < 0.00700	M Zr < 0.00500
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 87.62; +2; 6; Sr(H₂O), *2

Chemical Compatibility - Soluble in HCl, and HNO₂. Avoid H₂SO₄, HF and neutral to basic media. Stablewith most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate and tungstate in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1 - 3.5% HNO₃ / LDPE container.

Sr Containing Samples (Preparation and Solution) - Metal (Best dissolved in diluted HNO₃); Ores (Carbonate fusion in Pt^o followed by HCI dissolution); Organic Matrices (Dry ash and dissolution in dilute HCI).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line		Estimated D.L.	Order		Interferences (underlined indicates severe at = concs.)		
ICP-OES	407.771 nm	0.0004 / 0.00006 µg/mL	1	ion	U, Ce		
ICP-OES	421.552 nm	0.0008 / 0.00004 µg/ml.	1	ion	Ro		
ICP-OES	460.733 nm	0.07 / 0.003 µg/mL	1	atom	Ce		
ICP-MS	88 amu	1200 ppt	n/a	M	78Ge16O, 176Yb12, 176LU2, 176Hf2		

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 • 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BriwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MiL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: October 31, 2002

Expiration Date:

EXPIRES 0.1 k2 co. d

INORGANIC LABS/RADCHEM LABS % 3 4 2

DATE RECEIVED: 06/30/03

DATE EXPIRED: 07/01/3004 VO

DATE OPENED: 06/23/03

INORG: 4154 PO: £52370

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

i.;

Certificate Prepared By:

Debbie Newman, QA Administrator

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Hebbi Nemman Known in Paul Mains

010433 inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 μg/mL Tin in H20 tr. HNO3 tr. HF

Catalog Number:

CGSN1-1, CGSN1-2, and CGSN1-5

Lot Number:

X-SN01115

Starting Material:

Sn Shot

Starting Material Purity (%):

99.999438

Starting Material Lot No

G12M23

Matrix:

H₂0 tr. HNO₃ tr. HF

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

995 ± 2 µg/mL

Certified Density:

0.998 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

n

x = individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha - s)]^{1/2}$

n)1/2

S = The summation of all significant estimated errors.
(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

995 ± 2 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3161a Lot Number: 993107

Assay Method #2

998 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

INORGANIC LABS	/RADCHEM LABSPS.10fa
DATE RECEIVED:_	03/30/04
DATE EXPIRED:	04/01/2005 702
DATE OPENED:	03/30/04
INORG: 45/2	F0:E5336L

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P144
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

O Al 0.00050	M Dy < 0.01205 Q	Li < 0.00002 <u>M</u> Pr < 0.00060	<u>M</u> Te < 0.06026
O Sb < 0.01000	M Er < 0.01004 M	Lu < 0.00080 <u>M</u> Re < 0.00201	<u>M</u> Tb < 0.00060
<u>M</u> As < 0.02009	M Eu < 0.00603 Q	Mg < 0.00003 <u>M</u> Rh < 0.00201	<u>M</u> TI < 0.00201
<u>O</u> Ba < 0.00070	M Gd < 0.00201 M	Mn < 0.00804 <u>M</u> Rb < 0.00201	M Th < 0.00201
M Be < 0.00100	M Ga < 0.00201 Q	Hg < 0.01500 <u>M</u> Ru < 0.00402	<u>M</u> Tm < 0.00080
<u>M</u> Bi < 0.00080	M Ge < 0.01205 M	Mo < 0.00402 M Sm < 0.00201	<u>s</u> Sn
<u>O</u> B < 0.01200	<u>M</u> Au < 0.00603 <u>M</u>	Nd < 0.00402 <u>M</u> Sc < 0.02009	<u>M</u> Ti < 0.10043
O Cd 0.00009	M Hf < 0.00402 Q	Ni < 0.01000 <u>M</u> Se < 0.01607	<u>M</u> W < 0.02009
O Ca < 0.00150	<u>M</u> Ho < 0.00100 <u>M</u>	Nb < 0.00100 Q Si < 0.00340	<u>M</u> U < 0.00402
<u>M</u> Ce < 0.01004	<u>M</u> in < 0.02009 <u>n</u>	Os <u>M</u> Ag < 0.00402	M V < 0.00402
<u>M</u> Cs < 0.00060	M ir < 0.01004 M	Pd < 0.01004	<u>M</u> Yb < 0.00201
<u>M</u> Cr < 0.01004	<u>O</u> Fe < 0.00110 <u>Q</u>	P < 0.00500 <u>M</u> Sr < 0.00100	<u>M</u> Y < 0.08035
<u>Q</u> Co < 0.00200	M La < 0.00100 M	Pt < 0.00402 <u>n</u> S	M Zn < 0.04017
M Cu < 0.01205	M Pb 0.00593 Q	K < 0.00200 <u>M</u> Ta < 0.01406	M Zr < 0.01004
M - Checked by ICP-MS	O - Checked by ICP-OES i - Sp	ectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keeptightly sealed when not in use. Store end use at 20 ± 4~6. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 118.710; +4; 4,5,6,7,8 Sn(OH),F,*

Chemical Competibility - Soluble in HCI and dilute HF / HNO, Avoid neutral to basic media. Unstable at porn levels with metals that would pull F away. (i.e. Do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated.) Stable with most inorganic anions provided it is in the chemical form shown above.

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the Sr(OH),F,* for 1 year in 1% HNO, / LDPE container. 1-10,000 ppm single element solutions as the Sr(OH),F,* chemically stable for years in 2-5% HNO. /trace HF in a LDPE container.

Sn Containing Samples (Preparation and Solution) - Metal (Solutie in HF /HNO, or HCl); Oxides - SnO (solutie in HCl), SnO, -very resistent to all acids including HF (Fusion with equal parts of Na,CO, and S. It is then solutile in water or dilute acids as the thiosternate.); Alloys (Treat first 0.1 g with 10 mL conc. H,SO. to boiling until the alloy disintegrates and nearly all of the sulfuric acid is expelled. Then add 100 mL O, free water and 50 mL of conc HCI or transfer to a plastic container and add 1 mL HF in either case warming gertly to bring about solution.) Organic Matrices (Volatility and precipitation of the insoluble stannic oxide are problems. Consultation of the literature should be made for individual matrices / Sn compounds.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line ICP-OES 189,989 nm	Estimated D.L. 0.03 / 0.003 ug/mL	Order 1	Type	Interferences (underlined indicates severe at valorics.)
ICP-OES 242.949 nm	0.1 / 0.01 µg/mL	1	atom	W, Mo, Rh ,Ta, Co
ICP-MS 120 amu	5 pct	n/a	M	'*Te, '*Ru"O, '*Pd"O

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS	I/RADCHEM LABSP3-20-62
DATE RECEIVED:_	03/30/04 04/07/3002 03/30/04
DATE EXPIRED:	04/61/2005 700
DATE OPENED:	03/30/04
INORG: 4510	FD: F5336]

010436

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 11, 2004

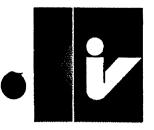
Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant


Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten knower an Paux Aai

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Bismuth in 3.5% (abs) HNOs

Catalog Number:

CGBI1-1 and CGBI1-5

Lot Number:

W-BI01089

Starting Material:

Bi needles

Starting Material Purity (%):

99.999090

INORGANIC LABS/RADCHEM LABS & 1.4 2

Starting Material Lot No

G25L16

DATE RECEIVED: 07/31/03
DATE EXPIRED: 08/01/3004 NO

Matrix:

3.5% (abs) HNO₃

DATE EXPIRED: 08/01/3004 ND
DATE OPENED: 08/01/303
INDRG: 4300 PD: F53383

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1002 \pm 4 \mu g/mL$

Certified Density:

1.026 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx.

(C) = mean

n

x = individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha - s_i)^2]^{1/2}$

(n)1/2

■S = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

© "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

1002 ± 4 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3106 Lot Number: 991212

Assay Method #2

1002 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al 0.00012	<u>M</u> Dy < 0.01202	<u>O</u> Li < 0.00002	<u>M</u> Pr < 0.00060	<u>M</u> Te < 0.06008
<u>M</u> Sb < 0.00100	M Er < 0.01001	M Lu < 0.00080	<u>M</u> Re < 0.00200	<u>M</u> Tb < 0.00060
<u>M</u> As < 0.02003	M Eu < 0.00601	O Mg 0.00070	M Rh < 0.00200	<u>M</u> TI < 0.00200
M Ba < 0.02003	M Gd < 0.00200	<u>O</u> Mn < 0.00020	<u>M</u> Rb < 0.00200	M Th < 0.00200
M Be < 0.00100	<u>M</u> Ga < 0.00200	O Hg < 0.01500	M Ru < 0.00401	<u>M</u> Tm < 0.00080
<u>s</u> Bi	M Ge < 0.01202	<u>M</u> Mo < 0.00401 .	<u>M</u> Sm < 0.00200	M Sn < 0.01001
<u>M</u> B < 0.14018	M Au < 0.00601	M Nd < 0.00401	M Sc < 0.02003	M Ti < 0.10013
O Cd 0.00017	M Hf < 0.00401	M NI < 0.01602	<u>M</u> Se < 0.01602	<u>M</u> W < 0.02003
O Ca 0.00245	M Ho < 0.00100	M Nb < 0.00100	O Si 0.00105	<u>M</u> U < 0.00401
M Ce < 0.01001	<u>O</u> In 0.00105	<u>n</u> Os	<u>M</u> Ag < 0.00401	<u>M</u> V < 0.00401
<u>M</u> Cs < 0.00060	M ir < 0.01001	O Pd < 0.00400	O Na 0.00240	<u>M</u> Yb < 0.00200
O Cr 0.00020	O Fe 0.00014	<u>O</u> P < 0.01000	<u>M</u> Sr < 0.00100	<u>M</u> Y < 0.08011
M Co < 0.00601	M La < 0.00100	M Pt < 0.00401	<u>o</u> s < 0.03000	<u>O</u> Zn 0.00008
O Cu 0.00014	O Pb . 0.00135	<u>O</u> K 0.00039	<u>M</u> Ta < 0.01402	<u>M</u> Zr < 0.01001
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 ℃. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 208.9804; +3, 6; Bi(O)(H,O)."

Chemical Competibility - Stable in HCl, HNO, H,SO, and HF. Audid basic media forming insoluble hydroxide. Stable with most metals and inorganic anions in acidic media. Many salts that are insoluble in water are soluble in HCl, HNO, and HF. The major problem with Bit is its tendency to hydrolyze at higher concentrations or in dilute acid. Nitric acid solutions should be 5% to hold the Bi in solution in the 100 to 10000 µg/mL concentration range

Stability - 2-100 ppb levels stable for months in 1 % HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 5 - 7% HNO, /LDPE container.

Bi Containing Samples (Preparation and Solution) - Metal (soluble in HNO₂); Oxides (Soluble in HNO₂), Alloys (Dissolve in conc. 4:1 HCl /HNO₂. Heating may be required.), Organic based (dry ash at 450 € and dissolve ash in HNO₂ or acid digestion with conc. hat sulfuric acid adding hydrogen peroxide dropwise and carefully until clear.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

		- 41 A 151	A1	*	1 4 f A second and a second and a second at the second
Techniqu	ealine	Estimated D.L.	<u>Order</u>	Type	Interferences (underlined indicates severe at alboncs.)
ICP-OES	223.061 nm	0.04 / 0.005 µg/mL	1	atom	Th, Ir, Ti Cu
ICP-OES	306.772 nm	0.08 / 0.01 µg/mL	1	etom	<u>Th</u> , U, <i>I</i> r, Hf, Fe
ICP-OES	222.825 nm	0.1 / 0.02 µg/mL	1	atom	<u>Cr, Hf,</u> Ce, Os
ICP-MS	209 amu	2 ppt	n/a	M'	IN IT IF O

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditación, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT). Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGAN	NIC LABS	/RADCHEM	LABS	Pg. 20f 2
DATE REC	EIVED:	07/3\/ 08/0\/3	03	
DATE EXF	'IRED:	08/01/3	3000H	VOS
DATE OFE	ENED:	08/01/	33	
INORG:	4200	PO: 45		

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mt. low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 28, 2003

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folk Stutten Known in Paux Aain

SPEXertificate "

Certificate of Reference Alaterial

010441

Catalog Number: AS-F9-2X/2Y

Lot No. 25-5AS

Description:

1000 mg/L Fluoride

Matrix:

H₂O

This ASSURANCE ®certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 998 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/ Certified Value is Traceable to: NIST SRM 3183

The CRM is prepared gravimetrically using high purity Sodium Fluoride Lot# M44142. The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L

Method: Potentiometric using Fluoride combination electrode

Instrumentation Analysis By Ion Chromatography: 999 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

mg/L	Ion	mg/L
<0.2	NO3	<0.2
<10	PO4	<1
<0.2	SO4	<0.5
	<0.2 <10	<0.2 NO3 <10 PO4

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

JAN -- 2001

Certifying Officer: N. Kocherlakola

DATE RECEIVED: 01/06/05

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition **U1**

010442

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ASTM Guide D6362-98

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

010443

Certificate of Reference Alaterial

Catalog Number: AS-CL9-2X/2Y

Lot No. 7-147VY

Description:

1000 mg/L Chloride

Matrix:

H₂O

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 997 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM 3182

The CRM is prepared gravimetrically using high puritySodium Chloride Lot# 004723. The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L

Method: Gravimetry: Precipitation using AgNO3, filtering, drying and weighing as AgCl.

Instrumentation Analysis By Ion Chromatography:997 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Element	mg/L	Element	mg/L
F	< 0.05	Br	<0.1
PO4	< 0.05	NO3	< 0.1
SO4	<0.05	NO2	< 0.2

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: JAN - - 2004

UU4 Certif

Certifying Officer: N. Kocherakola

ATE OPENED: 01/06/04

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

010444

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ASTM Guide D6362-98

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k.=s2m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

SPEXertificate

010445

Certificate of Reference Material

Catalog Number: AS-NO2N9-2X/2Y

Lot No. 7-158VY

Description:

1000 mg/L Nitrite-N

Matrix:

H₂O

This ASSURANCE ®certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1001.5 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: SPEX CRM 0902

The CRM is prepared gravimetrically using high purity Sodium Nitrite Lot# 0791R. The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000mg/L

Method: Titration with KMNO4 that was standardized against Sodium Oxalate NIST SRM 40h.

Instrumentation Analysis By Ion Chromatography: 1003 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Ion	mg/L	Ion	mg/L
Br	<20	NO3	<40
Cl	<20	PO4	<0.8
F	<0.4	SO4	<0.4

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

MAR -- 2004

Certifying Officer: N. Kochevakota

DATE RECEIVED: ____03/05/04____ DATE EXPIRED: ____03/15/2005

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

010446

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the dilutent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=52m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

DATE RECEIVED: ____05/39/G DATE EXPIRED: ____05/39/G DATE OPENED: ____05/39/G

SPEXertificate**

010447

Certificate of Reference Material

Catalog Number:

AS-BR9-2X/2Y

Lot No.: 23-52AS

Description:

1000 mg/L of Bromide

Matrix:

 H_2O

This ASSURANCE ©certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: Bromide (Br): 999 mg/L ± 3 mg/L

Traceable to: SPEX CRM 19-45AS

The CRM is prepared gravimetrically using high purity Sodium Bromide (NaBr) Lot#017400 The certified value listed is the average of values obtained by classical wet assay and lon Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1,002 mg/L

Method: Gravimetric analysis by precipitation using Silver Nitrate, filtering, drying and weighing as AgBr.

Instrumental Analysis by Ion Chromatography: 996 mg/L

Trace Anion Impurities in the Actual Solution via IC Analysis:

Element	mg/L
F-	< 0.02
BrO_3	< 0.02
NO ₂ ·	< 0.05
NO_3	< 0.05
PO_4^{-3}	< 0.20
Cl ⁻	<1.50
SO ₄ -2	< 0.05

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to \pm 0.5% of the certified concentration value for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

MAY - - '03

Date of Certification:

_ Certifying Officer: N. Kochenakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

010448

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ASTM Guide D6362-98

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_{cr} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

SPEXertificate

010449

Certificate of Reference Alaterial

Catalog Number: AS-NO3N9-2X/2Y

Lot No. 25-65AS

Description:

1000 mg/L Nitrate Nitrogen

Matrix:

H2O

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1003.5 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM 3185

The CRM is prepared gravimetrically using high purity Sodium Nitrate Lot# M14156. The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1004 mg/L

Method: Precipitate using Nitron Acetate, filter, dry and weigh as C20H16N4HNO3

Instrumentation Analysis By Ion Chromatography: 1003 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Ion	mg/L	Ion	mg/L
Br	<0.5	NO2	<0.2
Cl	<0.2	PO4	<2.0
F	< 0.05	SO4	<0.5

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

JAN - - 2004

Certifying Officer: N. Kocherlakota

E OPENED: 01/06/04 \\
E OPENED: 01/06/04 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\
ON 1/5/305 \\

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

010450

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k = s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k₁ = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

SPEXertificate

010451

Certificate of Reference Material

Catalog Number: AS-PO4P9-2X/2Y

Lot No. 7-145VY

Description:

1000 mg/L Phosphate-P

Matrix:

H2O

This ASSURANCE ®certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 998 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM #318b

The CRM is prepared gravimetrically using high purityKH2PO4 Lot# V35142 . The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

998 mg/L

Method: Precipitation using Magnesia Mixture. Filter, ignite, and weigh as Mg2P2O7

Instrumentation Analysis By Ion Chromatography:998 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Element	mg/L	Element	mg/L
Cl	<3.0	Br	< 0.3
F	<0.2	NO3	< 0.5
NO2	< 0.3	SO4	< 0.5

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

JAN - - 2004

Certifying Officer: N. Kocherlakola

TE RECEIVED: 01/06/04

NIE EXPIRED: 01/15/3005

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

010452

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

SPEXertificate

010453

Certificate of Reference Material

Catalog Number: AS-SO49-2X/2Y

Lot No. 7-149VY

Description:

1000 mg/L Sulfate

Matrix:

H₂O

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 997 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/ Certified Value is Traceable to: NIST SRM 3181

The CRM is prepared gravimetrically using high purity Potassium Sulfate Lot# X34146 . The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

998 mg/L

Method: Precipitated using Barium Chloride, filtered, ignited and weighed as BaSO4

Instrumentation Analysis By Ion Chromatography: 996 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Element	mg/L	Element	mg/L
Br	<0.01	NO3	<0.01
CI	<0.01	PO4	<0.10
F·	<0.005		
NO2	<0:01		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

MN -- '03 Certifying Officer: N. Kocherlakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

010454

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s=s^2m$ is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k₄ = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e - \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA
732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647
CRMSales@spexcsp.com • www.spexcsp.com
Always Providing Superior Quality . . . Unparalleled Service™

010455

SPCXertiticate™

Certificate of Reference Material

Catalog Number:

ICMIX2-100

Lot No.: 25-145AS

Description:

IC Instrument Check Standard 2

Matrix:

 H_2O

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single ion concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ION Chromatography:

Analyte	Labeled (mg/L)	Measured (mg/L)	NIST SRM
F	100	100	3183
Cl ⁻	200	200	3182
Br [*]	400	399	3184
NO_3	400	402	3185
HPO₄ ⁻²	600	600	3186
SO_4^{-2}	400	399	3181

Spex Reference Multi: Lot #IC6-77VY

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single component exceeding +/- 2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: APR - - 2004 Certifying Officer: N. Kochertakota

© 2000 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

010456

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the dilutent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

146 PROJECT NO. BOOK NO. CH Work continued from Page 010457 SWRIS Nithle-N Nithte-(Spex 23-23A8, 1000mg 10 15 20 25 30 35 Work continued to Page www.scientificbinderyogyrs.com SIGNATURE DATE WITNESS

SPCXertificate™

Certificate of Reference Material

Catalog Number:

AS-NO₂9-2X/2Y

Lot No.: 23-23AS

010458

Description:

1000 mg/L of Nitrite

Matrix:

 H_2O

This ASSURANCE ocertified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for lon Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: Nitrite (NO₂): 1000.5 mg/L ± 3 mg/L

Traceable to: SPEX CRM 0601NO2

The CRM is prepared gravimetrically using high purity Sodium Nitrite (NaNO2) Lot#0791R. The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: Titrimetric analysis using KMnO₄. KMnO₄ standardized with As₂O₃ NIST SRM #83d.

Instrumental Analysis by Ion Chromatography: 1001 mg/L

Trace Anion Impurities in the Actual Solution via IC Analysis:

Element	mg/L
F	<0.2
SO₄ ⁻²	< 0.2
Cl	<0.5
PO ₄ -3	<0.5
Br ⁻	<10.0
NO ₃ -	<10.0

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% of the certified concentration value for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: NAY - - 193

Certifying Officer: N. Kochertakol

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=3²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

u_e is obtained by combining the individual element standard uncertainty components u_i and u_i √Σu_i²

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

ISO 9001

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 CRMSales@spexcsp.com • www.spexcsp.com Always Providing Superior Quality . . . Unparalleled Service™

1001 West Saint Paul Avenue Milwaukee, WI 53233 USA

Tel.: 800-558-9160 • (414) 273-3850 Fax: 800-962-9591 • (414) 273-4979

e-mail: aldrich@sial.com

Certificate of Analysis

SOUTHWEST RESEARCH INST DANNY RAMIREZ 6220 CULEBRA RD SAN ANTONIO TX 78238

INORGANICS LAB DATE RECEIVED: ___1/9/38/_ DATE EXPIRED: 1/9/2012

PRODUCT NUMBER: 236527-500G

LOT NUMBER: 15308EI

PO NBR: 130686E

PRODUCT NAME: SODIUM HYDROGENCARBONATE, 99.7+%,

A.C.S. REAGENT

FORMULA: NAHCO3

FORMULA WEIGHT: 84.01

APPEARANCE

WHITE POWDER

TITRATION

100.3 % (WITH HCL)

ICP ASSAY

CONFIRMS SODIUM COMPONENT

INSOLUBLE MATTER

0.001%

CALCIUM

0.0050%

CHLORIDE

0.0014%

IRON

< 0.0001% *

HEAVY METALS

<5PPM (AS PB) *

POTASSIUM

<0.0020 % *

MAGNESIUM

0.00025%

AMMONIUM

<5PPM

PHOSPHATE

<0.001% *

CALCIUM, MAGNESIUM &

0.016%

R2O3 PRECIPITATE

CONTINUED ON NEXT PAGE

ALDRICH CHEMICAL COMPANY DAVID SWESSEL JANUARY 5, 2001

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.

Aldrich brand products are sold exclusively through Sigma-Aldrich, Inc.

Certificate of Analysis

THE RIGHT CHEMICALS THE RIGHT CHEMISTRY

INORGANIC LABS/RADCHEM LABS/10461

DATE RECEIVED: 03/37/03

DATE EXPIRED: 03/37/3013 VOS

DATE OPENED: 04/10/03

INORG: 4033 PO: 330/76E

Sodium carbonate, ACS primary standard, 99.95-100.05% (dried basis)

Stock Number: 33377 Lot Number: L06M34

Analysis

Test	Limits	Results
Assay (dried basis)	99.95 – 100.05 %	100.0 % < 0.01 %
Insoluble Loss on heating (285°C)	0.01 % max 1.0 % max	< 0.05 %
Chloride Nitrogen compounds	0.001 % max 0.001 % max	< 0.001 % < 0.001 %
Phosphate	0.001 % max 0.005 % max	< 0.001 % < 0.005 %
Silica Sulfur compounds	0.003 % max	< 0.003 %
NH₄OH precipitate Potassium	0.01 % max 0.005 % max	< 0.01 % < 0.001 %
Calcium Magnesium	0.02 % max 0.004 % max	< 0.01 % < 0.004 %
Heavy metals (as Pb)	0.0005 % max	< 0.0005
Iron	0.0005 % max	% < 0.0005 %

Traceable to NIST? Yes

Certified by:

Quality Control:

Certificate of Analysis

THE RIGHT CHEMICALS THE RIGHT CHEMISTRY

INDRGANIC LABS/RADCHEM LABS 010462
DATE RECEIVED: 03/37/03 010462
DATE EXPIRED: 03/37/3013 Y05
DATE OPENED: 04/10/03
INDRG: 4033 PO: 3301/6E

Sodium carbonate, ACS primary standard, 99.95-100.05% (dried basis)

Stock Number: 33377 Lot Number: L06M34

Analysis

Test	Limits	Results
Assay (dried basis)	99.95 – 100.05 %	100.0 %
Insoluble	0.01 % max	< 0.01 %
Loss on heating (285°C)	1.0 % max	< 0.05 %
Chloride	0.001 % max	< 0.001 %
Nitrogen compounds	0.001 % max	< 0.001 %
Phosphate	0.001 % max	< 0.001 %
Silica	0.005 % max	< 0.005 %
Sulfur compounds	0.003 % max	< 0.003 %
NH₄OH precipitate	0.01 % max	< 0.01 %
Potassium	0.005 % max	< 0.001 %
Calcium	0.02 % max	< 0.01 %
Magnesium	0.004 % max	< 0.004 %
Heavy metals (as Pb)	0.0005 % max	< 0.0005
• , ,		%
Iron	0.0005 % max	< 0.0005
		%

Traceable to NIST? Yes

Certified by:

Quality Control:

SOUTHWEST RESEARCH INSTITUTE

010463

NUCLEAR PROJECT

CLIENT: Division 20

TASK ORDER: 040415-2

SRR: 25770 **SDG: 243222 CASE: CNWRA**

VTSR: April 14, 2004 PROJECT#: 06002.01.141

Pipette Calibrations

Book/Page: 03 031

NSwRI – Div. 01, Inorganic Labs' Fixed Volume Pipette Verification Log

(Space provide for Inorganic Laboratories' Fixed Volume Pipette Verification Spreadsheet)

010464

SwRI - Div. 01, Inorganic Labs' Fixed Volume Pipette Spreadsheet

Eppendorf #	True Value (uL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value	88
Lab30	1000	1.0088				100.71	
TMA1	1000	1.0043			1.00	100.28	
TMA2	1000	1.0064			1.01	100.54	1 :
TMA3	1000	OUT	OF	SERVICE			1
TMA6	1000	NOT	FOUND				
TMB1	900	0.9014	0.9018		0.90	100.14	
TMC1	800	0.7999			0.80	100.07	
TMDD1	750	0.7543		0.7538	0.75	100.50	
TMD1	700	0.6974			0.70	99.31	
TMD2	700	0.7059			0.71	100.81	1
TME1	600	0.5979	0.5961		0.60	99.38	4
TMF2	500	0.5		7.4956 0.4969	0.50	99.56 29.56 VEZ	1/01/04
TMF5	500	0.5039			0.50	100.64	4 !
ICF1	500	0.4974	0.4971	0.4954	0.50	99.33	4
L30-500	500	0.5038			0.50	100.42	4
TMG3	400	0.3941	0.3949		0.39	98.69	4 !
TMH1	300	OUT	OF	SERVICE	0.00	00.00	4
TMH2	300	0.2974	0.2971	0.2959	0.30	98.93	4
TMJ1	250	0.2484	0.248	and the same of th	0.25	99.27	-
TMJ2	250	0.2487	0.2484		0.25	99.41	4
TMJ3	250	0.2501	0.2495		0.25	99.83 100.33	4
TMK2	200	0.2007	0.2007	0.2006	0.20	99.13	1
TML1	150	0.1487	0.1488		0.15	100.39	1
TMM1	120	0.1206			0.12	100.39	-
TMN3	100	0.1001	0.1	0.1	0.10 0.10	100.63	-
ICN1	100	0.1005			0.10	99.83	
TMQ1	80	0.08			0.06	33.03	1
TMR1	70	OUT	OF	SERVICE			-
TMS1	60	OUT	OF	SERVICE			1
LAB-30A	50	NOT	FOUND	0.0403	0.04	99.92	1
TMU1	40	0.0398			0.04	99.00	1
TMU2	40	0.0397	0.0396		0.04	98.89	1
TMV1	30	0.0297	0.0296		0.03	101.33	
L30-20	20	0.0203			0.02	101.33	1
TMW1	25	0.0253		SERVICE 0.025	0.03	100.21	
TMY1	15	OUT	OF	SERVICE			1

FRM-246 (Rev 1/Mar 03)

010465 Book/Page __

10403 Book/Page _____03__032__

SwRI - Div. 01, Inorganic Labs' Fixed Volume Pipette Verification Log

,	_	•	_
Balance #: 34	Thermometer #:	diH20 Temperature (°C)	: <u>21</u>

Eppendorf #	True Value (μL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)
Lab30	1000	1.0088	1.0069	1.0055
TMA1	1000	1,0043	1.0018	1.0023
TMA2	1000	1.0064	1.005	1.0048
TMA3	1000	out	OF	StrXI'C
TMA6	1000	NOT	Found	
TMB1	900	,9014	.9018	.9005
TMC1	800	7999	,8004	, RO14
TMDD1	750	.7543	,7532	.7538
TMD1	700	6974	, 6946	,69360
TMD2	700	.7059	.7054	7058
TME1	600	5979	5961	,5948
TMF2	500	,5000	14956	,4969
TMF5	500	,5039	.5035	.5022
ICF1	500	4974	. 4971	. 4954
L30-500	500	,5038	5015	,5010
TMG3	400	, 3941	3949	.3953
TMH1	300	Out	0 (F	Serice
TMH2	300	. 2974	,2971	2959
TMJ1	250	,2484	,2480	,2481
TMJ2	250	. 2487	,2484	.2185
TMJ3	250	, 2501	.2495	12491
TMK2	200	,2007	.2007	2006
TML1	150	1487	,1488	.1484
TMM1	120	,1206	11206	,1200
TMN3	100	1001	,/000	.1600
ICN1	100	,1005	,1005	1009
TMQ1	80	0800	10797	. 0799
TMR1	70	out	ot-	Strulct
TMS1	60	out	0F	service
LAB-30A	50	NOT	Found	
TMU1	40	. 0398	. 0398	.0403
TMU2	40	0397	.0394	10395
TMV1	30	,0297 ,0203	,0296	,0297
L30-20	20	,0203	,0203	. 6202
TMW1	25	.0253	,0249	,0250
TMY1	15	Out	8F	SHVIC

Analyst:	~ Wills		Date: _	5-28-04
Reviewed by:	Valo 1)odi	Date:	401/01/50
		FRM-243b	(Rev 3/Mai	r 03)

Book/page:	: %
------------	-----

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010466

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20	0.0203	0.0204	0.0201	0.020	101.33
ADJ200-A	100	0.0990	0.0997	0.1001	0.100	99.60
	200	0.1993	0.1991	0.1990	0.199	99.57
	20	0.0202	0.0202	0.0201	0.020	100.83
ADJ200-C	100	0.0991	0.0985	0.0980	0.099	98.53
	200	0.1987	0.1991	0.1991	0.199	99.48
	20	0.0203	0.0202	0.0202	0.020	101.17
ADJ200-D	100	0.0989	0.0996	0.0993	0.099	99.27
	200	0.1989	0.1998	0.1999	0.200	99.77
	20					
ADJ200-G	100					
	200					
	20					
ADJ200-H	100					
	200					
	20					•
ADJ200-J	100					
	200					
	20	0.0204	0.0203	0.0200	0.020	101.17
ADJ200-K	100	0.0999	0.0993	0.0998	0.100	99.67
	200	0.2021	0.2001	0.2000	0.201	100.37
·	20					
ADJ200	100					
	200					
	20					
ADJ200	100					·
	200					

FRM-247a (Rev 4/Apr 04)

•	
Book/page:	

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log 010467

Balance #: 34 Thermometer #: Goll diH20 Temperature (° C) 31

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20	10203	,0204	,0201
	ADJ200-A	100	. 0990	. 0997	./00/
		200	, 1993	- 1991	. 1990
		20	.0202	,0202	.0301
	ADJ200-C	100	. 0991	10985	. , 0980
ł		200	.1987	,1991	.1991
		20	.0203	,0502	.0262
	ADJ200-D	100	, n989	.0996	, 0993
1		200	. 1989	.1998	, 1999
0		20			
200	ADJ200-G	100			
N		200			
		20			
	ADJ200-H	100		006-11-04	
3		200		006	
20		20		A	
2	ADJ200-J	100		U	•
		200			-
		20	.0204	.0203	,0200
ŀ	ADJ200-K	100	.0999	. 0993	.0998
		200	.2021	,2001	,2000
		20			
	ADJ200	100		Der 11-84	
		200		8	

Analyst: Oll Oll
Reviewed by: 1000 9 ft

Date: <u>6-11-04</u>
Date: <u>06/30/04</u>

Bookpage. UU UUU	Book/page:_	06	033
------------------	-------------	----	-----

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010468

SwRI – Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20					
ADJ200-A	100					
	200					
	20					
ADJ200-C	100					
	200					
	20					
ADJ200-D	100					
	200					
	20	0.0201	0.0200	0.0198	0.020	99.83
ADJ200-G	100	0.0985	0.0982	0.0988	0.099	98.50
	200	0.1973	0.1975	0.1996	0.198	99.07
	20	0.0203	0.0204	0.0204	0.020	101.83
ADJ200-H	100	0.0996	0.0989	0.0994	0.099	99.30
	200	0.1992	0.2006	0.1999	0.200	99.95
	20	0.0204	0.0203	0.0203	0.020	101.67
ADJ200-J	100	0.0991	0.0991	0.0985	0.099	98.90
	200	0.1984	0.1985	0.1982	0.198	99.18
	20					
ADJ200	100					
	200					
	20					
ADJ200	100					
	200					
	20					
ADJ200-K	100					
	200					

FRM-247a (Rev 3/Oct 03)

		,	•
3ook/page):	06	034

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification $^{\text{Log}}010469$

Bal	ance #:	_ Thermometer #		diH20 Temperature (° C)			
Γ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)		
		20					
	ADJ200-A	100					
		200			#		
		20		Coltt			
	ADJ200-C	100		1 1001			
		200	1	1			
		20	150				
	ADJ200-D	100					
13	,	200					
		20	0.0201	0.0200	0.0198		
200	ADJ200-G	100	0.0985	0.0982	0.0988		
N		200	0.1973	0.1975	0.1996		
		20	0.0203	0.0204	0.0204		
	ADJ200-H	100	0.0996	0.0989	0.0994		
3		200	0,1992	0.2006	0.1999		
		20	0.0204	0.0203	0.0203		
20	ADJ200-J	100	0.0991	0.0991	0.0985		
		200	0.1984	0.1985	0.1982		
		20					
	ADJ200-K	100		1.1	H		
		200		1 Nott	<u> </u>		
		20	1	W WI			
	ADJ200	100	10				
		200	V				

Analyst: i ATOM A Magel Date: 06/11/04

Reviewed by: Date: 6/21/04

Book/page:	0	6	0	8	9
------------	---	---	---	---	---

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010470

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100	0.1019	0.1020	0.1018	0.102	101.90
ADJ1000-C	500	0.4963	0.4968	0.4985	0.497	99.44
	1000	0.9940	0.9957	0.9951	0.995	99.49
	100	0.1006	0.1004	0.0994	0.100	100.13
ADJ1000-D	500	0.4959	0.4991	0.4962	0.497	99.41
	1000	0.9956	1.0002	0.9989	0.998	99.82
	100	0.0998	0.0999	0.0999	0.100	99.87
ADJ1000-E	500	0.4965	0.4994	0.4956	0.497	99.43
	1000	0.9968	0.9942	0.9949	0.995	99.53
	100	0.1008	0.1009	0.1013	0.101	101.00
ADJ1000-F	500	0.4958	0.4962	0.4973	0.496	99.29
-	1000	0.9947	0.9952	0.9958	0.995	99.52
	100					
ADJ1000-G	500					
	1000					
	100					
ADJ1000-H	500					
	1000					
	100					
ADJ1000-J	500					
	1000					
	100	0.1011	0.1012	0.1015	0.101	101.27
ADJ1000-K	500	0.4977	0.4974	0.4960	0.497	99.41
	1000	1.0009	1.0002	0.9993	1.000	100.01
	100					
ADJ1000	500					
	1000					

FRM-247b (Rev 3/Apr 04)

06 090 Book/page:___

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log

Balance #:	Thermometer #: G-0 []
------------	-----------------------

diH20 Temperature (° C)

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100	, 1019	,1020	10/8
	ADJ1000-C	500	.4963	. 4968	, 4985
		1000	. 9940	. 9957	.9951
		100	, 1006	.1004	.0994
	ADJ1000-D	500	.4959	. 4991	. 4962
İ		1000	,9956	1.0002	.9989
		100	. 0998	. 0999	.0999
	ADJ1000-E	500	. 4965	,4994	. 4956
		1000	, 9968	.9942	. 9949
7		100	, 1008	. 1009	.1013
0	ADJ1000-F	500	.4958	.4962	. 4973
000		1000	.9947	.9952	.9958
10		100			
',	ADJ1000-G	500			
'.		1000			
7		100		1) 6 11-6-1	
	ADJ1000-H	500		Jul a	
2	`	1000		7	
1		100			
	ADJ1000-J	500			
		1000			
		100	.1011	.10/2	,1015
	ADJ1000-K	500	,4977	.4974	4960
		1000	1.0009	1.0002	,9993
		. 100			
	ADJ1000	500		Jev 6-11-04	
		1000		0	

Analyst: Dun Wills	
Reviewed by:	_

Date:

Book/page: 06 09	3
------------------	---

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010472

War A. Maegel 06/11/04 SwRI – Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100				10,	
ADJ1000-C	500					
	1000					
	100					
ADJ1000-D	500					
	1000					
	100					
ADJ1000-E	500					
	1000					
	100					
ADJ1000-F	500					
	1000					
	100	0.1019	0.1011	0.1020	0.102	101.67
ADJ1000-G	500	0.4943	0.4978	0,5000	0.497	99.47
	1000	1.0098	1.0072	1.0066	1.008	100.79
	100	0.0998	0.1000	0.0992	0.100	99.67
ADJ1000-H	500	0.4918	0.4936	0.4959	0.494	98.75
	1000	0.9820	0.9863	0.9876	0.985	98.53
	100	0.0991	0.1001	0.1003	0.100	99.83
ADJ1000-J	500	0.4967	0.4955	0.4965	0.496	99.25
	1000	0.9927	0.9936	0.9923	0.993	99.29
	100					
ADJ1000	500				***************************************	
	1000					
	100					
ADJ1000-K	500					
	1000					

FRM-247b (Rev 2/Oct 03)

Book/page: 06 094

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log $\,010473\,$

В	alance #:	Thermometer #	•	diH20 Tempera	ture (° C)
	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100			
	ADJ1000-C	500			
		1000			
1		100			
	ADJ1000-D	500		10	
.		1000		140	
		100	·	Det	
1.	ADJ1000-E	500		200	
		1000	1	0	
1		100	MI,		
0	ADJ1000-F	500			
1000		. 1000			
12		100	0.1019	0.1011	0.1020
	ADJ1000-G	500	0.4943	0.4978	0.5000
",		1000	1,0098	1.0072	1.00ldo
7		100	0.0998	0.1000	0.0997
	ADJ1000-H	500	0.4918	0.4936	0.4959
100		1000	0.9820	0.9863	0.9816
-		100	0.0991	0.1001	0.1003
	ADJ1000-J	500	0.4967	0.4955	0.4965
		1000	0.9927	0.9936	0.9923
		100			
	ADJ1000-K	500			4
		1000		Dott	- 1
		100	- 1A	N	
	ADJ1000	500	W'		
		1000			

Analyst: Upbres A. Maggl: Date: Up/11/04

Reviewed by: Date: 10/21/04

Book/page:	06	151
DOOR Dade.		

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010474

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500	0.4941	0.4940	0.4928	0.494	98.73
ADJ5000-C	2500	2.5032	2.5028	2.5024	2.503	100.11
	5000	5.0334	5.0356	5.0234	5.031	100.62
	500					
ADJ5000-G	2500	OUT	OF	SERVICE		
	5000					
	500					
ADJ5000-H	2500	OUT	OF	SERVICE		
	5000					
	500	0.5089	0.5091	0.5088	0.509	101.79
ADJ5000-I	2500	2.5011	2.5089	2.5092	2.506	100.26
	5000	5.0180	5.0258	5.0274	5.024	100.47
	500					
ADJ5000-J	2500					
	5000					
	500					
ADJ5000-K	2500					
	5000					
	500					
ADJ5000-L	2500					
	5000					
	500	0.5022	0.4980	0.5022	0.501	100.16
ADJ5000-M	2500	2.4911	2.4930	2.4936	2.493	99.70
	5000	5.0187	5.0189	4.9959	5.011	100.22
	500	0.5050	0.5037	0.5028	0.504	100.77
ADJ5000-N	2500	2.5066	2.5033	2.5089	2.506	100.25
	5000	5.0232	5.0266	5.0249	5.025	100.50
	500					
ADJ5000	2500					
	5000					
	500					
ADJ5000	2500					
	5000					

FRM-247c (Rev 3/Apr 04)

06 152 Book/page:__

Balance #: 34	Thermometer #:(~O/
---------------	--------------------

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500	,4941	,4940	3 .4928
	ADJ5000-C	2500	2.5032	2.5028 9	JI-04 5-2 2.5024
		5000	5-0334	5.0356	5-0234
		500			
	ADJ5000-G	2500	out.	OF	Stavice:
		5000			
		500			
	ADJ5000-H	2500	out	OF	SERVICE
		5000			•
		500	.5089	,5091	5088
_	ADJ5000-I	2500	2,50(1 5.0180	, 5091 2.5089	2.5092
Į		5000	5-0180	5.0258	5-0274
1		500	٠.		
5000	ADJ5000-J	2500			
0		5000			
5(500			
	ADJ5000-K	2500			
'.		5000		0-11-04	
7		500		A CONTRACTOR OF THE PROPERTY O	
7	ADJ5000-L	2500		0	***
200		5000			
2(500	5022	,4980	.5022
	ADJ5000-M	2500	2.4911	5.4930	5.4936
		5000	5-0187	5-0189	4.9959
		500	,5050	.5037	,5038
	ADJ5000-N	2500	2.50le6	J. 5033	2.5089
		5000	5,0232	5.0566	5.0249
		500			
Ĺ	ADJ5000	2500			
		5000			
		500		6-11-04	
L	ADJ5000	2500		J	
		5000			

Analyst: William	Date: 6-11-0
Reviewed by: 100 long	Date: <u>06/30/04</u>

Book/page: 06 153

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010476

Warran a. Maegeli Dle/11/04

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf#	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500					
ADJ5000-C	2500				<u> </u>	
	5000					
	500					
ADJ5000-G	2500					
	5000					
	500					
ADJ5000-H	2500					<u> </u>
	5000					
	500					
ADJ5000-I	2500					<u> </u>
	5000					
	500	0.5006	0.5040	0.5058	0.503	100.69
ADJ5000~J	2500	2.4968	2.4974	2.4999	2.498	99.92
	5000	4.9870	4.9977	4.9976	4.994	99.88
	500	0.4948	0.4954	0.4962	0.495	99.09
ADJ5000-K	2500	2.4969	2.4949	2.4960	2.496	99.84
	5000	5.0356	5.0067	5.0094	5.017	100.34
	500	0.5017	0.5005	0.5019	0.501	100.27
ADJ5000-L	2500	2.4897	2.4897	2.4894	2.490	99.58
	5000	4.9800	4.9833	4.9877	4.984	99.67
	500					
ADJ5000	2500					
	5000					
	500					
ADJ5000	2500					
	5000					
	500					
ADJ5000	2500				l	
7.22223	5000					
	500					
ADJ5000-M	2500					
	5000					

FRM-247c (Rev 2/Mar 03)

Book/pag	e: ·	0	6	1	<u>54</u>	

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log

	•	$0.4 \cap A.77$,
Balance #:	Thermometer #:	diH20 Temperature (* C) $\phantom{00000000000000000000000000000000000$	1

[Eppendorf#	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500	-		
	ADJ5000-C	2500			
		5000			
		500			
	ADJ5000-G	2500			
		5000		- W	
		500		platin	
	ADJ5000-H	2500		10.	
. [5000	7.41		
		500			
	ADJ5000-I	2500	V		
1		5000			
1		500	0.5006	0.5040	0.5058
5000	ADJ5000-J	2500	2.4968	7,4974	7.4999
2		5000	4.9870	4.9977	4.99 16
5		500	0.4948	0.4954	0.4962
	ADJ5000-K	2500	2,4969	2,4949	2.4960
'.		5000	5.0356	5,0067	5,0074
3		500	0.5017	0.5005	0,5019
	ADJ5000-L	2500	7.4891	11 00 77	2.4894
500		5000	4,9800	4.9833	4,7811
5	45.1500.11	500			
	ADJ5000-M	2500			
		5000			11/19
	AD IEOOO N	500		1	HV!
	ADJ5000-N	2500		n all	<u> </u>
		5000		7 170	
	ADJ5000	500 2500	1	at	
	ADJOUU	5000	1 7	\vee	
		5000	1 115		
	ADJ5000	2500	W'		
	ADJOUU	5000			
		5000			

Analyst: 1 Toplers A. Maggeli	
Reviewed by: Willand Jan	_
· — (N X	_

Date: 06/11/04

Date: 6/21/04

Book/page:	06	128
Door page.		

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: 6011 diH20 Temperature (° C) 22010478

ſ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500			The second secon
	ADJ5000-C	2500			
		5000			
ĺ		500		, 01	
	ADJ5000-G	2500		110	
		5000		1241	
		500		all	
	ADJ5000-H	2500	<u> </u>		
		5000	> AA		,
ĺ		500	1111		
	ADJ5000-I	2500	V		
		5000			
1		500	0.5040	0.5017	0.4999
5000	ADJ5000-J	2500	7.5059	2.5013	7.5053
9		5000	5.0069	5.0031	4.9985
2		500	0.4990	0.4999	0.5011
	ADJ5000-K	2500	2.4981	2,4955	2,4901
".		5000	5.0069	5.0041	4.4916
		500	0.4998	0.5036	0.5041
7	ADJ5000-L	2500	2.4959	7.4929	2.4927
500		5000	5.0751	4.9930	4,9999
2(500			
	ADJ5000-M	2500			- W
		5000		-1	
	v	500	<u> </u>	1	
	ADJ5000-N	2500	· .	141	
		5000			
		500			
	ADJ5000	2500	1	7	
		5000	1		
		500	1		
	ADJ5000	2500			
		5000			

Analyst:	Warren G. Macgeli	Date: _	04/24/04
Reviewed by:	Nale Of	Date: _	06/30/04

010478-4

Book/page: 06 128

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: 6011 diH20 Temperature (° C) 22.0

ſ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500			
	ADJ5000-C	2500			
		5000			
		500		100	
	ADJ5000-G	2500		110)
		5000		1241	
		500		ay!	
· ·	ADJ5000-H	2500	1		
		5000	SAN		· · · · · · · · · · · · · · · · · · ·
		500	1 11		
	ADJ5000-I	2500	V		
		5000			2.20
17		500	0.5040	0.5017	0.4999
5000	ADJ5000-J	2500	7,5059	2.5013	7.5053
2		5000	5.0069	5.0031	4.9989
2		500	0.4990	0.4999	0.501
	ADJ5000-K	2500	2.4981	7,4955	7.4901
".		5000	5.0065	5.0041	4.9916
		500	0.4998	0.5036	0.5041
7	ADJ5000-L	2500	12.4959	7.4929	4961
500		5000	5.0251	4,7750	4,7799
2		500			
	ADJ5000-M	2500			104
İ		5000		101	
		500			
	ADJ5000-N	2500		D41	
		5000			
		500		$\Delta \mathcal{N}$	
	ADJ5000	2500	+	M	
		5000	 		
		500			
	ADJ5000	2500	 		
		5000			

Analyst:	Warre	in G	. Nau	rejeli
Reviewed by:_			Oy	

Date: 04/24/04

Date: 06/30/04

Book/page:	06	127	

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010479

Woodan a- Nagel: 04/30/04

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500					
ADJ5000-C	2500					
	5000					
	500					
ADJ5000-G	2500					
	5000					
	500		~~~~			
ADJ5000-H	2500	***************************************				
	5000					
15.15000	500					
ADJ5000-I	2500 5000					
	5000	0.5040	0.5017	0.4000	0.500	400.07
AD 15000 1		0.5040	0.5017	0.4999	0.502	100.37
ADJ5000-J	2500 5000	2.5059 5.0069	2.5013 5.0031	2.5053 4.9985	2.504 5.003	100.17 100.06
	500	0.4990	0.4999			
ADJ5000-K	2500			0.5011	0.500	100.00
ADJ5000-K	5000	2.4981 5.0065	2.4955 5.0041	2.4901 4.9916	2.495 5.001	99.78 100.01
	500	0.4998	0.5036	0.5041	0.503	100.50
ADJ5000-L	2500	2.4959	2.4929	2.4927	2.494	99.75
ADDUOUG-L	5000	5.0257	4.9930	4.9999	5.006	100.12
	500			,	0.000	100.12
ADJ5000	2500			· · · · · · · · · · · · · · · · · · ·		
7.555555	5000					
	500					
ADJ5000	2500					
	5000					
	500					
ADJ5000	2500					
. 1.50000						
·	5000					
	500		<u> </u>			
ADJ5000-M	2500					
	5000					

FRM-247c (Rev 2/Mar 03)

Book/page:	06	127	
Dooly page.			_

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010480

Woodan a- Magel: 04/30/04

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf#	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500					
ADJ5000-C	2500					
	5000					
	500					
ADJ5000-G	2500					
	5000					
	500					
ADJ5000-H	2500 5000					
	500	<u>-</u>				
ADJ5000-I	2500					
ADJ3000-I	5000 5000					<u> </u>
	500	0.5040	0.5017	0.4999	0.502	100.37
ADJ5000-J	2500	2.5059	2.5013	2.5053	2.504	100.17
AD03000-3	5000	5.0069	5.0031	4.9985	5.003	100.06
	500	0.4990	0.4999	0.5011	0.500	100.00
ADJ5000-K	2500	2,4981	2.4955	2.4901	2.495	99.78
	5000	5.0065	5.0041	4.9916	5.001	100.01
	500	0.4998	0.5036	0.5041	0.503	100.50
ADJ5000-L	2500	2.4959	2.4929	2.4927	2.494	99.75
	5000	5.0257	4.9930	4.9999	5.006	100.12
	500					
ADJ5000	2500					
	5000					
	500					
ADJ5000	2500					
	5000					
•	500					
ADJ5000	2500					
	5000					·
	500					
ADJ5000-M	2500					
	5000					

FRM-247c (Rev 2/Mar 03)

010481

Book/page: 06 068

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: 6011 diH20 Temperature (° C) 72.0

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100			
	ADJ1000-C	500			
		1000			11/
		100			DY
	ADJ1000-D	500		124	
		1000		211	
		100		1991	
	ADJ1000-E	500			
1		1000		<u> </u>	
13		100	K.		
0	ADJ1000-F	500			
000		1000			
1		100	0.0998	0.1012	0.1011
1	ADJ1000-G	500	0.4924	0.4954	0.4954
"		1000	0.9869	0.9902	0.9936
3		100	0.0999	0.1009	0.1005
	ADJ1000-H	500	0.4921	0.4921	0.4937
100		1000	0.9870	0.9924	0.9937
-		100	0.0961	0.0987	0.0983
	ADJ1000-J	500	0.4945	0.4942	0.4943
		1000		0.1753	11
	AD 14000 16	100		با ربر ر.	1104
	ADJ1000-K	500		DYF	· · · · · · · · · · · · · · · · · · ·
		1000		W ''	
	AD 11000	100	17	1	
	ADJ1000	500	V		
		1000	A Comment of the Comm		

Analyst: Warren G. Maegeli"	Date: _	04/24/04
Reviewed by: A De Clark	Date:	06/30/04

Book/page:	06	067
------------	----	-----

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010482

Wooren a. Naegeli 04/30/04

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100					
ADJ1000-C	500					
	1000					
	100					
ADJ1000-D	500					
	1000					
	100					
ADJ1000-E	500					
	1000					
	100					
ADJ1000-F	500					
	1000					
	100	0.0998	0.1012	0.1011	0.101	100.70
ADJ1000-G	500	0.4924	0.4954	0.4954	0.494	98.88
	1000	0.9869	0.9902	0.9936	0.990	99.02
	100	0.0999	0.1009	0.1005	0.100	100.43
ADJ1000-H	500	0.4921	0.4921	0.4937	0.493	98.53
	1000	0.9870	0.9924	0.9937	0.991	99.10
	100	0.0981	0.0982	0.0983	0.098	98.20
ADJ1000-J	500	0.4945	0.4942	0.4943	0.494	98.87
	1000	0.9881	0.9925	0.9932	0.991	99.13
	100					
ADJ1000	500					
	1000					
	100					
ADJ1000-K	500					
	1000					-

FRM-247b (Rev 2/Oct 03)

010483

Book/page: 06 010

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20			
	ADJ200-A	100			
		200		16	
		20		164	
	ADJ200-C	100		riffe	
		200	S AN		
		20	WATT		
	ADJ200-D	100			
3		200			Secretary of the second
		20	0.0198	0.0204	0.0202
200	ADJ200-G	100	0.0996	0.0998	0.0996
N		200	0.1984	0.1993	0.1990
		20	0.0202	0.0702	0.0202
	ADJ200-H	100	0.0994	0.1001	0.0997
3		200	0.1990	0.1990	0.1999
20		20	0.0202	0.0204	0.0200
2	ADJ200-J	100	0.1002	0.1003	0.1002
		200	0.2008	0.2005	0.2006
		20			
-	ADJ200-K	100		1110	
		200		ny fratt	,
		20	JAA	01'	
-	ADJ200	100	1011		
		200			

Analyst: Waster G. Maegel.

Reviewed by:

Date: 04/24/04
Date: 4/29/04

Book/page:	06	009

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

Wastren a Neugli 04/30/04

010484

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20					
ADJ200-A	100					
	200					
	20					
ADJ200-C	100					
	200					
	20					
ADJ200-D	100					
	200					
	20	0.0198	0.0204	0.0202	0.020	100.67
ADJ200-G	100	0.0996	0.0998	0.0996	0.100	99.67
	200	0.1984	0.1993	0.1990	0.199	99.45
	20	0.0202	0.0202	0.0202	0.020	101.00
ADJ200-H	100	0.0994	0.1001	0.0997	0.100	99.73
	200	0.1990	0.1990	0.1999	0.199	99.65
	20	0.0202	0.0204	0.0200	0.020	101.00
ADJ200-J	100	0.1002	0.1003	0.1002	0.100	100.23
	200	0.2008	0.2005	0.2006	0.201	100.32
	20					
ADJ200	100					
	200					*****
	20			· · · · · · · · · · · · · · · · · · ·		
ADJ200	100					
	200					
	20					
ADJ200-K	100					
	200					

FRM-247a (Rev 3/Oct 03)

12 my 2 104

010485

Book/page: 06 0066

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: 6011 diH20 Temperature (° C) 22

1	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20			
	ADJ200-A	100			
		200			
		20		119/09	
	ADJ200-C	100		, pytri	
		200	N A	V	
		20	WIT		
	ADJ200-D	100			
3		200			
		20	0.0201	0.0203	0.0200
0	ADJ200-G	100	0.0983	0.0985	0.0985
200		200	0.1965	0.1983	0.1972
		20	0.0203	0.0701	0.0199
	ADJ200-H	100	0.0998	0.0985	0.0991
1		200	0.2003	a 1998	0.81990
0		20	0.0197	0.0199	0.0197
20	ADJ200-J	100	0.0987	0.0988	0.0993
		200	0.1998	0.1995	D. 1986
		20			
	ADJ200-K	100		1-11-	
		200		4119109	
		20		0711	
	ADJ200	100	WAR		
		200			

Analyst: Watter G. Margeli
Reviewed by: Walle Of July

Date: 04/19/04

Date: 00/30/04

Book/page:_	06	006	a

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010486

Navoren a. Naegch: 04/30/04

SwRI – Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20					
ADJ200-A	100					
	200					
•	20					
ADJ200-C	100					
	200					
	20					
ADJ200-D	100					
	200					
	20	0.0201	0.0203	0.0200	0.020	100.67
ADJ200-G	100	0.0983	0.0985	0.0985	0.098	98.43
	200	0.1965	0.1983	0.1972	0.197	98.67
	20	0.0203	0.0201	0.0199	0.020	100.50
ADJ200-H	100	0.0998	0.0985	0.0991	0.099	99.13
	200	0.2003	0.1998	0.1990	0.200	99.85
	20	0.0197	0.0199	0.0197	0.020	98.83
ADJ200-J	100	0.0987	0.0988	0.0993	0.099	98.93
	200	0.1998	0.1995	0.1986	0.199	99.65
	20					
ADJ200	100					
	200					
	20					
ADJ200	100					
	200					
	20					
ADJ200-K	100					
	200					

FRM-247a (Rev 3/Oct 03)

010487

Book/page: 06 124

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: 6011 diH20 Temperature (° C) 72

ſ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500			7
	ADJ5000-C	2500	`		
		5000			
		500			
	ADJ5000-G	2500		209	
		5000		JATI	·
		500			
	ADJ5000-H	2500		X	
		5000	A PO		
		500			
	ADJ5000-I	2500	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
		5000			
7		500	0.5053	0.5072	0.5012
5000	ADJ5000-J	2500	2.4954	2.4898	2.4913
0		5000	4.9987	5.0102	5,0035
5(500	0.4962	0.4987	0.4979
	ADJ5000-K	2500	2.5003	7.5018	2.4978
",		5000	4.9878	4.9927	4.9951
7		500	0.5011	0.5028	0.5002
1	ADJ5000-L	2500	2.4983	2.4998	2.5017
500		5000	5.0234	5.0217	5.0138
5(500			
	ADJ5000-M	2500			
		5000			
		500		101	
	ADJ5000-N	2500		1010	
		5000		- JA 1	
	AD 15000	500		187,	
	ADJ5000	2500	 \}	k	
		5000	1		
	AD JEOOO	500	 		
	ADJ5000	2500	-		
		5000			

Analyst:_	120000m	a. Macaoli	
Reviewed by:_	Nacu	aft.	

Date: 04/19/04

06 124

010488 Book/page:__

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: 6011 diH20 Temperature (° C) 22

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500		-	
	ADJ5000-C	2500	,		
	i	5000			
		500			
	ADJ5000-G	2500		199	<u></u>
		5000		VALL	
		500		W.	
	ADJ5000-H	2500		X	
		5000	M		
		500			
_	ADJ5000-I	2500			
		5000			
17		500	0.5053	0.5072	0.5012
5000	ADJ5000-J	2500	2.4954	2.4898	2.4913
2		5000	4.9987	5.0102	5,0035
2		500	0.4962	0.4987	0.4979
	ADJ5000-K	2500	7.5003	7.5018	2,4978
"		5000	4.9878	4.9927	4.9951
5		500	0.5011	0.5028	0.5002
	ADJ5000-L	2500	2.4983	2,4998	2.5017
500		5000	5,0234	5.0217	5.0138
2		500			
	ADJ5000-M	2500			
		5000			/
		500		101	
	ADJ5000-N	2500			
-		5000		1	
l -	AD 15000	500		DAY.	
	ADJ5000	2500	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X -	
 		5000	1 XX		
	AD 15000	500			
-	ADJ5000	2500			
		5000			

Analyst:	(1)0001en	9. Maggali	
Reviewed by:_	Value	Cliff	_

Date: 04/19/04

Book/page:	06	1	23	
Doctor page.				_

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

Warren a. Maegeh 04/30/04

010489

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf#	True Value (μL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500					
ADJ5000-C	2500					
	5000					
	500					
ADJ5000-G	2500					
	5000					
	500			177, 177, 177, 177, 177, 177, 177, 177,		
ADJ5000-H	2500					·
	5000					
	500					
ADJ5000-I	2500 5000					
<u> </u>		0.5055	0.5050	0.5010	0.505	100.01
	500	0.5053	0.5072	0.5012	0.505	100.91
ADJ5000-J	2500 5000	2.4954 4.9987	2.4898 5.0102	2.4913 5.0035	2.492 5.004	99.69 100.08
	500			0.4979	0.498	99.52
4 D 15000 1/		0.4962	0.4987			
ADJ5000-K	2500 5000	2.5003 4.9878	2.5018 4.9927	2.4978 4.9951	2.500 4.992	100.00 99.84
	500	0.5011	0.5028	0.5002	0.501	100.27
AD IEOOO I	2500					
ADJ5000-L	5000	2.4983 5.0234	2.4998 5.0217	2.5017 5.0138	2.500 5.020	100.00 100.39
	500	3.0234	3.0217	3.0136	0.020	100.55
ADJ5000	2500					
AD33000	5000					
	500					
ADJ5000	2500					
7,50000	5000					
	500					
AD 15000						
ADJ5000	2500					
	5000					
	500					_
ADJ5000-M	2500					
	5000					

FRM-247c (Rev 2/Mar 03)

Book/page:	06	123

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

Warren a Naegeh 04/30/04

010490

SwRI – Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf#	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500					
ADJ5000-C	2500					
	5000					
	500					
ADJ5000-G	2500					
	5000					
	500					
ADJ5000-H	2500					
	5000		-			
	500					
ADJ5000-I	2500 5000					
		0.5052	0.5072	0.5012	0.505	100.91
45.15000 1	500	0.5053	0.5072		2.492	
ADJ5000-J	2500 5000	2.4954 4.9987	2.4898 5.0102	2.4913 5.0035	5.004	99.69 100.08
	500	0.4962	0.4987	0.4979	0.498	99.52
ADJ5000-K	2500	2.5003	2.5018	2.4978	2.500	100.00
ADJ5000-K	5000	4.9878	4.9927	4.9951	4.992	99.84
	500	0.5011	0.5028	0.5002	0.501	100.27
ADJ5000-L	2500	2.4983	2.4998	2.5017	2.500	100.00
ADOUGUE	5000	5.0234	5.0217	5.0138	5.020	100.39
	500			-		
ADJ5000	2500					
	5000					
	500					
ADJ5000	2500					
	5000					
	500					
ADJ5000	2500					
	5000					
	500					
ADJ5000-M	2500					
	5000		ł			

FRM-247c (Rev 2/Mar 03)

010491

Book/page:_

06 064

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: 6011 diH20 Temperature (° C) 22

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100			
	ADJ1000-C	500			
		1000			
		100			
	ADJ1000-D	500		1	
[1000		als	
l ·		100		all	
	ADJ1000-E	500	• • • • • • • • • • • • • • • • • • • •		
_		1000	AAA		
1		100	W		
0	ADJ1000-F	500	V		
2		1000			
1000		100	0.1007	0.1003	0.1006
1	ADJ1000-G	500	0.4923	0.4967	0.4971
٠,		1000	0.9998	1-0002	0.9985
7		100	0.0997	0.0992	0.0987
	ADJ1000-H	500	0.5023	0.5037	0.5012
100		1000	1.0010	0.9982	0.9975
_		100	0,1008	0.0983	0.0995
	ADJ1000-J	500	D.4953	0.4937	0-4963
		1000	0.9852	0.9876	0.9864
	17 1/222 1/2	100			
	ADJ1000-K	500		114	
j		1000		14/9/10	
	AD It coo	100	, JAH	DT"	
	ADJ1000	500	WATT		
		1000			

	Warren a. Macgoli-	Date: _	04/19
Reviewed by:_	Miles Ork	Date: _	06/30

Book/page:	06 0	63
Doon page.		

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

Warren a. Megel 04/30/04

010492

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100					
ADJ1000-C	500					
	1000					
	100					
ADJ1000-D	500					
	1000					
	100					
ADJ1000-E	500					
	1000					
	100					
ADJ1000-F	500					
_	1000					
	100	0.1007	0.1003	0.1006	0.101	100.53
ADJ1000-G	500	0.4923	0.4967	0.4971	0.495	99.07
	1000	0.9998	1.0002	0.9985	1.000	99.95
	100	0.0997	0.0992	0.0987	0.099	99.20
ADJ1000-H	500	0.5023	0.5037	0.5012	0.502	100.48
	1000	1.0010	0.9982	0.9975	0.999	99.89
	100	0.1008	0.0983	0.0995	0.100	99.53
ADJ1000-J	500	0.4953	0.4937	0.4963	0.495	99.02
	1000	0.9852	0.9876	0.9864	0.986	98.64
	100					
ADJ1000	500					
	1000					
	100					
ADJ1000-K	500					
	1000					

FRM-247b (Rev 2/Oct 03)

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040415-2

SRR: 25770 SDG: 243222 CASE: CNWRA

VTSR: April 14, 2004 PROJECT#: 06002.01.141

Balance Calibrations

Southwest Research Institute® Division 01 BALANCE VERIFICATION LOG

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
12	Bldg. 70 Lab 27	1122510787	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
6-3-04	2.0000	2.0000	KE	3N:99- J50526-1
6-4-04	2.0000	2.0000	KE.	m
6-7-04	2,600	2.0001	KE	~
6-8-04	2.0000	2.0000	KE	n
6-9-04	2,0000	2.0000	KE	~
6-10-04	2.0000	2,0001	KE	1
6-11-04	210000	2,000	KE.	n
6-14-04	2.000	1.9999	Qu	//
6-15-04	2.0000	5.000	Su	-//
6-16-04	2.0000	2,0000	PE	N

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 1 of 30

FRM-112 (Rev 2/Aug 03)

Southwest Research Institute Division 01 **BALANCE VERIFICATION LOG**

BALANCE #	LAB#:	SERIAL #:	SERIAL #: TOLERANCE:	
19	27	0068597	±0.05	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
6-2-04	10.00	10.00	Jew	SN:99-J50624-5
6-3-04	10.00	10.00	PE	*
6-4-04	10.00	10.00	KE	N.
6-7-04	1000	18.00	KE	3 1
6-8-04	10.00	10.00	KE	N
6-9-04	10.00	10.00	KE	11
6-10-04	10.00	10.00	KE	1
6-11-04	10.00	10.01	KE,	v
6-14-24	10.00	10.00	Jely	
6-15-04	10.00	10.01	Su	

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (x5896) for service.

Page # ___21____

FRM-112 (Rev 1/Dec 99)

Southwest Research Institute Division 01 **BALANCE VERIFICATION LOG**

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
34	Bldg. 70 Lab 27	1116031935	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	SN: 99-J50526-15
6-10-04	2-0000	2.0600	KE	N
6-11-04	2.0000	2,0000	KE	N
1-14-04	2-0000	1.9999	Jew	- 2
6-15-04	2-0000	2.0001		-/-
6-16-04	2,0000	2.0000	OKE	~
6-17-04	2.0000	210000	1K5	
6-18-04	2.0000	2.0000	KE	N
6-21-04	2,0000	210000	KE	<i>p</i>
6-22-04	2.0000	2,40000	KE	~
6-23-04	210000	2.0000	KE	V

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 2 of 30

FRM-112 (Rev 2/Aug 03)

Southwest Research Institute Division 01 BALANCE VERIFICATION LOG

BALANCE #	LAB#:	SERIAL #:	TOLERANCE:	COMMENTS:
34	28	1116031935	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
4-9-04	J.0000	3.0000	Der	SW: J50526-15
4-12-04	2-0000	2.0000	K.E	~
4-13-04	2.0000	2.0000	ice	O.
4-14-04	2 0000	2-0000	KE	~
4-15-04	2.0000	2.0000	KE	N
4.16.04	2.0000	1.9999	146	∕ r
4-19-04	2.0000	2.0000	KE	<i>?</i>
4-20-04	2.0000	2-0000	KE	11
4-21-04	2 කෙරෙ	2.8000	(LE	\sim
4.22-04	2.0000	2.0000	KE	<i>p</i>

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (x5896) for service.

Page # ___23____

FRM-112 (Rev 1/Dec 99)

Southwest Research Institute

BALANCE #	LAB#:	SERIAL #:	TOLERANCE:	COMMENTS:
34	28	1116031935	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
4-9-04	2.0000	5.0000	Des	SN: 550526-15
4-12-04	2-0000	2.0000	X.E	~
4-13-04	2.0000	2.0000	ice	47
4-14-04	2:0000	2-0000	KE	A.
4-15-04	7.0000	2.0000	KE	N
4.16.04	2.0000	1.9999	1€	A*
4-19-04	2.0000	2.0000	KE	<i>n</i>
4-20-04	2.0000	2-0000	KE	11
4-21-04	2 -ගළුතට	2.8000	KE	~
4.22-04	2.0000	2.0000	KE	/34

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (x5896) for service.

Page # ___23____

FRM-112 (Rev 1/Dec 99)

010498

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT

CLIENT: Division 20

TASK ORDER: 040415-2

010499

SRR: 25770 **SDG: 243222 CASE: CNWRA**

VTSR: April 14, 2004

PROJECT#: 06002.01.141

DI Water Verification

D.I. WATER SYSTEM NOTEBOOK SOUTHWEST RESEARCH INSTITUTE BUILDING 70

Contact U.S. Filter (1-800-466-7873) for repairs/exchanges. (Make sure to have a P.O.)

HIGH PURITY SYSTEM (HP)

010500

		RESISTIVITY	MONITOR	QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	(M OHMS)	QC LT.	QC 1	QC 2	(GALS)	COMMENTS
5/24/04 600 pm	10/2	18.04	7	V		1903.8	ALLOK
125/14 6:490m	OR	18,64	V	٧	ν	1946,3	L
5/26/04 64/pm	0/2	18.04	∠	V	~	1974.6	<u> </u>
SHALLY RISEPA	OR	18,04	V	V	V	1992.2	
4/1/04 649m	OR	18,04	V	W	V	2012,0	
6/3/14 6:16pm	DR	18.04	<u></u>	~	<u></u>	2629,5	
6/3/04 6:20 om	DR	18,04	V	١	~	2044,4	1
6/4/04 5,430M	DR	18,04	v	V	1	20247	
6/7/04 5.53 pm	OR	15.05	V	~	1	2072.0	
6/8/04 7341M	1)R	18.05	~	V	\	2086, 5	<u></u>
48/04 7:10pm	DR	18,04	V	V	~	2123.7	
Glisloy 7:30em	DR	16.05		~)	2136,8	1 L
Globay Gilson	DR	18.04		L	~	2145,4	<u></u>
6/14/64 6:20m	OR	18.05	V	<i>~</i>	V	2156.2	1
415/64 5.180m	DR	18.04	レ	~	~	2170.2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Glibley Jom	OR	18.05	<i>\\\</i>	~		2187.0	L

Legend: Check = Green (OK); X = Red (call for service)

LOW PURITY SYSTEM (LP)

		QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	QC 1	QC 2	(GALS)	COMMENTS
5/34/64 6102 pm	OR	V (14,5)		910.7	ALL OLL
World Girgon	DR	v (15,0)	レ	911.6	
Stackey Gillom	OK	V (15.0)	V	912.1	
5/2 VOY 8: 561M	DR	~ (15.0)	レ	9/2.3	
6/1/64 6:490m	OR	V (15.0)	u	912,9	
classy girlam	PR	V (16.0)	V	913.7	
6/3/44 Gi 200M	DR	V (16.5)		913,9	
Glylou siysom	DR	WK6.5)		914.0	
6/7/04 5:53pm	DR	V (9.0)		914.0	
6/8/04 7140m	DR	X (18,0)	سا	9145	nustonul USEI Har P.O.
4/9/04 Dilopr	na	λ	(17.5) V	915.0	nul P.O.
6/10/14 7:30pm	DR	X	(17.5) V	925.1	AP.O. Regist. USFi ther rated
Chilly 6:180m	DR.	X	(125)	917.3	Sned P.O
6/14/64 6:201M	PR	<u></u>	(14.0) V	920.5	trank Filter enchange ALLOK.
6/15/14 5:180m	DR	<u></u>	(15.6) ~	921.7	
6/16/04 7pm	Dil	/	(15.5) V	923.2	

Legend: Check = Green (OK); X = Red (call for service)

D.I. WATER SYSTEM NOTEBOOK SOUTHWEST RESEARCH INSTITUTE BUILDING 70

Contact U.S. Filter (1-800-466-7873) for repairs/exchanges. (Make sure to have a P.O.)

HIGH PURITY SYSTEM (HP)

010501

		RESISTIVITY	MONITOR	QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	(M OHMS)	QC LT.	QC 1	QC 2	(GALS)	COMMENTS
4/8/04 1.44000	DR	18.08	~)	~	124802	
4/13/14 6.330m	DR	18.04	V)	-	1258.9	
4/13/64 10:07AM	DR	18.63	~	V	<i>i</i>	12607	
4/14/64 4.561M	OR	18,64	V	V	<i>L</i>	1279.9	
4/15/N 13.520m	DR	15,03	レ	/		1289.7	
4/16/04 937 pm	OR	18,65)	/	1335.1	
4/19/04 4.20,11	ρſl	18.04	V	<u></u>	/	1361.5	
4/22/14 4/43 pm	óR	18,06	└	V)	1381.8	
Ylarloy SiysAm	DK	15,04	V	V	V	1406.2	
4/20/14 8/15/pm	DR	18.03	V)	_	1435.6	
4/23/04 Si25,1m	DR	18.63	V	V		1460,7	
4hs/04 5.25pm	RSS	18 64	<i>\</i>	~	V	1461.6	
4/26/64 6:33 pm	DR.	18.64	V	2		1487.8	
412404 6124AM	DR	18.04		L	V	149 0.9	
4128/64 4/20 pm	DR	18:64		V	~	1495.7	
429/04 Silipm	DR	18.04	V	V	/	1519.4	

Legend: Check = Green (OK); X = Red (call for service)

LOW PURITY SYSTEM (LP)

		QCL	IGHTS	USAGE	
DATE / TIME	INITIALS	QC 1	QC 2	(GALS)	COMMENTS
4/9/04 1:45 pm	0R	L	V	851.6	
4/12/04 67710m	OR	λ'	i	853,1	chellinam silved, callservice
4/13/04 10 Am	DIC	X	1	857.2	reed to for Sormulace
4/14/04 4: Slop	DR	Х	W	671.4	USFilter could (received po)
4/15/64 12.50 pm	DR	1		875.5	tANK, CATOMIN Filter exchanged ALLOK!
4/16/64 9/86/PM	DR	\	V	877.6	
4/19/04 4/2/om	DR			879,5	
7 be/04 4:44 sm	DR.	~	W	88 3,0	
412164 9:46Pm	na	<u> </u>		685.1	
4/20/04 8:160m	DR	V	1	88 84.0 Th	
4123/64 5:260m	PR	W	V.	8886 9 3536	
133/14 5:25m	R82	V		8869	
4/86/64 6:240m	DP	V		887.4	
412264 6224cm	0/2	₩	V	888.5	
4/28/64 4120 pm	OR	V	V	887: Mylx	4 891.5
4/24/04 5:41.2m	DIL	l		593.7	

Legend: Check = Green (OK); X = Red (call for service)

FRM-019 (Rev 0/Jan 04)

010502

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 040415-2

SRR: 25770 SDG: 243222 CASE: CNWRA

VTSR: April 14, 2004 PROJECT#: 06002.01.141

SURVEILLANCE REPORTS From Division 30

Institute Quality Assurance Surveillance Report

Project Number: 20-06002	Report Number: 2004-SR-0238	Page 1 of 1
Surveillance Scope: Monitor the tests for Trace Metal Analysis by ICP and IC in Division 01. The client is NRC High Level Waste Program. This is a QA Nuclear surveillance.		
Reference Documents: Task Order 040415-2,TAP 01-0406-038 Inductively Coupled Plasma/Atomic Emission Spectrometric Method for Trace Elemental Analysis, TAP 01-0406-042, IC for the Measurement of Inorganic Ions, and QPP Rev. 4.		
Starting Date: 2004-04-14	Ending Date: 2004-09-10	
Institute QA Representative: Charles S. Butcher		
Person(s) Conducting Test/Exam/Procedure: K. Edrisi, R. Spies, D. Harris		
Satisfactory Findings: Division 20 provided a work request to Division 01 for work performed. The work order was logged in by Receiving and labeled with PO number, QA Nuclear requirements, project number, tests required, and test revisions. Samples were labeled with PO number, QA label, ID number, and work order number. Analyst's training records were on file as required. Work orders, methods, and PQP were available and latest revisions were used. The instruments were calibrated with NIST traceable standards and the samples run. Data run was recorded, signed and reviewed by project personnel prior to transmittal to the client.		
Unsatisfactory Findings: N/A		
Nonconformance Report Number: N/A CAR/SCAR Number: N/A		
Attachments: None		
Recommendations/Actions: N/A		
Equipment Calibration: Equipment was calibrated before running samples. All standards were NIST traceable.		
Approved: <u>"/s/ R. Weber"</u> Institute Quality Assura	ance	Distribution: Original – IQS Records c: C. S. Butcher (30) PM – B. Werling (20) J. Boyd (01)
Date: 9/14/04		